
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report CNCF Jaeger 04.-05.2019
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, MSc. D. Weißer, J. Larsson,
BSc. J. Hector

Index
Introduction

Scope

Test Methodology

Part 1. Manual Code Auditing

Part 2. Code-Assisted Penetration Testing

Focus Areas and General Recommendations

Input Manipulation and Code Injection Attacks

Logic Bugs, ACL & Integrity Tests, Privilege Escalation

Security aspects of the general Kubernetes deployment

Programmatic DoS Attacks, Memory Exhaustion

Web-User Interface Security

Service Robustness & Proneness to Crashes

Miscellaneous Issues

JT-01-001 Collector: Missing authentication on data submission (Info)

JT-01-002 UI: DoS on Elasticsearch due to large input values (Info)

JT-01-003 K8s: Missing defense-in-depth procedures (Info)

Conclusions

Cure53, Berlin · 05/14/19 1/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“As on-the-ground microservice practitioners are quickly realizing, the majority of
operational problems that arise when moving to a distributed architecture are ultimately
grounded in two areas: networking and observability. It is simply an orders of magnitude
larger problem to network and debug a set of intertwined distributed services versus a
single monolithic application.”

From https://www.jaegertracing.io/

This report documents the findings of a security assessment targeting the CNCF Jaeger
software, a distributed Tracing System released as open source by Uber. Carried out by
Cure53 in spring 2019, this project entailed a source code audit and a penetration test.

As for the resources, six members of the Cure53 took part in the project. The allocated
time budget was eighteen days and these were all dedicated to project tasks and
objectives in late April and early May of 2019. The targeted release - equating to the
scope of this examination - was CNCF Jaeger 1.11.0. It can be noted that the source
code was taken from the publicly available Github repository, as the project has an open
source character. Consequently, the chosen methodology was white-box and paired a
comprehensive code audit with a classic penetration testing against a system put
forward by the maintainers of the scoped Jaeger version.

Besides the actual software, several of the available clients were in scope as well. Note
that given the time available to the testers, not all clients could be audited. In addition,
the Kubernetes-related code and configuration files were also inspected. All in all,
Cure53 did not manage to find any notable threats. Only a very small array of three
general weaknesses with negligible risk potential could be distinguished. Nevertheless,
even though the threat model for CNCF Jaeger is rather “generous” and not many items
could be pointed out as “risks”, experience has shown that attackers, once a system like
CNCF Jaeger is exposed to the public Internet, benefit from missing security controls.
Therefore, Cure53 found it crucial to also focus on hardening strategies that can make
the software even better and safer.

The next section in this report will elaborate on the scope details, list the release version
and repositories in scope. Next, the report will detail the chosen methodology and
describes various testing approaches, tasks and strategies to illuminate the span and
scope of the coverage reached by this Cure53 assessment. This means that a checklist
of the analyzed items is included to document the baseline of this evaluation of the
CNCF Jaeger security posture. The ensuing section is linked with the above statements
about the hardening needs, as the report furnishes on general advice and hardening
recommendation across the areas possibly prone to attacks. A detailed discussion of the

Cure53, Berlin · 05/14/19 2/12

https://cure53.de/
https://www.jaegertracing.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

aforementioned three findings follows. Last but not least, the report closes with a
conclusion, in which Cure53 summarizes their overall impressions about the CNCF
Jaeger’s general security posture.

Scope
• CNCF Jaeger

◦ In scope was the core system for CNCF Jaeger (1.11.0)
▪ https://github.com/jaegertracing/jaeger/releases

◦ Also investigated were the relevant client libraries (a selection done by Cure53)
▪ https://github.com/jaegertracing/jaeger-client-python
▪ https://github.com/jaegertracing/jaeger-client-node
▪ https://github.com/jaegertracing/jaeger-client-go
▪ https://github.com/jaegertracing/jaeger-client-cpp

◦ Kubernetes-related code and config
▪ https://github.com/jaegertracing/jaeger-kubernetes

◦ Cure53 was given access to a dedicated setup for the purpose of completing the
penetration test

Test Methodology
The following paragraphs describe the testing methodology used during the audit of the
Jaeger codebase and its related client-libraries. The test was divided into two phases,
each fulfilling different goals. In the first phase, the focus was on manual source code
reviews needed to spot insecure code patterns. In this realm, issues around memory
corruption, information leakage or similar flaws can be found. During the second phase,
it was evaluated whether the stated security goals and premise can, in fact, withstand
real-life attack scenarios.

Part 1. Manual Code Auditing

This section lists the steps that were undertaken during the first phase of the audit
against the Jager software compound. It describes the key aspects of the manual code
audit. Since no major issues were spotted, the list portraits the thoroughness of the
penetration test and attests a high quality of the project.

• The Jaeger codebase was checked for potentially vulnerable sinks in the
locations were user-input is parsed and handled.

• Client-libraries were audited to check how a connection is established to either
the agent daemon or the collector. The polling of the sampling strategy and
submitting of trace data were examined.

Cure53, Berlin · 05/14/19 3/12

https://cure53.de/
https://github.com/jaegertracing/jaeger-kubernetes
https://github.com/jaegertracing/jaeger-client-cpp
https://github.com/jaegertracing/jaeger-client-go
https://github.com/jaegertracing/jaeger-client-node
https://github.com/jaegertracing/jaeger-client-python
https://github.com/jaegertracing/jaeger/releases
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Additionally, the code for creating spans and tags was audited to ensure that the
data is stored in a safe manner. Flaws in this area could otherwise lead to
injection-based attacks.

• Client libraries were also checked for OS interactions (e.g. logging or binary
execution), however, the logging was either to null or console. No further OS
interactions were found.

• Special attention was given to the C++ client library (due to the nature of the C++
language). Dynamic memory allocations, unsafe use of typical C APIs and
possible integer overflows were checked. However, the strict use of modern C++
constructs prevents common pitfalls on the CNCF Jaeger scope.

• HTTP handler functions of the collector and agent daemon were audited for
logical flaws and general handling of untrusted input. Additionally, it was checked
whether proper ACL checks were in place. More information on this subject can
be found in JT-01-001.

Part 2. Code-Assisted Penetration Testing

The following list documents the distinguishable steps taken during the second part of
the test. A code-assisted penetration test was executed against the pre-configured
Jaeger cluster provided by the development team. Since only a few miscellaneous
issues were found during the first part of the audit, this additional approach was used to
ensure maximum coverage of the originally defined attack surface.

• The admin web interface - which allows to view and submit traces - was tested
for common, web-related server and client issues like CSRF, XSS and injections.
Besides a minor DoS issue, no problems with the handling of user-input have
been found.

• The accepted Content-Types were evaluated for possibly exploitable avenues.
The gzip Content-Type was examined in relation to the so-called gzip-bombs but
no such weaknesses could be identified.

• The JSON upload feature was examined for XSS vulnerabilities with the use of
maliciously formatted JSON files. It has become apparent that all content is being
escaped properly and therefore no such weaknesses seem to exist.

• The default set of tests for discovering problems in the web security area was
applied. This included general fuzzing and attempts at a targeted injection of
content to appear in log-files or OS-level system calls. No such problems were
found.

Cure53, Berlin · 05/14/19 4/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Focus Areas and General Recommendations
The following section talks about the focus areas previously discussed by Cure53 with
the maintainers and overall outlined by the development team. Recommendations for
further improving the security of the software are given due to the already noted
generous nature of the threat model. In that sense, Cure53 comments on the fact that
responsibility for security measures is allocated to other stakeholders in the stack and
argues that this might have certain security-implications in various realms. This is paired
with an emphasis on hardening advice.

Input Manipulation and Code Injection Attacks

During the audit of Jaeger, considerable attention centered on common security issues
that are usually related to server-side software. In essence, any functionality that
processes user-input was analyzed and checked for consequences of malicious input.
The testing methodology entailed extensive code assisted manual input manipulation
tests reliant on functionality exposed by the web UI or reachable with the Jaeger clients
in scope.

It was quickly noticed that the Jaeger codebase clearly avoids common programming
mistakes, such as having the user-controlled arguments that are passed to calls through
os.exec or ioutils.ReadFile. These easily result in command execution of file disclosure if
done incorrectly and here were eliminated successfully.

The general programming style was found to be very defensive. Error codes are
checked thoroughly, parsing (for example for JSON Content-Types) is done with care
and bailouts are done early. Nearly all models implement extensive unit-tests that cover
multiple forms of unconventional input and make sure that the defined methods work as
expected. This extends to unmarshaling of common data-types but also thoroughly tests
the unpacking of specially implemented formats such as trace-IDs and similar.
Generally, Jaegers codebase does not leave much room for errors, which is reflected in
the low number of vulnerabilities found by Cure53.

Concerning the given client-side software, Cure53 conducted audits of the client-libraries
as well. They use a straightforward and simple interface to communicate either with the
local agent or the collector itself. The communication consists of reporting spans and
polling the sampling strategy provided by the collector. Given the simple design, not
much room for errors is left. Furthermore, the client-libraries provide an API to associate
tags with span data; these were audited to ensure that malicious input-data does not
allow for an attack corrupting the span data. The client-libraries use the proper
structures, provided by the implementation language, to store key and value pairs.

Cure53, Berlin · 05/14/19 5/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Moreover, the code is well-written and follows a clean coding style which further reduces
common pitfalls.

Logic Bugs, ACL & Integrity Tests, Privilege Escalation

One major aspect specified by the development team as a priority was the verification of
access controls. This warranted checking their integrity and locating logic bugs that
would allow for escalating privileges.

Surprisingly, it was found that there are no access controls in the analyzed source code.
While there are access roles defined in the Kubernetes configuration, these were not
found to be applied anywhere. Similarly, there were no message integrity checks in the
implementation. Since there was no application of such tests, in turn, no logic bugs
bypassing the probes could be identified.

The exposed service hosting the Jaeger API was analyzed for potential privilege
escalation issues that could reside within the service itself, as well as in the hosting
infrastructure. However, no privilege escalation issues were discovered: neither in the
realm of the service nor through pod-to-pod execution. At the same time, the current
configuration raised some concerns for the testers due to the adopted network topology.
The Kubernetes cluster has no network policy object configured and relies on a very lax
network separation design. The defense-in-depth ticket JT-01-003 was created to shed
light on these aspects.

The further possible shortcoming was encountered while investigating the authentication
scheme adopted by Jaeger. As of now, the only way to support authentication is to rely
on third-party services such as Oauth-proxies or native Kubernetes authentication. The
lack of a natively supported authentication mechanism is considered a bad security
practice and should be rectified by the Jaeger maintainers. JT-01-001 was created to
address this.

Security aspects of the general Kubernetes deployment

During this audit, the overall security aspects of the current Kubernetes orchestration
were analyzed. The focus was placed on discovering weak configurations that could be
leveraged by an attacker to gain unwanted access to the deployment pipelines, the
Kubernetes cluster, as well as to running pods and services.

The images used throughout the configuration are handled in a safe manner: all images
are downloaded from reputable sources and have the appropriate signatures in place so
that the authenticity of the downloaded image is always validated.

Cure53, Berlin · 05/14/19 6/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The Kubernetes cluster configuration was analyzed as regards known security issues
that reside in the Kubernetes master and corresponding nodes. The configuration used
by Jaeger is more or less a standard installation of Kubernetes. The configured
namespaces and the attached pods were checked for common pod-to-pod execution
issues as well as pod-to-master vectors, which could be leveraged by an attacker who
has gained an initial foothold in either a service or a pod inside of the cluster. No
immediate weak configuration issues were discovered apart from the miscellaneous
ticket described in JT-01-003.

Programmatic DoS Attacks, Memory Exhaustion

Another relevant part of the audit against Jaeger revolved around potential sinks that
could cause the Jaeger setup to crash and become unrecoverable. Generally, this was
also covered by further input manipulation tests, especially on areas that can allow
submission of large values for input variables, files and compressed data. However, it
was quickly found that, for example for gzip-compression, standard libraries were in
place and prevented such issues on their own already.

Still, the testers managed to find a minor DoS issue concerning the bindings for the
Elasticsearch service, as described in JT-01-002. Although Jaeger uses a robust
architecture that takes care of all services to be restarted consequently, this was still
treated as an input-validation issue that was worth reporting. Even with the focus on
more configurational issues, the auditors were not able to uncover methods to
deterministically cause a Denial-of-Service in the provided Jaeger setup.

Web-User Interface Security

Since Jaeger offers an administrative web interface, this item had to be analyzed from a
security perspective. Although it is deployed without any form of authentication where
the end user is expected to sufficiently shield it from outside attackers, malicious vectors
may still exist. This concerns reflected XSS, code injection issues and other common
vulnerabilities that are typically present in web applications. As such, the testers
conducted extensive fuzzing and input-manipulation tests to spot such issues, for
example in the rendered templates and other areas that receive user-input, such as the
REST API.

Especially the trace data import via JSON files received considerable attention as it
allows arbitrarily chosen values for each field. When displaying the data, it was found
that the UI encodes all characters correctly in their HTML entities, which leaves no room
for further exploitation. As the UI is kept rather simple and does not implement any other
complex logic, not much other attack surface existed. The auditors further looked for

Cure53, Berlin · 05/14/19 7/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

places where user-input could end up in files residing in the file-systems and checked
how these could interfere with other services or applications.

Another integral part of the UI security penetration test was the REST API which is used
to fetch data. Except for the minor issues around the absence of rate-limiting and the
leakage of internal IPs in verbose error messages, the testers could not determine any
serious web security issues.

Service Robustness & Proneness to Crashes

During the audit, the testers assessed the overall robustness and scalability of all
components attached to the Jaeger scope, in order to discover potential issues that
could possibly lead to unexpected crashes or similar unwanted behavior.

In order to achieve good coverage, all services were analyzed by looking for common
misconfigurations that could eventually lead to Denial-of-Service issues or over-
allocation of resources within the Kubernetes cluster. No configuration issues were
discovered to affect the robustness and scalability of the orchestration used by Jaeger.
The discovered DoS (filed as JT-01-002) did not affect the overall performance of the
cluster and triggered no scaling issues that would render the entire cluster unstable.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while the vulnerability is present, an exploit might not always be possible.

JT-01-001 Collector: Missing authentication on data submission (Info)

A central component of the Jaeger architecture is the collector. It receives the trace
reports from all agents/micro services and stores the data into a data store. The collector
exposes multiple HTTP endpoints, for example /api/traces or /api/v1/spans. The
endpoints are used directly by the agent daemon or micro-services to submit trace data.
These endpoints, however, do not perform any kind of authentication. Thus, a micro-
service that is vulnerable to a sophisticated Server-Side Request Forgery (SSRF)1

attack, can be abused to submit malicious trace data to the collector.

Although the developers encourage the end-users to take the appropriate steps based
on their deployment, it is still recommended to implement some form of authentication.
For example, token-based access, to restrict collector access to only authenticated

1 https://www.owasp.org/index.php/Server_Side_Request_Forgery

Cure53, Berlin · 05/14/19 8/12

https://cure53.de/
https://www.owasp.org/index.php/Server_Side_Request_Forgery
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

agents/micro-services, could be added. A default authentication can also be
implemented as an opt-out feature, which gives users the freedom to go with a different
route.

JT-01-002 UI: DoS on Elasticsearch due to large input values (Info)

The UI relies on an Elasticsearch instance to query for trace data. A user can supply a
loopback or start and end params, which will determine which time span the search
should cover. It was found that by supplying large values for the loopback param or by
creating a big timespan, one can cause the underlying elasticsearch crashes. Illustrative
requests can be seen below.

Example Request 1:
GET /api/traces?start=1&end=1556624710030000&operation=multiRead&service=jaeger-
query HTTP/1.1
Host: 139.178.82.82:31112
Connection: close

Response:
HTTP/1.1 500 Internal Server Error
Content-Type: text/plain; charset=utf-8
Content-Length: 450726

{"data":null,"total":0,"limit":0,"offset":0,"errors":[{"code":500,"msg":"Search
service failed: Post http://elasticsearch:9200/jaeger-span-2019-04-30%2Cjaeger-
span-2019-04-29[...]%2Cjaeger-span-1970-01-01/span/_search?
ignore_unavailable=true: net/http: HTTP/1.x transport connection broken: write
tcp 10.233.70.27:49502-\u003e10.233.65.22:9200: write: connection reset by
peer"}]}

Example Request 2:
GET /api/dependencies?endTs=1&lookback=9218999999999 HTTP/1.1
Host: 139.178.82.82:31112

Response:
HTTP/1.1 500 Internal Server Error
Content-Type: text/plain; charset=utf-8
Content-Length: 3521520

{"data":null,"total":0,"limit":0,"offset":0,"errors":[{"code":500,"msg":"Failed
to search for dependencies: Post http://elasticsearch:9200/jaeger-dependencies-
1970-01-01%2Cjaeger-dependencies-1969-12-31%2C[...]%2Cjaeger-dependencies-1677-
11-10/dependencies/_search?ignore_unavailable=true: net/http: HTTP/1.x transport
connection broken: write tcp 10.233.70.27:33606-\u003e10.233.65.22:9200: write:
connection reset by peer"}]}

Cure53, Berlin · 05/14/19 9/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Sample DoS Response:
HTTP/1.1 500 Internal Server Error
Content-Type: text/plain; charset=utf-8
Content-Length: 157
Connection: close

{"data":null,"total":0,"limit":0,"offset":0,"errors":[{"code":500,"msg":"Search
service failed: no available connection: no Elasticsearch node available"}]}

As seen above, subsequent requests will be denied until the Elasticsearch instance is up
again. Due to its integration into K8s, this period of downtime, however, is only a matter
of seconds. Despite not having a direct security impact, the Jaeger team deemed this
find useful. It is recommended to add further sanitization methods to ensure that all
supplied values are sufficiently bound-checked.

JT-01-003 K8s: Missing defense-in-depth procedures (Info)

The analysis of the Kubernetes cluster showed that the orchestration topology lacks
defense-in-depth concepts. The current orchestration has a traditional inside vs. outside
defense boundary defined. Running this topology design is not considered a sound
security practice. If an attacker was to gain a foothold into the Kubernetes cluster
through a compromised pod, there is no segmentation in place to limit ingress/egress
traffic. The analyzed orchestration has multiple namespaces configured but there is no
limiting configuration in place to aid network or services segmentation.

As an example, the Elasticsearch pod that runs in the namespace storage is able to
reach all internal pods defined within the cluster, as well as reaching the public Internet.
If this pod was to be compromised, it could be used as a pivot point for further attacks
throughout the cluster and infrastructure.

Excerpt from the elasticsearch-0 pod:
An internal resource using the “example” namespace is reachable from the “storage”
namespace.

Shell excerpt:
$ curl -L 10.233.29.206:8080
Hello from Vert.x!

External resources are available from within the Elasticsearch pod.

Shell excerpt:
$ curl -L https://cure53.de
<!doctype html><!--

Cure53, Berlin · 05/14/19 10/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

-->
<html lang="en-US">
 <head>
 <script src="/all.js"></script>[...]

It is recommended to inform and educate end-users on how to harden and secure their
respective infrastructure when Jaeger is deployed into a running Kubernetes cluster. In
order to properly protect all components used by Jaeger, ingress/egress traffic
configurations should be implemented by default or as a network policy that the end-user
can select to either apply or opt out from.

Conclusions
In light of the findings stemming from this 2019 assessment of the Jaeger Tracing
system, Cure53 has gained a mixed impression of the examined scope. To give some
details, the Cure53 investigation of the Jaeger Tracing system was generously financed
by The Linux Foundation / Cloud Native Computing Foundation, which enabled a team
consisting of six Cure53 testers to investigate the software system over the course of
eighteen days in April and May of 2019. Though a good coverage of almost all
components and areas has been achieved, Cure53 was unable to pinpoint any real
vulnerabilities in the codebase. At the same time, the general approach to security
displayed by the development team has been evaluated as somewhat lacking in the
Cure53 team’s expert opinion.

On one hand, the general indicators analyzed during the project are very good. In
particular, no actual security threats have been identified and only a handful of
miscellaneous issues could be spotted. This can be attributed to the high code quality
and a well-chosen implementation language, as well as libraries. In addition, positive
outcomes can be linked to the characteristics of the deployment and execution
environment. On the other hand, the auditors are somewhat concerned about the
apparent dismissal of all security mechanisms within the implementation itself. In that
sense, the Jaeger project appears nearly void of actual security measures. Everywhere
in the codebase and in terms of key properties, a correct and complete configuration of
the deployment and execution environment is a precondition and main approach. Such a
complete reliance on perimeter-security calls the generally accepted industry practice of
defense-in-depth into question. Moreover, it does not signify a capacity to cover possible
misconfigurations and the yet unknown, emerging risks.

As already acknowledged above, many positive conclusions can be drawn about the
Jaeger Tracing project. Especially the proper design and the clean implementation of the
concepts required for a system addressing this particular problem area must be praised.
While it was possible to produce a temporary Denial-of-Service state, all attempts at a

Cure53, Berlin · 05/14/19 11/12

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

complete shutdown of the system were futile. It is theoretically possible to forge trace
data, as well as exfiltrate data from any system within a cluster that an attacker may
have accessed in some way or another. However, the default configuration makes any
further success of the adversaries highly unlikely and quite unfeasible.

The auditors hope that the recommendation of implementing additional defense-in-depth
features will be taken to heart. This would make the entire Jaeger system more resilient
and can serve as an inspiration for the continued development of the software
compound. The testers strongly believe that the well-accepted industry-wide concept
that entails moving away from solely relying on perimeter security will be beneficial for
the project. As such, it will help achieve a secure system, making Jaeger an even better
product. Taking into consideration various non-default deployment scenarios can shift
responsibility for the security traits of an installation from the end-users. In any way,
profound expertise of the end-users should not be an assumption made lightly by the
development team. If no additions to the system are made, at least the documentation
should be adjusted to warn the users about the possible, harmful side-effects.

Cure53 would like to thank Gary Brown, Juraci Paixao Kroehling, Kevin Earls, Prithvi Raj
and Yuri Shkuro from the CNCF Jaeger team as well as Chris Aniszczyk of The Linux
Foundation, for their excellent project coordination, support and assistance, both before
and during this assignment. Special gratitude needs to be extended to The Linux
Foundation for sponsoring this project.

Cure53, Berlin · 05/14/19 12/12

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report CNCF Jaeger 04.-05.2019
	Index
	Introduction
	Scope
	Test Methodology
	Part 1. Manual Code Auditing
	Part 2. Code-Assisted Penetration Testing

	Focus Areas and General Recommendations
	Input Manipulation and Code Injection Attacks
	Logic Bugs, ACL & Integrity Tests, Privilege Escalation
	Security aspects of the general Kubernetes deployment
	Programmatic DoS Attacks, Memory Exhaustion
	Web-User Interface Security
	Service Robustness & Proneness to Crashes

	Miscellaneous Issues
	JT-01-001 Collector: Missing authentication on data submission (Info)
	JT-01-002 UI: DoS on Elasticsearch due to large input values (Info)
	JT-01-003 K8s: Missing defense-in-depth procedures (Info)

	Conclusions

