
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Envoy Proxy 02.2018
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, J. Larsson, Dipl.-Ing. A. Inführ,
BSc. J. Hector, G. Kopf, M. Münch

Index
Introduction
Scope
Test Coverage
Identified Vulnerabilities

EP-01-001 HTTP: Lacking Admin-Interface Security allows CSRF and DOS (High)
EP-01-002 HTTP: Potential BoF with HeaderStrings and Inline Buffers (Medium)
EP-01-003 HTTP: Potential UaF with HeaderStrings and Ref. Buffers (Medium)
EP-01-004 HTTP: Potential Integer Overflow during Header Encoding (Medium)

Miscellaneous Issues
EP-01-005 Common: strlcpy does not check for zero-sized Parameters (Low)
EP-01-006 Redis: User-Controlled Allocation leads to DoS (Medium)
EP-01-007 MongoDB: Stack Exhaustion via unbounded Recursion (Medium)
EP-01-008 MongoDB: Lax Parsing when processing malformed Messages (Low)

Conclusion

Introduction
“Originally built at Lyft, Envoy is a high performance C++ distributed proxy designed for
single services and applications, as well as a communication bus and “universal data
plane” designed for large microservice “service mesh” architectures.

Built on the learnings of solutions such as NGINX, HAProxy, hardware load balancers,
and cloud load balancers, Envoy runs alongside every application and abstracts the
network by providing common features in a platform-agnostic manner. When all service
traffic in an infrastructure flows via an Envoy mesh, it becomes easy to visualize
problem areas via consistent observability, tune overall performance, and add substrate
features in a single place.”

From https://www.envoyproxy.io

Cure53, Berlin · 02/27/18 1/13

https://cure53.de/
https://www.envoyproxy.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

This report documents the results of a penetration test and source code audit of the
Envoy proxy software. The project was carried out by Cure53 in February 2018 and
yielded eight security-relevant findings.

In terms of resources, the testing team comprised six members of the Cure53 and two
invited experts from Secfault Security GmbH. This overall eight-member team was
granted a time budget of twenty days to complete the assessment, with a caveat that an
adequate budget fraction should be preserved for the task of fix verifications and
communications to happen post-assessment. Moving on to the approach, it has to be
underlined that all relevant sources of the Envoy compound are openly available on
Github. This naturally means that the security evaluation was rooted in a white-box
premise since the envisioned attackers would have unlimited access to Envoy public
data.

It should be stated that the core scope items concerned exposition to rogue user-input,
with particular foci pointing to the HTTP parser, the header sanitizer and other
components of similar notoriety. What is more, the Envoy maintainers specifically
requested that the testers examine the TLS configuration, XFF and the generally
slowloris-style DoS attacks. While all this was inspected by Cure53, the focus on DoS
attacks also translated to looking at decompression of malicious HTTP content and
necessitated coverage with tests targeting the HTTP2 features. The Envoy Admin web
interface was placed under scrutiny of the testers as well, yet it was granted a much
lower priority because it is not expected to become a viable target. Upon a later request
from the maintainers, this component of the scope was actually ignored at sequent
stages of the project.

In terms of the execution of this assessment, the project was split into two phases, with
the first centered on the source code audit and a search for code bugs, and the second
encompassing a full-blown penetration test. The latter tried to attack an actually running
instance of Envoy and, quite clearly, investigated more complex attack scenarios, DoS
attacks, spoofing and bypasses. Under this premise, there was a clearly defined
attacker-model, specifically signifying a rogue and external attacker seeking to abuse
bugs and vulnerabilities in the Envoy entities. The presumed goals of the adversaries
would be to escalate their findings and make the Envoy project either slow or completely
shut down.

Among the already noted eight findings, there was an even mid-way split between four
actual security vulnerabilities and four general weaknesses. It is vital to emphasize that
no issues were marked as “Critical” in terms of security impact, severity or scope. This
absence of high-risk problems is a very good indicator for the broader state of security
matters at the Envoy compound.

Cure53, Berlin · 02/27/18 2/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In the following paragraphs, this report will briefly focus on the technical outline of the
scope and illuminates the overall coverage. It then moves on to the findings which are
discussed on a case-by-case basis and presented together with mitigation advice. The
closing section allows for some general notes on the robustness of the Envoy project in
light of this Cure53 and Secfault Security GmbH’s joint assessment.

Scope
• Envoy Proxy

◦ https://www.envoyproxy.io/

◦ Exact snapshot that was used for testing

▪ https://github.com/envoyproxy/envoy/tree/master

▪ Commit c31077b28e4f8a7db17895d5d2570e806e9e2a3e

Test Coverage
This section comments on the test coverage reached by the testing team in the given
timeframe.

To start with the key item of the scope, the HTTP header manipulation was extensively
examined. The handling was investigated with a special focus on sanitization and
performed also with edge-case values. It was attempted to bypass header stripping,
inject duplicate headers and break the HTTP transcoding by message splitting. The
HTTP2 header compression aspect was covered in relation to the Denial-of-Service
attack vectors.

The Admin Web Interface was checked for typical security problems. The findings in this
realm were concerning as the item was admittedly inadequate in terms of no
Authentication, lacking Header Security and the absence of the critical CSRF token.

In relation with the JSON parser, state machine was inspected for malformed input
handling and related memory management defects. An existing problem with incomplete
JSON input was found but ultimately deemed unexploitable. A particular focus was
placed here on the intrinsic types like numbers and strings.

Next on the list was the gRPC implementation which was checked for interface
interference issues. Also in this context there was a preselected item of top-priority,
notably concerning the potential threading model incompatibilities. Buffering and
decoding problems were considered in the HTTP and JSON filters, wherein an existing
general data starvation case was unveiled but discarded as insignificant.

Cure53, Berlin · 02/27/18 3/13

https://cure53.de/
https://github.com/envoyproxy/envoy/tree/master
https://www.envoyproxy.io/#
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The Lua implementation was investigated for common C interface misuse. The coroutine
state machine logic was verified. General integer overflows and null pointer
dereferences could not be identified in this realm.

For the event handling code in the Ratelimit component, extra scrutiny did not yield any
issues and found it adequate. Another aspect that generated no substantial findings was
the Redis protocol parser which was verified with special attention to logic issues like
treatment of invalid messages and illegal field lengths. Denial-of-service scenarios and
out-of-bound situations could not be found in this realm. This positive evaluation
extended to MongoDB parser code which was subjected to similar procedures as the
Redis parser implementation and held strong.

Further, the Network component was considered for potential logic and DoS bugs but
found to be rather clean and strong against the non-standard problem areas. Here the
explication could be derived from the lack of the application logic’s implementation.

Finally the SSL implementation was checked for typical TLS-related issues, configuration
malpractice and common certificate validation problems and the core Router request
handling was investigated for potential DoS scenarios. This last item was examined in
regard to the brokerage code of the component.

Cure53, Berlin · 02/27/18 4/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in a chronological order rather than by
their degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. EP-01-001) for the purpose of facilitating any
future follow-up correspondence.

EP-01-001 HTTP: Lacking Admin-Interface Security allows CSRF and DOS (High)
It was noticed quite early in the assessment that the Envoy’s Admin Interface, normally
reachable under http://localhost:9901, is highly insecure. This is because it completely
fails to follow modern security standards. There is actual authentication (although per
default the instance is only reachable locally), no HTTP security headers are in place
and CSRF tokens are not deployed. The last point is especially dangerous because all
administrative operations can be carried out by simple GET requests. Therefore luring
an internal administrator onto websites that embed the code like the following will signify
changes to the entire global configuration.

Example HTML (disable logging):

Example HTML (shutdown the server):

Besides having a mass-impact in terms of modifications, the attacker may even turn off
the server. Both these high-impact action may occur without the administrator noticing
for certain. Although the Envoy team has expressed their awareness of the bad security
premises of its Web Interface, it is still necessary to highlight the importance of relevant
fixes. It is recommended to offer additional authentication, e.g. similar to the Apache’s
digest-auth mechanism. Furthermore, CSRF tokens should be urgently implemented, for
example by utilizing X-CSRF-TOKEN headers on each authenticated request.

EP-01-002 HTTP: Potential BoF with HeaderStrings and Inline Buffers (Medium)
While analyzing how Envoy implements HTTP headers inside their HeaderMap, it was
noticed that there were three possible implementations, depending on the use-case at
hand. One of them concerned inline buffers that were mostly used for local variable type
declarations where simple C-style char arrays were used for storage. This can be seen
in the following definition of a buffer.

Cure53, Berlin · 02/27/18 5/13

https://cure53.de/
http://localhost:9901/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected File:
envoy/include/envoy/include/envoy/http/header_map.h

Affected Code:
union {
 char inline_buffer_[128];
 uint32_t dynamic_capacity_;
};

An actual problem was later discovered when checking how a header of this composition
is being created in the respective constructor inside the HeaderString class. The
following code depicts said faulty implementation.

Affected File:
envoy/include/envoy/source/common/http/header_map_impl.cc

Affected Code:
HeaderString::HeaderString(HeaderString&& move_value) {
 type_ = move_value.type_;
 string_length_ = move_value.string_length_;
[...]
 case Type::Inline: {
 buffer_.dynamic_ = inline_buffer_;
 memcpy(inline_buffer_, move_value.inline_buffer_, string_length_ + 1);
 move_value.string_length_ = 0;
 move_value.inline_buffer_[0] = 0;
 break;
 }
 }
}

One can observe the later used string_length as being formed from the passed
parameter and later used as a direct value for memcpy. This practically creates a call
such as memcpy(dest, src, strlen(src)). In this call the length of the source operand is left
unchecked and can be bigger than the space reserved at destination. Since this function
can be an actual pitfall for potential buffer overflows, it is recommended to explicitly limit
the length of the source operand to the reserved room at the destination, namely 128
bytes.

Cure53, Berlin · 02/27/18 6/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EP-01-003 HTTP: Potential UaF with HeaderStrings and Ref. Buffers (Medium)
While analyzing the HeaderMap implementation of Envoy, it was noticed that the code
makes use of the c_str() method for obtaining references to the underlying character
buffers of the STL strings. This pattern is not generally problematic but issues can arise
when the string object is invalidated (e.g. deleted). In case of deletion or similar state, it
has to be ensured that the reference to the underlying memory buffer is also invalidated.
Otherwise, the so-called use after free or similar vulnerability patterns can occur. One
particular example is shown below.

Affected File:
envoy/include/envoy/source/common/http/header_map_impl.cc

Affected Code:
HeaderString::HeaderString(const std::string& ref_value) :
type_(Type::Reference) {
 buffer_.ref_ = ref_value.c_str();
 string_length_ = ref_value.size();
}

After calling the above copy constructor, ref_value could go out of scope or be deleted.
In such cases a reference to an invalid buffer would be stored in the HeaderString
object. It should be noted that this is only one example whilst saving the return value of
the c_str() method appears to be common throughout the analyzed code base. Using
alternative approaches such as std::move should be evaluated in order to address this
finding in a more general manner.

EP-01-004 HTTP: Potential Integer Overflow during Header Encoding (Medium)
Another potential buffer overflow resulting from an integer overflow has been spotted
inside the HTTP/1 codec. This is due to the fact that two unsigned 32-bit integers were
used inside an addition before being assigned to a 64-bit unsigned integer. The following
code shows the prototype of the reserveBuffer function which accepts a uint64_t as a
size parameter for the later allocation.

Affected File:
envoy/source/common/http/http1/codec_impl.cc

Affected Source:
void ConnectionImpl::reserveBuffer(uint64_t size) {
[...]

However, the encodeHeader function uses two uint32_t types and adds them before
passing them to reserveBuffer.

Cure53, Berlin · 02/27/18 7/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Source:
void StreamEncoderImpl::encodeHeader(const char* key, uint32_t key_size, const
char* value, uint32_t value_size) {

 connection_.reserveBuffer(key_size + value_size + 4);
 ASSERT(key_size > 0);

 connection_.copyToBuffer(key, key_size);

[...]

Since the addition is based on 32-bit integers, an addition of the values 0x7fffffff,
0x7fffffff, and 4 (for instance) will lead to the value 2 being passed to reserveBuffer.
Thus, it will cause an allocation of a significantly smaller size. This was also checked
inside the assembly where the addition is carried out and stored into the 32-bit large esi
register before being passed to reserveBuffer:

Assembly snippet:
 0x0000000000684049 <+25>: lea 0x4(%r13,%r12,1),%esi
 0x000000000068404e <+30>: sub $0x18,%rsp
 0x0000000000684052 <+34>: mov 0x38(%rdi),%rdi
 0x0000000000684056 <+38>: mov %rcx,-0x38(%rbp)
 0x000000000068405a <+42>: callq 0x683f80
<Envoy::Http::Http1::ConnectionImpl::reserveBuffer(unsigned long)>

Later on, copyToBuffer is called with key_size of 0x7fffffff, despite there being room for
only 2 bytes. This would eventually be caught by the ASSERT statement inside
copyToBuffer where the remaining size is checked against the passed length, as
illustrated below.

Affected Source:
void ConnectionImpl::copyToBuffer(const char* data, uint64_t length) {
 ASSERT(bufferRemainingSize() >= length);
 memcpy(reserved_current_, data, length);
 reserved_current_ += length;
}

However, since this is not explicitly declared as an RELEASE_ASSERT, there is no
guarantee that this check will eventually land in the compiled version, thus opening the
door for another potential overflow. It is recommended to catch the mentioned integer
overflow, for example by relying on the built-in functionalities of GCC’1, specifically
__builtin_uadd_overflow.

1 https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html

Cure53, Berlin · 02/27/18 8/13

https://cure53.de/
https://gcc.gnu.org/onlinedocs/gcc/Integer-Overflow-Builtins.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

EP-01-005 Common: strlcpy does not check for zero-sized Parameters (Low)
Another potentially flawed function was identified inside the Envoy’s utility library where
all sorts of useful wrappers are defined. One of the items is a strlcpy implementation
which is essentially just a wrapper around strncpy, used to make sure that the
destination is always null-terminated.

Affected File:
envoy/source/common/common/utility.cc

Affected Source:
size_t StringUtil::strlcpy(char* dst, const char* src, size_t size) {
 strncpy(dst, src, size - 1);
 dst[size - 1] = '\0';
 return strlen(src);
}

The dangers associated with wrappers like these one stems from the fact that the
programmer always needs to make sure that the passed size is actually greater than
zero. Otherwise the size - 1 will eventually wrap around to 0xffffffff and cause a copy
operation that will continue to result in an overflow as long as no terminating null byte is
found in the source operand. A useful hardening addition here would be to make the
wrapper itself check whether size is greater than 0. The proposed strategy will always
prevent incorrect usage of the strlcpy function.

EP-01-006 Redis: User-Controlled Allocation leads to DoS (Medium)
During a cursory inspection of the Redis codec it was found that the implementation
relied on a user-supplied length arguments to perform memory allocations. Please
consider the code excerpt below to understand the corresponding flaw.

Affected File:
envoy/source/common/redis/codec_impl.cc

Affected Source:
} else {
 std::vector<RespValue> values(pending_integer_.integer_);

Cure53, Berlin · 02/27/18 9/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 current_value.value_->asArray().swap(values);
 pending_value_stack_.push_front({¤t_value.value_->asArray()[0], 0});
 state_ = State::ValueStart;
}

It can be observed that the code uses the previously parsed value of
pending_integer_.integer_ for allocating an array. Supplying an overly large array length
might hence provoke an out-of-memory condition, resulting in a DoS issue. It is generally
recommended to perform strict checks on all user-provided length arguments before
using them to perform allocations.

EP-01-007 MongoDB: Stack Exhaustion via unbounded Recursion (Medium)
A cursory inspection of the MongoDB implementation revealed that the BSON parsing
code allows for unbounded recursion depths when nested documents are being
handled. The following code excerpt can shed light on why this is a bad practice.

Affected File:
envoy/source/common/mongo/bson_impl.cc

Affected Source:
void DocumentImpl::fromBuffer(Buffer::Instance& data) {
[...]
case Field::Type::DOCUMENT: {
 ENVOY_LOG(trace, "BSON document");
 addDocument(key, DocumentImpl::create(data));
 break;
}

Affected File:
envoy/source/common/mongo/bson_impl.h

Affected Source:
static DocumentSharedPtr create(Buffer::Instance& data) {
 std::shared_ptr<DocumentImpl> new_doc{new DocumentImpl()};
 new_doc->fromBuffer(data);
 return new_doc;
}

It can be observed that the code recursively calls the fromBuffer() method for building
new DocumentImpl instances. A deeply-nested BSON document might hence lead to a
stack memory exhaustion, resulting in a DoS condition. It is recommended to generally
restrict the number of possible nesting levels to an appropriate value.

Cure53, Berlin · 02/27/18 10/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EP-01-008 MongoDB: Lax Parsing when processing malformed Messages (Low)
Another issue found during a cursory inspection of the MongoDB implementation was
linked to the parsing of code, which was relatively permissive when it came to malformed
messages. A code excerpt supplied next can illustrate the issue at hand.

Affected File:
envoy/source/common/mongo/bson_impl.cc

Affected Source:
void ReplyMessageImpl::fromBuffer(uint32_t, Buffer::Instance& data) {
 ENVOY_LOG(trace, "decoding reply message");
 flags_ = Bson::BufferHelper::removeInt32(data);
 cursor_id_ = Bson::BufferHelper::removeInt64(data);
 starting_from_ = Bson::BufferHelper::removeInt32(data);
 number_returned_ = Bson::BufferHelper::removeInt32(data);
 for (int32_t i = 0; i < number_returned_; i++) {
 documents_.emplace_back(Bson::DocumentImpl::create(data));
 }

 ENVOY_LOG(trace, "{}", toString(true));
}
[...]

bool DecoderImpl::decode(Buffer::Instance& data) {
[...]
 uint32_t message_length = Bson::BufferHelper::peakInt32(data);
 ENVOY_LOG(trace, "message is {} bytes", message_length);
 if (data.length() < message_length) {
 return false;
 }
[...]
 switch (op_code) {
 case Message::OpCode::OP_REPLY: {
 std::unique_ptr<ReplyMessageImpl> message(new ReplyMessageImpl(request_id,
response_to));
 message->fromBuffer(message_length, data);
 callbacks_.decodeReply(std::move(message));
 break;
 }

It can be observed that the code makes use of the decode() method in order to parse a
MongoDB message from a buffer. In a first step, the message length field is extracted.
After performing several other operations, the actual message is decoded using
message->fromBuffer(message_length, data).

Cure53, Berlin · 02/27/18 11/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

However, as the definition of ReplyMessageImpl::fromBuffer() shows, the previously
extracted length field is not actually considered. The fromBuffer() method could hence
consume more bytes than the message’s length field actually indicates. Clearly, in order
to provoke such a situation, a malformed message would have to be sent in the first
place. To sum up this flaw and mitigation, it might be advisable to add stricter checks
regarding message sizes to the parsing code. A revised strategy would signify a
defense-in-depth approach.

Conclusion
In spite of eight security-relevant findings, the team responsible for this assessment of
the Envoy compound can attest to the overall good state of security matters at the tested
project. Tasking an eight-member testing team from Cure53 and Secfault Security GmbH
entities has clearly demonstrated the robustness of the Envoy scope, while also enabled
for some minor flaws to be pointed out and - ideally - remediated. After spending twenty
days on the Envoy test target in February 2018, the penetration testers concluded that
the software was appropriately built and deployed. Similarly positive impression
concerned the Envoy code, which the auditors found to be well-written.

To comment on some specifics of this white-box assessment, it should be noted that the
maintainers requested a specific threat model to be covered. This encompassed a data-
plane compromise and Denial-of-Service, which were addressed in depth by Cure53.
Because of this focus, the less concerning areas were subsequently treated with lower
priority. From the test it quickly became apparent that the software boasted a modern
architecture and security was integrally interwoven into the deployment actions and
design decisions taken by the project’s development team.

Further noticeable was the fact that the team run various code quality assurance tools
and scanners to make sure that the software was not affected by the bugs and memory
corruptions commonly affecting similar projects, especially those surfacing during a
shared timeframe. Another particularly positive aspect to mention was the careful
selection and integration of high-quality and well-vetted external components. Despite
through checks, not a single item bearing a noteworthy “Critical” risk was spotted.

On a less positive note, the above highly commendable attention to security did not
extend to the web frontend for Admin users. This component was then taken out of
scope. The decision was explained by the fact that having this item considered as part of
the attack surface does not hold in terms of the frontend carrying a minimal risk.

For the sake of completeness it should be noted that a full coverage of the entire
spectrum of the software in scope was an impossible task. By acknowledging the sheer

Cure53, Berlin · 02/27/18 12/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

volume, a considerable size and the myriad of implementation details on Envoy, it should
be clarified that the goal was to account for security on the focal areas and most
sensitive, potentially risk-laden or threatened items. The actually reached level of
coverage was considered good, especially as the robustness of the audited code and
implementation of good practices appeared to have carried through different layers and
arenas. This can be read as an indicator of consistently good patterns and high-quality
security being present across the entire scope rather than a finding only applicable to the
explicitly prioritized scope.

In sum, the testers found the software to be quite mature and well-structured despite its
inherent complexity. It can be expected that the discovery of the flaws will only increase
the overall good direction that the Envoy team is heading in from a security standpoint.

Cure53 would like to thank Harvey Tuch, Matt Klein and Joshua Marantz from the Envoy
proxy team as well as Chris Aniszczyk of The Linux Foundation for their excellent project
coordination, support and assistance, both before and during this assignment. Special
thanks need to be extended as well to The Linux Foundation for funding this project.

Cure53, Berlin · 02/27/18 13/13

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Envoy Proxy 02.2018
	Index
	Introduction
	Scope
	Test Coverage
	Identified Vulnerabilities
	EP-01-001 HTTP: Lacking Admin-Interface Security allows CSRF and DOS (High)
	EP-01-002 HTTP: Potential BoF with HeaderStrings and Inline Buffers (Medium)
	EP-01-003 HTTP: Potential UaF with HeaderStrings and Ref. Buffers (Medium)
	EP-01-004 HTTP: Potential Integer Overflow during Header Encoding (Medium)

	Miscellaneous Issues
	EP-01-005 Common: strlcpy does not check for zero-sized Parameters (Low)
	EP-01-006 Redis: User-Controlled Allocation leads to DoS (Medium)
	EP-01-007 MongoDB: Stack Exhaustion via unbounded Recursion (Medium)
	EP-01-008 MongoDB: Lax Parsing when processing malformed Messages (Low)

	Conclusion

