Qyegor256

Software Testing Pitfalls

Yegor Bugayenko .

JPoint 2019 @bloghacks
Moscow, Russia

5 April, 2019

1/35

Qyegor256

yegor256

yegorZ2so
68K 10%

Zerocracy

//.€eroCcracy

Zold

ORACLE

Certified Master

Java EE 5 Enterprise
Architect

Code Ahead

2/35

BElegant Objects

Qyegor256

+

Zerocracy

3/35

Qyegor256

+

Zerocracy

4/35

Qyegor256

Zerocracy

Practical Tools and Techniques for Managing

Rex Black 2009

'° Defect Detection Effectiveness

5/35

Qyegor256

Zerocracy

Software Defect Removal Efficiency

By

Capers Jones, President
Capers Jones & Associates LLC
Email: CJonesiii@cs.com

Abstract

The most important contributor to the quality of software-intensive systems is the
quality of the software components. The most important single metric for software
quality is that of defect removal efficiency (DRE). The DRE metric measures the
percentage of bugs or defects found and removed prior to delivery of the software.
The current U.S. average in 2011 is only about 85% of total defects removed.
However, best in class projects can top 99% in defect removal efficiency. High levels
of DRE cannot be achieved using testing alone. Pre-test inspections and static
analysis are necessary to top 95% in defect removal efficiency.

Copyright© 2011 by Capers Jones & Associates LLC. All rights reserved.

Introduction

In the 1970’s the author worked for IBM. Software applications were growing larger
and more complex so quality was becoming a serious issue. IBM began a careful
analysis of software quality. Measurements were taken of defects found in software
requirements, design documents, source code, user manuals, and also “bad fixes” or
secondary defects accidentally included in defect repairs.

At the same time IBM developed the function point metric, because it was necessary
to analyze non-coding defects and non-coding development activities as well. After
several years of data collection, it was possible to determine the relative contribution
of various defect origins on total software defects. The total number of defects from
all five sources was termed the “defect potential” of a software application.

Table 1 shows approximate U.S. averages from more than 13,000 projects. Table 1

shows the average volumes of defects found on software projects, and the average
percentage of defects removed prior to delivery to customers:

Table 1: Defect Removal Efficiency by Origin of Defects Circa 2011
(Data Expressed in Terms of Defects per Function Point)

Defect Origins Defect Removal Delivered
Potentials Efficiency Defects

Requirements 1.00 77% 0.23

Capers Jones, 1996
Defect Removal Efficienc

6/35

Qyegor256 '7/35

2% %

Programmers

+

Zerocracy

'l'esters

Qyegor256

JOHN C. MUNSON, PH.D.

+

Zerocracy

O

od programmer will

\ e code,

amer will

8/35

Qyegor256

. 9% 10 =

Plpelme

Devs Repository Stagmg Production

Zerocracy

9/35

Qyegor256 10/35

practice tutorial

James A. Whittaker: “Software

js &

What Is Software
Testing? And Why
Is It So Hard?

James A. Whittaker, Florida Institute of Technology

cess of
Q e re system to

testing

Software testing is
arguably the least
understood part of
the development
proc Through
a four-phase
approach, the
author shows why
eliminating bugs

irtually all developers know the frustration of having software
bugs reported by users.
: How did those b

hen this happens, developers inevitably _
hours doubt- >

escape testing? Countle

such vigi-
lance? The answer requires, first, a closer look at software testing within the
why testing is 2 context of development. Second, it requires an understanding of the role
constant trade-off.
software testers and developers—two very
different functions—play.
Assuming that the bugs users report
occur in a software product that really is in S
error, the answer could be any of th the environment but had no ti
it. Perhaps we did not (or cd
replicate the user's combina
hardware, peripherals, operati
tem, and applications in our testi
For example, although companies

® The user cuted untested code. Because
of time constr: it's not uncommon for

Zerocracy

atements were
cuted in actual us ed from that dur-
ing testing. This order can determine
whether software works or fails.

The user applied a combination of

untested input values. The possible input
combinations that thousands of users
can make across a given software inter-

face are simply too numerous for testers
to apply them all. Testers must mak
tough decisions about which inputs to

T0 1EEE SOFTWARE Jsnusry/February 2000

write networking software are unli

.uether 1t matches

to create a thousand-node network
their testing lab, users can—and do
create such networks.

Through an overview of the software
ing problem and process, this article
igates the problems that testers face

s the technical issues that any

solution must address. I also survey existing
classes of solutions used in practice.

TP

specification and executes

111

0/$10.00 © 2000 IEEE

1ts intended environment.”

Qyegor256 1 1/35

Sott

atﬁg probability of working, that

Boris Beizer: “If your objective

1s to demonstrate a high

objective 1s best achieved by
niques not testing at all!”

Boris Beizer

+

Zerocracy

Qyegor256

/THEﬂART OF
/gl g

SOFTWARE
TESTING

GLENFORD |J. MYERS

+

Zerocracy

12/35

Glenford Myers: “despite the
plethora of software testing tomes
avallable on the market today, many
developers seem to have an attitude
that 1s counter to extensive testing.
Testing 1s the process of executing a
program with the intent of finding
errors.”

Qyegor256

+

Zerocracy

Soft-
Wware
Testing

e

ch
niques

Boris Beizer

.-npr,
. o
B
/' > |
X8 w e -
'."."f' ’
A\ a0 %
W\ "
by
Y
5
‘ %
.
3 <

Context-Driver

WWILEY

Testing
Computer
Software

The bestselling
software testing
book of all time!

Second Edition

Cem Kaner
Jack Falk
Hung Quoc Nguyen &

~ BRET:PETTICHORD

CEM KANER
JAMES BACH

/ / .':l;(‘: i
/(HE ART or

A HE L
SOFTWARE

TESTING

O E0ITION

GLENFORD |. MYERS

TOM BADGETT COREY SANDLER

2 ighed Mat o i
Auerbach Publications
Vi

Manage
Software
Testing

Peter Farrell-Vinay

13/35

Qyegor256

1

+

Zerocracy

'l'esters are not
second-class citizens.

14/35

Qyegor256 15/35

Cynthia Cohen: “The lack of
N status and support makes the

(OBDINICYTIONS

tester’s job more difficult and
time consuming, as the struggle

asle for recognition becomes part of
the job 1tself”

I).M({'L'u Ay
Managing Conflict in Software Testing, Communications of the
ACM, Volume 47, Issue 1, 2004

+

Zerocracy

Qyegor256

A PRACTICAL GUIDE
TO TESTING
OBJECT-ORIENTED
SOFTWARE

JOHN D. MCGREGOR
DAVID A. SYKES

Zerocracy

16/35

John D. McGregor: “Being a good tester 1s
harder than being a good developer

because testing requires not only a very
cood understanding of the development
process and 1ts products, but 1t also
demands an ability to anticipate likely

faults and errors.”

Qyegor256

+

Zerocracy

Salaries

Seniority

17/35

Qyegor256 18/35

'lTester
Senior

Middle
Junior

+

Zerocracy

Qyegor256

2

+

Zerocracy

Testers don’t tell us
when to release.

19/35

Qyegor256

Zerocracy

20/35

Qyegor256

David West

Zerocracy

21/35

David West: “Software 1s released for use,
not when 1t 1s known to be correct, but

when the rate of discovering errors slows
down to one that management considers

acceptable.”

Qyegor256

+

Zerocracy

o%s

Devs

$*g

'lTesters

22/35

Qyegor256

Zerocracy

Association for Information Systems

AIS Electronic Library (AISeL)

e A . Americas Conference on Information
AMCIS 2008 Proceedings

2008

s f ot v Devcpes X1ihul Zhang: “T'he software testing

Testers in Software Developrnent

Xihui Zhang

University of Memphis, xihui.zhang@mempbhis.edu

process 1s inherently adversarial, setting

Mark L. Gillenson

University of Memphis, mark.gillenson@memphis.edu

Gertrude Moeller
FedEx Express, gmoeller] @fedex.com

the stage for inevitable developer-tester

ﬂ . , ,
Follow this and additional works at: http://aisel.aisnet.org/amcis2008 C O n 1 C t Y

Recommended Citation

Zhang, Xihui; Dhaliwal, Jasbir S.; Gillenson, Mark L.; and Moeller, Gertrude, "Sources of Conflict Between Developers and Testers in
Software Development” (2008). AMCIS 2008 Proceedings. 313.

http://aisel.aisnet.org/amcis2008/313

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted

1CIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact

23/35

Qyegor256

+

Zerocracy

GitFlow

by Vincent Driessen

24/35

https://nvie.com /posts/a-successful-git-branching-model /

Qyegor256

e %3

'Testers

25/35

+

Zerocracy

Qyegor256

d

+

Zerocracy

Testing 1s finished
when enough bugs
are found.

26/35

Qyegor256 27/35

- Rex Black: “Suppose, though, that you
could estimate the total number of bugs
1n the system under test. Or, perhaps you

Practical Tools and Techniques for Managing

could measure the bug-finding
' eflectiveness of your test system. There
are three techniques for solving these

problems...”

Zerocracy

Qyegor256

+

Zerocracy

Time

SCripts

Bugs

28/35

Qyegor256

(Guess

+

Zerocracy

Budget

29/35

Bixperience

Qyegor256

A

Testers must be

rewarded for the
bugs they find.

30/35

Qyegor256

+

Zerocracy

Yegor Bugayenko: “T'he best way to
motivate testers to find more and better
bugs 1s to pay them for each one.”

31/35

Qyegor256

+

Zerocracy

Price

Quality

Time

32/35

Qyegor256

+

fed Matenal

@WILEY

Testing\
Computer
Software

The bestselling
software testing
book of all time!

Second Edition

Cem Kaner
Jack Falk
Hung Quoc Nguyen &

Zerocracy

33/35

Cem Kaner: “T'he best tester 1sn’t the one

who finds the most bugs or who

embarrasses the most programmers. The

best tester 1s the one who gets the most

bugs fixed.”

Qyegor256

Qvyegor256

34/35

Qyegor256

Qvegor256news

35/35

