Dr.-Ing. Mario Heiderich, Cure53
E u r E+E Bielefelder Str. 14
D 10709 Berlin
cure53.de - mario@cure53.de

Fine penetration tests for fine websites

Cure53 Browser Security White Paper

Dr.-Ing. Mario Heiderich

Alex Infihr, MSc.

Fabian FaRler, BSc.

Nikolai Krein, MSc.

Masato Kinugawa

Tsang-Chi "Filedescriptor" Hong, BSc.
Dario Weilder, BSc.

Dr. Paula Pustutka

Cure53, Berlin - 29.11.17 1/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

LISt Of TADIES ...t 3
LISE Of FIQUIES ...ttt 5
Chapter 1. Introducing Cure53 BS White Paper........cc.cooiiiiiiiiiiii e 7
Browser Security Landscape: AN OVEIVIEWcoooiiiiiiiieeeeeeeeeeeeee e 9
TRE AULNOIS ..t 13

LI =TS oo o T PR 15
Earlier Projects & Related WOrK........coooo it eaaens 15
RESEAICH SCOPE ...ttt e e e et e ettt e e s e e e e e e e aaat e e e eeaneennnes 16
Version DetailS ... 19
Research Methodology, Project Schedule & Teamsccoooeeeiiiiiiiiiiiiii e, 19
SECUNEY FEATUIMES ...ttt 24
Chapter 2. Memory Safety FEaturescooiieiiiiiiiiici e 28
Process Level SandbOXiNg..........cuvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 45
Chapter 3. CSP, XFO, SRI & Other Security Featurescccoeeeiiiiiiiiiiiiici e, 53
Chapter 4. DOM Security FEatUIEScccoiieeeieeeeee e 115
Chapter 5. Security Features of Browser Extensions & PIugins ..., 168
Chapter 6. Ul Security FEatUresccooo oo 216
Other Features, Security Response & Observationsccccevviiiiiii i, 268
Chapter 7. Conclusions & Final VerdiCt ... 281
MICIOSOft IMSIETT ...ttt 281

1Y [Ted 0TS i =T o = PP 284
GOOGIE CRIOMIE. ... ittt 287
SCONNG TADIES ... 290
Memory Safety Features Meta-Table..............ooooooii 291
CSP, XFO, SRI & other Security Features Meta-Table............ccccccvvvvvvviiiiiiiiiiiieee 292
DOM Security Features Meta-Table............uuuuiiiiiiiiiiiii e 294
Browser Extension & Plugin Security Meta-Table ... 297
Ul Security Features & Other Aspects Meta-Table.............cccvviiiiiiiiiiie 298
Y o] o<1 o o [PP PPPPPPPPPPPPPPPPN 300

Cure53, Berlin - 29.11.17 2/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

List of Tables

Table 1. Chrome Process List ..., 33
Table 2. MSIE ProCess LIStccooiiiiiiiiii et e e e e e e e e e e e e e e e eennee 34
Table 3. EAQE ProCess LiSt........cooiiiiiiiiiii it e e e e et s e e e e e e eaanee 36
Table 4. ASLR POICIESuueiii et e e ettt e s e e e e e e e eeattaaneaeeeeeeeennes 39
TabIe 5. CFG POlICIES. ...cciiiiiii ettt e e e e e ettt e s e e e e e e eeaattn e e aeeaeeeeannes 40
Table 6. Font Loading POIICIESuuuiiiiii et e e e e e eannes 41
Table 7. Dynamic Code POIICIESuuuiiiie i e e e a s e e e e e eeaene 42
Table 8. IMage Load POlICIESui i et e e e e e et e e e aaa e eeees 43
Table 9. Binary Signature POlICIESoooi i 44
Table 10 System Call Disable POICIESccoveeuiiiiiii e e e e e e eaeee 48
Table 11. Directory ACCesS TESt RESUISccuuuiiiiii e 49
Table 12. File ACCESS TESE RESUILSuuuiiiiiiie e e e e e e eeenes 50
Table 13. Registry AcCess TeSt RESUIScccuuiiiii e 51
Table 14.Network Access TeSt RESUILScoooiiiiiiiii e 52
Table 15. XFO BrowSEr SUPPOM........uuuiiiie et e et as s e e e e e e e ettt a s e e e e e e eeaaaeaaasaeeaaeeennnes 64
Table 16. X-UA-Compatible Browser SUPPOItcoeeiiiiiiiiiiiiiii et e e e e e eanees 69
Table 17. Content Sniffing Behavior across BroWSErscoiiiiiiiiiiiiiiiiiie i e e e 73
Table 18. Content-Type forcing across BrOWSEIS..........ccooiviiiiiiiii e eaaees 74
Table 19. Number of supported non-standard Charsetscccooviiiiiiiiii e, 80
Table 20. BOM support in the tested Browsers ..o 81
Table 21. Priority of BOM over Content-TYPeccoooeiiiiiiei e, 81
Table 22. XSS Filter enables Charset XSS........ooiiii e e e e eaeees 82
Table 23. X-XSS-Protection Filter Browser SUPPOItoooviiiiiiii e 84
Table 24. Chances and outcomes of bypassing XSS Filters..........ccccooeiiii, 89
Table 25. XXN can introduCe XSS..... ...t e e e e e e e e e e eaaaeaaa e s e e aeeeeannes 92
Table 26. XSS Filters can introduce Infoleaks ... 94
Table 27.0verview of CSP Directives by CSP Version ..., 96
Table 28. CSP DireCtive SUPPOIT......ueii e e e e e e e e e e eaaea s s e e aeeeeannes 97
Table 29. Subresource Integrity Browser SUpport ... 100
Table 30. Service Worker BroWSer SUPPOIT........uuiiiii et e e e e e e eaaeees 102
Table 31. Security ZONES SUPPOITccooe i 110
Table 32. Plans for future Security Features..............ooooiiiiii 111
Table 33. Number of DOM Properties exposed in WiNdOW ..., 120
Table 34. SOP implementation flaws ... 122
Table 35. Proper handling of document.domainooouuiiiiiiiii i 123
Table 36. Browser Support of PSL ... 124
Table 37. Browser Support of SECUIrE COOKIEScciiiieiiiiiiiiiiie e ee e eeeeaanens 128
Table 38. Browser Support of HttpOnly CooKies...........cooooiiiiiiiii 129

Cure53, Berlin - 29.11.17 3/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites

Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.

D 10709 Berlin
cure53.de - mario@cure53.de

Requests being considered top-leVvel ..., 131
Browser Support of SameSite COOKIESuuiiiiiiiiiiiiiie e 131
Browser Support of Cookie PrefiXxesouuuiiiiiiiiiiiiicein e 133
Cookie ordering aCroSS DrOWSEIS.........uuuuuuuiiiiiiiiiiiiiiieiiiiiiiibie i 134
Browser limitations ON COOKIESuuuuuuiiiiiiiiiiiiiiiiiiiieiiietiererrrirnreeeneeeareeeeere . 135
Ambiguous/invalid URL Parsingccouuiiiiiiiieiiieeiiis e 136
Unencoded [0Ccation Propertiesoooeeiviieeiiiiiii e 137
Restricted POrts aCroSS DrOWSEISuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiirinenieeenerneeereee. 139
URI schemes that allow script eXecution..........cccoooviiiieiiiiiiii e 141
Parsing of Character REfEreNCES..........ccoovviiiiiiii e 143
Non-Standard Attribute Quotes / JavaScript & CSS Whitespace..........ccccuvvvvvvvvnnnnnns 145
Support for non-alphanumeric Tag Names..........ooovuiiiiiii i 147
MXSS Potential for text/html Data..............uuuiiiiiiiiiiiiiiiiiii 150
Copy & Paste Security and Clipboard Sanitization.............ccceevviiiiiiiiiiciee e, 151
Location Spoofing for window / dOCUMENT.............uuuuiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiieeieeeeenees 156
Location spoofing for window/documentccooiiiiiiiii e, 157
Elements supporting named referencecccoovveviiiieiiiiiiii e 158
Clobbering behaviors across BrOWSEIS........ccccooiiiiiiiiiiiiiiiccc e 160
Sendable Headers for Simple ReqQUESESccoooviiiiiiiiiiii e 162
Sendable Headers for Preflighted ReqQUeSstS ...t 163
Readable Headers for RESPONSESccoivviiiiiiiii e 164
Plans for future Security FEatures. ... 165
Overview of EXtENSION SUPPOI........oouiiiiiiii e e e e e aaaees 171
Manifest Keys for Web Extensions on Chrome and Edgeuvvviviiiiiiiiiiinnnnnnn. 174
Permissions supported in Web EXteNSioNcoovviiiiiiiiiii e, 177
Web Extension deployment aspectsoouuuuiiiiiiiiiiiiiii e 180
Web Extension security test reSUItSoovvviiiiiiiiiiiiii 182
ActiveX behavior wWith EPM ... 191
ActiveX vS. WEDEXIENSIONoiiiiiii e 191
Google Chrome administration methods..................iiiiiiiiiiiie 196
Active Directory - Extension Policies for Chrome ..., 197
Policies defined in the Google Admin CONSOIE.............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieens 199
Key examples in Master PreferencCes............uuuiiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiveieiineeeneeeenes 202
Technologies to administrate Microsoft Edgecuvvvviiiiiiiiiieee 203
Microsoft Edge admin policies for eXtenSIONSuuevuiiiiiiiiiiiiiiiiiiiiiiiiiiieii. 203
Technologies to administrate Internet EXplOrer ... 205
Active Directory policy files defined in the context of administrative extensions 206
Possible settings for IEAK tOOI..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeeeeeeene 210
Extension administration........ ..o 212
Roadmap for EAge EXIENSIONSuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiebiiiebebieeeeeeaeeeeeneeeeenennnes 213

Cure53, Berlin - 29.11.17 4/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

Table 79. Google Chrome platform statusccooii i, 213
Table 80. SSL Error behavior for MSIE11, Edge and Chrome ... 223
Table 81. Security indicators for address bar.............coovviiiiiiiii e 229
Table 82. MSIE11/Edge language symbol with character information...............cccccccoooo s 235
Table 83. EAge Group POlICIESuuuuiiii e e e et eaaeaaaeees 264
Table 84. MSIET1 Group POICIESuuii it a e e e aanees 264
Table 85. Chrome Group POlICIES........uii i e e et e e e e e eeeeees 266
Table 86. Password Manager Storage SECUNtYccviiiiiiiiiiii e 276
Table 87. Password Manager XSS Safety..........cooooiiiiii 278
Table 88. UAF/U2F support in MSIE11, Edge and Chromeoviiiiiiiiiiriiieen e, 280
Table 89. Chapter 2 Scoring TabIEci i e e e e aaeees 291
Table 90. Chapter 3 Scoring Table ..o 292
Table 91. Chapter 4 Scoring TabIEcii i e e e e eeeees 294
Table 92. Chapter 5 Scoring Table ..o 297
Table 93. Chapter 6 Scoring Table ..o 298
Table 94. WebExtenstion. Proxy Settings ... 328
List of Figures

Figure 1. DEP Setting for all BrowSer PrOCESSESccvvviiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee e 37
Figure 2. CFG Settings for all BrowSer ProCeSSESuuuciiiiiiiiiiiiiiiiie e 40
Figure 3. Different MSIE Gold bar for several file types..........ccccvvvviviiiiiiiiiiiiiiiiiiiie 103
Figure 4. Site Zones, security templates and fine-grained settings...........cccccccvvviiiiiiiiiiiiiinnn. 106
Figure 5. Permissions: Content Scripts vs WebView Tagcccuvvviiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeee 185
Figure 6. Out-of-date ActiveX Filteringooovviiiiiiiiiiiiiiiii 193
Figure 7. Out-of-date ActiveX opened outside Of IE..............oovviiiiiiiiiiiiii 194
Figure 8. Active Directory policies 0N Chrome............coevvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 197
Figure 9. Extension Policies 0N Chrome............couiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 197
Figure 10. Invalid CA error on MSIETT ...ooooiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeee et 225
Figure 11. Invalid CA error 0N EAQecoovviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 225
Figure 12. Invalid CA error 0N ChIrOMEcuiviiiiiiiiiiiiiiiiiiieeeeeeeeeeee ettt 226
Figure 13. Invalid CA exception granted on MSIE1Tcooviiiiiiiiiiiiiiiiiiiieeeeieeeeeeeeeeeeeeeeeeee 227
Figure 14. Invalid CA exception granted on Edge..........ccoovvvviiiiiiiiiiiiiiiiiiiiiiiiiieee 227
Figure 15. Invalid CA exception granted on Chromecoooiiiiiiiiiiiiiiiiiieeee e 228
Figure 16. MSIE11 spoofing lock icon with @ faviconcccooiiiiiiiii 231
Figure 17. Edge address bar BUQoevvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 231
Figure 18. Comparing effects of long domain Names ..o 232
Figure 19. MSIE11 mixed content dialogccovvviiiiiiiiiiiiiiiiiiiiiiiieeeeee e 233
Figure 20. coocle.com confusable in different BrOWSEerscccuvviiiiiiiiiiiiiiiiiceeeeee 235
Figure 21. data URI in Chrome Version 59 ... 236
Figure 22. Comparing EV certificates in MSIE11, Edge, and Chromeccccccvvvviiiiiinnnnnn. 237

Cure53, Berlin - 29.11.17 5/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.

D 10709 Berlin
cure53.de - mario@cure53.de

Browser behaviors with HTTP auth URLS ..o, 238
HTTP authentication dialogs in different browsers.............cccooeiee, 239
window.showModalDialog() on MSIET ..o 241
Comparing alert() and prompt() on Edge and Chrome..............cccoeoeiiiiiieeeee, 242
alert(), confirm() and prompt() on MSIE11ccooiiiiiii e, 243
onbeforeunload box 0N MSIEAT ... 244
onbeforeunload bOX 0N EAQEoovvviiiiiiiiiiiiiiiiieee e 244
onbeforeunload box 0N Chrome ... 244
alert() from onbeforeunload event on MSIETT ... 245
Comparing default window.open WINAOWSccoeiiiiiiiiiiiiiiiiii e eanens 246
Tabnabbing demo showing a tab redirected to a Gmail phishing site...................... 247
Chrome and Edge ask for notification permissions...........cccccoevviiiiiiiiiciiii e, 248
Comparing Edge and Chrome notificationscocooiiiiiiiiii e 248
Gold Bars iN MSIETT ...t e e 249
A now blue (gold) bar in EAge..........coooviiiiiii 249
A dialogue to show notifications on Chromeccccoviiiiii e, 250
Flash Add-on settings on MSIETT ... 251
MSIE11 gold bar asking to run Flash ..., 251
Edge informs users about blocked Adobe Flash.............cccccoovviiiiiiiiiicie e, 252
Edge’s dialog for allowing Adobe Flash ..., 252
Chrome requiring a click to play Flash..........ccccoo i, 253
Flash blocked 0n Chromecoii oo 253
MSIE11 information (gold) bar for location tracking ..., 254
Edge blue bar for location trackingccoooeeeeieiiiee 254
Edge requests location permisSion...........ccooiv i 254
Windows Privacy > Location settings on EAgecooviiiiiiiiiiiii e 255
Two circles indicate that current location is being accessedccccvvvviiiiiinnnn. 255
Chrome prompts a user about a location request............ccccceeeeii i 255
Location access iS DIOCKEA.coooiiiiiii e 256
Edge and Chrome show red REC circle to indicate camera access 256
Chrome’s getUserMedia() WarNingcoooeeieeeiiii e 257
Quick changes allowed by Chrome’s settingscccovvviiiiiiii e, 258
Noise icon in Edge and Chrome.........cooooiiooiiiieee 259
Malware warning on Safe Browsing for Chrome.............occcoiiiiiiiiiiiiii e 260
Malware warning on the Chrome address bar............cccooooviiii, 260
Safe Browsing file download blocked ... 261
Malware warning for SmartScreen on MSIEAT ..., 261
Malware warning in SmartScreen on Edge..........cooovviiiiiiiin 262
Download warnings for Edge and MSIETToooiiiiiiiii e 262

Cure53, Berlin - 29.11.17 6/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

Chapter 1. Introducing Cure53 BS White Paper

Before we start discussing the technical context and our exciting results, it is vital
to present some introductory notes about the origins and objectives of this publication.
In fact, the goals of the paper were clearly defined in the scope’s description provided by
the Sponsor of this work, namely by Google.

The Sponsor tasked Cure53 with the creation of a comprehensive and technology-
focused white paper that evaluates security features of three preselected browsers
for the specific use in corporate and enterprise environments.

The research findings presented in this Browser Security White Paper (BSWP) and
discussed in subsequent chapters, as well as the resulting conclusions, are meant to aid
the key decision makers in the technical field. In principle, this entails assisting different
stakeholders in considering and creating a reasonable and responsible strategy for their
enterprise browser deployment and maintenance. Similarly, we wish for the paper to help
people judge whether they are already on the right track with their browser security
approaches, or perhaps direct them towards some best practices. This of course does not
mean that other audiences cannot benefit from our work. In fact, we hope that the results
can serve as means of confirming, illustrating and discussing issues that some more
versed users and community members may already know about. After all, we all know that
judgments and decisions about security are usually multi-layered. For this reason, it has
been decided that five different areas receive coverage by respective chapters.

It has to be emphasized that the paper seeks to be as technically-driven as possible under
the existing time and budget constraints. The primary goal of the paper is to embed
findings in past research and perform innovative evaluations through novel test-cases.
The authors wished to get to the bottom of the examined technical features and security
mechanisms that the three tested browser deployed. It was evaluated whether browsers
indeed work as intended, especially when one considers that at stake are the needs
of corporate users and enterprise administrators. The Cure53 team hoped to share the
best possible advice on allowing secure browsing experience, both inside company walls,
and from home-office positions.

Cure53, Berlin - 29.11.17 7/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

To reiterate, this paper aimed to collect as much scientific and technical data as
possible. The rigorous research and data-driven approaches enabled us to present
the outcomes in a fair and unbiased way.

We hope to ease the process of decision-making for corporate deployment stakeholders
who deserve to be informed when deciding on a browser best-suited to their needs from
a security perspective. We believe that the presented results can also aid the process
of tackling and handling the remaining risks when a decision has already been made.

Completeness was neither a goal of this paper, nor would it be attainable in a world
as complex as the browser ecosphere of today. It would be especially pointless to aim for
an all-encompassing approach when about 100 work days are allocated to a project with
a very specific scope and goals. Instead, the main focus was on a tripartite browser
security comparison across five thematic areas. With the hope of yielding a holistic
overview, the authors have picked several main topics of relevance. Those will be
discussed as thoroughly as possible. Having said that, it is very likely that a reader
identifies other themes or areas of interest which are missing from the analyses. In fact,
it is very much probable that these items were initially considered in the planning phase,
but ultimately did not make the cut. For that we can only apologize and encourage
community and readers out there to contribute to the ever-growing body of browser
security research.

Cure53 authors would like to make it absolutely clear that the browser maintained by
the funding body - namely Google’s Chrome - was not given any preferential treatment
during the tests. Similarly, no browser was discriminated against in any way or approached
from the knowingly biased stance. The team assessed all three browsers against the same
criteria, using objective and independent test and audit methods. In other words,
the results and verdict issued in the final chapters would be exactly the same had the
funding been provided by a different browser vendor among the included engines. While
critiques, questions, and feedback are appreciated, Cure53 attests that there can be no
doubts about fair and equal treatment of each scoped browser.

Finally, we would like to note that the authors are only human, so they might make
mistakes. Though we took precautions to prevent bias and eliminate flaws, those can
of course occur, especially under the time pressures of researching and documenting
issues by the specific due date. To ensure that we can improve the paper and correct any
problems after the deadline of submission has passed, the Cure53 team will continue
to maintain a Github repository where bugs and errors can be reported. They will be
tracked and fixed, eventually allowing for publishing a revised version or a corrigendum.

Cure53, Berlin - 29.11.17 8/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

The repository can be found at hitps://github.com/cure53/browser-sec-whitepaper.

Browser Security Landscape: An Overview

On the basic level, we all understand that browsers have not just suddenly emerged in
the state that we know them in today. However, we sometimes forget about their origins
and the fact that they were developed from simple tools designed to parse and visualize
Hypertext. At present, we see them as powerful players in the web’s inner-circle. Indeed,
browsers have become full-blown application hosts supporting hundreds of different APls.
As the time goes by, we see them advancing, as browsers are already almost capable of
replacing the underlying operating systems. In sum, it is nearly unimaginable to think about
browsers as anything less than central, potent, and irreplaceable tools in many different
environments and workflows.

Only a few years after the first browsers emerged in the mid and late nineties, their
respective maintainers realized the business potential as well as the relevance of browser
market share for vendors and enterprises alike. This understandably resulted in
the browsers entering a series of tremendous battles, competing for features,
performance, convenience, security, and - importantly - revenue. The entrepreneurial and
financial aspects usually prevailed over other items, though they were invariably linked to
the perceived and actual quality of the aforementioned technical and usability-related
components. Still, the long-lasting “browser wars” caused features and functionalities to
bloom and prosper, yet they also meant taking a toll on privacy and security. The market’s
speed was so grand that the potential costs of attacks were frequently underestimated or
simply disregarded. In sum, early browsers were quite a mess and allowed attackers to
use trivial tricks for exploiting unaware users. Clearly, the pricey bills for overlooking
security arrived at the end, as browsers became the main tools for security compromises
and harming users.

What we are witnessing today is a more established and somewhat less-fluctuating
browser market. It is mostly dominated by software created and maintained by the largest
players in the World Wide Web. More specifically, we can surely observe the prominence
of Google, leading the usage stats with their flagship Google Chrome browser!. Next big
players encompass Mozilla, which maintains Firefox? in cooperation with the online
community, as well as Apple, which invests significant energy into developing the Safari
browser3. Last but not least, we have Microsoft, responsible for the upkeep of the former
champion in Internet Explorer, and resurfacing as a potential frontrunner again with its

1 https://www.google.com/chrome/
2 https://www.mozilla.org/en-US/firefox/
3 https://www.apple.com/safari/

Cure53, Berlin - 29.11.17 9/330

https://cure53.de/
mailto:mario@cure53.de
https://github.com/cure53/browser-sec-whitepaper
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/
https://www.apple.com/safari/

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

newer entry known as Edge*. This does not exhaust the full spectrum of the market, which
is also populated by players like Opera®, which seeks to recruit power-users and is aiming
specifically at power users and less frequently used in an enterprise setting. What must
not be forgotten is that certain world regions continue to rely primarily on the locally-hailed
competitors. In this category, we have the Yandex browser®, primarily used in Russia and
neighboring countries, as well as the UC Browser’, vastly popular in and around India and
China. Lastly, the browser market is also giving home to niche implementations such as
Brave?, the Tor Browser®, and countless other implementations of every thinkable shape
and type.

Most browsers are being made available in various different versions for alternative
operating systems and system architectures. In this plethora of variants, the main
categories are represented by desktop browsers for operating systems like Windows,
Linux and others, include an array of mobile browsers for various mobile operating
systems, as well as contain browsers for feature phones and embedded systems, Smart
TVs, and even cars. Some browser vendors publish binaries and sources for a wide range
of architectures, others only issue their products in the state ready for specific operating
systems. Yet another option entails browsers that cannot work on a stand-alone basis but
are deeply woven into the hosting operation system, like MSIE.

Finally, we can also learn about other browsers that can be carried around on a USB stick
and function in this fully portable state on many systems a user might plug the USB stick
into. Entire vivid and active communities exist around browser configuration hardening,
security extensions, and many other ways that make browsers faster, richer in features,
more secure, or more privacy-oriented. Sometimes browsers ship their own engines!® and
libraries, while, on other cases, the operating system dictates parts of the behavior, forcing
browser vendors into obeying the rules written into the OS. Failure to comply means that
the browser products cannot be offered on the devices in question. Just as Apple's policy
of requiring iOS applications to use the platform's WKWebView limits how much third party
browser developers can do, so does Microsoft's policy of requiring Universal Web Platform
applications to use the platform's WebView (which is implemented with EdgeHTML).

4 https://www.microsoft.com/en-us/windows/microsoft-edge

5 http://www.opera.com/

6 https://browser.yandex.com/desktop/main/

7 http://www.ucweb.com/ucbrowser/

8 https://brave.com/

9 https://www.torproject.org/projects/torbrowser.html.en

10 https://en.wikipedia.org/wiki/Comparison _of web browser engines

Cure53, Berlin - 29.11.17 10/330

https://cure53.de/
mailto:mario@cure53.de
https://www.microsoft.com/en-us/windows/microsoft-edge
http://www.opera.com/
https://browser.yandex.com/desktop/main/
http://www.ucweb.com/ucbrowser/
https://brave.com/
https://www.torproject.org/projects/torbrowser.html.en
https://en.wikipedia.org/wiki/Comparison_of_web_browser_engines

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

As it stands, more and more critical infrastructure and applications can now be interfaced
using the browser, offering complex web interfaces consuming literal megabytes of
JavaScript to make the user-experience smooth and pleasant. As always, this process
results in both great success and some failures. As for the former, we can think of the vivid
example like the Gmail application and many other highly feature-rich web mailers, which
experience notable triumphs. In time, web-based applications made their way into the
corporate and enterprise sectors. While a few years ago screens in cube farms and open
plan offices were fluorescing with the Windows of Microsoft's Outlook clients, chat
applications running on the desktop and gigantic spreadsheets being scrolled up and
down in Microsoft Office 97, today's enterprise environments make a completely different
impression.

It can be argued that classic Office tools and other software dinosaurs are about to leave
and make room for web-based office applications with people collaborating on documents
and spreadsheets in real time. Mail clients have rushed off the dance floor and were
pushed away by Outlook Web Access and similar tools. Classic workstations used by each
and every employee were deemed to be superfluous in many businesses, finding their
ways into the attics of the office buildings and awaiting their inevitable destiny in the
recycling center or the landfill. We seem to be entering a time when PCs are rusting along
together with their ancestors from the dynasties of typewriters, laser printers as big as
a house, and other devices from a bygone era when grey and hard-plastic cases were
considered a sign of prosperity. Today's offices sport elegant slim clients connected to the
Cloud. Storing files on the desktop is no longer necessary as the whole teams may work
on a remote, relying on a folder located on Google Docs or Office 365. While this is of
course the process we mostly see in the most innovative and frontline enterprises, it is
expected that others will soon follow. In sum, it can be argued that the desktop is gone
and so are its applications. The browser is the new desktop now, with the former
applications being replaced by feature-rich websites served from data centers all over the
world.

All of the aforementioned complexities, intricacies, and increasingly global
interdependencies mean that the contemporary open web platform is an incredibly
complex ecosystem. It involved many different players and stakeholders. Not only are new
browser families emerging, but, most importantly, the existing ones are almost
exponentially growing in numbers of the available versions, variations, and configurations.
Despite the astounding entanglements, it is expected by web developers and users that
browser expose behaviors that are as close as possible to the standards that W3C,
WHATWG, and others define. Browser vendors are faced with the urgency and insistence
on standards-conformity. At the same time, there is an expectation for them to be rich in
features and offer clear and intuitive user experience and user interfaces. In other words,

Cure53, Berlin - 29.11.17 11/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

the browsers are tasked with the impossible. They must therefore find the best
compromise between compatibility, performance and security.

On the one hand, it is paramount that users are satisfied and pleased with the ways that
browsing is handled and benefits using multiple information sources. If this is not the case,
a vendor can suffer from decreasing user-base. On the other hand, browser security
remains crucial, as users - individual and corporate alike - are likely to abandon a provider
that exposes them to privacy and security risks. Evidently, this is a tremendous challenge
and several vendors have not been able to cope with the somewhat contradictory and
usually high-priority demands. For that reason, we have seen some browsers disappear
from the ecosystem, concurrently making room for other players able to propose fresh
approaches and creative technologies. Given the central role played by the browsers in
the current web landscape, it is essential for security to become a top priority. While just
about fifteen years ago browser security and client-side security were generally the topics
typically mocked by some members of the broader information security community, this is
no longer the case. In other words, browser security is a front and center issue for the IT
security researchers nowadays. Moreover, it is likely to remain at its paramount position
in the future.

Highlighting the main argument of this Introduction, we began our work on this paper with
an assumption that browsers are the major information brokers for billions of private users
as well as a growing maijority of enterprises and corporations. Under this premise, browser
security has become one of the core aspects determining whether a company wants to
migrate its operations into cloud applications and collaborative web applications. Ensuring
that key tasks and actions are secure can make or break a business entity, so it is
understandable why some players decide to stick with the conventional model of running
a desktop with linked executables at present, depending on a click and run approach,
ideally within the latest operating system upgrade. However, the general shift of the
paradigm is clear and it is expected that the first route of moving towards a web browser
approach in enterprise will become the new norm.

Responding to this new and largely web-dependent context, this paper zooms in on the
browsers and their security promises. As already noted, three major vendors most relevant
for the enterprise setting were selected and analyzed, with the general outcome of having
a tripartite side-by-side comparison of the browsers in scope. The authors of this white
paper were handpicked for their outstanding expertise in the chosen subfields. The next
sections of this Chapter will proceed to introducing the team members and their skillsets,
then moving to explanations on the publication’s goals and structure. Both limitations and
technical specifications are also provided.

Cure53, Berlin - 29.11.17 12/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

As a whole, the white paper is divided into seven main parts. Besides this Introduction
(Chapter 1), it is structured around the core research areas presented in the five chapters
dedicated to memory safety (Chapter 2), general web security (Chapter 3), DOM security
issues (Chapter 4), Add-on implementations and their security consequences (Chapter 5),
and, last but not least, security matters around UX (Chapter 6). The order of research
chapters can be found in the following Security Features subsection and relates to how
different items can be positioned in the technical and browser-user contexts. The closing
part of the paper contains Conclusions & Final Verdict (Chapter 7), which are
accompanied by meta-tables with browser scores and amass all key results within a three-
way comparison approach.

The Authors
This subchapter briefly introduces the authors of this paper and elaborates on their
experience in the respective fields covered by the publication.

Dr.-Ing. Mario Heiderich

Mario is the founder and owner of the Cure53 enterprise. He holds a PhD in Computer
Science from the University of Bochum. He wrote his doctoral thesis on client-side security
and boasts more than a decade of penetration testing experience. Mario specializes
in JavaScript, Scriptless Attacks, JS-MVC and browser security, with particular expertise
in XML, XSL, HTML and SGML vulnerabilities. Mario has conducted extensive research
on browser engine vulnerabilities for a large array of vendors like Microsoft, Google and
Mozilla. He is the author of numerous academic papers and a book, as well as
an established speaker and trainer on the aforementioned IT security topics.

Alex Infiihr, MSc.

As a Senior Penetration Tester with Cure53, Alex is an expert on browser security
and PDF security. His cardinal skillset relates to spotting and abusing ways for uncommon
script execution in MSIE, Firefox and Chrome. Alex’s additional research foci revolve
around SVG security and Adobe products used in the web context. He has worked with
Cure53 for multiple years, especially contributing to testing and hardening MSIE against
XSS attacks, information leaks, and crash vulnerabilities.

Fabian FaRler, BSc.

Fabian is a Senior Penetration Tester with Cure53 and his focus is on web application
security. His work for IBM during a pursuit of an undergraduate degree at Baden-
Wuerttemberg Cooperative State University resulted in a thesis on exploiting the FCoE
storage protocol. Fabian is also a double-winner of the renowned Cyber Security
Challenge Germany for 2014 and 2015. As an avid security CTF player, he is always
hunting for interesting and creative vulnerabilities. He has recently gained considerable

Cure53, Berlin - 29.11.17 13/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

attention by working together with CitizenLab on the project to reverse-engineer a South
Korean legally-mandated child monitoring mobile application. He is known to the broader
public for covering a wide variety of IT security topics on his YouTube channel
LiveOverflow'.

Nikolai Krein, MSc.

While Niko has only recently completed a Master's degree in IT-Security, he has been
gaining professional experience with Cure53 for over five years. Niko is well-versed
in breaking multiple server-side web technologies, especially in Perl and PHP.
Furthermore, a vast number of his assignments centered on binary exploitation and
reverse engineering. As part of his Bachelor’s thesis research, Niko developed numerous
bypasses for Microsoft's EMET. Together with two other researchers, he has recently won
one of the biggest HackerOne bug bounties for gaining Remote Code Execution on
Pornhub, which was accomplished by exploiting a remote memory corruption in PHP.
Niko’s other achievements include his regular and successful participation in CTFs,
as well as winning the E-Post Security Cup with Team Secugain in 2015.

Masato Kinugawa

Masato collaborates with Cure53 as a Penetration Tester. He is a world-renown expert
when it comes to XSS attacks, character encodings, and browser security. Masato has
worked with the Google Security Team through their Vulnerability Reward Program since
2012. He delivers much anticipated and praised talks on the XSS attacks relying on
the MSIE XSS filter at various security conferences and events around the globe.

Tsang "Filedescriptor" Chi Hong

As a Penetration Tester with Cure53, Tsang focuses on web application security
and specializes in XSS attacks and browser security. Tsang is known as someone who
helps to keep Twitter secure as he is currently ranked first among the participants of
Twitter’s responsible disclosure program. He is also active in the XSS community through
designing and participating in various challenges. Tsang is further experienced in
analyzing cryptographic flows and implementations, particularly OAuth and similar
authentication and authorization mechanisms.

Dario Weiler, BSc.

Dario has been with Cure53 since 2015. He holds a Bachelor’s degree in IT-Security and
is set to complete his Master’s degree at the University of Bochum in 2018. IT-Security
has been Dario’s main interest since 2008 and he managed to gain experience across
different subfields throughout the years. Besides skills in examining application, web,

11 https://youtube.com/LiveOverflowCTF

Cure53, Berlin - 29.11.17 14/330

https://cure53.de/
mailto:mario@cure53.de
https://youtube.com/LiveOverflowCTF

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

Linux and network security, his expertise also refers to C and PHP. Together with
the Secugain team, he patrticipated in the Deutsche Post IT-Security Cup, coming second
in 2013 and eventually winning the competition in 2015. Together with two other
researchers, he earned a $22,000 bug bounty for finding flaws in PHP and hacking
Pornhub. Dario’s another noteworthy achievement is the discovery of a local privilege
escalation in NVIDIA's graphics driver.

Paula Pustutka, PhD

Paula has been a Technical Editor for Cure53 since 2011. She holds a PhD from Bangor
University in the United Kingdom and has a successful career in social research. Having
authored numerous academic publications, Paula has been providing services as
an editor, translator, and reviewer to numerous business customers, public institutions,
and academic journals.

The Sponsor

This project has been funded by Google, an established and clearly well-known search
engine provider. The research work and subsequent paper was initiated and then
managed by Andrew Fife (Primary Project Manager) and Chris Palmer (Technical
Advisor). Both were highly involved in specifying the test targets, as well as reviewing the
paper as it developed. The Cure53 team and the Google in-house team met on a bi-weekly
basis. The meetings served as feedback sessions, valuable both for the ongoing research,
and the process of paper writing.

Earlier Projects & Related Work

A similar publication - namely a white paper with a state of art regarding browser security
- was prepared and made available in June 20112, This original attempt at amassing and
disseminating research on browser-related safety threats was put forward by Accuvant,
a US-based security company. The authors involved in the 2011 publication were J. Drake,
P. Mehta, C. Miller, S. Moyer, R. Smith, and C. Valasek. Published as “Browser Security
Comparison - A quantitative approach”, this white paper covered three browsers, i.e.
Microsoft Internet Explorer, Mozilla Firefox, and Google Chrome. The paper shed light on
the respective browsers’ architectures, statistics on reported vulnerabilities, and CVEs for
each vendor. Responding to the key issues during this period, the research also
encompassed Add-On Security and Anti-Exploitation techniques, as well as other aspects
of browser security relevant at the time.

The news coverage for the publication in 2011 was not overwhelming. However,
the project was faced with a repeated criticism, reappearing across blog posts and other

12 http://ffiles.accuvant.com/web/files/AccuvantBrowserSecCompar FINAL.pdf

Cure53, Berlin - 29.11.17 15/330

https://cure53.de/
mailto:mario@cure53.de
http://files.accuvant.com/web/files/AccuvantBrowserSecCompar_FINAL.pdf

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

outlets. More specifically, it was questioned whether the results were valid, given that one
of the browser vendors sponsored the assessment. This impression was reinforced as
commentators pointed out that the paper makes out the browser managed by the funding
body as the best and most praiseworthy. In response, the Accuvant authors clearly stated
that their research was impartial, independent and objective, despite the potential doubts
the readers might have had. As we present this paper in 2017, it is rather anticipated that
similar questions will be raised by the lively and forceful IT community. In fact, the Cure53
authors expect nothing less and welcome constructive comments and feedback. Further,
being aware of the optics, we can only reiterate, as Accuvant did in 2011, that all tests
were rooted in research rigor, ethics and integrity. The team involved in the preparation of
this paper employed clearly documented methodologies and took advantage of the
available public data. The latter means that anyone can replicate and verify the results.
Despite the funding structure, we ensured that the evaluation were done from the bias-
free and neutral stance.

As already mentioned, quite a lot can change in the realm of browser security in the
arguably short span of mere six years. For that reason, the paper should be seen as both
a continuation of the documentation efforts initiated by Accuvant, and as a stand-alone
new response to the present browser security situation and challenges. By this logic,
paper covers similar areas to the ones examined in 2011, featuring malware, memory
corruption and exploitation. Furthermore, it expands the scope and reacts to the frequently
discussed novel web security challenges, DOM security issues, UX security features and
many other aspects.

Research Scope
This publication covers three browsers as primary test targets. These are: Microsoft
Internet Explorer 11, Microsoft Edge (as provided by the stable versions of Windows 10
x64), and Google Chrome. In the planning phase of this paper, the authors strongly
advocated to additionally include Mozilla Firefox and Apple’s Safari, but the ultimate
investigations were limited to the three browsers listed above.

The original intention expressed by the authors was to move past the browsers as such,
instead splitting the field by engine. In that sense, we sought to shed light on the security
properties of Trident represented by MSIE, Edge represented by the corresponding
browser with the same name, Gecko represented by Firefox or Firefox ESR®, Blink
represented by Chrome, and Webkit represented by Safari. After a series of meetings with
the sponsors, the expected scope was clearly delineated to entail research on MSIE,

13 https://www.mozilla.org/en-US/firefox/organizations/

Cure53, Berlin - 29.11.17 16/330

https://cure53.de/
mailto:mario@cure53.de
https://www.mozilla.org/en-US/firefox/organizations/

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

Edge, and Chrome only. This tripartite selection and comparison was reasoned by the fact
that Gecko has just recently received a technical analysis!* via the Tor browser, while
Safari was excluded on the grounds of not having measurable relevance in the field of
corporate and enterprise browser-use. On the flipside, it was underlined that the ultimately
selected players, that is MSIE, Edge, and Chrome, represent the largest percentages of
enterprise usage. In other words, the lens of selecting the browsers most commonly used
in business contexts was endorsed by the funding body and treated as a final criterion.
The Cure53 team complied with this requirement and analyzed the aforementioned three
major browser players of MSIE, Edge, and Chrome. We will now briefly discuss
the underlying browser engines and their implications within the scope of this project.

Blink - represented by Google Chrome

The Blink browser engine was first announced in April 2013 as a fork of the formerly wide-
spread WebKit render engine. Blink is nowadays used by a wide range of modern
browsers, including Google Chrome, Opera, Amazon Silk, and the Android Browser. While
Blink continues to bear similarities to its origin and fork-father, the engine has been
optimized in several important regards. It should be emphasized that there is
a discrepancy within security features and their overall pace of development. More
specifically, Blink clearly stands out in terms of being more implementation-oriented when
compared to WebKit. On this matter, please note that the majority of the research for this
publication was performed against Chrome as a Blink-host and not just any arbitrary
Chromium builds issued by third-parties.

According to the W3Counter stats, Blink’s market share is calculated to encapsulate
Chrome and Opera and stood at about 62.8% in January 2017. StatCounter collated data
for Chrome & Opera and put it at 56.22% for December 20162. Other stat counters tend
to corroborate this value.

Trident - represented by MSIE11

Trident is a rendering engine that has been fueling generations of Microsoft Internet
Explorer (MSIE) browsers. It furnishes developers and users with a wide array of standard
and, most importantly, non-standard-features. MSIE11 marks the final release of Internet
Explorer, concluding a twenty-two-year period of constant development and addition of
new browser and web-features. With this long-term perspective comes a sinusoidal curve
with respect to the market share, as IE faced tremendous ups and downs in this arena
throughout the years.

14 https://isecpartners.github.io/news/research/2014/08/13/tor-browser-research-report.htmil

Cure53, Berlin - 29.11.17 17/330

https://cure53.de/
mailto:mario@cure53.de
https://isecpartners.github.io/news/research/2014/08/13/tor-browser-research-report.html

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

It is important to emphasize that browsers instrumenting the Trident engine are commonly
used in corporate environments, at least in part thanks to Microsoft’s once controversial
bundling of Operation System and web browser. Another reason for not writing MSIE off
too quickly is the fact that it offers a multitude of features and policies that make it
a powerful software for connecting Intranet applications to the Internet. MSIE additionally
includes features for desktop integration and connectivity to internal and external services
via interfaces like ActiveX, VBScript, MSXML, Browser Helper Objects, and others.

According to the W3Counter stats, Trident, represented by MSIE11, had a market share
of about 3.8% in January 2017. Comparatively, StatCounter put MSIE at 4.44% in
December 2016 and other stat counters mostly repeated that value.

EdgeHTML - represented by Microsoft Edge

EdgeHTML is the successor of Trident, the engine used by Microsoft Internet Explorer
(MSIE) and similar software. While MSIE dominated the market in terms of shares
and installations in the early days of the WWW, its supremacy has largely ended. MSIE
lost its pole-position to other browsers, initially to Firefox and meanwhile mainly to Google
Chrome and Safari.

Microsoft decided to abandon the development of Trident and fork out the code into a new
browser engine, simultaneously enriching it with new features. At the same time, a wide
range of old features is rigorously removed. The reduction of the overall available features
on offer was meant to increase performance and reduce the massive attack surface
characterizing MSIE. In this publication, MSIE and Trident will not be given special
attention unless mentioning them contributes to the arguments and points being made.
On the contrary, EdgeHTML will take a central spot and should be seen as one of the
project’s focal areas.

Represented by MS Edge, EdgeHTML had a market share of about 4.5% in January 2017,
as per the data available from the W3Counter stats. llluminating quite a difference,
StatCounter measured MS Edge’s share at 1.61% back in December 2016 and other stat
counters mostly confirmed either of these values.

Mobile Browsers

In many parts of the world mobile browsers have replaced desktop browsers as the most
common way for navigating the Internet. Thus we acknowledge the importance of the
mobile platforms, while nevertheless noting that mobile instances share tremendous
similarities with desktop browsers at the engine level. For instance, Chrome on iOS uses
the same WebKit interface as Apple’s Safari, while it uses Blink on Android Chrome. This

Cure53, Berlin - 29.11.17 18/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

mirrors desktop behaviors and signifies that the mobile engines are already represented
by their desktop counterparts. As a consequence, it has been decided to exclude mobile
browsers from the overall browser security comparison.

Note that some of the code examples provided in this paper might show code and features
specific to the browsers omitted in the three-pronged general approach. This occurs when
the shown feature found in a different browser is particularly valid for explaining security
issues, foundations and features meaningful either for the overall comparison, or for
illuminating a broader security-critical point.

Version Details
For the purpose of conducting relevant research and tests, the authors relied on the
following browser versions, installed on a fully patched Windows 10 Pro x64 (Creators
Update, Version 1703, Build 15063.413):

¢ Microsoft Edge 40.15063.0.0
o Microsoft Internet Explorer 11.332.15063.0
e Google Chrome 59.0.3071.86

A VM with frozen updates was shared among all involved authors to guarantee a stable
test environment. We were therefore able to avoid discrepancies while the capacity for
others to reproduce the results was attained. This ensured internal reviews, cross-checks
and verification, as well as makes the process more transparent and available for the
readers to consult, follow and replicate.

Research Methodology, Project Schedule & Teams

The project was completed over the course of several months in 2017. Specifically,
the tests began in April 2017 and finished in July 2017. The research and writing-up of
the findings have been thought out and completed as ongoing processes. The majority
of work was conducted in parallel by several teams, respectively responsible for different
topics (and, effectively, subchapters). The Cure53 team members participating in this
white paper assignment have invested considerable resources into this publication,
hoping to guarantee a high-level of depth and useful, innovative insights

As already mentioned, the project of this magnitude warranted a dedicated schedule and
milestones. It was decided to split the scope into five key areas. Teams of researchers
with the best-matching skillsets and expertise were assigned to these main topics,
constituting five smaller working groups. Each team was led by a Team Lead, who was
responsible for contents, structure, and reaching the research and reporting goals in
a timely fashion.

Cure53, Berlin - 29.11.17 19/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

It should be emphasized that the research for this paper did not start from a blank slate,
but rather builds up on the existing knowledge, data, and sources disseminated through
various channels. A comprehensive review and selection of recent research results is
included in the discussions. Many items were specifically fact-checked and re-tested for
the purpose of this assessment, with a caveat of adapting an issue- or feature-test to
the relevant versions of the browsers in scope. Evidently, different thematic areas call for
precise and targeted methodologies, which is why each team’s approaches are detailed
separately below. It is hoped that this overview provides readers with an easy-to-follow
guide on the strategies of data collection, analysis, and representation. We further explain
how cross-tabulations and comparative frameworks were developed. While all five
chapters together serve as a both a bird’s eye view onto an ever-changing browser
security landscape, each chapter zooms in on the details, roles and peculiarities of its
specific topic.

Team Memory (Chapter 2)

o The first of the research chapters following this introduction entails coverage
of the memory safety matters. In this chapter, Team Memory examines how
hard
an exploitation of memory vulnerabilities can get when a bug is found. In the
opening section, some background and historical overview is provided. The
“old” hardware, OS and compiler-provided mitigations like ASLR, DEP, Stack
Cookies and SafeSEH are presented. The discussion then moves on to the
more recent and partially Windows 10-exclusive features.

e The chapter proceeds to analyzing the workflow of each browser in scope,
demonstrating the different process and their variable degree of security-
relevancy. Here Team Memory investigated the implications of the processes
handling untrusted input from potential attackers.

e To present consistent results, all team members used a Windows 10 VM setup
with frozen browser versions. A set of tools was included to help determine
the states of affairs across different browsers and concerning the most relevant
mitigations Windows 10 has to offer. Most of the tests were done through
Windows API functions like GetProcess- MitigationPolicy and checked which
processes utilized the best policies and were therefore more hardened. The
results can be found in tables, created for each mitigation in a way that
facilitates clear and direct comparisons between the tested browsers.

e A similar approach was chosen to test the sandboxing mechanism of each
browser. Sandboxing is nowadays necessary as a last line of defense in case
all browser mitigations fail and an attacker manages to gain code execution.

Cure53, Berlin - 29.11.17 20/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites

D 10709 Berlin
cure53.de - mario@cure53.de

Assuming a perspective of an attacker or a malware author, Team Memory
selected some external resources like local files or registry keys to see what
access can be acquired via token impersonation. In effect, it was tested
whether the sandbox policies allow access to said resources. Once again,
cross-tabulations were crafted for external resources with a browser-by-
browser lens.

Both chapters, that is the mitigation and sandbox analyses, conclude with final
summaries, which emphasize the main differences between the three
browsers in scope.

Team Web Security (Chapter 3)

The main focus of Team Web Security was on CSP, X-Frame-Options and
other issues that were deemed relevant for browser security but could not be
covered under other chapters. In that sense, web security chapter is both
general and specific, beginning with an important and valuable overview of
historical background and subsequent developments. In other words, the
chapter pertains to various aspects that do not directly relate to, for example,
the DOM, because it was investigated separately.

The Web Security Team first evaluated which features are relevant for
an enterprise browser. A detailed test plan was outlined to allow thorough
evaluation of all features. Needless to say, the level of depth envisioned for the
research also needed to be discussed and weighed again the allocated time
budget. Once the test plan was completed, the Team dedicated time to each
item and conducted tests on the shared VM.

The overarching goals were to determine how closely the features follow
the specifications, and how reliable the features are in terms of attack
prevention. Moreover, general defense capabilities were investigated with a
special focus on mapping out intricate and generic differences between the
implementations found on the three browsers in scope.

The team set up an environment with PHP and NodeJS as the backend
runtimes of choice. A setup with multiple domains (victim.com, evil.com,
example.com) pointing to a local apache2 webserver was also created to
enable reliable tests of cross-origin behaviors. All domains were also given
self-signed SSL certificates to allow for tests using SSL/TLS. All tests requiring
a valid certificate from the CA were conducted on cure53.de.
Cross-tabulations, figures and diagrams were prepared to illustrate the test
findings, while a general summary was also written for the chapter.

Cure53, Berlin - 29.11.17 21/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites

D 10709 Berlin
cure53.de - mario@cure53.de

Team DOM (Chapter 4)

As the title suggests, Team DOM investigated various aspects of DOM security
and its relevant bits, namely SOP, Cookies, URL, HTML parsing, DOM
Clobbering, and CORS.

The chapter opens with a comprehensive background on the DOM’s
emergence as one of the main security-relevant arenas. It then follows the logic
of presenting methods, tests and findings, supplying three-pronged
comparisons of the browsers when applicable. Note that the test environment,
methodology and data analysis strategies were exactly the same as Team Web
Security.

Notably, Team DOM had a two-part test plan. The first component referenced
Michal Zalewski’'s previous work on browser security!® and reused some of the
test cases relevant to a corporate environment. The investment was made into
depth rather than breadth, so the selection of examples could best illustrate
the intricacies involved in DOM security. The second part consisted of test
cases that highlight the latest specifications and standards. The reader is
familiarized with novel and prevalent attacks that were not covered in the
Browser Security Handbook.

Team Add-ons (Chapter 5)

This chapter centers on the Add-ons architecture implemented across the
scoped web browsers.

At the beginning, the chapter deals with the fact that the three browsers deploy
different Add-ons schemes. For this purpose, the browser vendor
documentation was studied in great detail, while further investigations were
performed to see
if any differences between specifications and the current state of respective
Add-ons’ implementations and features could be noted. On the basis of the
obtained findings, a test plan was devised.

Team Add-ons determined that the WebExtensions technology is the most
relevant Add-ons architecture and allocated considerable resources to
evaluating the current state of security for this item. The focus was placed on
features capable of influencing either the security of a Web Extension, or the
security of the end user himself.

To carry out the test, example Web Extensions were created and sideloading
was employed as means to load each extension during testing. With the help
of this method, extensions could be easily modified and reloaded. The test

15 https://security.googleblog.com/2008/12/announcing-browser-security-handbook.html

Cure53, Berlin - 29.11.17 22/330

https://cure53.de/
mailto:mario@cure53.de
https://security.googleblog.com/2008/12/announcing-browser-security-handbook.html

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites

D 10709 Berlin
cure53.de - mario@cure53.de

results were presented in both a descriptive and an analytical manner. For the
latter, tabulations were the favored method of presentation. It was considered
important to always clearly mark cases of a browser not supporting a certain
tested feature.

Next on the agenda of Team Add-ons was an overview of ActiveX. This was
accompanied with an overview of all features implemented by Microsoft over
the years and included “Enhanced Protected Mode”, “Kill Bits”, and “Out-of-
date ActiveX” filtering.

Lastly, Team Add-ons studied the administration aspect of the browsers’
operations. This evaluation judged how the offered systems aid the process
of administering a browser as well as Add-On policy files.

Team UX (Chapter 6)

This chapter compares and highlights the important security-relevant Ul
features of the browsers. Although user-experience is highly subjective and
large-scale studies are usually necessary to measure how certain Ul elements
or changes to the Ul affect users’ behaviors, the chapter sought to provide
some notes on the UX from the security standpoint.

Not unlike other chapters, Team UX opens with a review of academic research
and studies on the topic. The arguments underline the overwhelming absence
of accurate and recent public data. Particular lack of coverage of the more
recent browser versions in scope of this assignment is also noted. The chapter
nevertheless provides readers with the research results deemed most relevant
and reliable (though often quite narrowly scoped), referencing them throughout
the chapter.

All in all, the UX Team needed to have a slightly different approach because
not much “hard” data is available on the subject matter at hand. This, however,
does not lessen the importance of the UX in general, because the interface
clearly has the power to communicate important security information to the
user, doing so in either proper or misleading manner. The chapter focuses on
comparing browsers’ Uls side-by-side and describes vital differences. The
dominant methodology was to provide actual visual illustrations, which means
that numerous screenshots are included in the chapter.

In specifics, what readers can find information on in this chapter are, for
example, the SSL warnings, as these are important for keeping users safe on
an unsecure network. Another investigated area was the address bar, as it
provides the only reliable way for users to tell which sites they are visiting.
Further attention was given to popups and other dialog boxes, which were
examined through the lens of potential use for spoofing and confusing users.

Cure53, Berlin - 29.11.17 23/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

e It is hoped that knowing pitfalls and benefits can assist the readers in making

the best judgment as to which Ul works best for them. Team UX wishes to
underscore the tremendous efforts that are needed for creating a safe browser
ul.
The provided data, screenshots and commentary are aimed at empowering
administrators to make educated, considerate and conscious decisions,
appropriate both for their user-base, and their enterprises. Finally, last desired
outcome of Team UX’s work is to spark more research on this realm and enrich
the currently limited knowledge-base on the UX as a security-crucial topic.

e Again, while sometimes security implications of the UX are gauged through
speculation only, the generally subjective nature of the Ul justifies this
approach. As with other chapters, readers can consult meta-data linked to the
UX issues in the scoring tables available at the end of the paper.

The gathered test data for each chapters was stored and collated into dedicated result
tables. The findings presented in cross-tabulations constitute the core documentation and
can be found both in-text in the corresponding chapters, and as metadata in concluding
sections. The latter entail scoring tables and mark the ultimate foundation of the tripartite
comparison as the focal point of this assignment.

Security Features
To perform a meaningful security evaluation of a complex piece of software, it is first
and foremost important to identify possible attack surface and evaluate what mechanisms
the software employs to minimize or eliminate the resulting threats. Depending on the
complexity of the test target, this can be either a trivial or an extremely difficult task.

By taking a simple web application, for instance, we are faced with the attack surface that
is relatively easy to identify. An analyst would first gather information about the stack the
website is running on, and then determine every element of each stack layer that accepts
and processes input, knowing that this can be influenced by an attacker - in direct
or indirect ways. It might be a SSH login of the hosting server, an FTP server accepting
incoming requests, the HTTP server making sure the website can be navigated to or, lastly,
the website itself accepting various items. The latter can entail search queries, user login
credentials, article IDs via URL or even DOM strings via JavaScript and Flash from
cookies, the location object and other user input sources. Our hypothetical researcher
would certainly want to pinpoint and enumerate those possible attacker entry-points,
hoping to understand all contexts the input would be processed.

Cure53, Berlin - 29.11.17 24/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

In the next step, attempts would need to be devised and executed with regard to testing
all of the above with more or less malformed user-input, eventually seeing how the server,
the website, and all other elements of the stack react. While this sounds easy,
the complexities of single elements of the stack often raise the effort needed for a full
coverage test significantly, so the analyst would have to additionally acquire and process
detailed information on the database version, PHP runtime version, version of certain
JavaScript libraries, and so on. We can see from this basic example that our hypothetically
eager researcher ends up with a very large amount of tests to perform, technically
warranting almost unlimited time when the wish of claiming a full coverage is to be fulfilled.
It is quite clear that we are nearly never awarded these kinds of resources.

Now to complicate matters even further, what shall we do when our analysis must cover
an incredibly complex target like one or even several different browsers? How do we
account for major differences, developments and alterations through times, and the
existence of quirks in versions and features? As we already underlined above, a modern
web browser is an exceedingly powerful tool, exposing a complex stack on its own. There
are layers taking care of network and HTTP requests, WebSocket requests and WebRTC.
There are parsers involved in processing Stylesheets, HTML, XML, XHTML, SVG,
MathML, as well as JavaScript, Visual Basic Script, JScript and other languages. We can
observe interfaces that allow communication with installed plugins, HTTP header parsers,
support for different HTTP versions, SPDY, QUIC and a multitude of different standards
that are employed to make modern web applications as potent and easy to use as
possible.

The standards and specifications, however, often change at a very fast pace. HTML, for
example, is now called a living standard and often receives new input on a daily basis,
thus forcing browser vendors to react with extreme speed. They indeed tend to implement
features, as these are seen as advantageous in the context of the heightened state of the
browser market share competition. No vendor wants to be left behind when other browsers
are perhaps already implementing or even directly involved in specifying those features
before the specifications even saw the light of day. Similarly, languages like ECMAScript
are also emerging with new alterations quickly, again positing new demands on the racing
browsers. The information becomes more and more abundant, as dedicated websites
offer benchmarking data and specify which features are supported by which browsers.
It is quite frequent that we can find verdicts or scores that argue about informing even the
non-technical people about having their browsers up-to-par with modern technologies. All
around the pressure is on.

But let's go back to our original question: with this complexity level, how could it be
possible to identify the attack surface and the threat actors? How can we clarify whether

Cure53, Berlin - 29.11.17 25/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

the existing mitigations and protections are well in place and working as desired? What
are the best ways and methods for creating comprehensive overviews of security
features? The biggest challenge of all, perhaps, is that we can actually invest weeks
or months into auditing and research, but, at the end of the day, there are no guarantees
that tomorrow’s new features will not turn into attack vectors and bypass something we
deemed valid and valuable, based on how it was working so well “just yesterday”. To be
quite honest, accounting for all these possibilities is unfeasible and quite impracticable.
Instead, we can rely on past research, our expertise and just a tiny bit of intuition in opting
for these and not the other areas. In that sense, we draw on the most relevant areas,
shedding light on the temporal aspect on how things were, are, and how we can imagine
them to be in the near future. With this forward-facing approach, we can arguably
contextualize and evaluate the past and present mitigations and protections in place in
greater detail. Our selection has been signaled in the subsections on Teams and Chapters
above but is reiterated through a thematic lens here as well.

¢ Memory Safety Features are examined to determine what the tested
browsers will do to protect from dangerous crashes and memory corruption
issues.

e Process-Level Sandboxing analysis seeks to determine how well the
Windows-platform-specific features are leveraged to protect the system/user
from
a compromised process.

e CSP, XFO, SRI & other Security Features are investigated to determine what
the tested browsers can and will do to prevent web-attacks using HTTP tricks,
XSS, Clickjacking, and alike.

e DOM Security Features must be verified to determine what the tested
browsers do to make the DOM a safer place, as well as whether they can
mitigate DOMXSS, DOM Clobbering and other client-side attacks.

o Browser Extension & Plugin Security Features are necessary to determine
how browsers make sure that vulnerable extensions do not cause a system
compromise. They further demonstrate the strategies of data isolation and
make browsers safer application hosts

o Ul Security Features are evaluated to determine how well the browser
communicates possible security problems. They can help empower users to
make reasonable and responsible decisions with the help of the browser.

For an additional narrowing of the scope, this paper puts a clear focus on the corporate

and enterprise context, which means that the different areas chosen for deeper analysis
reflect this premise. Note that the order in which features are being presented and

Cure53, Berlin - 29.11.17 26/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin

Fine penetration tests for fine websites
cure53.de - mario@cure53.de

discussed attempts are structured around the order that they are located in on the stack.
Starting with the Memory and robustness, going over security headers, CSP and other
features around HTTP, followed by the DOM that is already close to the user’s ears and
eyes, then finalizing with extensions and Add-ons. At the end, we logically move to the Ul
security, as it plays one of the biggest roles in making the users safer through clear
warnings and reasonable delegation of responsibility.

Cure53, Berlin - 29.11.17 27/330

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

Chapter 2. Memory Safety Features

Mitigations against memory corruption vulnerabilities are usually the last line of defense
against exploitation of bugs present in a piece of software. At the same time, complex
environments — among them browsers — are commonly very much affected by memory-
related issues. This is why rendering exploitation of this category of vulnerabilities difficult
should be one of the top priorities for security departments, researchers and other
stakeholders. When done right, however, mechanisms aimed at protecting against
memory corruption problems can make all the difference for the overall security of a given
product. This is because a well-implemented and appropriate protective gear may have
the capacity to mitigate entire big classes. Further, at the very least, these security
mechanisms elicit more steps and call for extended attacker-resources. With good
protections in place, adversaries are faced with the necessity to chain multiple exploit
primitives together to develop a successful exploit chain.

Ultimately, browser vendors understood the critical implications of lacking memory-related
protections. This realization expectedly translated to new specifications
and recommendations being issued. This chapter takes a close look at the array of
possible defense approaches employed by modern browsers in order to make memory
corruption vulnerabilities a less attractive target for exploit developers and malware
authors. Along with descriptions revolving around the existing security measures, we have
carried out a comparative analysis concerning each mitigation technique presented in
the chapter. In other words, we aim at presenting a browser-mitigation strategy nexus for
the context of memory corruption issues.

Introduction

Before going into implementational details in the later subsections, it needs to be
established what topics this chapter will be grounded in from an analytical standpoint.
The main focus here is to outline what kind of modern mitigation mechanisms the Windows
10 operating system offers and whether they are effectively made use of in the tested
browsers. First and foremost, the arguments relate to the fact that Windows offers an API,
namely SetProcessMitigationPolicy'®, to set specific mitigation options. This API is
especially useful because its counterpart -- GetProcessMitigationPolicy'’” -- lets us read
different mitigation options from a process handle with relative ease.

16 https://msdn.microsoft.com/en-us/library/windows/desktop/hh769088(v=vs.85).aspx
17 https://msdn.microsoft.com/en-us/library/windows/desktop/hh769085(v=vs.85).aspx

Cure53, Berlin - 29.11.17 28/330

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/windows/desktop/hh769088(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh769085(v=vs.85).aspx

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

What is more, tools like mitigationview'® by Justin Fisher can be considered, on the one
hand, as they do a good job of checking for recent mitigation options. On the other hand,
they fail to address some of the mitigations, namely those introduced after its core
development period had concluded. To account for these different gaps, we decided to
examine other relevant mitigation options. Another useful tool is provided by Google
through sandbox-attack-surface-analysis-tool*® developed by James Forshaw. Among
other use-cases, this tool provides a playground to run all sorts of tests to check whether
certain sandboxing restrictions apply to a process. Lastly, Process Explorer®® from
Microsofts’s sysinternals.com also furnishes a neat overview of all processes with their
DEP, ASLR, CFG settings and their integrity levels.

At least fundamental knowledge about memory corruption vulnerabilities is required if one
wishes to follow the more advanced issues raised in this chapter. Therefore, a necessary
background with selected historical facts and developments is given in the following
subsection.

Technical Background

As with many broader attack arenas discussed in this paper, we once again need to
underscore the evolution of the protection mechanisms. In other words, tracking the
development process through time can help us see how the browsers handle the hardware
and software with respect to memory corruption vectors emerging today. Later on, we will
also have a more “hands-on” approach, assessing and demonstrating which
contemporary software security mechanisms work in general across different browsers.

Most modern CPUs are based on the Von Neumann?! architecture, which means that they
do not separate instructions from data. Both can reside in the same virtual memory,
admittedly in different memory pages, but they continue to “blend” and have rather blurry
borders. Building on that, we can presume with some certainty that the CPU will not
distinguish whether the executed instructions are part of a legitimate program. We have
no ways of knowing if the data was actually inserted beforehand, legitimately or otherwise.
As long as memory is marked as executable, it can be executed by the CPU. This rule
paves way to code injection attacks. In this type of malicious approaches, an attacker
might be able to exploit a security bug in a piece of software, like a web browser, to bring
it under his control. This occurs through a redirection of an execution flow into new code
that the attacker introduces.

18 https://qithub.com/fishstigz/mitigationview

19 https://github.com/google/sandbox-attacksurface-analysis-tools

20 https://technet.microsoft.com/en-us/sysinternals/processexplorer.aspx
21 hitps://en.wikipedia.org/wiki/Von Neumann architecture

Cure53, Berlin - 29.11.17 29/330

https://cure53.de/
mailto:mario@cure53.de
https://github.com/fishstiqz/mitigationview
https://github.com/google/sandbox-attacksurface-analysis-tools
https://technet.microsoft.com/en-us/sysinternals/processexplorer.aspx
https://en.wikipedia.org/wiki/Von_Neumann_architecture

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14

Fine penetration tests for fine websites D 10709 Berlin
cure53.de - mario@cure53.de

The security industry is constantly portrayed as ever-evolving battlegrounds. The
attackers are not ignored and mitigation techniques like ASLR, NX, /GS or anti-ROP
mechanisms are being crafted. More recently, different forms of CF/ are devised to protect
computer programs from