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Software Defect Removal Efficiency
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Capers Jones, President
Capers Jones & Associates LLC
Email: CJonesiii@cs.com

Abstract

The most important contributor to the quality of software-intensive systems is the
quality of the software components. The most important single metric for software
quality is that of defect removal efficiency (DRE). The DRE metric measures the
percentage of bugs or defects found and removed prior to delivery of the software.
The current U.S. average in 2011 is only about 85% of total defects removed.
However, best in class projects can top 99% in defect removal efficiency. High levels
of DRE cannot be achieved using testing alone. Pre-test inspections and static
analysis are necessary to top 95% in defect removal efficiency.

Copyright© 2011 by Capers Jones & Associates LLC. All rights reserved.

Introduction

In the 1970’s the author worked for IBM. Software applications were growing larger
and more complex so quality was becoming a serious issue. IBM began a careful
analysis of software quality. Measurements were taken of defects found in software
requirements, design documents, source code, user manuals, and also “bad fixes” or
secondary defects accidentally included in defect repairs.

At the same time IBM developed the function point metric, because it was necessary
to analyze non-coding defects and non-coding development activities as well. After
several years of data collection, it was possible to determine the relative contribution
of various defect origins on total software defects. The total number of defects from
all five sources was termed the “defect potential” of a software application.

Table 1 shows approximate U.S. averages from more than 13,000 projects. Table 1

shows the average volumes of defects found on software projects, and the average
percentage of defects removed prior to delivery to customers:

Table 1: Defect Removal Efficiency by Origin of Defects Circa 2011
(Data Expressed in Terms of Defects per Function Point)

Defect Origins Defect Removal Delivered
Potentials Efficiency Defects

Requirements 1.00 77% 0.23

Capers Jones, 1996
Defect Removal Efficienc
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James A. Whittaker: “Software
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What Is Software
Testing? And Why
Is It So Hard?

James A. Whittaker, Florida Institute of Technology

cess of
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testing

Software testing is
arguably the least
understood part of
the development
proc Through
a four-phase
approach, the
author shows why
eliminating bugs

irtually all developers know the frustration of having software
bugs reported by users.
: How did those b

hen this happens, developers inevitably _
hours doubt- >

escape testing? Countle

such vigi-
lance? The answer requires, first, a closer look at software testing within the
why testing is 2 context of development. Second, it requires an understanding of the role
constant trade-off.
software testers and developers—two very
different functions—play.
Assuming that the bugs users report
occur in a software product that really is in S
error, the answer could be any of th the environment but had no ti
it. Perhaps we did not (or cd
replicate the user's combina
hardware, peripherals, operati
tem, and applications in our testi
For example, although companies

® The user cuted untested code. Because
of time constr: it's not uncommon for
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atements were
cuted in actual us ed from that dur-
ing testing. This order can determine
whether software works or fails.

The user applied a combination of

untested input values. The possible input
combinations that thousands of users
can make across a given software inter-

face are simply too numerous for testers
to apply them all. Testers must mak
tough decisions about which inputs to
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write networking software are unli

.uether 1t matches

to create a thousand-node network
their testing lab, users can—and do
create such networks.

Through an overview of the software
ing problem and process, this article
igates the problems that testers face

s the technical issues that any

solution must address. I also survey existing
classes of solutions used in practice.
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Glenford Myers: “despite the
plethora of software testing tomes
avallable on the market today, many
developers seem to have an attitude
that 1s counter to extensive testing.
Testing 1s the process of executing a
program with the intent of finding
errors.”
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Cynthia Cohen: “The lack of
N status and support makes the
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tester’s job more difficult and
time consuming, as the struggle

asle  for recognition becomes part of
the job 1tself”
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Managing Conflict in Software Testing, Communications of the
ACM, Volume 47, Issue 1, 2004
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John D. McGregor: “Being a good tester 1s
harder than being a good developer

because testing requires not only a very
cood understanding of the development
process and 1ts products, but 1t also
demands an ability to anticipate likely

faults and errors.”
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David West: “Software 1s released for use,
not when 1t 1s known to be correct, but

when the rate of discovering errors slows
down to one that management considers

acceptable.”
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the stage for inevitable developer-tester
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- Rex Black: “Suppose, though, that you
could estimate the total number of bugs
1n the system under test. Or, perhaps you

Practical Tools and Techniques for Managing

could measure the bug-finding
' eflectiveness of your test system. There
are three techniques for solving these

problems...”
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Yegor Bugayenko: “T'he best way to
motivate testers to find more and better
bugs 1s to pay them for each one.”
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Cem Kaner: “T'he best tester 1sn’t the one

who finds the most bugs or who

embarrasses the most programmers. The

best tester 1s the one who gets the most

bugs fixed.”
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