
MySQL Shell 8.0

Abstract

MySQL Shell is an advanced client and code editor for MySQL. This document describes the core features of MySQL
Shell. In addition to the provided SQL functionality, similar to mysql, MySQL Shell provides scripting capabilities for
JavaScript and Python and includes APIs for working with MySQL. X DevAPI enables you to work with both relational
and document data, see Using MySQL as a Document Store. AdminAPI enables you to work with InnoDB Cluster,
InnoDB ClusterSet, and InnoDB ReplicaSet.

MySQL Shell 8.0 is highly recommended for use with MySQL Server 8.0 and 5.7. Please upgrade to MySQL Shell
8.0. If you have not yet installed MySQL Shell, download it from the download site.

For notes detailing the changes in each release, see the MySQL Shell Release Notes.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Licensing information. This product may include third-party software, used under license. If you are using a
Commercial release of MySQL Shell, see MySQL Shell Commercial License Information User Manual for licensing
information, including licensing information relating to third-party software that may be included in this Commercial
release. If you are using a Community release of MySQL Shell, see MySQL Shell Community License Information
User Manual for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Document generated on: 2021-10-18 (revision: 71122)

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/downloads/shell
https://dev.mysql.com/doc/relnotes/mysql-shell/8.0/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/mysql-shell-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-shell-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-shell-8.0-gpl-en.pdf

Table of Contents
1 MySQL Shell Features .. 1
2 Installing MySQL Shell .. 5

2.1 Installing MySQL Shell on Microsoft Windows .. 5
2.2 Installing MySQL Shell on Linux .. 5
2.3 Installing MySQL Shell on macOS .. 7

3 Using MySQL Shell Commands ... 9
3.1 MySQL Shell Commands .. 9

4 Getting Started with MySQL Shell .. 15
4.1 Starting MySQL Shell ... 15
4.2 MySQL Shell Sessions ... 15

4.2.1 Creating the Session Global Object While Starting MySQL Shell 17
4.2.2 Creating the Session Global Object After Starting MySQL Shell 18
4.2.3 Scripting Sessions in JavaScript and Python Mode .. 18

4.3 MySQL Shell Connections .. 20
4.3.1 Connecting using Individual Parameters .. 21
4.3.2 Connecting using Unix Sockets and Windows Named Pipes 23
4.3.3 Using Encrypted Connections ... 24
4.3.4 Using LDAP and Kerberos Authentication ... 25
4.3.5 Using Compressed Connections ... 28

4.4 Pluggable Password Store .. 31
4.4.1 Pluggable Password Configuration Options ... 32
4.4.2 Working with Credentials .. 33

4.5 MySQL Shell Global Objects ... 34
4.6 Using a Pager .. 34

5 MySQL Shell Code Execution .. 37
5.1 Active Language ... 37
5.2 Interactive Code Execution ... 38
5.3 Code Autocompletion .. 40
5.4 Editing Code .. 41
5.5 Code History .. 42
5.6 Batch Code Execution .. 43
5.7 Output Formats .. 45

5.7.1 Table Format ... 45
5.7.2 Tab Separated Format ... 46
5.7.3 Vertical Format .. 46
5.7.4 JSON Format Output ... 47
5.7.5 JSON Wrapping ... 49
5.7.6 Result Metadata .. 50

5.8 API Command Line Integration ... 50
5.8.1 Command Line Integration Overview .. 51
5.8.2 Command Line Integration Details .. 53

5.9 JSON Integration .. 63
6 MySQL AdminAPI ... 65

6.1 Using MySQL AdminAPI ... 65
6.1.1 Installing AdminAPI Software Components .. 66
6.1.2 Using Instances Running MySQL 5.7 .. 67
6.1.3 Configuring the Host Name .. 68
6.1.4 Connecting to Server Instances .. 68
6.1.5 Persisting Settings ... 69
6.1.6 Retrieving a Handler Object ... 70
6.1.7 Creating User Accounts for Administration .. 71

iii

MySQL Shell 8.0

6.1.8 Verbose Logging .. 72
6.1.9 Finding the Primary .. 72
6.1.10 Scripting AdminAPI .. 73

6.2 AdminAPI MySQL Sandboxes ... 74
6.2.1 Deploying Sandbox Instances .. 74
6.2.2 Managing Sandbox Instances ... 75

6.3 Tagging Metadata ... 75
6.4 Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet 79

6.4.1 Bootstrapping MySQL Router ... 79
6.4.2 Configuring the MySQL Router User ... 80
6.4.3 Deploying MySQL Router ... 80
6.4.4 Using ReplicaSets with MySQL Router ... 82
6.4.5 Testing InnoDB Cluster High Availability ... 83
6.4.6 Working with a Cluster's Routers .. 84

7 MySQL InnoDB Cluster ... 87
7.1 MySQL InnoDB Cluster Requirements ... 89
7.2 Deploying a Production InnoDB Cluster ... 89

7.2.1 Deploying a New Production InnoDB Cluster ... 92
7.2.2 Using MySQL Clone with InnoDB Cluster .. 99
7.2.3 Adopting a Group Replication Deployment .. 103

7.3 Monitoring InnoDB Cluster .. 104
7.4 Working with Instances ... 114
7.5 Working with InnoDB Cluster ... 116
7.6 Configuring InnoDB Cluster ... 120
7.7 Troubleshooting InnoDB Cluster .. 126
7.8 Upgrading an InnoDB Cluster .. 131

7.8.1 Rolling Upgrades ... 131
7.8.2 Upgrading InnoDB Cluster Metadata ... 132
7.8.3 Troubleshooting InnoDB Cluster Upgrades .. 133

7.9 InnoDB Cluster Tips .. 134
7.10 InnoDB Cluster Limitations .. 137

8 MySQL InnoDB ClusterSet ... 139
8.1 InnoDB ClusterSet Requirements .. 141
8.2 InnoDB ClusterSet Limitations ... 145
8.3 User Accounts for InnoDB ClusterSet .. 146
8.4 Deploying InnoDB ClusterSet .. 148
8.5 Integrating MySQL Router With InnoDB ClusterSet .. 159
8.6 InnoDB ClusterSet Status and Topology .. 164
8.7 InnoDB ClusterSet Controlled Switchover .. 173
8.8 InnoDB ClusterSet Emergency Failover ... 178
8.9 InnoDB ClusterSet Repair and Rejoin .. 184

8.9.1 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters 186
8.9.2 Repairing Member Servers and Clusters in an InnoDB ClusterSet 188
8.9.3 Removing a Cluster from an InnoDB ClusterSet .. 190
8.9.4 Rejoining a Cluster to an InnoDB ClusterSet ... 192

9 MySQL InnoDB ReplicaSet .. 195
9.1 Deploying InnoDB ReplicaSet .. 196
9.2 Adding Instances to a ReplicaSet .. 198
9.3 Adopting an Existing Replication Set Up .. 200
9.4 Working with InnoDB ReplicaSet ... 201

10 Extending MySQL Shell ... 207
10.1 Reporting with MySQL Shell .. 207

10.1.1 Creating MySQL Shell Reports ... 208
10.1.2 Registering MySQL Shell Reports ... 209

iv

MySQL Shell 8.0

10.1.3 Persisting MySQL Shell Reports ... 210
10.1.4 Example MySQL Shell Report .. 210
10.1.5 Running MySQL Shell Reports ... 211
10.1.6 Built-in MySQL Shell Reports ... 212

10.2 Adding Extension Objects to MySQL Shell ... 215
10.2.1 Creating User-Defined MySQL Shell Global Objects .. 215
10.2.2 Creating Extension Objects .. 216
10.2.3 Persisting Extension Objects .. 218
10.2.4 Example MySQL Shell Extension Objects .. 219

10.3 MySQL Shell Plugins .. 220
10.3.1 Creating MySQL Shell Plugins .. 220
10.3.2 Creating Plugin Groups .. 221
10.3.3 Example MySQL Shell Plugins ... 222

11 MySQL Shell Utilities ... 225
11.1 Upgrade Checker Utility .. 225
11.2 JSON Import Utility ... 232

11.2.1 Importing JSON documents with the mysqlsh command interface 235
11.2.2 Importing JSON documents with the --import command ... 236
11.2.3 Conversions for representations of BSON data types ... 237

11.3 Table Export Utility .. 238
11.4 Parallel Table Import Utility ... 242
11.5 Instance Dump Utility, Schema Dump Utility, and Table Dump Utility 249
11.6 Dump Loading Utility ... 262

12 MySQL Shell Logging and Debug .. 277
12.1 Application Log ... 278
12.2 Verbose Output .. 279
12.3 System Logging for SQL Statements ... 280
12.4 Logging AdminAPI Operations ... 281

13 Customizing MySQL Shell .. 283
13.1 Working With Startup Scripts ... 283
13.2 Adding Module Search Paths .. 284

13.2.1 Module Search Path Environment Variables .. 285
13.2.2 Module Search Path Variable in Startup Scripts ... 285

13.3 Customizing the Prompt .. 286
13.4 Configuring MySQL Shell Options .. 286

A MySQL Shell Command Reference .. 293
A.1 mysqlsh — The MySQL Shell ... 293

v

vi

Chapter 1 MySQL Shell Features
The following features are available in MySQL Shell.

Supported Languages
MySQL Shell processes code written in JavaScript, Python and SQL. Any executed code is processed as
one of these languages, based on the language that is currently active. There are also specific MySQL
Shell commands, prefixed with \, which enable you to configure MySQL Shell regardless of the currently
selected language. For more information see Section 3.1, “MySQL Shell Commands”.

From version 8.0.18, MySQL Shell uses Python 3, rather than Python 2.7. For platforms that include a
system supported installation of Python 3, MySQL Shell uses the most recent version available, with a
minimum supported version of Python 3.6. For platforms where Python 3 is not included or is not at the
minimum supported version, MySQL Shell bundles Python 3.7.7 up to MySQL Shell 8.0.25, and Python
3.9.5 from MySQL Shell 8.0.26. MySQL Shell maintains code compatibility with Python 2.6 and Python 2.7,
so if you require one of these older versions, you can build MySQL Shell from source using the appropriate
Python version.

Interactive Code Execution
MySQL Shell provides an interactive code execution mode, where you type code at the MySQL Shell
prompt and each entered statement is processed, with the result of the processing printed onscreen.
Unicode text input is supported if the terminal in use supports it. Color terminals are supported.

Multiple-line code can be written using a command, enabling MySQL Shell to cache multiple lines and then
execute them as a single statement. For more information see Multiple-line Support.

Batch Code Execution
In addition to the interactive execution of code, MySQL Shell can also take code from different sources and
process it. This method of processing code in a noninteractive way is called Batch Execution.

As batch execution mode is intended for script processing of a single language, it is limited to having
minimal non-formatted output and disabling the execution of commands. To avoid these limitations, use
the --interactive command-line option, which tells MySQL Shell to execute the input as if it were an
interactive session. In this mode the input is processed line by line just as if each line were typed in an
interactive session. For more information see Section 5.6, “Batch Code Execution”.

Supported APIs
MySQL Shell includes the following APIs implemented in JavaScript and Python which you can use to
develop code that interacts with MySQL.

• AdminAPI enables you to administer MySQL instances, using them to create InnoDB Cluster, InnoDB
ClusterSet, and InnoDB ReplicaSet deployments, and integrating MySQL Router.

• InnoDB Cluster provides an integrated solution for high availability and scalability using InnoDB based
MySQL databases. InnoDB Cluster is an alternative solution for using Group Replication, without
requiring advanced MySQL expertise. See Chapter 7, MySQL InnoDB Cluster.

• InnoDB ClusterSet provides disaster tolerance for Chapter 7, MySQL InnoDB Cluster deployments
by linking a primary InnoDB Cluster with one or more replicas of itself in alternate locations. See
Chapter 8, MySQL InnoDB ClusterSet.

1

X Protocol Support

• InnoDB ReplicaSet enables you to administer a set of MySQL instances running asynchronous GTID-
based replication. See Chapter 9, MySQL InnoDB ReplicaSet.

AdminAPI also provides operations to configure users for MySQL Router, to make integration with
InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet as simple as possible. For more information
on AdminAPI, see Chapter 6, MySQL AdminAPI.

• X DevAPI enables developers to work with both relational and document data when MySQL Shell is
connected to a MySQL server using the X Protocol. For more information, see Using MySQL as a
Document Store. For documentation on the concepts and usage of X DevAPI, see X DevAPI User
Guide.

X Protocol Support
MySQL Shell is designed to provide an integrated command-line client for all MySQL products which
support X Protocol. The development features of MySQL Shell are designed for sessions using the X
Protocol. MySQL Shell can also connect to MySQL Servers that do not support the X Protocol using the
classic MySQL protocol. A minimal set of features from the X DevAPI are available for sessions created
using the classic MySQL protocol.

Extensions
You can define extensions to the base functionality of MySQL Shell in the form of reports and extension
objects. Reports and extension objects can be created using JavaScript or Python, and can be used
regardless of the active MySQL Shell language. You can persist reports and extension objects in plugins
that are loaded automatically when MySQL Shell starts. MySQL Shell has several built-in reports ready to
use. See Chapter 10, Extending MySQL Shell for more information.

Utilities
MySQL Shell includes the following utilities for working with MySQL:

• An upgrade checker utility to verify whether MySQL server instances are ready for upgrade. Use
util.checkForServerUpgrade() to access the upgrade checker.

• A JSON import utility to import JSON documents to a MySQL Server collection or table. Use
util.importJSON() to access the import utility.

• A parallel table import utility that splits up a single data file and uses multiple threads to load the chunks
into a MySQL table.

See Chapter 11, MySQL Shell Utilities for more information.

API Command Line Integration
MySQL Shell exposes much of its functionality using an API command syntax that enables you to easily
integrate mysqlsh with other tools. For example you can create bash scripts which administer an InnoDB
Cluster with this functionality. Use the mysqlsh [options] -- shell_object object_method
[method_arguments] syntax to pass operations directly to MySQL Shell global objects, bypassing the
REPL interface. See Section 5.8, “API Command Line Integration”.

Output Formats
MySQL Shell can return results in table, tabbed, or vertical format, or as JSON output. To help integrate
MySQL Shell with external tools, you can activate JSON wrapping for all output when you start MySQL
Shell from the command line. For more information see Section 5.7, “Output Formats”.

2

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/

Logging and Debug

Logging and Debug

MySQL Shell can log information about the execution process at your chosen level of detail. Logging
information can be sent to any combination of an application log file, an additional viewable destination,
and the console. For more information see Chapter 12, MySQL Shell Logging and Debug.

Global Session

In MySQL Shell, connections to MySQL Server instances are handled by a session object. When you
make the first connection to a MySQL Server instance, which can be done either while starting MySQL
Shell or afterwards, a MySQL Shell global object named session is created to represent this connection.
This session is known as the global session because it can be used in all of the MySQL Shell execution
modes. In SQL mode the global session is used for executing statements, and in JavaScript mode and
Python mode it is available through an object named session. You can create further session objects
using functions available in the mysqlx and mysql JavaScript and Python modules, and you can set
one of these session objects as the session global object so you can use it in any mode. For more
information, see Section 4.2, “MySQL Shell Sessions”.

3

4

Chapter 2 Installing MySQL Shell

Table of Contents
2.1 Installing MySQL Shell on Microsoft Windows .. 5
2.2 Installing MySQL Shell on Linux ... 5
2.3 Installing MySQL Shell on macOS .. 7

This section describes how to download, install, and start MySQL Shell, which is an interactive JavaScript,
Python, or SQL interface supporting development and administration for MySQL Server. MySQL Shell is a
component that you can install separately.

MySQL Shell supports X Protocol and enables you to use X DevAPI in JavaScript or Python to develop
applications that communicate with a MySQL Server functioning as a document store. For information
about using MySQL as a document store, see Using MySQL as a Document Store.

Important

For the Community and Commercial versions of MySQL Shell: Before installing
MySQL Shell, make sure you have the Visual C++ Redistributable for Visual Studio
2015 (available at the Microsoft Download Center) installed on your Windows
system.

Requirements

MySQL Shell is available on Microsoft Windows, Linux, and macOS for 64-bit platforms.

2.1 Installing MySQL Shell on Microsoft Windows

To install MySQL Shell on Microsoft Windows using the MSI Installer, do the following:

1. Download the Windows (x86, 64-bit), MSI Installer package from http://dev.mysql.com/downloads/
shell/.

2. When prompted, click Run.

3. Follow the steps in the Setup Wizard.

2.2 Installing MySQL Shell on Linux

Note

Installation packages for MySQL Shell are available only for a limited number of
Linux distributions, and only for 64-bit systems.

For supported Linux distributions, the easiest way to install MySQL Shell on Linux is to use the MySQL
APT repository or MySQL Yum repository. For systems not using the MySQL repositories, MySQL Shell
can also be downloaded and installed directly.

Installing MySQL Shell with the MySQL APT Repository

For Linux distributions supported by the MySQL APT repository, follow one of the paths below:

5

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
http://www.microsoft.com/en-us/download/default.aspx
http://dev.mysql.com/downloads/shell/
http://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/

Installing MySQL Shell with the MySQL Yum Repository

• If you do not yet have the MySQL APT repository as a software repository on your system, do the
following:

• Follow the steps given in Adding the MySQL APT Repository, paying special attention to the following:

• During the installation of the configuration package, when asked in the dialogue box to configure the
repository, make sure you choose MySQL 8.0 as the release series you want.

• Make sure you do not skip the step for updating package information for the MySQL APT repository:

sudo apt-get update

• Install MySQL Shell with this command:

sudo apt-get install mysql-shell

• If you already have the MySQL APT repository as a software repository on your system, do the following:

• Update package information for the MySQL APT repository:

sudo apt-get update

• Update the MySQL APT repository configuration package with the following command:

sudo apt-get install mysql-apt-config

When asked in the dialogue box to configure the repository, make sure you choose MySQL 8.0 as the
release series you want.

• Install MySQL Shell with this command:

sudo apt-get install mysql-shell

Installing MySQL Shell with the MySQL Yum Repository

For Linux distributions supported by the MySQL Yum repository, follow these steps to install MySQL Shell:

• Do one of the following:

• If you already have the MySQL Yum repository as a software repository on your system and the
repository was configured with the new release package mysql80-community-release.

• If you already have the MySQL Yum repository as a software repository on your system but have
configured the repository with the old release package mysql-community-release, it is easiest
to install MySQL Shell by first reconfiguring the MySQL Yum repository with the new mysql80-
community-release package. To do so, you need to remove your old release package first, with
the following command :

sudo yum remove mysql-community-release

For dnf-enabled systems, do this instead:

sudo dnf erase mysql-community-release

Then, follow the steps given in Adding the MySQL Yum Repository to install the new release package,
mysql80-community-release.

• If you do not yet have the MySQL Yum repository as a software repository on your system, follow the
steps given in Adding the MySQL Yum Repository.

6

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#apt-repo-setup
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-repo-setup
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-repo-setup

Installing MySQL Shell from Direct Downloads from the MySQL Developer Zone

• Install MySQL Shell with this command:

sudo yum install mysql-shell

For dnf-enabled systems, do this instead:

sudo dnf install mysql-shell

Installing MySQL Shell from Direct Downloads from the MySQL Developer
Zone

RPM, Debian, and source packages for installing MySQL Shell are also available for download at
Download MySQL Shell.

2.3 Installing MySQL Shell on macOS

To install MySQL Shell on macOS, do the following:

1. Download the package from http://dev.mysql.com/downloads/shell/.

2. Double-click the downloaded DMG to mount it. Finder opens.

3. Double-click the .pkg file shown in the Finder window.

4. Follow the steps in the installation wizard.

5. When the installer finishes, eject the DMG. (It can be deleted.)

7

https://dev.mysql.com/downloads/shell/
http://dev.mysql.com/downloads/shell/

8

Chapter 3 Using MySQL Shell Commands

Table of Contents
3.1 MySQL Shell Commands .. 9

This section describes the commands which configure MySQL Shell from the interactive code editor. The
commands enable you to control the MySQL Shell regardless of the current language being used. For
example you can get online help, connect to servers, change the current language being used, run reports,
use utilities, and so on. These commands are sometimes similar to the MySQL Shell settings which can be
configured using the mysqlsh command options, see Appendix A, MySQL Shell Command Reference.

3.1 MySQL Shell Commands

MySQL Shell provides commands which enable you to modify the execution environment of the code
editor, for example to configure the active programming language or a MySQL Server connection. The
following table lists the commands that are available regardless of the currently selected language. As
commands need to be available independent of the execution mode, they start with an escape sequence,
the \ character.

Command Alias/Shortcut Description

\help \h or \? Print help about MySQL Shell, or
search the online help.

\quit \q or \exit Exit MySQL Shell.

\ In SQL mode, begin multiple-
line mode. Code is cached and
executed when an empty line is
entered.

\status \s Show the current MySQL Shell
status.

\js Switch execution mode to
JavaScript.

\py Switch execution mode to Python.

\sql Switch execution mode to SQL.

\connect \c Connect to a MySQL instance.

\reconnect Reconnect to the same MySQL
instance.

\disconnect Disconnect the global session.

\use \u Specify the schema to use.

\source \. or source (no backslash) Execute a script file using the
active language.

\warnings \W Show any warnings generated by
a statement.

\nowarnings \w Do not show any warnings
generated by a statement.

9

Help Command

Command Alias/Shortcut Description

\history View and edit command line
history.

\rehash Manually update the autocomplete
name cache.

\option Query and change MySQL Shell
configuration options.

\show Run the specified report using the
provided options and arguments.

\watch Run the specified report using the
provided options and arguments,
and refresh the results at regular
intervals.

\edit \e Open a command in the default
system editor then present it in
MySQL Shell.

\pager \P Configure the pager which MySQL
Shell uses to display text.

\nopager Disable any pager which MySQL
Shell was configured to use.

\system \! Run the specified operating
system command and display the
results in MySQL Shell.

Help Command

The \help command can be used with or without a parameter. When used without a parameter a general
help message is printed including information about the available MySQL Shell commands, global objects
and main help categories.

When used with a parameter, the parameter is used to search the available help based on the mode which
the MySQL Shell is currently running in. The parameter can be a word, a command, an API function, or
part of an SQL statement. The following categories exist:

• AdminAPI - details the dba global object and the AdminAPI, which enables you to work with InnoDB
Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet.

• X DevAPI - details the mysqlx module as well as the capabilities of the X DevAPI, which enable you to
work with MySQL as a Document Store

• Shell Commands - provides details about the available built-in MySQL Shell commands.

• ShellAPI - contains information about the shell and util global objects, as well as the mysql
module that enables executing SQL on MySQL Servers.

• SQL Syntax - entry point to retrieve syntax help on SQL statements.

To search for help on a topic, for example an API function, use the function name as a pattern. You
can use the wildcard characters ? to match any single character and * to match multiple characters in a
search. The wildcard characters can be used one or more times in the pattern. The following namespaces
can also be used when searching for help:

10

Connect, Reconnect, and Disconnect Commands

• dba for AdminAPI

• mysqlx for X DevAPI

• mysql for ShellAPI for classic MySQL protocol

• shell for other ShellAPI classes: Shell, Sys, Options

• commands for MySQL Shell commands

• cmdline for the mysqlsh command interface

For example to search for help on a topic, issue \help pattern and:

• use x devapi to search for help on the X DevAPI

• use \c to search for help on the MySQL Shell \connect command

• use getCluster or dba.getCluster to search for help on the AdminAPI dba.getCluster()
operation

• use Table or mysqlx.Table to search for help on the X DevAPI Table class

• when MySQL Shell is running in JavaScript mode, use isView, Table.isView or
mysqlx.Table.isView to search for help on the isView function of the Table object

• when MySQL Shell is running in Python mode, use is_view, Table.is_view or
mysqlx.Table.is_view to search for help on the isView function of the Table object

• when MySQL Shell is running in SQL mode, if a global session to a MySQL server exists SQL help is
displayed. For an overview use sql syntax as the search pattern.

Depending on the search pattern provided, one or more results could be found. If only one help topic
contains the search pattern in its title, that help topic is displayed. If multiple topic titles match the pattern
but one is an exact match, that help topic is displayed, followed by a list of the other topics with pattern
matches in their titles. If no exact match is identified, a list of topics with pattern matches in their titles is
displayed. If a list of topics is returned, you can select a topic to view from the list by entering the command
again with an extended search pattern that matches the title of the relevant topic.

Connect, Reconnect, and Disconnect Commands

The \connect command is used to connect to a MySQL Server. See Section 4.3, “MySQL Shell
Connections”.

For example:

\connect root@localhost:3306

If a password is required you are prompted for it.

Use the --mysqlx (--mx) option to create a session using the X Protocol to connect to MySQL server
instance. For example:

\connect --mysqlx root@localhost:33060

Use the --mysql (--mc) option to create a ClassicSession, enabling you to use classic MySQL protocol to
issue SQL directly on a server. For example:

11

Status Command

\connect --mysql root@localhost:3306

The use of a single dash with the short form options (that is, -mx and -mc) is deprecated from version
8.0.13 of MySQL Shell.

The \reconnect command is specified without any parameters or options. If the connection to the server
is lost, you can use the \reconnect command, which makes MySQL Shell try several reconnection
attempts for the session using the existing connection parameters. If those attempts are unsuccessful, you
can make a fresh connection using the \connect command and specifying the connection parameters.

The \disconnect command, available from MySQL Shell 8.0.22, is also specified without any
parameters or options. The command disconnects MySQL Shell's global session (the session represented
by the session global object) from the currently connected MySQL server instance, so that you can close
the connection but still continue to use MySQL Shell.

If the connection to the server is lost, you can use the \reconnect command, which makes MySQL
Shell try several reconnection attempts for the session using the existing connection parameters. If
those attempts are unsuccessful, you can make a fresh connection using the \connect command and
specifying the connection parameters.

Status Command

The \status command displays information about the current global connection. This includes
information about the server connected to, the character set in use, uptime, and so on.

Source Command

The \source command or its alias \. can be used in MySQL Shell's interactive mode to execute code
from a script file at a given path. For example:

\source /tmp/mydata.sql

You can execute either SQL, JavaScript or Python code. The code in the file is executed using the active
language, so to process SQL code the MySQL Shell must be in SQL mode.

Warning

As the code is executed using the active language, executing a script in a different
language than the currently selected execution mode language could lead to
unexpected results.

From MySQL Shell 8.0.19, for compatibility with the mysql client, in SQL mode only, you can execute
code from a script file using the source command with no backslash and an optional SQL delimiter.
 source or the alias \. (which does not use an SQL delimiter) can be used both in MySQL Shell's
interactive mode for SQL, to execute a script directly, and in a file of SQL code processed in batch mode,
to execute a further script from within the file. So with MySQL Shell in SQL mode, you could now execute
the script in the /tmp/mydata.sql file from either interactive mode or batch mode using any of these
three commands:

source /tmp/mydata.sql;
source /tmp/mydata.sql
\. /tmp/mydata.sql

The command \source /tmp/mydata.sql is also valid, but in interactive mode only.

In interactive mode, the \source, \. or source command itself is added to the MySQL Shell history, but
the contents of the executed script file are not added to the history.

12

Use Command

Use Command

The \use command enables you to choose which schema is active, for example:

\use schema_name

The \use command requires a global development session to be active. The \use command sets the
current schema to the specified schema_name and updates the db variable to the object that represents
the selected schema.

History Command

The \history command lists the commands you have issued previously in MySQL Shell. Issuing
\history shows history entries in the order that they were issued with their history entry number, which
can be used with the \history delete entry_number command.

The \history command provides the following options:

• Use \history save to save the history manually.

• Use \history delete entrynumber to delete the individual history entry with the given number.

• Use \history delete firstnumber-lastnumber to delete history entries within the range of the
given entry numbers. If lastnumber goes past the last found history entry number, history entries are
deleted up to and including the last entry.

• Use \history delete number- to delete the history entries from number up to and including the
last entry.

• Use \history delete -number to delete the specified number of history entries starting with the last
entry and working back. For example, \history delete -10 deletes the last 10 history entries.

• Use \history clear to delete the entire history.

The history is not saved between sessions by default, so when you exit MySQL Shell the history of what
you issued during the current session is lost. If you want to keep the history across sessions, enable the
MySQL Shell history.autoSave option. For more information, see Section 5.5, “Code History”.

Rehash Command

When you have disabled the autocomplete name cache feature, use the \rehash command to manually
update the cache. For example, after you load a new schema by issuing the \use schema command,
issue \rehash to update the autocomplete name cache. After this autocomplete is aware of the names
used in the database, and you can autocomplete text such as table names and so on. See Section 5.3,
“Code Autocompletion”.

Option Command

The \option command enables you to query and change MySQL Shell configuration options in all
modes. You can use the \option command to list the configuration options that have been set and show
how their value was last changed. You can also use it to set and unset options, either for the session, or
persistently in the MySQL Shell configuration file. For instructions and a list of the configuration options,
see Section 13.4, “Configuring MySQL Shell Options”.

Pager Commands

You can configure MySQL Shell to use an external pager to read long onscreen output, such as the online
help or the results of SQL queries. See Section 4.6, “Using a Pager”.

13

Show and Watch Commands

Show and Watch Commands

The \show command runs the named report, which can be either a built-in MySQL Shell report or a user-
defined report that has been registered with MySQL Shell. You can specify the standard options for the
command, and any options or additional arguments that the report supports. The \watch command runs a
report in the same way as the \show command, but then refreshes the results at regular intervals until you
cancel the command using Ctrl + C. For instructions, see Section 10.1.5, “Running MySQL Shell Reports”.

Edit Command

The \edit (\e) command opens a command in the default system editor for editing, then presents
the edited command in MySQL Shell for execution. The command can also be invoked using the key
combination Ctrl-X Ctrl-E. For details, see Section 5.4, “Editing Code”.

System Command

The \system (\!) command runs the operating system command that you specify as an argument to the
command, then displays the output from the command in MySQL Shell. MySQL Shell returns an error if it
was unable to execute the command. The output from the command is returned as given by the operating
system, and is not processed by MySQL Shell's JSON wrapping function or by any external pager tool that
you have specified to display output.

14

Chapter 4 Getting Started with MySQL Shell

Table of Contents
4.1 Starting MySQL Shell ... 15
4.2 MySQL Shell Sessions ... 15

4.2.1 Creating the Session Global Object While Starting MySQL Shell 17
4.2.2 Creating the Session Global Object After Starting MySQL Shell 18
4.2.3 Scripting Sessions in JavaScript and Python Mode .. 18

4.3 MySQL Shell Connections .. 20
4.3.1 Connecting using Individual Parameters .. 21
4.3.2 Connecting using Unix Sockets and Windows Named Pipes .. 23
4.3.3 Using Encrypted Connections ... 24
4.3.4 Using LDAP and Kerberos Authentication ... 25
4.3.5 Using Compressed Connections ... 28

4.4 Pluggable Password Store .. 31
4.4.1 Pluggable Password Configuration Options ... 32
4.4.2 Working with Credentials .. 33

4.5 MySQL Shell Global Objects ... 34
4.6 Using a Pager .. 34

This section describes how to get started with MySQL Shell, explaining how to connect to a MySQL server
instance, and how to choose a session type.

4.1 Starting MySQL Shell

When MySQL Shell is installed you have the mysqlsh command available. Open a terminal window
(command prompt on Windows) and start MySQL Shell by issuing:

> mysqlsh

This opens MySQL Shell without connecting to a server, by default in JavaScript mode. You change mode
using the \sql, \py, and \js commands.

4.2 MySQL Shell Sessions

In MySQL Shell, connections to MySQL Server instances are handled by a session object. The following
types of session object are available:

• Session: Use this session object type for new application development to communicate with MySQL
Server instances where X Protocol is available. X Protocol offers the best integration with MySQL
Server. For X Protocol to be available, X Plugin must be installed and enabled on the MySQL Server
instance, which it is by default from MySQL 8.0. In MySQL 5.7, X Plugin must be installed manually. See
X Plugin for details. X Plugin listens to the port specified by mysqlx_port, which defaults to 33060, so
specify this port with connections using a Session.

• ClassicSession: Use this session object type to interact with MySQL Server instances that do not
have X Protocol available. This object is intended for running SQL against servers using classic MySQL
protocol. The development API available for this kind of session is very limited. For example, there
are none of the X DevAPI CRUD operations, no collection handling, and binding is not supported. For
development, prefer Session objects whenever possible.

15

https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_port

MySQL Shell Sessions

Important

ClassicSession is specific to MySQL Shell and cannot be used with other
implementations of X DevAPI, such as MySQL Connectors.

When you make the first connection to a MySQL Server instance, which can be done either while starting
MySQL Shell or afterwards, a MySQL Shell global object named session is created to represent this
connection. This particular session object is global because once created, it can be used in all of the
MySQL Shell execution modes: SQL mode, JavaScript mode, and Python mode. The connection it
represents is therefore referred to as the global session. The variable session holds a reference to this
session object, and can be used in MySQL Shell in JavaScript mode and Python mode to work with the
connection.

The session global object can be either the Session type of session object or the ClassicSession
type of session object, according to the protocol you select when making the connection to a MySQL
Server instance. You can choose the protocol, and therefore the session object type, using a command
option, or specify it as part of the connection data that you provide. To see information about the current
global session, issue:

mysql-js []> session

<ClassicSession:user@example.com:3330>

When the global session is connected, this shows the session object type and the address of the MySQL
Server instance to which the global session is connected.

If you choose a protocol explicitly or indicate it implicitly when making a connection, MySQL Shell tries to
create the connection using that protocol, and returns an error if this fails. If your connection parameters
do not indicate the protocol, MySQL Shell first tries to make the connection using X Protocol (returning
the Session type of session object), and if this fails, tries to make the connection using classic MySQL
protocol (returning the ClassicSession type of session object).

To verify the results of your connection attempt, use MySQL Shell's \status command or the
shell.status() method. These display the connection protocol and other information about the
connection represented by the session global object, or return “Not Connected” if the session global
object is not connected to a MySQL server. For example:

mysql-js []> shell.status()
MySQL Shell version 8.0.18

Session type: X Protocol
Connection Id: 198
Current schema:
Current user: user@example.com
SSL: Cipher in use: TLS_AES_256_GCM_SHA384 TLSv1.3
Using delimiter: ;
Server version: 8.0.18 MySQL Community Server - GPL
Protocol version: X Protocol
Client library: 8.0.18
Connection: TCP/IP
TCP port: 33060
Server characterset: utf8mb4
Schema characterset: utf8mb4
Client characterset: utf8mb4
Conn. characterset: utf8mb4
Compression: Enabled (zstd)
Uptime: 31 min 42.0000 sec

Threads: 8 Questions: 2622 Slow queries: 0 Opens: 298 Flush tables: 3 Open tables: 217 Queries per second avg: 1.378

16

Creating the Session Global Object While Starting MySQL Shell

This section focuses on explaining the session objects that represent connections to MySQL Server
instances, and the session global object. For full instructions and examples for each of the ways
mentioned in this section to connect to MySQL Server instances, and the other options that are available
for the connections, see Section 4.3, “MySQL Shell Connections”.

4.2.1 Creating the Session Global Object While Starting MySQL Shell

When you start MySQL Shell from the command line, you can specify connection parameters using
separate command options for each value, such as the user name, host, and port. For instructions and
examples to start MySQL Shell and connect to a MySQL Server instance in this way, see Section 4.3.1,
“Connecting using Individual Parameters”. When you use this connection method, you can add one of
these options to choose the type of session object to create at startup to be the session global object:

• --mysqlx (--mx) creates a Session object, which connects to the MySQL Server instance using X
Protocol.

• --mysql (--mc) creates a ClassicSession object, which connects to the MySQL Server instance
using classic MySQL protocol.

For example, this command starts MySQL Shell and establishes an X Protocol connection to a local
MySQL Server instance listening at port 33060:

$> mysqlsh --mysqlx -u user -h localhost -P 33060

If you are starting MySQL Shell in SQL mode, the --sqlx and --sqlc options include a choice of
session object type, so you can specify one of these instead to make MySQL Shell use X Protocol or
classic MySQL protocol for the connection. For a reference for all the mysqlsh command line options, see
Section A.1, “mysqlsh — The MySQL Shell”.

As an alternative to specifying the connection parameters using individual options, you can specify them
using a URI-like connection string. You can pass in this string when you start MySQL Shell from the
command line, with or without using the optional --uri command option. When you use this connection
method, you can include the scheme element at the start of the URI-like connection string to select the
type of session object to create. mysqlx creates a Session object using X Protocol, or mysql creates a
ClassicSession object using classic MySQL protocol. For example, either of these commands uses a
URI-like connection string to start MySQL Shell and create a classic MySQL protocol connection to a local
MySQL Server instance listening at port 3306:

$> mysqlsh --uri mysql://user@localhost:3306
$> mysqlsh mysql://user@localhost:3306

You can also specify the connection protocol as an option rather than as part of the URI-like connection
string, for example:

$> mysqlsh --mysql --uri user@localhost:3306

For instructions and examples to connect to a MySQL Server instance in this way, see Connecting to the
Server Using URI-Like Strings or Key-Value Pairs.

You may omit the connection protocol and let MySQL Shell automatically detect it based on your
other connection parameters. For example, if you specify port 33060 and there is no option stating the
connection protocol, MySQL Shell attempts to make the connection using X Protocol. If your connection
parameters do not indicate the protocol, MySQL Shell first tries to make the connection using X Protocol,
and if this fails, tries to make the connection using classic MySQL protocol.

17

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Creating the Session Global Object After Starting MySQL Shell

4.2.2 Creating the Session Global Object After Starting MySQL Shell

If you started MySQL Shell without connecting to a MySQL Server instance, you can use MySQL Shell's
\connect command or the shell.connect() method to initiate a connection and create the session
global object. Alternatively, the shell.getSession() method returns the session global object.

MySQL Shell's \connect command is used with a URI-like connection string, as described above and in
Connecting to the Server Using URI-Like Strings or Key-Value Pairs. You can include the scheme element
at the start of the URI-like connection string to select the type of session object to create, for example:

mysql-js> \connect mysqlx://user@localhost:33060

Alternatively, you can omit the scheme element and use the command's --mysqlx (--mx) option to
create a Session object using X Protocol, or --mysql (--mc) to create a ClassicSession object using
classic MySQL protocol. For example:

mysql-js> \connect --mysqlx user@localhost:33060

The shell.connect() method can be used in MySQL Shell as an alternative to the \connect
command to create the session global object. This connection method can use a URI-like connection
string, with the selected protocol specified as the scheme element. For example:

mysql-js> shell.connect('mysqlx://user@localhost:33060')

With the shell.connect() method, you can also specify the connection parameters using key-value
pairs, supplied as a JSON object in JavaScript or as a dictionary in Python. The selected protocol (mysqlx
or mysql) is specified as the value for the scheme key. For example:

mysql-js> shell.connect({scheme:'mysqlx', user:'user', host:'localhost', port:33060})

For instructions and examples to connect to a MySQL Server instance in these ways, see Connecting to
the Server Using URI-Like Strings or Key-Value Pairs.

You may omit the connection protocol and let MySQL Shell automatically detect it based on your other
connection parameters, such as specifying the default port for the protocol. To verify the protocol that was
used for a connection, use MySQL Shell's \status command or the shell.status() method.

If you use the \connect command or the shell.connect() method to create a new connection when
the session global object already exists (either created during startup or afterwards), MySQL Shell closes
the existing connection represented by the session global object. This is the case even if you assign
the new session object created by the shell.connect() method to a different variable. The value of
the session global object (referenced by the session variable) is still updated with the new connection
details. If you want to have multiple concurrent connections available, create these using the alternative
functions described in Section 4.2.3, “Scripting Sessions in JavaScript and Python Mode”.

4.2.3 Scripting Sessions in JavaScript and Python Mode

You can use functions available in JavaScript and Python mode to create multiple session objects of
your chosen types and assign them to variables. These session objects let you establish and manage
concurrent connections to work with multiple MySQL Server instances, or with the same instance in
multiple ways, from a single MySQL Shell instance.

Functions to create session objects are available in the mysqlx and mysql JavaScript and Python
modules. These modules must be imported before use, which is done automatically when MySQL Shell
is used in interactive mode. The function mysqlx.getSession() opens an X Protocol connection to a

18

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Scripting Sessions in JavaScript and Python Mode

MySQL Server instance using the specified connection data, and returns a Session object to represent
the connection. The functions mysql.getClassicSession() and mysql.getSession() open a
classic MySQL protocol connection to a MySQL Server instance using the specified connection data,
and return a ClassicSession object to represent the connection. With these functions, the connection
protocol that MySQL Shell uses is built into the function rather than being selected using a separate option,
so you must choose the appropriate function to match the correct protocol for the port.

From MySQL Shell 8.0.20, MySQL Shell provides its own openSession() method in the shell global
object, which can be used in either JavaScript or Python mode. shell.openSession() works with both
X Protocol and classic MySQL protocol. You specify the connection protocol as part of the connection data,
or let MySQL Shell automatically detect it based on your other connection parameters (such as the default
port number for the protocol).

The connection data for all these functions can be specified as a URI-like connection string, or as
a dictionary of key-value pairs. You can access the returned session object using the variable to
which you assign it. This example shows how to open a classic MySQL protocol connection using the
mysql.getClassicSession() function, which returns a ClassicSession object to represent the
connection:

mysql-js> var s1 = mysql.getClassicSession('user@localhost:3306', 'password');
mysql-js> s1
<ClassicSession:user@localhost:3306>

This example shows how to use shell.openSession() in Python mode to open an X Protocol
connection with compression required for the connection. A Session object is returned:

mysql-py> s2 = shell.open_session('mysqlx://user@localhost:33060?compression=required', 'password')
mysql-py> s2
<Session:user@localhost:33060>

Session objects that you create in JavaScript mode using these functions can only be used in JavaScript
mode, and the same happens if the session object is created in Python mode. You cannot create multiple
session objects in SQL mode. Although you can only reference session objects using their assigned
variables in the mode where you created them, you can use the shell.setSession() method in any
mode to set as the session global object a session object that you have created and assigned to a
variable. For example:

mysql-js> var s3 = mysqlx.getSession('user@localhost:33060', 'password');
mysql-js> s3
<Session:user@localhost:33060>
mysql-js> shell.setSession(s3);
<Session:user@localhost:33060>
mysql-js> session
<Session:user@localhost:33060>
mysql-js> shell.status();
MySQL Shell version 8.0.18

Session type: X Protocol
Connection Id: 5
Current schema:
Current user: user@localhost
...
TCP port: 33060
...

The session object s3 is now available using the session global object, so the X Protocol connection it
represents can be accessed from any of MySQL Shell's modes: SQL mode, JavaScript mode, and Python
mode. Details of this connection can also now be displayed using the shell.status() method, which
only displays the details for the connection represented by the session global object. If the MySQL Shell

19

MySQL Shell Connections

instance has one or more open connections but none of them are set as the session global object, the
shell.status() method returns “Not Connected”.

A session object that you set using shell.setSession() replaces any existing session object that was
set as the session global object. If the replaced session object was originally created and assigned to
a variable using one of the mysqlx or mysql functions or shell.openSession(), it still exists and
its connection remains open. You can continue to use this connection in the MySQL Shell mode where
it was originally created, and you can make it into the session global object again at any time using
shell.setSession(). If the replaced session object was created with the shell.connect() method
and assigned to a variable, the same is true. If the replaced session object was created while starting
MySQL Shell, or using the \connect command, or using the shell.connect() method but without
assigning it to a variable, its connection is closed, and you must recreate the session object if you want to
use it again.

4.3 MySQL Shell Connections
MySQL Shell can connect to MySQL Server using both X Protocol and classic MySQL protocol. You can
specify the MySQL server instance to which MySQL Shell connects globally in the following ways:

• When you start MySQL Shell, using the command parameters. See Section 4.3.1, “Connecting using
Individual Parameters”.

• When MySQL Shell is running, using the \connect instance command. See Section 3.1, “MySQL
Shell Commands”.

• When running in Python or JavaScript mode, using the shell.connect() method.

These methods of connecting to a MySQL server instance create the global session, which is a
connection that can be used in all of the MySQL Shell execution modes: SQL mode, JavaScript mode,
and Python mode. A MySQL Shell global object named session represents this connection, and
the variable session holds a reference to it. You can also create multiple additional session objects
that represent other connections to MySQL server instances, by using the shell.openSession(),
mysqlx.getSession(), mysql.getSession(), or mysql.getClassicSession() function.
These connections can be used in the modes where you created them, and one of them at a time can be
assigned as MySQL Shell's global session so it can be used in all modes. For an explanation of session
objects, how to operate on the global session, and how to create and manage multiple connections from a
MySQL Shell instance, see Section 4.2, “MySQL Shell Sessions”.

All these different ways of connecting to a MySQL server instance support specifying the connection as
follows:

• Parameters specified with a URI-like string use a syntax such as myuser@example.com:3306/main-
schema. For the full syntax, see Connecting Using URI-Like Connection Strings.

• Parameters specified with key-value pairs use a syntax such as {user:'myuser',
host:'example.com', port:3306, schema:'main-schema'}. These key-value pairs are
supplied in language-natural constructs for the implementation. For example, you can supply connection
parameters using key-value pairs as a JSON object in JavaScript, or as a dictionary in Python. For the
full syntax, see Connecting Using Key-Value Pairs.

See Connecting to the Server Using URI-Like Strings or Key-Value Pairs for more information.

Important

Regardless of how you choose to connect it is important to understand how
passwords are handled by MySQL Shell. By default connections are assumed to

20

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-uri
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-key-value-pairs
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Connecting using Individual Parameters

require a password. The password (which has a maximum length of 128 characters)
is requested at the login prompt, and can be stored using Section 4.4, “Pluggable
Password Store”. If the user specified has a passwordless account, which is
insecure and not recommended, or if socket peer-credential authentication is in use
(for example when using Unix socket connections), you must explicitly specify that
no password is provided and the password prompt is not required. To do this, use
one of the following methods:

• If you are connecting using a URI-like connection string, place a : after the user
in the string but do not specify a password after it.

• If you are connecting using key-value pairs, provide an empty string using ''
after the password key.

• If you are connecting using individual parameters, either specify the --no-
password option, or specify the --password= option with an empty value.

If you do not specify parameters for a connection the following defaults are used:

• user defaults to the current system user name.

• host defaults to localhost.

• port defaults to the X Plugin port 33060 when using an X Protocol connection, and port 3306 when
using a classic MySQL protocol connection.

To configure the connection timeout use the connect-timeout connection parameter. The value of
connect-timeout must be a non-negative integer that defines a time frame in milliseconds. The timeout
default value is 10000 milliseconds, or 10 seconds. For example:

// Decrease the timeout to 2 seconds.
mysql-js> \connect user@example.com?connect-timeout=2000
// Increase the timeout to 20 seconds
mysql-js> \connect user@example.com?connect-timeout=20000

To disable the timeout set the value of connect-timeout to 0, meaning that the client waits until the
underlying socket times out, which is platform dependent.

Instead of a TCP connection, you can connect using a Unix socket file or a Windows named pipe. For
instructions, see Section 4.3.2, “Connecting using Unix Sockets and Windows Named Pipes”.

If the MySQL server instance supports encrypted connections, you can enable and configure the
connection to use encryption. For instructions, see Section 4.3.3, “Using Encrypted Connections”.

You can also request that the connection uses compression for all data sent between the MySQL Shell and
the MySQL server instance. For instructions, see Section 4.3.5, “Using Compressed Connections”.

If the connection to the server is lost, you can use the \reconnect command, which makes MySQL
Shell try several reconnection attempts for the current global session using the existing connection
parameters. The \reconnect command is specified without any parameters or options. If those attempts
are unsuccessful, you can make a fresh connection using the \connect command and specifying the
connection parameters.

4.3.1 Connecting using Individual Parameters

In addition to specifying connection parameters using a connection string, it is also possible to define the
connection data when starting MySQL Shell using separate command parameters for each value. For a full
reference of MySQL Shell command options see Section A.1, “mysqlsh — The MySQL Shell”.

21

Connecting using Individual Parameters

Use the following connection related parameters:

• --user (-u) value

• --host (-h) value

• --port (-P) value

• --schema or --database (-D) value

• --socket (-S)

The command options behave similarly to the options used with the mysql client described at Connecting
to the MySQL Server Using Command Options.

Use the following command options to control whether and how a password is provided for the connection:

• --password=password (-ppassword) with a value supplies a password (up to 128 characters) to be
used for the connection. With the long form --password=, you must use an equal sign and not a space
between the option and its value. With the short form -p, there must be no space between the option
and its value. If a space is used in either case, the value is not interpreted as a password and might be
interpreted as another connection parameter.

Specifying a password on the command line should be considered insecure. See End-User Guidelines
for Password Security. You can use an option file to avoid giving the password on the command line.

• --password with no value and no equal sign, or -p without a value, requests the password prompt.

• --no-password, or --password= with an empty value, specifies that the user is connecting without
a password. When connecting to the server, if the user has a passwordless account, which is insecure
and not recommended, or if socket peer-credential authentication is in use (for Unix socket connections),
you must use one of these methods to explicitly specify that no password is provided and the password
prompt is not required.

When parameters are specified in multiple ways, for example using both the --uri option and specifying
individual parameters such as --user, the following rules apply:

• If an argument is specified more than once the value of the last appearance is used.

• If both individual connection arguments and --uri are specified, the value of --uri is taken as the
base and the values of the individual arguments override the specific component from the base URI-like
string.

For example to override user from the URI-like string:

$> mysqlsh --uri user@localhost:33065 --user otheruser

Connections from MySQL Shell to a server can be encrypted, and can be compressed, if you request
these features and the server supports them. For instructions to establish an encrypted connection, see
Section 4.3.3, “Using Encrypted Connections”. For instructions to establish a compressed connection, see
Section 4.3.5, “Using Compressed Connections”.

The following examples show how to use command parameters to specify connections. Attempt to
establish an X Protocol connection with a specified user at port 33065:

$> mysqlsh --mysqlx -u user -h localhost -P 33065

Attempt to establish a classic MySQL protocol connection with a specified user, requesting compression
for the connection:

22

https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/password-security-user.html
https://dev.mysql.com/doc/refman/8.0/en/password-security-user.html

Connecting using Unix Sockets and Windows Named Pipes

$> mysqlsh --mysql -u user -h localhost -C

4.3.2 Connecting using Unix Sockets and Windows Named Pipes

On Unix, MySQL Shell connections default to using Unix sockets when the following conditions are met:

• A TCP port is not specified.

• A host name is not specified or it is equal to localhost.

• The --socket or -S option is specified, with or without a path to a socket file.

If you specify --socket with no value and no equal sign, or -S without a value, the default Unix socket file
for the protocol is used. If you specify a path to an alternative Unix socket file, that socket file is used.

If a host name is specified but it is not localhost, a TCP connection is established instead. In this case, if
a TCP port is not specified the default value of 3306 is used.

On Windows, for MySQL Shell connections using classic MySQL protocol, if you specify the host name as
a period (.), MySQL Shell connects using a named pipe.

• If you are connecting using a URI-like connection string, specify user@.

• If you are connecting using key-value pairs, specify {"host": "."}

• If you are connecting using individual parameters, specify --host=. or -h .

By default, the pipe name MySQL is used. You can specify an alternative named pipe using the --socket
option or as part of the URI-like connection string.

In URI-like strings, the path to a Unix socket file or Windows named pipe must be encoded, using either
percent encoding or by surrounding the path with parentheses. Parentheses eliminate the need to percent
encode characters such as the / directory separator character. If the path to a Unix socket file is included
in a URI-like string as part of the query string, the leading slash must be percent encoded, but if it replaces
the host name, the leading slash must not be percent encoded, as shown in the following examples:

mysql-js> \connect user@localhost?socket=%2Ftmp%2Fmysql.sock
mysql-js> \connect user@localhost?socket=(/tmp/mysql.sock)
mysql-js> \connect user@/tmp%2Fmysql.sock
mysql-js> \connect user@(/tmp/mysql.sock)

On Windows only, the named pipe must be prepended with the characters \\.\ as well as being either
encoded using percent encoding or surrounded with parentheses, as shown in the following examples:

(\\.\named:pipe)
\\.\named%3Apipe

Important

On Windows, if one or more MySQL Shell sessions are connected to a MySQL
Server instance using a named pipe and you need to shut down the server, you
must first close the MySQL Shell sessions. Sessions that are still connected in
this way can cause the server to hang during the shutdown procedure. If this
does happen, exit MySQL Shell and the server will continue with the shutdown
procedure.

For more information on connecting with Unix socket files and Windows named pipes, see Connecting to
the MySQL Server Using Command Options and Connecting to the Server Using URI-Like Strings or Key-
Value Pairs.

23

https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Using Encrypted Connections

4.3.3 Using Encrypted Connections

Using encrypted connections is possible when connecting to a TLS (sometimes referred to as SSL)
enabled MySQL server. Much of the configuration of MySQL Shell is based on the options used by MySQL
server, see Using Encrypted Connections for more information.

To configure an encrypted connection at startup of MySQL Shell, use the following command options:

• --ssl : Deprecated, to be removed in a future version. Use --ssl-mode. This option enables or
disables encrypted connections.

• --ssl-mode : This option specifies the desired security state of the connection to the server.

• --ssl-ca=file_name: The path to a file in PEM format that contains a list of trusted SSL Certificate
Authorities.

• --ssl-capath=dir_name: The path to a directory that contains trusted SSL Certificate Authority
certificates in PEM format.

• --ssl-cert=file_name: The name of the SSL certificate file in PEM format to use for establishing an
encrypted connection.

• --ssl-cipher=name: The name of the SSL cipher to use for establishing an encrypted connection.

• --ssl-key=file_name: The name of the SSL key file in PEM format to use for establishing an
encrypted connection.

• --ssl-crl=name: The path to a file containing certificate revocation lists in PEM format.

• --ssl-crlpath=dir_name: The path to a directory that contains files containing certificate revocation
lists in PEM format.

• --tls-version=version: The TLS protocols permitted for encrypted connections, specified as a
comma separated list. For example --tls-version=TLSv1.2,TLSv1.3. The TLSv1 and TLSv1.1
connection protocols are now deprecated, and from MySQL Shell 8.0.25, if you specify either of these, a
warning is returned.

• --tls-ciphersuites=suites: The TLS cipher suites permitted for encrypted connections,
specified as a colon separated list of TLS cipher suite names. For example --tls-
ciphersuites=TLS_DHE_PSK_WITH_AES_128_GCM_SHA256:TLS_CHACHA20_POLY1305_SHA256.
Added in version 8.0.18.

Alternatively, the SSL options can be encoded as part of a URI-like connection string as part of the query
element. The available SSL options are the same as those listed above, but written without the preceding
hyphens. For example, ssl-ca is the equivalent of --ssl-ca.

Paths specified in a URI-like string must be percent encoded, for example:

ssluser@127.0.0.1?ssl-ca%3D%2Froot%2Fclientcert%2Fca-cert.pem%26ssl-cert%3D%2Fro\
ot%2Fclientcert%2Fclient-cert.pem%26ssl-key%3D%2Froot%2Fclientcert%2Fclient-key
.pem

See Connecting to the Server Using URI-Like Strings or Key-Value Pairs for more information.

To establish an encrypted connection for a scripting session in JavaScript or Python mode, set the SSL
information in the connectionData dictionary. For example:

mysql-js> var session=mysqlx.getSession({host: 'localhost',

24

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crlpath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Using LDAP and Kerberos Authentication

 user: 'root',
 password: 'password',
 ssl_ca: "path_to_ca_file",
 ssl_cert: "path_to_cert_file",
 ssl_key: "path_to_key_file"});

Sessions created using mysqlx.getSession(), mysql.getSession(), or
mysql.getClassicSession() use ssl-mode=REQUIRED as the default if no ssl-mode is provided,
and neither ssl-ca nor ssl-capath is provided. If no ssl-mode is provided and any of ssl-ca or ssl-
capath is provided, created sessions default to ssl-mode=VERIFY_CA.

See Connecting Using Key-Value Pairs for more information.

4.3.4 Using LDAP and Kerberos Authentication

MySQL Enterprise Edition supports authentication methods that enable MySQL Server to use LDAP
(Lightweight Directory Access Protocol), LDAP with Kerberos, or native Kerberos to authenticate MySQL
users. MySQL Shell 8.0.27 supports both LDAP and Kerberos authentication for classic MySQL protocol
connections. This functionality is not supported for X Protocol connections.

The sections that follow describe how to enable connections to MySQL server using LDAP and Kerberos
authentication. It is assumed that the server is running with the server-side plugin enabled and that the
client-side plugin is available on the client host.

• Simple LDAP Authentication

• SASL-Based LDAP Authentication

• GSSAPI/Kerberos Authentication Through LDAP SASL

• Kerberos Authentication

Simple LDAP Authentication

MySQL and LDAP work together to fetch user, credential, and group information. For an overview of the
simple LDAP authentication process, see How LDAP Authentication of MySQL Users Works. To use
simple LDAP authentication with MySQL Shell, the following conditions must be satisfied:

• A user account must be created on the MySQL server that is set up to communicate with the LDAP
server. The MySQL user must be identified with the authentication_ldap_simple server-side
plugin and optionally the LDAP user distinguished name (DN). For example:

CREATE USER 'admin'@'localhost'
 IDENTIFIED WITH authentication_ldap_simple
 BY 'uid=admin,ou=People,dc=my-domain,dc=com';

The BY clause in this example indicates which LDAP entry the MySQL account authenticates against.
Specific attributes of the DN may vary depending on the LDAP server.

• MySQL Shell uses the client-side mysql_clear_password plugin, which sends the password to the
server as cleartext. No password hashing or encryption is used, so a secure connection (using SSL or
sockets) between the MySQL Shell and server is required. For more information, see Section 4.3.3,
“Using Encrypted Connections” or Section 4.3.2, “Connecting using Unix Sockets and Windows Named
Pipes”.

• To minimize the security risk, the mysql_clear_password plugin must be enabled explicitly by
setting the value of the --auth-method command-line option to clear_text_password on a secure

25

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-key-value-pairs
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-process

Using LDAP and Kerberos Authentication

connection. For example, the following command permits you to establish a global session for the user
created in the previous example:

$> mysqlsh admin@localhost:3308 --auth-method=clear_text_password
Please provide the password for 'admin@localhost:3308': admin_password (admin LDAP password)

SASL-Based LDAP Authentication

MySQL Server is able to accept connections from users defined outside the MySQL grant tables in
LDAP directories. The client-side and server-side SASL LDAP plugins use SASL messages for secure
transmission of credentials within the LDAP protocol (see Using LDAP Pluggable Authentication).

For SASL-based authentication, the MySQL user must be identified with the
authentication_ldap_sasl server-side plugin and optionally an LDAP entry the MySQL account
authenticates against. For example:

CREATE USER 'sammy'@'localhost'
 IDENTIFIED WITH authentication_ldap_sasl
 BY 'uid=sammy_ldap,ou=People,dc=my-domain,dc=com';

The authentication_ldap_sasl_client client-side plugin ships with the MySQL Server packages
rather than being built into the libmysqlclient client library. MySQL Shell provides the persistent
connection option shell.options.mysqlPluginDir that enables you to define where the required
plugin is located. Alternatively, you can override the persistent setting by specifying a path with the non-
persistent command-line option --mysql-plugin-dir. For example, the following command permits you
to establish a global session on a Linux host for the user created in the previous example:

$> mysqlsh sammy@localhost:3308 --mysql-plugin-dir="/usr/local/mysql/lib/plugin"
Please provide the password for 'sammy@localhost:3308': sammy_password (sammy_ldap LDAP password)

For additional usage examples, see LDAP Authentication with Proxying and LDAP Authentication Group
Preference and Mapping Specification.

GSSAPI/Kerberos Authentication Through LDAP SASL

MySQL Shell also supports Kerberos authentication through LDAP SASL. Using the Generic Security
Service Application Program Interface (GSSAPI) security abstraction interface, a connection of this type
authenticates to Kerberos to obtain service credentials, then uses those credentials in turn to enable
secure access to other services. GSSAPI/Kerberos is supported as an LDAP authentication method for
MySQL servers and MySQL Shell on Linux only.

A GSSAPI library and Kerberos services must be available to MySQL Server for the connection to
succeed. See The GSSAPI/Kerberos Authentication Method for server-side configuration information.

The following general example creates proxy user named lucy@MYSQL.LOCAL that assumes the
privileges of the proxied user named proxied_krb_usr. It presumes the realm domain MYSQL.LOCAL is
configured in the /etc/krb5.conf Kerberos configuration file.

Note

The user part of the account name includes the principal domain, so
'lucy@MYSQL.LOCAL' is quoted as a single value for LDAP Kerberos
authentication.

CREATE USER 'lucy@MYSQL.LOCAL'
 IDENTIFIED WITH authentication_ldap_sasl
 BY '#krb_grp=proxied_krb_user';
CREATE USER 'proxied_krb_user';
GRANT ALL PRIVILEGES ON my_db.* TO 'proxied_krb_user';

26

https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage-proxying
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage-group-mapping
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage-group-mapping
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-gssapi

Using LDAP and Kerberos Authentication

GRANT PROXY on 'proxied_krb_user' TO 'lucy@MYSQL.LOCAL';

The following command permits you to establish a global session on a Linux host for the user created in
the previous example. You must specify the location of the server's plugin directory, either as the persistent
shell.options.mysqlPluginDir connection option or as a non-persistent command option, for
example:

$> mysqlsh lucy%40MYSQL.LOCAL:password@localhost:3308/my_db
--mysql-plugin-dir="/usr/local/mysql/lib/plugin"

In this example, percent encoding (%40) replaces the reserved @ character in the
principal name and password is the value set for the MySQL Server variable
authentication_ldap_sasl_bind_root_pwd. For the list of server variables related to Kerberos
authentication through LDAP SASL, see Configure the Server-Side SASL LDAP Authentication Plugin for
GSSAPI/Kerberos.

Prior to invoking MySQL Shell, you can obtain and cache a ticket-granting ticket from the key distribution
center independently of MySQL. In this case, invoke MySQL Shell without specifying a user-name or
password option:

$> mysqlsh localhost:3308/my_db --auth-method=authentication_ldap_sasl_client
--mysql-plugin-dir="/usr/local/mysql/lib/plugin"

Specifying the --auth-method=authentication_ldap_sasl_client option is mandatory when
user credentials are omitted.

Kerberos Authentication

MySQL Shell is capable of establishing connections for accounts that use the
authentication_kerberos server-side authentication plugin, provided that the correct Kerberos tickets
are available or can be obtained from Kerberos. As of MySQL Enterprise Edition 8.0.27, that capability is
available on hosts running Linux and Windows (version 8.0.26 supports Linux only). For detailed setup
information, see Kerberos Pluggable Authentication.

Kerberos authentication can combine the user name (for example, lucy) and the realm domain specified
in the user account (for example, MYSQL.LOCAL) to construct the user principal name (UPN), such as
lucy@MYSQL.LOCAL. To create a MySQL account that corresponds to the UPN lucy@MYSQL.LOCAL,
use this statement:

CREATE USER 'lucy'
 IDENTIFIED WITH authentication_kerberos
 BY 'MYSQL.LOCAL';

The client-side plugin uses the UPN and password to obtain a ticket-granting ticket (TGT), uses the TGT to
obtain a MySQL service ticket (ST), and uses the ST to authenticate to the MySQL server.

The following command permits you to establish a global session on a Linux host for the user created in
the previous example. You must specify the location of the server's plugin directory, either as the persistent
shell.options.mysqlPluginDir connection option or as a non-persistent command option, for
example:

$> mysqlsh lucy:3308 --mysql-plugin-dir="/usr/local/mysql/lib/plugin"
Please provide the password for 'lucy@localhost:3308': UPN_password

Prior to invoking MySQL Shell, you can obtain and cache a TGT from the key distribution center
independently of MySQL. In this case, invoke MySQL Shell without specifying a user-name or password
option:

$> mysqlsh localhost:3308 --auth-method=authentication_kerberos_client
--mysql-plugin-dir="/usr/local/mysql/lib/plugin"

27

https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-gssapi-ldap-setup
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-gssapi-ldap-setup
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html

Using Compressed Connections

Specifying the --auth-method=authentication_kerberos_client option is mandatory when user
credentials are omitted.

4.3.5 Using Compressed Connections

From MySQL Shell 8.0.14, you can request compression for MySQL Shell connections that use classic
MySQL protocol, and, from MySQL Shell 8.0.20, also for MySQL Shell connections that use X Protocol.
When compression is requested for a session, if the server supports compression and can agree a
compression algorithm with MySQL Shell, all information sent between the client and the server is
compressed. Compression is also applied if requested to connections used by a MySQL Shell utility, such
as the upgrade checker utility.

For X Protocol connections, the default is that compression is requested, and uncompressed connections
are allowed if the negotiations for a compressed connection do not succeed. For classic MySQL protocol
connections, the default is that compression is disabled. After the connection has been made, the MySQL
Shell \status command shows whether or not compression is in use for a session. The command
displays a Compression: line that says Disabled or Enabled to indicate whether the connection is
compressed. If compression is enabled, the compression algorithm in use is also displayed.

You can set the defaultCompress MySQL Shell configuration option to request compression for every
global session. Because the default for X Protocol connections is that compression is requested where the
MySQL Shell release supports this, this configuration option only has an effect for classic MySQL protocol
connections.

For more information on how connection compression operates for X Protocol connections, see
Connection Compression with X Plugin. For more information on how connection compression operates for
classic MySQL protocol connections, and on the compression settings and capabilities of a MySQL Server
instance, see Connection Compression Control.

4.3.5.1 Compression Control For MySQL Shell 8.0.20 And Later

From MySQL Shell 8.0.20, for X Protocol connections and classic MySQL protocol connections, whenever
you create a session object to manage a connection to a MySQL Server instance, you can specify whether
compression is required, preferred, or disabled for that connection.

• required requests a compressed connection from the server, and the connection fails if the server
does not support compression or cannot agree with MySQL Shell on a compression protocol.

• preferred requests a compressed connection from the server, and falls back to an uncompressed
connection if if the server does not support compression or cannot agree with MySQL Shell on a
compression protocol. This is the default for X Protocol connections.

• disabled requests an uncompressed connection, and the connection fails if the server only permits
compressed connections. This is the default for classic MySQL protocol connections.

From MySQL Shell 8.0.20, you can also choose which compression algorithms are allowed for the
connection. By default, MySQL Shell proposes the zlib, LZ4, and zstd algorithms to the server for X
Protocol connections, and the zlib and zstd algorithms for classic MySQL protocol connections (which
do not support the LZ4 algorithm). You can specify any combination of these algorithms. The order in
which you specify the compression algorithms is the order of preference in which MySQL Shell proposes
them, but the server might not be influenced by this preference, depending on the protocol and the server
configuration.

Specifying any compression algorithm or combination of them automatically requests compression for the
connection, so you can do that instead of using a separate parameter to specify whether compression is

28

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html

Using Compressed Connections

required, preferred, or disabled. With this method of connection compression control, you indicate whether
compression is required or preferred by adding the option uncompressed (which allows uncompressed
connections) to the list of compression algorithms. If you do include uncompressed, compression is
preferred, and if you do not include it, compression is required. You can also pass in uncompressed on
its own to specify that compression is disabled. If you specify in a separate parameter that compression
is required, preferred, or disabled, this takes precedence over using uncompressed in the list of
compression algorithms.

You can also specify a numeric compression level for the connection, which applies to any compression
algorithm for X Protocol connections, or to the zstd algorithm only on classic MySQL protocol connections.
For X Protocol connections, if the specified compression level is not acceptable to the server for the
algorithm that is eventually selected, the server chooses an appropriate setting according to the behaviors
listed in Connection Compression with X Plugin. For example, if MySQL Shell requests a compression
level of 7 for the zlib algorithm, and the server's mysqlx_deflate_max_client_compression_level
system variable (which limits the maximum compression level for deflate, or zlib, compression) is set to the
default of 5, the server uses the highest permitted compression level of 5.

If the MySQL server instance does not support connection compression for the protocol (which is the
case before MySQL 8.0.19 for X Protocol connections), or if it supports connection compression but does
not support specifying connection algorithms and a compression level, MySQL Shell establishes the
connection without specifying the unsupported parameters.

To request compression for a connection from MySQL Shell 8.0.20, use one of the following methods:

• If you are starting MySQL Shell from the command line and specifying connection parameters using
separate command options, use the --compress (-C) option, specifying whether compression is
required, preferred, or disabled for the connection. For example:

$> mysqlsh --mysqlx -u user -h localhost -C required

The --compress (-C) option is compatible with earlier releases of MySQL Shell (back to MySQL
8.0.14) and still accepts the boolean settings from those releases. From MySQL Shell 8.0.20, if you
specify just --compress (-C) without a parameter, compression is required for the connection.

The above example for an X Protocol connection proposes the zlib, LZ4, and zstd algorithms to the
server in that order of preference. If you prefer an alternative combination of compression algorithms,
you can specify this by using the --compression-algorithms option to specify a string with a
comma-separated list of permitted algorithms. For X Protocol connections, you can use zlib, lz4, and
zstd in any combination and order of preference. For classic MySQL protocol connections, you can use
zlib and zstd in any combination and order of preference. The following example for a classic MySQL
protocol connection allows only the zstd algorithm:

$> mysqlsh --mysql -u user -h localhost -C preferred --compression-algorithms=zstd

You can also use just --compression-algorithms without the --compress (-C) option to
request compression. In this case, add uncompressed to the list of algorithms if you want to allow
uncompressed connections, or omit it if you do not want to allow them. This style of connection
compression control is compatible with other MySQL clients such as mysql and mysqlbinlog. The
following example for a classic MySQL protocol connection has the same effect as the example above
where preferred is specified as a separate option, that is, to propose compression with the zstd
algorithm but fall back to an uncompressed connection:

$> mysqlsh --mysql -u user -h localhost --compression-algorithms=zstd,uncompressed

You can configure the compression level using the --compression-level or --zstd-
compression-level options, which are validated for classic MySQL protocol connections, but not
for X Protocol connections. --compression-level specifies an integer for the compression level

29

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_deflate_max_client_compression_level

Using Compressed Connections

for any algorithm for X Protocol connections, or for the zstd algorithm only on classic MySQL protocol
connections. --zstd-compression-level specifies an integer from 1 to 22 for the compression level
for the zstd algorithm, and is compatible with other MySQL clients such as mysql and mysqlbinlog.
For example, these connection parameters for an X Protocol connection specify that compression is
required for the global session and must use the LZ4 or zstd algorithm, with a requested compression
level of 5:

$> mysqlsh --mysqlx -u user -h localhost -C required --compression-algorithms=lz4,zstd --compression-level=5

• If you are using a URI-like connection string to specify connection parameters, either from the
command line, or with MySQL Shell's \connect command, or with the shell.connect(),
shell.openSession(), mysqlx.getSession(), mysql.getSession(), or
mysql.getClassicSession() function, use the compression parameter in the query string to
specify whether compression is required, preferred, or disabled. For example:

mysql-js> \connect user@example.com?compression=preferred

$> mysqlsh mysqlx://user@localhost:33060?compression=disabled

Select compression algorithms using the compression-algorithms parameter, and a compression
level using the compression-level parameter, as for the command line options. (There is no
zstd-specific compression level parameter for a URI-like connection string.) You can also use the
compression-algorithms parameter without the compression parameter, including or omitting
the uncompressed option to allow or disallow uncompressed connections. For example, both these
sets of connection parameters specify that compression is preferred but uncompressed connections are
allowed, the zlib and zstd algorithms are acceptable, and a compression level of 4 should be used:

mysql-js> \connect user@example.com:33060?compression=preferred&compression-algorithms=zlib,zstd&compression-level=4

mysql-js> \connect user@example.com:33060?compression-algorithms=zlib,zstd,uncompressed&compression-level=4

• If you are using key-value pairs to specify connection parameters, either with MySQL Shell's \connect
command or with the shell.connect(), shell.openSession(), mysqlx.getSession(),
mysql.getSession(), or mysql.getClassicSession() function, use the compression
parameter in the dictionary of options to specify whether compression is required, preferred, or disabled.
For example:

mysql-js> var s1=mysqlx.getSession({host: 'localhost',
 user: 'root',
 password: 'password',
 compression: 'required'});

Select compression algorithms using the compression-algorithms parameter, and a compression
level using the compression-level parameter, as for the command line and URI-like connection
string methods. (There is no zstd-specific compression level parameter for key-value pairs.) You can
also use the compression-algorithms parameter without the compression parameter, including or
omitting the uncompressed option to allow or disallow uncompressed connections.

4.3.5.2 Compression Control For MySQL Shell 8.0.14 Through 8.0.19

In releases from MySQL Shell 8.0.14 through 8.0.19, compression can be requested only for connections
that use classic MySQL protocol. The default is that compression is not requested. Compression in these
releases uses the zlib compression algorithm. You cannot require compression in these releases, so if
compression is not supported by the server, the session falls back to an uncompressed connection.

In these MySQL Shell releases, compression control is limited to enabling (by specifying true) or
disabling (by specifying false) compression for a connection. If you use a MySQL Shell release with this
compression control to connect to a server instance at MySQL 8.0.18 or later, where client requests for

30

Pluggable Password Store

compression algorithms are supported, enabling compression is equivalent to proposing the algorithm set
zlib,uncompressed.

MySQL Shell cannot request compression in releases before 8.0.14.

To request compression for a connection in MySQL Shell 8.0.14 through 8.0.19, use one of the following
methods:

• If you are starting MySQL Shell from the command line and specifying connection parameters using
separate command options, use the --compress (-C) option, for example:

$> mysqlsh --mysql -u user -h localhost -C

• If you are using a URI-like connection string to specify connection parameters, either from the command
line, or with MySQL Shell's \connect command, or with the shell.connect() method, use the
compression=true parameter in the query string:

mysql-js> \connect user@example.com?compression=true

$> mysqlsh mysql://user@localhost:3306?compression=true

• If you are using key-value pairs to specify connection parameters, either with MySQL Shell's \connect
command or with the mysql.getClassicSession() method, use the compression parameter in
the dictionary of options:

mysql-js> var s1=mysql.getClassicSession({host: 'localhost',
 user: 'root',
 password: 'password',
 compression: 'true'});

4.4 Pluggable Password Store
To make working with MySQL Shell more fluent and secure you can persist the password for a server
connection using a secret store, such as a keychain. You enter the password for a connection interactively
and it is stored with the server URL as credentials for the connection. For example:

mysql-js> \connect user@localhost:3310
Creating a session to 'user@localhost:3310'
Please provide the password for 'user@localhost:3310': ********
Save password for 'user@localhost:3310'? [Y]es/[N]o/Ne[v]er (default No): y

Once the password for a server URL is stored, whenever MySQL Shell opens a session it retrieves the
password from the configured Secret Store Helper to log in to the server without having to enter the
password interactively. The same holds for a script executed by MySQL Shell. If no Secret Store Helper is
configured the password is requested interactively.

Important

MySQL Shell only persists the server URL and password through the means of a
Secret Store and does not persist the password on its own.

Passwords are only persisted when they are entered manually. If a password is
provided using either a server URI-like connection string or at the command line
when running mysqlsh it is not persisted.

The maximum password length that is accepted for connecting to MySQL Shell is
128 characters.

MySQL Shell provides built-in support for the following Secret Stores:

31

Pluggable Password Configuration Options

• MySQL login-path, available on all platforms supported by the MySQL server (as long as MySQL client
package is installed), and offers persistent storage. See mysql_config_editor — MySQL Configuration
Utility.

• macOS keychain, see here.

• Windows API, see here.

When MySQL Shell is running in interactive mode, password retrieval is performed whenever a new
session is initiated and the user is going to be prompted for a password. Before prompting, the Secret
Store Helper is queried for a password using the session's URL. If a match is found this password is used
to open the session. If the retrieved password is invalid, a message is added to the log, the password is
erased from the Secret Store and MySQL Shell prompts you for a password.

If MySQL Shell is running in noninteractive mode (for example --no-wizard was used), password
retrieval is performed the same way as in interactive mode. But in this case, if a valid password is not
found by the Secret Store Helper, MySQL Shell tries to open a session without a password.

The password for a server URL can be stored whenever a successful connection to a MySQL
server is made and the password was not retrieved by the Secret Store Helper. The decision
to store the password is made based on the credentialStore.savePasswords and
credentialStore.excludeFilters described here.

Automatic password storage and retrieval is performed when:

• mysqlsh is invoked with any connection options, when establishing the first session

• you use the built-in \connect command

• you use the shell.connect() method

• you use any AdminAPI methods that require a connection

4.4.1 Pluggable Password Configuration Options

To configure the pluggable password store, use the shell.options interface, see Section 13.4,
“Configuring MySQL Shell Options” . The following options configure the pluggable password store.

shell.options.credentialStore.helper = "login-path"

A string which specifies the Secret Store Helper used to store and retrieve the passwords. By default, this
option is set to a special value default which identifies the default helper on the current platform. Can be
set to any of the values returned by shell.listCredentialHelpers() method. If this value is set to
invalid value or an unknown Helper, an exception is raised. If an invalid value is detected during the startup
of mysqlsh, an error is displayed and storage and retrieval of passwords is disabled. To disable automatic
storage and retrieval of passwords, set this option to the special value <disabled>, for example by
issuing:

shell.options.set("credentialStore.helper", "<disabled>")

When this option is disabled, usage of all of the credential store MySQL Shell methods discussed here
results in an exception.

shell.options.credentialStore.savePasswords = "value"

A string which controls automatic storage of passwords. Valid values are:

• always - passwords are always stored, unless they are already available in the Secret Store or server
URL matches credentialStore.excludeFilters value.

32

https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html
https://developer.apple.com/documentation/security/keychain_services
https://docs.microsoft.com/en-us/windows/desktop/secauthn/credentials-management

Working with Credentials

• never - passwords are not stored.

• prompt - in interactive mode, if the server URL does not match the value of
shell.credentialStore.excludeFilters, you are prompted if the password should be stored.
The possible answers are yes to save this password, no to not save this password, never to not save
this password and to add the URL to credentialStore.excludeFilters. The modified value of
credentialStore.excludeFilters is not persisted, meaning it is in effect only until MySQL Shell is
restarted. If MySQL Shell is running in noninteractive mode (for example the --no-wizard option was
used), the credentialStore.savePasswords option is always never.

The default value for this option is prompt.

shell.options.credentialStore.excludeFilters = ["*@myserver.com:*"];

A list of strings specifying which server URLs should be excluded from automatic storage of passwords.
Each string can be either an explicit URL or a glob pattern. If a server URL which is about to be stored
matches any of the strings in this options, it is not stored. The valid wildcard characters are: * which
matches any number of any characters, and ? which matches a single character.

The default value for this option is an empty list.

4.4.2 Working with Credentials

The following functions enable you to work with the Pluggable Password store. You can list the available
Secret Store Helpers, as well as list, store, and retrieve credentials.

var list = shell.listCredentialHelpers();

Returns a list of strings, where each string is a name of a Secret Store Helper available on the current
platform. The special values default and <disabled> are not in the list, but are valid values for the
credentialStore.helper option.

shell.storeCredential(url[, password]);

Stores given credentials using the current Secret Store Helper (credentialStore.helper).
Throws an error if the store operation fails, for example if the current helper is invalid. If the URL
is already in the Secret Store, it is overwritten. This method ignores the current value of the
credentialStore.savePasswords and credentialStore.excludeFilters options. If a
password is not provided, MySQL Shell prompts for one.

shell.deleteCredential(url);

Deletes the credentials for the given URL using the current Secret Store Helper
(credentialStore.helper). Throws an error if the delete operation fails, for example the current helper
is invalid or there is no credential for the given URL.

shell.deleteAllCredentials();

Deletes all credentials managed by the current Secret Store Helper (credentialStore.helper).
Throws an error if the delete operation fails, for example the current Helper is invalid.

var list = shell.listCredentials();

Returns a list of all URLs of credentials stored by the current Secret Store Helper
(credentialStore.helper).

33

MySQL Shell Global Objects

4.5 MySQL Shell Global Objects
MySQL Shell includes a number of built-in global objects that exist in both JavaScript and Python modes.
The built-in MySQL Shell global objects are as follows:

• session is available when a global session is established, and represents the global session.

• dba provides access to InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet administration
functions using the AdminAPI. See Chapter 6, MySQL AdminAPI.

• cluster represents an InnoDB Cluster. Only populated if the --cluster option was provided when
MySQL Shell was started.

• rs represents an InnoDB ReplicaSet (added in version 8.0.20). Only populated if the --replicaset
option was provided when MySQL Shell was started.

• db is available when the global session was established using an X Protocol connection with a default
database specified, and represents that schema.

• shell provides access to various MySQL Shell functions, for example:

• shell.options provides functions to set and unset MySQL Shell preferences. See Section 13.4,
“Configuring MySQL Shell Options”.

• shell.reports provides built-in or user-defined MySQL Shell reports as functions, with the name of
the report as the function. See Section 10.1, “Reporting with MySQL Shell”.

• util provides various MySQL Shell tools, including the upgrade checker utility, the JSON import utility,
and the parallel table import utility. See Chapter 11, MySQL Shell Utilities.

Important

The names of the MySQL Shell global objects are reserved as global variables
and must not be used, for example, as names of variables. If you assign one of
the global variables you override the above functionality, and to restore it you must
restart MySQL Shell.

You can also create your own extension objects and register them as additional MySQL Shell global
objects to make them available in a global context. For instructions to do this, see Section 10.2, “Adding
Extension Objects to MySQL Shell”.

4.6 Using a Pager
You can configure MySQL Shell to use an external pager tool such as less or more. Once a pager
is configured, it is used by MySQL Shell to display the text from the online help or the results of SQL
operations. Use the following configuration possibilities:

• Configure the shell.options[pager] = "" MySQL Shell option, a string which specifies the
external command that displays the paged output. This string can can optionally contain command
line arguments which are passed to the external pager command. Correctness of the new value is not
checked. An empty string disables the pager.

Default value: empty string.

• Configure the PAGER environment variable, which overrides the default value of
shell.options["pager"] option. If shell.options["pager"] was persisted, it takes
precedence over the PAGER environment variable.

34

Using a Pager

The PAGER environment variable is commonly used on Unix systems in the same context as expected
by MySQL Shell, conflicts are not possible.

• Configure the --pager MySQL Shell option, which overrides the initial value of
shell.options["pager"] option even if it was persisted and PAGER environment variable is
configured.

• Use the \pager | \P command MySQL Shell command to set the value of shell.options["pager"]
option. If called with no arguments, restores the initial value of shell.options["pager"] option
(the one MySQL Shell had at startup. Strings can be marked with " characters or not. For example, to
configure the pager:

• pass in no command or an empty string to restore the initial pager

• pass in more to configure MySQL Shell to use the more command as the pager

• pass in more -10 to configure MySQL Shell to use the more command as the pager with the option
-10

The MySQL Shell output that is passed to the external pager tool is forwarded with no filtering. If MySQL
Shell is using a prompt with color (see Section 13.3, “Customizing the Prompt”), the output contains ANSI
escape sequences. Some pagers might not interpret these escape sequences by default, such as less,
for which interpretation can be enabled using the -R option. more does interpret ANSI escape sequences
by default.

35

36

Chapter 5 MySQL Shell Code Execution

Table of Contents
5.1 Active Language ... 37
5.2 Interactive Code Execution ... 38
5.3 Code Autocompletion .. 40
5.4 Editing Code .. 41
5.5 Code History .. 42
5.6 Batch Code Execution .. 43
5.7 Output Formats .. 45

5.7.1 Table Format ... 45
5.7.2 Tab Separated Format ... 46
5.7.3 Vertical Format .. 46
5.7.4 JSON Format Output ... 47
5.7.5 JSON Wrapping ... 49
5.7.6 Result Metadata .. 50

5.8 API Command Line Integration ... 50
5.8.1 Command Line Integration Overview .. 51
5.8.2 Command Line Integration Details .. 53

5.9 JSON Integration .. 63

This section explains how code execution works in MySQL Shell.

5.1 Active Language

MySQL Shell can execute SQL, JavaScript or Python code, but only one language can be active at a time.
The active mode determines how the executed statements are processed:

• If using SQL mode, statements are processed as SQL which means they are sent to the MySQL server
for execution.

• If using JavaScript mode, statements are processed as JavaScript code.

• If using Python mode, statements are processed as Python code.

Note

From version 8.0.18, MySQL Shell uses Python 3. For platforms that include a
system supported installation of Python 3, MySQL Shell uses the most recent
version available, with a minimum supported version of Python 3.4.3. For platforms
where Python 3 is not included, MySQL Shell bundles Python 3.7.4. MySQL Shell
maintains code compatibility with Python 2.6 and Python 2.7, so if you require
one of these older versions, you can build MySQL Shell from source using the
appropriate Python version.

When running MySQL Shell in interactive mode, activate a specific language by entering the commands:
\sql, \js, \py.

When running MySQL Shell in batch mode, activate a specific language by passing any of these
command-line options: --js, --py or --sql. The default mode if none is specified is JavaScript.

Use MySQL Shell to execute the content of the file code.sql as SQL.

37

Interactive Code Execution

$> mysqlsh --sql < code.sql

Use MySQL Shell to execute the content of the file code.js as JavaScript code.

$> mysqlsh < code.js

Use MySQL Shell to execute the content of the file code.py as Python code.

$> mysqlsh --py < code.py

From MySQL Shell 8.0.16, you can execute single SQL statements while another language is active, by
entering the \sql command immediately followed by the SQL statement. For example:

mysql-py> \sql select * from sakila.actor limit 3;

The SQL statement does not need any additional quoting, and the statement delimiter is optional. The
command only accepts a single SQL query on a single line. With this format, MySQL Shell does not switch
mode as it would if you entered the \sql command. After the SQL statement has been executed, MySQL
Shell remains in JavaScript or Python mode.

From MySQL Shell 8.0.18, you can execute operating system commands while any language is active, by
entering the \system or \! command immediately followed by the command to execute. For example:

mysql-py> \system echo Hello from MySQL Shell!

MySQL Shell displays the output from the operating system command, or returns an error if it was unable
to execute the command.

5.2 Interactive Code Execution

The default mode of MySQL Shell provides interactive execution of database operations that you type at
the command prompt. These operations can be written in JavaScript, Python or SQL depending on the
current Section 5.1, “Active Language”. When executed, the results of the operation are displayed on-
screen.

As with any other language interpreter, MySQL Shell is very strict regarding syntax. For example, the
following JavaScript snippet opens a session to a MySQL server, then reads and prints the documents in a
collection:

var mySession = mysqlx.getSession('user:pwd@localhost');
var result = mySession.getSchema('world_x').getCollection('countryinfo').find().execute();
var record = result.fetchOne();
while(record){
 print(record);
 record = result.fetchOne();
}

As seen above, the call to find() is followed by the execute() function. CRUD database commands
are only actually executed on the MySQL Server when execute() is called. However, when working with
MySQL Shell interactively, execute() is implicitly called whenever you press Return on a statement.
Then the results of the operation are fetched and displayed on-screen. The rules for when you need to call
execute() or not are as follows:

• When using MySQL Shell in this way, calling execute() becomes optional on:

• Collection.add()

• Collection.find()

38

Multiple-line Support

• Collection.remove()

• Collection.modify()

• Table.insert()

• Table.select()

• Table.delete()

• Table.update()

• Automatic execution is disabled if the object is assigned to a variable. In such a case calling execute()
is mandatory to perform the operation.

• When a line is processed and the function returns any of the available Result objects, the information
contained in the Result object is automatically displayed on screen. The functions that return a Result
object include:

• The SQL execution and CRUD operations (listed above)

• Transaction handling and drop functions of the session objects in both mysql and mysqlx modules: -

• startTransaction()

• commit()

• rollback()

• dropSchema()

• dropCollection()

• ClassicSession.runSql()

Based on the above rules, the statements needed in the MySQL Shell in interactive mode to establish a
session, query, and print the documents in a collection are as follows:

mysql-js> var mySession = mysqlx.getSession('user:pwd@localhost');
mysql-js> mySession.getSchema('world_x').getCollection('countryinfo').find();

No call to execute() is needed and the Result object is automatically printed.

Multiple-line Support

It is possible to specify statements over multiple lines. When in Python or JavaScript mode, multiple-
line mode is automatically enabled when a block of statements starts like in function definitions, if/then
statements, for loops, and so on. In SQL mode multiple line mode starts when the command \ is issued.

Once multiple-line mode is started, the subsequently entered statements are cached.

For example:

mysql-sql> \
... create procedure get_actors()
... begin
... select first_name from sakila.actor;
... end
...

39

Code Autocompletion

Note

You cannot use multiple-line mode when you use the \sql command with a query
to execute single SQL statements while another language is active. The command
only accepts a single SQL query on a single line.

5.3 Code Autocompletion
MySQL Shell supports autocompletion of text preceding the cursor by pressing the Tab key. The
Section 3.1, “MySQL Shell Commands” can be autocompleted in any of the language modes. For example
typing \con and pressing the Tab key autocompletes to \connect. Autocompletion is available for SQL,
JavaScript and Python language keywords depending on the current Section 5.1, “Active Language”.

Autocompletion supports the following text objects:

• In SQL mode - autocompletion is aware of schema names, table names, column names of the current
active schema.

• In JavaScript and Python modes autocompletion is aware of object members, for example:

• global object names such as session, db, dba, shell, mysql, mysqlx, and so on.

• members of global objects such as session.connect(), dba.configureLocalInstance(),
and so on.

• global user defined variables

• chained object property references such as shell.options.verbose.

• chained X DevAPI method calls such as col.find().where().execute().fetchOne().

By default autocompletion is enabled, to change this behavior see Configuring Autocompletion.

Once you activate autocompletion, if the text preceding the cursor has exactly one possible match, the
text is automatically completed. If autocompletion finds multiple possible matches, it beeps or flashes the
terminal. If the Tab key is pressed again, a list of the possible completions is displayed. If no match is
found then no autocompletion happens.

Autocompleting SQL

When MySQL Shell is in SQL mode, autocompletion tries to complete any word with all possible
completions that match. In SQL mode the following can be autocompleted:

• SQL keywords - List of known SQL keywords. Matching is case-insensitive.

• SQL snippets - Certain common snippets, such as SHOW CREATE TABLE, ALTER TABLE, CREATE
TABLE, and so on.

• Table names - If there is an active schema and database name caching is not disabled, all the tables of
the active schema are used as possible completions.

As a special exception, if a backtick is found, only table names are considered for completion. In SQL
mode, autocompletion is not context aware, meaning there is no filtering of completions based on the SQL
grammar. In other words, autocompleting SEL returns SELECT, but it could also include a table called
selfies.

40

https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Autocompleting JavaScript and Python

Autocompleting JavaScript and Python

In both JavaScript and Python modes, the string to be completed is determined from right to left, beginning
at the current cursor position when Tab is pressed. Contents inside method calls are ignored, but must
be syntactically correct. This means that strings, comments and nested method calls must all be properly
closed and balanced. This allows chained methods to be handled properly. For example, when you are
issuing:

print(db.user.select().where("user in ('foo', 'bar')").e

Pressing the Tab key would cause autocompletion to try to complete the text
db.user.select().where().e but this invalid code yields undefined behavior. Any whitespace,
including newlines, between tokens separated by a . is ignored.

Configuring Autocompletion

By default the autocompletion engine is enabled. This section explains how to disable autocompletion and
how to use the \rehash MySQL Shell command. Autocompletion uses a cache of database name objects
that MySQL Shell is aware of. When autocompletion is enabled, this name cache is automatically updated.
For example whenever you load a schema, the autocompletion engine updates the name cache based on
the text objects found in the schema, so that you can autocomplete table names and so on.

To disable this behavior you can:

• Start MySQL Shell with the --no-name-cache command option.

• Modify the autocomplete.nameCache and devapi.dbObjectHandles keys of the
shell.options to disable the autocompletion while MySQL Shell is running.

When the autocompletion name cache is disabled, you can manually update the text objects
autocompletion is aware of by issuing \rehash. This forces a reload of the name cache based on the
current active schema.

To disable autocompletion while MySQL Shell is running use the following shell.options keys:

• autocomplete.nameCache: boolean toggles autocompletion name caching for use by SQL.

• devapi.dbObjectHandles: boolean toggles autocompletion name caching for use by the X
DevAPI db object, for example db.mytable, db.mycollection.

Both keys are set to true by default, and set to false if the --no-name-cache command option is
used. To change the autocompletion name caching for SQL while MySQL Shell is running, issue:

shell.options['autocomplete.nameCache']=true

Use the \rehash command to update the name cache manually.

To change the autocompletion name caching for JavaScript and Python while MySQL Shell is running,
issue:

shell.options['devapi.dbObjectHandles']=true

Again you can use the \rehash command to update the name cache manually.

5.4 Editing Code
MySQL Shell's \edit command (available from MySQL Shell 8.0.18) opens a command in the default
system editor for editing, then presents the edited command in MySQL Shell for execution. The command

41

Code History

can also be invoked using the short form \e or key combination Ctrl-X Ctrl-E. If you specify an argument
to the command, this text is placed in the editor. If you do not specify an argument, the last command in
the MySQL Shell history is placed in the editor.

The EDITOR and VISUAL environment variables are used to identify the default system editor. If
the default system editor cannot be identified from these environment variables, MySQL Shell uses
notepad.exe on Windows and vi on any other platform. Command editing takes place in a temporary
file, which MySQL Shell deletes afterwards.

When you have finished editing, you must save the file and close the editor, MySQL Shell then presents
your edited text ready for you to execute by pressing Enter, or if you do not want to proceed, to cancel by
pressing Ctrl-C.

For example, here the user runs the MySQL Shell built-in report threads with a custom set of columns,
then opens the command in the system editor to add display names for some of the columns:

\show threads --foreground -o tid,cid,user,host,command,state,lastwait,lastwaitl
\e
\show threads --foreground -o tid=thread_id,cid=conn_id,user,host,command,state,lastwait=last_wait_event,lastwaitl=wait_length

5.5 Code History

Code which you issue in MySQL Shell is stored in the history, which can then be accessed using the up
and down arrow keys. You can also search the history using the incremental history search feature. To
search the history, use Ctrl+R to search backwards, or Ctrl+S to search forwards through the history.
Once the search is active, typing characters searches for any strings that match them in the history and
displays the first match. Use Ctrl+S or Ctrl+R to search for further matches to the current search term.
Typing more characters further refines the search. During a search you can press the arrow keys to
continue stepping through the history from the current search result. Press Enter to accept the displayed
match. Use Ctrl+C to cancel the search.

The history.maxSize MySQL Shell configuration option sets the maximum number of entries to store
in the history. The default is 1000. If the number of history entries exceeds the configured maximum, the
oldest entries are removed and discarded. If the maximum is set to 0, no history entries are stored.

By default the history is not saved between sessions, so when you exit MySQL Shell the history of what
you issued during the current session is lost. You can save your history between sessions by enabling the
MySQL Shell history.autoSave option. For example, to make this change permanent issue:

mysqlsh-js> \option --persist history.autoSave=1

When the history.autoSave option is enabled the history is stored in the MySQL Shell configuration
path, which is the ~/.mysqlsh directory on Linux and macOS, or the %AppData%\MySQL\mysqlsh
folder on Windows. This path can be overridden on all platforms by defining the environment variable
MYSQLSH_USER_CONFIG_HOME. The saved history is created automatically by MySQL Shell and is
readable only by the owner user. If the history file cannot be read or written to, MySQL Shell logs an error
message and skips the read or write operation. Prior to version 8.0.16, history entries were saved to a
single history file, which contained the code issued in all of the MySQL Shell languages. In MySQL Shell
version 8.0.16 and later, the history is split per active language and the files are named history.sql,
history.js and history.py.

Issuing the MySQL Shell \history command shows history entries in the order that they were issued,
together with their history entry number, which can be used with the \history delete entry_number
command. You can manually delete individual history entries, a specified numeric range of history entries,
or the tail of the history. You can also use \history clear to delete the entire history manually.
When you exit MySQL Shell, if the history.autoSave configuration option has been set to true, the

42

Batch Code Execution

history entries that remain in the history file are saved, and their numbering is reset to start at 1. If the
shell.options["history.autoSave"] configuration option is set to false, which is the default, the
history file is cleared.

Only code which you type interactively at the MySQL Shell prompt is added to the history. Code that is
executed indirectly or internally, for example when the \source command is executed, is not added to
the history. When you issue multi-line code, the new line characters are stripped in the history entry. If the
same code is issued multiple times it is only stored in the history once, reducing duplication.

You can customize the entries that are added to the history using the --histignore command option.
Additionally, when using MySQL Shell in SQL mode, you can configure strings which should not be added
to the history. This history ignore list is also applied when you use the \sql command with a query to
execute single SQL statements while another language is active.

By default strings that match the glob patterns IDENTIFIED or PASSWORD are not added to the
history. To configure further strings to match use either the --histignore command option, or
shell.options["history.sql.ignorePattern"]. Multiple strings can be specified, separated by
a colon (:). The history matching uses case-insensitive glob pattern like matching. Supported wildcards are
* (match any 0 or more characters) and ? (match exactly 1 character). The default strings are specified as
"*IDENTIFIED*:*PASSWORD*".

The most recent executed statement is always available by pressing the Up arrow, even if the history
ignore list applies to it. This is so that you can make corrections without retyping all the input. If filtering
applies to the last executed statement, it is removed from the history as soon as another statement is
entered, or if you exit MySQL Shell immediately after executing the statement.

5.6 Batch Code Execution

As well as interactive code execution, MySQL Shell provides batch code execution from:

• A file loaded for processing.

• A file containing code that is redirected to the standard input for execution.

• Code from a different source that is redirected to the standard input for execution.

Tip

As an alternative to batch execution of a file, you can also control MySQL Shell
from a terminal, see Section 5.8, “API Command Line Integration”.

In batch mode, all the command logic described at Section 5.2, “Interactive Code Execution” is not
available, only valid code for the active language can be executed. When processing SQL code, it is
executed statement by statement using the following logic: read/process/print result. When processing
non-SQL code, it is loaded entirely from the input source and executed as a unit. Use the --interactive
(or -i) command-line option to configure MySQL Shell to process the input source as if it were being
issued in interactive mode; this enables all the features provided by the Interactive mode to be used in
batch processing.

Note

In this case, whatever the source is, it is read line by line and processed using the
interactive pipeline.

The input is processed based on the current programming language selected in MySQL Shell, which
defaults to JavaScript. You can change the default programming language using the defaultMode

43

Executable Scripts

MySQL Shell configuration option. Files with the extensions .js, .py, and .sql are always processed in
the appropriate language mode, regardless of the default programming language.

This example shows how to load JavaScript code from a file for batch processing:

$> mysqlsh --file code.js

Here, a JavaScript file is redirected to standard input for execution:

$> mysqlsh < code.js

This example shows how to redirect SQL code to standard input for execution:

$> echo "show databases;" | mysqlsh --sql --uri user@192.0.2.20:33060

From MySQL Shell 8.0.22, the --pym command line option is available to execute the specified Python
module as a script in Python mode. The option works in the same way as Python's -m command line
option.

Executable Scripts

On Linux you can create executable scripts that run with MySQL Shell by including a #! line as the first
line of the script. This line should provide the full path to MySQL Shell and include the --file option. For
example:

#!/usr/local/mysql-shell/bin/mysqlsh --file
print("Hello World\n");

The script file must be marked as executable in the filesystem. Running the script invokes MySQL Shell
and it executes the contents of the script.

SQL Execution in Scripts

SQL query execution for X Protocol sessions normally uses the sql() function, which takes an SQL
statement as a string, and returns a SqlExecute object that you use to bind and execute the query and
return the results. This method is described at Using SQL with Session. However, SQL query execution
for classic MySQL protocol sessions uses the runSql() function, which takes an SQL statement and its
parameters, binds the specified parameters into the specified query and executes the query in a single
step, returning the results.

If you need to create a MySQL Shell script that is independent of the protocol used for connecting to the
MySQL server, MySQL Shell provides a session.runSql() function for X Protocol, which works in
the same way as the runSql() function in classic MySQL protocol sessions. You can use this function
in MySQL Shell only in place of sql(), so that your script works with either an X Protocol session or a
classic MySQL protocol session. Session.runSql() returns a SqlResult object, which matches the
specification of the ClassicResult object returned by the classic MySQL protocol function, so the results
can be handled in the same way.

Note

Session.runSql() is exclusive to the MySQL Shell X DevAPI implementation in
JavaScript and Python, and is not part of the standard X DevAPI.

To browse the query results, you can use the fetchOneObject() function, which works for both the
classic MySQL protocol and X Protocol. This function returns the next result as a scripting object. Column
names are used as keys in the dictionary (and as object attributes if they are valid identifiers), and row

44

https://dev.mysql.com/doc/x-devapi-userguide/en/using-sql.html

Output Formats

values are used as attribute values in the dictionary. Updates made to the object are not persisted on the
database.

For example, this code in a MySQL Shell script works with either an X Protocol session or a classic MySQL
protocol session to retrieve and output the name of a city from the given country:

var resultSet = mySession.runSql("SELECT * FROM city WHERE countrycode = ' AUT'");
var row = resultSet.fetchOneObject();
print(row['Name']);

5.7 Output Formats

MySQL Shell can print results in table, tabbed, or vertical format, or as pretty or raw JSON output. From
MySQL Shell 8.0.14, the MySQL Shell configuration option resultFormat can be used to specify any
of these output formats as a persistent default for all sessions, or just for the current session. Changing
this option takes effect immediately. For instructions to set MySQL Shell configuration options, see
Section 13.4, “Configuring MySQL Shell Options”. Alternatively, the command line option --result-
format or its aliases (--table, --tabbed, --vertical) can be used at startup to specify the output
format for a session. For a list of the command line options, see Section A.1, “mysqlsh — The MySQL
Shell”.

If the resultFormat configuration option has not been specified, when MySQL Shell is in interactive
mode, the default format for printing a result set is a formatted table, and when MySQL Shell is in batch
mode, the default format for printing a result set is tab separated output. When you set a default using the
resultFormat configuration option, this default applies in both interactive mode and batch mode.

The MySQL Shell function shell.dumpRows() can format a result set returned by a query in any of
the output formats supported by MySQL Shell, and dump it to the console. (Note that the result set is
consumed by the function.)

To help integrate MySQL Shell with external tools, you can use the --json option to control JSON
wrapping for all MySQL Shell output when you start MySQL Shell from the command line. When JSON
wrapping is turned on, MySQL Shell generates either pretty-printed JSON (the default) or raw JSON, and
the value of the resultFormat MySQL Shell configuration option is ignored. When JSON wrapping is
turned off, or was not requested for the session, result sets are output as normal in the format specified by
the resultFormat configuration option.

The outputFormat configuration option is now deprecated. This option combined the JSON wrapping
and result printing functions. If this option is still specified in your MySQL Shell configuration file or scripts,
the behavior is as follows:

• With the json or json/raw value, outputFormat activates JSON wrapping with pretty or raw JSON
respectively.

• With the table, tabbed, or vertical value, outputFormat turns off JSON wrapping and sets the
resultFormat configuration option for the session to the appropriate value.

5.7.1 Table Format

The table format is used by default for printing result sets when MySQL Shell is in interactive mode. The
results of the query are presented as a formatted table for a better view and to aid analysis.

To get this output format when running in batch mode, start MySQL Shell with the --result-
format=table command line option (or its alias --table), or set the MySQL Shell configuration option
resultFormat to table.

45

Tab Separated Format

Example 5.1 Output in Table Format

MySQL localhost:33060+ ssl world_x JS > shell.options.set('resultFormat','table')
MySQL localhost:33060+ ssl world_x JS > session.sql("select * from city where countrycode='AUT'")
+------+------------+-------------+---------------+-------------------------+
| ID | Name | CountryCode | District | Info |
+------+------------+-------------+---------------+-------------------------+
1523	Wien	AUT	Wien	{"Population": 1608144}
1524	Graz	AUT	Steiermark	{"Population": 240967}
1525	Linz	AUT	North Austria	{"Population": 188022}
1526	Salzburg	AUT	Salzburg	{"Population": 144247}
1527	Innsbruck	AUT	Tiroli	{"Population": 111752}
1528	Klagenfurt	AUT	Kärnten	{"Population": 91141}
+------+------------+-------------+---------------+-------------------------+
6 rows in set (0.0030 sec)

5.7.2 Tab Separated Format

The tab separated format is used by default for printing result sets when running MySQL Shell in batch
mode, to have better output for automated analysis.

To get this output format when running in interactive mode, start MySQL Shell with the --result-
format=tabbed command line option (or its alias --tabbed), or set the MySQL Shell configuration
option resultFormat to tabbed.

Example 5.2 Output in Tab Separated Format

MySQL localhost:33060+ ssl world_x JS > shell.options.set('resultFormat','tabbed')
MySQL localhost:33060+ ssl world_x JS > session.sql("select * from city where countrycode='AUT'")
ID Name CountryCode District Info
1523 Wien AUT Wien {"Population": 1608144}
1524 Graz AUT Steiermark {"Population": 240967}
1525 Linz AUT North Austria {"Population": 188022}
1526 Salzburg AUT Salzburg {"Population": 144247}
1527 Innsbruck AUT Tiroli {"Population": 111752}
1528 Klagenfurt AUT Kärnten {"Population": 91141}
6 rows in set (0.0041 sec)

5.7.3 Vertical Format

The vertical format option prints result sets vertically instead of in a horizontal table, in the same way as
when the \G query terminator is used for an SQL query. Vertical format is more readable where longer text
lines are part of the output.

To get this output format, start MySQL Shell with the --result-format=vertical command line option
(or its alias --vertical), or set the MySQL Shell configuration option resultFormat to vertical.

Example 5.3 Output in Vertical Format

MySQL localhost:33060+ ssl world_x JS > shell.options.set('resultFormat','vertical')
MySQL localhost:33060+ ssl world_x JS > session.sql("select * from city where countrycode='AUT'")
*************************** 1. row ***************************
 ID: 1523
 Name: Wien
CountryCode: AUT
 District: Wien
 Info: {"Population": 1608144}
*************************** 2. row ***************************
 ID: 1524
 Name: Graz
CountryCode: AUT

46

JSON Format Output

 District: Steiermark
 Info: {"Population": 240967}
*************************** 3. row ***************************
 ID: 1525
 Name: Linz
CountryCode: AUT
 District: North Austria
 Info: {"Population": 188022}
*************************** 4. row ***************************
 ID: 1526
 Name: Salzburg
CountryCode: AUT
 District: Salzburg
 Info: {"Population": 144247}
*************************** 5. row ***************************
 ID: 1527
 Name: Innsbruck
CountryCode: AUT
 District: Tiroli
 Info: {"Population": 111752}
*************************** 6. row ***************************
 ID: 1528
 Name: Klagenfurt
CountryCode: AUT
 District: Kärnten
 Info: {"Population": 91141}
6 rows in set (0.0027 sec)

5.7.4 JSON Format Output

MySQL Shell provides a number of JSON format options to print result sets:

json or json/pretty These options both produce pretty-printed JSON.

ndjson or json/raw These options both produce raw JSON delimited by newlines.

json/array This option produces raw JSON wrapped in a JSON array.

You can select these output formats by starting MySQL Shell with the --result-format=value
command line option, or setting the MySQL Shell configuration option resultFormat.

In batch mode, to help integrate MySQL Shell with external tools, you can use the --json option to control
JSON wrapping for all output when you start MySQL Shell from the command line. When JSON wrapping
is turned on, MySQL Shell generates either pretty-printed JSON (the default) or raw JSON, and the value
of the resultFormat MySQL Shell configuration option is ignored. For instructions, see Section 5.7.5,
“JSON Wrapping”.

Example 5.4 Output in Pretty-Printed JSON Format (json or json/pretty)

MySQL localhost:33060+ ssl world_x JS > shell.options.set('resultFormat','json')
MySQL localhost:33060+ ssl world_x JS > session.sql("select * from city where countrycode='AUT'")
{
 "ID": 1523,
 "Name": "Wien",
 "CountryCode": "AUT",
 "District": "Wien",
 "Info": {
 "Population": 1608144
 }
}
{
 "ID": 1524,
 "Name": "Graz",

47

JSON Format Output

 "CountryCode": "AUT",
 "District": "Steiermark",
 "Info": {
 "Population": 240967
 }
}
{
 "ID": 1525,
 "Name": "Linz",
 "CountryCode": "AUT",
 "District": "North Austria",
 "Info": {
 "Population": 188022
 }
}
{
 "ID": 1526,
 "Name": "Salzburg",
 "CountryCode": "AUT",
 "District": "Salzburg",
 "Info": {
 "Population": 144247
 }
}
{
 "ID": 1527,
 "Name": "Innsbruck",
 "CountryCode": "AUT",
 "District": "Tiroli",
 "Info": {
 "Population": 111752
 }
}
{
 "ID": 1528,
 "Name": "Klagenfurt",
 "CountryCode": "AUT",
 "District": "Kärnten",
 "Info": {
 "Population": 91141
 }
}
6 rows in set (0.0031 sec)

Example 5.5 Output in Raw JSON Format with Newline Delimiters (ndjson or json/raw)

MySQL localhost:33060+ ssl world_x JS > shell.options.set('resultFormat','ndjson')
MySQL localhost:33060+ ssl world_x JS > session.sql("select * from city where countrycode='AUT'")
{"ID":1523,"Name":"Wien","CountryCode":"AUT","District":"Wien","Info":{"Population":1608144}}
{"ID":1524,"Name":"Graz","CountryCode":"AUT","District":"Steiermark","Info":{"Population":240967}}
{"ID":1525,"Name":"Linz","CountryCode":"AUT","District":"North Austria","Info":{"Population":188022}}
{"ID":1526,"Name":"Salzburg","CountryCode":"AUT","District":"Salzburg","Info":{"Population":144247}}
{"ID":1527,"Name":"Innsbruck","CountryCode":"AUT","District":"Tiroli","Info":{"Population":111752}}
{"ID":1528,"Name":"Klagenfurt","CountryCode":"AUT","District":"Kärnten","Info":{"Population":91141}}
6 rows in set (0.0032 sec)

Example 5.6 Output in Raw JSON Format Wrapped in a JSON Array (json/array)

MySQL localhost:33060+ ssl world_x JS > shell.options.set('resultFormat','json/array')
MySQL localhost:33060+ ssl world_x JS > session.sql("select * from city where countrycode='AUT'")
[
{"ID":1523,"Name":"Wien","CountryCode":"AUT","District":"Wien","Info":{"Population":1608144}},
{"ID":1524,"Name":"Graz","CountryCode":"AUT","District":"Steiermark","Info":{"Population":240967}},
{"ID":1525,"Name":"Linz","CountryCode":"AUT","District":"North Austria","Info":{"Population":188022}},
{"ID":1526,"Name":"Salzburg","CountryCode":"AUT","District":"Salzburg","Info":{"Population":144247}},
{"ID":1527,"Name":"Innsbruck","CountryCode":"AUT","District":"Tiroli","Info":{"Population":111752}},

48

JSON Wrapping

{"ID":1528,"Name":"Klagenfurt","CountryCode":"AUT","District":"Kärnten","Info":{"Population":91141}}
]
6 rows in set (0.0032 sec)

5.7.5 JSON Wrapping

To help integrate MySQL Shell with external tools, you can use the --json option to control JSON
wrapping for all MySQL Shell output when you start MySQL Shell from the command line. The --json
option only takes effect for the MySQL Shell session for which it is specified.

Specifying --json, --json=pretty, or --json=raw turns on JSON wrapping for the session. With --
json=pretty or with no value specified, pretty-printed JSON is generated. With --json=raw, raw JSON
is generated.

When JSON wrapping is turned on, any value that was specified for the resultFormat MySQL Shell
configuration option in the configuration file or on the command line (with the --result-format option or
one of its aliases) is ignored.

Specifying --json=off turns off JSON wrapping for the session. When JSON wrapping is turned off,
or was not requested for the session, result sets are output as normal in the format specified by the
resultFormat MySQL Shell configuration option.

Example 5.7 MySQL Shell Output with Pretty-Printed JSON Wrapping (--json or --json=pretty)

$> echo "select * from world_x.city where countrycode='AUT'" | mysqlsh --json --sql --uri user@localhost:33060
or
$> echo "select * from world_x.city where countrycode='AUT'" | mysqlsh --json=pretty --sql --uri user@localhost:33060
{
 "hasData": true,
 "rows": [
 {
 "ID": 1523,
 "Name": "Wien",
 "CountryCode": "AUT",
 "District": "Wien",
 "Info": {
 "Population": 1608144
 }
 },
 {
 "ID": 1524,
 "Name": "Graz",
 "CountryCode": "AUT",
 "District": "Steiermark",
 "Info": {
 "Population": 240967
 }
 },
 {
 "ID": 1525,
 "Name": "Linz",
 "CountryCode": "AUT",
 "District": "North Austria",
 "Info": {
 "Population": 188022
 }
 },
 {
 "ID": 1526,
 "Name": "Salzburg",
 "CountryCode": "AUT",
 "District": "Salzburg",
 "Info": {

49

Result Metadata

 "Population": 144247
 }
 },
 {
 "ID": 1527,
 "Name": "Innsbruck",
 "CountryCode": "AUT",
 "District": "Tiroli",
 "Info": {
 "Population": 111752
 }
 },
 {
 "ID": 1528,
 "Name": "Klagenfurt",
 "CountryCode": "AUT",
 "District": "Kärnten",
 "Info": {
 "Population": 91141
 }
 }
],
 "executionTime": "0.0067 sec",
 "affectedRowCount": 0,
 "affectedItemsCount": 0,
 "warningCount": 0,
 "warningsCount": 0,
 "warnings": [],
 "info": "",
 "autoIncrementValue": 0
}

Example 5.8 MySQL Shell Output with Raw JSON Wrapping (--json=raw)

$> echo "select * from world_x.city where countrycode='AUT'" | mysqlsh --json=raw --sql --uri user@localhost:33060
{"hasData":true,"rows":[{"ID":1523,"Name":"Wien","CountryCode":"AUT","District":"Wien","Info":{"Population":1608144}},{"ID":1524,"Name":"Graz","CountryCode":"AUT","District":"Steiermark","Info":{"Population":240967}},{"ID":1525,"Name":"Linz","CountryCode":"AUT","District":"North Austria","Info":{"Population":188022}},{"ID":1526,"Name":"Salzburg","CountryCode":"AUT","District":"Salzburg","Info":{"Population":144247}},{"ID":1527,"Name":"Innsbruck","CountryCode":"AUT","District":"Tiroli","Info":{"Population":111752}},{"ID":1528,"Name":"Klagenfurt","CountryCode":"AUT","District":"Kärnten","Info":{"Population":91141}}],"executionTime":"0.0117 sec","affectedRowCount":0,"affectedItemsCount":0,"warningCount":0,"warningsCount":0,"warnings":[],"info":"","autoIncrementValue":0}

5.7.6 Result Metadata

When an operation is executed, in addition to any results returned, some additional information is returned.
This includes information such as the number of affected rows, warnings, duration, and so on, when any of
these conditions is true:

• JSON format is being used for the output

• MySQL Shell is running in interactive mode.

When JSON format is used for the output, the metadata is returned as part of the JSON object. In
interactive mode, the metadata is printed after the results.

5.8 API Command Line Integration

MySQL Shell exposes much of its functionality through an API command-line integration using a syntax
that provides access to objects and their functions without opening the interactive interface. This enables
you easily integrate mysqlsh with other tools. For example if you want to automate how you create
an InnoDB Cluster using a bash script, you could use the command-line integration to call AdminAPI
operations. This functionality is similar to using the --execute option, but the command-line integration
uses a simplified argument syntax which reduces the quoting and escaping that can be required by
terminals. Unlike batch mode, the command-line integration is stateless. This means that operations which
return an object to be used by further operations are not possible. The command-line integration calls
operations, or global object's functions, and returns.

50

Command Line Integration Overview

5.8.1 Command Line Integration Overview

This section provides an overview of the command-line integration and some basic usage examples. For
more detailed information, see Section 5.8.2, “Command Line Integration Details”.

The following built-in MySQL Shell global objects are available:

• session - represents the current global session.

• db - represents the default database for the global session, if that session was established using an X
Protocol connection with a default database specified. See Using MySQL as a Document Store.

• dba - provides access to AdminAPI, used to manage InnoDB Cluster, InnoDB ClusterSet, and InnoDB
ReplicaSet deployments. See Chapter 6, MySQL AdminAPI.

• cluster - represents an InnoDB Cluster.

• rs - represents an InnoDB ReplicaSet.

• shell - provides access to MySQL Shell functions, such as shell.options for configuring MySQL
Shell options (see Section 13.4, “Configuring MySQL Shell Options”).

• util - provides access to MySQL Shell utilities. See Chapter 11, MySQL Shell Utilities.

For more information, see Section 4.5, “MySQL Shell Global Objects”.

MySQL Shell Command Line Integration Syntax

You access the command-line integration by starting the mysqlsh application and passing in the special
-- option. When you start MySQL Shell in this way, the -- indicates the end of the list of options (such
as the server to connect to, which language to use, and so on) and everything after it is passed to the
command-line integration. The command-line integration supports a specific syntax, which is based on
the objects and methods used in the MySQL Shell interactive interface. To execute an operation using
command-line integration syntax, in your terminal issue:

mysqlsh [options] -- [shell_object]+ object_method [arguments]

The syntax elements are:

• shell_object is a string which maps to a MySQL Shell global object. The command-line integration
supports nested objects. To call a function in a nested object, provide the list of objects in the hierarchy
separated by spaces, to reach the desired object.

• object_method is the name of the method provided by the last shell_object. The method
names can be provided following either the JavaScript, or Python naming convention, or an alternative
command-line integration friendly format, where all known functions use all lower case letters, and
words are separated by hyphens. The name of a object_method is automatically converted from the
standard JavaScript style camelCase name, where all case changes are replaced with a - and turned
into lowercase. For example, createCluster becomes create-cluster.

• arguments are the arguments passed to the object_method when it is called.

shell_object must match one of the exposed global objects, and any nested objects must be a child
object of the previous object provided in the list. The object_method must match one of the last object
in the list's methods, and must be defined in one of the valid formats (JavaScript, Python or command line
friendly). If they do not correspond to a valid object and its methods, MySQL Shell exits with status 10.

See the examples at MySQL Shell Command Line Integration Examples.

51

https://dev.mysql.com/doc/refman/8.0/en/document-store.html

Command Line Integration Overview

The Objects Available in the Command Line Integration

To find out which objects and methods are available in the command-line integration it is best to query
the MySQL Shell you are working with. This is because in addition to the standard objects bundled with
MySQL Shell, additional objects from plugins might also be exposed.

To get the list of objects supported by the command-line integration:

$ mysqlsh -- --help

This displays a list of objects and a brief description of what the object provides.

To get a list of the functions available in the command-line integration for an object:

$ mysqlsh -- object --help

For more information, see Section 5.8.2.4, “Command Line Help”.

MySQL Shell Command Line Integration Argument Syntax

The arguments list is optional and all arguments must follow a syntax suitable for command-line use
as described in this section. Special characters (such as spaces or \) and quoting are processed by your
system's shell (bash, cmd, and so on) before they are passed to MySQL Shell. If you are unfamiliar with
how your system shell deals with those character sequences as it parses a command, you should try
to avoid them. For example, to pass a parameter with quotes as part of the parameter such as “list, of,
names”, using just that syntax on the command line is not enough. You need to use your system's shell
syntax for escaping those quotes. If you do not, then MySQL Shell might not receive the actual quotation
marks. See Section 5.8.2.2, “Defining Arguments”.

There are two types of arguments that can be used in the list of arguments: anonymous arguments and
named arguments. Anonymous arguments are used to define simple type parameters such as strings,
numbers, boolean, null. Named arguments are used to define the values for list parameters and the
options in a dictionary parameter, they are key-value pairs, where the values are simple types. Their usage
must adhere to the following pattern:

[positional_argument | named_argument]*

All parts of the syntax are optional and can be given in any order. These arguments are then converted into
the arguments passed to the method call in the following order:

• Named arguments that come from lists cause the values to be appended to the list parameter that
originated the named argument

• Named arguments that come from dictionaries cause the values to be added to the dictionary parameter
that originated the named argument

• If a dictionary parameter exists with no explicit options defined, this causes it to accept any named
argument that does not belong to another List or Dictionary parameter

• Any remaining arguments provided to the function call are processed in the order they are provided

MySQL Shell Command Line Integration Examples

Using the command-line integration, calling MySQL Shell API functions is easier and less cumbersome
than with the --execute option. The following examples show how to use this functionality:

• To check a server instance is suitable for upgrade and return the results as JSON for further processing:

52

Command Line Integration Details

$ mysqlsh -- util check-for-server-upgrade --user=root --host=localhost --port=3301 --password='password' --outputFormat=JSON --config-path=/etc/mysql/my.cnf

The equivalent command in MySQL Shell interactive mode:

mysql-js> util.checkForServerUpgrade({user:'root', host:'localhost', port:3301}, {password:'password', outputFormat:'JSON', configPath:'/etc/mysql/my.cnf'})

• To deploy an InnoDB Cluster sandbox instance, listening on port 1234 and specifying the password used
to connect:

$ mysqlsh -- dba deploy-sandbox-instance 1234 --password=password

The equivalent command in MySQL Shell interactive mode:

mysql-js> dba.deploySandboxInstance(1234, {password: password})

• To create an InnoDB Cluster using the sandbox instance listening on port 1234 and specifying the name
mycluster:

$ mysqlsh root@localhost:1234 -- dba create-cluster mycluster

The equivalent command in MySQL Shell interactive mode:

mysql-js> dba.createCluster('mycluster')

• To check the status of an InnoDB Cluster using the sandbox instance listening on port 1234:

$ mysqlsh root@localhost:1234 -- cluster status

The equivalent command in MySQL Shell interactive mode:

mysql-js> cluster.status()

• To configure MySQL Shell to turn the command history on:

$ mysqlsh -- shell.options set_persist history.autoSave true

The equivalent command in MySQL Shell interactive mode:

mysql-js> shell.options.set_persist('history.autoSave', true);

5.8.2 Command Line Integration Details

This section provides detailed information about the MySQL Shell command-line integration.

5.8.2.1 Command Line Integration for MySQL Shell API Functions

The MySQL Shell provides global objects that expose different functionality, such as dba for InnoDB
Cluster and InnoDB ReplicaSet management operations, util for the utility functions, and so on. Global
objects provide functions which are called from the scripting modes in the MySQL Shell. In addition to the
interactive MySQL Shell integration, you can use the command-line integration to call object functions
directly from the terminal, enabling you to easily integrate with other tools.

When you use the APIs included with MySQL Shell in the interactive mode, the typical function syntax is as
follows:

object.functionName(parameter1, parameter2, ..., parameterN)

The parameters define the order in which the data should be provided to the API function. In most cases,
API functions expect the parameters in a specific data type, however there are a few exceptions where a

53

Command Line Integration Details

specific parameter can handle multiple data types. The data types used for parameters in API functions
can be one of the following:

• Scalars: string, numbers, booleans, null

• Lists

• Dictionaries: key-value pairs where the key is a string

• Objects

List parameters are typically restricted to contain elements of a pre-defined data type, for example a list of
strings, however, there could be list parameters that support items of different data types.

Dictionary parameters accept key-value pairs, where keys are strings. The value associated to a
key is usually expected to be of a pre-defined data type. However, there might be cases where different
data types are supported for values by the same key. Dictionary parameters can therefore be one of the
following types:

• A pre-defined set of keys-value pairs is allowed, in which case specifying keys not in the pre-defined set
results in an error.

• No pre-defined set of key-value pairs exists, the dictionary accepts any key

In other words, some dictionary parameters specify which keys are valid. For those parameters, attempting
to use a key outside of that set results in an error. When no pre-defined set of values exists, any value of
any data type can be used. Dictionary parameters that do not have a pre-defined list of keys, accept any
key-value pair as long as the key is not in the pre-defined set of a different dictionary parameter.

To use the command-line integration to call API functions exposed by global objects without having to
start an interactive session in the MySQL Shell you must provide the required data in the correct way. This
includes defining the way an API function is called, as well as the way its parameters are mapped from
command-line arguments to API arguments.

Important

Not all of the MySQL Shell functions are exposed by the command-line integration.
For example a function such as dba.getCluster() relies on returning an object
which is then used in further operations. Such operations are not exposed by the
command-line integration.

Similarly, the MySQL Shell command-line integration does not support Objects as
parameters. Any API function with a parameter of type object cannot be used with
the command-line integration. The lifetime of the object is limited to the lifetime
of the MySQL Shell invocation that created it. Since mysqlsh exits immediately
after executing an object method through this API syntax, any objects received
from or passed into an API call would immediately be out of scope. This should be
considered while developing MySQL Shell Plugins that you want to expose with the
command-line integration.

The general format to call a MySQL Shell API function from the command-line is:

$ mysqlsh [shell options] -- [shell_object]+ object_function [anonymous_arguments|named arguments]*

Where:

• shell_object: specifies a global object with functions exposed for command-line usage. Supports
nested objects in a list separated by spaces.

54

Command Line Integration Details

• object_function: specifies the API function of the last shell_object which should be executed.

• [anonymous_arguments|named arguments]*: specifies the arguments passed to the
object_function call

For most of the available APIs a single object is required, for example:

$ mysqlsh -- shell status

But for nested objects, the list of objects must be indicated. For example, to call a function exposed by
shell.options, such as setPersist(optionName, value), use the syntax:

$ mysqlsh -- shell options set-persist defaultMode py

A similar situation might happen with nested objects defined in MySQL Shell Plugins.

The arguments you pass to functions can be divided into the following types:

• Anonymous Arguments: which are raw values provided to the command. For example, in the following
call 1, one and true are anonymous arguments:

$ mysqlsh -- object command 1 one true

• Named Arguments: which are key-value pairs provided in the form of --key=value. For example in the
following call, --sample and --path are named arguments:

$ mysqlsh -- object command 1 one true --sample=3 --path=some/path

Given this division of arguments, the general format to call an API function from the command-line
integration is:

$ mysqlsh [shell options] -- object command [anonymous arguments][named arguments]

The order of any anonymous arguments is important as they are processed in a positional way. On the
other hand, named arguments can appear anywhere as they are processed first and are associated
to the corresponding parameter. Once named arguments are processed, the anonymous arguments are
processed in a positional way.

5.8.2.2 Defining Arguments

As mentioned in Section 5.8.2.1, “Command Line Integration for MySQL Shell API Functions”, most of the
APIs available in MySQL Shell expect a specific data type for the arguments being provided. Values in
command-line arguments can be provided using the JSON specification with the following considerations.
Some terminals do their own pre-processing of the data which can impact the way the data is provided to
MySQL Shell, and this varies depending on the terminal being used. For example:

• Some terminals split arguments if whitespace is found.

• Consecutive whitespace could be ignored by the splitting logic.

• Quotes could be removed.

MySQL Shell interprets the values as provided by the terminal it is running in, therefore you must provide
the data to the terminal in a way that is correctly formatted. For example:

• Important

Some terminals require quotes to be escaped

55

Command Line Integration Details

• String arguments should be quoted in the following cases:

• They contain whitespace

• The argument is for a list parameter and contains commas

• They contain escaped characters

• The API parameter can accept different data types and the value (based on the JSON specification)
could be the wrong data type.

• When defining parameters using JSON, quote string values and string keys. Avoid using whitespace
outside of quoted items.

The following examples illustrate some of the handling of parameters.

• To pass in multiple parameters, each a single string, no quoting is required:

$ mysqlsh -- object function simple string

In this case, MySQL Shell gets two arguments - argument 1 is simple, and argument 2 is string.

• If you want these two strings to be treated as a single parameter, they must be surrounded by quote
marks, as follows

$ mysqlsh -- object function "simple string"

In this case, MySQL Shell gets one argument - argument 1 is simple string.

• To use an argument which contains characters such as a backslash, the string must be quoted.
Otherwise the character is ignored. For example:

$ mysqlsh -- object function simple\tstring

In this case, MySQL Shell gets one argument - simpletstring, the backslash character (\) has been
ignored.

To ensure the backslash character is passed to MySQL Shell, surround the string with quotes:

$ mysqlsh -- object function "simple\tstring"

In this case, MySQL Shell gets one argument - simple\tstring.

When using the command-line integration, defining a JSON array has its own caveats. For example, in the
MySQL Shell interactive mode you define a JSON array as:

["simple",123]

To use the same array in the command-line integration requires specific quoting. The following example
illustrates how to correctly quote the JSON array:

• Attempting to pass the JSON array in the same way as the interactive mode does not work:

$ mysqlsh -- object function ["simple", 123]

In this case, MySQL Shell gets two arguments - argument 1 is [simple, and argument 2 is 123].

• Not using spaces in the array helps, but it is still an invalid JSON array:

$ mysqlsh -- object function ["simple",123]

56

Command Line Integration Details

In this case, MySQL Shell gets one argument - [simple,123].

• To make a valid JSON array, add escaped quotes within the already quoted string element, for example:

$ mysqlsh -- object function ["\"simple\"",123]

In this case, MySQL Shell gets one argument - ["simple",123].

To use a JSON array which contains JSON objects requires quoting in a similar way. For example, in the
MySQL Shell interactive mode you define a JSON array which contains JSON objects as:

{"firstName":"John","lastName":"Smith"}

The following example illustrates how to correctly quote the same array in the command-line integration:

• Attempting to pass the JSON array in the same way as the interactive mode does not work:

$ mysqlsh -- object function {"firstName":"John","lastName":"Smith"}

In this case, MySQL Shell gets two arguments - argument 1 is firstName:John and argument 2 is
lastName:Smith.

• Using escaped quotes for string data leads to:

$ mysqlsh -- object function {"\"firstName\"":"\"John\"","\"lastName\"":"\"Smith\""}

In this case, MySQL Shell gets two arguments - argument 1 is "firstName":"John" and argument 2
is "lastName":"Smith".

• To fix this, you need to additionally quote the whole JSON object, to get:

$ mysqlsh -- object function "{"\"firstName\"":"\"John\"","\"lastName\"":"\"Smith\""}"

In this case, MySQL Shell gets one argument - {"firstName":"John","lastName":"Smith"}.

Due to the difficulties shown and the fact that the way the terminals in different platforms behave might be
different, the following formats are supported.

String Arguments

Strings require quoting only in the following cases:

• The value contains spaces

• The value itself contains commas and is for a list parameter (to avoid splitting)

• The value contains escaped characters

• The value is a number, null, true, false but it is meant to be a string. In these cases the value
should be quoted with inner escaped quotes. In other words, if a string value is "true", it should be
defined in a CLI call as ""true"".

List Arguments

In addition to a JSON array, an argument for a list parameter can be provided as:

• a comma separated list of values

• separate anonymous arguments

57

Command Line Integration Details

When a list parameter is being processed (in positional order), all of the remaining anonymous arguments
are part of the list. The following MySQL Shell CLI calls are equivalent:

• Using a comma separated list of values:

$ mysqlsh root@localhost -- util dump-schemas sakila,employees

• Using consecutive anonymous arguments:

$ mysqlsh root@localhost -- util dump-schemas sakila employees

• Using a JSON array:

$ mysqlsh root@localhost -- util dump-schemas ["\"sakila\"","\"employees\""]

Dictionary Arguments

Dictionaries are created using key-value pairs, the value for a key in a dictionary argument can also be
specified using named arguments:

--key=value

The following MySQL Shell CLI call illustrates how the threads and osBucketName keys are defined for
the options parameter in the util.dumpInstance() function:

$ mysqlsh -- util dump-instance my-dump --threads=8 --osBucketName=my-bucket

List Keys

You can define the values of a list key in a dictionary in the following ways:

• Defining the value as a JSON array.

• Defining the value as a comma separated list of values.

• Defining values for the key repeatedly.

For example, in the following calls, the definition of the excludeSchemas key passed to the
util.dumpInstance() operation is equivalent:

• Using a comma separated list of values:

$ mysqlsh root@localhost -- util dump-instance --outputUrl="my-dump" --excludeSchemas=sakila,employees

• Using a JSON array:

$ mysqlsh root@localhost -- util dump-instance --outputUrl="my-dump" --excludeSchemas=["\"sakila\"","\"employees\""]

• Defining several values for the --excludeSchemas key:

$ mysqlsh root@localhost -- util dump-instance --outputUrl="my-dump" --excludeSchemas=sakila --excludeSchemas=employees

Dictionary Keys

Nested dictionaries are supported with the following restrictions:

• Only one level of nesting is supported.

• Validation for inner pre-defined keys is not supported.

• Validation for inner expected data types is not supported.

58

Command Line Integration Details

The syntax to define a value for a key in a nested dictionary is as follows:

--key=innerKey=value

For example, to define the decodeColumns key and pass it to the util.importTable() operation:

$ mysqlsh -- util import-table --decodeColumn=myColumn=1

Additional Named Arguments

As shown in the previous section, dictionary parameters are supported through named arguments using
the --key=value syntax. There is another case when arguments must be specified as named arguments:
parameters which are defined after a list parameter. The most convenient way to provide arguments that
belong to a list parameter is by using anonymous arguments, for example as shown in the example at List
Arguments:

$ mysqlsh root@localhost -- util dump-schemas sakila employees

However, this example is missing the argument for the outputUrl parameter, which is mandatory for
the util.dumpSchemas() operation. Because all of the remaining anonymous arguments are included
as items in the schemas list, there is no way to specify the outputUrl as an anonymous argument. For
example the following would not work:

$ mysqlsh root@localhost -- util dump-schemas sakila employees path/to/dump

In this call, the path path/to/dump would be interpreted as another item in the schemas list. For this
reason, any parameter defined after a list parameter must be specified as a named argument when calling
the function from the command-line. For example:

$ mysqlsh root@localhost -- util dump-schemas sakila employees --outputUrl=path/to/dump

5.8.2.3 Data Type Handling

In general, the data type of an argument is resolved using the following criteria, in order of priority:

• The expected data type for the target parameter.

• The data type of the value based on the JSON specification.

• User specified data type.

The last case is a complicated (and rare) case applicable for named arguments only. For example,
suppose you have a MySQL Shell Plugin function such as:

def set_object_attributes(variables)

Where variables is a dictionary with no pre-defined set of values, thus it accepts any key, and therefore
accepts any data type for the value. To set a string attribute named streetNumber with a string value of
123, issue:

$ mysqlsh -- plugin set-object-attributes --streetNumber=123

Because there is no expected data type, the value 123 is interpreted as a numeric value according to the
JSON specification, but we wanted to store that as a string, not as a number.

Note

Currently there is no case of an API function like this unless user creates a plugin
as explained above.

59

Command Line Integration Details

User Data Types

To avoid issues with MySQL Shell trying to guess the type of input data, the command-line integration
supports forcing a specific data type, by specifying a named argument using the following syntax:

--key:type=value

Where type is one of:

• str

• int

• uint

• float

• bool

• list

• dict

• json

To store the value as a string, issue:

$ mysqlsh -- plugin set-object-attributes --streetNumber:str=1234

Important

This format is allowed in any named argument, but it is only required when there
is no expected data type for the argument. If there is an expected data type for the
parameter and you specify a different data type, an error is raised.

Data Type Resolution

When you do not specify the data type, MySQL Shell attempts to resolve the data type using the following
logic. This data interpretation logic is based on the JSON specification but has some MySQL Shell specific
additions and limitations:

• Strings:

• Support both double quoted and single quoted strings.

• Support for hexadecimals such as \xNN where NN is a hexadecimal digit. This is used to represent
ASCII characters in hexadecimal format.

• Support for vertical tabs escaped character

• The following literals can also be defined:

• undefined: define a value as undefined (not really needed in CLI so usage is discouraged).

• true/false: creates a boolean value.

• null: define a null value.

Any value not covered by the JSON specification and the rules above is interpreted as a plain string.

60

Command Line Integration Details

5.8.2.4 Command Line Help

You can access the MySQL Shell online help when calling commands from the command-line integration
using the --help (-h) CLI argument. Help is supported at the global, object and command level.

Note

The built-in help CLI argument does not map to any API argument and is supported
in all the objects and commands available in CLI.

The descriptions of the commands and parameters is taken from the existing documentation for the target
API function.

Global CLI Help

To retrieve the list of global objects available for CLI calls, use the following syntax:

$ mysqlsh -- --help

In this example, -- initiates the command-line integration section of the command. Using the --help or -
h option alone after that lists the global objects available within this interface.

Object Help

To access the object help from the command-line integration, use the following syntax:

$ mysqlsh -- object --help

where object is what you want help on, such as the dba global object. This call displays:

• A brief description of the object.

• A list of the available commands and a short description of them.

To retrieve the help for nested objects, provide the entire list of objects before the --help argument. For
example, to get help on the shell.options functions, issue:

$ mysqlsh -- shell options --help

Command Help

To display help on commands from the command-line integration, use the following syntax:

$ mysqlsh -- object command --help

This call displays details about the command, including:

• A brief description of what the command does.

• The signature for calling the command.

• The list of anonymous arguments and a brief description of each.

• The list of named arguments, their expected data types, and a brief description explaining the purpose of
each argument.

For the case of commands in nested objects, the entire list of objects should be provided before the
command, for example:

61

Command Line Integration Details

$ mysqlsh shell options set-persist --help

For parameters that expect a specific data type, the argument is listed as:

--name=type
Brief description of the parameter.

The type information represents the expected data type for the argument, for example: str, int, uint,
bool, list, float, or dict.

For example, the consistent key of the dump-schemas parameter:

$ mysqlsh -- util dump-schemas --help
...
--consistent=<bool>
Enable or disable consistent data dumps. Default: true.
...

For parameters that support different data types, the argument is listed as:

--name[:type]=value
Brief description of the parameter.

For example, the columns key of the util.importTable() operation.

$ mysqlsh -- util import-table --help
...
--columns[:<type>]=<value>
Array of strings and/or integers (default: empty array) - This...
...

5.8.2.5 Support for MySQL Shell Plugins

To use Section 10.3, “MySQL Shell Plugins” with the command-line integration, the functions must
be explicitly defined for CLI support. When an object defined in a MySQL Shell Plugin is enabled for
command-line integration, only the specific functions that were enabled are available for CLI calls. From
MySQL Shell version 8.0.24, when you add function members to an object, they support the cli boolean
option. When cli is set to true, the function is available from the command-line integration. The cli
option defaults to false, therefore functions are not available from the command-line integration unless
specifically enabled. Any object with a function that has the cli option enabled causes its parent objects to
be available in the command-line integration as well.

To make a function available through the command-line integration, set the cli option to true when you
add the extension object member. For example:

shell.addExtensionObjectMember(object, "exampleFunction", exampleFunction,
 {
 brief:"Retrieves brief information",
 details: ["Retrieves detailed information"],
 cli: true,
 parameters:
 [
 {
 name: "param_a",
 type: "string",
 brief: "param_a brief"
 }
]
 });

You could then use the exampleFunction() function from the command-line integration as follows:

62

JSON Integration

mysqlsh -- customObj exampleFunction 1

If you have added an extension object member using a MySQL Shell version earlier than 8.0.24,
and you want to use it with the command-line integration, you must enable the cli option. Use the
addExtensionObjectMember method as illustrated here to add the object member again, this time
enabling the cli option.

5.9 JSON Integration

From MySQL Shell 8.0.27, you can activate a JSON shell mode to help with integration of MySQL Shell
with other applications that could use its functionality. In this mode, MySQL Shell accepts commands
formatted as JSON documents.

To activate the JSON shell mode, define the MYSQLSH_JSON_SHELL environment variable. The following
commands can then be used:

{"execute":json-string} Executes the given code in the active MySQL Shell mode (JavaScript,
Python or SQL). The code is executed as a complete unit, and an error
is returned if it is incomplete.

{"command":json-string} Executes the given MySQL Shell command (see Section 3.1, “MySQL
Shell Commands”).

{"complete":
{"data":json-string[,
"offset": uint}}}

Determines the options for auto-completion based on the given data
and the current MySQL Shell context.

63

64

Chapter 6 MySQL AdminAPI

Table of Contents
6.1 Using MySQL AdminAPI ... 65

6.1.1 Installing AdminAPI Software Components .. 66
6.1.2 Using Instances Running MySQL 5.7 ... 67
6.1.3 Configuring the Host Name .. 68
6.1.4 Connecting to Server Instances .. 68
6.1.5 Persisting Settings ... 69
6.1.6 Retrieving a Handler Object ... 70
6.1.7 Creating User Accounts for Administration .. 71
6.1.8 Verbose Logging .. 72
6.1.9 Finding the Primary .. 72
6.1.10 Scripting AdminAPI .. 73

6.2 AdminAPI MySQL Sandboxes ... 74
6.2.1 Deploying Sandbox Instances .. 74
6.2.2 Managing Sandbox Instances ... 75

6.3 Tagging Metadata ... 75
6.4 Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet 79

6.4.1 Bootstrapping MySQL Router ... 79
6.4.2 Configuring the MySQL Router User ... 80
6.4.3 Deploying MySQL Router ... 80
6.4.4 Using ReplicaSets with MySQL Router ... 82
6.4.5 Testing InnoDB Cluster High Availability ... 83
6.4.6 Working with a Cluster's Routers .. 84

This chapter covers MySQL AdminAPI, provided with MySQL Shell, which enables you to administer
MySQL instances, using them to create InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet
deployments, and integrating MySQL Router.

6.1 Using MySQL AdminAPI

AdminAPI is provided by MySQL Shell, and is accessed through the dba global variable and its
associated methods. The dba variable's methods provide operations which enable you to deploy,
configure, and administer InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet. For example,
use the dba.createCluster() method to create an InnoDB Cluster. In addition, AdminAPI supports
administration of some MySQL Router related tasks, such as creating and updating users that enable you
to integrate your InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet.

AdminAPI supports the following deployment scenarios:

• Production deployment: if you want to use a full production environment you need to configure the
required number of machines and then deploy your server instances to the machines.

• Sandbox deployment: if you want to test a deployment before committing to a full production
deployment, the provided sandbox feature enables you to quickly set up a test environment on your local
machine. Sandbox server instances are created with the required configuration and you can experiment
to become familiar with the technologies employed.

65

Installing AdminAPI Software Components

Important

An AdminAPI sandbox deployment is not suitable for use in a full production
environment.

MySQL Shell provides two scripting language modes, JavaScript and Python, in addition to a native SQL
mode. Throughout this guide MySQL Shell is used primarily in JavaScript mode. When MySQL Shell starts
it is in JavaScript mode by default. Switch modes by issuing \js for JavaScript mode, and \py for Python
mode. Ensure you are in JavaScript mode by issuing the \js.

Important

MySQL Shell enables you to connect to servers over a socket connection,
but AdminAPI requires TCP connections to a server instance. Socket based
connections are not supported in AdminAPI.

This section assumes familiarity with MySQL Shell; see MySQL Shell 8.0 for further information.
MySQL Shell also provides online help for the AdminAPI. To list all available dba commands,
use the dba.help() method. For online help on a specific method, use the general format
object.help('methodname'). For example:

mysql-js> dba.help('getCluster')

Retrieves a cluster from the Metadata Store.

SYNTAX

 dba.getCluster([name][, options])

WHERE

 name: Parameter to specify the name of the cluster to be returned.
 options: Dictionary with additional options.
 ...

In addition to this documentation, there is developer documentation for all AdminAPI methods in the
MySQL Shell JavaScript API Reference or MySQL Shell Python API Reference, available from Connectors
and APIs.

6.1.1 Installing AdminAPI Software Components

How you install the software components required by AdminAPI depends on the type of deployment you
intend to use:

• For a production deployment, install the components to each machine. A production deployment uses
multiple remote host machines running MySQL server instances, so you need to connect to each
machine using a tool such as SSH or Windows remote desktop to carry out tasks such as installing
components.

• For a sandbox deployment, install the components to a single machine. A sandbox deployment is local
to a single machine, therefore the install needs to only be done once on the local machine.

Always use the most recent versions of MySQL Shell and MySQL Router that are available to you, and
ensure that their version is the same as or higher than the MySQL Server release. MySQL Shell and
MySQL Router can manage older MySQL Server releases, but older versions of the products cannot
manage features in newer MySQL Server releases.

Download and install the software components using the following documentation:

66

https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/index-connectors.html

Using Instances Running MySQL 5.7

• MySQL Server - see Installing and Upgrading MySQL.

• MySQL Shell - see Chapter 2, Installing MySQL Shell.

• MySQL Router - see Installing MySQL Router.

Once you have installed the required software, this section has further information on using AdminAPI.
Follow the procedures to set up Chapter 7, MySQL InnoDB Cluster, Chapter 8, MySQL InnoDB ClusterSet,
or Chapter 9, MySQL InnoDB ReplicaSet.

6.1.2 Using Instances Running MySQL 5.7

This documentation assumes you are using MySQL instances running the latest version of MySQL 8, and
MySQL Shell 8. AdminAPI also supports using instances running MySQL 5.7, but many of the features
described require instances running MySQL 8. The following differences exist for instances running
MySQL 5.7:

• Instances running MySQL 5.7 do not support SET PERSIST, so they cannot be configured remotely, or
automatically, unlike instances running MySQL 8. Instead, when configuring MySQL 5.7 instances, each
time you must connect to the instance and use the dba.configureLocalInstance() operation. This
operation persists the settings to the instances option file when it is available locally. See Section 6.1.5,
“Persisting Settings”.

• Instances running MySQL 5.7 do not support automatic node provisioning, so before joining them to
the cluster you must manually synchronize them with the other cluster instances. This means either
relying on Group Replication's distributed recovery, which requires binary logs with GTIDs enabled and
potentially a long wait when there is a large number of transactions to recover, or using a tool such as
MySQL Enterprise Backup to manually copy the data. With the addition of the MySQL Clone plugin
in version 8.0, instances can be provisioned by AdminAPI automatically. When you add a version 8.0
instance supporting MySQL Clone, AdminAPI automatically chooses the best way to bring the joining
instance into synchrony with the existing instances. For example if the cluster contains a large number
of transactions, MySQL Clone is used to recover the data directly, and any transactions processed by
the cluster during the clone operation are then synchronized using distributed recovery. You can monitor
the progress of the operation directly from MySQL Shell, no other tools are required. This makes tasks
such as adding instances to expand the InnoDB Cluster and improve the chances of high availability
effortless. See Section 7.2.2, “Using MySQL Clone with InnoDB Cluster”.

• Instances running MySQL 5.7 are not compatible with InnoDB ReplicaSet.

• Instances running MySQL 5.7 are not compatible with InnoDB ClusterSet.

• The InnoDB Cluster topology (whether it runs in single-primary or multi-primary mode) cannot be
dynamically changed when using MySQL 5.7 Servers. See Changing a Cluster's Topology.

• Instances running MySQL 5.7 are not compatible with the parallel replication applier. See Configuring
the Parallel Replication Applier.

• Instances running MySQL 5.7 do not support the autoRejoinTries and exitStateAction options,
which configure how many times instances try to rejoin a cluster and what happens when an instance
leaves. See Configuring Automatic Rejoin of Instances.

• Instances running MySQL 5.7 do not support the consistency option. See Configuring Failover
Consistency.

• Instances running MySQL 5.7 do not support the expelTimeout option, which configures how long the
cluster waits before expelling an instance which has lost contact with the other instances.

67

https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

Configuring the Host Name

To use these features, please upgrade your instances to MySQL 8.

6.1.3 Configuring the Host Name

In a production deployment, the instances which you use run on separate machines, therefore each
machine must have a unique host name and be able to resolve the host names of the other machines
which run server instances. If this is not the case, you can:

• Configure each machine to map the IP of each other machine to a host name. See your operating
system documentation for details. This is the recommended solution.

• Set up a DNS service.

• Configure the report_host variable in the MySQL configuration of each instance to a suitable
externally reachable address.

AdminAPI supports using IP addresses instead of host names. From MySQL Shell 8.0.18, AdminAPI
supports IPv6 addresses if the target MySQL Server version is higher than 8.0.13. When using MySQL
Shell 8.0.18 or higher, if all cluster instances are running 8.0.14 or higher then you can use an IPv6 or
hostname that resolves to an IPv6 address for instance connection strings and with options such as
localAddress, groupSeeds and ipAllowlist. For more information on using IPv6 see Support For
IPv6 And For Mixed IPv6 And IPv4 Groups. Previous versions support IPv4 addresses only.

To verify whether the hostname of a MySQL server is correctly configured, execute the following query
to see how the instance reports its own address to other servers and try to connect to that MySQL server
from other hosts using the returned address:

SELECT coalesce(@@report_host, @@hostname);

6.1.4 Connecting to Server Instances

One of the core concepts of using AdminAPI is understanding connections to the MySQL instances
which make up your InnoDB Cluster, InnoDB ClusterSet, or InnoDB ReplicaSet. The requirements
for connections to the instances when administering, and for the connections between the instances
themselves, are as follows:

• Only TCP/IP connections are supported. Using Unix sockets or named pipes is not supported.

• Only classic MySQL protocol connections are supported. X Protocol is not supported.

Tip

Your applications can use X Protocol - this requirement is for administration
operations using AdminAPI.

• InnoDB Cluster is intended to be deployed in a local area network. Deploying a single InnoDB Cluster
over a wide area network has a noticeable impact on write performance. A stable and low latency
network is important for InnoDB Cluster member servers to communicate with each other using the
underlying Group Replication technology for consensus on transactions. InnoDB ClusterSet, however,
is designed to be deployed across multiple datacenters, with each InnoDB Cluster in a single datacenter
and asynchronous replication channels linking them.

• InnoDB ReplicaSet may be used over a wide area network with no impact on write performance,
because the server instances are connected by asynchronous replication channels and do not need
consensus on transactions. However, replication lag will be greater over a wide area network, causing
the secondary servers in the InnoDB ReplicaSet to be further behind the primary server.

68

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/group-replication-ipv6.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-ipv6.html

Persisting Settings

MySQL Shell enables you to work with various APIs, and supports specifying connections as explained in
Connecting to the Server Using URI-Like Strings or Key-Value Pairs. You can specify connections using
either URI-like strings, or key-value pairs. The Additional Connection parameters are not supported in
AdminAPI. This documentation demonstrates AdminAPI using URI-like connection strings. For example, to
connect as the user myuser to the MySQL server instance at www.example.com, on port 3306 use the
connection string:

myuser@www.example.com:3306

To use this connection string with an AdminAPI operation such as dba.configureInstance(), you
need to ensure the connection string is interpreted as a string, for example by surrounding the connection
string with either single (') or double (") quote marks. If you are using the JavaScript implementation of
AdminAPI issue:

MySQL JS > dba.configureInstance('myuser@www.example.com:3306')

Assuming you are running MySQL Shell in the default interactive mode, you are prompted for your
password. AdminAPI supports MySQL Shell's Section 4.4, “Pluggable Password Store”, and once you
store the password you used to connect to the instance you are no longer prompted for it.

6.1.5 Persisting Settings

The AdminAPI commands you use to work with an InnoDB Cluster, InnoDB ClusterSet, InnoDB
ReplicaSet, and the individual member server instances in these deployments, modify the configuration of
MySQL Server on the instance. Depending on the way MySQL Shell is connected to an instance and the
version of MySQL Server installed on the instance, these configuration changes can be persisted to the
instance automatically. Persisting settings to the instance ensures that configuration changes are retained
after the instance restarts, for background information see SET PERSIST. This is essential for reliable
usage, for example if settings are not persisted then an instance which has been added to a cluster does
not rejoin the cluster after a restart because configuration changes are lost.

Instances which meet the following requirements support persisting configuration changes automatically:

• The instance is running MySQL version 8.0.11 or later.

• persisted_globals_load is set to ON.

• The instance has not been started with the --no-defaults option.

Instances which do not meet these requirements do not support persisting configuration changes
automatically, and when AdminAPI operations result in changes to the instance's settings to be persisted
you receive warnings such as:

WARNING: On instance 'localhost:3320' membership change cannot be persisted since MySQL version 5.7.21
does not support the SET PERSIST command (MySQL version >= 8.0.5 required). Please use the
<Dba>.configureLocalInstance command locally to persist the changes.

When AdminAPI commands are issued against the MySQL instance which MySQL Shell is currently
running on, in other words the local instance, MySQL Shell persists configuration changes directly
to the instance. On local instances which support persisting configuration changes automatically,
configuration changes are persisted to the instance's mysqld-auto.cnf file and the configuration
change does not require any further steps. On local instances which do not support persisting configuration
changes automatically, you need to make the changes locally, see Configuring Instances with
dba.configureLocalInstance().

When run against a remote instance, in other words an instance other than the one which MySQL Shell is
currently running on, if the instance supports persisting configuration changes automatically, the AdminAPI

69

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html#connection-parameters-additional
https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_persisted_globals_load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_no-defaults

Retrieving a Handler Object

commands persist configuration changes to the instance's mysql-auto.conf option file. If a remote
instance does not support persisting configuration changes automatically, the AdminAPI commands
can not automatically configure the instance's option file. This means that AdminAPI commands can
read information from the instance, for example to display the current configuration, but changes to the
configuration cannot be persisted to the instance's option file. In this case, you need to persist the changes
locally, see Configuring Instances with dba.configureLocalInstance().

6.1.6 Retrieving a Handler Object

When you are working with AdminAPI, you use a handler object which represents the InnoDB Cluster,
InnoDB ClusterSet, or InnoDB ReplicaSet. You assign this object to a variable, and then use the
operations available to monitor and administer the InnoDB Cluster, InnoDB ClusterSet, or InnoDB
ReplicaSet.

To be able to retrieve the handler object, you establish a connection to one of the active instances which
belong to the InnoDB Cluster, InnoDB ClusterSet, or InnoDB ReplicaSet. For example, when you create a
cluster using dba.createCluster(), the operation returns a Cluster object which can be assigned to
a variable. You use this object to work with the cluster, for example to add instances or check the cluster's
status.

If you want to retrieve a Cluster object again at a later date, for example after restarting MySQL Shell,
use the dba.getCluster([name],[options]) function. For example:

mysql-js> var cluster1 = dba.getCluster()

To retrieve the ClusterSet object representing an InnoDB ClusterSet deployment, use the
dba.getClusterSet() or cluster.getClusterSet() function. For example:

mysql-js> myclusterset = dba.getClusterSet()

Note that when you use a ClusterSet object, the server instance from which you got it must still be
online in the InnoDB ClusterSet. If that server instance goes offline, the object no longer works and you will
need to get it again from a server that is still online in the InnoDB ClusterSet.

Use the dba.getReplicaSet() operation to retrieve a ReplicaSet object. For example:

mysql-js> var replicaset1 = dba.getReplicaSet()

If you do not specify a name then the default object is returned. The returned object uses a new session,
independent from MySQL Shell's global session. This ensures that if you change the MySQL Shell global
session, the Cluster, ClusterSet, or ReplicaSet object maintains its session to the server instance.

By default MySQL Shell attempts to connect to the primary instance when you retrieve a handler. Set the
connectToPrimary option to configure this behavior.

• If connectToPrimary is true and the active global MySQL Shell session is not to a primary instance,
MySQL Shell queries for the primary instance. If there is no quorum in a cluster, the operation fails.

• If connectToPrimary is false, the retrieved object uses the server instance specified for the active
session, in other words the same instance as MySQL Shell's current global session.

• If connectToPrimary is not specified, MySQL Shell treats connectToPrimary as true, and falls
back to connectToPrimary being false.

To force connecting to a secondary, establish a connection to the secondary instance and use the
connectToPrimary option by issuing:

mysql-js> shell.connect(secondary_member)

70

Creating User Accounts for Administration

mysql-js> var cluster1 = dba.getCluster(testCluster, {connectToPrimary:false})

Tip

Remember that secondary instances have super_read_only=ON, so you cannot
write changes to them.

6.1.7 Creating User Accounts for Administration

The user account used to administer an instance does not have to be the root account, however the
user needs to be assigned full read and write privileges on the metadata tables in addition to full MySQL
administrator privileges (SUPER, GRANT OPTION, CREATE, DROP and so on). In this procedure the user
icadmin is shown in InnoDB Cluster examples, and rsadmin in InnoDB ReplicaSet examples.

Important

The user name and password of an administrator must be the same on all
instances.

In version 8.0.20 and later, use the setupAdminAccount(user) operation to create or upgrade a
MySQL user account with the necessary privileges to administer an InnoDB Cluster or InnoDB ReplicaSet.
To use the setupAdminAccount() operation, you must be connected as a MySQL user with privileges
to create users, for example as root. The setupAdminAccount(user) operation also enables you to
upgrade an existing MySQL account with the necessary privileges before a dba.upgradeMetadata()
operation.

The mandatory user argument is the name of the MySQL account you want to create or
upgrade to be used to administrator the account. The format of the user names accepted by the
setupAdminAccount() operation follows the standard MySQL account name format, see Specifying
Account Names. The user argument format is username[@host] where host is optional and if it is not
provided it defaults to the % wildcard character.

For example, to create a user named icadmin to administer an InnoDB Cluster assigned to the variable
myCluster, issue:

mysql-js> myCluster.setupAdminAccount('icadmin')

Missing the password for new account icadmin@%. Please provide one.
Password for new account: ********
Confirm password: ********

Creating user icadmin@%.
Setting user password.
Account icadmin@% was successfully created.

If you already have an administration user, for example created with a version prior to 8.0.20, use the
update option with the setupAdminAccount() operation to upgrade the privileges of the existing user.
This is relevant during an upgrade, to ensure that the administration user is compatible. For example, to
upgrade the user named icadmin issue:

mysql-js> myCluster.setupAdminAccount('icadmin', {'update':1})
Updating user icadmin@%.
Account icadmin@% was successfully updated.

In versions prior to 8.0.20, the preferred method to create users for administration is using the
clusterAdmin option with the dba.configureInstance() operation. The clusterAdmin option
must be used with a MySQL Shell connection based on a user which has the privileges to create users
with suitable privileges, in this example the root user is used. For example:

71

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/account-names.html
https://dev.mysql.com/doc/refman/8.0/en/account-names.html

Verbose Logging

mysql-js> dba.configureInstance('root@ic-1:3306', {clusterAdmin: "'icadmin'@'ic-1%'"});

The format of the user names accepted by the setupAdminAccount() operation and the
clusterAdmin option follows the standard MySQL account name format, see Specifying Account Names.

If only read operations are needed (such as for monitoring purposes), an account with more restricted
privileges can be used. See Configuring Users for AdminAPI.

6.1.8 Verbose Logging

When working with a production deployment it can be useful to configure verbose logging for MySQL Shell.
For example, the information in the log can help you to find and resolve any issues that might occur when
you are preparing server instances to work as part of InnoDB Cluster. To start MySQL Shell with a verbose
logging level, use the --log-level option:

$> mysqlsh --log-level=DEBUG3

The DEBUG3 level is recommended, see --log-level for more information. When DEBUG3 is set the
MySQL Shell log file contains lines such as Debug: execute_sql(...) which contain the SQL
queries that are executed as part of each AdminAPI call. The log file generated by MySQL Shell is located
in ~/.mysqlsh/mysqlsh.log for Unix-based systems; on Microsoft Windows systems it is located in
%APPDATA%\MySQL\mysqlsh\mysqlsh.log. See Chapter 12, MySQL Shell Logging and Debug for
more information.

In addition to enabling the MySQL Shell log level, you can configure the amount of output AdminAPI
provides in MySQL Shell after issuing each command. To enable the amount of AdminAPI output, in
MySQL Shell issue:

mysql-js> dba.verbose=2

This enables the maximum output from AdminAPI calls. The available levels of output are:

• 0 or OFF is the default. This provides minimal output and is the recommended level when not
troubleshooting.

• 1 or ON adds verbose output from each call to the AdminAPI.

• 2 adds debug output to the verbose output providing full information about what each call to AdminAPI
executes.

MySQL Shell can optionally log the SQL statements used by AdminAPI operations (with the exception of
sandbox operations), and can also display them in the terminal as they are executed. To configure MySQL
Shell to do this, see Section 12.4, “Logging AdminAPI Operations”.

6.1.9 Finding the Primary

When you are working with a single-primary InnoDB Cluster or an InnoDB ReplicaSet, you need to
connect to the primary instance for administration tasks so that configuration changes can be written to the
metadata. To find the current primary you can:

• Use the --redirect-primary option at MySQL Shell start up to ensure that the target server is part
of an InnoDB Cluster or InnoDB ReplicaSet. If the target instance is not the primary, MySQL Shell finds
the primary and connects to it.

• Use the shell.connectToPrimary([instance, password]) operation (added in version 8.0.20),
which checks whether the target instance belongs to a cluster or ReplicaSet. If so, MySQL Shell opens
a new session to the primary, sets the active global MySQL Shell session to the established session and
returns it.

72

https://dev.mysql.com/doc/refman/8.0/en/account-names.html

Scripting AdminAPI

If an instance is not provided, the operation attempts to use the active global MySQL Shell session. If
an instance is not provided and there is no active global MySQL Shell session, an exception is thrown.
If the target instance does not belong to a cluster or ReplicaSet the operation fails with an error.

• Use the status operation, find the primary in the result, and manually connect to that instance.

6.1.10 Scripting AdminAPI

In addition to the interactive mode illustrated in this section, MySQL Shell supports running scripts in
batch mode. This enables you to automate processes using AdminAPI with scripts written in JavaScript or
Python, which can be run using MySQL Shell's --file option. For example:

$> mysqlsh --file setup-innodb-cluster.js

Note

Any command line options specified after the script file name are passed to the
script and not to MySQL Shell. You can access those options using the os.argv
array in JavaScript, or the sys.argv array in Python. In both cases, the first option
picked up in the array is the script name.

The contents of an example script file are shown here:

print('InnoDB Cluster sandbox set up\n');
print('==================================\n');
print('Setting up a MySQL InnoDB Cluster with 3 MySQL Server sandbox instances,\n');
print('installed in ~/mysql-sandboxes, running on ports 3310, 3320 and 3330.\n\n');

var dbPass = shell.prompt('Please enter a password for the MySQL root account: ', {type:"password"});

try {
 print('\nDeploying the sandbox instances.');
 dba.deploySandboxInstance(3310, {password: dbPass});
 print('.');
 dba.deploySandboxInstance(3320, {password: dbPass});
 print('.');
 dba.deploySandboxInstance(3330, {password: dbPass});
 print('.\nSandbox instances deployed successfully.\n\n');

 print('Setting up InnoDB Cluster...\n');
 shell.connect('root@localhost:3310', dbPass);

 var cluster = dba.createCluster("prodCluster");

 print('Adding instances to the Cluster.');
 cluster.addInstance({user: "root", host: "localhost", port: 3320, password: dbPass});
 print('.');
 cluster.addInstance({user: "root", host: "localhost", port: 3330, password: dbPass});
 print('.\nInstances successfully added to the Cluster.');

 print('\nInnoDB Cluster deployed successfully.\n');
} catch(e) {
 print('\nThe InnoDB Cluster could not be created.\n\nError: ' +
 + e.message + '\n');
}

AdminAPI is also supported by MySQL Shell's Section 5.8, “API Command Line Integration”. This enables
you to easily integrate AdminAPI into your environment. For example, to check the status of an InnoDB
Cluster using the sandbox instance listening on port 1234:

$ mysqlsh root@localhost:1234 -- cluster status

73

AdminAPI MySQL Sandboxes

This maps to the equivalent command in MySQL Shell:

mysql-js> cluster.status()

6.2 AdminAPI MySQL Sandboxes
This section explains how to set up a sandbox deployment with AdminAPI. Initially deploying and using
local sandbox instances of MySQL is a good way to start your exploration of AdminAPI. You can fully
test out the functionality locally, prior to deployment on your production servers. AdminAPI has built-in
functionality for creating sandbox instances that are correctly configured to work with InnoDB Cluster,
InnoDB ClusterSet, and InnoDB ReplicaSet in a locally deployed scenario.

Important

Sandbox instances are only suitable for deploying and running on your local
machine for testing purposes. In a production environment the MySQL Server
instances are deployed to various host machines on the network. See Section 7.2,
“Deploying a Production InnoDB Cluster” for more information.

Unlike a production deployment, where you work with instances and specify them by a connection string,
sandbox instances run locally on the same machine as which you are running MySQL Shell. Therefore, to
specify a sandbox instance you supply the port number which the MySQL sandbox instance is listening on.

6.2.1 Deploying Sandbox Instances

Rather than using a production setup, where each instance runs on a separate host, AdminAPI provides
the dba.deploySandboxInstance(port_number) operation. The port_number argument is the
TCP port number where the MySQL Server instance listens for connections. To deploy a new sandbox
instance which is bound to port 3310, issue:

mysql-js> dba.deploySandboxInstance(3310)

By default the sandbox is created in a directory named $HOME/mysql-sandboxes/port on Unix
systems. For Microsoft Windows systems the directory is %userprofile%\MySQL\mysql-sandboxes
\port. Each sandbox instance is stored in a directory named after the port_number.

The root user's password for the instance is prompted for.

Important

Each sandbox instance uses the root user and password, and it must be the same
on all sandbox instances which should work together. This is not recommended in
production.

To deploy another sandbox server instance, repeat the steps followed for the sandbox instance at port
3310, choosing different port numbers for each instance.

To change the directory which sandboxes are stored in, for example to run multiple sandboxes on one host
for testing purposes, use the MySQL Shell sandboxDir option. For example to use a sandbox in the /
home/user/sandbox1 directory, issue:

mysql-js> shell.options.sandboxDir='/home/user/sandbox1'

All subsequent sandbox related operations are then executed against the instances found at /home/
user/sandbox1.

When you deploy sandboxes, MySQL Shell searches for the mysqld binary which it then uses to
create the sandbox instance. You can configure where MySQL Shell searches for the mysqld binary by

74

Managing Sandbox Instances

configuring the PATH environment variable. This can be useful to test a new version of MySQL locally
before deploying it to production. For example, to use a mysqld binary at the path /home/user/mysql-
latest/bin/ issue:

PATH=/home/user/mysql-latest/bin/:$PATH

Then run MySQL Shell from the terminal where the PATH environment variable is set. Any sandboxes you
deploy then use the mysqld binary found at the configured path.

The following options are supported by the dba.deploySandboxInstance() operation:

• allowRootFrom configures which host the root user can connect from. Defaults to root@%.

• ignoreSslError configures secure connections on the sandbox instance. When ignoreSslError
is true, which is the default, no error is issued during the operation if SSL support cannot be provided
and the server instance is deployed without SSL support. When ignoreSslError is set to false, the
sandbox instance is deployed with SSL support, issuing an error if SSL support cannot be configured.

• mysqldOptions configures additional options on the sandbox instance. Defaults to an empty
string, and accepts a list of strings that specify options and values. For example mysqldOptions:
["lower_case_table_names=1", "report_host="10.1.2.3"]}. The specified options are
written to the sandbox instance's option file.

• portX configures the port used for X Protocol connections. The default is calculated by multiplying the
port value by 10. The value is an integer between 1024 and 65535.

6.2.2 Managing Sandbox Instances

Once a sandbox instance is running, it is possible to change its status at any time using the following
commands. Specify the port number for the instance to identify it:

• To stop a sandbox instance use dba.stopSandboxInstance(instance). This stops the instance
gracefully, unlike dba.killSandboxInstance(instance).

• To start a sandbox instance use dba.startSandboxInstance(instance).

• To kill a sandbox instance use dba.killSandboxInstance(instance). This stops the instance
without gracefully stopping it and is useful in simulating unexpected halts.

• To delete a sandbox instance use dba.deleteSandboxInstance(instance). This completely
removes the sandbox instance from your file system.

6.3 Tagging Metadata
From version 8.0.21, a configurable tag framework is available, to allow the metadata of InnoDB Cluster,
InnoDB ClusterSet, or InnoDB ReplicaSet to be marked with additional information. Tags make it possible
to associate custom key-value pairs to a Cluster, ReplicaSet, or instance. Tags have been reserved
for MySQL Router usage, which enable a compatible MySQL Router to support hiding instances from
applications. The following tags are reserved for this purpose:

• _hidden instructs MySQL Router to exclude the instance from the list of possible destinations for client
applications

• _disconnect_existing_sessions_when_hidden instructs the router to disconnect existing
connections from instances that are marked to be hidden

For more information, see Removing Instances from Routing.

75

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port

Showing Tags

In addition, the tags framework is user configurable. Custom tags can consist of any ASCII character
and provide a namespace, which serves as a dictionary of key-value pairs that can be associated with
Clusters, ReplicaSets or their specific instances. Tag values can be any JSON value. This enables you to
add your own attributes on top of the metadata.

Showing Tags

The Cluster.options() operation shows information about the tags assigned to individual cluster
instances as well as to the cluster itself. For example, the InnoDB Cluster assigned to myCluster could
show:

mysql-js> myCluster.options()
{
 "cluster": {
 "name": "test1",
 "tags": {
 "ic-1:3306": [
 {
 "option": "_disconnect_existing_sessions_when_hidden",
 "value": true
 },
 {
 "option": "_hidden",
 "value": false
 }
],
 "ic-2:3306": [],
 "ic-3:3306": [],
 "global": [
 {
 "option": "location:",
 "value": "US East"
 }
]
 }
 }
}

This cluster has a global tag named location which has the value US East, and instance ic-1 has
been tagged.

Setting Tags on a Cluster Instance

You can set tags at the instance level, which enables you for example to mark an instance as not available,
so that applications and router treat it as offline. Use the Cluster.setInstanceOption(instance,
option, value) operation to set the value of a tag for the instance. The instance argument is
a connection string to the target instance. The option argument must be a string with the format
namespace:option. The value parameter is the value that should be assigned to option in the
specified namespace. If the value is null, the option is removed from the specified namespace.
For instances which belong to a cluster, the setInstanceOption() operation only accepts the tag
namespace. Any other namespace results in an ArgumentError.

For example, to set the tag test to true on the myCluster instance ic-1, issue:

mysql-js> myCluster.setInstanceOption(icadmin@ic-1:3306, "tag:test", true);

Removing Instances from Routing

When AdminAPI and MySQL Router are working together, they support specific tags that enable you
to mark instances as hidden and remove them from routing. MySQL Router then excludes such tagged

76

Removing Instances from Routing

instances from the routing destination candidates list. This enables you to safely take a server instance
offline, so that applications and MySQL Router ignore it, for example while you perform maintenance tasks,
such as server upgrade or configuration changes.

When the _hidden tag is set to true, this instructs MySQL Router to exclude the instance from the
list of possible destinations for client applications. The instance remains online, but is not routed
to for new incoming connections. The _disconnect_existing_sessions_when_hidden tag
controls how existing connections to the instance are closed. This tag is assumed to be true, and it
instructs any MySQL Router instances s bootstrapped against the InnoDB Cluster, InnoDB ClusterSet,
or InnoDB ReplicaSet to disconnect any existing connections from the instance when the _hidden
tag is true. When _disconnect_existing_sessions_when_hidden is false, any existing
client connections to the instance are not closed if _hidden is true. The reserved _hidden and
_disconnect_existing_sessions_when_hidden tags are specific to instances and cannot be used
at the cluster level.

Warning

When the use_gr_notifications MySQL Router option is enabled, it defaults
to 60 seconds. This means that when you set tags, it takes up to 60 seconds
for MySQL Router to detect the change. To reduce the waiting time, change
use_gr_notifications to a lower value.

For example, suppose you want to remove the ic-1 instance which is part of an InnoDB Cluster assigned
to myCluster from the routing destinations. Use the setInstanceOption() operation to enable the
_hidden and _disconnect_existing_sessions_when_hidden tags:

mysql-js> myCluster.setInstanceOption(icadmin@ic-1:3306, "tag:_hidden", true);

You can verify the change in the metadata by checking the options. For example the change made to ic-1
would show in the options as:

mysql-js> myCluster.options()
{
 "cluster": {
 "name": "test1",
 "tags": {
 "ic-1:3306": [
 {
 "option": "_disconnect_existing_sessions_when_hidden",
 "value": true
 },
 {
 "option": "_hidden",
 "value": true
 }
],
 "ic-2:3306": [],
 "ic-3:3306": [],
 "global": []
 }
 }
}

You can verify that MySQL Router has detected the change in the metadata by viewing the log file. A
MySQL Router that has detected the change made to ic-1 would show a change such as:

2020-07-03 16:32:16 metadata_cache INFO [7fa9d164c700] Potential changes detected in cluster 'testCluster' after metadata refresh
2020-07-03 16:32:16 metadata_cache INFO [7fa9d164c700] view_id = 4, (3 members)
2020-07-03 16:32:16 metadata_cache INFO [7fa9d164c700] ic-1:3306 / 33060 - mode=RW
2020-07-03 16:32:16 metadata_cache INFO [7fa9d164c700] ic-1:3306 / 33060 - mode=RO
2020-07-03 16:32:16 metadata_cache INFO [7fa9d164c700] ic-1:3306 / 33060 - mode=RO hidden=yes disconnect_when_hidden=yes

77

https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_use_gr_notifications
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_use_gr_notifications

Setting Tags on a Cluster

2020-07-03 16:32:16 routing INFO [7fa9d164c700] Routing routing:testCluster_x_ro listening on 64470 got request to disconnect invalid connections: metadata change
2020-07-03 16:32:16 routing INFO [7fa9d164c700] Routing routing:testCluster_x_rw listening on 64460 got request to disconnect invalid connections: metadata change
2020-07-03 16:32:16 routing INFO [7fa9d164c700] Routing routing:testCluster_rw listening on 6446 got request to disconnect invalid connections: metadata change
2020-07-03 16:32:16 routing INFO [7fa9d164c700] Routing routing:testCluster_ro listening on 6447 got request to disconnect invalid connections: metadata change

To bring the instance back online, use the setInstanceOption() operation to remove the tags, and
MySQL Router automatically adds the instance back to the routing destinations, and it becomes online for
applications. For example:

mysql-js> myCluster.setInstanceOption(icadmin@ic-1:3306, "tag:_hidden", false);

Verify the change in the metadata by checking the options again:

mysql-js> myCluster.options()
{
 "cluster": {
 "name": "test1",
 "tags": {
 "ic-1:3306": [
 {
 "option": "_disconnect_existing_sessions_when_hidden",
 "value": true
 },
 {
 "option": "_hidden",
 "value": false
 }
],
 "ic-2:3306": [],
 "ic-3:3306": [],
 "global": []
 }
 }
}

Setting Tags on a Cluster

The Cluster.setOption(option, value) operation enables you to change the value of a
namespace option for the whole cluster. The option argument must be a string with the format
namespace:option. The value parameter is the value to be assigned to option in the specified
namespace. If the value is null, the option is removed from the specified namespace. For Clusters,
the setOption() operation accepts the tag namespace. Any other namespace results in an
ArgumentError.

Tip

Tags set at the cluster level do not override tags set at the instance level. You
cannot use Cluster.setOption() to remove all tags set at the instance level.

There is no requirement for all the instances to be online, only that the cluster has quorum. To tag the
InnoDB Cluster assigned to myCluster with the location tag set to US East, issue:

mysql-js> myCluster.setOption("tag:location", "US East")
mysql-js> myCluster.options()
{
 "cluster": {
 "name": "test1",
 "tags": {
 "ic-1:3306": [],
 "ic-2:3306": [],
 "ic-3:3306": [],
 "global": [
 {

78

User Defined Tagging

 "option": "location:",
 "value": "US East"
 }
]
 }
 }
}

User Defined Tagging

AdminAPI supports the tag namespace, where you can store information in the key-value pairs associated
with a given Cluster, ReplicaSet or instance. The options under the tag namespace are not constrained,
meaning you can tag with whatever information you choose, as long as it is a valid MySQL ASCII identifier.
You can use any name and value for a tag, as long as the name follows the following syntax: _ or letters
followed by alphanumeric and _ characters.

The namespace option is a colon separated string with the format namespace:option, where
namespace is the name of the namespace and option is the actual option name. You can set and
remove tags at the instance level, or at the Cluster or ReplicaSet level.

Tag names can have any value as long as it starts with a letter or underscore, optionally followed by
alphanumeric and _ characters, for example, ^[a-zA-Z_][0-9a-zA-Z_]*. Only built-in tags are allowed
to start with the underscore _ character.

How you use custom tags is up to you. You could set a custom tag on a Cluster to mark the region which
it is operating in. For example, you could set a custom tag named location, with a value of EMEA on the
cluster.

6.4 Using MySQL Router with AdminAPI, InnoDB Cluster, and
InnoDB ReplicaSet

This section describes how to integrate MySQL Router with InnoDB Cluster and InnoDB ReplicaSet. For
instructions to integrate MySQL Router with InnoDB ClusterSet, see Section 8.5, “Integrating MySQL
Router With InnoDB ClusterSet”.

For background information on MySQL Router, see MySQL Router 8.0.

6.4.1 Bootstrapping MySQL Router

You bootstrap MySQL Router against an InnoDB ReplicaSet or InnoDB Cluster to automatically configure
routing. The bootstrap process is a specific way of running MySQL Router, which does not start the usual
routing and instead configures the mysqlrouter.conf file based on the metadata.

To bootstrap MySQL Router at the command-line, pass in the --bootstrap option when you start the
mysqlrouter command, and it retrieves the topology information from the metadata and configures
routing connections to the server instances. Alternatively, on Windows use the MySQL Installer to
bootstrap MySQL Router, see MySQL Router Configuration with MySQL Installer.

Once MySQL Router has been bootstrapped, client applications then connect to the ports it publishes.
MySQL Router automatically redirects client connections to the instances based on the incoming port, for
example 6646 is used by default for read-write connections using classic MySQL protocol. In the event
of a topology change, for example due to an unexpected failure of an instance, MySQL Router detects
the change and adjusts the routing to the remaining instances automatically. This removes the need for
client applications to handle failover, or to be aware of the underlying topology. For more information, see
Routing for MySQL InnoDB Cluster.

79

https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer-workflow.html#mysql-installer-workflow-nonserver-products
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-innodb-cluster.html

Configuring the MySQL Router User

Note

Do not attempt to configure MySQL Router manually to redirect to the server
instances. Always use the --bootstrap option as this ensures that MySQL
Router takes its configuration from the metadata. See Cluster Metadata and State.

6.4.2 Configuring the MySQL Router User

When MySQL Router connects to an InnoDB Cluster or InnoDB ReplicaSet, it requires a user account
which has the correct privileges. From MySQL Router version 8.0.19 this internal user can be specified
using the --account option. In previous versions, MySQL Router created internal accounts at each
bootstrap of the cluster, which could result in a number of accounts building up over time. From MySQL
Shell version 8.0.20, you can use AdminAPI to set up the user account required for MySQL Router.

Use the setupRouterAccount(user, [options]) operation to create a MySQL user account or
upgrade an existing account so that it can be used by MySQL Router to operate on an InnoDB Cluster or
InnoDB ReplicaSet. This is the recommended method of configuring MySQL Router with InnoDB Cluster
and InnoDB ReplicaSet.

To add a new MySQL Router account named myRouter1 to the InnoDB Cluster referenced by the
variable testCluster, issue:

mysqlsh> testCluster.setupRouterAccount('myRouter1')

In this case, no domain is specified and so the account is created with the wildcard (%) character, which
ensures that the created user can connect from any domain. To limit the account to only be able to connect
from the example.com domain, issue:

mysqlsh> testCluster.setupRouterAccount('myRouter1'@'example.com')

The operation prompts for a password, and then sets up the MySQL Router user with the correct
privileges. If the InnoDB Cluster or InnoDB ReplicaSet has multiple instances, the created MySQL Router
user is propagated to all of the instances.

When you already have a MySQL Router user configured, for example if you were using a version prior to
8.0.20, you can use the setupRouterAccount() operation to reconfigure the existing user. In this case,
pass in the update option set to true. For example, to reconfigure the myOldRouter user, issue:

mysqlsh> testCluster.setupRouterAccount('myOldRouter', {'update':1})

6.4.3 Deploying MySQL Router

The recommended deployment of MySQL Router is on the same host as the application. When using a
sandbox deployment, everything is running on a single host, therefore you deploy MySQL Router to the
same host. When using a production deployment, we recommend deploying one MySQL Router instance
to each machine used to host one of your client applications. It is also possible to deploy MySQL Router to
a common machine through which your application instances connect. For more information, see Installing
MySQL Router.

To bootstrap MySQL Router based on an InnoDB Cluster or InnoDB ReplicaSet, you need the URI-
like connection string to an online instance. Run the mysqlrouter command and provide the --
bootstrap=instance option, where instance is the URI-like connection string to an online instance.
MySQL Router connects to the instance and uses the included metadata cache plugin to retrieve the
metadata, consisting of a list of server instance addresses and their role. For example:

$> mysqlrouter --bootstrap icadmin@ic-1:3306 --account=mysqlrouter

80

https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-general-metadata.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_account
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap

Deploying MySQL Router

You are prompted for the instance password and encryption key for MySQL Router to use. This encryption
key is used to encrypt the instance password used by MySQL Router to connect to the cluster. The
ports you can use for client connections are also displayed. For additional bootstrap related options, see
Bootstrapping Options.

Tip

At this point MySQL Router has not been started so that it would route connections.
Bootstrapping is a separate process.

The MySQL Router bootstrap process creates a mysqlrouter.conf file, with the settings based on
the metadata retrieved from the address passed to the --bootstrap option, in the above example
icadmin@ic-1:3306. Based on the metadata retrieved, MySQL Router automatically configures the
mysqlrouter.conf file, including a metadata_cache section. If you are using MySQL Router 8.0.14
and later, the --bootstrap option automatically configures MySQL Router to track and store active
MySQL metadata server addresses at the path configured by dynamic_state. This ensures that when
MySQL Router is restarted it knows which MySQL metadata server addresses are current. For more
information, see the dynamic_state documentation.

In earlier MySQL Router versions, metadata server information was defined during MySQL Router's initial
bootstrap operation and stored statically as bootstrap_server_addresses in the configuration file,
which contained the addresses for all server instances in the cluster. For example:

[metadata_cache:prodCluster]
router_id=1
bootstrap_server_addresses=mysql://icadmin@ic-1:3306,mysql://icadmin@ic-2:3306,mysql://icadmin@ic-3:3306
user=mysql_router1_jy95yozko3k2
metadata_cluster=prodCluster
ttl=300

Tip

If using MySQL Router 8.0.13 or earlier, when you change the topology of a
cluster by adding another server instance after you have bootstrapped MySQL
Router, you need to update bootstrap_server_addresses based on the
updated metadata. Either restart MySQL Router using the --bootstrap
option, or manually edit the bootstrap_server_addresses section of the
mysqlrouter.conf file and restart MySQL Router.

The generated MySQL Router configuration creates TCP ports which you use to connect to the cluster.
By default, ports for communicating with the cluster using both classic MySQL protocol and X Protocol are
created. To use X Protocol the server instances must have X Plugin installed and configured, which is the
default for MySQL 8.0 and later. The default available TCP ports are:

• 6446 - for classic MySQL protocol read-write sessions, which MySQL Router redirects incoming
connections to primary server instances.

• 6447 - for classic MySQL protocol read-only sessions, which MySQL Router redirects incoming
connections to one of the secondary server instances.

• 64460 - for X Protocol read-write sessions, which MySQL Router redirects incoming connections to
primary server instances.

• 64470 - for X Protocol read-only sessions, which MySQL Router redirects incoming connections to one
of the secondary server instances.

Depending on your MySQL Router configuration the port numbers might be different
to the above. For example if you use the --conf-base-port option, or the

81

https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#mysql-router-command-options-bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_dynamic_state
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_dynamic_state
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_bootstrap_server_addresses
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_bootstrap_server_addresses
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_bootstrap_server_addresses
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_conf-base-port

Using ReplicaSets with MySQL Router

group_replication_single_primary_mode variable. The exact ports are listed when you start
MySQL Router.

The way incoming connections are redirected depends on the underlying topology being used. For
example, when using a single-primary cluster, by default MySQL Router publishes a X Protocol and a
classic MySQL protocol port, which clients connect to for read-write sessions and which are redirected
to the cluster's single primary. With a multi-primary cluster read-write sessions are redirected to one
of the primary instances in a round-robin fashion. For example, this means that the first connection
to port 6446 would be redirected to the ic-1 instance, the second connection to port 6446 would be
redirected to the ic-2 instance, and so on. For incoming read-only connections MySQL Router redirects
connections to one of the secondary instances, also in a round-robin fashion. To modify this behavior see
the routing_strategy option.

Once bootstrapped and configured, start MySQL Router. If you used a system wide install with the --
bootstrap option then issue:

$> mysqlrouter &

If you installed MySQL Router to a directory using the --directory option, use the start.sh script
found in the directory you installed to. Alternatively set up a service to start MySQL Router automatically
when the system boots, see Starting MySQL Router. You can now connect a MySQL client, such as
MySQL Shell to one of the incoming MySQL Router ports as described above and see how the client gets
transparently connected to one of the server instances.

$> mysqlsh --uri root@localhost:6442

To verify which instance you are actually connected to, simply issue an SQL query against the port status
variable.

mysql-js> \sql
Switching to SQL mode... Commands end with ;
mysql-sql> select @@port;
+--------+
| @@port |
+--------+
| 3310 |
+--------+

6.4.4 Using ReplicaSets with MySQL Router

You can use MySQL Router 8.0.19 and later to bootstrap against an InnoDB ReplicaSet, see Section 6.4,
“Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet”. The only difference in the
generated MySQL Router configuration file is the addition of the cluster_type option. When MySQL
Router is bootstrapped against a ReplicaSet, the generated configuration file includes:

cluster_type=rs

When you use MySQL Router with InnoDB ReplicaSet, be aware that:

• The read-write port of MySQL Router directs client connections to the primary instance of the ReplicaSet

• The read-only port of MySQL Router direct client connections to a secondary instance of the ReplicaSet,
although it could also direct them to the primary

• MySQL Router obtains information about the ReplicaSet's topology from the primary instance

• MySQL Router automatically recovers when the primary instance becomes unavailable and a different
instance is promoted

82

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_single_primary_mode
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_routing_strategy
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_directory
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-server-starting.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_cluster_type

Testing InnoDB Cluster High Availability

You work with the MySQL Router instances which have been bootstrapped against a ReplicaSet in
exactly the same way as with InnoDB Cluster. See Section 6.4.6, “Working with a Cluster's Routers” for
information on ReplicaSet.listRouters() and ReplicaSet.removeRouterMetadata().

6.4.5 Testing InnoDB Cluster High Availability

To test if InnoDB Cluster high availability works, simulate an unexpected halt by killing an instance. The
cluster detects the fact that the instance left the cluster and reconfigures itself. Exactly how the cluster
reconfigures itself depends on whether you are using a single-primary or multi-primary cluster, and the role
the instance serves within the cluster.

In single-primary mode:

• If the current primary leaves the cluster, one of the secondary instances is elected as the new primary,
with instances prioritized by the lowest server_uuid. MySQL Router redirects read-write connections
to the newly elected primary.

• If a current secondary leaves the cluster, MySQL Router stops redirecting read-only connections to the
instance.

For more information see Single-Primary Mode.

In multi-primary mode:

• If a current "R/W" instance leaves the cluster, MySQL Router redirects read-write connections to other
primaries. If the instance which left was the last primary in the cluster then the cluster is completely gone
and you cannot connect to any MySQL Router port.

For more information see Multi-Primary Mode.

There are various ways to simulate an instance leaving a cluster, for example you can forcibly stop the
MySQL server on an instance, or use the AdminAPI dba.killSandboxInstance() if testing a sandbox
deployment. In this example assume there is a single-primary sandbox cluster deployment with three
server instances and the instance listening at port 3310 is the current primary. Simulate the instance
leaving the cluster unexpectedly:

mysql-js> dba.killSandboxInstance(3310)

The cluster detects the change and elects a new primary automatically. Assuming your session is
connected to port 6446, the default read-write classic MySQL protocol port, MySQL Router should detect
the change to the cluster's topology and redirect your session to the newly elected primary. To verify this,
switch to SQL mode in MySQL Shell using the \sql command and select the instance's port variable to
check which instance your session has been redirected to. Notice that the first SELECT statement fails as
the connection to the original primary was lost. This means the current session has been closed, MySQL
Shell automatically reconnects for you and when you issue the command again the new port is confirmed.

mysql-js> \sql
Switching to SQL mode... Commands end with ;
mysql-sql> SELECT @@port;
ERROR: 2013 (HY000): Lost connection to MySQL server during query
The global session got disconnected.
Attempting to reconnect to 'root@localhost:6446'...
The global session was successfully reconnected.
mysql-sql> SELECT @@port;
+--------+
| @@port |
+--------+
| 3330 |
+--------+

83

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-single-primary-mode.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-multi-primary-mode.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/select.html

Working with a Cluster's Routers

1 row in set (0.00 sec)

In this example, the instance at port 3330 has been elected as the new primary. This shows that the
InnoDB Cluster provided us with automatic failover, that MySQL Router has automatically reconnected us
to the new primary instance, and that we have high availability.

6.4.6 Working with a Cluster's Routers

You can bootstrap multiple instances of MySQL Router against InnoDB Cluster or InnoDB ReplicaSet.
From version 8.0.19, to show a list of all registered MySQL Router instances, issue:

Cluster.listRouters()

The result provides information about each registered MySQL Router instance, such as its name in the
metadata, the hostname, ports, and so on. For example, issue:

mysql-js> Cluster.listRouters()
{
 "clusterName": "example",
 "routers": {
 "ic-1:3306": {
 "hostname": "ic-1:3306",
 "lastCheckIn": "2020-01-16 11:43:45",
 "roPort": 6447,
 "roXPort": 64470,
 "rwPort": 6446,
 "rwXPort": 64460,
 "version": "8.0.19"
 }
 }
}

The returned information shows:

• The name of the MySQL Router instance.

• Last check-in timestamp, which is generated by a periodic ping from the MySQL Router stored in the
metadata

• Hostname where the MySQL Router instance is running

• Read-Only and Read-Write ports which the MySQL Router publishes for classic MySQL protocol
connections

• Read-Only and Read-Write ports which the MySQL Router publishes for X Protocol connections

• Version of this MySQL Router instance. The support for returning version was added in 8.0.19. If this
operation is run against an earlier version of MySQL Router, the version field is null.

Additionally, the Cluster.listRouters() operation can show a list of instances that do not support the
metadata version supported by MySQL Shell. Use the onlyUpgradeRequired option, for example by
issuing Cluster.listRouters({'onlyUpgradeRequired':'true'}). The returned list shows only
the MySQL Router instances registered with the Cluster which require an upgrade of their metadata. See
Section 7.8.2, “Upgrading InnoDB Cluster Metadata”.

MySQL Router instances are not automatically removed from the metadata, so for example as you
bootstrap more instances the InnoDB Cluster metadata contains a growing number of references
to instances. To remove a registered MySQL Router instance from a cluster's metadata, use the
Cluster.removeRouterMetadata(router) operation, added in version 8.0.19. Use the
Cluster.listRouters() operation to get the name of the MySQL Router instance you want to remove,

84

Working with a Cluster's Routers

and pass it in as router. For example suppose your MySQL Router instances registered with a cluster
were:

mysql-js> Cluster.listRouters(){

 "clusterName": "testCluster",
 "routers": {
 "myRouter1": {
 "hostname": "example1.com",
 "lastCheckIn": null,
 "routerId": "1",
 "roPort": "6447",
 "rwPort": "6446"
 "version": null
 },
 "myRouter2": {
 "hostname": "example2.com",
 "lastCheckIn": "2019-11-27 16:25:00",
 "routerId": "3",
 "roPort": "6447",
 "rwPort": "6446"
 "version": "8.0.19"
 }
 }
}

Based on the fact that the instance named “myRouter1” has null for “lastCheckIn” and “version”, we
decide to remove this old instance from the metadata by issuing:

mysql-js> cluster.removeRouterMetadata('myRouter1')

The MySQL Router instance specified is unregistered from the cluster by removing it from the InnoDB
Cluster metadata.

85

86

Chapter 7 MySQL InnoDB Cluster

Table of Contents
7.1 MySQL InnoDB Cluster Requirements ... 89
7.2 Deploying a Production InnoDB Cluster ... 89

7.2.1 Deploying a New Production InnoDB Cluster ... 92
7.2.2 Using MySQL Clone with InnoDB Cluster ... 99
7.2.3 Adopting a Group Replication Deployment .. 103

7.3 Monitoring InnoDB Cluster .. 104
7.4 Working with Instances ... 114
7.5 Working with InnoDB Cluster ... 116
7.6 Configuring InnoDB Cluster ... 120
7.7 Troubleshooting InnoDB Cluster .. 126
7.8 Upgrading an InnoDB Cluster .. 131

7.8.1 Rolling Upgrades ... 131
7.8.2 Upgrading InnoDB Cluster Metadata ... 132
7.8.3 Troubleshooting InnoDB Cluster Upgrades .. 133

7.9 InnoDB Cluster Tips ... 134
7.10 InnoDB Cluster Limitations .. 137

MySQL InnoDB Cluster provides a complete high availability solution for MySQL. By using AdminAPI,
which is included with MySQL Shell, you can easily configure and administer a group of at least three
MySQL server instances to function as an InnoDB Cluster.

Each MySQL server instance in an InnoDB Cluster runs MySQL Group Replication, which provides the
mechanism to replicate data within an InnoDB Cluster, with built-in failover. AdminAPI removes the need to
work directly with Group Replication in an InnoDB Cluster, but for more information see Group Replication
which explains the details. From MySQL 8.0.27, you can also set up Chapter 8, MySQL InnoDB ClusterSet
to provide disaster tolerance for InnoDB Cluster deployments by linking a primary InnoDB Cluster with one
or more replicas of itself in alternate locations, such as different datacenters.

MySQL Router can automatically configure itself based on the cluster you deploy, connecting client
applications transparently to the server instances. In the event of an unexpected failure of a server
instance the cluster reconfigures automatically. In the default single-primary mode, an InnoDB Cluster has
a single read-write server instance - the primary. Multiple secondary server instances are replicas of the
primary. If the primary fails, a secondary is automatically promoted to the role of primary. MySQL Router
detects this and forwards client applications to the new primary. Advanced users can also configure a
cluster to have multiple primaries.

The following diagram shows an overview of how the technologies work together:

87

https://dev.mysql.com/doc/refman/8.0/en/group-replication.html
https://dev.mysql.com/doc/mysql-router/8.0/en/

Figure 7.1 InnoDB Cluster overview

Important

InnoDB Cluster does not provide support for MySQL NDB Cluster. NDB Cluster
depends on the NDB storage engine as well as a number of programs specific to
NDB Cluster which are not furnished with MySQL Server 8.0; NDB is available

88

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

MySQL InnoDB Cluster Requirements

only as part of the MySQL NDB Cluster distribution. In addition, the MySQL server
binary (mysqld) that is supplied with MySQL Server 8.0 cannot be used with
NDB Cluster. For more information about MySQL NDB Cluster, see MySQL NDB
Cluster 8.0. MySQL Server Using InnoDB Compared with NDB Cluster, provides
information about the differences between the InnoDB and NDB storage engines.

7.1 MySQL InnoDB Cluster Requirements

Before installing a production deployment of InnoDB Cluster, ensure that the server instances you intend to
use meet the following requirements.

• InnoDB Cluster uses Group Replication and therefore your server instances must meet
the same requirements. See Group Replication Requirements. AdminAPI provides the
dba.checkInstanceConfiguration() method to verify that an instance meets the Group
Replication requirements, and the dba.configureInstance() method to configure an instance to
meet the requirements.

Note

When using a sandbox deployment the instances are configured to meet these
requirements automatically.

• Group Replication members can contain tables using a storage engine other than InnoDB, for example
MyISAM. Such tables cannot be written to by Group Replication, and therefore when using InnoDB
Cluster. To be able to write to such tables with InnoDB Cluster, convert all such tables to InnoDB before
using the instance in an InnoDB Cluster.

• The Performance Schema must be enabled on any instance which you want to use with InnoDB Cluster.

• The provisioning scripts that MySQL Shell uses to configure servers for use in InnoDB Cluster require
access to Python. On Windows MySQL Shell includes Python and no user configuration is required.
On Unix Python must be found as part of the shell environment. To check that your system has Python
configured correctly issue:

$ /usr/bin/env python

If a Python interpreter starts, no further action is required. If the previous command fails, create a soft
link between /usr/bin/python and your chosen Python binary. For more information, see Supported
Languages.

• From version 8.0.17, instances must use a unique server_id within an InnoDB Cluster. When you use
the Cluster.addInstance(instance) operation, if the server_id of instance is already used
by an instance in the cluster then the operation fails with an error.

• From version 8.0.23, instances should be configured to use the parallel replication applier. See
Configuring the Parallel Replication Applier.

• During the process of configuring an instance for InnoDB Cluster, the majority of the system
variables required for using an instance are configured. But AdminAPI does not configure the
transaction_isolation system variable, which means that it defaults to REPEATABLE READ. This
does not impact a single-primary cluster, but if you are using a multi-primary cluster then unless you rely
on REPEATABLE READ semantics in your applications, we recommend using the READ COMMITTED
isolation level. See Group Replication Limitations.

7.2 Deploying a Production InnoDB Cluster

89

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-compared.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/8.0/en/group-replication-limitations.html

Deploying a Production InnoDB Cluster

When working in a production environment, the MySQL server instances which make up an InnoDB
Cluster run on multiple host machines as part of a network rather than on single machine as described in
Section 6.2, “AdminAPI MySQL Sandboxes”. Before proceeding with these instructions you must install
the required software to each machine that you intend to add as a server instance to your cluster, see
Section 6.1.1, “Installing AdminAPI Software Components”.

The following diagram illustrates the scenario you work with in this section:

90

Deploying a Production InnoDB Cluster

Figure 7.2 Production Deployment

91

Deploying a New Production InnoDB Cluster

Important

Unlike a sandbox deployment, where all instances are deployed locally to one
machine which AdminAPI has local file access to and can persist configuration
changes, for a production deployment you must persist any configuration changes
on the instance. How you do this depends on the version of MySQL running on the
instance, see Section 6.1.5, “Persisting Settings”.

To pass a server's connection information to AdminAPI, use URI-like connection strings or a data
dictionary; see Connecting to the Server Using URI-Like Strings or Key-Value Pairs. In this documentation,
URI-like strings are shown.

This section assumes that you have:

• installed the MySQL components to your instances

• installed MySQL Shell and can connect by specifying instances

• created a suitable administration user

7.2.1 Deploying a New Production InnoDB Cluster

The following sections describe how to deploy a new production InnoDB Cluster. In this procedure the host
name ic-number is used in examples.

• Configuring Production Instances

• Creating the Cluster

• Adding Instances to a Cluster

• User Accounts Created by InnoDB Cluster

• Configuring InnoDB Cluster Ports

Configuring Production Instances

AdminAPI provides the dba.configureInstance() function that checks if an instance is suitably
configured for InnoDB Cluster usage, and configures the instance if it finds any settings which are not
compatible with InnoDB Cluster. You run the dba.configureInstance() command against an instance
and it checks all of the settings required to enable the instance to be used for InnoDB Cluster usage. If
the instance does not require configuration changes, there is no need to modify the configuration of the
instance, and the dba.configureInstance() command output confirms that the instance is ready
for InnoDB Cluster usage. If any changes are required to make the instance compatible with InnoDB
Cluster, a report of the incompatible settings is displayed, and you can choose to let the command make
the changes to the instance's option file. Depending on the way MySQL Shell is connected to the instance,
and the version of MySQL running on the instance, you can make these changes permanent by persisting
them to a remote instance's option file, see Section 6.1.5, “Persisting Settings”. Instances which do not
support persisting configuration changes automatically require that you configure the instance locally,
see Configuring Instances with dba.configureLocalInstance(). Alternatively you can make the
changes to the instance's option file manually, see Using Option Files for more information. Regardless of
the way you make the configuration changes, you might have to restart MySQL to ensure the configuration
changes are detected.

The syntax of the dba.configureInstance() command is:

dba.configureInstance([instance][, options])

92

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

Deploying a New Production InnoDB Cluster

where instance is an instance definition, and options is a data dictionary with additional options to
configure the operation. The operation returns a descriptive text message about the result.

The instance definition is the connection data for the instance. For example:

dba.configureInstance('user@example:3306')

For more information, see Connecting to the Server Using URI-Like Strings or Key-Value Pairs. If the
target instance already belongs to an InnoDB Cluster an error is generated and the process fails.

The options dictionary can contain the following:

• mycnfPath - the path to the MySQL option file of the instance.

• outputMycnfPath - alternative output path to write the MySQL option file of the instance.

• password - the password to be used by the connection.

• clusterAdmin - the name of an InnoDB Cluster administrator user to be created. The supported format
is the standard MySQL account name format. Supports identifiers or strings for the user name and host
name. By default if unquoted it assumes input is a string. See Section 6.1.7, “Creating User Accounts for
Administration”.

• clusterAdminPassword - the password for the InnoDB Cluster administrator account being created
using clusterAdmin. Although you can specify using this option, this is a potential security risk. If you
do not specify this option, but do specify the clusterAdmin option, you are prompted for the password
at the interactive prompt.

• deprecated, and scheduled for removal in a future version

clearReadOnly - a boolean value used to confirm that super_read_only should be set to off, see
Super Read-only and Instances.

• interactive - a boolean value used to disable the interactive wizards in the command execution, so
that prompts are not provided to the user and confirmation prompts are not shown.

• restart - a boolean value used to indicate that a remote restart of the target instance should be
performed to finalize the operation.

Although the connection password can be contained in the instance definition, this is insecure and not
recommended. Use the MySQL Shell Section 4.4, “Pluggable Password Store” to store instace passwords
securely.

Once dba.configureInstance() is issued against an instance, the command checks if the instance's
settings are suitable for InnoDB Cluster usage. A report is displayed which shows the settings required by
InnoDB Cluster . If the instance does not require any changes to its settings you can use it in an InnoDB
Cluster, and can proceed to Creating the Cluster. If the instance's settings are not valid for InnoDB Cluster
usage the dba.configureInstance() command displays the settings which require modification.
Before configuring the instance you are prompted to confirm the changes shown in a table with the
following information:

• Variable - the invalid configuration variable.

• Current Value - the current value for the invalid configuration variable.

• Required Value - the required value for the configuration variable.

How you proceed depends on whether the instance supports persisting settings, see Section 6.1.5,
“Persisting Settings”. When dba.configureInstance() is issued against the MySQL instance which

93

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Deploying a New Production InnoDB Cluster

MySQL Shell is currently running on, in other words the local instance, it attempts to automatically
configure the instance. When dba.configureInstance() is issued against a remote instance, if the
instance supports persisting configuration changes automatically, you can choose to do this. If a remote
instance does not support persisting the changes to configure it for InnoDB Cluster usage, you have to
configure the instance locally. See Configuring Instances with dba.configureLocalInstance().

In general, a restart of the instance is not required after dba.configureInstance() configures the
option file, but for some specific settings a restart might be required. This information is shown in the report
generated after issuing dba.configureInstance(). If the instance supports the RESTART statement,
MySQL Shell can shutdown and then start the instance. This ensures that the changes made to the
instance's option file are detected by mysqld. For more information see RESTART.

Note

After executing a RESTART statement, the current connection to the instance is
lost. If auto-reconnect is enabled, the connection is reestablished after the server
restarts. Otherwise, the connection must be reestablished manually.

The dba.configureInstance() method verifies that a suitable user is available for cluster usage,
which is used for connections between members of the cluster, see Section 6.1.7, “Creating User Accounts
for Administration”.

If you do not specify a user to administer the cluster, in interactive mode a wizard enables you to choose
one of the following options:

• enable remote connections for the root user, not recommended in a production environment

• create a new user

• no automatic configuration, in which case you need to manually create the user

Tip

If the instance has super_read_only=ON then you might need to confirm that
AdminAPI can set super_read_only=OFF. See Super Read-only and Instances
for more information.

Creating the Cluster

Once you have prepared your instances, use the dba.createCluster() function to create the
cluster, using the instance which MySQL Shell is connected to as the seed instance for the cluster.
The seed instance is replicated to the other instances that you add to the cluster, making them
replicas of the seed instance. In this procedure the ic-1 instance is used as the seed. When you issue
dba.createCluster(name) MySQL Shell creates a classic MySQL protocol session to the server
instance connected to the MySQL Shell's current global session. For example, to create a cluster called
testCluster and assign the returned cluster to a variable called cluster:

mysql-js> var cluster = dba.createCluster('testCluster')
Validating instance at icadmin@ic-1:3306...
This instance reports its own address as ic-1
Instance configuration is suitable.
Creating InnoDB cluster 'testCluster' on 'icadmin@ic-1:3306'...
Adding Seed Instance...
Cluster successfully created. Use Cluster.addInstance() to add MySQL instances.
At least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

This pattern of assigning the returned cluster to a variable enables you to then execute further operations
against the cluster using the Cluster object's methods. The returned Cluster object uses a new session,

94

https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Deploying a New Production InnoDB Cluster

independent from the MySQL Shell's global session. This ensures that if you change the MySQL Shell
global session, the Cluster object maintains its session to the instance.

To be able to administer a cluster, you must ensure that you have a suitable user which has the required
privileges. The recommended approach is to create an administration user. If you did not create an
administration user when configuring your instances, use the Cluster.setupAdminAccount()
operation. For example to create a user named icadmin that can administer the InnoDB Cluster assigned
to the variable cluster, issue:

mysql-js> cluster.setupAdminAccount(icadmin)

See Configuring Users for AdminAPI for more information on cluster administration users.

The dba.createCluster() operation supports MySQL Shell's interactive option. When
interactive is on, prompts appear in the following situations:

• when run on an instance that belongs to a cluster and the adoptFromGr option is false, you are asked if
you want to adopt an existing cluster

• when the force option is not used (not set to true), you are asked to confirm the creation of a multi-
primary cluster

Note

If you encounter an error related to metadata being inaccessible you might have the
loopback network interface configured. For correct InnoDB Cluster usage disable
the loopback interface.

To check the cluster has been created, use the cluster instance's status() function. See Checking a
cluster's Status with Cluster.status().

Tip

Once server instances belong to a cluster it is important to only administer them
using MySQL Shell and AdminAPI. Attempting to manually change the configuration
of Group Replication on an instance once it has been added to a cluster is not
supported. Similarly, modifying server variables critical to InnoDB Cluster, such as
server_uuid, after an instance is configured using AdminAPI is not supported.

When you create a cluster using MySQL Shell 8.0.14 and later, you can set the amount of time to
wait before instances are expelled from the cluster, for example when they become unreachable.
Pass the expelTimeout option to the dba.createCluster() operation, which configures the
group_replication_member_expel_timeout variable on the seed instance. The expelTimeout
option can take an integer value in the range of 0 to 3600. All instances running MySQL server 8.0.13 and
later which are added to a cluster with expelTimeout configured are automatically configured to have the
same expelTimeout value as configured on the seed instance.

For information on the other options which you can pass to dba.createCluster(), see Section 7.5,
“Working with InnoDB Cluster”.

Adding Instances to a Cluster

Use the Cluster.addInstance(instance) function to add more instances to the cluster, where
instance is connection information to a configured instance, see Configuring Production Instances. From
version 8.0.17, Group Replication implements compatibility policies which consider the patch version of the

95

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_member_expel_timeout

Deploying a New Production InnoDB Cluster

instances, and the Cluster.addInstance() operation detects this and in the event of an incompatibility
the operation terminates with an error. See Checking the MySQL Version on Instances and Combining
Different Member Versions in a Group

You need a minimum of three instances in the cluster to make it tolerant to the failure of one instance.
Adding further instances increases the tolerance to failure of an instance. To add an instance to the cluster
issue:

mysql-js> cluster.addInstance('icadmin@ic-2:3306')
A new instance will be added to the InnoDB cluster. Depending on the amount of
data on the cluster this might take from a few seconds to several hours.
Please provide the password for 'icadmin@ic-2:3306': ********
Adding instance to the cluster ...
Validating instance at ic-2:3306...
This instance reports its own address as ic-2
Instance configuration is suitable.
The instance 'icadmin@ic-2:3306' was successfully added to the cluster.

When a new instance is added to the cluster, the local address for this instance is automatically added to
the group_replication_group_seeds variable on all online cluster instances in order to allow them to
use the new instance to rejoin the group, if needed.

Note

The instances listed in group_replication_group_seeds are used according
to the order in which they appear in the list. This ensures user specified settings are
used first and preferred. See Customizing InnoDB Clusters for more information.

If you are using MySQL 8.0.17 or later you can choose how the instance recovers the transactions
it requires to synchronize with the cluster. Only when the joining instance has recovered all of the
transactions previously processed by the cluster can it then join as an online instance and begin
processing transactions. For more information, see Section 7.2.2, “Using MySQL Clone with InnoDB
Cluster”.

Also in 8.0.17 and later, you can configure how Cluster.addInstance() behaves, letting recovery
operations proceed in the background or monitoring different levels of progress in MySQL Shell.

Depending on which option you chose to recover the instance from the cluster, you see different output in
MySQL Shell. Suppose that you are adding the instance ic-2 to the cluster, and ic-1 is the seed or donor.

• When you use MySQL Clone to recover an instance from the cluster, the output looks like:

Validating instance at ic-2:3306...
This instance reports its own address as ic-2:3306
Instance configuration is suitable.
A new instance will be added to the InnoDB cluster. Depending on the amount of
data on the cluster this might take from a few seconds to several hours.
Adding instance to the cluster...
Monitoring recovery process of the new cluster member. Press ^C to stop monitoring and let it continue in background.
Clone based state recovery is now in progress.
NOTE: A server restart is expected to happen as part of the clone process. If the
server does not support the RESTART command or does not come back after a
while, you may need to manually start it back.
* Waiting for clone to finish...
NOTE: ic-2:3306 is being cloned from ic-1:3306
** Stage DROP DATA: Completed
** Clone Transfer
FILE COPY ## 100% Completed
PAGE COPY ## 100% Completed
REDO COPY ## 100% Completed
NOTE: ic-2:3306 is shutting down...

96

https://dev.mysql.com/doc/refman/8.0/en/group-replication-online-upgrade-combining-versions.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-online-upgrade-combining-versions.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds

Deploying a New Production InnoDB Cluster

* Waiting for server restart... ready
* ic-2:3306 has restarted, waiting for clone to finish...
** Stage RESTART: Completed
* Clone process has finished: 2.18 GB transferred in 7 sec (311.26 MB/s)
State recovery already finished for 'ic-2:3306'
The instance 'ic-2:3306' was successfully added to the cluster.

The warnings about server restart should be observed, you might have to manually restart an instance.
See RESTART Statement.

• When you use incremental recovery to recover an instance from the cluster, the output looks like:

Incremental distributed state recovery is now in progress.
* Waiting for incremental recovery to finish...
NOTE: 'ic-2:3306' is being recovered from 'ic-1:3306'
* Distributed recovery has finished

To cancel the monitoring of the recovery phase, issue CONTROL+C. This stops the monitoring but the
recovery process continues in the background. The waitRecovery integer option can be used with the
Cluster.addInstance() operation to control the behavior of the command regarding the recovery
phase. The following values are accepted:

• 0: do not wait and let the recovery process finish in the background;

• 1: wait for the recovery process to finish;

• 2: wait for the recovery process to finish; and show detailed static progress information;

• 3: wait for the recovery process to finish; and show detailed dynamic progress information (progress
bars);

By default, if the standard output which MySQL Shell is running on refers to a terminal, the waitRecovery
option defaults to 3. Otherwise, it defaults to 2. See Monitoring Recovery Operations.

To verify the instance has been added, use the cluster instance's status() function. For example this is
the status output of a sandbox cluster after adding a second instance:

mysql-js> cluster.status()
{
 "clusterName": "testCluster",
 "defaultReplicaSet": {
 "name": "default",
 "primary": "ic-1:3306",
 "ssl": "REQUIRED",
 "status": "OK_NO_TOLERANCE",
 "statusText": "Cluster is NOT tolerant to any failures.",
 "topology": {
 "ic-1:3306": {
 "address": "ic-1:3306",
 "mode": "R/W",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE"
 },
 "ic-2:3306": {
 "address": "ic-2:3306",
 "mode": "R/O",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE"
 }
 }
 },

97

https://dev.mysql.com/doc/refman/8.0/en/restart.html

Deploying a New Production InnoDB Cluster

 "groupInformationSourceMember": "mysql://icadmin@ic-1:3306"
}

How you proceed depends on whether the instance is local or remote to the instance MySQL Shell
is running on, and whether the instance supports persisting configuration changes automatically, see
Section 6.1.5, “Persisting Settings”. If the instance supports persisting configuration changes automatically,
you do not need to persist the settings manually and can either add more instances or continue to the
next step. If the instance does not support persisting configuration changes automatically, you have to
configure the instance locally. See Configuring Instances with dba.configureLocalInstance(). This
is essential to ensure that instances rejoin the cluster in the event of leaving the cluster.

Tip

If the instance has super_read_only=ON then you might need to confirm that
AdminAPI can set super_read_only=OFF. See Super Read-only and Instances
for more information.

Once you have your cluster deployed you can configure MySQL Router to provide high availability, see
Section 6.4, “Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet”.

User Accounts Created by InnoDB Cluster

As part of using Group Replication, InnoDB Cluster creates internal recovery users which enable
connections between the servers in the cluster. These users are internal to the cluster, and the user name
of the generated users follows a naming scheme of mysql_innodb_cluster_server_id@%, where
server_id is unique to the instance. In versions earlier than 8.0.17 the user name of the generated users
followed a naming scheme of mysql_innodb_cluster_r[10_numbers]. The hostname used for the
internal users depends on whether the ipAllowlist option has been configured. If ipAllowlist is not
configured, it defaults to AUTOMATIC and the internal users are created using both the wildcard % character
and localhost for the hostname value. When ipAllowlist has been configured, for each address
in the ipAllowlist list an internal user is created. For more information, see Creating an Allowlist of
Servers.

Each internal user has a randomly generated password. From version 8.0.18, AdminAPI enables you to
change the generated password for internal users. See Resetting Recovery Account Passwords. The
randomly generated users are given the following grants:

GRANT REPLICATION SLAVE ON *.* to internal_user;

The internal user accounts are created on the seed instance and then replicated to the other instances in
the cluster. The internal users are:

• generated when creating a new cluster by issuing dba.createCluster()

• generated when adding a new instance to the cluster by issuing Cluster.addInstance().

In addition, the Cluster.rejoinInstance() operation can also result in a new internal user being
generated when the ipAllowlist option is used to specify a hostname. For example by issuing:

Cluster.rejoinInstance({ipAllowlist: "192.168.1.1/22"});

all previously existing internal users are removed and a new internal user is created, taking into account
the ipAllowlist value used.

For more information on the internal users required by Group Replication, see User Credentials For
Distributed Recovery.

98

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/group-replication-user-credentials.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-user-credentials.html

Using MySQL Clone with InnoDB Cluster

Configuring InnoDB Cluster Ports

Instances that belong to a cluster use different ports for different types of communication. In addition
to the default port at 3306, which is used for client connections over classic MySQL protocol, and
the mysqlx_port, which defaults to 33060 and is used for X Protocol client connections, there
is also a port for internal connections between the instances in the cluster which is not used for
client connections. This port is configured by the localAddress option, which configures the
group_replication_local_address system variable, and this port must be open so that the
instances in the cluster can communicate with each other. For example, if your firewall is blocking this port
then the instances cannot communicate with each other, and the cluster cannot function. Similarly, if your
instances are using SELinux, you need to ensure that all of the required ports used by InnoDB Cluster
are open so that the instances can communicate with each other. See Setting the TCP Port Context for
MySQL Features and MySQL Shell Ports.

When you create a cluster or add instances to a cluster, by default the localAddress port is calculated
by multiplying the target instance's port value by 10 and then adding one to the result. For example,
when the port of the target instance is the default value of 3306, the calculated localAddress port
is 33061. You should ensure that port numbers used by your cluster instances are compatible with the
way localAddress is calculated. For example, if the server instance being used to create a cluster has
a port number higher than 6553, the dba.createCluster() operation fails because the calculated
localAddress port number exceeds the maximum valid port which is 65535. To avoid this situation
either use a lower port value on the instances you use for InnoDB Cluster, or manually assign the
localAddress value, for example:

mysql-js> dba.createCluster('testCluster', {'localAddress':'icadmin@ic-1:33061'}

7.2.2 Using MySQL Clone with InnoDB Cluster

In MySQL 8.0.17, InnoDB Cluster integrates the MySQL Clone plugin to provide automatic provisioning
of joining instances. The process of retrieving the cluster's data so that the instance can synchronize with
the cluster is called distributed recovery. When an instance needs to recover a cluster's transactions we
distinguish between the donor, which is the cluster instance that provides the data, and the receiver, which
is the instance that receives the data from the donor. In previous versions, Group Replication provided
only asynchronous replication to recover the transactions required for the joining instance to synchronize
with the cluster so that it could join the cluster. For a cluster with a large amount of previously processed
transactions it could take a long time for the new instance to recover all of the transactions before being
able to join the cluster. Or a cluster which had purged GTIDs, for example as part of regular maintenance,
could be missing some of the transactions required to recover the new instance. In such cases the only
alternative was to manually provision the instance using tools such as MySQL Enterprise Backup, as
shown in Using MySQL Enterprise Backup with Group Replication.

MySQL Clone provides an alternative way for an instance to recover the transactions required to
synchronize with a cluster. Instead of relying on asynchronous replication to recover the transactions,
MySQL Clone takes a snapshot of the data on the donor instance and then transfers the snapshot to the
receiver.

Warning

All previous data in the receiver is destroyed during a clone operation. All MySQL
settings not stored in tables are however maintained.

Once a clone operation has transferred the snapshot to the receiver, if the cluster has processed
transactions while the snapshot was being transferred, asynchronous replication is used to recover any
required data for the receiver to be synchronized with the cluster. This can be much more efficient than
the instance recovering all of the transactions using asynchronous replication, and avoids any issues

99

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_port
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/selinux.html
https://dev.mysql.com/doc/refman/8.0/en/selinux-context-mysql-feature-ports.html
https://dev.mysql.com/doc/refman/8.0/en/selinux-context-mysql-feature-ports.html
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-ports-reference-tables.html#mysql-shell-ports
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/group-replication-enterprise-backup.html

Using MySQL Clone with InnoDB Cluster

caused by purged GTIDs, enabling you to quickly provision new instances for InnoDB Cluster. For more
information, see The Clone Plugin and Cloning for Distributed Recovery

In contrast to using MySQL Clone, incremental recovery is the process where an instance joining a
cluster uses only asynchronous replication to recover an instance from the cluster. When an InnoDB
Cluster is configured to use MySQL Clone, instances which join the cluster use either MySQL Clone or
incremental recovery to recover the cluster's transactions. By default, the cluster automatically chooses the
most suitable method, but you can optionally configure this behavior, for example to force cloning, which
replaces any transactions already processed by the joining instance. When you are using MySQL Shell in
interactive mode, the default, if the cluster is not sure it can proceed with recovery it provides an interactive
prompt. This section describes the different options you are offered, and the different scenarios which
influence which of the options you can choose.

In addition, the output of Cluster.status() for members in RECOVERING state includes recovery
progress information to enable you to easily monitor recovery operations, whether they are using MySQL
Clone or incremental recovery. InnoDB Cluster provides additional information about instances using
MySQL Clone in the output of Cluster.status().

7.2.2.1 Working with a Cluster that uses MySQL Clone

An InnoDB Cluster that uses MySQL Clone provides the following additional behavior.

dba.createCluster() and MySQL Clone

From version 8.0.17, by default when a new cluster is created on an instance where the MySQL Clone
plugin is available then it is automatically installed and the cluster is configured to support cloning. The
InnoDB Cluster recovery accounts are created with the required BACKUP_ADMIN privilege.

Set the disableClone Boolean option to true to disable MySQL Clone for the cluster. In this case a
metadata entry is added for this configuration and the MySQL Clone plugin is uninstalled if it is installed.
You can set the disableClone option when you issue dba.createCluster(), or at any time when the
cluster is running using Cluster.setOption().

Cluster.addInstance(instance) and MySQL Clone

MySQL Clone can be used for a joining instance if the new instance is running MySQL 8.0.17 or later,
and there is at least one donor in the cluster (included in the group_replication_group_seeds
list) running MySQL 8.0.17 or later. A cluster using MySQL Clone follows the behavior documented at
Adding Instances to a Cluster, with the addition of a possible choice of how to transfer the data required to
recover the instance from the cluster. How Cluster.addInstance(instance) behaves depends on
the following factors:

• Whether MySQL Clone is supported.

• Whether incremental recovery is possible or not, which depends on the availability of binary logs. For
example, if a donor instance has all binary logs required (GTID_PURGED is empty) then incremental
recovery is possible. If no cluster instance has all binary logs required then incremental recovery is not
possible.

• Whether incremental recovery is appropriate or not. Even though incremental recovery might be
possible, because it has the potential to clash with data already on the instance, the GTID sets on the
donor and receiver are checked to make sure that incremental recovery is appropriate. The following are
possible results of the comparison:

• New: the receiver has an empty GTID_EXECUTED GTID set

• Identical: the receiver has a GTID set identical to the donor’s GTID set

100

https://dev.mysql.com/doc/refman/8.0/en/clone-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-cloning.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds

Using MySQL Clone with InnoDB Cluster

• Recoverable: the receiver has a GTID set that is missing transactions but these can be recovered from
the donor

• Irrecoverable: the donor has a GTID set that is missing transactions, possibly they have been purged

• Diverged: the GTID sets of the donor and receiver have diverged

When the result of the comparison is determined to be Identical or Recoverable, incremental recovery
is considered appropriate. When the result of the comparison is determined to be Irrecoverable or
Diverged, incremental recovery is not considered appropriate.

For an instance considered New, incremental recovery cannot be considered appropriate because
it is impossible to determine if the binary logs have been purged, or even if the GTID_PURGED and
GTID_EXECUTED variables were reset. Alternatively, it could be that the server had already processed
transactions before binary logs and GTIDs were enabled. Therefore in interactive mode, you have to
confirm that you want to use incremental recovery.

• The state of the gtidSetIsComplete option. If you are sure a cluster has been created with a
complete GTID set, and therefore instances with empty GTID sets can be added to it without extra
confirmations, set the cluster level gtidSetIsComplete Boolean option to true.

Warning

Setting the gtidSetIsComplete option to true means that joining servers are
recovered regardless of any data they contain, use with caution. If you try to add
an instance which has applied transactions you risk data corruption.

The combination of these factors influence how instances join the cluster when you issue
Cluster.addInstance(). The recoveryMethod option is set to auto by default, which means that in
MySQL Shell's interactive mode, the cluster selects the best way to recover the instance from the cluster,
and the prompts advise you how to proceed. In other words the cluster recommends using MySQL Clone
or incremental recovery based on the best approach and what the server supports. If you are not using
interactive mode and are scripting MySQL Shell, you must set recoveryMethod to the type of recovery
you want to use - either clone or incremental. This section explains the different possible scenarios.

When you are using MySQL Shell in interactive mode, the main prompt with all of the possible options for
adding the instance is:

Please select a recovery method [C]lone/[I]ncremental recovery/[A]bort (default Clone):

Depending on the factors mentioned, you might not be offered all of these options. The scenarios
described later in this section explain which options you are offered. The options offered by this prompt
are:

• Clone: choose this option to clone the donor to the instance which you are adding to the cluster, deleting
any transactions the instance contains. The MySQL Clone plugin is automatically installed. The InnoDB
Cluster recovery accounts are created with the required BACKUP_ADMIN privilege. Assuming you
are adding an instance which is either empty (has not processed any transactions) or which contains
transactions you do not want to retain, select the Clone option. The cluster then uses MySQL Clone to
completely overwrite the joining instance with a snapshot from an donor cluster member. To use this
method by default and disable this prompt, set the cluster's recoveryMethod option to clone.

• Incremental recovery choose this option to use incremental recovery to recover all transactions
processed by the cluster to the joining instance using asynchronous replication. Incremental recovery
is appropriate if you are sure all updates ever processed by the cluster were done with GTIDs enabled,

101

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin

Using MySQL Clone with InnoDB Cluster

there are no purged transactions and the new instance contains the same GTID set as the cluster or a
subset of it. To use this method by default, set the recoveryMethod option to incremental.

The combination of factors mentioned influences which of these options is available at the prompt as
follows:

Note

If the group_replication_clone_threshold system variable has been
manually changed outside of AdminAPI, then the cluster might decide to use Clone
recovery instead of following these scenarios.

• In a scenario where

• incremental recovery is possible

• incremental recovery is not appropriate

• Clone is supported

you can choose between any of the options. It is recommended that you use MySQL Clone, the default.

• In a scenario where

• incremental recovery is possible

• incremental recovery is appropriate

you are not provided with the prompt, and incremental recovery is used.

• In a scenario where

• incremental recovery is possible

• incremental recovery is not appropriate

• Clone is not supported or is disabled

you cannot use MySQL Clone to add the instance to the cluster. You are provided with the prompt, and
the recommended option is to proceed with incremental recovery.

• In a scenario where

• incremental recovery is not possible

• Clone is not supported or is disabled

you cannot add the instance to the cluster and an ERROR: The target instance must be
either cloned or fully provisioned before it can be added to the target
cluster. Cluster.addInstance: Instance provisioning required (RuntimeError) is
shown. This could be the result of binary logs being purged from all cluster instances. It is recommended
to use MySQL Clone, by either upgrading the cluster or setting the disableClone option to false.

• In a scenario where

• incremental recovery is not possible

• Clone is supported

102

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_clone_threshold

Adopting a Group Replication Deployment

you can only use MySQL Clone to add the instance to the cluster. This could be the result of the cluster
missing binary logs, for example when they have been purged.

Once you select an option from the prompt, by default the progress of the instance recovering the
transactions from the cluster is displayed. This monitoring enables you to check the recovery phase is
working and also how long it should take for the instance to join the cluster and come online. To cancel the
monitoring of the recovery phase, issue CONTROL+C.

Cluster.checkInstanceState() and MySQL Clone

When the Cluster.checkInstanceState() operation is run to verify an instance against a cluster
that is using MySQL Clone, if the instance does not have the binary logs, for example because they were
purged but Clone is available and not disabled (disableClone is false) the operation provides a
warning that the Clone can be used. For example:

The cluster transactions cannot be recovered on the instance, however,
Clone is available and can be used when adding it to a cluster.

{
"reason": "all_purged",
"state": "warning"
}

Similarly, on an instance where Clone is either not available or has been disabled and the binary logs are
not available, for example because they were purged, then the output includes:

The cluster transactions cannot be recovered on the instance.

{
"reason": "all_purged",
"state": "warning"
}

dba.checkInstanceConfiguration() and MySQL Clone

When the dba.checkInstanceConfiguration() operation is run against an instance that has MySQL
Clone available but it is disabled, a warning is displayed.

7.2.3 Adopting a Group Replication Deployment

If you have an existing deployment of Group Replication and you want to use it to create a cluster, pass
the adoptFromGR option to the dba.createCluster() function. The created InnoDB Cluster matches
whether the replication group is running as single-primary or multi-primary.

To adopt an existing Group Replication group, connect to a group member using MySQL Shell.
In the following example a single-primary group is adopted. We connect to gr-member-2, a
secondary instance, while gr-member-1 is functioning as the group's primary. Create a cluster using
dba.createCluster(), passing in the adoptFromGR option. For example:

mysql-js> var cluster = dba.createCluster('prodCluster', {adoptFromGR: true});

A new InnoDB cluster will be created on instance 'root@gr-member-2:3306'.

Creating InnoDB cluster 'prodCluster' on 'root@gr-member-2:3306'...
Adding Seed Instance...

Cluster successfully created. Use cluster.addInstance() to add MySQL instances.
At least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

103

Monitoring InnoDB Cluster

Tip

If the instance has super_read_only=ON then you might need to confirm that
AdminAPI can set super_read_only=OFF. See Super Read-only and Instances
for more information.

The new cluster matches the mode of the group. If the adopted group was running in single-primary mode
then a single-primary cluster is created. If the adopted group was running in multi-primary mode then a
multi-primary cluster is created.

7.3 Monitoring InnoDB Cluster

This section describes how to use AdminAPI to monitor an InnoDB Cluster.

• Using Cluster.describe()

• Checking a cluster's Status with Cluster.status()

• Monitoring Recovery Operations

• InnoDB Cluster and Group Replication Protocol

• Checking the MySQL Version on Instances

Using Cluster.describe()

To get information about the structure of the InnoDB Cluster itself, use the Cluster.describe()
function:

mysql-js> cluster.describe();
{
 "clusterName": "testCluster",
 "defaultReplicaSet": {
 "name": "default",
 "topology": [
 {
 "address": "ic-1:3306",
 "label": "ic-1:3306",
 "role": "HA"
 },
 {
 "address": "ic-2:3306",
 "label": "ic-2:3306",
 "role": "HA"
 },
 {
 "address": "ic-3:3306",
 "label": "ic-3:3306",
 "role": "HA"
 }
]
 }
}

The output from this function shows the structure of the InnoDB Cluster including all of its configuration
information, and so on. The address, label and role values match those described at Checking a cluster's
Status with Cluster.status() .

Checking a cluster's Status with Cluster.status()

104

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Checking a cluster's Status with Cluster.status()

Cluster objects provide the status() method that enables you to check how a cluster is running. Before
you can check the status of the InnoDB Cluster, you need to get a reference to the InnoDB Cluster object
by connecting to any of its instances. However, if you want to make changes to the configuration of the
cluster, you must connect to a "R/W" instance. Issuing status() retrieves the status of the cluster based
on the view of the cluster which the server instance you are connected to is aware of and outputs a status
report.

Important

The instance's state in the cluster directly influences the information provided in the
status report. Therefore ensure the instance you are connected to has a status of
ONLINE.

For information about how the InnoDB Cluster is running, use the cluster's status() method:

mysql-js> var cluster = dba.getCluster()
mysql-js> cluster.status()
{
 "clusterName": "testcluster",
 "defaultReplicaSet": {
 "name": "default",
 "primary": "ic-1:3306",
 "ssl": "REQUIRED",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "ic-1:3306": {
 "address": "ic-1:3306",
 "mode": "R/W",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE"
 },
 "ic-2:3306": {
 "address": "ic-2:3306",
 "mode": "R/O",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE"
 },
 "ic-3:3306": {
 "address": "ic-3:3306",
 "mode": "R/O",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE"
 }
 }
 },
 "groupInformationSourceMember": "mysql://icadmin@ic-1:3306"
}

The output of Cluster.status() provides the following information:

• clusterName: name assigned to this cluster during dba.createCluster().

• defaultReplicaSet: the server instances which belong to an InnoDB Cluster and contain the data
set.

• primary: displayed when the cluster is operating in single-primary mode only. Shows the address of the
current primary instance. If this field is not displayed, the cluster is operating in multi-primary mode.

105

Checking a cluster's Status with Cluster.status()

• ssl: whether secure connections are used by the cluster or not. Shows values of REQUIRED
or DISABLED, depending on how the memberSslMode option was configured during either
createCluster() or addInstance(). The value returned by this parameter corresponds to the
value of the group_replication_ssl_mode server variable on the instance. See Securing your
Cluster.

• status: The status of this element of the cluster. For the overall cluster this describes the high
availability provided by this cluster. The status is one of the following:

• ONLINE: The instance is online and participating in the cluster.

• OFFLINE: The instance has lost connection to the other instances.

• RECOVERING: The instance is attempting to synchronize with the cluster by retrieving transactions it
needs before it can become an ONLINE member.

• UNREACHABLE: The instance has lost communication with the cluster.

• ERROR: The instance has encountered an error during the recovery phase or while applying a
transaction.

Important

Once an instance enters ERROR state, the super_read_only option is set to
ON. To leave the ERROR state you must manually configure the instance with
super_read_only=OFF.

• (MISSING): The state of an instance which is part of the configured cluster, but is currently
unavailable.

Note

The MISSING state is specific to InnoDB Cluster, it is not a state generated by
Group Replication. MySQL Shell uses this state to indicate instances that are
registered in the metadata, but cannot be found in the live cluster view.

• topology: The instances which have been added to the cluster.

• Host name of instance: The host name of an instance, for example localhost:3310.

• role: what function this instance provides in the cluster. Currently only HA, for high availability.

• mode: whether the server is read-write ("R/W") or read-only ("R/O"). From version 8.0.17, this is derived
from the current state of the super_read_only variable on the instance, and whether the cluster has
quorum. In previous versions the value of mode was derived from whether the instance was serving as
a primary or secondary instance. Usually if the instance is a primary, then the mode is "R/W", and if the
instance is a secondary the mode is "R/O". Any instances in a cluster that have no visible quorum are
marked as "R/O", regardless of the state of the super_read_only variable.

• groupInformationSourceMember: the internal connection used to get information about the cluster,
shown as a URI-like connection string. Usually the connection initially used to create the cluster.

To display more information about the cluster use the extended option. From version 8.0.17, the
extended option supports integer or Boolean values. To configure the additional information that
Cluster.status({'extended':value}) provides, use the following values:

• 0: disables the additional information, the default

106

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_ssl_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Checking a cluster's Status with Cluster.status()

• 1: includes information about the Group Replication Protocol Version, Group name, cluster member
UUIDs, cluster member roles and states as reported by Group Replication, and the list of fenced system
variables

• 2: includes information about transactions processed by connection and applier

• 3: includes more detailed statistics about the replication performed by each cluster member.

Setting extended using Boolean values is the equivalent of setting the integer values 0 and 1. In versions
prior to 8.0.17, the extended option was only Boolean. Similarly prior versions used the queryMembers
Boolean option to provide more information about the instances in the cluster, which is the equivalent of
setting extended to 3. The queryMembers option is deprecated and scheduled to be removed in a future
release.

When you issue Cluster.status({'extended':1}), or the extended option is set to true, the
output includes:

• the following additional attributes for the defaultReplicaSet object:

• GRProtocolVersion is the Group Replication Protocol Version being used in the cluster.

Tip

InnoDB Cluster manages the Group Replication Protocol version being used
automatically, see InnoDB Cluster and Group Replication Protocol for more
information.

• groupName is the group's name, a UUID.

• the following additional attributes for each object of the topology object:

• fenceSysVars a list containing the name of the fenced system variables which are configured by
AdminAPI. Currently the fenced system variables considered are read_only, super_read_only
and offline_mode. The system variables are listed regardless of their value.

• instanceErrors for each instance, displaying any diagnostic information that can be detected for
the instance. For example, if the instance is a secondary and the super_read_only variable is not
set to ON, then a warning is shown. This information can be used to troubleshoot errors.

• memberId Each cluster member UUID.

• memberRole the Member Role as reported by the Group Replication plugin, see the MEMBER_ROLE
column of the replication_group_members table.

• memberState the Member State as reported by the Group Replication plugin, see the
MEMBER_STATE column of the replication_group_members table.

To see information about recovery and regular transaction I/O, applier worker thread statistics and
any lags; applier coordinator statistics, if the parallel replication applier is enabled; error, and other
information from the receiver and applier threads, use a value of 2 or 3 for extended. When you
use these values, a connection to each instance in the cluster is opened so that additional instance
specific statistics can be queried. The exact statistics that are included in the output depend on the state
and configuration of the instance and the server version. This information matches that shown in the
replication_group_member_stats table, see the descriptions of the matching columns for more
information. Instances which are ONLINE have a transactions section included in the output. Instances
which are RECOVERING have a recovery section included in the output. When you set extended to 2, in
either case, these sections can contain the following:

107

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-group-members-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-group-members-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-group-member-stats-table.html

Checking a cluster's Status with Cluster.status()

• appliedCount: see COUNT_TRANSACTIONS_REMOTE_APPLIED

• checkedCount: see COUNT_TRANSACTIONS_CHECKED

• committedAllMembers: see TRANSACTIONS_COMMITTED_ALL_MEMBERS

• conflictsDetectedCount: see COUNT_CONFLICTS_DETECTED

• inApplierQueueCount: see COUNT_TRANSACTIONS_REMOTE_IN_APPLIER_QUEUE

• inQueueCount: see COUNT_TRANSACTIONS_IN_QUEUE

• lastConflictFree: see LAST_CONFLICT_FREE_TRANSACTION

• proposedCount: see COUNT_TRANSACTIONS_LOCAL_PROPOSED

• rollbackCount: see COUNT_TRANSACTIONS_LOCAL_ROLLBACK

When you set extended to 3, the connection section shows information from the
replication_connection_status table. A value of 3 is the equivalent of setting the deprecated
queryMembers option to true. The connection section can contain the following:

The currentlyQueueing section has information about the transactions currently queued:

• immediateCommitTimestamp: see QUEUEING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

• immediateCommitToNowTime: see QUEUEING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP
minus NOW()

• originalCommitTimestamp: see QUEUEING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

• originalCommitToNowTime: see QUEUEING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP
minus NOW()

• startTimestamp: see QUEUEING_TRANSACTION_START_QUEUE_TIMESTAMP

• transaction: see QUEUEING_TRANSACTION

• lastHeartbeatTimestamp: see LAST_HEARTBEAT_TIMESTAMP

The lastQueued section has information about the most recently queued transaction:

• endTimestamp: see LAST_QUEUED_TRANSACTION_END_QUEUE_TIMESTAMP

• immediateCommitTimestamp: see
LAST_QUEUED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

• immediateCommitToEndTime: LAST_QUEUED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP
minus NOW()

• originalCommitTimestamp: see LAST_QUEUED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

• originalCommitToEndTime: LAST_QUEUED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP
minus NOW()

• queueTime: LAST_QUEUED_TRANSACTION_END_QUEUE_TIMESTAMP minus
LAST_QUEUED_TRANSACTION_START_QUEUE_TIMESTAMP

• startTimestamp: see LAST_QUEUED_TRANSACTION_START_QUEUE_TIMESTAMP

108

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-status-table.html

Checking a cluster's Status with Cluster.status()

• transaction: see LAST_QUEUED_TRANSACTION

• receivedHeartbeats: see COUNT_RECEIVED_HEARTBEATS

• receivedTransactionSet: see RECEIVED_TRANSACTION_SET

• threadId: see THREAD_ID

Instances which are using a multithreaded replica have a workers section which
contains information about the worker threads, and matches the information shown by the
replication_applier_status_by_worker table.

The lastApplied section shows the following information about the last transaction applied by the
worker:

• applyTime: see LAST_APPLIED_TRANSACTION_END_APPLY_TIMESTAMP minus
LAST_APPLIED_TRANSACTION_START_APPLY_TIMESTAMP

• endTimestamp: see LAST_APPLIED_TRANSACTION_END_APPLY_TIMESTAMP

• immediateCommitTimestamp: see
LAST_APPLIED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

• immediateCommitToEndTime: see
LAST_APPLIED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP minus NOW()

• originalCommitTimestamp: see LAST_APPLIED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

• originalCommitToEndTime: see LAST_APPLIED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP
minus NOW()

• startTimestamp: see LAST_APPLIED_TRANSACTION_START_APPLY_TIMESTAMP

• transaction: see LAST_APPLIED_TRANSACTION

The currentlyApplying section shows the following information about the transaction currently being
applied by the worker:

• immediateCommitTimestamp: see APPLYING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

• immediateCommitToNowTime: see APPLYING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP
minus NOW()

• originalCommitTimestamp: see APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

• originalCommitToNowTime: see APPLYING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP
minus NOW()

• startTimestamp: see APPLYING_TRANSACTION_START_APPLY_TIMESTAMP

• transaction: see APPLYING_TRANSACTION

The lastProcessed section has the following information about the last transaction processed by the
worker:

• bufferTime: LAST_PROCESSED_TRANSACTION_END_BUFFER_TIMESTAMP minus
LAST_PROCESSED_TRANSACTION_START_BUFFER_TIMESTAMP

• endTimestamp: see LAST_PROCESSED_TRANSACTION_END_BUFFER_TIMESTAMP

109

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html

Checking a cluster's Status with Cluster.status()

• immediateCommitTimestamp: see
LAST_PROCESSED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

• immediateCommitToEndTime:
LAST_PROCESSED_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP minus
LAST_PROCESSED_TRANSACTION_END_BUFFER_TIMESTAMP

• originalCommitTimestamp: see
LAST_PROCESSED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

• originalCommitToEndTime: LAST_PROCESSED_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP
minus LAST_PROCESSED_TRANSACTION_END_BUFFER_TIMESTAMP

• startTimestamp: see LAST_PROCESSED_TRANSACTION_START_BUFFER_TIMESTAMP

• transaction: see LAST_PROCESSED_TRANSACTION

If the parallel replication applier is enabled, then the number of objects in the workers
array in transactions or recovery matches the number of configured workers and an
additional coordinator object is included. The information shown matches the information in the
replication_applier_status_by_coordinator table. The object can contain:

The currentlyProcessing section has the following information about the transaction being processed
by the worker:

• immediateCommitTimestamp: see PROCESSING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP

• immediateCommitToNowTime: PROCESSING_TRANSACTION_IMMEDIATE_COMMIT_TIMESTAMP
minus NOW()

• originalCommitTimestamp: see PROCESSING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP

• originalCommitToNowTime: PROCESSING_TRANSACTION_ORIGINAL_COMMIT_TIMESTAMP minus
NOW()

• startTimestamp: see PROCESSING_TRANSACTION_START_BUFFER_TIMESTAMP

• transaction: see PROCESSING_TRANSACTION

worker objects have the following information if an error was detected in the
replication_applier_status_by_worker table:

• lastErrno: see LAST_ERROR_NUMBER

• lastError: see LAST_ERROR_MESSAGE

• lastErrorTimestamp: see LAST_ERROR_TIMESTAMP

connection objects have the following information if an error was detected in the
replication_connection_status table:

• lastErrno: see LAST_ERROR_NUMBER

• lastError: see LAST_ERROR_MESSAGE

• lastErrorTimestamp: see LAST_ERROR_TIMESTAMP

coordinator objects have the following information if an error was detected in the
replication_applier_status_by_coordinator table:

110

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-coordinator-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-coordinator-table.html

Monitoring Recovery Operations

• lastErrno: see LAST_ERROR_NUMBER

• lastError: see LAST_ERROR_MESSAGE

• lastErrorTimestamp: see LAST_ERROR_TIMESTAMP

Monitoring Recovery Operations

The output of Cluster.status() shows information about the progress of recovery operations for
instances in RECOVERING state. Information is shown for instances recovering using either MySQL Clone,
or incremental recovery. Monitor these fields:

• The recoveryStatusText field includes information about the type of recovery being used. When
MySQL Clone is working the field shows “Cloning in progress”. When incremental recovery is working
the field shows “Distributed recovery in progress”.

• When MySQL Clone is being used, the recovery field includes a dictionary with the following fields:

• cloneStartTime: The timestamp of the start of the clone process

• cloneState: The state of the clone progress

• currentStage: The current stage which the clone process has reached

• currentStageProgress: The current stage progress as a percentage of completion

• currentStageState: The current stage state

Example Cluster.status() output, trimmed for brevity:

...
"recovery": {
"cloneStartTime": "2019-07-15 12:50:22.730",
"cloneState": "In Progress",
"currentStage": "FILE COPY",
"currentStageProgress": 61.726837675213865,
"currentStageState": "In Progress"
},
"recoveryStatusText": "Cloning in progress",
...

• When incremental recovery is being used and the extended option is set to 1 or greater, the recovery
field includes a dictionary with the following fields:

• state: The state of the group_replication_recovery channel

• recoveryChannel : Displayed for instances performing incremental recovery or in which the
recovery channel status is not off. Incremental recovery utilises the receiver thread to receive
transactions from the source, and the applier thread applies the received transactions on the instance.
Provides the following information:

• applierQueuedTransactionSetSize: The number of transactions currently queued, which are
waiting to be applied.

• applierState: The current state of the replication applier, either ON or OFF.

• applierStatus: The current status of the applier threads. An aggregation of the states shown in
the applierThreadState field. Can be one of:

• APPLIED_ALL: there are no queued transactions waiting to be applied

111

InnoDB Cluster and Group Replication Protocol

• APPLYING: there are transactions being applied

• ON: thread is connected and there are no queued transactions

• ERROR: there was an error while applying transactions

• OFF: the applier thread is disabled

• applierThreadState: The current state of any applier threads. Provides detailed information
about exactly what the applier thread is doing. For more information, see Replication SQL Thread
States.

• receiverStatus: The current status of the receiver thread. An aggregation of the states shown in
the receiverThreadState field. Can be one of:

• ON: the receiver thread has successfully connected and is ready to receive

• CONNECTING: the receiver thread is connecting to the source

• ERROR: there was an error while receiving transactions

• OFF: the receiver thread has gracefully disconnected

• receiverThreadState: The current state of the receiver thread. Provides detailed information
about exactly what the receiver thread is doing. For more information, see Replication I/O (Receiver)
Thread States.

• source: The source of the transactions which are being applied.

Example Cluster.status() output, trimmed for brevity:

...
"recovery": {
 "recoveryChannel": {
 "applierQueuedTransactionSetSize": 2284,
 "applierStatus": "APPLYING",
 "applierThreadState": "Opening tables",
 "receiverStatus": "ON",
 "receiverThreadState": "Queueing master event to the relay log",
 "source": "ic-2:3306"
 },
 "state": "ON"
 },
...

InnoDB Cluster and Group Replication Protocol

From MySQL 8.0.16, Group Replication has the concept of a communication protocol for the group, see
Setting a Group's Communication Protocol Version for background information. The Group Replication
communication protocol version usually has to be managed explicitly, and set to accommodate the oldest
MySQL Server version that you want the group to support. However, InnoDB Cluster automatically and
transparently manages the communication protocol versions of its members, whenever the cluster topology
is changed using AdminAPI operations. A cluster always uses the most recent communication protocol
version that is supported by all the instances that are currently part of the cluster or joining it.

• When an instance is added to, removed from, or rejoins the cluster, or a rescan or reboot operation is
carried out on the cluster, the communication protocol version is automatically set to a version supported
by the instance that is now at the earliest MySQL Server version.

112

https://dev.mysql.com/doc/refman/8.0/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/replica-io-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/replica-io-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-communication-protocol.html

Checking the MySQL Version on Instances

• When you carry out a rolling upgrade by removing instances from the cluster, upgrading them, and
adding them back into the cluster, the communication protocol version is automatically upgraded when
the last remaining instance at the old MySQL Server version is removed from the cluster prior to its
upgrade.

To see the communication protocol version being used in a cluster, use the Cluster.status()
function with the extended option enabled. The communication protocol version is returned in the
GRProtocolVersion field, provided that the cluster has quorum and no cluster members are
unreachable.

Checking the MySQL Version on Instances

The following operations can report information about the MySQL Server version running on the instance:

• Cluster.status()

• Cluster.describe()

• Cluster.rescan()

The behavior varies depending on the MySQL Server version of the Cluster object session.

• Cluster.status()

If either of the following requirements are met, a version string attribute is returned for each instance
JSON object of the topology object:

• The Cluster object's current session is version 8.0.11 or later.

• The Cluster object's current session is running a version earlier than version 8.0.11 but the
extended option is set to 3 (or the deprecated queryMembers is true).

For example on an instance running version 8.0.16:

"topology": {
 "ic-1:3306": {
 "address": "ic-1:3306",
 "mode": "R/W",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE",
 "version": "8.0.16"
}

For example on an instance running version 5.7.24:

"topology": {
 "ic-1:3306": {
 "address": "ic-1:3306",
 "mode": "R/W",
 "readReplicas": {},
 "role": "HA",
 "status": "ONLINE",
 "version": "5.7.24"
}

• Cluster.describe()

If the Cluster object's current session is version 8.0.11 or later, a version string attribute is returned
for each instance JSON object of the topology object

113

Working with Instances

For example on an instance running version 8.0.16:

"topology": [
 {
 "address": "ic-1:3306",
 "label": "ic-1:3306",
 "role": "HA",
 "version": "8.0.16"
 }
]

• Cluster.rescan()

If the Cluster object's current session is version 8.0.11 or later, and the Cluster.rescan()
operation detects instances which do not belong to the cluster, a version string attribute is returned for
each instance JSON object of the newlyDiscoveredInstance object.

For example on an instance running version 8.0.16:

"newlyDiscoveredInstances": [
 {
 "host": "ic-4:3306",
 "member_id": "82a67a06-2ba3-11e9-8cfc-3c6aa7197deb",
 "name": null,
 "version": "8.0.16"
 }
]

7.4 Working with Instances
This section describes the AdminAPI operations which apply to instances. You can configure instances
before using them with InnoDB Cluster, check the state of an instance, and so on.

• Using dba.checkInstanceConfiguration()

• Configuring Instances with dba.configureLocalInstance()

• Checking Instance State

Using dba.checkInstanceConfiguration()

Before creating a production deployment from server instances you need to check that MySQL
on each instance is correctly configured. In addition to dba.configureInstance(),
which checks the configuration as part of configuring an instance, you can use the
dba.checkInstanceConfiguration(instance) function. This ensures that the instance satisfies
the Section 7.1, “MySQL InnoDB Cluster Requirements” without changing any configuration on the
instance. This does not check any data that is on the instance, see Checking Instance State for more
information.

The user which you use to connect to the instance must have suitable privileges, for example as
configured at Configuring Users for AdminAPI. The following demonstrates issuing this in a running MySQL
Shell:

mysql-js> dba.checkInstanceConfiguration('icadmin@ic-1:3306')
Please provide the password for 'icadmin@ic-1:3306': ***
Validating MySQL instance at ic-1:3306 for use in an InnoDB cluster...

This instance reports its own address as ic-1
Clients and other cluster members will communicate with it through this address by default.
If this is not correct, the report_host MySQL system variable should be changed.

114

Configuring Instances with dba.configureLocalInstance()

Checking whether existing tables comply with Group Replication requirements...
No incompatible tables detected

Checking instance configuration...

Some configuration options need to be fixed:
+--------------------------+---------------+----------------+--+
| Variable | Current Value | Required Value | Note |
+--------------------------+---------------+----------------+--+
enforce_gtid_consistency	OFF	ON	Update read-only variable and restart the server
gtid_mode	OFF	ON	Update read-only variable and restart the server
server_id	1		Update read-only variable and restart the server
+--------------------------+---------------+----------------+--+

Please use the dba.configureInstance() command to repair these issues.

{
 "config_errors": [
 {
 "action": "restart",
 "current": "OFF",
 "option": "enforce_gtid_consistency",
 "required": "ON"
 },
 {
 "action": "restart",
 "current": "OFF",
 "option": "gtid_mode",
 "required": "ON"
 },
 {
 "action": "restart",
 "current": "1",
 "option": "server_id",
 "required": ""
 }
],
 "status": "error"
}

Repeat this process for each server instance that you plan to use as part of your cluster. The report
generated after running dba.checkInstanceConfiguration() provides information about any
configuration changes required before you can proceed. The action field in the config_error section
of the report tells you whether MySQL on the instance requires a restart to detect any change made to the
configuration file.

Configuring Instances with dba.configureLocalInstance()

Instances which do not support persisting configuration changes automatically (see Section 6.1.5,
“Persisting Settings”) require you to connect to the server, run MySQL Shell, connect to the instance locally
and issue dba.configureLocalInstance(). This enables MySQL Shell to modify the instance's option
file after running the following commands against a remote instance:

• dba.configureInstance()

• dba.createCluster()

• Cluster.addInstance()

• Cluster.removeInstance()

• Cluster.rejoinInstance()

115

Checking Instance State

Important

Failing to persist configuration changes to an instance's option file can result in the
instance not rejoining the cluster after the next restart.

The recommended method is to log in to the remote machine, for example using SSH, run MySQL Shell as
the root user and then connect to the local MySQL server. For example, use the --uri option to connect
to the local instance:

$> sudo -i mysqlsh --uri=instance

Alternatively use the \connect command to log in to the local instance. Then issue
dba.configureInstance(instance), where instance is the connection information to the local
instance, to persist any changes made to the local instance's option file.

mysql-js> dba.configureLocalInstance('icadmin@ic-2:3306')

Repeat this process for each instance in the cluster which does not support persisting configuration
changes automatically. For example if you add 2 instances to a cluster which do not support persisting
configuration changes automatically, you must connect to each server and persist the configuration
changes required for InnoDB Cluster before the instance restarts. Similarly if you modify the cluster
structure, for example changing the number of instances, you need to repeat this process for each server
instance to update the InnoDB Cluster metadata accordingly for each instance in the cluster.

Checking Instance State

The cluster.checkInstanceState() function can be used to verify the existing data on an instance
does not prevent it from joining a cluster. This process works by validating the instance's global transaction
identifier (GTID) state compared to the GTIDs already processed by the cluster. For more information
on GTIDs see GTID Format and Storage. This check enables you to determine if an instance which has
processed transactions can be added to the cluster.

The following demonstrates issuing this in a running MySQL Shell:

mysql-js> cluster.checkInstanceState('icadmin@ic-4:3306')

The output of this function can be one of the following:

• OK new: the instance has not executed any GTID transactions, therefore it cannot conflict with the
GTIDs executed by the cluster

• OK recoverable: the instance has executed GTIDs which do not conflict with the executed GTIDs of the
cluster seed instances

• ERROR diverged: the instance has executed GTIDs which diverge with the executed GTIDs of the
cluster seed instances

• ERROR lost_transactions: the instance has more executed GTIDs than the executed GTIDs of the
cluster seed instances

Instances with an OK status can be added to the cluster because any data on the instance is consistent
with the cluster. In other words the instance being checked has not executed any transactions which
conflict with the GTIDs executed by the cluster, and can be recovered to the same state as the rest of the
cluster instances.

7.5 Working with InnoDB Cluster

116

https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-concepts.html

Removing Instances from the InnoDB Cluster

This section explains how to work with InnoDB Cluster, and how to handle common administration tasks.

• Removing Instances from the InnoDB Cluster

• Dissolving an InnoDB Cluster

• Changing a Cluster's Topology

Removing Instances from the InnoDB Cluster

You can remove an instance from a cluster at any time should you wish to do so. This can be done with the
Cluster.removeInstance(instance) method, as in the following example:

mysql-js> cluster.removeInstance('root@localhost:3310')

The instance will be removed from the InnoDB cluster. Depending on the instance
being the Seed or not, the Metadata session might become invalid. If so, please
start a new session to the Metadata Storage R/W instance.

Attempting to leave from the Group Replication group...

The instance 'localhost:3310' was successfully removed from the cluster.

You can optionally pass in the interactive option to control whether you are prompted to confirm
the removal of the instance from the cluster. In interactive mode, you are prompted to continue with the
removal of the instance (or not) in case it is not reachable. The cluster.removeInstance() operation
ensures that the instance is removed from the metadata of all the cluster members which are ONLINE,
and the instance itself. The last instance that remains in ONLINE status in an InnoDB Cluster cannot be
removed using this operation.

When the instance being removed has transactions which still need to be applied, AdminAPI waits for up
to the number of seconds configured by the MySQL Shell dba.gtidWaitTimeout option for transactions
(GTIDs) to be applied. The MySQL Shell dba.gtidWaitTimeout option has a default value of 60
seconds, see Section 13.4, “Configuring MySQL Shell Options” for information on changing the default.
If the timeout value defined by dba.gtidWaitTimeout is reached when waiting for transactions to be
applied and the force option is false (or not defined) then an error is issued and the remove operation is
aborted. If the timeout value defined by dba.gtidWaitTimeout is reached when waiting for transactions
to be applied and the force option is set to true then the operation continues without an error and
removes the instance from the cluster.

Important

The force option should only be used with
Cluster.removeInstance(instance) when you want to ignore any errors,
for example unprocessed transactions or an instance being UNREACHABLE, and
do not plan to reuse the instance with the cluster. Ignoring errors when removing
an instance from the cluster could result in an instance which is not in synchrony
with the cluster, preventing it from rejoining the cluster at a later time. Only use the
force option when you plan to no longer use the instance with the cluster, in all
other cases you should always try to recover the instance and only remove it when
it is available and healthy, in other words with the status ONLINE.

Dissolving an InnoDB Cluster

To dissolve an InnoDB Cluster you connect to a read-write instance, for example the primary in a
single-primary cluster, and use the Cluster.dissolve() command. This removes all metadata and
configuration associated with the cluster, and disables Group Replication on the instances. Any data that
was replicated between the instances is not removed.

117

Dissolving an InnoDB Cluster

Important

There is no way to undo the dissolving of a cluster. To create it again use
dba.createCluster().

The Cluster.dissolve() operation can only configure instances which are ONLINE or reachable. If
members of a cluster cannot be reached by the member where you issued the Cluster.dissolve()
command you have to decide how the dissolve operation should proceed. If there is any chance you want
to rejoin any instances that are identified as missing from the cluster, it is strongly recommended to cancel
the dissolve operation and first bring the missing instances back online, before proceeding with a dissolve
operation. This ensures that all instances can have their metadata updated correctly, and that there is no
chance of a split-brain situation. However, if the instances from the cluster which cannot be reached have
permanently left the cluster there could be no choice but to force the dissolve operation, which means that
the missing instances are ignored and only online instances are affected by the operation.

Warning

Forcing the dissolve operation to ignore cluster instances can result in instances
which could not be reached during the dissolve operation continuing to operate,
creating the risk of a split-brain situation. Only ever force a dissolve operation to
ignore missing instances if you are sure there is no chance of the instance coming
online again.

In interactive mode, if members of a cluster are not reachable during a dissolve operation then an
interactive prompt is displayed, for example:

mysql-js> Cluster.dissolve()
The cluster still has the following registered instances:
{
 "clusterName": "testCluster",
 "defaultReplicaSet": {
 "name": "default",
 "topology": [
 {
 "address": "ic-1:3306",
 "label": "ic-1:3306",
 "role": "HA"
 },
 {
 "address": "ic-2:3306",
 "label": "ic-2:3306",
 "role": "HA"
 },
 {
 "address": "ic-3:3306",
 "label": "ic-3:3306",
 "role": "HA"
 }
]
 }
}
WARNING: You are about to dissolve the whole cluster and lose the high
availability features provided by it. This operation cannot be reverted. All
members will be removed from the cluster and replication will be stopped,
internal recovery user accounts and the cluster metadata will be dropped. User
data will be maintained intact in all instances.

Are you sure you want to dissolve the cluster? [y/N]: y

ERROR: The instance 'ic-2:3306' cannot be removed because it is on a '(MISSING)'
state. Please bring the instance back ONLINE and try to dissolve the cluster
again. If the instance is permanently not reachable, then you can choose to

118

Changing a Cluster's Topology

proceed with the operation and only remove the instance from the Cluster
Metadata.

Do you want to continue anyway (only the instance metadata will be removed)?
[y/N]: y

Instance 'ic-3:3306' is attempting to leave the cluster... Instance 'ic-1:3306'
is attempting to leave the cluster...

WARNING: The cluster was successfully dissolved, but the following instance was
skipped: 'ic-2:3306'. Please make sure this instance is permanently unavailable
or take any necessary manual action to ensure the cluster is fully dissolved.

In this example, the cluster consisted of three instances, one of which was offline when dissolve was
issued. The error is caught, and you are given the choice how to proceed. In this case the missing ic-2
instance is ignored and the reachable members have their metadata updated.

When MySQL Shell is running in non-interactive mode, for example when running a batch file, you can
configure the behavior of the Cluster.dissolve() operation using the force option. To force the
dissolve operation to ignore any instances which are unreachable, issue:

mysql-js> Cluster.dissolve({force: true})

Any instances which can be reached are removed from the cluster, and any unreachable instances are
ignored. The warnings in this section about forcing the removal of missing instances from a cluster apply
equally to this technique of forcing the dissolve operation.

You can also use the interactive option with the Cluster.dissolve() operation to override the
mode which MySQL Shell is running in, for example to make the interactive prompt appear when running a
batch script. For example:

mysql-js> Cluster.dissolve({interactive: true})

The dba.gtidWaitTimeout MySQL Shell option configures how long the Cluster.dissolve()
operation waits for cluster transactions to be applied before removing a target instance from the cluster, but
only if the target instance is ONLINE. An error is issued if the timeout is reached when waiting for cluster
transactions to be applied on any of the instances being removed, except if force: true is used, which skips
the error in that case.

Note

After issuing cluster.dissolve(), any variable assigned to the Cluster object
is no longer valid.

Changing a Cluster's Topology

By default, an InnoDB Cluster runs in single-primary mode, where the cluster has one primary server that
accepts read and write queries (R/W), and all of the remaining instances in the cluster accept only read
queries (R/O). When you configure a cluster to run in multi-primary mode, all of the instances in the cluster
are primaries, which means that they accept both read and write queries (R/W). If a cluster has all of its
instances running MySQL server version 8.0.15 or later, you can make changes to the topology of the
cluster while the cluster is online. In previous versions it was necessary to completely dissolve and re-
create the cluster to make the configuration changes. This uses the group action coordinator exposed
through the functions described at Configuring an Online Group, and as such you should observe the rules
for configuring online groups.

Note

multi-primary mode is considered an advanced mode

119

https://dev.mysql.com/doc/refman/8.0/en/group-replication-configuring-online-group.html

Configuring InnoDB Cluster

Usually a single-primary cluster elects a new primary when the current primary leaves the cluster
unexpectedly, for example due to an unexpected halt. The election process is normally used to choose
which of the current secondaries becomes the new primary. To override the election process and force
a specific server to become the new primary, use the Cluster.setPrimaryInstance(instance)
function, where instance specifies the connection to the instance which should become the new primary.
This enables you to configure the underlying Group Replication group to choose a specific instance as the
new primary, bypassing the election process.

You can change the mode (sometimes described as the topology) which a cluster is running in between
single-primary and multi-primary using the following operations:

• Cluster.switchToMultiPrimaryMode(), which switches the cluster to multi-primary mode. All
instances become primaries.

• Cluster.switchToSinglePrimaryMode([instance]), which switches the cluster to single-
primary mode. If instance is specified, it becomes the primary and all the other instances become
secondaries. If instance is not specified, the new primary is the instance with the highest member
weight (and the lowest UUID in case of a tie on member weight).

7.6 Configuring InnoDB Cluster
This section describes how to use AdminAPI to configure an InnoDB Cluster.

• Setting Options for InnoDB Cluster

• Customizing InnoDB Clusters

• Configuring the Election Process

• Configuring Failover Consistency

• Configuring Automatic Rejoin of Instances

• Configuring the Parallel Replication Applier

• Securing your Cluster

• Creating an Allowlist of Servers

Setting Options for InnoDB Cluster

You can check and modify the settings in place for an InnoDB Cluster while the instances are online. To
check the current settings of a cluster, use the following operation:

• Cluster.options(), which lists the configuration options for the cluster and its instances. A boolean
option all can also be specified to include information about all Group Replication system variables in
the output.

You can configure the options of an InnoDB Cluster at a cluster level or instance level, while instances
remain online. This avoids the need to remove, reconfigure and then again add the instance to change
InnoDB Cluster options. Use the following operations:

• Cluster.setOption(option, value) to change the settings of all cluster instances globally or
cluster global settings such as clusterName.

• Cluster.setInstanceOption(instance, option, value) to change the settings of individual
cluster instances

120

Customizing InnoDB Clusters

The way which you use InnoDB Cluster options with the operations listed depends on whether the option
can be changed to be the same on all instances or not. These options are changeable at both the cluster
(all instances) and per instance level:

• autoRejoinTries: integer value to define the number of times an instance attempts to rejoin the
cluster after being expelled. See Configuring Automatic Rejoin of Instances.

• exitStateAction: string value indicating the Group Replication exit state action. See Configuring
Automatic Rejoin of Instances.

• memberWeight: integer value with a percentage weight for automatic primary election on failover. See
Configuring the Election Process.

• tag:option: built-in and user-defined tags to be associated to the cluster. See Section 6.3, “Tagging
Metadata”.

These options are changeable at the cluster level only:

• clusterName: string value to define the cluster name

• disableClone: boolean value used to disable the clone usage on the cluster. See
dba.createCluster() and MySQL Clone.

• expelTimeout: integer value to define the time period in seconds that cluster members should wait for
a non-responding member before evicting it from the cluster. See Creating the Cluster.

• failoverConsistency: string value indicating the consistency guarantees that the cluster provides.
See Configuring Automatic Rejoin of Instances.

This option is changeable at the per instance level only:

• label: a string identifier of the instance

Customizing InnoDB Clusters

When you create a cluster and add instances to it, values such as the group name, the local address, and
the seed instances are configured automatically by AdminAPI. These default values are recommended for
most deployments, but advanced users can override the defaults by passing the following options to the
dba.createCluster() and Cluster.addInstance().

To customize the name of the replication group created by InnoDB Cluster, pass the groupName option
to the dba.createCluster() command. This sets the group_replication_group_name system
variable. The name must be a valid UUID.

To customize the address which an instance provides for connections from other instances, pass the
localAddress option to the dba.createCluster() and cluster.addInstance() commands.
Specify the address in the format host:port. This sets the group_replication_local_address
system variable on the instance. The address must be accessible to all instances in the cluster, and
must be reserved for internal cluster communication only. In other words do not use this address for
communication with the instance.

To customize the instances used as seeds when an instance joins the cluster, pass the groupSeeds
option to the dba.createCluster() and Cluster.addInstance() operations. Seed instances
are contacted when a new instance joins a cluster and are used to provide data to the new
instance. The addresses of the seed instances are specified as a comma separated list such as
host1:port1,host2:port2. This configures the group_replication_group_seeds system
variable. When a new instance is added to a cluster, the local address of this instance is automatically

121

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds

Configuring the Election Process

appended to the list of group seeds of all online cluster members in order to allow them to use the new
instance to rejoin the group if necessary.

Note

the instances in the seed list are used according to the order in which they appear
in the list. This means that a user specified seed is used first and preferred over
automatically added instances.

For more information see the documentation of the system variables configured by these AdminAPI
options.

Configuring the Election Process

You can optionally configure how a single-primary cluster elects a new primary, for example to prefer
one instance as the new primary to fail over to. Use the memberWeight option and pass it to the
dba.createCluster() and Cluster.addInstance() methods when creating your cluster. The
memberWeight option accepts an integer value between 0 and 100, which is a percentage weight
for automatic primary election on failover. When an instance has a higher precentage number set by
memberWeight, it is more likely to be elected as primary in a single-primary cluster. When a primary
election takes place, if multiple instances have the same memberWeight value, the instances are then
prioritized based on their server UUID in lexicographical order (the lowest) and by picking the first one.

Setting the value of memberWeight configures the group_replication_member_weight system
variable on the instance. Group Replication limits the value range from 0 to 100, automatically adjusting it
if a higher or lower value is provided. Group Replication uses a default value of 50 if no value is provided.
See Single-Primary Mode for more information.

For example to configure a cluster where ic-3 is the preferred instance to fail over to in the event that
ic-1, the current primary, leaves the cluster unexpectedly use memberWeight as follows:

dba.createCluster('cluster1', {memberWeight:35})
var mycluster = dba.getCluster()
mycluster.addInstance('icadmin@ic2', {memberWeight:25})
mycluster.addInstance('icadmin@ic3', {memberWeight:50})

Configuring Failover Consistency

Group Replication provides the ability to specify the failover guarantees (eventual or “read your
writes”) if a primary failover happens in single-primary mode (see Configuring Transaction Consistency
Guarantees). You can configure the failover guarantees of an InnoDB Cluster at creation by passing
the consistency option (prior to version 8.0.16 this option was the failoverConsistency
option, which is now deprecated) to the dba.createCluster() operation, which configures the
group_replication_consistency system variable on the seed instance. This option defines the
behavior of a new fencing mechanism used when a new primary is elected in a single-primary group. The
fencing restricts connections from writing and reading from the new primary until it has applied any pending
backlog of changes that came from the old primary (sometimes referred to as “read your writes”). While the
fencing mechanism is in place, applications effectively do not see time going backward for a short period
of time while any backlog is applied. This ensures that applications do not read stale information from the
newly elected primary.

The consistency option is only supported if the target MySQL server version is 8.0.14 or later, and
instances added to a cluster which has been configured with the consistency option are automatically
configured to have group_replication_consistency the same on all cluster members that
have support for the option. The variable default value is controlled by Group Replication and is
EVENTUAL, change the consistency option to BEFORE_ON_PRIMARY_FAILOVER to enable the

122

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_member_weight
https://dev.mysql.com/doc/refman/8.0/en/group-replication-single-primary-mode.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-configuring-consistency-guarantees.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-configuring-consistency-guarantees.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_consistency
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_consistency

Configuring Automatic Rejoin of Instances

fencing mechanism. Alternatively use consistency=0 for EVENTUAL and consistency=1 for
BEFORE_ON_PRIMARY_FAILOVER.

Note

Using the consistency option on a multi-primary InnoDB Cluster has no effect but
is allowed because the cluster can later be changed into single-primary mode with
the Cluster.switchToSinglePrimaryMode() operation.

Configuring Automatic Rejoin of Instances

Instances running MySQL 8.0.16 and later support the Group Replication automatic rejoin functionality,
which enables you to configure instances to automatically rejoin the cluster after being expelled. See
Responses to Failure Detection and Network Partitioning for background information. AdminAPI provides
the autoRejoinTries option to configure the number of tries instances make to rejoin the cluster
after being expelled. By default instances do not automatically rejoin the cluster. You can configure the
autoRejoinTries option at either the cluster level or for an individual instance using the following
commands:

• dba.createCluster()

• Cluster.addInstance()

• Cluster.setOption()

• Cluster.setInstanceOption()

The autoRejoinTries option accepts positive integer values between 0 and 2016 and the default value
is 0, which means that instances do not try to automatically rejoin. When you are using the automatic rejoin
functionality, your cluster is more tolerant to faults, especially temporary ones such as unreliable networks.
But if quorum has been lost, you should not expect members to automatically rejoin the cluster, because
majority is required to rejoin instances.

Instances running MySQL version 8.0.12 and later have the
group_replication_exit_state_action variable, which you can configure using the AdminAPI
exitStateAction option. This controls what instances do in the event of leaving the cluster
unexpectedly. By default the exitStateAction option is READ_ONLY, which means that instances
which leave the cluster unexpectedly become read-only. If exitStateAction is set to OFFLINE_MODE
(available from MySQL 8.0.18), instances which leave the cluster unexpectedly become read-only and also
enter offline mode, where they disconnect existing clients and do not accept new connections (except from
clients with administrator privileges). If exitStateAction is set to ABORT_SERVER then in the event of
leaving the cluster unexpectedly, the instance shuts down MySQL, and it has to be started again before it
can rejoin the cluster. Note that when you are using the automatic rejoin functionality, the action configured
by the exitStateAction option only happens in the event that all attempts to rejoin the cluster fail.

There is a chance you might connect to an instance and try to configure it using the AdminAPI, but at that
moment the instance could be rejoining the cluster. This could happen whenever you use any of these
operations:

• Cluster.status()

• dba.getCluster()

• Cluster.rejoinInstance()

• Cluster.addInstance()

123

https://dev.mysql.com/doc/refman/8.0/en/group-replication-responses-failure.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_exit_state_action

Configuring the Parallel Replication Applier

• Cluster.removeInstance()

• Cluster.rescan()

• Cluster.checkInstanceState()

These operations might provide extra information while the instance is automatically rejoining the cluster.
In addition, when you are using Cluster.removeInstance(), if the target instance is automatically
rejoining the cluster the operation aborts unless you pass in force:true.

Configuring the Parallel Replication Applier

From version 8.0.23 instances support and enable parallel replication applier threads, sometimes referred
to as a multi-threaded replica. Using multiple replica applier threads in parallel improves the throughput of
both the replication applier and incremental recovery.

This means that on instances running 8.0.23 and later, the following system variables must be configured:

• binlog_transaction_dependency_tracking=WRITESET

• slave_preserve_commit_order=ON

• slave_parallel_type=LOGICAL_CLOCK

• transaction_write_set_extraction=XXHASH64

By default, the number of applier threads (configured by the slave_parallel_workers system variable)
is set to 4.

When you upgrade a cluster that has been running a version of MySQL server and MySQL Shell earlier
than 8.0.23, the instances are not configured to use the parallel replication applier. If the parallel applier is
not enabled, the output of the Cluster.status() operation shows a message in the instanceErrors
field, for example:

...
"instanceErrors": [
 "NOTE: The required parallel-appliers settings are not enabled on
 the instance. Use dba.configureInstance() to fix it."
...

In this situation you should reconfigure your instances, so that they use the parallel replication
applier. For each instance that belongs to the InnoDB Cluster, update the configuration by issuing
dba.configureInstance(instance). Note that usually dba.configureInstance() is used before
adding the instance to a cluster, but in this special case there is no need to remove the instance and the
configuration change is made while it is online.

Information about the parallel replication applier is displayed in the output of the
Cluster.status(extended=1) operation. For example, if the parallel replication applier is
enabled, then the topology section output for the instance shows the number of threads under
applierWorkerThreads. The system variables configured for the parallel replication applier are shown
in the output of the Cluster.options() operation.

You can configure the number of threads which an instance uses for the parallel replication applier
with the applierWorkerThreads option, which defaults to 4 threads. The option accepts integers
in the range of 0 to 1024 and can only be used with the dba.configureInstance() and
dba.configureReplicaSetInstance() operations. For example, to use 8 threads, issue:

mysql-js> dba.configureInstance(instance, {applierWorkerThreads: 8, restart: true})

124

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_transaction_dependency_tracking
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_preserve_commit_order
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_type
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_transaction_write_set_extraction
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_workers

Securing your Cluster

Note

The change to the number of threads used by the parallel replication applier only
occurs after the instance is restarted and has rejoined the cluster.

To disable the parallel replication applier, set the applierWorkerThreads option to 0.

Securing your Cluster

Server instances can be configured to use secure connections. For general information on using secure
connections with MySQL see Using Encrypted Connections. This section explains how to configure a
cluster to use encrypted connections. An additional security possibility is to configure which servers can
access the cluster, see Creating an Allowlist of Servers.

Important

Once you have configured a cluster to use encrypted connections you must add the
servers to the ipAllowlist. For example, when using the commercial version of
MySQL, SSL is enabled by default and you need to configure the ipAllowlist
option for all instances. See Creating an Allowlist of Servers.

When using dba.createCluster() to set up a cluster, if the server instance provides encryption
then it is automatically enabled on the seed instance. Pass the memberSslMode option to the
dba.createCluster() method to specify a different SSL mode. The SSL mode of a cluster can only
be set at the time of creation. The memberSslMode option is a string that configures the SSL mode to be
used, it defaults to AUTO. The following modes are supported:

• DISABLED: Ensure SSL encryption is disabled for the seed instance in the cluster.

• AUTO: Automatically enable SSL encryption if the server instance supports it, or disable encryption if the
server does not support it.

• REQUIRED: Enable SSL encryption for the seed instance in the cluster. If it cannot be enabled, an error
is raised.

• (added in version 8.0.24) VERIFY_CA: Like REQUIRED, but additionally verify the server Certificate
Authority (CA) certificate against the configured CA certificates. The connection attempt fails if no valid
matching CA certificates are found.

• (added in version 8.0.24) VERIFY_IDENTITY: Like VERIFY_CA, but additionally perform host name
identity verification by checking the host name the client uses for connecting to the server against the
identity in the certificate that the server sends to the client.

For example, to set the cluster to use REQUIRED, issue:

mysql-js> var myCluster = dba.createCluster({memberSslMode: 'REQUIRED'})

If you choose to use the VERIFY_CA or VERIFY_IDENTITY mode, on each cluster instance you must
manually supply the CA certificates using the ssl_ca and/or ssl_capath option. For more information on
these modes, see --ssl-mode=mode.

When you use the Cluster.addInstance() and Cluster.rejoinInstance() operations, SSL
encryption on the instance is enabled or disabled based on the setting used for the cluster. Use the
memberSslMode option with either of these operations to set the instance to use a different mode of
encryption.

When using dba.createCluster() with the adoptFromGR option to adopt an existing Group
Replication group, no SSL settings are changed on the adopted cluster:

125

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_capath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode

Creating an Allowlist of Servers

• memberSslMode cannot be used with adoptFromGR.

• If the SSL settings of the adopted cluster are different from the ones supported by the MySQL Shell,
in other words SSL for Group Replication recovery and Group Communication, both settings are not
modified. This means you are not be able to add new instances to the cluster, unless you change the
settings manually for the adopted cluster.

MySQL Shell always enables or disables SSL for the cluster for both Group Replication recovery and
Group Communication, see Securing Group Communication Connections with Secure Socket Layer (SSL).
A verification is performed and an error issued in case those settings are different for the seed instance (for
example as the result of a dba.createCluster() using adoptFromGR) when adding a new instance
to the cluster. SSL encryption must be enabled or disabled for all instances in the cluster. Verifications are
performed to ensure that this invariant holds when adding a new instance to the cluster.

The dba.deploySandboxInstance() command attempts to deploy sandbox instances with SSL
encryption support by default. If it is not possible, the server instance is deployed without SSL support. See
Section 6.2.1, “Deploying Sandbox Instances”.

Creating an Allowlist of Servers

When using a cluster's createCluster(), addInstance(), and rejoinInstance() methods you
can optionally specify a list of approved servers that belong to the cluster, referred to as an allowlist.
By specifying the allowlist explicitly in this way you can increase the security of your cluster because
only servers in the allowlist can connect to the cluster. Using the ipAllowlist option (previously
ipWhitelist, now deprecated) configures the group_replication_ip_allowlist system variable
on the instance. By default, if not specified explicitly, the allowlist is automatically set to the private network
addresses that the server has network interfaces on. To configure the allowlist, specify the servers to add
with the ipAllowlist option when using the method. IP addresses must be specified in IPv4 format.
Pass the servers as a comma separated list, surrounded by quotes. For example:

mysql-js> cluster.addInstance("icadmin@ic-3:3306", {ipAllowlist: "203.0.113.0/24, 198.51.100.110"})

This configures the instance to only accept connections from servers at addresses 203.0.113.0/24 and
198.51.100.110. The allowlist can also include host names, which are resolved only when a connection
request is made by another server.

Warning

Host names are inherently less secure than IP addresses in an allowlist. MySQL
carries out FCrDNS verification, which provides a good level of protection, but can
be compromised by certain types of attack. Specify host names in your allowlist
only when strictly necessary, and ensure that all components used for name
resolution, such as DNS servers, are maintained under your control. You can also
implement name resolution locally using the hosts file, to avoid the use of external
components.

7.7 Troubleshooting InnoDB Cluster
This section describes how to troubleshoot an InnoDB Cluster.

• Rejoining an Instance to a Cluster

• Restoring a Cluster from Quorum Loss

• Rebooting a Cluster from a Major Outage

• Rescanning a Cluster

126

https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_ip_allowlist

Rejoining an Instance to a Cluster

Rejoining an Instance to a Cluster

If an instance leaves the cluster, for example because it lost connection, and for some reason it could not
automatically rejoin the cluster, it might be necessary to rejoin it to the cluster at a later stage. To rejoin an
instance to a cluster issue Cluster.rejoinInstance(instance).

Tip

If the instance has super_read_only=ON then you might need to confirm that
AdminAPI can set super_read_only=OFF. See Super Read-only and Instances
for more information.

In the case where an instance has not had its configuration persisted (see Section 6.1.5, “Persisting
Settings”), upon restart the instance does not rejoin the cluster automatically. The solution is to issue
cluster.rejoinInstance() so that the instance is added to the cluster again and ensure the changes
are persisted. Once the InnoDB Cluster configuration is persisted to the instance's option file it rejoins the
cluster automatically.

If you are rejoining an instance which has changed in some way then you might have to modify the
instance to make the rejoin process work correctly. For example, when you restore a MySQL Enterprise
Backup backup, the server_uuid changes. Attempting to rejoin such an instance fails because InnoDB
Cluster instances are identified by the server_uuid variable. In such a situation, information about
the instance's old server_uuid must be removed from the InnoDB Cluster metadata and then a
Cluster.rescan() must be executed to add the instance to the metadata using it's new server_uuid.
For example:

cluster.removeInstance("root@instanceWithOldUUID:3306", {force: true})

cluster.rescan()

In this case you must pass the force option to the Cluster.removeInstance() method because the
instance is unreachable from the cluster's perspective and we want to remove it from the InnoDB Cluster
metadata anyway.

Restoring a Cluster from Quorum Loss

If an instance (or instances) fail, then a cluster can lose its quorum, which is the ability to vote in a new
primary. This can happen when there is a failure of enough instances that there is no longer a majority of
the instances which make up the cluster to vote on Group Replication operations. See Fault-tolerance.
When a cluster loses quorum you can no longer process write transactions with the cluster, or change
the cluster's topology, for example by adding, rejoining, or removing instances. However if you have
an instance online which contains the InnoDB Cluster metadata, it is possible to restore a cluster with
quorum. This assumes you can connect to an instance that contains the InnoDB Cluster metadata, and
that instance can contact the other instances you want to use to restore the cluster.

Important

This operation is potentially dangerous because it can create a split-brain scenario
if incorrectly used and should be considered a last resort. Make absolutely sure
that there are no partitions of this group that are still operating somewhere in the
network, but not accessible from your location.

Connect to an instance which contains the cluster's metadata, then use the
Cluster.forceQuorumUsingPartitionOf(instance) operation, which restores the cluster based
on the metadata on instance, and then all the instances that are ONLINE from the point of view of the
given instance definition are added to the restored cluster.

mysql-js> cluster.forceQuorumUsingPartitionOf("icadmin@ic-1:3306")

127

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-fault-tolerance.html

Rebooting a Cluster from a Major Outage

 Restoring replicaset 'default' from loss of quorum, by using the partition composed of [icadmin@ic-1:3306]

 Please provide the password for 'icadmin@ic-1:3306': ******
 Restoring the InnoDB cluster ...

 The InnoDB cluster was successfully restored using the partition from the instance 'icadmin@ic-1:3306'.

 WARNING: To avoid a split-brain scenario, ensure that all other members of the replicaset
 are removed or joined back to the group that was restored.

In the event that an instance is not automatically added to the cluster, for example if its settings were not
persisted, use Cluster.rejoinInstance() to manually add the instance back to the cluster.

The restored cluster might not, and does not have to, consist of all of the original instances which made up
the cluster. For example, if the original cluster consisted of the following five instances:

• ic-1

• ic-2

• ic-3

• ic-4

• ic-5

and the cluster experiences a split-brain scenario, with ic-1, ic-2, and ic-3 forming one
partition while ic-4 and ic-5 form another partition. If you connect to ic-1 and issue
Cluster.forceQuorumUsingPartitionOf('icadmin@ic-1:3306') to restore the cluster the
resulting cluster would consist of these three instances:

• ic-1

• ic-2

• ic-3

because ic-1 sees ic-2 and ic-3 as ONLINE and does not see ic-4 and ic-5.

Rebooting a Cluster from a Major Outage

If your cluster suffers from a complete outage, you can ensure it is reconfigured correctly using
dba.rebootClusterFromCompleteOutage(). This operation takes the instance which MySQL Shell is
currently connected to and uses its metadata to recover the cluster. In the event that a cluster's instances
have completely stopped, the instances must be started and only then can the cluster be started. For
example if the machine a sandbox cluster was running on has been restarted, and the instances were at
ports 3310, 3320 and 3330, issue:

mysql-js> dba.startSandboxInstance(3310)
mysql-js> dba.startSandboxInstance(3320)
mysql-js> dba.startSandboxInstance(3330)

This ensures the sandbox instances are running. In the case of a production deployment you would have
to start the instances outside of MySQL Shell. Once the instances have started, you need to connect to
an instance with the GTID superset, which means the instance which had applied the most transaction
before the outage. If you are unsure which instance contains the GTID superset, connect to any instance
and follow the interactive messages from the dba.rebootClusterFromCompleteOutage() operation,
which detects if the instance you are connected to contains the GTID superset. Reboot the cluster by
issuing:

128

Rescanning a Cluster

mysql-js> var cluster = dba.rebootClusterFromCompleteOutage();

The dba.rebootClusterFromCompleteOutage() operation then follows these steps to ensure the
cluster is correctly reconfigured:

• The InnoDB Cluster metadata found on the instance which MySQL Shell is currently connected to is
checked to see if it contains the GTID superset, in other words the transactions applied by the cluster.
If the currently connected instance does not contain the GTID superset, the operation aborts with that
information. See the subsequent paragraphs for more information.

• If the instance contains the GTID superset, the cluster is recovered based on the metadata of the
instance.

• Assuming you are running MySQL Shell in interactive mode, a wizard is run that checks which instances
of the cluster are currently reachable and asks if you want to rejoin any discovered instances to the
rebooted cluster.

• Similarly, in interactive mode the wizard also detects instances which are currently not reachable and
asks if you would like to remove such instances from the rebooted cluster.

If you are not using MySQL Shell's interactive mode, you can use the rejoinInstances and
removeInstances options to manually configure instances which should be joined or removed during the
reboot of the cluster.

If you encounter an error such as The active session instance isn't the most updated
in comparison with the ONLINE instances of the Cluster's metadata. then the
instance you are connected to does not have the GTID superset of transactions applied by the cluster.
In this situation, connect MySQL Shell to the instance suggested in the error message and issue
dba.rebootClusterFromCompleteOutage() from that instance.

Tip

To manually detect which instance has the GTID superset rather than using the
interactive wizard, check the gtid_executed variable on each instance. For
example issue:

mysql-sql> SHOW VARIABLES LIKE 'gtid_executed';

The instance which has applied the largest GTID set of transactions contains the
GTID superset.

If this process fails, and the cluster metadata has become badly corrupted, you might need to drop
the metadata and create the cluster again from scratch. You can drop the cluster metadata using
dba.dropMetadataSchema().

Warning

The dba.dropMetadataSchema() method should only be used as a last resort,
when it is not possible to restore the cluster. It cannot be undone.

If you are using MySQL Router with the cluster, when you drop the metadata, all current connections are
dropped and new connections are forbidden. This causes a full outage.

Rescanning a Cluster

If you make configuration changes to a cluster outside of the AdminAPI commands, for example by
changing an instance's configuration manually to resolve configuration issues or after the loss of an
instance, you need to update the InnoDB Cluster metadata so that it matches the current configuration

129

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
replication-gtids-concepts-gtid-sets

Rescanning a Cluster

of instances. In these cases, use the Cluster.rescan() operation, which enables you to update
the InnoDB Cluster metadata either manually or using an interactive wizard. The Cluster.rescan()
operation can detect new active instances that are not registered in the metadata and add them,
or obsolete instances (no longer active) still registered in the metadata, and remove them. You can
automatically update the metadata depending on the instances found by the command, or you can specify
a list of instance addresses to either add to the metadata or remove from the metadata. You can also
update the topology mode stored in the metadata, for example after changing from single-primary mode to
multi-primary mode outside of AdminAPI.

The syntax of the command is Cluster.rescan([options]). The options dictionary supports the
following:

• interactive: boolean value used to disable or enable the wizards in the command execution. Controls
whether prompts and confirmations are provided. The default value is equal to MySQL Shell wizard
mode, specified by shell.options.useWizards.

• addInstances: list with the connection data of the new active instances to add to the metadata, or
“auto” to automatically add missing instances to the metadata. The value “auto” is case-insensitive.

• Instances specified in the list are added to the metadata, without prompting for confirmation

• In interactive mode, you are prompted to confirm the addition of newly discovered instances that are
not included in the addInstances option

• In non-interactive mode, newly discovered instances that are not included in the addInstances
option are reported in the output, but you are not prompted to add them

• removeInstances: list with the connection data of the obsolete instances to remove from the
metadata, or “auto” to automatically remove obsolete instances from the metadata.

• Instances specified in the list are removed from the metadata, without prompting for confirmation

• In interactive mode, you are prompted to confirm the removal of obsolete instances that are not
included in the removeInstances option

• In non-interactive mode, obsolete instances that are not included in the removeInstances option are
reported in the output but you are not prompted to remove them

• updateTopologyMode: boolean value used to indicate if the topology mode (single-primary or multi-
primary) in the metadata should be updated (true) or not (false) to match the one being used by the
cluster. By default, the metadata is not updated (false).

• If the value is true then the InnoDB Cluster metadata is compared to the current mode being used by
Group Replication, and the metadata is updated if necessary. Use this option to update the metadata
after making changes to the topology mode of your cluster outside of AdminAPI.

• If the value is false then InnoDB Cluster metadata about the cluster's topology mode is not updated
even if it is different from the topology used by the cluster's Group Replication group

• If the option is not specified and the topology mode in the metadata is different from the topology used
by the cluster's Group Replication group, then:

• In interactive mode, you are prompted to confirm the update of the topology mode in the metadata

• In non-interactive mode, if there is a difference between the topology used by the cluster's Group
Replication group and the InnoDB Cluster metadata, it is reported and no changes are made to the
metadata

130

Upgrading an InnoDB Cluster

• When the metadata topology mode is updated to match the Group Replication mode, the auto-
increment settings on all instances are updated as described at InnoDB Cluster and Auto-increment.

• upgradeCommProtocol: boolean value used to indicate if the Group Replication communication
protocol version should be upgraded (true) or not (false) to the version supported by the instance
in the cluster that is at the lowest MySQL release. By default, the communication protocol version
is not upgraded (false). AdminAPI operations before MySQL Shell 8.0.26 upgraded automatically
where possible, but the process can cause delays in the cluster. From MySQL Shell 8.0.26, AdminAPI
operations that cause a topology change return a message if the communication protocol version can
be upgraded, and you can use this option to carry out the upgrade at a suitable time. It is advisable to
upgrade to the highest available version of the Group Replication communication protocol to support the
latest features, such as message fragmentation for large transactions. For more information, see Setting
a Group's Communication Protocol Version.

• If the value is true then the Group Replication communication protocol version is upgraded to the
version supported by the instance in the cluster that is at the lowest MySQL release.

• If the value is false then the Group Replication communication protocol version is not upgraded.

7.8 Upgrading an InnoDB Cluster

This section explains how to upgrade your cluster. Much of the process of upgrading an InnoDB Cluster
consists of upgrading the instances in the same way as documented at Upgrading Group Replication. This
section focuses on the additional considerations for upgrading InnoDB Cluster. Before starting an upgrade,
you can use the MySQL Shell Section 11.1, “Upgrade Checker Utility” to verify instances are ready for the
upgrade.

From version 8.0.19, if you try to bootstrap MySQL Router against a cluster and it discovers that the
metadata version is 0.0.0, this indicates that a metadata upgrade is in progress, and the bootstrap fails.
Wait for the metadata upgrade to complete before you try to bootstrap again. When MySQL Router is
operating normally (not bootstrapping), if it discovers the metadata version is 0.0.0 (upgrade in progress)
it does not proceed with the metadata refresh it was about to begin. Instead, MySQL Router continues
using the last metadata it has cached. All the existing user connections are maintained, and any new
connections are routed according to the cached metadata. The Metadata refresh restarts when the
Metadata version is no longer 0.0.0. In the regular (not bootstrapping) mode, MySQL Router works with
both version 1.x.x and 2.x.x. metadata, and the version can change between TTL refreshes. This ensures
routing continues while the cluster is upgraded.

Although it is possible to have instances in a cluster which run multiple MySQL versions, for example
version 5.7 and 8.0, such a mix is not recommended for prolonged use. For example, in a cluster using a
mix of versions, if an instance running version 5.7 leaves the cluster and then MySQL Clone is used for
a recovery operation, the instance running the lower version can no longer join the cluster because the
BACKUP_ADMIN privilege becomes a requirement. Running a cluster with multiple versions is intended as
a temporary situation to aid in migration from one version to another, and should not be relied on for long
term use.

7.8.1 Rolling Upgrades

When upgrading the metadata schema of clusters deployed by MySQL Shell versions before 8.0.19, a
rolling upgrade of existing MySQL Router instances is required. This process minimizes disruption to
applications during the upgrade. The rolling upgrade process must be performed in the following order:

1. Run the latest MySQL Shell version, connect the global session to the cluster and issue
dba.upgradeMetadata(). This step ensures that any MySQL Router accounts configured for the

131

https://dev.mysql.com/doc/refman/8.0/en/group-replication-communication-protocol.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-communication-protocol.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-upgrade.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin

Upgrading InnoDB Cluster Metadata

cluster have their privileges modified to be compatible with the new version. The upgrade function stops
if an outdated MySQL Router instance is detected, at which point you can stop the upgrade process in
MySQL Shell to resume later.

2. Upgrade any detected out of date MySQL Router instances to the latest version. It is recommended to
use the same MySQL Router version as MySQL Shell version.

3. Continue or restart the dba.upgradeMetadata() operation to complete the metadata upgrade.

7.8.2 Upgrading InnoDB Cluster Metadata

As AdminAPI evolves, some releases might require you to upgrade the metadata of existing clusters to
ensure they are compatible with newer versions of MySQL Shell. For example, the addition of InnoDB
ReplicaSet in version 8.0.19 means that the metadata schema has been upgraded to version 2.0.
Regardless of whether you plan to use InnoDB ReplicaSet or not, to use MySQL Shell 8.0.19 or later with a
cluster deployed using an earlier version of MySQL Shell, you must upgrade the metadata of your cluster.

Warning

Without upgrading the metadata you cannot use MySQL Shell 8.0.19 to change
the configuration of a cluster created with earlier versions. For example, you can
only perform read operations against the cluster such as Cluster.status(),
Cluster.describe(), and Cluster.options().

This dba.upgradeMetadata() operation compares the version of the metadata schema found on
the cluster MySQL Shell is currently connected to with the version of the metadata schema supported
by this MySQL Shell version. If the installed metadata version is lower, an upgrade process is started.
The dba.upgradeMetadata() operation then upgrades any automatically created MySQL Router
users to have the correct privileges. Manually created MySQL Router users with a name not starting with
mysql_router_ are not automatically upgraded. This is an important step in upgrading your cluster, only
then can the MySQL Router application be upgraded. To get information on which of the MySQL Router
instances registered with a cluster require the metadata upgrade, issue:

cluster.listRouters({'onlyUpgradeRequired':'true'})
{
 "clusterName": "mycluster",
 "routers": {
 "example.com::": {
 "hostname": "example.com",
 "lastCheckIn": "2019-11-26 10:10:37",
 "roPort": 6447,
 "roXPort": 64470,
 "rwPort": 6446,
 "rwXPort": 64460,
 "version": "8.0.18"
 }
 }
}

Warning

A cluster which is using the new metadata cannot be administered by earlier
MySQL Shell versions, for example once you upgrade to version 8.0.19 you can no
longer use version 8.0.18 or earlier to administer the cluster.

To upgrade a cluster's metadata, connect MySQL Shell's global session to your cluster and use the
dba.upgradeMetadata() operation to upgrade the cluster's metadata to the new metadata. For
example:

mysql-js> \connect user@example.com:3306

132

Troubleshooting InnoDB Cluster Upgrades

mysql-js> dba.upgradeMetadata()
InnoDB Cluster Metadata Upgrade

The cluster you are connected to is using an outdated metadata schema version
1.0.1 and needs to be upgraded to 2.0.0.

Without doing this upgrade, no AdminAPI calls except read only operations will
be allowed.

The grants for the MySQL Router accounts that were created automatically when
bootstrapping need to be updated to match the new metadata version's
requirements.
Updating router accounts...
NOTE: 2 router accounts have been updated.

Upgrading metadata at 'example.com:3306' from version 1.0.1 to version 2.0.0.
Creating backup of the metadata schema...
Step 1 of 1: upgrading from 1.0.1 to 2.0.0...
Removing metadata backup...
Upgrade process successfully finished, metadata schema is now on version 2.0.0

If you encounter an error related to the cluster administration user missing privileges, use the
Cluster.setupAdminAccount() operation with the update option to grant the user the correct
privileges. See Configuring Users for AdminAPI.

7.8.3 Troubleshooting InnoDB Cluster Upgrades

This section covers trouble shooting the upgrade process.

Handling Host Name Changes

MySQL Shell uses the host value of the provided connection parameters as the target hostname used for
AdminAPI operations, namely to register the instance in the metadata (for the dba.createCluster()
and Cluster.addInstance() operations). However, the actual host used for the connection parameters
might not match the hostname that is used or reported by Group Replication, which uses the value of the
report_host system variable when it is defined (in other words it is not NULL), otherwise the value of
hostname is used. Therefore, AdminAPI now follows the same logic to register the target instance in the
metadata and as the default value for the group_replication_local_address variable on instances,
instead of using the host value from the instance connection parameters. When the report_host
variable is set to empty, Group Replication uses an empty value for the host but AdminAPI (for example
in commands such as dba.checkInstanceConfiguration(), dba.configureInstance(),
dba.createCluster(), and so on) reports the hostname as the value used which is inconsistent with
the value reported by Group Replication. If an empty value is set for the report_host system variable, an
error is generated. (Bug #28285389)

For a cluster created using a MySQL Shell version earlier than 8.0.16, an attempt to reboot the cluster
from a complete outage performed using version 8.0.16 or higher results in this error. This is caused by a
mismatch of the Metadata values with the report_host or hostname values reported by the instances.
The workaround is to:

1. Identify which of the instances is the “seed”, in other words the one with the most recent GTID set. The
dba.rebootClusterFromCompleteOutage() operation detects whether the instance is a seed
and the operation generates an error if the current session is not connected to the most up-to-date
instance.

2. Set the report_host system variable to the value that is stored in the Metadata schema for the target
instance. This value is the hostname:port pair used in the instance definition upon cluster creation.
The value can be consulted by querying the mysql_innodb_cluster_metadata.instances table.

133

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host

InnoDB Cluster Tips

For example, suppose a cluster was created using the following sequence of commands:

mysql-js> \c clusterAdmin@localhost:3306
mysql-js> dba.createCluster("myCluster")

Therefore the hostname value stored in the metadata is “localhost” and for that reason, report_host
must be set to “localhost” on the seed.

3. Reboot the cluster using only the seed instance. At the interactive prompts do not add the remaining
instances to the cluster.

4. Use Cluster.rescan() to add the other instances back to the cluster.

5. Remove the seed instance from the cluster

6. Stop mysqld on the seed instance and either remove the forced report_host setting (step 2), or
replace it with the value previously stored in the Metadata value.

7. Restart the seed instance and add it back to the cluster using Cluster.addInstance()

This allows a smooth and complete upgrade of the cluster to the latest MySQL Shell version. Another
possibility, that depends on the use-case, is to simply set the value of report_host on all cluster
members to match what has been registered in the Metadata schema upon cluster creation.

7.9 InnoDB Cluster Tips
This section describes some information which is good to know when using InnoDB Cluster.

• Super Read-only and Instances

• Configuring Users for AdminAPI

• InnoDB Cluster and Auto-increment

• InnoDB Cluster and Binary Log Purging

• Resetting Recovery Account Passwords

Super Read-only and Instances

Whenever Group Replication stops, the super_read_only variable is set to ON to ensure no writes are
made to the instance. When you try to use such an instance with the following AdminAPI commands you
are given the choice to set super_read_only=OFF on the instance:

• dba.configureInstance()

• dba.configureLocalInstance()

• dba.dropMetadataSchema()

When AdminAPI encounters an instance which has super_read_only=ON, in interactive mode you are
given the choice to set super_read_only=OFF. For example:

mysql-js> var myCluster = dba.dropMetadataSchema()
Are you sure you want to remove the Metadata? [y/N]: y
The MySQL instance at 'localhost:3310' currently has the super_read_only system
variable set to protect it from inadvertent updates from applications. You must
first unset it to be able to perform any changes to this instance.
For more information see:

134

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Configuring Users for AdminAPI

https://dev.mysql.com/doc/refman/en/server-system-variables.html#sysvar_super_read_only.

Do you want to disable super_read_only and continue? [y/N]: y

Metadata Schema successfully removed.

The number of current active sessions to the instance is shown. You must ensure that no applications can
write to the instance inadvertently. By answering y you confirm that AdminAPI can write to the instance. If
there is more than one open session to the instance listed, exercise caution before permitting AdminAPI to
set super_read_only=OFF.

Configuring Users for AdminAPI

Working with instances that belong to an InnoDB Cluster or InnoDB ReplicaSet requires that you connect
to the instances with a user that has the correct privileges to administer the instances. AdminAPI provides
the following ways to administer suitable users:

• In version 8.0.20 and later, use the setupAdminAccount(user) operation, which creates or upgrades
a MySQL user account with the necessary privileges to administer an InnoDB Cluster or InnoDB
ReplicaSet.

• In versions prior to 8.0.20, the preferred method to create users for administration is using the
clusterAdmin option with the dba.configureInstance() operation.

For more information, see Section 6.1.7, “Creating User Accounts for Administration”. If you want to
manually configure an administration user, that user requires the following privileges, all with GRANT
OPTION:

• Global privileges on *.* for RELOAD, SHUTDOWN, PROCESS, FILE, SELECT, SUPER,
REPLICATION SLAVE, REPLICATION CLIENT, REPLICATION_APPLIER, CREATE USER,
SYSTEM_VARIABLES_ADMIN, PERSIST_RO_VARIABLES_ADMIN, BACKUP_ADMIN, CLONE_ADMIN,
and EXECUTE.

Note

SUPER includes the following required privileges: SYSTEM_VARIABLES_ADMIN,
SESSION_VARIABLES_ADMIN, REPLICATION_SLAVE_ADMIN,
GROUP_REPLICATION_ADMIN, REPLICATION_SLAVE_ADMIN, ROLE_ADMIN.

• Schema specific privileges for mysql_innodb_cluster_metadata.*,
mysql_innodb_cluster_metadata_bkp.*, and
mysql_innodb_cluster_metadata_previous.* are ALTER, ALTER ROUTINE, CREATE, CREATE
ROUTINE, CREATE TEMPORARY TABLES, CREATE VIEW, DELETE, DROP, EVENT, EXECUTE, INDEX,
INSERT, LOCK TABLES, REFERENCES, SHOW VIEW, TRIGGER, UPDATE; and for mysql.* are INSERT,
UPDATE, DELETE.

Note

This list of privileges is based on the current version of MySQL Shell. The privileges
are subject to change between releases. Therefore the recommended way to
administer accounts is using the operations described at Section 6.1.7, “Creating
User Accounts for Administration”

If only read operations are needed, for example to create a user for monitoring purposes, an account with
more restricted privileges can be used. To give the user your_user the privileges needed to monitor
InnoDB Cluster issue:

GRANT SELECT ON mysql_innodb_cluster_metadata.* TO your_user@'%';

135

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_shutdown
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_file
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-applier
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_persist-ro-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_clone-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_session-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_group-replication-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_role-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_alter
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_alter-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-temporary-tables
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-view
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_drop
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_event
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_index
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_references
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_trigger
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_delete

InnoDB Cluster and Auto-increment

GRANT SELECT ON mysql.slave_master_info TO your_user@'%';
GRANT SELECT ON performance_schema.global_status TO your_user@'%';
GRANT SELECT ON performance_schema.global_variables TO your_user@'%';
GRANT SELECT ON performance_schema.replication_applier_configuration TO your_user@'%';
GRANT SELECT ON performance_schema.replication_applier_status TO your_user@'%';
GRANT SELECT ON performance_schema.replication_applier_status_by_coordinator TO your_user@'%';
GRANT SELECT ON performance_schema.replication_applier_status_by_worker TO your_user@'%';
GRANT SELECT ON performance_schema.replication_connection_configuration TO your_user@'%';
GRANT SELECT ON performance_schema.replication_connection_status TO your_user@'%';
GRANT SELECT ON performance_schema.replication_group_member_stats TO your_user@'%';
GRANT SELECT ON performance_schema.replication_group_members TO your_user@'%';
GRANT SELECT ON performance_schema.threads TO your_user@'%' WITH GRANT OPTION;

For more information, see Account Management Statements.

InnoDB Cluster and Auto-increment

When you are using an instance as part of an InnoDB Cluster, the auto_increment_increment and
auto_increment_offset variables are configured to avoid the possibility of auto increment collisions
for multi-primary clusters up to a size of 9 (the maximum supported size of a Group Replication group). The
logic used to configure these variables can be summarized as:

• If the group is running in single-primary mode, then set auto_increment_increment to 1 and
auto_increment_offset to 2.

• If the group is running in multi-primary mode, then when the cluster has 7 instances or less set
auto_increment_increment to 7 and auto_increment_offset to 1 + server_id % 7. If a multi-
primary cluster has 8 or more instances set auto_increment_increment to the number of instances
and auto_increment_offset to 1 + server_id % the number of instances.

InnoDB Cluster and Binary Log Purging

In MySQL 8, the binary log is automatically purged (as defined by binlog_expire_logs_seconds).
This means that a cluster which has been running for a longer time than
binlog_expire_logs_seconds could eventually not contain an instance with a complete binary log
that contains all of the transactions applied by the instances. This could result in instances needing to be
provisioned automatically, for example using MySQL Enterprise Backup, before they could join the cluster.
Instances running 8.0.17 and later support the MySQL Clone plugin, which resolves this issue by providing
an automatic provisioning solution which does not rely on incremental recovery, see Section 7.2.2,
“Using MySQL Clone with InnoDB Cluster”. Instances running a version earlier than 8.0.17 only support
incremental recovery, and the result is that, depending on which version of MySQL the instance is running,
instances might have to be provisioned automatically. Otherwise operations which rely on distributed
recovery, such as Cluster.addInstance() and so on might fail.

On instances running earlier versions of MySQL the following rules are used for binary log purging:

• Instances running a version earlier than 8.0.1 have no automatic binary log purging because the default
value of expire_logs_days is 0.

• Instances running a version later than 8.0.1 but earlier than 8.0.4 purge the binary log after 30 days
because the default value of expire_logs_days is 30.

• Instances running a version later than 8.0.10 purge the binary log after 30 days because the default
value of binlog_expire_logs_seconds is 2592000 and the default value of expire_logs_days is
0.

Thus, depending on how long the cluster has been running binary logs could have been purged and
you might have to provision instances manually. Similarly, if you manually purged binary logs you could

136

https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_expire_logs_seconds
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_expire_logs_seconds
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_expire_logs_seconds
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days

Resetting Recovery Account Passwords

encounter the same situation. Therefore you are strongly advised to upgrade to a version of MySQL later
than 8.0.17 to take full advantage of the automatic provisioning provided by MySQL Clone for distributed
recovery, and to minimize downtime while provisioning instances for your InnoDB Cluster.

Resetting Recovery Account Passwords

From version 8.0.18, you can use the Cluster.resetRecoveryAccountsPassword() operation to
reset the passwords for the internal recovery accounts created by InnoDB Cluster, for example to follow a
custom password lifetime policy. Use the Cluster.resetRecoveryAccountsPassword() operation
to reset the passwords for all internal recovery accounts used by the cluster. The operation sets a new
random password for the internal recovery account on each instance which is online. If an instance cannot
be reached, the operation fails. You can use the force option to ignore such instances, but this is not
recommended, and it is safer to bring the instance back online before using this operation. This operation
only applies to the passwords created by InnoDB Cluster and cannot be used to update manually created
passwords.

Note

The user which executes this operation must have all the required administer
privileges, in particular CREATE USER, in order to ensure that the password of
recovery accounts can be changed regardless of the password verification-required
policy. In other words, independent of whether the password_require_current
system variable is enabled or not.

7.10 InnoDB Cluster Limitations

This section describes the known limitations of InnoDB Cluster. As InnoDB Cluster uses Group Replication,
you should also be aware of its limitations, see Group Replication Limitations.

• If a session type is not specified when creating the global session, MySQL Shell provides automatic
protocol detection which attempts to first create a NodeSession and if that fails it tries to create a
ClassicSession. With an InnoDB cluster that consists of three server instances, where there is one read-
write port and two read-only ports, this can cause MySQL Shell to only connect to one of the read-only
instances. Therefore it is recommended to always specify the session type when creating the global
session.

• When adding non-sandbox server instances (instances which you have configured manually rather
than using dba.deploySandboxInstance()) to a cluster, MySQL Shell is not able to persist any
configuration changes in the instance's configuration file. This leads to one or both of the following
scenarios:

1. The Group Replication configuration is not persisted in the instance's configuration file and upon
restart the instance does not rejoin the cluster.

2. The instance is not valid for cluster usage. Although the instance can be verified with
dba.checkInstanceConfiguration(), and MySQL Shell makes the required configuration
changes in order to make the instance ready for cluster usage, those changes are not persisted in
the configuration file and so are lost once a restart happens.

If only a happens, the instance does not rejoin the cluster after a restart.

If b also happens, and you observe that the instance did not rejoin the cluster after a restart, you
cannot use the recommended dba.rebootClusterFromCompleteOutage() in this situation to
get the cluster back online. This is because the instance loses any configuration changes made by
MySQL Shell, and because they were not persisted, the instance reverts to the previous state before

137

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/group-replication-limitations.html

InnoDB Cluster Limitations

being configured for the cluster. This causes Group Replication to stop responding, and eventually the
command times out.

To avoid this problem it is strongly recommended to use dba.configureInstance() before adding
instances to a cluster in order to persist the configuration changes.

• The use of the --defaults-extra-file option to specify an option file is not supported by InnoDB
Cluster server instances. InnoDB Cluster only supports a single option file on instances and no extra
option files are supported. Therefore for any operation working with the instance's option file the main
one should be specified. If you want to use multiple option files you have to configure the files manually
and make sure they are updated correctly considering the precedence rules of the use of multiple
option files and ensuring that the desired settings are not incorrectly overwritten by options in an extra
unrecognized option file.

• Attempting to use instances with a host name that resolves to an IP address which does not match a
real network interface fails with an error that This instance reports its own address as the
hostname. This is not supported by the Group Replication communication layer. On Debian based
instances this means instances cannot use addresses such as user@localhost because localhost
resolves to a non-existent IP (such as 127.0.1.1). This impacts on using a sandbox deployment, which
usually uses local instances on a single machine.

A workaround is to configure the report_host system variable on each instance to use the actual
IP address of your machine. Retrieve the IP of your machine and add report_host=IP of your
machine to the my.cnf file of each instance. You need to ensure the instances are then restarted to
make the change.

• When executing dba.createCluster() or adding an instance to an existing InnoDB Cluster by
running Cluster.addInstance(), the following errors are logged to MySQL error log:

2020-02-10T10:53:43.727246Z 12 [ERROR] [MY-011685] [Repl] Plugin
group_replication reported: 'The group name option is mandatory'
2020-02-10T10:53:43.727292Z 12 [ERROR] [MY-011660] [Repl] Plugin
group_replication reported: 'Unable to start Group Replication on boot'

These messages are harmless and relate to the way AdminAPI starts Group Replication.

• When using a sandbox deployment, each sandbox instance uses a copy of the mysqld binary found in
the $PATH in the local mysql-sandboxes directory. If the version of mysqld changes, for example after
an upgrade, sandboxes based on the previous version fail to start. This is because the sandbox binary is
outdated compared to the dependencies found under the basedir. Sandbox instances are not designed
for production, therefore they are considered transient and are not supported for upgrade.

A workaround for this issue is to manually copy the upgraded mysqld binary into the bin directory of
each sandbox. Then start the sandbox by issuing dba.startSandboxInstance(). The operation fails
with a timeout, and the error log contains:

2020-03-26T11:43:12.969131Z 5 [System] [MY-013381] [Server] Server upgrade
from '80019' to '80020' started.
2020-03-26T11:44:03.543082Z 5 [System] [MY-013381] [Server] Server upgrade
from '80019' to '80020' completed.

Although the operation seems to fail with a timeout, the sandbox has started successfully.

• InnoDB Cluster does not manage manually configured asynchronous replication channels. Group
Replication and AdminAPI do not ensure that the asynchronous replication is active on the primary only,
and state is not replicated across instances. This can lead to various scenarios where replication no
longer works, as well as potentially causing a split brain. Therefore, replication between one InnoDB
Cluster and another is also not supported.

138

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir

Chapter 8 MySQL InnoDB ClusterSet

Table of Contents
8.1 InnoDB ClusterSet Requirements .. 141
8.2 InnoDB ClusterSet Limitations ... 145
8.3 User Accounts for InnoDB ClusterSet .. 146
8.4 Deploying InnoDB ClusterSet .. 148
8.5 Integrating MySQL Router With InnoDB ClusterSet .. 159
8.6 InnoDB ClusterSet Status and Topology .. 164
8.7 InnoDB ClusterSet Controlled Switchover .. 173
8.8 InnoDB ClusterSet Emergency Failover ... 178
8.9 InnoDB ClusterSet Repair and Rejoin .. 184

8.9.1 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters 186
8.9.2 Repairing Member Servers and Clusters in an InnoDB ClusterSet 188
8.9.3 Removing a Cluster from an InnoDB ClusterSet .. 190
8.9.4 Rejoining a Cluster to an InnoDB ClusterSet ... 192

MySQL InnoDB ClusterSet provides disaster tolerance for InnoDB Cluster deployments by linking
a primary InnoDB Cluster with one or more replicas of itself in alternate locations, such as different
datacenters. InnoDB ClusterSet automatically manages replication from the primary cluster to the replica
clusters using a dedicated ClusterSet replication channel. If the primary cluster becomes unavailable due
to the loss of the data center or the loss of network connectivity to it, you can make a replica cluster active
instead to restore the availability of the service. See Chapter 7, MySQL InnoDB Cluster for information on
deploying InnoDB Cluster.

Emergency failover between the primary InnoDB Cluster and a replica cluster in an InnoDB ClusterSet
deployment can be triggered by an administrator through MySQL Shell (see MySQL Shell 8.0), using
AdminAPI (see Section 6.1, “Using MySQL AdminAPI”), which is included with MySQL Shell. You can also
carry out a controlled switchover from the primary cluster to a replica cluster while the primary cluster is still
available, for example if a configuration change or maintenance is required on the primary cluster. MySQL
Router (see MySQL Router 8.0) automatically routes client applications to the right clusters in an InnoDB
ClusterSet deployment.

A replica cluster in an InnoDB ClusterSet deployment cannot diverge from the primary cluster while it
remains a passive replica, because it does not accept writes. It can be read by applications, although a
typical amount of replication lag for asynchronous replication should be expected, so the data might not be
complete yet. The minimum size of a replica cluster is a single member server instance, but a minimum of
three members is recommended for fault tolerance. If more members are needed, for example because
the replica cluster has become a primary cluster through a switchover or failover, you can add further
instances at any time through MySQL Shell using AdminAPI. There is no defined limit on the number of
replica clusters that you can have in an InnoDB ClusterSet deployment.

The example InnoDB ClusterSet deployment in the following diagram consists of a primary InnoDB Cluster
in the Rome datacenter, with replica clusters in the Lisbon and Brussels datacenters. The primary cluster
and its replica clusters each consist of three member server instances, one primary and two secondaries.

139

https://dev.mysql.com/doc/mysql-router/8.0/en/

Figure 8.1 InnoDB ClusterSet Overview

Asynchronous replication channels replicate transactions from the primary cluster to the replica clusters.
A ClusterSet replication channel named clusterset_replication is set up on each cluster during
the InnoDB ClusterSet creation process, and when a cluster is a replica, it uses the channel to replicate
transactions from the primary. The underlying Group Replication technology manages the channel and
ensures that replication is always taking place between the primary server of the primary cluster (as the
sender), and the primary server of the replica cluster (as the receiver). If a new primary is elected for either
the primary cluster or the replica cluster, the ClusterSet replication channel is automatically re-established
between them.

Although each cluster in the example InnoDB ClusterSet deployment has a primary MySQL server,
only the primary server of the primary InnoDB Cluster accepts write traffic from client applications. The
replica clusters do not. MySQL Router instances route all write traffic to the primary cluster in the Rome
datacenter, where it is handled by the primary server. Most of the read traffic is also routed to the primary
cluster, but the reporting applications that only make read requests are specifically routed to the replica
cluster in their local datacenter instead, to save on networking resources. Notice that the MySQL Router
instances that handle read and write traffic are set to route traffic to the primary InnoDB Cluster in the
InnoDB ClusterSet whichever one that is. So if one of the other clusters becomes the primary following a
controlled switchover or emergency failover, those MySQL Router instances will route traffic to that cluster
instead.

It is important to know that InnoDB ClusterSet prioritizes availability over data consistency in order to
maximize disaster tolerance. Consistency within each individual InnoDB Cluster is guaranteed by the
underlying Group Replication technology. However, normal replication lag or network partitions can
mean that some or all of the replica clusters are not fully consistent with the primary cluster at the time
the primary cluster experiences an issue. In these scenarios, if you trigger an emergency failover, any
unreplicated or divergent transactions are at risk of being lost, and can only be recovered and reconciled
manually (if they can be accessed at all). There is no guarantee that data will be preserved in the event of
an emergency failover.

You should therefore always make an attempt to repair or reconnect the primary cluster before triggering
an emergency failover. AdminAPI removes the need to work directly with Group Replication to repair an
InnoDB Cluster. If the primary cluster cannot be repaired quickly enough or cannot be reached, you can
go ahead with the emergency failover to a replica InnoDB Cluster, to restore availability for applications.
During a controlled switchover process, data consistency is assured, and the original primary cluster is

140

https://dev.mysql.com/doc/refman/8.0/en/group-replication.html

InnoDB ClusterSet Requirements

demoted to a working read-only replica cluster. However, during an emergency failover process, data
consistency is not assured, so for safety, the original primary cluster is marked as invalidated during the
failover process. If the original primary cluster remains online, it should be shut down as soon as it can be
contacted.

You can rejoin an invalidated primary cluster to the InnoDB ClusterSet topology afterwards, provided that
there are no issues and the transaction set is consistent with the other clusters in the topology. Checking,
restoring, and rejoining the invalidated primary cluster does not happen automatically - an administrator
needs to do this using AdminAPI commands. You can choose to repair the invalidated primary cluster and
bring it back online, or you can discard the original primary cluster, continue to use the new primary cluster
as the primary, and create new replica clusters.

8.1 InnoDB ClusterSet Requirements

The basis of an InnoDB ClusterSet deployment is an existing InnoDB Cluster at MySQL 8.0.27 or higher,
and a number of standalone MySQL Server instances that can be formed into replica clusters to provide
disaster tolerance for this primary cluster. If you want to try out InnoDB ClusterSet, you can use MySQL
Shell 8.0.27 or higher to set up a sandbox deployment on your local machine. You will need to install
MySQL Server 8.0.27 or higher and MySQL Router 8.0.27 or higher. Using AdminAPI commands in
MySQL Shell, you can create sandbox MySQL Server instances, set up an InnoDB Cluster using some
of them, then follow the instructions in this section to set up an InnoDB ClusterSet deployment using the
others as replica clusters. For instructions to deploy and manage sandbox instances, see Section 6.2,
“AdminAPI MySQL Sandboxes”.

To set up a production deployment of InnoDB ClusterSet, ensure that you have the following components
in place:

Software components MySQL Server 8.0.27 or higher, MySQL Shell 8.0.27 or higher, and
MySQL Router 8.0.27 or higher are required to set up an InnoDB
ClusterSet deployment. These are the software components required
by AdminAPI. See Section 6.1.1, “Installing AdminAPI Software
Components”.

Always use the most recent versions of MySQL Shell and MySQL
Router that are available to you, and ensure that their version is the
same as or higher than the MySQL Server release. Both products
can manage older MySQL Server releases, but older versions cannot
manage features in newer MySQL Server releases.

An InnoDB Cluster An existing InnoDB Cluster that is to be the primary cluster. This is the
cluster for which the InnoDB ClusterSet deployment provides disaster
tolerance. A Group Replication group can be adopted as an InnoDB
Cluster. For instructions to set up an InnoDB Cluster or adopt a Group
Replication group, see Section 7.2, “Deploying a Production InnoDB
Cluster”.

The InnoDB Cluster that is to be the primary cluster must meet these
requirements:

• The cluster must not already be part of an InnoDB ClusterSet
deployment. An InnoDB Cluster can only participate in one InnoDB
ClusterSet deployment.

• All member server instances in the cluster must be at MySQL 8.0.27
or higher.

141

InnoDB ClusterSet Requirements

• The InnoDB Cluster metadata version must be 2.1.0 or higher.
When you carry out any operation on a cluster (for example a
dba.getCluster() command), AdminAPI warns you if the cluster's
metadata needs updating. You can update the metadata to an
appropriate version for InnoDB ClusterSet operations by issuing a
dba.upgradeMetadata()command in MySQL Shell 8.0.27 or
higher. Note that after you upgrade a cluster's metadata, it cannot be
administered by older MySQL Shell versions. For more information,
see Section 7.8.2, “Upgrading InnoDB Cluster Metadata”.

• The cluster must be in single-primary mode. An InnoDB Cluster
can be in single-primary or multi-primary mode, but InnoDB
ClusterSet does not support multi-primary mode. You can use a
cluster.switchToSinglePrimaryMode() command in MySQL
Shell to convert a cluster in multi-primary mode to single-primary
mode, and choose an instance to be the primary server.

• The group_replication_view_change_uuid system variable
must be set on the member servers in the cluster to supply an
alternative UUID for view change events. From MySQL 8.0.27, an
InnoDB Cluster that is created using the dba.createCluster()
command, or rescanned using the Cluster.rescan() command,
gets a value generated and set for this system variable. An InnoDB
Cluster created before MySQL 8.0.27 might not have this system
variable set, but the InnoDB ClusterSet creation process checks for
this and fails with a warning if it is absent. In that case, you can run
a Cluster.rescan() operation then retry the InnoDB ClusterSet
creation process.

• There must be no inbound replication channels
on any member server from servers outside the
group. The channels created automatically by Group
Replication (group_replication_applier and
group_replication_recovery) are allowed.

• You need to know the InnoDB Cluster server configuration account
user name and password for the cluster (see Section 8.3, “User
Accounts for InnoDB ClusterSet”). This is the account that was set
up using dba.configureInstance on the member servers in the
InnoDB Cluster. You will need to create this account on the MySQL
Server instances that will form the replica clusters, and use it to set
them up.

Note

You cannot use an InnoDB Cluster
administrator account (set up using
cluster.setupAdminAccount())
to set up the standalone MySQL
Server instances for the replica cluster.
cluster.setupAdminAccount() is
not available on a standalone instance,
and if you create one of those accounts
on the standalone instances using

142

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid

InnoDB ClusterSet Requirements

dba.configureInstance or manually, it will
subsequently be replicated from the primary
cluster, causing replication to stop with an
error.

• At the time when you create the InnoDB ClusterSet deployment, the
InnoDB Cluster must be online and healthy, and its primary member
server must be reachable using MySQL Shell.

Standalone MySQL Server
instances

A number of standalone MySQL Server instances which you can make
into one or more replica clusters. A minimum of three member servers
in each replica cluster is recommended for fault tolerance, although the
InnoDB ClusterSet deployment can include replica clusters consisting
of a single server instance. In a production deployment for disaster
tolerance, each replica cluster would be in an alternate location, such as
a different datacenter.

Each of the MySQL Server instances that you use in the replica clusters
must meet these requirements:

• The server is not already part of an InnoDB ClusterSet deployment,
InnoDB ClusterSet, or InnoDB ReplicaSet.

• You do not need the data on the server. If the server has previously
been used for processing transactions, the data will be overwritten
when it is made into a member of the replica cluster (unless the
transactions happen to be a subset of those on the primary cluster).

• The server is not part of a currently running Group Replication group
(even if the individual server has left the group). You cannot adopt
an existing Group Replication group or a current or ex-member of
it as a replica cluster. If you want to use server instances that are
currently in a replication group, issue STOP GROUP_REPLICATION
on all the members of the group, so that the group is fully offline. The
separate server instances can then be made into a replica cluster
using AdminAPI.

Important

Exercise caution over using former Group
Replication group members as members of an
InnoDB ClusterSet replica cluster, especially
if you made a lot of changes to the Group
Replication configuration options, or if the
group was created in a much earlier release
and you made configuration changes based
on the situation in that release.

The InnoDB ClusterSet replica cluster
creation process overwrites any existing
persisted Group Replication configuration
options for which you specify new settings
on the command. It also always overwrites
the following system variables, even if
you do not specify them on the command:

143

InnoDB ClusterSet Requirements

group_replication_group_name,
group_replication_group_seeds,
group_replication_local_address,
group_replication_view_change_uuid,
and
group_replication_enforce_update_everywhere_checks.
However, other Group Replication
configuration options that you have changed
are left as they were. These custom settings
could potentially interfere with the running
or performance of InnoDB ClusterSet, which
expects the MySQL 8.0.27 defaults to be used
for Group Replication configuration options
that are not changed during the InnoDB
ClusterSet replica cluster creation process.

If you do want to use a configured
Group Replication server, check
and remove any customizations if
possible, in particular checking that the
group_replication_single_primary_mode
system variable is set to the default of ON.
The safest option for an ex-Group Replication
group member in this situation is to reinstall
MySQL Server, rather than upgrading the
installation to MySQL 8.0.27.

• The server is at MySQL 8.0.27 or higher. If you want to provision
further member servers for the replica cluster by cloning, all the
servers must be at the same release and on the same operating
system.

• The server has a server ID (server_id system variable) and server
UUID (server_uuid system variable) that are unique in the entire
InnoDB ClusterSet, including any offline or unreachable member
servers.

• No inbound replication channels are configured on the server. Only
the Group Replication channels (group_replication_applier
and group_replication_recovery) are allowed.

• The server can connect to the primary cluster in the InnoDB
ClusterSet, and the primary cluster can connect to it.

• At the time when you create the InnoDB ClusterSet deployment, the
server must be online and healthy, and reachable using MySQL Shell.

The required user account credentials, InnoDB ClusterSet metadata,
and Group Replication configuration will be set up during the InnoDB
ClusterSet replica cluster creation process.

MySQL Router instances One or more MySQL Router instances to route client application traffic
to the appropriate clusters in the InnoDB ClusterSet deployment. The

144

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_enforce_update_everywhere_checks
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_single_primary_mode
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid

InnoDB ClusterSet Limitations

recommended deployment of MySQL Router is on the same host as the
client application.

Important

If you are using an existing InnoDB Cluster as
the primary cluster in your InnoDB ClusterSet
deployment, and you bootstrapped MySQL
Router against that cluster already, bootstrap
it again using the --force option against
the InnoDB ClusterSet, then stop and restart
MySQL Router. The settings in the MySQL
Router instance's static configuration file need
to be updated for InnoDB ClusterSet. Follow the
process described in Section 8.5, “Integrating
MySQL Router With InnoDB ClusterSet” to do
this.

8.2 InnoDB ClusterSet Limitations

InnoDB ClusterSet uses InnoDB Cluster technology, which in turn uses Group Replication technology. The
limitations for both of those technologies therefore apply to server instances used with InnoDB ClusterSet.
See Section 7.10, “InnoDB Cluster Limitations” and Group Replication Limitations.

• InnoDB ClusterSet prioritizes availability over consistency in order to maximize disaster tolerance.
Normal replication lag or network partitions can mean that some or all of the replica clusters are not
fully consistent with the primary cluster at the time the primary cluster experiences an issue. In these
scenarios, if you trigger an emergency failover, any unreplicated or divergent transactions are at risk of
being lost, and can only be recovered and reconciled manually (if they can be accessed at all). There is
no guarantee that data will be preserved in the event of an emergency failover.

If you cannot tolerate any loss of transactions or data during a failover, instead of using InnoDB
ClusterSet as your solution, consider using a single InnoDB Cluster with the member servers deployed
across multiple datacenters. Bear in mind that this solution would have a noticeable impact on write
performance, as a stable and low latency network is important for InnoDB Cluster member servers to
communicate with each other for consensus on transactions.

• InnoDB ClusterSet does not fail over automatically to a replica cluster. Because a loss of transactions
is possible, and data consistency is not guaranteed, an administrator must make and implement the
decision to carry out an emergency failover. If the original primary cluster remains online, it should be
shut down as soon as it can be contacted.

• InnoDB ClusterSet only supports asynchronous replication, and cannot use semisynchronous
replication.

• InnoDB ClusterSet only supports single-primary mode for the primary and replica InnoDB Cluster
instances. Multi-primary mode is not supported.

• An InnoDB ClusterSet deployment can only contain a single read-write primary cluster. All replica
clusters are read-only. An active-active setup, with multiple primary clusters, is not permitted, because
data consistency is not guaranteed in the event that a cluster fails.

• An InnoDB Cluster can participate in only one InnoDB ClusterSet deployment. Each InnoDB ClusterSet
deployment therefore provides an availability and disaster recovery solution for a single InnoDB Cluster.

145

https://dev.mysql.com/doc/refman/8.0/en/group-replication-limitations.html

User Accounts for InnoDB ClusterSet

• An existing InnoDB Cluster cannot be used as a replica cluster in an InnoDB ClusterSet deployment.
A replica cluster must be started from a single server instance, as a new InnoDB Cluster. It is possible
to use server instances that are part of a Group Replication group as a replica cluster, but you must
completely end the Group Replication group first, and be careful of any customized Group Replication
settings that might affect InnoDB ClusterSet. For more information, see Section 8.1, “InnoDB ClusterSet
Requirements”.

8.3 User Accounts for InnoDB ClusterSet

The member servers in an InnoDB Cluster make use of three types of user accounts. One InnoDB Cluster
server configuration account is used to configure the server instances for the cluster. One or more InnoDB
Cluster administrator accounts can be created for administrators to manage the server instances after
the cluster has been set up. One or more MySQL Router accounts can be created for MySQL Router
instances to connect to the cluster. Each of the user accounts must exist on all of the member servers in
the InnoDB Cluster, with the same user name and the same password.

In an InnoDB ClusterSet deployment, every member server is part of an InnoDB Cluster, so they require
the same types of user accounts. The user accounts from the primary cluster are used for all of the clusters
in the deployment. Each of the user accounts must exist on every member server in every cluster in the
deployment - both the primary cluster and the replica clusters.

InnoDB Cluster server
configuration account

This account is used to create and configure the member servers of
an InnoDB Cluster and InnoDB ClusterSet deployment. Each member
server has only one server configuration account. The same user
account name and password must be used on every member server
in the cluster. You can use the root account on the servers for this
purpose, but if you do this, the root account on every member server
in the cluster must have the same password. This is not recommended
for security reasons.

The preferred approach is to create the InnoDB Cluster server
configuration account using a dba.configureInstance() command
with the clusterAdmin option. For better security, specify the
password at the interactive prompt, otherwise specify it using the
clusterAdminPassword option. Create the same account, with
the same user name and password, in the same way on every server
instance that will be part of the InnoDB Cluster - both the instance to
which you connect to create the cluster, and the instances that will join
the cluster after that.

The dba.configureInstance() command grants the account
the required permissions automatically. You may set up the account
manually if you prefer, granting it the permissions listed in Configuring
Users for AdminAPI. The account needs full read and write privileges
on the InnoDB Cluster metadata tables, in addition to full MySQL
administrator privileges.

The InnoDB Cluster server configuration account that you
create using the dba.configureInstance() operation is not
replicated to other servers in the InnoDB Cluster or in the InnoDB
ClusterSet deployment. MySQL Shell disables binary logging for the
dba.configureInstance() operation. This means that you must
create the account on every server instance individually.

146

User Accounts for InnoDB ClusterSet

In an InnoDB ClusterSet deployment, the same InnoDB Cluster server
configuration account must exist on every server instance that is used
in the deployment. When you set up a replica cluster, you therefore
need to issue a dba.configureInstance() command with the
clusterAdmin option to create the account on every server instance
that is going to be part of the replica cluster. The command must name
the InnoDB Cluster server configuration account from the primary
cluster, and you must specify the same password for it. You need to
do this step before joining the instances into the replica cluster, so the
account is available to configure the replica InnoDB Cluster and the
InnoDB ClusterSet deployment metadata and replication.

InnoDB Cluster administrator
accounts

These accounts can be used to administer InnoDB Cluster and InnoDB
ClusterSet after you have completed the configuration process. You
can set up more than one of them. Each account must exist on every
member server in an InnoDB Cluster with the same user name and
password, and on every member server of every cluster in an InnoDB
ClusterSet deployment.

To create an InnoDB Cluster administrator account
for an InnoDB ClusterSet deployment, you issue a
cluster.setupAdminAccount() command on one member
server in the primary cluster, after you have added all the
instances to that cluster. This command creates an account
with the user name and password that you specify, with all the
required permissions. A transaction to create an account with
cluster.setupAdminAccount() is sent to all the other server
instances in the cluster to create the account on them.

If the primary InnoDB Cluster already existed when you began to set
up the InnoDB ClusterSet deployment, an InnoDB Cluster administrator
account likely already exists. In that case, you do not need to issue
cluster.setupAdminAccount() again, unless you want to create
further InnoDB Cluster administrator accounts.

The replica clusters in an InnoDB ClusterSet deployment must
have the same set of InnoDB Cluster administrator accounts
as the primary cluster. However, when you create the replica
clusters, do not attempt to set up the InnoDB Cluster administrator
accounts yourself. The transactions to create accounts with
cluster.setupAdminAccount() are written to the binary log for the
primary cluster, and they are automatically replicated from the primary
cluster to the replica clusters during the provisioning process. When a
replica cluster applies these transactions it creates the same accounts
on the member servers in the replica cluster. If the accounts already
exist on a server in the replica cluster, this causes a replication error,
and the server cannot join the cluster. So you need to wait for them to
be replicated.

If a transaction to create an InnoDB Cluster administrator account
happened a while back on the primary cluster, it might take some time
for the transaction to be replicated and for the account to appear on
a replica cluster. Selecting cloning as the provisioning method for the
replica cluster speeds up the process.

147

Deploying InnoDB ClusterSet

Note

If the primary InnoDB Cluster was set up in
a version before MySQL Shell 8.0.20, the
cluster.setupAdminAccount() command
might have been used with the update option
to update the privileges of the InnoDB Cluster
server configuration account. This is a special
use of the command that is not written to the
binary log, and is not replicated to the replica
clusters.

When the InnoDB ClusterSet deployment is complete, you may use
cluster.setupAdminAccount() to create further InnoDB Cluster
administrator accounts for the ClusterSet. You can do this while
connected to any member server in the InnoDB ClusterSet deployment,
either in the primary cluster or in a replica cluster. The transaction to
create the account is routed to the primary cluster to be executed, then
replicated to all the servers in the replica clusters, where it creates the
account on all of them.

MySQL Router accounts These accounts are used by MySQL Router to connect to server
instances in an InnoDB Cluster and in an InnoDB ClusterSet
deployment. You can set up more than one of them. Each account must
exist on every member server in an InnoDB Cluster with the same user
name and password, and on every member server of every cluster in an
InnoDB ClusterSet deployment.

The process to create a MySQL Router account is the same
as for an InnoDB Cluster administrator account, but using a
cluster.setupRouterAccount() command. You create the
accounts on one member server in the primary cluster, or use accounts
that already exist, if the primary InnoDB Cluster already existed when
you began to set up the InnoDB ClusterSet deployment. Then let the
replica clusters apply the transactions to create the accounts on their
member servers. For instructions to create or upgrade a MySQL Router
account, see Section 6.4.2, “Configuring the MySQL Router User”.

8.4 Deploying InnoDB ClusterSet
Follow this procedure to deploy a sandbox or production InnoDB ClusterSet deployment. A sandbox
deployment is where all the MySQL server instances and other software run on a single machine. For a
production deployment, the server instances and other software are on separate machines.

The procedure assumes you already have the following components, as listed in Section 8.1, “InnoDB
ClusterSet Requirements”:

• An existing InnoDB Cluster that meets the requirements stated in Section 8.1, “InnoDB ClusterSet
Requirements”. This is the primary cluster that the InnoDB ClusterSet deployment supports.

• MySQL Shell 8.0.27 or higher, connected to the existing InnoDB Cluster. MySQL Shell's AdminAPI
commands are used in the deployment procedure.

• MySQL Router 8.0.27 or higher, to bootstrap against InnoDB ClusterSet. MySQL Router instances
that you had already bootstrapped against the existing InnoDB Cluster can be reused in an InnoDB

148

Deploying InnoDB ClusterSet

ClusterSet deployment, but you need to bootstrap them again to implement the InnoDB ClusterSet
configuration.

• A number of standalone MySQL Server instances (which are not part of an InnoDB Cluster or InnoDB
ReplicaSet) to make into one or more replica clusters. They must meet the requirements stated in
Section 8.1, “InnoDB ClusterSet Requirements”. A minimum of three member servers in each replica
cluster is recommended for tolerance of failures.

The user account that you use during the InnoDB ClusterSet deployment procedure is the InnoDB Cluster
server configuration account from the primary cluster. This is the account that was created on the primary
cluster's member servers using a dba.configureInstance() command with the clusterAdmin
option. Each member server has only one server configuration account. The same user account name and
password must be used on every member server in the cluster, and you need to create it on all the servers
in the InnoDB ClusterSet deployment. It is possible to use the root account as the InnoDB Cluster server
configuration account, but this is not recommended, because it means the root account on every member
server in the cluster must have the same password. For more information, see Section 8.3, “User Accounts
for InnoDB ClusterSet”.

To set up the InnoDB ClusterSet deployment, follow this procedure:

1. Connect to any member server in the existing InnoDB Cluster with MySQL Shell, using the InnoDB
Cluster server configuration account to make the connection. For example:

2. mysql-js> \connect icadmin@127.0.0.1:3310

Creating a session to 'icadmin@127.0.0.1:3310'
Please provide the password for 'icadmin@127.0.0.1:3310': **************
Save password for 'icadmin@127.0.0.1:3310'? [Y]es/[N]o/Ne[v]er (default No):
Fetching schema names for autocompletion... Press ^C to stop.
Closing old connection...
Your MySQL connection id is 59
Server version: 8.0.27-commercial MySQL Enterprise Server - Commercial
No default schema selected; type \use <schema> to set one.
<ClassicSession:icadmin@127.0.0.1:3310>

In this example:

• icadmin@127.0.0.1:3310 is the URI-like connection string for any member server instance that
is online in the InnoDB Cluster.

The URI-like connection string is comprised of the following elements:

• icadmin is the user name for the InnoDB Cluster server configuration account.

• 127.0.0.1:3310 is the host and port for the member server instance, as displayed by the
cluster.status() command.

3. Issue a dba.getCluster() command to get the Cluster object that represents the InnoDB Cluster,
assigning it to a variable so that you can work with it. For example:

mysql-js> cluster1 = dba.getCluster()
<Cluster:clusterone>

In this example, clusterone is the name of the existing InnoDB Cluster, as shown in the
clusterName field returned by the cluster.status() command, and the returned Cluster object
is assigned to the variable cluster1.

It is important to do this when you are connected to the server instance using the InnoDB Cluster
server configuration account. The returned object defaults to using the account it was fetched with for

149

Deploying InnoDB ClusterSet

operations where permissions are required. Some operations during the InnoDB ClusterSet deployment
process require permissions, and the default user account stored in the object is used for this, so that
the process does not need to store any other user accounts.

4. Issue a cluster.createClusterSet() command, using the Cluster object, to create the InnoDB
ClusterSet with the existing InnoDB Cluster as the primary cluster. For example:

mysql-js> myclusterset = cluster1.createClusterSet('testclusterset')

A new ClusterSet will be created based on the Cluster 'clusterone'.

* Validating Cluster 'clusterone' for ClusterSet compliance.

* Creating InnoDB ClusterSet 'testclusterset' on 'clusterone'...

* Updating metadata...

ClusterSet successfully created. Use ClusterSet.createReplicaCluster() to add Replica Clusters to it.

<ClusterSet:testclusterset>

In this example, clusterone is the name of the existing InnoDB Cluster, cluster1 is the variable
to which the returned Cluster object was assigned, testclusterset is the name for the
InnoDB ClusterSet that you are creating, and myclusterset is the variable to which the returned
ClusterSet object is assigned.

• The domainName parameter is required and specifies the name of the InnoDB ClusterSet
deployment that you are creating (testclusterset in the example). Only alphanumeric
characters, hyphens (-), underscores (_), and periods (.) can be used, and the name must not start
with a number. The maximum length is 63 characters.

• Use the dryRun option if you want to carry out validations and log the changes without actually
executing them. For example:

mysql-js> myclusterset = cluster1.createClusterSet('testclusterset', {dryRun: true})
* Validating Cluster 'clusterone' for ClusterSet compliance.

NOTE: dryRun option was specified. Validations will be executed, but no changes will be applied.
* Creating InnoDB ClusterSet 'clusterset' on 'clusterone'...

* Updating metadata...
dryRun finished.

• Use the clusterSetReplicationSslMode option if you want to require or disable encryption
(TLS/SSL) for the replication channels in the InnoDB ClusterSet deployment. The default setting,
AUTO, enables encryption if the server instance supports it, and disables it if it does not. REQUIRED
enables encryption for all the replication channels, and DISABLED disables encryption for all the
replication channels. For example:

mysql-js> myclusterset = cluster1.createClusterSet('testclusterset', {dryRun: true, clusterSetReplicationSslMode: 'REQUIRED'})

When you issue the cluster.createClusterSet() command, MySQL Shell checks that the target
InnoDB Cluster complies with the requirements to become the primary cluster in an InnoDB ClusterSet
deployment, and returns an error if it does not. If the target InnoDB Cluster meets the requirements,
MySQL Shell carries out the following setup tasks:

• Updates the metadata schema to include InnoDB ClusterSet metadata.

• Sets the skip_replica_start system variable to ON on all the member servers so that replication
threads are not automatically started.

150

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_replica_start

Deploying InnoDB ClusterSet

• Adds the target InnoDB Cluster to the InnoDB ClusterSet in the metadata and marks it as the primary
cluster.

• Returns the ClusterSet object that represents the InnoDB ClusterSet.

5. Verify that the InnoDB ClusterSet deployment that you have created is healthy by issuing a
clusterSet.status() command, using the returned ClusterSet object. For example:

mysql-js> myclusterset.status()
{
 "clusters": {
 "clusterone": {
 "clusterRole": "PRIMARY",
 "globalStatus": "OK",
 "primary": "127.0.0.1:3310"
 }
 },
 "domainName": "testclusterset",
 "globalPrimaryInstance": "127.0.0.1:3310",
 "primaryCluster": "clusterone",
 "status": "HEALTHY",
 "statusText": "All Clusters available."
}

You can also use a cluster.status() command to view the cluster itself. Alternatively, you can
select the extended output for clusterSet.status() to see the detailed status for the clusters in
the InnoDB ClusterSet topology. For example:

mysql-js> myclusterset.status({extended: 1})
{
 "clusters": {
 "clusterone": {
 "clusterRole": "PRIMARY",
 "globalStatus": "OK",
 "primary": "127.0.0.1:3310",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "127.0.0.1:3310": {
 "address": "127.0.0.1:3310",
 "memberRole": "PRIMARY",
 "mode": "R/W",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:3320": {
 "address": "127.0.0.1:3320",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:3330": {
 "address": "127.0.0.1:3330",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 }
 },

151

Deploying InnoDB ClusterSet

 "transactionSet": "953a51d5-2690-11ec-ba07-00059a3c7a00:1,c51c1b15-269e-11ec-b9ba-00059a3c7a00:1-86,c51c29ad-269e-11ec-b9ba-00059a3c7a00:1-8"
 }
 },
 "domainName": "testclusterset",
 "globalPrimaryInstance": "127.0.0.1:3310",
 "metadataServer": "127.0.0.1:3310",
 "primaryCluster": "clusterone",
 "status": "HEALTHY",
 "statusText": "All Clusters available."
}

See Section 8.6, “InnoDB ClusterSet Status and Topology” for more information and a description of
the output from the clusterSet.status() command.

If you want to get the ClusterSet object representing the InnoDB ClusterSet for a connected server
instance at any time, for example after restarting MySQL Shell, use a dba.getClusterSet() or
cluster.getClusterSet() command. For example:

mysql-js> myclusterset = dba.getClusterSet()
<ClusterSet:testclusterset>

Assigning a returned Cluster or ClusterSet object to a variable enables you to execute further
operations against the cluster or ClusterSet using the object's methods. The returned object uses a
new session, independent from MySQL Shell's global session. This ensures that if you change the
MySQL Shell global session, the Cluster or ClusterSet object maintains its session to the server
instance. Note that when you use the object, the server instance from which you got it must still be
online in the InnoDB ClusterSet. If that server instance goes offline, the object no longer works and you
will need to get it again from a server that is still online.

6. Create the InnoDB Cluster server configuration account on each of the standalone server instances
that will be part of the replica cluster, by issuing a dba.configureInstance() command with the
clusterAdmin option. The account to create is the InnoDB Cluster server configuration account from
the primary cluster, which you used to create the ClusterSet. Don't specify any of the InnoDB Cluster
administrator accounts (created with cluster.setupAdminAccount()). These will be automatically
transferred from the primary cluster to the replica clusters during the provisioning process.

You do not need to connect to the standalone server instances beforehand, as the connection string
is included in the command. In the connection string, use an account with full MySQL administrator
permissions, including permissions to create accounts (WITH GRANT OPTION). In this example, the
root account is used:

mysql-js> dba.configureInstance('root@127.0.0.1:4410', {clusterAdmin: 'icadmin'})

Please provide the password for 'root@127.0.0.1:4410': ***************
Save password for 'root@127.0.0.1:4410'? [Y]es/[N]o/Ne[v]er (default No):
Configuring local MySQL instance listening at port 4410 for use in an InnoDB cluster...
NOTE: Instance detected as a sandbox.
Please note that sandbox instances are only suitable for deploying test clusters for use within
the same host.

This instance reports its own address as 127.0.0.1:4410
Password for new account: **************
Confirm password: **************

applierWorkerThreads will be set to the default value of 4.

The instance '127.0.0.1:4410' is valid to be used in an InnoDB cluster.

Cluster admin user 'icadmin' created.
The instance '127.0.0.1:4410' is already ready to be used in an InnoDB cluster.

152

Deploying InnoDB ClusterSet

Successfully enabled parallel appliers.

In this example, root@127.0.0.1:4410 is the URI-like connection string for the standalone server,
and icadmin is the user name for the InnoDB Cluster server configuration account that will be
created on the instance. For better security, specify the password for the InnoDB Cluster server
configuration account at the interactive prompt as shown in the example, or you can provide it using
the clusterAdminPassword option. The dba.configureInstance() command grants the
account the required permissions automatically, although you may set up the account manually if you
prefer, granting it the permissions listed in Configuring Users for AdminAPI. For more details of the
dba.configureInstance() command and its options, see Configuring Production Instances.

When you issue dba.configureInstance(), MySQL Shell verifies that the server instance meets
the requirements for use with InnoDB Cluster. The requirements for InnoDB ClusterSet will be checked
when you issue the commands to create the replica cluster and add instances to it.

7. Connect to any active instance in the primary cluster that is already in the InnoDB ClusterSet
deployment, using the InnoDB Cluster server configuration account. Ensure you still have the
ClusterSet object that was returned when you created the InnoDB ClusterSet, or fetch it again using
dba.getClusterSet() or cluster.getClusterSet(). Again, it is important to do this when
you are connected to the server instance using the InnoDB Cluster server configuration account. The
default user account stored in the object is used for some operations during the InnoDB ClusterSet
deployment process, regardless of the account that you specify on the connection.

8. Issue a clusterSet.createReplicaCluster() command using the ClusterSet object to create
the replica cluster, naming one of the standalone server instances. This server instance will be the
replica cluster's primary. The command returns a Cluster object for the replica cluster, and you can
assign this to a variable if you want. For example:

mysql-js> cluster2 = myclusterset.createReplicaCluster("127.0.0.1:4410", "clustertwo", {recoveryProgress: 1, timeout: 10})
Setting up replica 'clustertwo' of cluster 'clusterone' at instance '127.0.0.1:4410'.

A new InnoDB cluster will be created on instance '127.0.0.1:4410'.

Validating instance configuration at 127.0.0.1:4410...
NOTE: Instance detected as a sandbox.
Please note that sandbox instances are only suitable for deploying test clusters for use within
the same host.

This instance reports its own address as 127.0.0.1:4410

Instance configuration is suitable.
NOTE: Group Replication will communicate with other members using '127.0.0.1:44101'. Use the
localAddress option to override.

* Checking transaction state of the instance...

NOTE: The target instance '127.0.0.1:4410' has not been pre-provisioned (GTID set is empty). The
Shell is unable to decide whether replication can completely recover its state.
The safest and most convenient way to provision a new instance is through automatic clone
provisioning, which will completely overwrite the state of '127.0.0.1:4410' with a physical
snapshot from an existing clusterset member. To use this method by default, set the
'recoveryMethod' option to 'clone'.

WARNING: It should be safe to rely on replication to incrementally recover the state of the new
Replica Cluster if you are sure all updates ever executed in the ClusterSet were done with GTIDs
enabled, there are no purged transactions and the instance used to create the new Replica Cluster
contains the same GTID set as the ClusterSet or a subset of it. To use this method by default,
set the 'recoveryMethod' option to 'incremental'.

Please select a recovery method [C]lone/[I]ncremental recovery/[A]bort (default Clone):

153

Deploying InnoDB ClusterSet

Waiting for clone process of the new member to complete. Press ^C to abort the operation.
* Waiting for clone to finish...
NOTE: 127.0.0.1:4410 is being cloned from 127.0.0.1:3310
** Stage DROP DATA: Completed

NOTE: 127.0.0.1:4410 is shutting down...

* Waiting for server restart... ready
* 127.0.0.1:4410 has restarted, waiting for clone to finish...
** Stage FILE COPY: Completed
** Stage PAGE COPY: Completed
** Stage REDO COPY: Completed
** Stage FILE SYNC: Completed
** Stage RESTART: Completed
* Clone process has finished: 72.61 MB transferred in about 1 second (~72.61 MB/s)

Creating InnoDB cluster 'clustertwo' on '127.0.0.1:4410'...

Adding Seed Instance...
Cluster successfully created. Use Cluster.addInstance() to add MySQL instances.
At least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

* Configuring ClusterSet managed replication channel...
** Changing replication source of 127.0.0.1:4410 to 127.0.0.1:3310

* Waiting for instance to synchronize with PRIMARY Cluster...
** Transactions replicated ## 100%
* Updating topology

Replica Cluster 'clustertwo' successfully created on ClusterSet 'testclusterset'.

<Cluster:clustertwo>

For the clusterSet.createReplicaCluster() command:

• The instance parameter is required and specifies the host and port number of the standalone
server's MySQL Server instance. This is the server instance that is going to be the primary of the
replica cluster. In the example command above, this is 127.0.0.1:4410.

• The clusterName parameter is required and specifies an identifier for the replica cluster. In
the example command above, clustertwo is used. The name must be unique in the InnoDB
ClusterSet, and it must follow the InnoDB Cluster naming requirements. Only alphanumeric
characters, hyphens (-), underscores (_), and periods (.) can be used, and the name must not start
with a number. The maximum length is 63 characters. The cluster name is case sensitive.

• Use the dryRun option if you want to carry out validations and log the changes without actually
executing them.

• Use the interactive option to enable or disable confirmation prompts for the provisioning method.
The default is the value of MySQL Shell's useWizards option.

• Use the recoveryMethod option if you want to select a provisioning method. If you do not specify
this as an option, the default setting AUTO is used. In that case, the function compares the GTID set
on the server instance to the GTID set on the primary cluster, and attempts to determine the most
appropriate provisioning method. If this cannot be determined, the function prompts you to select a
provisioning method, or cancels the operation if you are not in interactive mode.

The provisioning process, which is called distributed recovery, can use cloning, where the state
of the server instance is completely overwritten by a physical snapshot taken from an existing
member server in the cluster. To select this in advance, specify the CLONE setting. The alternative is

154

Deploying InnoDB ClusterSet

incremental state transfer from an existing member server's binary log, in this case a member of the
primary cluster. Here, the server instance receives and applies transactions from the primary cluster
that it does not already have. To select this in advance, specify the INCREMENTAL setting.

• Use the cloneDonor option if you want to select a specific server to provide the snapshot that
overwrites the current server, if distributed recovery is carried out by cloning. The operation chooses
a secondary member of the primary cluster by default, or the primary if no secondary is available.
The selected server instance must be a member of the primary cluster in the InnoDB ClusterSet.
Specify a host and port number. IPv6 addresses are not supported for this option.

• Use the recoveryProgress option to specify the verbosity level (0, 1, or 2) for the distributed
recovery process. Setting 0 shows no progress information, 1 shows detailed static progress
information, and 2 shows detailed dynamic progress information using progress bars. 2 is the default
if standard output is a terminal, otherwise 1 is the default.

• Use the timeout option if you want to set a timeout to wait for the server instance to synchronize
with the primary cluster after it has been provisioned and the ClusterSet replication channel has been
established. By default there is no timeout.

• Use the manualStartOnBoot option to specify whether Group Replication starts automatically and
rejoins the cluster when the MySQL server starts up, or whether it must be started manually. The
default, false, means Group Replication starts automatically.

• The options memberSslMode, ipAllowlist, localAddress, exitStateAction,
memberWeight, consistency, expelTimeout, and autoRejoinTries are available if you want
to configure the setup of Group Replication for the replica InnoDB Cluster. These options work in the
same way as they do for an InnoDB Cluster that is not part of a ClusterSet. For details of the options,
see Section 7.6, “Configuring InnoDB Cluster”.

• It is possible to use the options localAddress, groupName, and groupSeeds to set a Group
Replication local address, group identifier, and list of group seeds, respectively. However, this is not
recommended, as incorrect values can cause errors in Group Replication. Only use these options if
you already experienced an issue with the values selected by the InnoDB ClusterSet setup process
for these items.

When you issue the clusterSet.createReplicaCluster() command, MySQL Shell checks that
the target server instance complies with the requirements to become the primary server in a replica
InnoDB Cluster in an InnoDB ClusterSet deployment, and returns an error if it does not. If the instance
meets the requirements, MySQL Shell carries out the following setup tasks:

• Creates the ClusterSet replication channel clusterset_replication, and creates a replication
user with a random password. This is an asynchronous replication channel between the target
instance and the primary server of the primary cluster, which is managed by InnoDB ClusterSet.
Encryption is configured for the channel according to the clusterSetReplicationSslMode
option for the InnoDB ClusterSet. MySQL Shell verifies that the replication setup is working, and
returns an error if it is not.

• Provisions the MySQL Server instance with the dataset from the primary InnoDB Cluster and
synchronizes the GTID set, using the selected recovery method. Note that if there is a large amount
of data in the ClusterSet's member servers, distributed recovery could take several hours.

• Adds the InnoDB Cluster administrator accounts and the MySQL Router administrator accounts
on the server instance. If the instance is provisioned by state transfer from the binary log, the
provisioning process includes the transactions that create the accounts, or else the accounts are

155

Deploying InnoDB ClusterSet

transferred during cloning. Either way, these accounts become available on the server instance. See
Section 8.3, “User Accounts for InnoDB ClusterSet” for more information.

• Configures and starts Group Replication for the replica cluster. The InnoDB ClusterSet replica
cluster creation process overwrites any existing persisted Group Replication configuration options
for which you specify new settings on the clusterSet.createReplicaCluster() command.
It also always overwrites the following configuration options, even if you do not specify them on
the command: group_replication_group_name, group_replication_group_seeds,
group_replication_local_address, group_replication_view_change_uuid, and
group_replication_enforce_update_everywhere_checks. However, any other Group
Replication configuration options that you changed on the server instance prior to using it in the
replica cluster are left as they were. See the important note about this in Section 8.1, “InnoDB
ClusterSet Requirements”.

• Sets the skip_replica_start system variable to ON so that replication threads are not
automatically started on the server, and sets the super_read_only system variable so that clients
cannot write transactions to the server.

• Disables the Group Replication member action
mysql_disable_super_read_only_if_primary so that super_read_only remains set on
the primary of the cluster after a view change.

• Enables the Group Replication member action mysql_start_failover_channels_if_primary
so that asynchronous connection failover for replicas is enabled for the ClusterSet replication
channel. With this function enabled, if the primary that is replicating goes offline or into an error state,
the new primary starts replication on the same channel when it is elected.

• Transfers the ClusterSet metadata to the server instance, creates the replica cluster in the InnoDB
ClusterSet, and adds the target server instance to it as the primary.

• Returns the Cluster object for the replica cluster.

9. Using the Cluster object that was returned for the replica cluster by
clusterSet.createReplicaCluster(), issue a cluster.addInstance command naming
another of the standalone server instances. This server instance will be a secondary in the replica
cluster. For example:

mysql-js> cluster2.addInstance('icadmin@127.0.0.1:4420')

NOTE: The target instance '127.0.0.1:4420' has not been pre-provisioned (GTID set is empty). The
Shell is unable to decide whether clone based recovery is safe to use.
The safest and most convenient way to provision a new instance is through automatic clone
provisioning, which will completely overwrite the state of '127.0.0.1:4420' with a physical
snapshot from an existing cluster member. To use this method by default, set the
'recoveryMethod' option to 'clone'.

Please select a recovery method [C]lone/[A]bort (default Clone): c
Validating instance configuration at localhost:4420...
NOTE: Instance detected as a sandbox.
Please note that sandbox instances are only suitable for deploying test clusters for use within
the same host.

This instance reports its own address as 127.0.0.1:4420

Instance configuration is suitable.
NOTE: Group Replication will communicate with other members using '127.0.0.1:44201'. Use the
localAddress option to override.

A new instance will be added to the InnoDB cluster. Depending on the amount of
data on the cluster this might take from a few seconds to several hours.

156

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_enforce_update_everywhere_checks
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_replica_start
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Deploying InnoDB ClusterSet

Adding instance to the cluster...

* Waiting for the Cluster to synchronize with the PRIMARY Cluster...
** Transactions replicated ## 100%
* Configuring ClusterSet managed replication channel...
** Changing replication source of 127.0.0.1:4420 to 127.0.0.1:3310

Monitoring recovery process of the new cluster member. Press ^C to stop monitoring and
let it continue in background.
Clone based state recovery is now in progress.

NOTE: A server restart is expected to happen as part of the clone process. If the
server does not support the RESTART command or does not come back after a
while, you may need to manually start it back.

* Waiting for clone to finish...
NOTE: 127.0.0.1:4420 is being cloned from 127.0.0.1:4410
** Stage DROP DATA: Completed
** Clone Transfer
 FILE COPY ## 100% Completed
 PAGE COPY ## 100% Completed
 REDO COPY ## 100% Completed

NOTE: 127.0.0.1:4420 is shutting down...

* Waiting for server restart... ready
* 127.0.0.1:4420 has restarted, waiting for clone to finish...
** Stage RESTART: Completed
* Clone process has finished: 72.61 MB transferred in about 1 second (~72.61 MB/s)

State recovery already finished for '127.0.0.1:4420'

The instance '127.0.0.1:4420' was successfully added to the cluster.

For more details on the cluster.addInstance command, see Adding Instances to a Cluster.

If you need to get the Cluster object for the replica cluster again, connect to any active instance in the
replica cluster using the InnoDB Cluster server configuration account and issue dba.getCluster().
This account is used for some of the operations in the setup process. If the setup process finds that
the account is not present on the standalone server instance, an error is returned, and you will need to
issue dba.configureInstance() to create the account.

When the command is successful, the server instance is added to the replica cluster and provisioned
with the data for the InnoDB ClusterSet. The donor for a cloning operation will be from the replica
cluster, not the primary cluster.

10. Repeat the cluster.addInstance operation to add all of the standalone server instances to the
replica cluster. A minimum of three instances is recommended for tolerance to failures. You can
have up to nine member servers in a replica cluster, which is a limit built into the underlying Group
Replication technology.

11. Verify that the completed replica cluster and the InnoDB ClusterSet deployment are healthy.
You can do this using a cluster.status() command to view the replica cluster, and a
clusterSet.status() command to view the InnoDB ClusterSet deployment. Alternatively, you can
select the extended output for clusterSet.status() to see the detailed status for all the clusters.
For example:

mysql-js> myclusterset.status({extended: 1})
{
 "clusters": {
 "clusterone": {
 "clusterRole": "PRIMARY",

157

Deploying InnoDB ClusterSet

 "globalStatus": "OK",
 "primary": "127.0.0.1:3310",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "127.0.0.1:3310": {
 "address": "127.0.0.1:3310",
 "memberRole": "PRIMARY",
 "mode": "R/W",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:3320": {
 "address": "127.0.0.1:3320",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:3330": {
 "address": "127.0.0.1:3330",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 }
 },
 "transactionSet": "953a51d5-2690-11ec-ba07-00059a3c7a00:1,c51c1b15-269e-11ec-b9ba-00059a3c7a00:1-131,c51c29ad-269e-11ec-b9ba-00059a3c7a00:1-8"
 },
 "clustertwo": {
 "clusterRole": "REPLICA",
 "clusterSetReplication": {
 "applierStatus": "APPLIED_ALL",
 "applierThreadState": "Waiting for an event from Coordinator",
 "applierWorkerThreads": 4,
 "receiver": "127.0.0.1:4410",
 "receiverStatus": "ON",
 "receiverThreadState": "Waiting for source to send event",
 "source": "127.0.0.1:3310"
 },
 "clusterSetReplicationStatus": "OK",
 "globalStatus": "OK",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "127.0.0.1:4410": {
 "address": "127.0.0.1:4410",
 "memberRole": "PRIMARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:4420": {
 "address": "127.0.0.1:4420",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },

158

Integrating MySQL Router With InnoDB ClusterSet

 "127.0.0.1:4430": {
 "address": "127.0.0.1:4430",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 }
 },
 "transactionSet": "0f6ff279-2764-11ec-ba06-00059a3c7a00:1-5,953a51d5-2690-11ec-ba07-00059a3c7a00:1,c51c1b15-269e-11ec-b9ba-00059a3c7a00:1-131,c51c29ad-269e-11ec-b9ba-00059a3c7a00:1-8",
 "transactionSetConsistencyStatus": "OK",
 "transactionSetErrantGtidSet": "",
 "transactionSetMissingGtidSet": ""
 }
 },
 "domainName": "testclusterset",
 "globalPrimaryInstance": "127.0.0.1:3310",
 "metadataServer": "127.0.0.1:3310",
 "primaryCluster": "clusterone",
 "status": "HEALTHY",
 "statusText": "All Clusters available."
}

See Section 8.6, “InnoDB ClusterSet Status and Topology” for more information on the output of the
clusterSet.status() command.

12. Add further replica clusters as required, by repeating the above steps with a different set of standalone
instances. There is no defined limit on the number of replica clusters that you can have in an InnoDB
ClusterSet deployment. The process is the same in each case, as summarized here:

• Create the InnoDB Cluster server configuration account on each of the standalone server instances
by issuing a dba.configureInstance() command with the clusterAdmin option.

• Fetch the ClusterSet object using dba.getClusterSet() or cluster.getClusterSet(),
when you are connected to a member of the InnoDB ClusterSet using the InnoDB Cluster server
configuration account. You can get the object from any member server in the primary cluster or in
one of the replica clusters that you created already.

• Issue a clusterSet.createReplicaCluster() command using the ClusterSet object to
create the replica cluster, naming one of the standalone server instances.

• Using the Cluster object that was returned for the replica cluster by
clusterSet.createReplicaCluster(), issue a cluster.addInstance command naming
another of the standalone server instances.

• Repeat the cluster.addInstance operation to add all of the standalone server instances to the
replica cluster.

• Verify that the completed replica cluster and the InnoDB ClusterSet deployment are healthy, for
example by using a clusterSet.status() command with extended output.

13. Bootstrap MySQL Router instances against the InnoDB ClusterSet to manage application traffic,
and configure them as appropriate. By default, MySQL Router directs all read and write requests to
whichever cluster is currently the primary cluster in an InnoDB ClusterSet deployment, but you can
configure a MySQL Router instance to route traffic only to a specific cluster. For instructions, see
Section 8.5, “Integrating MySQL Router With InnoDB ClusterSet”.

8.5 Integrating MySQL Router With InnoDB ClusterSet

159

Integrating MySQL Router With InnoDB ClusterSet

MySQL Router routes client application traffic to the appropriate clusters in an InnoDB ClusterSet
deployment. You can set a global policy for MySQL Router instances that are used with the InnoDB
ClusterSet deployment, and override this with settings for individual MySQL Router instances.

When you bootstrap a MySQL Router instance against an InnoDB ClusterSet deployment, it is aware
of the complete topology of the ClusterSet, and can manage write and read traffic appropriately. If a
controlled switchover or emergency failover takes place, the MySQL Router instances connected with the
InnoDB ClusterSet are aware of this and route traffic to the new primary cluster, except for any instances
that you have configured to send traffic to a specific cluster. If a cluster is invalidated, MySQL Router
instances stop read and write traffic to it, except for any instances that you have configured to continue
sending read traffic in that situation.

For each MySQL Router instance that you are using with InnoDB ClusterSet, you can choose to configure
it to follow the primary cluster, or to connect only to a specific target InnoDB Cluster. You can change
between these modes online using MySQL Shell.

Follow the primary In this mode, MySQL Router directs application traffic, both writes
and reads, to the cluster in the InnoDB ClusterSet deployment that is
currently the primary cluster. This mode is the default.

Named target cluster In this mode, MySQL Router directs application traffic to the InnoDB
Cluster that you specify. This can be the primary cluster in the InnoDB
ClusterSet deployment, or it can be a replica cluster. If the target
cluster is currently the primary cluster, MySQL Router opens the write
port and applications can write to the instance. If the target cluster
is currently a read-only replica cluster, MySQL Router allows only
read traffic, and denies write traffic. If this situation changes due to
a switchover or failover to or from the target cluster, MySQL Router
changes the permitted request types accordingly. This mode is useful
if an application makes only read requests, which can be made on a
replica cluster, and you want to keep that traffic routed to a local cluster.

You can also configure MySQL Router to allow or disallow read traffic to a cluster that has been marked
as INVALIDATED. A cluster in this state is not currently functioning at all as part of the InnoDB ClusterSet
deployment, and cannot receive writes. Although the cluster does not necessarily have any technical
issues, its data is becoming stale. The default is that MySQL Router disallows reads as well as writes to an
invalidated cluster (the drop_all setting), but you can choose to allow reads (the accept_ro setting).

To bootstrap MySQL Router against InnoDB ClusterSet, you need to use an InnoDB Cluster administrator
account, or the InnoDB Cluster server configuration account, which also has the required permissions.
MySQL Router then uses the MySQL Router administrator account to connect to the instances in
the InnoDB ClusterSet deployment. You need to specify the user name and password for both these
accounts during the bootstrap operation. See Section 8.3, “User Accounts for InnoDB ClusterSet” for more
information.

Important

If you are using an existing InnoDB Cluster as the primary cluster in your InnoDB
ClusterSet deployment, and you bootstrapped MySQL Router against that cluster
already, follow the relevant parts of this process to bootstrap it again using the --
force option against the InnoDB ClusterSet, then stop and restart MySQL Router.
The settings in the MySQL Router instance's static configuration file need to be
updated for InnoDB ClusterSet.

To integrate MySQL Router with an InnoDB ClusterSet deployment, follow this process:

160

Integrating MySQL Router With InnoDB ClusterSet

1. If you haven't already done so, install MySQL Router instances as appropriate for your topology. The
recommended deployment of MySQL Router is on the same host as the client application. When
using a sandbox deployment, everything is running on a single host, therefore you deploy MySQL
Router to the same host. When using a production deployment, we recommend deploying one MySQL
Router instance to each machine used to host one of your client applications. It is also possible to
deploy MySQL Router to a common machine through which your application instances connect. For
instructions, see Installing MySQL Router.

2. Connect to any active member server instance in the InnoDB ClusterSet deployment, using an
InnoDB Cluster administrator account. You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. Get the ClusterSet object using a
dba.getClusterSet() or cluster.getClusterSet() command. It is important to get the
ClusterSet object when you are connected to the server instance using an appropriate account. The
default user account stored in the object is used for some operations, regardless of the account that
you specify on the connection. For example:

mysql-js> \connect admin2@127.0.0.1:3310
...
mysql-js> myclusterset = dba.getClusterSet()
<ClusterSet:testclusterset>

In this example:

• admin2@127.0.0.1:3310 is the URI-like connection string for any member server instance that is
online in the cluster.

The URI-like connection string is comprised of the following elements:

• admin2 is the user name for the InnoDB Cluster administrator account.

• 127.0.0.1:3310 is the host and port for the member server instance, as displayed by the
cluster.status() command.

• The returned ClusterSet object is assigned to the variable myclusterset.

3. Verify that the InnoDB ClusterSet deployment is healthy, by issuing clusterSet.status() in
MySQL Shell while connected to any member server in the cluster. For example:

mysql-js> myclusterset.status({extended: 1})

Select the extended output to see the detailed status for the clusters in the InnoDB ClusterSet topology.
This gives you the host and port for each member server, so you can choose one to bootstrap MySQL
Router against. See Section 8.6, “InnoDB ClusterSet Status and Topology” for more information.

4. For each MySQL Router instance, run the mysqlrouter command in a suitable shell on the instance
where MySQL Router is installed, to bootstrap MySQL Router against InnoDB ClusterSet. In this
example, the force option is used because MySQL Router has previously been bootstrapped against
the primary InnoDB Cluster:

$> mysqlrouter --bootstrap icadmin@127.0.0.1:3310 --account=myRouter1 --name='Rome1' --force
Please enter MySQL password for icadmin:
Bootstrapping system MySQL Router instance...

Please enter MySQL password for myRouter1:
- Creating account(s) (only those that are needed, if any)
- Verifying account (using it to run SQL queries that would be run by Router)
- Storing account in keyring
- Creating configuration C:/Program Files/MySQL/MySQL Router 8.0/mysqlrouter.conf

161

https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html

Integrating MySQL Router With InnoDB ClusterSet

MySQL Router configured for the ClusterSet 'testclusterset'

After this MySQL Router has been started with the generated configuration

 > net start mysqlrouter
or
 > C:\Program Files\MySQL\MySQL Router 8.0\bin\mysqlrouter.exe -c C:/Program Files/MySQL/MySQL Router 8.0/mysqlrouter.conf

ClusterSet 'testclusterset' can be reached by connecting to:

MySQL Classic protocol

- Read/Write Connections: localhost:6446
- Read/Only Connections: localhost:6447

MySQL X protocol

- Read/Write Connections: localhost:6448
- Read/Only Connections: localhost:6449

In this example:

• icadmin@127.0.0.1:3310 is the URI-like connection string for any member server instance that
is online in the InnoDB ClusterSet deployment. The instance can be in the primary cluster or in a
replica cluster. If the instance is not the primary server in the primary cluster, InnoDB ClusterSet will
route the transaction to that server, provided that the InnoDB ClusterSet deployment is healthy.

The URI-like connection string is comprised of the following elements:

• icadmin is the user name for an InnoDB Cluster administrator account that was set up using the
cluster.setupAdminAccount() command on the primary cluster, then replicated to the replica
clusters. The bootstrap operation prompts you for the password for the account. The password
for an InnoDB Cluster administrator account is the same on all the server instances in the InnoDB
ClusterSet deployment.

• 127.0.0.1:3310 is the host and port for the member server instance, as displayed by the
clusterSet.status() command.

• myRouter1 is the user name for a MySQL Router administrator account that was set up using the
cluster.setupRouterAccount() command on the primary cluster. The account is the same on
all the server instances in the InnoDB ClusterSet deployment. The bootstrap operation prompts you
for the password for the account.

• --name can be used to assign a non-default name to the MySQL Router instance, to make it easily
identifiable in the output from InnoDB ClusterSet status commands.

• --force is required if you are bootstrapping MySQL Router again for an existing InnoDB Cluster
where it was previously bootstrapped.

MySQL Router connects to the server instance and retrieves the InnoDB ClusterSet metadata. The
process is the same as when you bootstrap MySQL Router against an individual InnoDB Cluster. For
more details about the process, see Section 6.4.3, “Deploying MySQL Router”.

5. After you bootstrap each MySQL Router instance, verify that it is now correctly bootstrapped against
the InnoDB ClusterSet deployment, by issuing clusterSet.listRouters() in MySQL Shell while
connected to any member server in the InnoDB ClusterSet. The command returns details of all the
registered MySQL Router instances, or a router instance that you specify. For example:

mysql-js> myclusterset.listRouters()

162

Integrating MySQL Router With InnoDB ClusterSet

{
 "domainName": "testclusterset",
 "routers": {
 "Rome1": {
 "hostname": "mymachine",
 "lastCheckIn": 2021-10-15 11:58:37,
 "roPort": 6447,
 "roXPort": 6449,
 "rwPort": 6446,
 "rwXPort": 6448,
 "targetCluster": "primary",
 "version": "8.0.27"
 },
 "Rome2": {
 "hostname": "mymachine2",
 "lastCheckIn": 2021-10-15 11:58:37,
 "roPort": 6447,
 "roXPort": 6449,
 "rwPort": 6446,
 "rwXPort": 6448,
 "targetCluster": "primary",
 "version": "8.0.27"
 }
 }
}

See MySQL Router Status for InnoDB ClusterSet for more information.

6. To see the routing options that are set for each MySQL Router instance, and the global policy for the
InnoDB ClusterSet deployment, issue clusterSet.routingOptions() in MySQL Shell while
connected to any member server in the InnoDB ClusterSet deployment. For example:

mysql-js> myclusterset.routingOptions()
{
 "domainName": "testclusterset",
 "global": {
 "invalidated_cluster_policy": "drop_all",
 "target_cluster": "primary"
 },
 "routers": {
 "Rome1": {
 "target_cluster": "primary"
 "invalidated_cluster_policy": "accept_ro"
 },
 "Rome2": {}
 }
}

By default, a MySQL Router instance sends traffic to the primary cluster, and disallows
both read and write traffic to a cluster that is marked as INVALIDATED. See MySQL Router
Status for InnoDB ClusterSet for more information and an explanation of the output of the
clusterSet.routingOptions() command.

7. If you want to change the global routing policy or the routing policy for an individual MySQL Router
instance, issue clusterSet.setRoutingOption() in MySQL Shell while connected to any
member server in the InnoDB ClusterSet deployment. You can only set one routing option at a time. It
takes a few seconds for a MySQL Router instance to pick up changes to a routing policy.

For example, this command issued for the InnoDB ClusterSet myclusterset changes the target
cluster for a MySQL Router instance to the cluster clustertwo:

mysql-js> myclusterset.setRoutingOption('Rome1', 'target_cluster', 'clustertwo')

163

InnoDB ClusterSet Status and Topology

Routing option 'target_cluster' successfully updated in router 'Rome1'.

In this example, myclusterset is the variable for the ClusterSet object, Rome1 is the name of the
MySQL Router instance, and clustertwo is the name of the specific cluster to target.

To set the routing policy for the instance back to following the primary, issue this command:

mysql-js> myclusterset.setRoutingOption('Rome1', 'target_cluster', 'primary')
Routing option 'target_cluster' successfully updated in router 'Rome1'.

To clear a routing policy for an instance, use the clusterSet.setRoutingOption() command to
set the relevant policy to null. For example:

mysql-js> myclusterset.setRoutingOption('Rome1', 'target_cluster', null)
Routing option 'target_cluster' successfully updated in router 'Rome1'.

To set the global routing policy, do not specify a MySQL Router instance, just the policy name and the
setting. See MySQL Router Status for InnoDB ClusterSet for more information and an explanation of
the available routing options.

8. When you are ready to start accepting connections, configure the applications to use the ports where
MySQL Router is listening for traffic to the InnoDB ClusterSet deployment. Then start the MySQL
Router instances using a suitable shell or script in the servers where MySQL Router is installed. See
Starting MySQL Router.

8.6 InnoDB ClusterSet Status and Topology

AdminAPI's clusterSet.status() command returns a JSON object describing the status of an InnoDB
ClusterSet deployment. The output includes the status of the InnoDB ClusterSet deployment itself and the
global and cluster status of each InnoDB Cluster in the ClusterSet. The extended output adds the status of
each member server in each cluster, information about the asynchronous replication channels managed
by InnoDB ClusterSet, and other configuration and status information. The command reports the status
of ClusterSet replication as well as of the servers themselves. If there are any issues, warning and error
messages are included to explain the problem in more detail.

The MySQL Shell instance where you use clusterSet.status() can be connected to any active
member of the InnoDB ClusterSet. The metadata can be retrieved from the primary cluster by way of any
other cluster that is active in the InnoDB ClusterSet.

If there is an issue with any of the clusters in the InnoDB ClusterSet, Section 8.9, “InnoDB ClusterSet
Repair and Rejoin” explains the procedure for fixing it and rejoining the cluster to the ClusterSet (or
removing it if the issue cannot be fixed). If the cluster with the issue is the primary cluster, you first need
to carry out a controlled switchover if it is still functioning (as described in Section 8.7, “InnoDB ClusterSet
Controlled Switchover”), or an emergency failover if it is not functioning or cannot be contacted (as
described in Section 8.8, “InnoDB ClusterSet Emergency Failover”).

You can use the extended option, which defaults to 0, to increase the verbosity level of the output as
follows:

• extended: 0 or omitting the option returns basic information about the availability status of the InnoDB
ClusterSet deployment, each InnoDB Cluster in the ClusterSet, and the ClusterSet replication status for
each replica cluster.

• extended: 1 adds the topology for each InnoDB Cluster in the ClusterSet, the status of each individual
member server in each cluster, and more detailed information about the ClusterSet replication channel's
status for each replica cluster.

164

https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-server-starting.html

InnoDB ClusterSet Status and Topology

• extended: 2 adds further details about each individual member server in each cluster and about the
ClusterSet replication channel, including the GTID set.

• extended: 3 adds important configuration settings for the ClusterSet replication channel, such as the
connection retry settings.

For example:

mysql-js> myclusterset.status({extended: 1})
{
 "clusters": {
 "clusterone": {
 "clusterRole": "PRIMARY",
 "globalStatus": "OK",
 "primary": "127.0.0.1:3310",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "127.0.0.1:3310": {
 "address": "127.0.0.1:3310",
 "memberRole": "PRIMARY",
 "mode": "R/W",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:3320": {
 "address": "127.0.0.1:3320",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:3330": {
 "address": "127.0.0.1:3330",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 }
 },
 "transactionSet": "953a51d5-2690-11ec-ba07-00059a3c7a00:1,c51c1b15-269e-11ec-b9ba-00059a3c7a00:1-131,c51c29ad-269e-11ec-b9ba-00059a3c7a00:1-8"
 },
 "clustertwo": {
 "clusterRole": "REPLICA",
 "clusterSetReplication": {
 "applierStatus": "APPLIED_ALL",
 "applierThreadState": "Waiting for an event from Coordinator",
 "applierWorkerThreads": 4,
 "receiver": "127.0.0.1:4410",
 "receiverStatus": "ON",
 "receiverThreadState": "Waiting for source to send event",
 "source": "127.0.0.1:3310"
 },
 "clusterSetReplicationStatus": "OK",
 "globalStatus": "OK",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "127.0.0.1:4410": {
 "address": "127.0.0.1:4410",
 "memberRole": "PRIMARY",
 "mode": "R/O",

165

InnoDB ClusterSet Status and Topology

 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:4420": {
 "address": "127.0.0.1:4420",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:4430": {
 "address": "127.0.0.1:4430",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 }
 },
 "transactionSet": "0f6ff279-2764-11ec-ba06-00059a3c7a00:1-5,953a51d5-2690-11ec-ba07-00059a3c7a00:1,c51c1b15-269e-11ec-b9ba-00059a3c7a00:1-131,c51c29ad-269e-11ec-b9ba-00059a3c7a00:1-8",
 "transactionSetConsistencyStatus": "OK",
 "transactionSetErrantGtidSet": "",
 "transactionSetMissingGtidSet": ""
 }
 },
 "domainName": "testclusterset",
 "globalPrimaryInstance": "127.0.0.1:3310",
 "metadataServer": "127.0.0.1:3310",
 "primaryCluster": "clusterone",
 "status": "HEALTHY",
 "statusText": "All Clusters available."
}

To get a handle to a ClusterSet object representing the InnoDB ClusterSet for a target server instance,
use a dba.getClusterSet() or cluster.getClusterSet() command. These commands work if the
target server instance is a member of an InnoDB Cluster that is part of an InnoDB ClusterSet deployment,
even if the primary cluster for the InnoDB ClusterSet deployment is not currently reachable. The target
server instance itself must be reachable when you use the object. If the target instance is a member
of a cluster that has been marked as invalidated, the command returns a warning, but still returns the
ClusterSet object. If the target instance is not currently a member of an InnoDB ClusterSet deployment,
the command returns an error. The ClusterSet object contains the connection details of the server that
you retrieved it from, so a ClusterSet object that you previously retrieved from a member server that is
now offline will not work any more, and you would need to get it again from a server that is online in the
InnoDB ClusterSet deployment.

The ClusterSet object defaults to using the account it was fetched with for operations where
permissions are required. It is important to get the object when you are connected to the server instance
using an appropriate user account for the operations you want to perform using it. Some operations during
the InnoDB ClusterSet deployment process require permissions, and the default user account stored in the
object is used for this, so that the process does not need to store any other user accounts. For monitoring
and troubleshooting an InnoDB ClusterSet that you already set up, an InnoDB Cluster administrator
account is appropriate. For the initial cluster deployment process, the InnoDB Cluster server configuration
account is appropriate. For more information, see Section 8.3, “User Accounts for InnoDB ClusterSet”.

When you use the clusterSet.status() function, the overall ClusterSet status (status field) reported
for an InnoDB ClusterSet deployment can be one of the following:

166

InnoDB ClusterSet Status and Topology

HEALTHY The primary cluster in the InnoDB ClusterSet is functioning acceptably,
and all of the replica clusters are functioning acceptably.

AVAILABLE The primary cluster in the InnoDB ClusterSet is functioning acceptably,
but one or more of the replica clusters has impaired functioning or is not
functioning.

UNAVAILABLE The primary cluster in the InnoDB ClusterSet is not functioning, because
it is offline or has lost quorum, or MySQL Shell cannot contact the
primary cluster to determine its status.

The overall ClusterSet status reported for an InnoDB ClusterSet deployment depends on the overall status
of each InnoDB Cluster. An InnoDB Cluster in a ClusterSet reports three statuses:

• The global status (globalStatus field) is the status of the InnoDB Cluster with regards to its role in
the InnoDB ClusterSet. This status shows whether the cluster can still function acceptably in the InnoDB
ClusterSet deployment, even if it has some issues, such as a member server being currently offline. An
InnoDB Cluster can be marked as invalidated during a failover, regardless of the status of the member
servers, and if so this is shown as the global status.

• The cluster status (status field) is the status of the InnoDB Cluster with regards to its own functioning.
This status shows whether the cluster has any technical issues, such as one or more members being
offline, a loss of quorum, or a Group Replication error state. A cluster can tolerate certain issues but
still function acceptably as part of an InnoDB ClusterSet deployment. For this reason, with the default
verbosity level, the clusterSet.status() function only reports the cluster status for those clusters
where it is causing a global status issue. To view the cluster status for all clusters in the InnoDB
ClusterSet whether or not it is causing a global status issue, use the extended option to specify a
higher verbosity level.

• The ClusterSet replication status (clusterSetReplicationStatus field) is the status of the
ClusterSet replication channel for a replica InnoDB Cluster. This status shows whether the replica cluster
has any issues with replicating from the primary cluster, so that these can be considered separately
from any technical issues with the member servers in the cluster. A replica InnoDB Cluster reports
the ClusterSet replication status whether or not it is causing a global status issue. A primary InnoDB
Cluster does not have this status field, because the ClusterSet replication channel is not operating on the
primary cluster.

At higher verbosity levels, the extended output for the clusterSet.status() function shows the status
of each member server in each InnoDB Cluster. The output includes the member's Group Replication
state (memberState field) and for a server in a replica cluster, the state of replication on the member. For
information on the Group Replication states, see Group Replication Server States.

The global status (globalStatus field) reported for an InnoDB Cluster can be one of the following:

OK The cluster is functioning acceptably in the InnoDB ClusterSet
deployment. At least one of the member servers in the cluster is in
Group Replication's ONLINE state, and the replication group has
quorum. If the cluster is a replica cluster, the ClusterSet replication
status is also OK. This global status does not necessarily mean there
are no technical issues with the cluster. Some members might be
offline, or the cluster might have too few members to provide tolerance
for failures. However, the cluster is functioning well enough to continue
as part of the InnoDB ClusterSet deployment. A primary cluster or a
replica cluster can have this global status.

167

https://dev.mysql.com/doc/refman/8.0/en/group-replication-server-states.html

InnoDB ClusterSet Status and Topology

OK_NOT_REPLICATING The cluster is functioning acceptably, but replication has stopped on the
ClusterSet replication channel, either as a controlled stop or due to a
replication error. Only a replica cluster can have this global status.

OK_NOT_CONSISTENT The cluster is functioning acceptably, but the set of transactions on the
cluster (the GTID set) has diverged from that on the primary cluster,
such that there are extra transactions on the replica cluster that the
primary cluster does not have. Replication might have stopped on the
ClusterSet replication channel, either as a controlled stop or due to a
replication error, or the channel might still be replicating. Only a replica
cluster can have this global status. A replica cluster with this status is
not available for a planned switchover, although a forced failover is
possible.

OK_MISCONFIGURED The cluster is functioning acceptably, but an incorrect configuration has
been detected for the ClusterSet replication channel. For example, the
channel might be replicating from the wrong source. The replication
channel might be still running, or replication might have stopped. Only a
replica cluster can have this global status.

NOT_OK The cluster is not functioning at all as part of the InnoDB ClusterSet
deployment due to a technical issue. It has lost quorum or all member
servers are in Group Replication's OFFLINE status. A primary cluster
or a replica cluster can have this global status. If a primary cluster has
this global status, the InnoDB ClusterSet deployment is given the status
UNAVAILABLE.

UNKNOWN The cluster is the primary cluster for the InnoDB ClusterSet deployment
but MySQL Shell currently cannot contact it to determine its status.
While the primary cluster cannot be contacted, the InnoDB ClusterSet
deployment is given the status UNAVAILABLE.

INVALIDATED The cluster was invalidated during a failover process. During a
controlled switchover process, data consistency is assured, and the
original primary cluster is demoted to a working read-only replica
cluster. However, during an emergency failover process, data
consistency is not assured, so for safety, the original primary cluster is
marked as invalidated during the failover process. Replica clusters are
also marked as invalidated if they are unreachable or unavailable at the
time of the failover, or during a controlled switchover. A cluster with this
global status is not functioning at all as part of the InnoDB ClusterSet
deployment. The cluster does not necessarily have any technical
issues, and might be capable of rejoining the InnoDB ClusterSet
deployment after manual validation. If the cluster can be contacted, you
should verify that it has been shut down, so that it is not accepting new
transactions.

The cluster status (status field) reported for an InnoDB Cluster can be one of the following, which can all
be reported for a primary cluster or a replica cluster:

OK All the member servers in the cluster are in Group Replication's ONLINE
state, and there are three or more members in the cluster.

OK_PARTIAL At least three of the member servers in the cluster are in Group
Replication's ONLINE state. However, one or more member servers
are in Group Replication's OFFLINE, RECOVERING, ERROR, or

168

InnoDB ClusterSet Status and Topology

UNREACHABLE state, so they are not currently participating as active
members of the cluster. A cluster in this situation is functioning well
enough to continue as part of the InnoDB ClusterSet deployment, but to
bring it up to OK status, resolve the issues with the member servers.

OK_NO_TOLERANCE All the member servers in the cluster are in Group Replication's ONLINE
state, but there are less than three members in the cluster, so it does
not have sufficient tolerance for failures. A cluster in this situation is
functioning well enough to continue as part of the InnoDB ClusterSet
deployment, but to bring it up to OK status, add more member servers.

OK_NO_TOLERANCE_PARTIAL One or two member servers in the cluster are in Group Replication's
ONLINE state, but one or more are in Group Replication's OFFLINE,
RECOVERING, ERROR, or UNREACHABLE state. The cluster therefore
does not have sufficient tolerance for failures because of the
unavailability of some members. A cluster in this situation is functioning
well enough to continue as part of the InnoDB ClusterSet deployment,
but to bring it up to OK status, resolve the issues with the member
servers.

NO_QUORUM The cluster does not have quorum, meaning that a majority of the
replication group's member servers are unavailable for agreeing
on a decision. Group Replication is able to reconfigure itself to the
new group number if members leave voluntarily or are expelled by a
group decision, so a loss of quorum means that the missing member
servers have either failed or been cut off from the others by a network
partition. A cluster in this situation cannot function as part of the InnoDB
ClusterSet deployment. To bring a cluster in this state up to OK status,
see Section 8.9, “InnoDB ClusterSet Repair and Rejoin”.

OFFLINE All the member servers in the cluster are in Group Replication's
OFFLINE state. A cluster in this situation cannot function as part of the
InnoDB ClusterSet deployment. To bring a cluster in this state up to
OK status if it is not currently supposed to be offline, see Section 8.9,
“InnoDB ClusterSet Repair and Rejoin”.

ERROR All the member servers in the cluster are in Group Replication's ERROR
state. A cluster in this situation cannot function as part of the InnoDB
ClusterSet deployment. To bring a cluster in this state up to OK status,
see Section 8.9, “InnoDB ClusterSet Repair and Rejoin”.

UNKNOWN MySQL Shell cannot currently contact any member servers to determine
the cluster's status. If this is the primary cluster, the InnoDB ClusterSet
deployment is given the status UNAVAILABLE.

INVALIDATED The cluster was invalidated during a failover process. During a
controlled switchover process, data consistency is assured, and the
original primary cluster is demoted to a working read-only replica
cluster. However, during an emergency failover process, data
consistency is not assured, so for safety, the original primary cluster is
marked as invalidated during the failover process. Replica clusters are
also marked as invalidated if they are unreachable or unavailable at the
time of the failover, or during a controlled switchover. A cluster with this
global status is not functioning at all as part of the InnoDB ClusterSet
deployment. The cluster does not necessarily have any technical
issues, and might be capable of rejoining the InnoDB ClusterSet

169

InnoDB ClusterSet Topology

deployment after manual validation. If the cluster can be contacted,
you should verify that it has been shut down, so that it is not accepting
new transactions. To handle this situation, see Section 8.9, “InnoDB
ClusterSet Repair and Rejoin”.

The cluster status relates to technical issues with the InnoDB Cluster as a Group Replication group,
rather than to the process of replication. For a replica cluster, the ClusterSet replication status
(clusterSetReplicationStatus field) is also reported as follows:

OK The ClusterSet replication channel is running.

STOPPED The ClusterSet replication channel has been stopped in a controlled
manner. This status is shown when the receiver thread, applier thread,
or both threads have been stopped.

ERROR The ClusterSet replication channel has stopped due to a replication
error, such as an incorrect configuration or a set of transactions that
differs from the set on the primary cluster.

MISCONFIGURED An incorrect configuration has been detected for the ClusterSet
replication channel, such as replicating from the wrong source. The
channel might be still running, or replication might have stopped.

MISSING The ClusterSet replication channel does not exist on the servers in this
cluster.

UNKNOWN MySQL Shell cannot currently contact the replica cluster to determine
the replication channel's status.

If a cluster's only issue is with the ClusterSet replication channel, issuing the
clusterSet.rejoinCluster() command for the cluster automatically corrects the channel's
configuration if necessary and restarts the channel. This might be sufficient to fix the issue. For instructions
to do this, see Section 8.9.4, “Rejoining a Cluster to an InnoDB ClusterSet”.

InnoDB ClusterSet Topology

If you just want to view the topology of the InnoDB ClusterSet, and do not need status information, you can
use the clusterSet.describe() function instead. This function returns a JSON object describing the
topology of an InnoDB ClusterSet deployment, and giving the IP address and identifier of each member
server in each InnoDB Cluster. For example:

mysql-js> myclusterset.describe()
{
 "clusters": {
 "clusterone": {
 "clusterRole": "PRIMARY",
 "topology": [
 {
 "address": "127.0.0.1:3310",
 "label": "127.0.0.1:3310"
 },
 {
 "address": "127.0.0.1:3320",
 "label": "127.0.0.1:3320"
 },
 {
 "address": "127.0.0.1:3330",
 "label": "127.0.0.1:3330"
 }

170

MySQL Router Status for InnoDB ClusterSet

]
 },
 "clustertwo": {
 "clusterRole": "REPLICA",
 "topology": [
 {
 "address": "127.0.0.1:4410",
 "label": "127.0.0.1:4410"
 },
 {
 "address": "127.0.0.1:4420",
 "label": "127.0.0.1:4420"
 },
 {
 "address": "127.0.0.1:4430",
 "label": "127.0.0.1:4430"
 }
]
 }
 },
 "domainName": "testclusterset",
 "primaryCluster": "clusterone"
}

This information is also provided by the extended output for the clusterSet.status() function.

MySQL Router Status for InnoDB ClusterSet

To see the MySQL Router instances that are registered for the InnoDB ClusterSet, issue the
clusterSet.listRouters() command in MySQL Shell while connected to any member server in
the InnoDB ClusterSet deployment. The command returns details of all the registered MySQL Router
instances, or a single router instance that you specify using its router instance definition. For example:

mysql-js> myclusterset.listRouters()
{
 "domainName": "testclusterset",
 "routers": {
 "Rome1": {
 "hostname": "mymachine",
 "lastCheckIn": 2021-10-15 11:58:37,
 "roPort": 6447,
 "roXPort": 6449,
 "rwPort": 6446,
 "rwXPort": 6448,
 "targetCluster": "primary",
 "version": "8.0.27"
 },
 "Rome2": {
 "hostname": "mymachine2",
 "lastCheckIn": 2021-10-15 11:58:37,
 "roPort": 6447,
 "roXPort": 6449,
 "rwPort": 6446,
 "rwXPort": 6448,
 "targetCluster": "primary",
 "version": "8.0.27"
 }
 }
}

The instance information includes the name of the MySQL Router instance, the port numbers for read and
write traffic using MySQL classic protocol and X Protocol, the target cluster, and the time the instance last
checked in with the target cluster. If MySQL Router is at a lower version than that required to work with this
InnoDB ClusterSet deployment, the instance information states this.

171

MySQL Router Status for InnoDB ClusterSet

To see the routing options that are set for each MySQL Router instance, and the global policy for the
InnoDB ClusterSet deployment, issue clusterSet.routingOptions() in MySQL Shell while
connected to any member server in the InnoDB ClusterSet deployment. A setting for a specific MySQL
Router instance overrides a global policy. For example:

mysql-js> myclusterset.routingOptions()
{
 "domainName": "testclusterset",
 "global": {
 "invalidated_cluster_policy": "drop_all",
 "target_cluster": "primary"
 },
 "routers": {
 "Rome1": {
 "target_cluster": "primary"
 "invalidated_cluster_policy": "accept_ro"
 },
 "Rome2": {}
 }
}

If a particular routing option is not displayed for a MySQL Router instance, as in the example above for
Rome2, it means the instance does not have that policy set, and it follows the global policy. The output for
Rome1 shows "target_cluster": "primary", which is the same as the global policy. This is because
Rome1 has had the routing option explicitly set to "primary" by a clusterSet.setRoutingOption()
command, in which case it is displayed. To clear a routing option, set it to null.

The routing options are as follows:

"target_cluster":
"primary"

With this setting, MySQL Router directs traffic from client applications
to the cluster in the InnoDB ClusterSet deployment that is currently
the primary cluster. A primary cluster can accept both read and write
traffic. Follow the primary mode is the default for the global policy and
for individual MySQL Router instances.

"target_cluster":
"clusterName"

With this setting, MySQL Router directs traffic from applications to the
specified cluster in the InnoDB ClusterSet deployment, whether it is
currently in the role of the primary cluster or a replica cluster. If the
target cluster is currently the primary cluster, MySQL Router opens
the write port and applications can write to the instance. If the target
cluster is currently a read-only replica cluster, MySQL Router allows
only read traffic, and denies write traffic. If this situation changes due
to a switchover or failover to or from the target cluster, MySQL Router
changes the permitted request types accordingly. This mode is useful
if an application makes only read requests, which can be made on a
replica cluster, and you want to keep that traffic routed to a local cluster.
Note that the cluster name is case sensitive.

"invalidated_cluster_policy":
"drop_all"

With this setting, when a cluster is marked as INVALIDATED, MySQL
Router disallows both read and write traffic to it from applications.
A cluster in this state is not currently functioning at all as part of the
InnoDB ClusterSet deployment, and cannot receive writes. It might
be a former primary cluster that was marked as invalidated during an
emergency failover process, or a replica cluster that was marked as
invalidated because it was unreachable or unavailable at the time of a
failover or during a controlled switchover. This setting is the default for
the global policy and for individual MySQL Router instances.

172

InnoDB ClusterSet Controlled Switchover

"invalidated_cluster_policy":
"accept_ro"

With this setting, when a cluster is marked as INVALIDATED, MySQL
Router allows read traffic to it from applications but drops write traffic.
Although an invalidated cluster does not necessarily have any technical
issues, the data is becoming stale, so this setting means that stale
reads will take place unless the issue is resolved soon. However, this
setting can provide higher availability in cases where stale reads are not
a high priority.

You can change the routing options for MySQL Router instances in an InnoDB ClusterSet deployment
using the clusterSet.setRoutingOption() command. For instructions to do this, see Section 8.5,
“Integrating MySQL Router With InnoDB ClusterSet”.

8.7 InnoDB ClusterSet Controlled Switchover

A controlled switchover makes a selected replica cluster into the primary cluster for the InnoDB ClusterSet
deployment. During a controlled switchover process, data consistency is assured. The process verifies that
the selected replica cluster is synchronized with the primary cluster (which might mean a short wait if there
is replication lag), then makes that cluster into the primary of the InnoDB ClusterSet. The original primary
cluster is demoted to a working read-only replica cluster. You can then take the original primary offline if
necessary, repair any issues, and bring it back into operation in the InnoDB ClusterSet deployment.

Follow the controlled switchover procedure if the primary cluster in an InnoDB ClusterSet deployment is
functioning acceptably, but you need to carry out maintenance or fix some minor issues to improve the
primary cluster's function. A primary cluster that is functioning acceptably has the global status OK when
you check it using AdminAPI's clusterSet.status() command in MySQL Shell.

If the primary cluster is not functioning acceptably (with the global status NOT_OK) in the InnoDB ClusterSet
deployment, first try to repair any issues using AdminAPI through MySQL Shell. For example, if the
primary cluster has lost quorum, it can be restored using a cluster.forceQuorumUsingPartitionOf
command. For instructions to do this, see Section 8.9, “InnoDB ClusterSet Repair and Rejoin”.

If you cannot fix the issue by working with the primary cluster (for example, because you cannot contact
it), you need to perform an emergency failover. An emergency failover is designed for disaster recovery
when the primary cluster is suddenly unavailable. That procedure carries the risk of losing transactions
and creating a split-brain situation for the InnoDB ClusterSet. If you do need to carry out an emergency
failover, follow the procedure in Section 8.8, “InnoDB ClusterSet Emergency Failover” to ensure that the
risk is managed.

The diagram shows the effects of a controlled switchover in an example InnoDB ClusterSet deployment.
The primary cluster in the Rome datacenter requires maintenance, so a controlled switchover has been
carried out to make the replica cluster in the Brussels datacenter into the primary of the InnoDB ClusterSet
deployment, and demote the Rome cluster to a replica. The ClusterSet replication channel on the Rome
cluster has been activated by the controlled switchover process, and it is replicating transactions from
the Brussels cluster. Now that the Rome cluster is a replica cluster, the member servers or the complete
cluster can safely be taken offline if required to carry out the maintenance work.

173

InnoDB ClusterSet Controlled Switchover

Figure 8.2 InnoDB ClusterSet Switchover

The MySQL Router instances in the example InnoDB Cluster deployment that were set to follow the
primary have routed read and write traffic to the Brussels cluster which is now the primary. The MySQL
Router instance that was routing read traffic to the Brussels cluster by name when it was a replica cluster,
continues to route traffic to it, and is not affected by the fact that the cluster is now the primary rather than
a replica cluster. Similarly, the MySQL Router instance that was routing read traffic to the Rome cluster by
name can continue to do this, because the replica cluster still accepts read traffic.

To carry out a controlled switchover for the primary InnoDB Cluster, follow this procedure:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cluster.setupAdminAccount()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. Get the ClusterSet object using
dba.getClusterSet() or cluster.getClusterSet() command. It is important to use an
InnoDB Cluster administrator account or server configuration account so that the default user account
stored in the ClusterSet object has the correct permissions. For example:

mysql-js> \connect admin2@127.0.0.1:3310
Creating a session to 'admin2@127.0.0.1:3310'
Please provide the password for 'admin2@127.0.0.1:3310': ********
Save password for 'admin2@127.0.0.1:3310'? [Y]es/[N]o/Ne[v]er (default No):
Fetching schema names for autocompletion... Press ^C to stop.
Closing old connection...
Your MySQL connection id is 52
Server version: 8.0.27-commercial MySQL Enterprise Server - Commercial
No default schema selected; type \use <schema> to set one.
<ClassicSession:admin2@127.0.0.1:3310>

174

InnoDB ClusterSet Controlled Switchover

mysql-js> myclusterset = dba.getClusterSet()
<ClusterSet:testclusterset>

In this example:

• admin2@127.0.0.1:3310 is the URI-like connection string for any member server instance that is
online in the cluster.

The URI-like connection string is comprised of the following elements:

• admin2 is the user name for an InnoDB Cluster administrator account.

• 127.0.0.1:3310 is the host and port for the member server instance, as displayed by the
cluster.status() command.

• The returned ClusterSet object is assigned to the variable myclusterset.

2. Check the status of the whole InnoDB ClusterSet deployment using AdminAPI's
clusterSet.status() command in MySQL Shell. Use the extended option to view detailed
information for all the clusters in the deployment, and check for any issues. For example:

mysql-js> myclusterset.status({extended: 1})

For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

3. Identify a suitable replica cluster that can take over as the primary cluster. A replica cluster's eligibility
for a controlled switchover depends on its global status, as reported by the clusterSet.status()
command:

Table 8.1 Permitted Cluster Operations By Status

InnoDB Cluster Global
Status in ClusterSet

Routable Controlled
Switchover

Emergency
Failover

OK Yes Yes Yes

OK_NOT_REPLICATING Yes, if specified as target
cluster by name

Yes Yes

OK_NOT_CONSISTENT Yes, if specified as target
cluster by name

No Yes

OK_MISCONFIGURED Yes Yes Yes

NOT_OK No No No

INVALIDATED Yes, if specified as target
cluster by name and
accept_ro routing policy is
set

No No

UNKNOWN Connected MySQL Router
instances might still be
routing traffic to the cluster

No No

A replica cluster with the global status OK_NOT_CONSISTENT has a set of transactions on the cluster
(the GTID set) that is inconsistent with the GTID set on the primary cluster. InnoDB ClusterSet does not
permit a controlled switchover to a cluster in this state, because clients would access incorrect data.
An emergency failover is possible, if the cluster has the most up to date set of transactions among the
available options.

175

InnoDB ClusterSet Controlled Switchover

4. Check the routing options that are set for each MySQL Router instance, and the global policy for the
InnoDB ClusterSet deployment, by issuing a clusterSet.routingOptions() command in MySQL
Shell while connected to any member server in the InnoDB ClusterSet deployment. For example:

mysql-js> myclusterset.routingOptions()
{
 "domainName": "testclusterset",
 "global": {
 "invalidated_cluster_policy": "drop_all",
 "target_cluster": "primary"
 },
 "routers": {
 "Rome1": {
 "target_cluster": "primary"
 },
 "Rome2": {}
 }
}

By default, a MySQL Router instance sends traffic to whichever cluster is currently the primary in
the InnoDB ClusterSet deployment. If all the MySQL Router instances are set to follow the primary
("target_cluster": "primary"), traffic will be automatically redirected to the new primary
cluster within a few seconds of the switchover. If a routing option is not displayed for a MySQL Router
instance, as in the example above for Rome2, it means the instance does not have that policy set, and
it follows the global policy.

If any of the instances are set to target the current primary cluster by name ("target_cluster":
"name_of_primary_cluster"), they will not redirect traffic to the new primary. In that situation, if it
is appropriate for the application, you can use the clusterSet.setRoutingOption() command to
change the routing policy for those instances. You could change those instances to follow the primary
("target_cluster": "primary"), in which case that option can be set now. For example:

mysql-js> myclusterset.setRoutingOption('Rome1', 'target_cluster', 'primary')
Routing option 'target_cluster' successfully updated in router 'Rome1'.

In this example, myclusterset is the variable for the ClusterSet object, and Rome1 is the name of
the MySQL Router instance.

Or you could specify the replica cluster that will take over as the primary, in which case set the option
("target_cluster": "name_of_new_primary_cluster") after the switchover has taken place,
when you have verified that it has worked.

5. Issue a clusterSet.setPrimaryCluster() command, naming the replica cluster that will take
over as the new primary cluster. Use the ClusterSet object that you retrieved using an InnoDB
Cluster administrator account, with the dba.getClusterSet() or cluster.getClusterSet()
command. For example:

mysql-js> myclusterset.setPrimaryCluster('clustertwo')
Switching the primary cluster of the clusterset to 'clustertwo'
* Verifying clusterset status
** Checking cluster clustertwo
 Cluster 'clustertwo' is available
** Checking cluster clusterone
 Cluster 'clusterone' is available

* Refreshing replication account of demoted cluster
* Synchronizing transaction backlog at 127.0.0.1:4410
** Transactions replicated ## 100%
* Updating metadata

* Updating topology

176

InnoDB ClusterSet Controlled Switchover

** Changing replication source of 127.0.0.1:3330 to 127.0.0.1:4410
* Acquiring locks in replicaset instances
** Pre-synchronizing SECONDARIES
** Acquiring global lock at PRIMARY
** Acquiring global lock at SECONDARIES

* Synchronizing remaining transactions at promoted primary
** Transactions replicated ## 100%
* Updating replica clusters
Cluster 'clustertwo' was promoted to PRIMARY of the clusterset. The PRIMARY instance is '127.0.0.1:4410'

For the clusterSet.setPrimaryCluster() command:

• The clusterName parameter is required and specifies the identifier used for the replica cluster in
the InnoDB ClusterSet, as given in the output from the clusterSet.status() command. In the
example, clustertwo is the cluster that is to become the new primary.

• Use the dryRun option if you want to carry out validations and log the changes without actually
executing them.

• Use the timeout option to set the maximum number of seconds to wait for the replica cluster to
synchronize with the primary cluster before the switchover takes place. If the timeout expires, the
switchover is canceled.

• Use the invalidateReplicaClusters option to name any replica clusters that are unreachable
or unavailable. These will be marked as invalidated during the switchover process. The switchover
is canceled if any unreachable or unavailable replica clusters that you do not name are discovered
during the process. In this situation you must either repair and rejoin the replica clusters then retry
the command, or name them on this option when you retry the command, and fix them later.

When you issue the clusterSet.setPrimaryCluster() command, MySQL Shell checks that the
target replica cluster complies with the requirements to take over as the primary cluster, and returns
an error if it does not. If the target replica cluster meets the requirements, MySQL Shell carries out the
following tasks:

• Checks for any unreachable or unavailable replica clusters that have not been specified using
invalidateReplicaClusters.

• Waits for the target replica cluster to synchronize with the current primary cluster by applying any
outstanding transactions from the primary. If the timeout set by the timeout option expires before
the replica cluster has finished applying transactions, the switchover is canceled.

• Locks the current primary cluster by issuing a FLUSH TABLES WITH READ LOCK
statement and setting the super_read_only system variable on all member servers,
to prevent further changes during the switchover. The Group Replication member action
mysql_disable_super_read_only_if_primary is disabled so that super_read_only
remains set after the failover.

• Reconciles the differences in view change events between the current primary cluster and the
replica clusters so that the GTID sets are identical. These Group Replication internal transactions
are identified by the UUID specified by the group_replication_view_change_uuid system
variable. MySQL Shell injects empty transactions on all the replica clusters to match the view change
events on the primary cluster.

• Updates the ClusterSet replication channel on all replica clusters to replicate from the target cluster
as the new primary cluster.

177

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid

InnoDB ClusterSet Emergency Failover

• Disables super_read_only on the primary server of the target cluster, and enables the Group
Replication member action mysql_disable_super_read_only_if_primary to handle any
changes to the primary server in that cluster.

• Disables the Group Replication member action
mysql_disable_super_read_only_if_primary on the primary server of the old primary
cluster, so that it remains read-only, and enables the Group Replication member action
mysql_start_failover_channels_if_primary on that server to enable asynchronous
connection failover for replicas on the ClusterSet replication channel.

• Sets the target cluster as the primary cluster in the ClusterSet metadata, and changes the old
primary cluster into a replica cluster.

6. Issue a clusterSet.status() command again using the extended option, to verify the status of
the InnoDB ClusterSet deployment.

7. If you have any MySQL Router instances to switch over to targeting the new primary cluster, do that
now. For example:

mysql-js> myclusterset.setRoutingOption('Rome1', 'target_cluster', 'clustertwo')
Routing option 'target_cluster' successfully updated in router 'Rome1'.

In this example, myclusterset is the variable for the ClusterSet object, Rome1 is the name of the
MySQL Router instance, and clustertwo is the name of the specific cluster to target. When you have
finished, issue a clusterSet.routingOptions() command to check that all the MySQL Router
instances are now routing correctly.

8. Now you can work with the old primary cluster to fix issues or carry out maintenance. If you had to
invalidate any replica clusters during the switchover process, you can repair these as well and add
them back into the InnoDB ClusterSet. Section 8.9, “InnoDB ClusterSet Repair and Rejoin” explains
how to repair issues with a cluster, how to rejoin a cluster to the InnoDB ClusterSet, and how to make a
cluster into the primary cluster again.

8.8 InnoDB ClusterSet Emergency Failover

An emergency failover makes a selected replica cluster into the primary InnoDB Cluster for the InnoDB
ClusterSet deployment. This procedure can be used when the current primary cluster is not working or
cannot be contacted. During an emergency failover process, data consistency is not assured, so for safety,
the original primary cluster is marked as invalidated during the failover process. If the original primary
cluster remains online, it should be shut down as soon as it can be contacted. You can repair and rejoin
an invalidated primary cluster to the InnoDB ClusterSet topology afterwards, provided that you can fix the
issues.

When the primary InnoDB Cluster in an InnoDB ClusterSet deployment has an issue or you cannot access
it, do not immediately implement an emergency failover to a replica cluster. Instead, you should always
start by attempting to repair the currently active primary cluster.

Important

Why Not Just Fail Over? The replica clusters in the InnoDB ClusterSet topology
are doing their best to keep themselves synchronized with the primary cluster.
However, depending on the volume of transactions and the speed and capacity
of the network connections between the primary cluster and the replica clusters,
replica clusters can fall behind the primary cluster in receiving transactions and
applying the changes to their data. This is called replication lag. Some replication

178

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

InnoDB ClusterSet Emergency Failover

lag is to be expected in most replication topologies, and is quite likely in an InnoDB
ClusterSet deployment where the clusters are geographically dispersed and in
different data centers.

Also, it is possible for the primary cluster to become disconnected from other
elements of the InnoDB ClusterSet topology by a network partition, but remain
online. If that happens, some replica clusters might stay with the primary cluster,
and some instances and client applications might continue to connect to the primary
cluster and apply transactions. In this situation, the partitioned areas of the InnoDB
ClusterSet topology begin to diverge from each other, with a different transaction
set on each group of servers.

When there is replication lag or a network partition, if you trigger an emergency
failover to a replica cluster, any unreplicated or divergent transactions on the
primary cluster are at risk of being lost. In the case of a network partition, the
failover can create a split-brain situation, where the different parts of the topology
have divergent transaction sets. You should therefore always make an attempt to
repair or reconnect the primary cluster before triggering an emergency failover. If
the primary cluster cannot be repaired quickly enough or cannot be reached, you
can go ahead with the emergency failover.

The diagram shows the effects of an emergency failover in an example InnoDB ClusterSet deployment.
The primary cluster in the Rome datacenter has gone offline, so an emergency failover has been carried
out to make the replica cluster in the Brussels datacenter into the primary InnoDB Cluster of the InnoDB
ClusterSet deployment. The Rome cluster has been marked as invalidated, and its status in the InnoDB
ClusterSet deployment has been demoted to a replica cluster, although it is not currently able to replicate
transactions from the Brussels cluster.

179

InnoDB ClusterSet Emergency Failover

Figure 8.3 InnoDB ClusterSet Failover

The MySQL Router instances that were set to follow the primary have routed read and write traffic to the
Brussels cluster which is now the primary. The MySQL Router instance that was routing read traffic to the
Brussels cluster by name when it was a replica cluster, continues to route traffic to it, and is not affected
by the fact that the cluster is now the primary rather than a replica cluster. However, the MySQL Router
instance that was routing read traffic to the Rome cluster by name cannot currently send any traffic there.
The reporting application in this example does not need to report when the local datacenter is offline, but
if the application did still need to function, the MySQL Router instance should have its routing options
changed either to follow the primary or to send traffic to the Brussels cluster.

To carry out an emergency failover for the primary InnoDB Cluster, follow this procedure:

1. Using MySQL Shell, connect to any member server that is still active in the InnoDB
ClusterSet deployment, using an InnoDB Cluster administrator account (created with
cluster.setupAdminAccount()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions.

When the connection is established, get the ClusterSet object from that member server using a
dba.getClusterSet() or cluster.getClusterSet() command. A ClusterSet object that you
previously retrieved from a member server that is now offline will not work any more, so you need to get
it again from a server that is online. It is important to use an InnoDB Cluster administrator account or
server configuration account so that the default user account stored in the ClusterSet object has the
correct permissions. For example:

mysql-js> \connect admin2@127.0.0.1:4410
Creating a session to 'admin2@127.0.0.1:4410'
Please provide the password for 'admin2@127.0.0.1:4410': ********

180

InnoDB ClusterSet Emergency Failover

Save password for 'admin2@127.0.0.1:4410'? [Y]es/[N]o/Ne[v]er (default No):
Fetching schema names for autocompletion... Press ^C to stop.
Closing old connection...
Your MySQL connection id is 71
Server version: 8.0.27-commercial MySQL Enterprise Server - Commercial
No default schema selected; type \use <schema> to set one.
<ClassicSession:admin2@127.0.0.1:4410>

mysql-js> myclusterset = dba.getClusterSet()
<ClusterSet:testclusterset>

2. Check the status of the whole deployment using AdminAPI's clusterSet.status() function in
MySQL Shell. Use the extended option to see exactly where and what the issues are. For example:

mysql-js> myclusterset.status({extended: 1})

For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

3. An InnoDB Cluster can tolerate some issues and be functioning well enough to continue as part of
the InnoDB ClusterSet deployment. A primary cluster that is functioning acceptably has the global
status OK when you check it using the clusterSet.status() command. For example, if one of
the member servers in a cluster goes offline, even if that server is the primary, the underlying Group
Replication technology can handle this situation and reconfigure itself.

If the primary cluster is still functioning acceptably in the InnoDB ClusterSet deployment according
to the reported status, but you need to carry out maintenance or fix some minor issues to improve
the primary cluster's function, you can carry out a controlled switchover to a replica cluster. You can
then take the primary cluster offline if necessary, repair any issues, and bring it back into operation in
the InnoDB ClusterSet deployment. For instructions to do this, see Section 8.7, “InnoDB ClusterSet
Controlled Switchover”.

4. If the primary cluster is not functioning acceptably (with the global status NOT_OK) in the InnoDB
ClusterSet deployment, but you can contact it, first try to repair any issues using AdminAPI through
MySQL Shell. For example, if the primary cluster has lost quorum, it can be restored using a
cluster.forceQuorumUsingPartitionOf command. For instructions to do this, see Section 8.9,
“InnoDB ClusterSet Repair and Rejoin”.

5. If you cannot carry out a controlled switchover, and you cannot fix the issue quickly enough by
working with the primary cluster (for example, because you cannot contact it), proceed with the
emergency failover. First identify a suitable replica cluster that can take over as the primary cluster. A
replica cluster's eligibility for an emergency failover depends on its global status, as reported by the
clusterSet.status() command:

Table 8.2 Permitted Cluster Operations By Status

InnoDB Cluster Global
Status in ClusterSet

Routable Controlled
Switchover

Emergency
Failover

OK Yes Yes Yes

OK_NOT_REPLICATING Yes, if specified as target
cluster by name

Yes Yes

OK_NOT_CONSISTENT Yes, if specified as target
cluster by name

No Yes

OK_MISCONFIGURED Yes Yes Yes

NOT_OK No No No

INVALIDATED Yes, if specified as target
cluster by name and

No No

181

InnoDB ClusterSet Emergency Failover

InnoDB Cluster Global
Status in ClusterSet

Routable Controlled
Switchover

Emergency
Failover

accept_ro routing policy is
set

UNKNOWN Connected Router instances
might still be routing traffic to
the cluster

No No

The replica cluster you select must have the most up to date set of transactions (GTID set) among all
of the replica clusters that are reachable. If more than one replica cluster is eligible for the emergency
failover, check the replication lag for each cluster (which is shown in the extended output for the
clusterSet.status() command). Select the replica cluster with the least replication lag, which
should therefore have the most transactions. The emergency failover process checks the GTID sets for
all the replica clusters that are currently reachable, and tells you if another cluster is more up to date, so
you can try again with that cluster.

6. Check the routing options that are set for each MySQL Router instance, and the global policy for the
InnoDB ClusterSet deployment, by issuing a clusterSet.routingOptions() command in MySQL
Shell while connected to any member server in the InnoDB ClusterSet deployment. For example:

mysql-js> myclusterset.routingOptions()
{
 "domainName": "testclusterset",
 "global": {
 "invalidated_cluster_policy": "drop_all",
 "target_cluster": "primary"
 },
 "routers": {
 "Rome1": {
 "target_cluster": "primary"
 },
 "Rome2": {}
 }
}

If all the MySQL Router instances are set to follow the primary ("target_cluster": "primary"),
traffic will be automatically redirected to the new primary cluster within a few seconds of the failover.
If a routing option is not displayed for a MySQL Router instance, as in the example above with
"target_cluster" for Rome2, it means the instance does not have that policy set, and it follows the
global policy.

If any of the instances are set to target the current primary cluster by name ("target_cluster":
"name_of_primary_cluster"), they will not redirect traffic to the new primary. When the primary
cluster is not functioning, the clusterSet.setRoutingOption() command cannot be used to
change the routing options, so you cannot redirect the traffic handled by that MySQL Router instance
until failover to the new primary cluster is complete.

7. If you can, try to verify that the original primary cluster is offline, and if it is online, attempt to shut it
down. If it remains online and continues to receive traffic from clients, a split-brain situation can be
created where the separated parts of the InnoDB ClusterSet diverge.

8. To proceed with the emergency failover, issue a clusterSet.forcePrimaryCluster() command,
naming the replica cluster that will take over as the new primary cluster. For example:

mysql-js> myclusterset.forcePrimaryCluster("clustertwo")
Failing-over primary cluster of the clusterset to 'clustertwo'
* Verifying primary cluster status
None of the instances of the PRIMARY cluster 'clusterone' could be reached.

182

InnoDB ClusterSet Emergency Failover

* Verifying clusterset status
** Checking cluster clustertwo
 Cluster 'clustertwo' is available
** Checking whether target cluster has the most recent GTID set
* Promoting cluster 'clustertwo'
* Updating metadata

PRIMARY cluster failed-over to 'clustertwo'. The PRIMARY instance is '127.0.0.1:4410'
Former PRIMARY cluster was INVALIDATED, transactions that were not yet replicated may be lost.

In the clusterSet.forcePrimaryCluster() command:

• The clusterName parameter is required and specifies the identifier used for the replica cluster in
the InnoDB ClusterSet, as given in the output from the clusterSet.status() command. In the
example, clustertwo is the cluster that is to become the new primary.

• Use the dryRun option if you want to carry out validations and log the changes without actually
executing them.

• Use the invalidateReplicaClusters option to name any replica clusters that are unreachable
or unavailable. These will be marked as invalidated during the failover process. The failover is
canceled if any unreachable or unavailable replica clusters that you do not name are discovered
during the process. In this situation you must either repair and rejoin the replica clusters then retry
the command, or name them on this option when you retry the command, and fix them later.

When you issue the clusterSet.forcePrimaryCluster() command, MySQL Shell checks that
the target replica cluster complies with the requirements to take over as the primary cluster, and returns
an error if it does not.

If the target replica cluster meets the requirements, MySQL Shell carries out the following tasks:

• Attempts to contact the current primary cluster, and stops the failover if it actually can be reached.

• Checks for any unreachable or unavailable replica clusters that have not been specified using
invalidateReplicaClusters, and stops the failover if any are found.

• Marks all replica clusters listed in invalidateReplicaClusters as invalidated, and marks the old
primary cluster as invalidated.

• Checks that the target replica cluster has the most up to date GTID set among the available replica
clusters. This involves stopping the ClusterSet replication channel in all of the replica clusters.

• Updates the ClusterSet replication channel on all replica clusters to replicate from the target cluster
as the new primary cluster.

• Sets the target cluster as the primary cluster in the ClusterSet metadata, and changes the old
primary cluster into a replica cluster, although it is not currently functioning as a replica cluster
because it is marked as invalidated.

During an emergency failover, MySQL Shell does not attempt to synchronize the target replica cluster
with the current primary cluster, and does not lock the current primary cluster. If the original primary
cluster remains online, it should be shut down as soon as it can be contacted.

9. If you have any MySQL Router instances to switch over to targeting the new primary cluster,
do that now. You can change them to follow the primary ("target_cluster": "primary"),

183

InnoDB ClusterSet Repair and Rejoin

or specify the replica cluster that has taken over as the primary ("target_cluster":
"name_of_new_primary_cluster"). For example:

mysql-js> myclusterset.setRoutingOption('Rome1', 'target_cluster', 'primary')
or
mysql-js> myclusterset.setRoutingOption('Rome1', 'target_cluster', 'clustertwo')
Routing option 'target_cluster' successfully updated in router 'Rome1'.

Issue a clusterSet.routingOptions() command to check that all the MySQL Router instances
are now routing correctly.

10. Issue a clusterSet.status() command again using the extended option, to verify the status of
the InnoDB ClusterSet deployment.

11. If and when you are able to contact the old primary cluster again, first ensure that no application traffic
is being routed to it, and take it offline. Then follow the process in Section 8.9, “InnoDB ClusterSet
Repair and Rejoin” to check the transactions and decide how to arrange the InnoDB ClusterSet
topology going forward.

If you had to invalidate any replica clusters during the switchover process, if and when you are able to
contact them again, you can use the process in Section 8.9, “InnoDB ClusterSet Repair and Rejoin” to
repair them and add them back into the InnoDB ClusterSet.

8.9 InnoDB ClusterSet Repair and Rejoin

Use this information if you need to repair a cluster in an InnoDB ClusterSet deployment. You can use the
information here in any of the following situations:

• A cluster in the InnoDB ClusterSet requires maintenance but has no issues with its functioning.

• A cluster is functioning acceptably in the InnoDB ClusterSet deployment but has some issues, such as
member servers that are offline.

• A cluster is not functioning acceptably and needs to be repaired.

• A cluster has been marked as invalidated during an emergency failover or controlled switchover
procedure.

Section 8.6, “InnoDB ClusterSet Status and Topology” explains how to check the status of an InnoDB
Cluster and of the whole InnoDB ClusterSet deployment, and the situations in which a cluster might need
repair. You can identify the following situations from the output of the clusterSet.status() command:

• A cluster does not have quorum (that is, not enough members are online to have a majority).

• No members of a cluster can be reached.

• A cluster's ClusterSet replication channel is stopped.

• A cluster's ClusterSet replication channel is configured incorrectly.

• A cluster's GTID set is inconsistent with the GTID set on the primary cluster in the InnoDB ClusterSet.

• A cluster has been marked as invalidated. If the cluster is still online, the command warns that a split-
brain situation might result.

If the cluster is the primary cluster in the InnoDB ClusterSet deployment, before repairing it, you might
need to carry out a controlled switchover or an emergency failover to demote it to a replica cluster. After

184

InnoDB ClusterSet Repair and Rejoin

that, you can take the cluster offline if necessary to repair it, and the InnoDB ClusterSet will remain
available during that time.

• A controlled switchover is suitable if the primary cluster is functioning acceptably but requires
maintenance or has minor issues. A primary cluster that is functioning acceptably has the global status
OK when you check it using the clusterSet.status() command. Section 8.7, “InnoDB ClusterSet
Controlled Switchover” explains how to perform this operation.

• An emergency failover is suitable if you cannot contact the primary cluster at all. Section 8.8, “InnoDB
ClusterSet Emergency Failover” explains how to perform this operation.

• If the primary cluster is not functioning acceptably (with the global status NOT_OK) but it can be
contacted, make an attempt to repair any issues using the information in this section. An emergency
failover carries the risk of losing transactions and creating a split-brain situation for the InnoDB
ClusterSet. If you cannot repair the primary cluster quickly enough to restore availability, proceed with an
emergency failover and then repair it if possible.

Follow this procedure to repair an InnoDB Cluster that is part of an InnoDB ClusterSet deployment:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cluster.setupAdminAccount()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. When the connection is established, get the
ClusterSet object using a dba.getClusterSet() or cluster.getClusterSet() command. It
is important to use an InnoDB Cluster administrator account or server configuration account so that the
default user account stored in the ClusterSet object has the correct permissions. For example:

mysql-js> \connect admin2@127.0.0.1:4410
Creating a session to 'admin2@127.0.0.1:4410'
Please provide the password for 'admin2@127.0.0.1:4410': ********
Save password for 'admin2@127.0.0.1:4410'? [Y]es/[N]o/Ne[v]er (default No):
Fetching schema names for autocompletion... Press ^C to stop.
Closing old connection...
Your MySQL connection id is 42
Server version: 8.0.27-commercial MySQL Enterprise Server - Commercial
No default schema selected; type \use <schema> to set one.
<ClassicSession:admin2@127.0.0.1:4410>
mysql-js> myclusterset = dba.getClusterSet()
<ClusterSet:testclusterset>

2. Check the status of the whole deployment using AdminAPI's clusterSet.status() command in
MySQL Shell. Use the extended option to see exactly where and what the issues are. For example:

mysql-js> myclusterset.status({extended: 1})

For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

3. Still using an InnoDB Cluster administrator account (created with cluster.setupAdminAccount())
or InnoDB Cluster server configuration account, get the Cluster object using dba.getCluster().
You can either connect to any member server in the cluster you are repairing, or connect to any
member of the InnoDB ClusterSet and use the name parameter on dba.getCluster() to specify the
cluster you want. For example:

mysql-js> cluster2 = dba.getClusterSet()
<Cluster:clustertwo>

4. Check the status of the cluster using AdminAPI's cluster.status() command in MySQL Shell. Use
the extended option to get the most details about the cluster. For example:

mysql-js> cluster2.status({extended: 2})

185

Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters

For an explanation of the output, see Checking a cluster's Status with Cluster.status().

5. If the set of transactions (the GTID set) on the cluster is inconsistent, fix this first. The
clusterSet.status() command warns you if a replica cluster's GTID set is inconsistent with the
GTID set on the primary cluster in the InnoDB ClusterSet. A replica cluster in this state has the global
status OK_NOT_CONSISTENT. You also need to check the GTID set on a former primary cluster, or
a replica cluster, that has been marked as invalidated during a controlled switchover or emergency
failover procedure. A cluster with extra transactions compared to the other clusters in the ClusterSet
can continue to function acceptably in the ClusterSet while it stays active. However, a cluster with extra
transactions cannot rejoin the ClusterSet. Section 8.9.1, “Inconsistent Transaction Sets (GTID Sets) in
InnoDB ClusterSet Clusters” explains how to check for and resolve issues with the transactions on a
server.

6. If there is a technical issue with a member server in the cluster, or with the overall membership of the
cluster (such as insufficient fault tolerance or a loss of quorum), you can work with individual member
servers or adjust the cluster membership to resolve this. Section 8.9.2, “Repairing Member Servers
and Clusters in an InnoDB ClusterSet” explains what operations are available to work with the member
servers in a cluster.

7. If you cannot repair a cluster, you can remove it from the InnoDB ClusterSet using a
clusterSet.removeCluster() command. For instructions to do this, see Section 8.9.3, “Removing
a Cluster from an InnoDB ClusterSet”. A removed InnoDB Cluster cannot be added back into an
InnoDB ClusterSet deployment. If you want to use the server instances in the deployment again, you
will need to dissolve the InnoDB Cluster, and set up a new cluster using the instances as standalone
instances.

8. When you have repaired a cluster or carried out the required maintenance, you can rejoin it to the
InnoDB ClusterSet using a clusterSet.rejoin() command. This command validates that the
cluster is able to rejoin, updates and starts the ClusterSet replication channel, and removes any
invalidated status from the cluster. For instructions to do this, see Section 8.9.4, “Rejoining a Cluster to
an InnoDB ClusterSet”.

8.9.1 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters

AdminAPI's clusterSet.status() command warns you if an InnoDB Cluster's GTID set is inconsistent
with the GTID set on the primary cluster in the InnoDB ClusterSet. A cluster in this state has extra
transactions compared to the other clusters in the InnoDB ClusterSet, and has the global status
OK_NOT_CONSISTENT. The cluster continues to function in the InnoDB ClusterSet with this status, and
you can carry out an emergency failover to it if its GTID set is the most up to date of the available replica
clusters. However, it is not eligible for a controlled switchover, because the difference in transactions might
result in clients accessing incorrect data. The cluster also cannot rejoin the InnoDB ClusterSet with extra
transactions if it goes offline.

A replica cluster in an InnoDB ClusterSet is read-only, so if it has always been a replica cluster, it
should not contain extra transactions unless changes were made on the cluster without using AdminAPI
commands. A situation that can create a diverged set of transactions with no outside changes is when
the primary cluster becomes unreachable and an emergency failover procedure is used. If the primary
cluster remains online after the failover, it could continue to accept transactions from clients through any
MySQL Router instances that are still connected to it, and pass these to any replica clusters that are still
connected to it. Alternatively, significant replication lag might cause the replica cluster selected as the
replacement primary cluster to be missing some transactions from the primary cluster. In that case, when
the old primary cluster initially comes back online as an invalidated replica cluster, the transactions that
were never transferred to the replica are identified as extra transactions.

186

Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters

The extended output for the clusterSet.status() command identifies the extra transactions. For
example:

mysql-js> myclusterset.status({extended: 1})
{
 "clusters": {
 "clusterone": {
 "clusterErrors": [
 "ERROR: Errant transactions detected"
],
 "clusterRole": "REPLICA",
 "clusterSetReplication": {
 "applierStatus": "APPLIED_ALL",
 "applierThreadState": "Waiting for an event from Coordinator",
 "applierWorkerThreads": 4,
 "receiver": "127.0.0.1:3310",
 "receiverStatus": "ON",
 "receiverThreadState": "Waiting for source to send event",
 "source": "127.0.0.1:4410"
 },
 "clusterSetReplicationStatus": "OK",
 "globalStatus": "OK_NOT_CONSISTENT",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "127.0.0.1:3310": {
 "address": "127.0.0.1:3310",
 "memberRole": "PRIMARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:3320": {
 "address": "127.0.0.1:3320",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:3330": {
 "address": "127.0.0.1:3330",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 }
 },
 "transactionSet": "54ff337b-2ccf-11ec-95da-3c6aa7197deb:1-131,54ff3ed7-2ccf-11ec-95da-3c6aa7197deb:1-5,c06527d6-2ce3-11ec-a55e-3c6aa7197deb:1,c0653492-2ce3-11ec-a55e-3c6aa7197deb:1-5",
 "transactionSetConsistencyStatus": "INCONSISTENT",
 "transactionSetConsistencyStatusText": "There are 1 transactions that were executed in this instance that did not originate from the PRIMARY.",
 "transactionSetErrantGtidSet": "c06527d6-2ce3-11ec-a55e-3c6aa7197deb:1",
 "transactionSetMissingGtidSet": ""
 },
 "clustertwo": {
 "clusterRole": "PRIMARY",
 "globalStatus": "OK",
 "primary": "127.0.0.1:4410",
 "status": "OK",
 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
 "topology": {
 "127.0.0.1:4410": {

187

Repairing Member Servers and Clusters in an InnoDB ClusterSet

 "address": "127.0.0.1:4410",
 "memberRole": "PRIMARY",
 "mode": "R/W",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:4420": {
 "address": "127.0.0.1:4420",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 },
 "127.0.0.1:4430": {
 "address": "127.0.0.1:4430",
 "memberRole": "SECONDARY",
 "mode": "R/O",
 "replicationLagFromImmediateSource": "",
 "replicationLagFromOriginalSource": "",
 "status": "ONLINE",
 "version": "8.0.27"
 }
 },
 "transactionSet": "54ff337b-2ccf-11ec-95da-3c6aa7197deb:1-131,54ff3ed7-2ccf-11ec-95da-3c6aa7197deb:1-5"
 }
 },
 "domainName": "testclusterset",
 "globalPrimaryInstance": "127.0.0.1:4410",
 "metadataServer": "127.0.0.1:4410",
 "primaryCluster": "clustertwo",
 "status": "AVAILABLE",
 "statusText": "Primary Cluster available, there are issues with a Replica cluster."
}

Check the binary logs for the affected servers to see what the extra transactions actually contain. If they do
not affect the data on the server, you could try to undo them manually. However, if they do affect the data,
undoing them might create further inconsistency in the data if updates were made later to the same rows.

The safest method to reconcile the servers' data is to identify the server in the InnoDB ClusterSet
deployment that has the best data (the most transactions, the most recent transactions, or the most
important transactions) and use MySQL's cloning functionality to transfer the content from that server to the
affected servers. For instructions to do this, see Cloning Remote Data.

Another option is to remove the affected InnoDB Cluster from the InnoDB ClusterSet deployment following
the procedure in Section 8.9.3, “Removing a Cluster from an InnoDB ClusterSet”, and set up a new InnoDB
Cluster in its place.

If you are able to deal with the problem transactions, use a clusterSet.rejoinCluster() operation
to rejoin the InnoDB Cluster to the InnoDB ClusterSet deployment. For instructions to do that, see
Section 8.9.4, “Rejoining a Cluster to an InnoDB ClusterSet”.

8.9.2 Repairing Member Servers and Clusters in an InnoDB ClusterSet

Depending on the issues or maintenance requirements for the cluster, the following operations
are available for you to work with its member servers. Unless otherwise stated, use Cluster and
ClusterSet objects that you fetched with an InnoDB Cluster administrator account or server
configuration account, so that the default user account stored in the ClusterSet object has the correct
permissions.

188

https://dev.mysql.com/doc/refman/8.0/en/clone-plugin-remote.html

Repairing Member Servers and Clusters in an InnoDB ClusterSet

• Add further server instances to the cluster, using the cluster.addInstance() command, as
described in the procedure at Section 8.4, “Deploying InnoDB ClusterSet”. For more details of the
command, see Adding Instances to a Cluster.

Note that for this operation, you need to use the InnoDB Cluster server configuration account and
a Cluster object that was fetched using that account. The account must also exist on the server
instance, as explained in Section 8.3, “User Accounts for InnoDB ClusterSet”.

When you use this command to add a member server to an InnoDB Cluster that is part of an InnoDB
ClusterSet deployment, the server instance is added to the cluster and provisioned with the data for
the InnoDB ClusterSet. The ClusterSet replication channel is set up on the instance, and the required
configuration to operate in an InnoDB ClusterSet deployment is applied.

• Rejoin a server instance that was previously part of the cluster but could not automatically rejoin the
cluster, using the cluster.rejoinInstance() command. For details of this operation, see Rejoining
an Instance to a Cluster. You will need to identify and deal with any transactions on the server instance
that are not in the transaction set for the cluster.

When you use this command to rejoin a member server to an InnoDB Cluster that is part of an InnoDB
ClusterSet deployment, the server instance is rejoined to the cluster and provisioned with the data for
the InnoDB ClusterSet. The ClusterSet replication channel is set up on the instance, and the required
configuration to operate in an InnoDB ClusterSet deployment is applied.

• Remove a server instance from the cluster, using the cluster.removeInstance() command.
Specify the host name and port number of the server instance that is to be removed. For details of
this operation, see Removing Instances from the InnoDB Cluster. A force option is available, but this
should only be used as a last resort.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL Shell
resets all configuration that was applied for InnoDB ClusterSet and resets the ClusterSet replication
channel settings.

• Change the primary of the cluster to another member server, using the
cluster.setPrimaryInstance(instance) command. Specify the host name and port number of
the server instance that is to be the primary. Changing the primary allows you to carry out maintenance
and upgrades on the current primary server, or to select a primary if Group Replication's own election
process does not automatically elect the primary server that you want.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL Shell
stops the ClusterSet replication channel on the server beforehand, and restarts it afterwards. Also, if the
cluster is a replica cluster, MySQL Shell keeps the primary as read-only, rather than making it read-write
as would normally be the case with the primary of an InnoDB Cluster.

• Restore a cluster that has lost quorum by forcing quorum with the remaining instances, using the
cluster.forceQuorumUsingPartitionOf(instance) command. Specify the host name and port
number of an online server instance with the correct metadata. The operation makes the cluster consist
of this and the other reachable instances, and excludes the partitioned instances. This operation can
create a split-brain scenario, so it should be considered a last resort. For details of this operation, see
Restoring a Cluster from Quorum Loss.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL Shell
checks whether the target cluster is still a valid part of the ClusterSet, and warns you if it has been
invalidated. It also automatically restarts the ClusterSet replication channel afterwards. If the cluster is a
replica cluster, MySQL Shell keeps the primary as read-only, rather than making it read-write as would
normally be the case with the primary of an InnoDB Cluster.

189

Removing a Cluster from an InnoDB ClusterSet

• Reboot a cluster that is completely offline, using the dba.rebootClusterFromCompleteOutage()
command. For details of this operation, see Rebooting a Cluster from a Major Outage.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL
Shell checks whether the target cluster is still a valid part of the ClusterSet, and warns you if it
has been invalidated. If the cluster was not invalidated, MySQL Shell rejoins it to the InnoDB
ClusterSet deployment immediately after the reboot. If the cluster was invalidated, you must use a
clusterSet.rejoinCluster() operation to rejoin it to the InnoDB ClusterSet deployment. For
instructions to do that, see Section 8.9.4, “Rejoining a Cluster to an InnoDB ClusterSet”.

MySQL Shell also automatically restarts the ClusterSet replication channel after this operation. If the
cluster is a replica cluster, MySQL Shell keeps the primary as read-only, rather than making it read-write
as would normally be the case with the primary of an InnoDB Cluster.

You cannot dissolve an InnoDB Cluster that is currently part of an InnoDB ClusterSet deployment. If you do
want to dissolve and discard the InnoDB Cluster, you must remove it from the InnoDB ClusterSet first, as
described in Section 8.9.3, “Removing a Cluster from an InnoDB ClusterSet”.

8.9.3 Removing a Cluster from an InnoDB ClusterSet

If you cannot repair a cluster, you can remove it from the InnoDB ClusterSet using a
clusterSet.removeCluster() command. A force option is available if the cluster cannot be
contacted at all.

Important

The primary cluster in an InnoDB ClusterSet cannot be removed using this
command. If you do need to remove the primary cluster, you must first carry out a
controlled switchover (see Section 8.7, “InnoDB ClusterSet Controlled Switchover”)
or an emergency failover (see Section 8.8, “InnoDB ClusterSet Emergency
Failover”) to demote the primary cluster to a replica cluster, and promote one of the
replica clusters to be the primary cluster. After that, the former primary cluster can
be removed using this procedure.

A removed InnoDB Cluster cannot be added back into an InnoDB ClusterSet
deployment. If you want to use the server instances in the deployment again,
you will need to dissolve the InnoDB Cluster, and set up a new cluster using the
instances as standalone instances.

To remove a cluster from the InnoDB ClusterSet, follow this procedure:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cluster.setupAdminAccount()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. When the connection is established, get the
ClusterSet object using dba.getClusterSet() or cluster.getClusterSet() command. It is
important to use an InnoDB Cluster administrator account or server configuration account so that the
default user account stored in the ClusterSet object has the correct permissions. For example:

mysql-js> \connect admin2@127.0.0.1:4410
Creating a session to 'admin2@127.0.0.1:4410'
Please provide the password for 'admin2@127.0.0.1:4410': ********
Save password for 'admin2@127.0.0.1:4410'? [Y]es/[N]o/Ne[v]er (default No):
Fetching schema names for autocompletion... Press ^C to stop.
Closing old connection...
Your MySQL connection id is 33
Server version: 8.0.27-commercial MySQL Enterprise Server - Commercial
No default schema selected; type \use <schema> to set one.

190

Removing a Cluster from an InnoDB ClusterSet

<ClassicSession:admin2@127.0.0.1:4410>
mysql-js> myclusterset = dba.getClusterSet()
<ClusterSet:testclusterset>

2. Check the status of the whole deployment using AdminAPI's clusterSet.status() function in
MySQL Shell. For example:

mysql-js> myclusterset.status({extended: 1})

For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

When you issue the clusterSet.removeCluster() command, there must be an active and
reachable primary cluster in the InnoDB ClusterSet deployment, and this must not be the cluster you
are removing. The cluster you are removing must currently have the status of a replica cluster. It can be
invalidated, and does not have to be reachable.

3. Check the routing options that are set for each MySQL Router instance, and the global policy for
the InnoDB ClusterSet deployment, by issuing clusterSet.routingOptions() in MySQL Shell
while connected to any member server in the InnoDB ClusterSet deployment. Verify that no MySQL
Router instances are routing traffic to the cluster that you are going to remove. If any are, you must
change their settings to route traffic to another cluster using a clusterSet.setRoutingOption()
command, as described in Section 8.5, “Integrating MySQL Router With InnoDB ClusterSet”. A cluster
cannot be removed if any MySQL Router instances known to the InnoDB ClusterSet deployment are
routing traffic to it.

4. Issue a clusterSet.removeCluster() command, naming the cluster that you want to remove from
the InnoDB ClusterSet. For example:

mysql-js> myclusterset.removeCluster('clusterone')
The Cluster 'clusterone' will be removed from the InnoDB ClusterSet.

* Waiting for the Cluster to synchronize with the PRIMARY Cluster...
** Transactions replicated ## 100%
* Updating topology
** Transactions replicated ## 100%
* Stopping and deleting ClusterSet managed replication channel...

The Cluster 'clusterone' was removed from the ClusterSet.

• The clusterName parameter is required and specifies the identifier used for the cluster in the
InnoDB ClusterSet, as given in the output from the clusterSet.status() command. In the
example, clusterone is the cluster that is to be removed.

• Use the dryRun option if you want to carry out validations and log the changes without actually
executing them.

• Use the timeout option to specify the maximum number of seconds to wait for the cluster to
synchronize with the primary cluster in the InnoDB ClusterSet.

• Use the force option to remove the cluster from the ClusterSet when the cluster's primary instance
is not reachable.

When you issue the clusterSet.removeCluster() command, MySQL Shell checks that the
primary cluster in the InnoDB ClusterSet deployment is reachable, that the target cluster is not the
primary cluster, and that no MySQL Router instances are routing traffic to the target cluster. If any of

191

Rejoining a Cluster to an InnoDB ClusterSet

these conditions are not met, an error is returned. If they are met, MySQL Shell carries out the following
tasks to remove the target cluster:

• Drops the replication user that was created for the ClusterSet replication channel on the target
cluster.

• Synchronizes the primary server of the target cluster with the primary cluster of the InnoDB
ClusterSet, and waits for all transactions to be applied locally. If the timeout expires before this is
completed, the operation fails. If synchronization does not work, try again with the force option.

• Stops the ClusterSet replication channel, then removes the channel and resets its configuration to
the default values.

• Removes the target cluster's metadata and member information from the InnoDB ClusterSet
metadata. At this point, the removed InnoDB Cluster becomes an independent entity with its own
metadata.

• Leaves the super_read_only system variable set on all the member servers, to ensure that no
updates are performed on the removed InnoDB Cluster. If you want to use the cluster outside the
InnoDB ClusterSet, you must unfence it manually by removing this setting on the primary server.

The target cluster has now been removed from the InnoDB ClusterSet.

5. Issue a clusterSet.status() command again using the extended option, to verify the status of
the InnoDB ClusterSet deployment.

6. A removed InnoDB Cluster cannot be added back into an InnoDB ClusterSet deployment. If you
want to use the server instances in the deployment again, you will need to dissolve the InnoDB
Cluster, and set up a new cluster using the instances as standalone instances. Note that the Group
Replication configuration is not removed from the server instances, so you should exercise caution
when reusing these in an InnoDB ClusterSet deployment, as explained in Section 8.1, “InnoDB
ClusterSet Requirements”. As the instances were configured for an InnoDB ClusterSet deployment, the
possibility of issues is lower, but you should be aware. If you do want to proceed, Dissolving an InnoDB
Cluster explains how to dissolve a cluster.

8.9.4 Rejoining a Cluster to an InnoDB ClusterSet

If an InnoDB Cluster is part of an InnoDB ClusterSet deployment, MySQL Shell automatically restores
it to its role in the topology immediately after a reboot, provided that it is functioning acceptably and has
not been marked as invalidated. However, if a cluster has been marked as invalidated or its ClusterSet
replication channel has stopped, you must use a clusterSet.rejoinCluster() operation to rejoin it
to the InnoDB ClusterSet deployment.

The clusterSet.rejoinCluster() operation verifies that the target cluster meets these requirements:

• The cluster has previously been a member of the ClusterSet.

• The cluster has quorum (sufficient members are online to form a majority).

• The cluster's primary server is reachable.

• The cluster is not holding any metadata locks or InnoDB transaction locks.

• The cluster's GTID set (gtid_executed) contains no extra transactions compared to the active
members of the ClusterSet, with the exception of view change events. These Group Replication internal
transactions are identified by the UUID specified by the group_replication_view_change_uuid
system variable, and the cluster rejoin process can reconcile them.

192

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid

Rejoining a Cluster to an InnoDB ClusterSet

If the cluster meets these requirements, the operation restarts the ClusterSet replication channel and
removes the INVALIDATED status. If it does not, you will need to fix any issues that were identified and
retry the command.

Follow this procedure to rejoin an InnoDB Cluster to the InnoDB ClusterSet:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cluster.setupAdminAccount()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. When the connection is established, get the
ClusterSet object using dba.getClusterSet() or cluster.getClusterSet() command. It is
important to use an InnoDB Cluster administrator account or server configuration account so that the
default user account stored in the ClusterSet object has the correct permissions. For example:

mysql-js> \connect admin2@127.0.0.1:3310
Creating a session to 'admin2@127.0.0.1:3310'
Please provide the password for 'admin2@127.0.0.1:3310': ********
Save password for 'admin2@127.0.0.1:3310'? [Y]es/[N]o/Ne[v]er (default No):
Fetching schema names for autocompletion... Press ^C to stop.
Closing old connection...
Your MySQL connection id is 28
Server version: 8.0.27-commercial MySQL Enterprise Server - Commercial
No default schema selected; type \use <schema> to set one.
<ClassicSession:admin2@127.0.0.1:3310>
mysql-js> myclusterset = dba.getClusterSet()
<ClusterSet:testclusterset>

2. Check the status of the whole deployment using AdminAPI's clusterSet.status() function in
MySQL Shell. For example:

mysql-js> myclusterset.status({extended: 1})

For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

3. Issue a clusterSet.rejoinCluster() command, naming the cluster that you want to rejoin to the
InnoDB ClusterSet. For example:

mysql-js> myclusterset.rejoinCluster('clustertwo')
Rejoining cluster 'clustertwo' to the clusterset
NOTE: Cluster 'clustertwo' is invalidated
* Updating metadata

* Rejoining cluster
** Changing replication source of 127.0.0.1:4420 to 127.0.0.1:3310
** Changing replication source of 127.0.0.1:4430 to 127.0.0.1:3310
** Changing replication source of 127.0.0.1:4410 to 127.0.0.1:3310

Cluster 'clustertwo' was rejoined to the clusterset

For the clusterSet.rejoinCluster() command:

• The clusterName parameter is required and specifies the identifier used for the cluster in the
InnoDB ClusterSet, as given in the output from the clusterSet.status() command. In the
example, clustertwo is the name of the cluster that is being rejoined.

• Use the dryRun option if you want to carry out validations and log the changes without actually
executing them.

When you issue the clusterSet.rejoinCluster() command, MySQL Shell checks that the target
cluster meets the requirements to rejoin the ClusterSet, and returns an error if it does not. If the target
cluster meets the requirements, MySQL Shell carries out the following tasks:

193

Rejoining a Cluster to an InnoDB ClusterSet

• Checks whether the ClusterSet replication channel is replicating from the current primary cluster, and
reconfigures it to do that if it isn't already.

• Restarts the ClusterSet replication channel.

• Clears the INVALIDATED status for the cluster.

The target cluster rejoins the InnoDB ClusterSet as a replica cluster, even if it was previously a primary
cluster. A controlled switchover is required if you want to make the target cluster into the primary
cluster.

Note that if the target cluster has members that are not online or not reachable when you issue
the clusterSet.rejoinCluster() command, these members are not correctly configured
by the command. If you no longer require these instances, you can remove them using the
cluster.removeInstance() command. If you repair these instances or bring them online again,
issue the clusterSet.rejoinCluster() command again after those members return to the
cluster.

4. Issue a clusterSet.status() command again using the extended option, to verify the status of
the InnoDB ClusterSet deployment.

5. If you do want to make the rejoined cluster into the primary cluster, issue a
clusterSet.setPrimaryCluster() command, naming the rejoined cluster. Section 8.7, “InnoDB
ClusterSet Controlled Switchover” has instructions for the procedure, including how to direct MySQL
Router instances to send traffic to the new primary cluster.

194

Chapter 9 MySQL InnoDB ReplicaSet

Table of Contents
9.1 Deploying InnoDB ReplicaSet .. 196
9.2 Adding Instances to a ReplicaSet .. 198
9.3 Adopting an Existing Replication Set Up .. 200
9.4 Working with InnoDB ReplicaSet ... 201

The AdminAPI includes support for InnoDB ReplicaSet, that enables you to administer a set of MySQL
instances running asynchronous GTID-based replication in a similar way to InnoDB Cluster. An InnoDB
ReplicaSet consists of a single primary and multiple secondaries (traditionally referred to as the MySQL
replication source and replicas). You administer your ReplicaSets using a ReplicaSet object and the
AdminAPI operations, for example to check the status of the InnoDB ReplicaSet, and manually failover to a
new primary in the event of a failure.

Similar to InnoDB Cluster, MySQL Router supports bootstrapping against InnoDB ReplicaSet, which
means you can automatically configure MySQL Router to use your InnoDB ReplicaSet without having to
manually configure it. This makes InnoDB ReplicaSet a quick and easy way to get MySQL replication and
MySQL Router up and running, making it well suited to scaling out reads, and provides manual failover
capabilities in use cases that do not require the high availability offered by InnoDB Cluster.

In addition to deploying an InnoDB ReplicaSet using AdminAPI, you can adopt an existing replication
setup. AdminAPI configures the InnoDB ReplicaSet based on the topology of the replication setup. Once
the replication setup has been adopted, you administer it in the same way as an InnoDB ReplicaSet
deployed from scratch. This enables you to take advantage of AdminAPI and MySQL Router without the
need to create a new ReplicaSet. For more information see Section 9.3, “Adopting an Existing Replication
Set Up”.

InnoDB ReplicaSet Limitations.
An InnoDB ReplicaSet has several limitations compared to an InnoDB Cluster, so it is recommended
that you deploy InnoDB Cluster wherever possible. Generally, an InnoDB ReplicaSet on its own does not
provide high availability. Among the limitations of InnoDB ReplicaSet are:

• No automatic failover. In events where the primary becomes unavailable, a failover needs to be triggered
manually using AdminAPI before any changes are possible again. However, secondary instances remain
available for reads.

• No protection from partial data loss due to an unexpected halt or unavailability. Transactions that have
not yet been applied by the time of the halt could become lost.

• No protection against inconsistencies after an unexpected exit or unavailability. If a failover promotes
a secondary while the former primary is still available (for example due to a network partition),
inconsistencies could be introduced because of the split-brain.

• InnoDB ReplicaSet does not support a multi-primary mode. Data consistency cannot be guaranteed with
classic replication topologies that allow writes in all members.

• Read scale-out is limited because InnoDB ReplicaSet is based on asynchronous replication and
therefore there is no possible tuning of flow control as there is with Group Replication.

• All secondary members replicate from a single source. For some particular scenarios or use-cases, this
might have an impact on the source. For example, lots of very small updates going on.

195

Deploying InnoDB ReplicaSet

9.1 Deploying InnoDB ReplicaSet

You deploy InnoDB ReplicaSet in a similar way to InnoDB Cluster. First you configure some MySQL server
instances, the minimum is two instances, see Section 6.1, “Using MySQL AdminAPI”. One functions as
the primary, in this tutorial rs-1; the other instance functions as the secondary, in this tutorial rs-2; which
replicates the transactions applied by the primary. This is the equivalent of the source and replica known
from asynchronous MySQL replication. Then you connect to one of the instances using MySQL Shell, and
create a ReplicaSet. Once the ReplicaSet has been created, you can add instances to it.

InnoDB ReplicaSet is compatible with sandbox instances, which you can use to deploy locally, for example
for testing purposes. See Section 6.2.1, “Deploying Sandbox Instances” for instructions. However, this
tutorial assumes you are deploying a production InnoDB ReplicaSet, where each instance is running on a
different host.

InnoDB ReplicaSet Prerequisites

To use InnoDB ReplicaSet you should be aware of the following prerequisites:

• Only instances running MySQL version 8.0 and later are supported

• Only GTID-based replication is supported, binary log file position replication is not compatible with
InnoDB ReplicaSet

• Only Row Based Replication (RBR) is supported, Statement Based Replication (SBR) is unsupported

• Replication filters are not supported

• Unmanaged replication channels are not allowed on any instance

• A ReplicaSet consists of maximum one primary instance, and one or multiple secondaries are
supported. Although there is no limit to the number of secondaries you can add to a ReplicaSet, each
MySQL Router connected to a ReplicaSet has to monitor each instance. Therefore, the more instances
that are added to a ReplicaSet, the more monitoring has to be done.

• The ReplicaSet must be entirely managed by MySQL Shell. For example, the replication account is
created and managed by MySQL Shell. Making configuration changes to the instance outside of MySQL
Shell, for example using SQL statements directly to change the primary, is not supported. Always use
MySQL Shell to work with InnoDB ReplicaSet.

AdminAPI and InnoDB ReplicaSet enable you to work with MySQL replication without a deep
understanding of the underlying concepts. However, for background information see Replication.

Configuring InnoDB ReplicaSet Instances

Use dba.configureReplicaSetInstance(instance) to configure each instance you want to use
in your replica set. MySQL Shell can either connect to an instance and then configure it, or you can pass
in instance to configure a specific remote instance. To use an instance in a ReplicaSet, it must support
persisting settings. See Section 6.1.5, “Persisting Settings”.

When you connect to the instance for administration tasks you require a user with suitable privileges.
The preferred method to create users to administer a ReplicaSet is using the setupAdminAccount()
operation. See Section 6.1.7, “Creating User Accounts for Administration”. Alternatively, the
dba.configureReplicaSetInstance() operation can optionally create an administrator account, if
the clusterAdmin option is provided. The account is created with the correct set of privileges required to
manage InnoDB ReplicaSet.

196

https://dev.mysql.com/doc/refman/8.0/en/replication.html

Creating an InnoDB ReplicaSet

Tip

The administrator account must have the same user name and password across all
instances of the same cluster or replica set.

To configure the instance at rs-1:3306, with a cluster administrator named rsadmin issue:

mysql-js> dba.configureReplicaSetInstance('root@rs-1:3306', {clusterAdmin: "'rsadmin'@'rs-1%'"});

The interactive prompt requests the password required by the specified user. To configure the instance
MySQL Shell is currently connected to, you can specify a null instance definition. For example issue:

mysql-js> dba.configureReplicaSetInstance('', {clusterAdmin: "'rsadmin'@'rs-1%'"});

The interactive prompt requests the password required by the specified user. This checks the instance
which MySQL Shell is currently connected to is valid for use in an InnoDB ReplicaSet. Settings which are
not compatible with InnoDB ReplicaSet are configured if possible. The cluster administrator account is
created with the privileges required for InnoDB ReplicaSet.

Creating an InnoDB ReplicaSet

Once you have configured your instances, connect to an instance and use dba.createReplicaSet()
to create a managed ReplicaSet that uses MySQL asynchronous replication, as opposed to MySQL Group
Replication used by InnoDB Cluster. The MySQL instance which MySQL Shell is currently connected to is
used as the initial primary of the ReplicaSet.

The dba.createReplicaSet() operation performs several checks to ensure that the instance state and
configuration are compatible with a managed ReplicaSet and if so, a metadata schema is initialized on the
instance. If you want to check the operation but not actually make any changes to the instances, use the
dryRun option. This checks and shows what actions the MySQL Shell would take to create the ReplicaSet.
If the ReplicaSet is created successfully, a ReplicaSet object is returned. Therefore it is best practice to
assign the returned ReplicaSet to a variable. This enables you to work with the ReplicaSet, for example
by calling the ReplicaSet.status() operation. To create a ReplicaSet named example on instance
rs-1 and assign it to the rs variable, issue:

mysql-js> \connect root@rs-1:3306
...
mysql-js> var rs = dba.createReplicaSet("example")
A new replicaset with instance 'rs-1:3306' will be created.

* Checking MySQL instance at rs-1:3306

This instance reports its own address as rs-1:3306
rs-1:3306: Instance configuration is suitable.

* Updating metadata...

ReplicaSet object successfully created for rs-1:3306.
Use rs.add_instance() to add more asynchronously replicated instances to this replicaset
and rs.status() to check its status.

To verify that the operation was successful, you work with the returned ReplicaSet object. For example
this provides the ReplicaSet.status() operation, which displays information about the ReplicaSet. We
already assigned the returned ReplicaSet to the variable rs, so issue:

mysql-js> rs.status()
{
 "replicaSet": {
 "name": "example",
 "primary": "rs-1:3306",
 "status": "AVAILABLE",

197

Adding Instances to a ReplicaSet

 "statusText": "All instances available.",
 "topology": {
 "rs-1:3306": {
 "address": "rs-1:3306",
 "instanceRole": "PRIMARY",
 "mode": "R/W",
 "status": "ONLINE"
 }
 },
 "type": "ASYNC"
 }
}

This output shows that the ReplicaSet named example has been created, and that the primary is rs-1.
Currently there is only one instance, and the next task is to add more instances to the ReplicaSet.

9.2 Adding Instances to a ReplicaSet

When you have created a ReplicaSet you can use the ReplicaSet.addInstance() operation to add
an instance as a read-only secondary replica of the current primary of the ReplicaSet. The primary of
the ReplicaSet must be reachable and available during this operation. MySQL Replication is configured
between the added instance and the primary, using an automatically created MySQL account with a
random password. Before the instance can be an operational secondary, it must be in synchrony with the
primary. This process is called recovery, and InnoDB ReplicaSet supports different methods which you
configure with the recoveryMethod option.

For an instance to be able to join a ReplicaSet, various prerequisites must be satisfied. They are
automatically checked by ReplicaSet.addInstance(), and the operation fails if any issues are found.
Use dba.configureReplicaSetInstance() to validate and configure binary log and replication
related options before adding an instance. MySQL Shell connects to the target instance using the same
user name and password used to obtain the ReplicaSet handle object. All instances of the ReplicaSet
are expected to have the same administrator account with the same grants and passwords. A custom
administrator account with the required grants can be created while an instance is configured with
dba.configureReplicaSetInstance(). See Configuring InnoDB ReplicaSet Instances.

Recovery Methods for InnoDB ReplicaSet

When new instances are added to an InnoDB ReplicaSet they need to be provisioned with the existing
data which it contains. This can be done automatically using one of the following methods:

• MySQL Clone, which takes a snapshot from an online instance and then replaces any data on the new
instance with the snapshot. MySQL Clone is well suited for joining a new blank instance to an InnoDB
ReplicaSet. It does not rely on there being a complete binary log of all transactions applied by the
InnoDB ReplicaSet.

Warning

All previous data on the instance being added is destroyed during a clone
operation. All MySQL settings not stored in tables are however maintained.

• incremental recovery, which relies on MySQL Replication to apply all missing transactions on the new
instance. If the amount of transactions missing on the new instance is small, this can be the fastest
method. However, this method is only usable if at least one online instance in the InnoDB ReplicaSet
has a complete binary log, containing the entire transaction history of the InnoDB ReplicaSet. This
method cannot be used if the binary logs have been purged from all members or if the binary log
was only enabled after databases already existed in the instance. If there is a very large amount of
transactions to apply, there could be a long delay before the instance can join the InnoDB ReplicaSet.

198

Adding Instances to a ReplicaSet

When an instance is joining a ReplicaSet, recovery is used in much the same way that it is in InnoDB
Cluster. MySQL Shell attempts to automatically select a suitable recovery method. If it is not possible to
choose a method safely, MySQL Shell prompts for what to use. For more information, see Section 7.2.2,
“Using MySQL Clone with InnoDB Cluster”. This section covers the differences when adding instances to a
ReplicaSet.

Adding Instances to a ReplicaSet

Use the ReplicaSet.addInstance(instance) operation to add secondary instances to the
ReplicaSet. You specify the instance as a URI-like connection string. The user you specify must have
the privileges required and must be the same on all instances in the ReplicaSet, see Configuring InnoDB
ReplicaSet Instances.

For example, to add the instance at rs-2 with user rsadmin, issue:

mysql-js> rs.addInstance('rsadmin@rs-2')

Adding instance to the replicaset...

* Performing validation checks

This instance reports its own address as rsadmin@rs-2
rsadmin@rs-2: Instance configuration is suitable.

* Checking async replication topology...

* Checking transaction state of the instance...

NOTE: The target instance 'rsadmin@rs-2' has not been pre-provisioned (GTID set
is empty). The Shell is unable to decide whether replication can completely
recover its state. The safest and most convenient way to provision a new
instance is through automatic clone provisioning, which will completely
overwrite the state of 'rsadmin@rs-2' with a physical snapshot from an existing
replicaset member. To use this method by default, set the 'recoveryMethod'
option to 'clone'.

WARNING: It should be safe to rely on replication to incrementally recover the
state of the new instance if you are sure all updates ever executed in the
replicaset were done with GTIDs enabled, there are no purged transactions and
the new instance contains the same GTID set as the replicaset or a subset of it.
To use this method by default, set the 'recoveryMethod' option to 'incremental'.
Please select a recovery method [C]lone/[I]ncremental recovery/[A]bort (default Clone):

In this case we did not specify the recovery method, so the operation advises you on how to best proceed.
In this example we choose the clone option because we do not have any existing transactions on the
instance joining the ReplicaSet. Therefore there is no risk of deleting data from the joining instance.

Please select a recovery method [C]lone/[I]ncremental recovery/[A]bort (default Clone): C
* Updating topology
Waiting for clone process of the new member to complete. Press ^C to abort the operation.
* Waiting for clone to finish...
NOTE: rsadmin@rs-2 is being cloned from rsadmin@rs-1
** Stage DROP DATA: Completed
** Clone Transfer
FILE COPY ## 100% Completed
PAGE COPY ## 100% Completed
REDO COPY ## 100% Completed
** Stage RECOVERY: \
NOTE: rsadmin@rs-2 is shutting down...

* Waiting for server restart... ready
* rsadmin@rs-2 has restarted, waiting for clone to finish...
* Clone process has finished: 59.63 MB transferred in about 1 second (~1.00 B/s)

199

Adopting an Existing Replication Set Up

** Configuring rsadmin@rs-2 to replicate from rsadmin@rs-1
** Waiting for new instance to synchronize with PRIMARY...

The instance 'rsadmin@rs-2' was added to the replicaset and is replicating from rsadmin@rs-1.

Assuming the instance is valid for InnoDB ReplicaSet usage, recovery proceeds. In this case the newly
joining instance uses MySQL Clone to copy all of the transactions it has not yet applied from the primary,
then it joins the ReplicaSet as an online instance. To verify, use the ReplicaSet.status() operation:

mysql-js> rs.status()
{
 "replicaSet": {
 "name": "example",
 "primary": "rs-1:3306",
 "status": "AVAILABLE",
 "statusText": "All instances available.",
 "topology": {
 "rs-1:3306": {
 "address": "rs-1:3306",
 "instanceRole": "PRIMARY",
 "mode": "R/W",
 "status": "ONLINE"
 },
 "rs-2:3306": {
 "address": "rs-2:3306",
 "instanceRole": "SECONDARY",
 "mode": "R/O",
 "replication": {
 "applierStatus": "APPLIED_ALL",
 "applierThreadState": "Replica has read all relay log; waiting for more updates",
 "receiverStatus": "ON",
 "receiverThreadState": "Waiting for source to send event",
 "replicationLag": null
 },
 "status": "ONLINE"
 }
 },
 "type": "ASYNC"
 }
}

This output shows that the ReplicaSet named example now consists of two MySQL instances, and that
the primary is rs-1. Currently there is one secondary instance at rs-2, which is a replica of the primary.
The ReplicaSet is online, which means that the primary and secondary are in synchrony. At this point the
ReplicaSet is ready to process transactions.

If you want to override the interactive MySQL Shell mode trying to choose the most suitable recovery
method, use the recoveryMethod option to configure how the instance recovers the data required to be
able to join the ReplicaSet. For more information, see Section 7.2.2, “Using MySQL Clone with InnoDB
Cluster”.

9.3 Adopting an Existing Replication Set Up
As an alternative to creating a new InnoDB ReplicaSet, you can also adopt an existing replication setup
using the adoptFromAR option with dba.createReplicaSet(). The replication setup is scanned, and
if it is compatible with the InnoDB ReplicaSet Prerequisites, AdminAPI creates the necessary metadata.
Once the replication setup has been adopted, you can only use AdminAPI to administer the InnoDB
ReplicaSet.

To convert an existing replication setup to an InnoDB ReplicaSet connect to the primary, also referred
to as the source. The replication topology is automatically scanned and validated, starting from the
instance MySQL Shell's global session is connected to. The configuration of all instances is checked during

200

Working with InnoDB ReplicaSet

adoption, to ensure they are compatible with InnoDB ReplicaSet usage. All replication channels must be
active and their transaction sets as verified through GTID sets must be consistent. Instances are assumed
to have the same state or be able to converge. All instances that are part of the topology are automatically
added to the ReplicaSet. The only changes made by this operation to an adopted ReplicaSet are the
creation of the metadata schema. Existing replication channels are not changed during adoption, although
they could be changed during subsequent primary switch operations.

For example, to adopt a replication topology consisting of the MySQL server instances on example1 and
example2 to an InnoDB ReplicaSet, connect to the primary at example1 and issue:

mysql-js> rs = dba.createReplicaSet('testadopt', {'adoptFromAR':1})
A new replicaset with the topology visible from 'example1:3306' will be created.

* Scanning replication topology...
** Scanning state of instance example1:3306
** Scanning state of instance example2:3306

* Discovering async replication topology starting with example1:3306
Discovered topology:
- example1:3306: uuid=00371d66-3c45-11ea-804b-080027337932 read_only=no
- example2:3306: uuid=59e4f26e-3c3c-11ea-8b65-080027337932 read_only=no
 - replicates from example1:3306
 source="localhost:3310" channel= status=ON receiver=ON applier=ON

* Checking configuration of discovered instances...

This instance reports its own address as example1:3306
example1:3306: Instance configuration is suitable.

This instance reports its own address as example2:3306
example2:3306: Instance configuration is suitable.

* Checking discovered replication topology...
example1:3306 detected as the PRIMARY.
Replication state of example2:3306 is OK.

Validations completed successfully.

* Updating metadata...

ReplicaSet object successfully created for example1:3306.
Use rs.add_instance() to add more asynchronously replicated instances to
this replicaset and rs.status() to check its status.

Once the InnoDB ReplicaSet has been adopted, you can use it in the same way that you would use a
ReplicaSet which was created from scratch. From this point you must administer the InnoDB ReplicaSet
using only AdminAPI.

9.4 Working with InnoDB ReplicaSet
You work with an InnoDB ReplicaSet in much the same way as you would work with an InnoDB Cluster.
For example as seen in Adding Instances to a ReplicaSet, you assign a ReplicaSet object to a variable
and call operations that administer the ReplicaSet, such as ReplicaSet.addInstance() to add
instances, which is the equivalent of Cluster.addInstance() in InnoDB Cluster. Thus, much of the
documentation at Section 7.5, “Working with InnoDB Cluster” also applies to InnoDB ReplicaSet. The
following operations are supported by ReplicaSet objects:

• You get online help for ReplicaSet objects, and the AdminAPI, using \help ReplicaSet or
ReplicaSet.help() and \help dba or dba.help(). See Section 6.1, “Using MySQL AdminAPI”.

• You can quickly check the name of a ReplicaSet object using either name or
ReplicaSet.getName(). For example the following are equivalent:

201

Working with InnoDB ReplicaSet

mysql-js> rs.name
example
mysql-js> rs.getName()
example

• You check information about a ReplicaSet using the ReplicaSet.status() operation, which supports
the extended option to get different levels of detail. For example:

• the default for extended is 0, a regular level of details. Only basic information about the status of the
instance and replication is included, in addition to non-default or unexpected replication settings and
status.

• setting extended to 1 includes Metadata Version, server UUID, replication information such as lag
and worker threads, the raw information used to derive the status of the instance, size of the applier
queue, value of system variables that protect against unexpected writes and so on.

• setting extended to 2 includes important replication related configuration settings, such as encrypted
connections, and so on.

The output of ReplicaSet.status(extended=1) is very similar to
Cluster.status(extended=1), but the main difference is that the replication field is always
available because InnoDB ReplicaSet relies on MySQL Replication all of the time, unlike InnoDB Cluster
which uses it during incremental recovery. For more information on the fields, see Checking a cluster's
Status with Cluster.status().

• You change the instances being used for a ReplicaSet using the ReplicaSet.addInstance() and
ReplicaSet.removeInstance() operations. See Adding Instances to a ReplicaSet, and Removing
Instances from the InnoDB Cluster.

• Use ReplicaSet.rejoinInstance() to add an instance that was removed back to a ReplicaSet, for
example after a failover.

• Use the ReplicaSet.setPrimaryInstance() operation to safely perform a change of the primary of
a ReplicaSet to another instance. See Planned Changes of the ReplicaSet Primary.

• Use the ReplicaSet.forcePrimaryInstance() operation to perform a forced failover of the
primary. See Forcing the Primary Instance in a ReplicaSet.

• You work with the MySQL Router instances which have been bootstrapped against a ReplicaSet in
exactly the same way as with InnoDB Cluster. See Section 6.4.6, “Working with a Cluster's Routers”
for information on ReplicaSet.listRouters() and ReplicaSet.removeRouterMetadata().
For specific information on using MySQL Router with InnoDB ReplicaSet see Section 6.4.4, “Using
ReplicaSets with MySQL Router”.

• From version 8.0.23 InnoDB ReplicaSet supports and enables the parallel replication applier, sometimes
referred to as a multi-threaded replica. Using the parallel replication applier with InnoDB ReplicaSet
requires that your instances have the correct settings configured. If you are upgrading from an earlier
version, instances require an updated configuration. For each instance that belongs to the InnoDB
ReplicaSet, update the configuration by issuing dba.configureReplicaSetInstance(instance).
Typically dba.configureReplicaSetInstance() is used before adding the instance to a replica
set, but in this special case there is no need to remove the instance and the configuration change is
made while it is online. For more information, see Configuring the Parallel Replication Applier.

InnoDB ReplicaSet instances report information about the parallel replication applier in the output of the
ReplicaSet.status(extended=1) operation under the replication field.

For more information, see the linked InnoDB Cluster sections.

202

Planned Changes of the ReplicaSet Primary

The following operations are specific to InnoDB ReplicaSet and can only be called against a ReplicaSet
object:

Planned Changes of the ReplicaSet Primary

Use the ReplicaSet.setPrimaryInstance() operation to safely perform a change of the primary of a
ReplicaSet to another instance. The current primary is demoted to a secondary and made read-only, while
the promoted instance becomes the new primary and is made read-write. All other secondary instances
are updated to replicate from the new primary. MySQL Router instances which have been bootstrapped
against the ReplicaSet automatically start redirecting read-write clients to the new primary.

For a safe change of the primary to be possible, all replica set instances must be reachable by MySQL
Shell and have consistent GTID_EXECUTED sets. If the primary is not available, and there is no way
to restore it, a forced failover might be the only option instead, see Forcing the Primary Instance in a
ReplicaSet.

During a change of primary, the promoted instance is synchronized with the old primary, ensuring that
all transactions present on the primary are applied before the topology change is committed. If this
synchronization step takes too long or is not possible on any of the secondary instances, the operation is
aborted. In such a situation, these problematic secondary instances must be either repaired or removed
from the ReplicaSet for the fail over to be possible.

Forcing the Primary Instance in a ReplicaSet

Unlike InnoDB Cluster, which supports automatic failover in the event of an unexpected failure of
the primary, InnoDB ReplicaSet does not have automatic failure detection or a consensus based
protocol such as that provided by Group Replication. If the primary is not available, a manual failover
is required. An InnoDB ReplicaSet which has lost its primary is effectively read-only, and for any
write changes to be possible a new primary must be chosen. In the event that you cannot connect
to the primary, and you cannot use ReplicaSet.setPrimaryInstance() to safely perform a
switchover to a new primary as described at Planned Changes of the ReplicaSet Primary, use the
ReplicaSet.forcePrimaryInstance() operation to perform a forced failover of the primary. This
is a last resort operation that must only be used in a disaster type scenario where the current primary is
unavailable and cannot be restored in any way.

Warning

A forced failover is a potentially destructive action and must be used with caution.

If a target instance is not given (or is null), the most up-to-date instance is automatically selected and
promoted to be the new primary. If a target instance is provided, it is promoted to a primary, while other
reachable secondary instances are switched to replicate from the new primary. The target instance must
have the most up-to-date GTID_EXECUTED set among reachable instances, otherwise the operation fails.

A failover is different from a planned primary change because it promotes a secondary instance without
synchronizing with or updating the old primary. That has the following major consequences:

• Any transactions that had not yet been applied by a secondary at the time the old primary failed are lost.

• If the old primary is actually still running and processing transactions, there is a split-brain and the
datasets of the old and new primaries diverge.

If the last known primary is still reachable, the ReplicaSet.forcePrimaryInstance() operation fails,
to reduce the risk of split-brain situations. But it is the administrator's responsibility to ensure that the old
primary it is not reachable by the other instances to prevent or minimize such scenarios.

203

InnoDB ReplicaSet Locking

After a forced failover, the old primary is considered invalid by the new primary and can no longer be
part of the replica set. If at a later date you find a way to recover the instance, it must be removed from
the ReplicaSet and re-added as a new instance. If there were any secondary instances that could not be
switched to the new primary during the failover, they are also considered invalid.

Data loss is possible after a failover, because the old primary might have had transactions that were not
yet replicated to the secondary being promoted. Moreover, if the instance that was presumed to have failed
is still able to process transactions, for example because the network where it is located is still functioning
but unreachable from MySQL Shell, it continues diverging from the promoted instances. Recovering once
transaction sets on instances have diverged requires manual intervention and could not be possible in
some situations, even if the failed instances can be recovered. In many cases, the fastest and simplest
way to recover from a disaster that required a forced failover is by discarding such diverged transactions
and re-provisioning a new instance from the newly promoted primary.

InnoDB ReplicaSet Locking

From version 8.0.20, AdminAPI uses a locking mechanism to avoid different operations from performing
changes on an InnoDB ReplicaSet simultaneously. Previously, different instances of MySQL Shell could
connect to an InnoDB ReplicaSet at the same time and execute AdminAPI operations simultaneously. This
could lead to inconsistent instance states and errors, for example if ReplicaSet.addInstance() and
ReplicaSet.setPrimaryInstance() were executed in parallel.

The InnoDB ReplicaSet operations have the following locking:

• dba.upgradeMetadata() and dba.createReplicaSet() are globally exclusive operations. This
means that if MySQL Shell executes these operations on an InnoDB ReplicaSet, no other operations can
be executed against the InnoDB ReplicaSet or any of its instances.

• ReplicaSet.forcePrimaryInstance() and ReplicaSet.setPrimaryInstance() are
operations that change the primary. This means that if MySQL Shell executes these operations against
an InnoDB ReplicaSet, no other operations which change the primary, or instance change operations
can be executed until the first operation completes.

• ReplicaSet.addInstance(), ReplicaSet.rejoinInstance(), and
ReplicaSet.removeInstance() are operations that change an instance. This means that if
MySQL Shell executes these operations on an instance, the instance is locked for any further instance
change operations. However, this lock is only at the instance level and multiple instances in an InnoDB
ReplicaSet can each execute one of this type of operation simultaneously. In other words, at most one
instance change operation can be executed at a time, per instance in the InnoDB ReplicaSet.

• dba.getReplicaSet() and ReplicaSet.status() are InnoDB ReplicaSet read operations and do
not require any locking.

In practice, if you try to execute an InnoDB ReplicaSet related operation while another operation that
cannot be executed concurrently is still running, you get an error indicating that a lock on a needed
resource failed to be acquired. In this case, you should wait for the running operation which holds the lock
to complete, and only then try to execute the next operation. For example:

mysql-js> rs.addInstance("admin@rs2:3306");

ERROR: The operation cannot be executed because it failed to acquire the lock on
instance 'rs1:3306'. Another operation requiring exclusive access to the
instance is still in progress, please wait for it to finish and try again.

ReplicaSet.addInstance: Failed to acquire lock on instance 'rs1:3306' (MYSQLSH
51400)

204

Tagging ReplicaSets

In this example, the ReplicaSet.addInstance() operation failed because the lock
on the primary instance (rs1:3306) could not be acquired, for example because a
ReplicaSet.setPrimaryInstance() operation (or other similar operation) was still running.

Tagging ReplicaSets

Tagging is supported by ReplicaSets, and their instances. For the purpose of tagging, ReplicaSets support
the setOption(), setInstanceOption() and options() operations. These operations function in
generally the same way as their Cluster equivalents. For more information, see Section 6.3, “Tagging
Metadata”. This section documents the differences in working with tags for ReplicaSets.

Important

There are no other options which can be configured for ReplicaSets and their
instances. For ReplicaSets, the options documented at Setting Options for InnoDB
Cluster are not supported. The only supported option is the tagging described here.

The ReplicaSet.options() operation shows information about the tags assigned to individual
ReplicaSet instances as well as to the ReplicaSet itself.

The option argument of ReplicaSet.setOption() and ReplicaSet.setInstanceOption() only
support options with the tag namespace and throw an error otherwise.

The ReplicaSet.setInstanceOption(instance, option, value) and
ReplicaSet.setOption(option, value) operations behave in the same way as the Cluster
equivalent operations.

There are no differences in hiding instances as described at Removing Instances from Routing. For
example, to hide the ReplicaSet instance rs-1, issue:

mysql-js> myReplicaSet.setInstanceOption(icadmin@rs-1:3306, "tag:_hidden", true);

A MySQL Router that has been bootstrapped against the ReplicaSet detects the change and removes the
rs-1 instance from the routing destinations.

205

206

Chapter 10 Extending MySQL Shell

Table of Contents
10.1 Reporting with MySQL Shell .. 207

10.1.1 Creating MySQL Shell Reports ... 208
10.1.2 Registering MySQL Shell Reports ... 209
10.1.3 Persisting MySQL Shell Reports ... 210
10.1.4 Example MySQL Shell Report .. 210
10.1.5 Running MySQL Shell Reports ... 211
10.1.6 Built-in MySQL Shell Reports ... 212

10.2 Adding Extension Objects to MySQL Shell ... 215
10.2.1 Creating User-Defined MySQL Shell Global Objects .. 215
10.2.2 Creating Extension Objects .. 216
10.2.3 Persisting Extension Objects .. 218
10.2.4 Example MySQL Shell Extension Objects ... 219

10.3 MySQL Shell Plugins .. 220
10.3.1 Creating MySQL Shell Plugins .. 220
10.3.2 Creating Plugin Groups .. 221
10.3.3 Example MySQL Shell Plugins ... 222

You can define extensions to the base functionality of MySQL Shell in the form of reports and extension
objects. Reports and extension objects can be created using JavaScript or Python, and can be used
regardless of the active MySQL Shell language. You can persist reports and extension objects in plugins
that are loaded automatically when MySQL Shell starts.

• MySQL Shell reports are available from MySQL Shell 8.0.16. See Section 10.1, “Reporting with MySQL
Shell”.

• Extension objects are available from MySQL Shell 8.0.17. See Section 10.2, “Adding Extension Objects
to MySQL Shell”.

• Reports and extension objects can be stored as MySQL Shell plugins from MySQL Shell 8.0.17. See
Section 10.3, “MySQL Shell Plugins”.

10.1 Reporting with MySQL Shell
MySQL Shell enables you to set up and run reports to display live information from a MySQL server, such
as status and performance information. MySQL Shell's reporting facility supports both built-in reports and
user-defined reports. The reporting facility is available from MySQL Shell 8.0.16. Reports can be created
directly at the MySQL Shell interactive prompt, or defined in scripts that are automatically loaded when
MySQL Shell starts.

A report is a plain JavaScript or Python function that performs operations to generate the desired output.
You register the function as a MySQL Shell report through the shell.registerReport() method in
JavaScript or the shell.register_report() method in Python. Section 10.1.1, “Creating MySQL Shell
Reports” has instructions to create, register, and store your reports. You can store your report as part of a
MySQL Shell plugin (see Section 10.3, “MySQL Shell Plugins”).

Reports written in any of the supported languages (JavaScript, Python, or SQL) can be run regardless of
the active MySQL Shell language. Reports can be run once using the MySQL Shell \show command, or
run and then refreshed continuously in a MySQL Shell session using the \watch command. They can also
be accessed as API functions using the shell.reports object. Section 10.1.5, “Running MySQL Shell
Reports” explains how to run reports in each of these ways.

207

Creating MySQL Shell Reports

MySQL Shell includes a number of built-in reports, described in Section 10.1.6, “Built-in MySQL Shell
Reports”.

10.1.1 Creating MySQL Shell Reports

You can create and register a user-defined report for MySQL Shell in either of the supported scripting
languages, JavaScript and Python. The reporting facility handles built-in reports and user-defined reports
using the same API frontend scheme.

Reports can specify a list of report-specific options that they accept, and can also accept a specified
number of additional arguments. Your report can support both, one, or neither of these inputs. When you
request help for a report, MySQL Shell provides a listing of options and arguments, and any available
descriptions of these that are provided when the report is registered.

Signature

The signature for the Python or JavaScript function to be registered as a MySQL Shell report must be as
follows:

Dict report(Session session, List argv, Dict options);

Where:

• session is a MySQL Shell session object that is to be used to execute the report.

• argv is an optional list containing string values of additional arguments that are passed to the report.

• options is an optional dictionary with key names and values that correspond to any report-specific
options and their values.

Report types

A report function is expected to return data in a specific format, depending on the type you use when
registering it:

List type Returns output as a list of lists, with the first list consisting of the names
of columns, and the remainder being the content of rows. MySQL
Shell displays the output in table format by default, or in vertical format
if the --vertical or --E option was specified on the \show or
\watch command. The values for the rows are converted to string
representations of the items. If a row has fewer elements than the
number of column names, the missing elements are considered to be
NULL. If a row has more elements than the number of column names,
the extra elements are ignored. When you register this report, use the
type “list”.

Report type Returns free-form output as a list containing a single item. MySQL Shell
displays this output using YAML. When you register this report, use the
type “report”.

Print type Prints the output directly to screen, and return an empty list to MySQL
Shell to show that the output has already been displayed. When you
register this report, use the type “print”.

To provide the output, the API function for the report must return a dictionary with the key report, and a
list of JSON objects, one for each of the items in your returned list. For the List type, use one element for
each list, for the Report type use a single element, and for the Print type use no elements.

208

Registering MySQL Shell Reports

10.1.2 Registering MySQL Shell Reports

To register your user-defined report with MySQL Shell, call the shell.registerReport() method in
JavaScript or shell.register_report() in Python. The syntax for the method is as follows:

shell.registerReport(name, type, report[, description])

Where:

• name is a string giving the unique name of the report.

• type is a string giving the report type which determines the output format, either “list”, “report”, or “print”.

• report is the function to be called when the report is invoked.

• description is a dictionary with options that you can use to specify the options that the report
supports, additional arguments that the report accepts, and help information that is provided in the
MySQL Shell help system.

The name, type, and report parameters are all required. The report name must meet the following
requirements:

• It must be unique in your MySQL Shell installation.

• It must be a valid scripting identifier, so the first character must be a letter or underscore character,
followed by any number of letters, numbers, or underscore characters.

• It can be in mixed case, but it must still be unique in your MySQL Shell installation when converted to
lower case.

The report name is not case-sensitive during the registration process and when running the report using
the \show and \watch commands. The report name is case-sensitive when calling the corresponding API
function at the shell.reports object. There you must call the function using the exact name that was
used to register the report, whether you are in Python or JavaScript mode.

The optional dictionary contains the following keys, which are all optional:

brief A brief description of the report.

details A detailed description of the report, provided as an array of strings. This
is provided when you use the \help command or the --help option
with the \show command.

options Any report-specific options that the report can accept. Each dictionary in
the array describes one option, and must contain the following keys:

• name (string, required): The name of the option in the long form,
which must be a valid scripting identifier.

• brief (string, optional): A brief description of the option.

• shortcut (string, optional): An alternate name for the option as a
single alphanumeric character.

• details (array of strings, optional): A detailed description of the
option. This is provided when you use the \help command or the --
help option with the \show command.

209

Persisting MySQL Shell Reports

• type (string, optional): The value type of the option. The permitted
values are “string”, “bool”, “integer”, and “float”, with a default of
“string” if type is not specified. If “bool” is specified, the option acts
as a switch: it defaults to false if not specified, defaults to true
(and accepts no value) when you run the report using the \show or
\watch command, and must have a valid value when you run the
report using the shell.reports object.

• required (bool, optional): Whether the option is required. If
required is not specified, it defaults to false. If the option type is
“bool” then required cannot be true.

• values (array of strings, optional): A list of allowed values for the
option. Only options with type “string” can have this key. If values is
not specified, the option accepts any values.

argc A string specifying the number of additional arguments that the report
expects, which can be one of the following:

• An exact number of arguments, which is specified as a single
number.

• Zero or more arguments, which is specified as an asterisk.

• A range of argument numbers, which is specified as two numbers
separated by a dash (for example, “1-5”).

• A range of argument numbers with a minimum but no maximum,
which is specified as a number and an asterisk separated by a dash
(for example, “1-*”).

10.1.3 Persisting MySQL Shell Reports

A MySQL Shell report must be saved with a file extension of .js for JavaScript code, or .py for Python
code, to match the scripting language used for the report. The file extension is not case-sensitive.

The preferred way to persist a report is by adding it into a MySQL Shell plugin. Plugins and plugin groups
are loaded automatically when MySQL Shell starts, and the functions that they define and register are
available immediately. In a MySQL Shell plugin, the file containing the initialization script must be named
init.js or init.py as appropriate for the language. For instructions to use MySQL Shell plugins, see
Section 10.3, “MySQL Shell Plugins”.

As an alternative, scripts containing reports can be stored directly in the init.d folder in the MySQL
Shell user configuration path. When MySQL Shell starts, all files found in the init.d folder with a .js
or .py file extension are processed automatically and the functions in them are made available. (In this
location, the file name does not matter to MySQL Shell.) The default MySQL Shell user configuration path
is ~/.mysqlsh/ on Unix and %AppData%\MySQL\mysqlsh\ on Windows. The user configuration path
can be overridden on all platforms by defining the environment variable MYSQLSH_USER_CONFIG_HOME.

10.1.4 Example MySQL Shell Report

This example user-defined report sessions shows which sessions currently exist.

def sessions(session, args, options):
 sys = session.get_schema('sys')
 session_view = sys.get_table('session')

210

Running MySQL Shell Reports

 query = session_view.select(
 'thd_id', 'conn_id', 'user', 'db', 'current_statement',
 'statement_latency AS latency', 'current_memory AS memory')
 if (options.has_key('limit')):
 limit = int(options['limit'])
 query.limit(limit)

 result = query.execute()
 report = [result.get_column_names()]
 for row in result.fetch_all():
 report.append(list(row))

 return {'report': report}

shell.register_report(
 'sessions',
 'list',
 sessions,
 {
 'brief': 'Shows which sessions exist.',
 'details': ['You need the SELECT privilege on sys.session view and the underlying tables and functions used by it.'],
 'options': [
 {
 'name': 'limit',
 'brief': 'The maximum number of rows to return.',
 'shortcut': 'l',
 'type': 'integer'
 }
],
 'argc': '0'
 }
)

10.1.5 Running MySQL Shell Reports

Built-in reports and user-defined reports that have been registered with MySQL Shell can be run in any
interactive MySQL Shell mode (JavaScript, Python, or SQL) using the \show or \watch command, or
called using the shell.reports object from JavaScript or Python scripts. The \show command or
\watch command with no parameters list all the available built-in and user-defined reports.

Using the Show and Watch Commands

To use the \show and \watch commands, an active MySQL session must be available.

The \show command runs the named report, which can be either a built-in MySQL Shell report or a user-
defined report that has been registered with MySQL Shell. You can specify any options or additional
arguments that the report supports. For example, the following command runs the built-in report query,
which takes as an argument a single SQL statement:

\show query show session status

The report name is case-insensitive, and the dash and underscore characters are treated as the same.

The \show command also provides the following standard options:

• --vertical (or -E) displays the results from a report that returns a list in vertical format, instead of
table format.

• --help displays any provided help for the named report. (Alternatively, you can use the \help
command with the name of the report, which displays help for the report function.)

Standard options and report-specific options are given before the arguments. For example, the following
command runs the built-in report query and returns the results in vertical format:

211

Built-in MySQL Shell Reports

\show query --vertical show session status

The \watch command runs a report in the same way as the \show command, but then refreshes the
results at regular intervals until you cancel the command using Ctrl + C. The \watch command has
additional standard options to control the refresh behavior, as follows:

• --interval=float (or -i float) specifies a number of seconds to wait between refreshes. The
default is 2 seconds. Fractional seconds can be specified, with a minimum interval of 0.1 second, and
the interval can be set up to a maximum of 86400 seconds (24 hours).

--nocls specifies that the screen is not cleared before refreshes, so previous results can still be seen.

For example, the following command uses the built-in report query to display the statement counter
variables and refresh the results every 0.5 seconds:

\watch query --interval=0.5 show global status like 'Com%'

Quotes are interpreted by the command handler rather than directly by the server, so if they are used in a
query, they must be escaped by preceding them with a backslash (\).

Using the shell.reports Object

Built-in MySQL Shell reports and user-defined reports that have been registered with MySQL Shell
can also be accessed as API functions in the shell.reports object. The shell.reports object is
available in JavaScript and Python mode, and uses the report name supplied during the registration as the
function name. The function has the following signature:

Dict report(Session session, List argv, Dict options);

Where:

• session is a MySQL Shell session object that is to be used to execute the report.

• argv is a list containing string values of additional arguments that are passed to the report.

• options is a dictionary with key names and values that correspond to any report-specific options and
their values. The short form of the options cannot be used with the shell.reports object.

The return value is a dictionary with the key report, and a list of JSON objects containing the report. For
the List type of report, there is an element for each list, for the Report type there is a single element, and
for the Print type there are no elements.

With the shell.reports object, if a dictionary of options is present, the argv list is required even if there
are no additional arguments. Use the \help report_name command to display the help for the report
function and check whether the report requires any arguments or options.

For example, the following code runs a user-defined report named sessions which shows the sessions
that currently exist. A MySQL Shell session object is created to execute the report. A report-specific option
is used to limit the number of rows returned to 10. There are no additional arguments, so the argv list is
present but empty.

report = shell.reports.sessions(shell.getSession(), [], {'limit':10});

10.1.6 Built-in MySQL Shell Reports

MySQL Shell includes built-in reports to display the following information:

• The results of any specified SQL query (query, available from MySQL Shell 8.0.16).

212

Built-in MySQL Shell Reports

• A listing of the current threads in the connected MySQL server (threads, available from MySQL Shell
8.0.18).

• Detailed information about a specified thread (thread, available from MySQL Shell 8.0.18).

As with user-defined reports, the built-in reports can be run once using the MySQL Shell \show command,
or run and then refreshed continuously in a MySQL Shell session using the \watch command. The built-
in reports support the standard options for the \show and \watch commands in addition to their report-
specific options, unless noted otherwise in their descriptions. They can also be accessed as API functions
using the shell.reports object. Section 10.1.5, “Running MySQL Shell Reports” explains how to run
reports in each of these ways.

10.1.6.1 Built-in MySQL Shell Report: Query

The built-in MySQL Shell report query is available from MySQL Shell 8.0.16. It executes the single SQL
statement that is provided as an argument, and returns the results using MySQL Shell's reporting facility.
You can use the query report as a convenient way to generate simple reports for your immediate use.

The query report has no report-specific options, but the standard options for the \show and \watch
commands may be used, as described in Section 10.1.5, “Running MySQL Shell Reports”.

For example, the following command uses the query report to display the statement counter variables and
refresh the results every 0.5 seconds:

\watch query --interval=0.5 show global status like 'Com%'

10.1.6.2 Built-in MySQL Shell Report: Threads

The built-in MySQL Shell report threads is available from MySQL Shell 8.0.18. It lists the current threads
in the connected MySQL server which belong to the user account that is used to run the report. The report
works with servers running all supported MySQL 5.7 and MySQL 8.0 versions. If any item of information is
not available in the MySQL Server version of the target server, the report leaves it out.

The threads report provides information for each thread drawn from various sources including MySQL's
Performance Schema. Using the report-specific options, you can choose to show foreground threads,
background threads, or all threads. You can report a default set of information for each thread, or select
specific information to include in the report from a larger number of available choices. You can filter, sort,
and limit the output. For details of the report-specific options and the full listing of information that you can
include in the report, issue one of the following MySQL Shell commands to view the report help:

\help threads
\show threads --help

In addition to the report-specific options, the threads report accepts the standard options for the
\show and \watch commands, as described in Section 10.1.5, “Running MySQL Shell Reports”. The
threads report is of the list type, and by default the results are returned as a table, but you can use the --
vertical (or -E) option to display them in vertical format.

The threads report uses MySQL Server's format_statement() function (see The format_statement()
Function). Any truncated statements displayed in the report are truncated according to the setting for
the statement_truncate_len option in MySQL Server's sys_config table, which defaults to 64
characters.

The following list summarizes the capabilities provided by the report-specific options for the threads
report. See the report help for full details and the short forms of the options:

--foreground, --
background, --all

List foreground threads only, background threads only, or all threads.
The report displays a default set of appropriate fields for your thread

213

https://dev.mysql.com/doc/refman/8.0/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/8.0/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/8.0/en/sys-sys-config.html

Built-in MySQL Shell Reports

type selection, unless you use the --format option to specify your own
choice of fields instead.

--format Define your own custom set of information to display for each thread,
specified as a comma-separated list of columns (and display names, if
you want). The report help lists all of the columns that you can include
to customize your report.

--where, --order-by, --
desc, --limit

Filter the returned results using logical expressions (--where), sort
on selected columns (--order-by), sort in descending instead of
ascending order --desc), or limit the number of returned threads (--
limit).

For example, the following command runs the threads report to display all foreground threads, with a
custom set of information comprising the thread ID, ID of any spawning thread, connection ID, user name
and host name, client program name, type of command that the thread is executing, and memory allocated
by the thread:

mysql-js> \show threads --foreground -o tid,ptid,cid,user,host,progname,command,memory

10.1.6.3 Built-in MySQL Shell Report: Thread

The built-in MySQL Shell report thread is available from MySQL Shell 8.0.18. It provides detailed
information about a specific thread in the connected MySQL server. The report works with servers running
all supported MySQL 5.7 and MySQL 8.0 versions. If any item of information is not available in the MySQL
Server version of the target server, the report leaves it out.

The thread report provides information for the selected thread and its activity, drawn from various sources
including MySQL's Performance Schema. By default, the report shows information on the thread used by
the current connection, or you can identify a thread by its ID or by the connection ID. You can select one
or more categories of information, or view all of the available information about the thread. For details of
the report-specific options and the information that you can include in the report, issue one of the following
MySQL Shell commands to view the report help:

\help thread
\show thread --help

In addition to the report-specific options, the thread report accepts most of the standard options for the
\show and \watch commands, as described in Section 10.1.5, “Running MySQL Shell Reports”. The
exception is the --vertical (or -E) option for the \show command, which is not accepted. The thread
report has a custom output format that includes vertical listings and tables presented in different sections,
and you cannot change this output format.

The threads report uses MySQL Server's format_statement() function (see The format_statement()
Function). Any truncated statements displayed in the report are truncated according to the setting for
the statement_truncate_len option in MySQL Server's sys_config table, which defaults to 64
characters.

The following list summarizes the capabilities provided by the report-specific options for the threads
report. See the report help for full details and the short forms of the options:

--tid, --cid Identify the thread ID or connection ID on which you want to report.

--general Show basic information about the thread. This information is returned by
default if you do not use any of the following options.

--brief Show a brief description of the thread on one line.

--client Show information about the client connection and client session.

214

https://dev.mysql.com/doc/refman/8.0/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/8.0/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/8.0/en/sys-sys-config.html

Adding Extension Objects to MySQL Shell

--innodb Show information about the current InnoDB transaction using the
thread, if any.

--locks Show information about locks blocking and blocked by the thread.

--prep-stmts Show information about the prepared statements allocated for the
thread.

--status Show information about the session status variables for the thread.
You can specify a list of prefixes to match, in which case only matching
variables are displayed.

--vars Show information about the session system variables for the thread.
You can specify a list of prefixes to match, in which case only matching
variables are displayed.

--user-vars Show information about the user-defined variables for the thread. You
can specify a list of prefixes to match, in which case only matching
variables are displayed.

--all Show all of the above information, except for the brief description.

For example, the following command runs the thread report for the thread with thread ID 53, and returns
general information about the thread, details of the client connection, and information about any locks that
the thread is blocking or is blocked by:

mysql-py> \show thread --tid 53 --general --client --locks

10.2 Adding Extension Objects to MySQL Shell
From MySQL Shell 8.0.17, you can define extension objects and make them available as part of user-
defined MySQL Shell global objects. When you create and register an extension object, it is available in
both JavaScript and Python modes.

An extension object comprises one or more members. A member can be a basic data type value, a
function written in native JavaScript or Python, or another extension object. You construct and register
extension objects using functions provided by the built-in global object shell. You can continue to extend
the object by adding further members to it after it has been registered with MySQL Shell.

Note

You can register an extension object containing functions directly as a MySQL Shell
global object. However, for good management of your extension objects, it can
be helpful to create one or a small number of top-level extension objects to act as
entry points for all your extension objects, and to register these top-level extension
objects as MySQL Shell global objects. You can then add your current and future
extension objects as members of an appropriate top-level extension object. With
this structure, a top-level extension object that is registered as a MySQL Shell
global object provides a place for developers to add various extension objects
created at different times and stored in different MySQL Shell plugins.

10.2.1 Creating User-Defined MySQL Shell Global Objects

To create a new MySQL Shell global object to act as an entry point for your extension objects, first create
a new top-level extension object using the built-in shell.createExtensionObject() function in
JavaScript or shell.create_extension_object() in Python:

shell.createExtensionObject()

215

Creating Extension Objects

Then register this top-level extension object as a MySQL Shell global object by calling the
shell.registerGlobal() method in JavaScript or shell.register_global() in Python. The
syntax for the method is as follows:

shell.registerGlobal(name, object[, definition])

Where:

• name is a string giving the name (and class) of the global object. The name must be a valid scripting
identifier, so the first character must be a letter or underscore character, followed by any number of
letters, numbers, or underscore characters. The name must be unique in your MySQL Shell installation,
so it must not be the name of a built-in MySQL Shell global object (for example, db, dba, cluster,
session, shell, util) and it must not be a name you have already used for a user-defined MySQL
Shell global object. The examples below show how to check whether the name already exists before
registering the global object.

Important

The name that you use to register the global object is used as-is when you
access the object in both JavaScript and Python modes. It is therefore good
practice to use a simple one-word name for the global object (for example, ext).
If you register the global object with a complex name in camel case or snake
case (for example, myCustomObject), when you use the global object, you must
specify the name as it was registered. Only the names used for members are
handled in a language-appropriate way.

• object is the extension object that you are registering as a MySQL Shell global object. You can only
register an extension object once.

• definition is an optional dictionary with help information for the global object that is provided in the
MySQL Shell help system. The dictionary contains the following keys:

• brief (string, optional): A short description of the global object to be provided as help information.

• details (list of strings, optional): A detailed description of the global object to be provided as help
information.

10.2.2 Creating Extension Objects

To create a new extension object to provide one or more functions, data types, or further
extension objects, use the built-in shell.createExtensionObject() function in JavaScript or
shell.create_extension_object() in Python:

shell.createExtensionObject()

To add members to the extension object, use the built-in shell.addExtensionObjectMember()
function in JavaScript or shell.add_extension_object_member() in Python:

shell.addExtensionObjectMember(object, name, member[, definition])

Where:

• object is the extension object where the new member is to be added.

• name is the name of the new member. The name must be a valid scripting identifier, so the first
character must be a letter or underscore character, followed by any number of letters, numbers, or
underscore characters. The name must be unique among the members that have already been added
to the same extension object, and if the member is a function, the name does not have to match the
name of the defined function. The name should preferably be specified in camel case, even if you are

216

Creating Extension Objects

using Python to define and add the member. Specifying the member name in camel case enables
MySQL Shell to automatically enforce naming conventions. MySQL Shell makes the member available in
JavaScript mode using camel case, and in Python mode using snake case.

• member is the value of the new member, which can be any of the following:

• A supported basic data type. The supported data types are “none” or “null”, “bool”, “number” (integer
or floating point), “string”, “array”, and “dictionary”.

• A JavaScript or Python function. You can use native code in the body of functions that are added as
members to an extension object, provided that the interface (parameters and return values) is limited
to the supported data types in Table 10.1, “Supported data type pairs for extension objects”. The use
of other data types in the interface can lead to undefined behavior.

• Another extension object.

• definition is an optional dictionary that can contain help information for the member, and also if the
member is a function, a list of parameters that the function receives. Help information is defined using
the following attributes:

• brief is a brief description of the member.

• details is a detailed description of the member, provided as a list of strings. This is provided when
you use the MySQL Shell \help command.

Parameters for a function are defined using the following attribute:

• parameters is a list of dictionaries describing each parameter that the function receives. Each
dictionary describes one parameter, and can contain the following keys:

• name (string, required): The name of the parameter.

• type (string, required): The data type of the parameter, one of “string”, “integer”, “bool”, “float”,
“array”, “dictionary”, or “object”. If the type is “object”, the class or classes key can also be used.
If the type is “string”, the values key can also be used. If the type is “dictionary”, the options key
can also be used.

• class (string, optional, allowed when data type is “object”): Defines the object type that is allowed
as a parameter.

• classes (list of strings, optional, allowed when data type is “object”): A list of classes defining the
object types that are allowed as a parameter. The supported object types for class and classes
are those that are exposed by the MySQL Shell APIs, for example Session, ClassicSession,
Table, or Collection. An error is raised if an object type is passed to the function that is not in
this list.

• values (list of strings, optional, allowed when data type is “string”): A list of values that are valid for
the parameter. An error is raised if a value is passed to the function that is not in this list.

• options (list of options, optional, allowed when data type is “dictionary”): A list of options that
are allowed for the parameter. Options use the same definition structure as the parameters, with
the exception that if required is not specified for an option, it defaults to false. MySQL Shell
validates the options specified by the end user and raises an error if an option is passed to the
function that is not in this list. In MySQL Shell 8.0.17 through 8.0.19, this parameter is required when
the data type is “dictionary”, but from MySQL Shell 8.0.20 it is optional. If you create a dictionary

217

Persisting Extension Objects

with no list of options, any options that the end user specifies for the dictionary are passed directly
through to the function by MySQL Shell with no validation.

• required (bool, optional): Whether the parameter is required. If required is not specified for a
parameter, it defaults to true.

• brief (string, optional): A short description of the parameter to be provided as help information.

• details (list of strings, optional): A detailed description of the parameter to be provided as help
information.

An extension object is considered to be under construction until it has been registered as a MySQL Shell
global object, or added as a member to another extension object that is registered as a MySQL Shell
global object. An error is returned if you attempt to use an extension object in MySQL Shell when it has not
yet been registered.

Cross Language Considerations

An extension object can contain a mix of members defined in Python and members defined in JavaScript.
MySQL Shell manages the transfer of data from one language to the other as parameters and return
values. Table 10.1, “Supported data type pairs for extension objects” shows the data types that MySQL
Shell supports when transferring data between languages, and the pairs that are used as representations
of each other:

Table 10.1 Supported data type pairs for extension objects

JavaScript Python

Boolean Boolean

String String

Integer Long

Number Float

Null None

Array List

Map Dictionary

An extension object is literally the same object in both languages.

10.2.3 Persisting Extension Objects

A script to define and register extension objects must have a file extension of .js for JavaScript code, or
.py for Python code, to match the language used for the script. The file extension is not case-sensitive.

The preferred way to persist an extension object is by adding it into a MySQL Shell plugin. Plugins and
plugin groups are loaded automatically when MySQL Shell starts, and the functions that they define and
register are available immediately. In a MySQL Shell plugin, the file containing the initialization script
must be named init.js or init.py as appropriate for the language. A plugin can only contain code
in one language, so if you are creating an extension object with a mix of members defined in Python and
members defined in JavaScript, you must store the members as separate language-appropriate plugins.
For instructions to use MySQL Shell plugins, see Section 10.3, “MySQL Shell Plugins”.

As an alternative, scripts containing extension objects can be stored directly in the init.d folder in the
MySQL Shell user configuration path. When MySQL Shell starts, all files found in the init.d folder with
a .js or .py file extension are processed automatically and the functions that they register are made

218

Example MySQL Shell Extension Objects

available. (In this location, the file name does not matter to MySQL Shell.) The default MySQL Shell
user configuration path is ~/.mysqlsh/ on Unix and %AppData%\MySQL\mysqlsh\ on Windows.
The user configuration path can be overridden on all platforms by defining the environment variable
MYSQLSH_USER_CONFIG_HOME.

10.2.4 Example MySQL Shell Extension Objects

Example 10.1 Creating and Registering Extension Objects - Python

This example creates a function hello_world() which is made available through the user-defined
MySQL Shell global object demo. The code creates a new extension object and adds the hello_world()
function to it as a member, then registers the extension object as the MySQL Shell global object demo.

Define a hello_world function that will be exposed by the global object 'demo'
def hello_world():
 print("Hello world!")

Create an extension object where the hello_world function will be registered
plugin_obj = shell.create_extension_object()

shell.add_extension_object_member(plugin_obj, "helloWorld", hello_world,
 {"brief": "Prints 'Hello world!'", "parameters": []})

Registering the 'demo' global object
shell.register_global("demo", plugin_obj,
 {"brief": "A demo plugin that showcases MySQL Shell's plugin feature."})

Note that the member name is specified in camel case in the
shell.add_extension_object_member() function. When you call the member in Python mode, use
snake case for the member name, and MySQL Shell automatically handles the conversion. In JavaScript
mode, the function is called like this:

mysql-js> demo.helloWorld()

In Python mode, the function is called like this:

mysql-py> demo.hello_world()

Example 10.2 Creating and Registering Extension Objects - JavaScript

This example creates an extension object with the function listTables() as a member, and registers it
directly as the MySQL Shell global object tools:

// Define a listTables function that will be exposed by the global object tools

function listTables(session, schemaName, options) {
...
}

// Create an extension object and add the listTables function to it as a member

var object = shell.createExtensionObject()

shell.addExtensionObjectMember(object, "listTables", listTables,

 {
 brief:"Retrieves the tables from a given schema.",
 details: ["Retrieves the tables of the schema named schemaName.",
 "If excludeCollections is true, the collection tables will not be returned"],
 parameters:
 [
 {
 name: "session",

219

MySQL Shell Plugins

 type: "object",
 class: "Session",
 brief: "An X Protocol session object."
 },
 {
 name: "schemaName",
 type: "string",
 brief: "The name of the schema from which the table list will be pulled."
 },
 {
 name: "options",
 type: "dictionary",
 brief: "Additional options that affect the function behavior.",
 options: [
 {
 name: "excludeViews",
 type: "bool",
 brief: "If set to true, the views will not be included on the list, default is false",
 },
 {
 name: "excludeCollections",
 type: "bool",
 brief: "If set to true, the collections will not be included on the list, default is false",
 }
]
 },
]
 });

// Register the extension object as the global object "tools"

shell.registerGlobal("tools", object, {brief:"Global object for ExampleCom administrator tools",
 details:[
 "Global object to access homegrown ExampleCom administrator tools.",
 "Add new tools to this global object as members with shell.addExtensionObjectMember()."]})

In JavaScript mode, the function is called like this:

mysql-js> tools.listTables(session, "world_x", {excludeViews: true})

In Python mode, the function is called like this:

mysql-py> tools.list_tables(session, "world_x", {"excludeViews": True})

10.3 MySQL Shell Plugins

From MySQL Shell 8.0.17, you can extend MySQL Shell with user-defined plugins that are loaded at
startup. Plugins can be written in either JavaScript or Python, and the functions they contain are available
in MySQL Shell in both JavaScript and Python modes.

10.3.1 Creating MySQL Shell Plugins

MySQL Shell plugins can be used to contain functions that are registered as MySQL Shell reports (see
Section 10.1, “Reporting with MySQL Shell”), and functions that are members of extension objects that are
made available by user-defined MySQL Shell global objects (see Section 10.2, “Adding Extension Objects
to MySQL Shell”). A single plugin can contain and register more than one function, and can contain a
mix of reports and members of extension objects. Functions that are registered as reports or members of
extension objects by a MySQL Shell plugin are available immediately when MySQL has completed startup.

A MySQL Shell plugin is a folder containing an initialization script appropriate for the language (an
init.js or init.py file). The initialization script is the entry point for the plugin. A plugin can only

220

Creating Plugin Groups

contain code in one language, so if you are creating an extension object with a mix of members defined
in Python and members defined in JavaScript, you must store the members as separate language-
appropriate plugins.

For a MySQL Shell plugin to be loaded automatically at startup, its folder must be located under the
plugins folder in the MySQL Shell user configuration path. MySQL Shell searches for any initialization
scripts in this location. MySQL Shell ignores any folders in the plugins location whose name begins with
a dot (.) but otherwise the name you use for a plugin's folder is not important.

The default path for the plugins folder is ~/.mysqlsh/plugins on Unix and %AppData%\MySQL
\mysqlsh\plugins in Windows. The user configuration path can be overridden on all platforms by
defining the environment variable MYSQLSH_USER_CONFIG_HOME. The value of this variable replaces
%AppData%\MySQL\mysqlsh\ on Windows or ~/.mysqlsh/ on Unix.

When an error is found while loading plugins, a warning is shown and the error details are available in the
MySQL Shell application log. To see more details on the loading process use the --log-level=debug
option when starting MySQL Shell.

When a MySQL Shell plugin is loaded, the following objects are available as global variables:

• The built in global objects shell, dba, and util.

• The Shell API main module mysql.

• The X DevAPI main module mysqlx.

• The AdminAPI main module dba.

10.3.1.1 Common Code and Packages

If you use common code or inner packages in Python code that is part of a MySQL Shell plugin or plugin
group, you must follow these requirements for naming and importing to avoid potential clashes between
package names:

• The plugin or plugin group's top-level folder, and each inner folder that is to be recognized as a package,
must be a valid regular package name according to Python's PEP 8 style guide, using only letters,
numbers, and underscores.

• Each inner folder that is to be recognized as a package must contain a file named __init__.py.

• When importing, the full path for the package name must be specified. For example, if a plugin group
named ext contains a plugin named demo, which has an inner package named src containing a
module named sample, the module must be imported as follows:

from ext.demo.src import sample

10.3.2 Creating Plugin Groups

You can create a plugin group by placing the folders for multiple MySQL Shell plugins in a containing
folder under the plugins folder. A plugin group can contain a mix of plugins defined using JavaScript
and plugins defined using Python. Plugin groups can be used to organize plugins that have something in
common, for example:

• Plugins that provide reports on a particular theme.

• Plugins that reuse the same common code.

• Plugins that add functions to the same extension object.

221

Example MySQL Shell Plugins

If a subdirectory of the plugins folder does not contain an initialization script (an init.js or init.py
file), MySQL Shell treats it as a plugin group and searches its subfolders for the initialization scripts for
the plugins. The containing folder can contain other files with code that is shared by the plugins in the
plugin group. As for a plugin's subfolder, the containing folder is ignored if its name begins with a dot (.) but
otherwise the name is not important to MySQL Shell.

For example, a plugin group comprising all the functions provided by the user-defined MySQL Shell global
object ext can be structured like this:

• The folder C:\Users\exampleuser\AppData\Roaming\MySQL\mysqlsh\plugins\ext is the
containing folder for the plugin group.

• Common code for the plugins is stored in this folder at C:\Users\exampleuser\AppData\Roaming
\MySQL\mysqlsh\plugins\ext\common.py

• The plugins in the plugin group are stored in subfolders of the ext folder, each with an init.py file,
for example C:\Users\exampleuser\AppData\Roaming\MySQL\mysqlsh\plugins\ext
\helloWorld\init.py.

• The plugins import the common code from ext.common and use its functions.

10.3.3 Example MySQL Shell Plugins

Example 10.3 MySQL Shell plugin containing a report and an extension object

This example defines a function show_processes() to display the currently running processes, and a
function kill_process() to kill a process with a specified ID. show_processes() is going to be a
MySQL Shell report, and kill_process() is going to be a function provided by an extension object.

The code registers show_processes() as a MySQL Shell report proc using the
shell.register_report() method. To register kill_process() as ext.process.kill(), the
code checks whether the global object ext and the extension object process already exist, and creates
and registers them if not. The kill_process() function is then added as a member to the process
extension object.

The plugin code is saved as the file ~/.mysqlsh/plugins/ext/process/init.py. At startup,
MySQL Shell traverses the folders in the plugins folder, locates this init.py file, and executes the code.
The report proc and the function kill() are registered and made available for use. The global object
ext and the extension object process are created and registered if they have not yet been registered by
another plugin, otherwise the existing objects are used.

Define a show_processes function that generates a MySQL Shell report

def show_processes(session, args, options):
 query = "SELECT ID, USER, HOST, COMMAND, INFO FROM INFORMATION_SCHEMA.PROCESSLIST"
 if (options.has_key('command')):
 query += " WHERE COMMAND = '%s'" % options['command']

 result = session.sql(query).execute();
 report = []
 if (result.has_data()):
 report = [result.get_column_names()]
 for row in result.fetch_all():
 report.append(list(row))

 return {"report": report}

Define a kill_process function that will be exposed by the global object 'ext'

222

Example MySQL Shell Plugins

def kill_process(session, id):
 result = session.sql("KILL CONNECTION %d" % id).execute()

Register the show_processes function as a MySQL Shell report

shell.register_report("proc", "list", show_processes, {"brief":"Lists the processes on the target server.",
 "options": [{
 "name": "command",
 "shortcut": "c",
 "brief": "Use this option to list processes over specific commands."
 }]})

Register the kill_process function as ext.process.kill()

Check if global object 'ext' has already been registered
if 'ext' in globals():
 global_obj = ext
else:
 # Otherwise register new global object named 'ext'
 global_obj = shell.create_extension_object()
 shell.register_global("ext", global_obj,
 {"brief":"MySQL Shell extension plugins."})

Add the 'process' extension object as a member of the 'ext' global object
try:
 plugin_obj = global_obj.process
except IndexError:
 # If the 'process' extension object has not been registered yet, do it now
 plugin_obj = shell.create_extension_object()
 shell.add_extension_object_member(global_obj, "process", plugin_obj,
 {"brief": "Utility object for process operations."})

Add the kill_process function to the 'process' extension object as member 'kill'
try:
 shell.add_extension_object_member(plugin_obj, "kill", kill_process, {"brief": "Kills the process with the given ID.",
 "parameters": [
 {
 "name":"session",
 "type":"object",
 "class":"Session",
 "brief": "The session to be used on the operation."
 },
 {
 "name":"id",
 "type":"integer",
 "brief": "The ID of the process to be killed."
 }
]
 })
except Exception as e:
 shell.log("ERROR", "Failed to register ext.process.kill ({0}).".
 format(str(e).rstrip()))

Here, the user runs the report proc using the MySQL Shell \show command, then uses the
ext.process.kill() function to stop one of the listed processes:

mysql-py> \show proc
+----+-----------------+-----------------+---------+--+
| ID | USER | HOST | COMMAND | INFO |
+----+-----------------+-----------------+---------+--+
66	root	localhost:53998	Query	PLUGIN: SELECT ID, USER, HOST, COMMAND, INFO FROM INFORMATION_SCHEMA.PROCESSLIST
67	root	localhost:34022	Sleep	NULL
4	event_scheduler	localhost	Daemon	NULL

223

Example MySQL Shell Plugins

+----+-----------------+-----------------+---------+--+

mysql-py> ext.process.kill(session, 67)
mysql-py> \show proc
+----+-----------------+-----------------+---------+--+
| ID | USER | HOST | COMMAND | INFO |
+----+-----------------+-----------------+---------+--+
| 66 | root | localhost:53998 | Query | PLUGIN: SELECT ID, USER, HOST, COMMAND, INFO FROM INFORMATION_SCHEMA.PROCESSLIST |
| 4 | event_scheduler | localhost | Daemon | NULL |
+----+-----------------+-----------------+---------+--+

224

Chapter 11 MySQL Shell Utilities

Table of Contents
11.1 Upgrade Checker Utility .. 225
11.2 JSON Import Utility ... 232

11.2.1 Importing JSON documents with the mysqlsh command interface 235
11.2.2 Importing JSON documents with the --import command ... 236
11.2.3 Conversions for representations of BSON data types ... 237

11.3 Table Export Utility ... 238
11.4 Parallel Table Import Utility ... 242
11.5 Instance Dump Utility, Schema Dump Utility, and Table Dump Utility ... 249
11.6 Dump Loading Utility ... 262

MySQL Shell includes utilities for working with MySQL. To access the utilities from within MySQL Shell,
use the util global object, which is available in JavaScript and Python modes, but not SQL mode. The
util global object provides the following functions:

checkForServerUpgrade() An upgrade checker utility that enables you to verify whether MySQL
server instances are ready for upgrade. See Section 11.1, “Upgrade
Checker Utility”.

importJSON() A JSON import utility that enables you to import JSON documents to
a MySQL Server collection or table. See Section 11.2, “JSON Import
Utility”.

exportTable() A table export utility that exports a MySQL relational table into a data
file, which can then be uploaded into a table on a target MySQL server
using MySQL Shell's parallel table import utility, or to import data to a
different application, or as a light-weight logical backup for a single data
table. See Section 11.3, “Table Export Utility”.

importTable() A parallel table import utility that splits up a single data file and
uses multiple threads to load the chunks into a MySQL table. See
Section 11.4, “Parallel Table Import Utility”.

dumpInstance(),
dumpSchemas(),
dumpTables()

An instance dump utility, schema dump utility, and table dump utility
that can export all schemas, a selected schema, or selected tables
and views, from a MySQL instance into an Oracle Cloud Infrastructure
Object Storage bucket or a set of local files. See Section 11.5, “Instance
Dump Utility, Schema Dump Utility, and Table Dump Utility”.

loadDump() A dump loading utility that can import schemas dumped using MySQL
Shell's instance dump utility and schema dump utility into a MySQL
instance. See Section 11.6, “Dump Loading Utility”.

11.1 Upgrade Checker Utility
The util.checkForServerUpgrade() function is an upgrade checker utility that enables you to verify
whether MySQL server instances are ready for upgrade. From MySQL Shell 8.0.13, you can select a
target MySQL Server release to which you plan to upgrade, ranging from the first MySQL Server 8.0
General Availability (GA) release (8.0.11), up to the MySQL Server release number that matches the
current MySQL Shell release number. The upgrade checker utility carries out the automated checks that

225

Upgrade Checker Utility

are relevant for the specified target release, and advises you of further relevant checks that you should
make manually.

You can use the upgrade checker utility to check MySQL 5.7 server instances for compatibility
errors and issues for upgrading. From MySQL Shell 8.0.13, you can also use it to check MySQL 8.0
server instances at another GA status release within the MySQL 8.0 release series. If you invoke
checkForServerUpgrade() without specifying a MySQL Server instance, the instance currently
connected to the global session is checked. To see the currently connected instance, issue the \status
command.

Note

1. The upgrade checker utility does not support checking MySQL Server instances
at a version earlier than MySQL 5.7.

2. MySQL Server only supports upgrade between GA releases. Upgrades from
non-GA releases of MySQL 5.7 or 8.0 are not supported. For more information
on supported upgrade paths, see Upgrade Paths.

From MySQL Shell 8.0.16, the upgrade checker utility can check the configuration file (my.cnf or my.ini)
for the server instance. The utility checks for any system variables that are defined in the configuration file
but have been removed in the target MySQL Server release, and also for any system variables that are not
defined in the configuration file and will have a different default value in the target MySQL Server release.
For these checks, when you invoke checkForServerUpgrade(), you must provide the file path to the
configuration file.

The upgrade checker utility can operate over either an X Protocol connection or a classic MySQL protocol
connection, using either TCP or Unix sockets. You can create the connection beforehand, or specify it as
arguments to the function. The utility always creates a new session to connect to the server, so the MySQL
Shell global session is not affected.

Up to MySQL Shell 8.0.20, the user account that is used to run the upgrade checker utility must have
ALL privileges. From MySQL Shell 8.0.21, the user account requires RELOAD, PROCESS, and SELECT
privileges.

The upgrade checker utility can generate its output in text format, which is the default, or in JSON format,
which might be simpler to parse and process for use in devops automation.

The upgrade checker utility has the following signature:

checkForServerUpgrade (ConnectionData connectionData, Dictionary options)

Both arguments are optional. The first provides connection data if the connection does not already exist,
and the second is a dictionary that you can use to specify the following options:

password The password for the user account that is used to run the upgrade
checker utility. You can provide the password using this dictionary
option or as part of the connection details. If you do not provide the
password, the utility prompts for it when connecting to the server.

targetVersion The target MySQL Server version to which you plan to upgrade.
In MySQL Shell 8.0.26, you can specify release 8.0.11 (the first
MySQL Server 8.0 GA release), 8.0.12, 8.0.13, 8.0.14, 8.0.15, 8.0.16,
8.0.17, 8.0.18, 8.0.19, 8.0.20, 8.0.21, 8.0.22, 8.0.23, 8.0.24, 8.0.25,
or 8.0.26. If you specify the short form version number 8.0, or omit the
targetVersion option, the utility checks for upgrade to the MySQL

226

https://dev.mysql.com/doc/refman/8.0/en/upgrade-paths.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select

Upgrade Checker Utility

Server release number that matches the current MySQL Shell release
number.

configPath The local path to the my.cnf or my.ini configuration file for the
MySQL server instance that you are checking, for example, C:
\ProgramData\MySQL\MySQL Server 8.0\my.ini. If you omit
the file path and the upgrade checker utility needs to run a check that
requires the configuration file, that check fails with a message informing
you that you must specify the file path.

outputFormat The format in which the output from the upgrade checker utility is
returned. The default if you omit the option is text format (TEXT). If you
specify JSON, well-formatted JSON output is returned instead, in the
format listed in JSON output for the upgrade checker utility.

For example, the following commands verify then check the MySQL server instance currently connected to
the global session, with output in text format:

mysqlsh> \status
MySQL Shell version 8.0.26
...
Server version: 5.7.33-log MySQL Community Server (GPL)
...
mysqlsh> util.checkForServerUpgrade()

The following command checks the MySQL server at URI user@example.com:3306 for upgrade to the
first MySQL Server 8.0 GA status release (8.0.11). The user password and the configuration file path are
supplied as part of the options dictionary, and the output is returned in the default text format:

mysqlsh> util.checkForServerUpgrade('user@example.com:3306', {"password":"password", "targetVersion":"8.0.11", "configPath":"C:\ProgramData\MySQL\MySQL Server 8.0\my.ini"})

The following command checks the same MySQL server for upgrade to the MySQL Server release number
that matches the current MySQL Shell release number (the default), and returns JSON output for further
processing:

mysqlsh> util.checkForServerUpgrade('user@example.com:3306', {"password":"password", "outputFormat":"JSON", "configPath":"C:\ProgramData\MySQL\MySQL Server 8.0\my.ini"})

From MySQL 8.0.13, you can start the upgrade checker utility from the command line using the mysqlsh
command interface. For information on this syntax, see Section 5.8, “API Command Line Integration”. The
following example checks a MySQL server for upgrade to release 8.0.26, and returns JSON output:

mysqlsh -- util checkForServerUpgrade user@localhost:3306 --target-version=8.0.26 --output-format=JSON --config-path=/etc/mysql/my.cnf

The connection data can also be specified as named options grouped together by using curly brackets, as
in the following example, which also shows that lower case and hyphens can be used for the method name
rather than camelCase:

mysqlsh -- util check-for-server-upgrade { --user=user --host=localhost --port=3306 } --target-version=8.0.26 --output-format=JSON --config-path=/etc/mysql/my.cnf

The following example uses a Unix socket connection and shows the older format for invoking the utility
from the command line, which is still valid:

./bin/mysqlsh --socket=/tmp/mysql.sock --user=user -e "util.checkForServerUpgrade()"

To get help for the upgrade checker utility, issue:

mysqlsh> util.help("checkForServerUpgrade")

util.checkForServerUpgrade() no longer returns a value (before MySQL Shell 8.0.13, the value 0,
1, or 2 was returned).

227

Upgrade Checker Utility

When you invoke the upgrade checker utility, MySQL Shell connects to the server instance and tests the
settings described at Preparing Your Installation for Upgrade. For example:

The MySQL server at example.com:3306, version
5.7.33-enterprise-commercial-advanced - MySQL Enterprise Server - Advanced Edition (Commercial),
will now be checked for compatibility issues for upgrade to MySQL 8.0.26...

1) Usage of old temporal type
 No issues found

2) Usage of db objects with names conflicting with new reserved keywords
 Warning: The following objects have names that conflict with new reserved keywords.
 Ensure queries sent by your applications use `quotes` when referring to them or they will result in errors.
 More information: https://dev.mysql.com/doc/refman/en/keywords.html

 dbtest.System - Table name
 dbtest.System.JSON_TABLE - Column name
 dbtest.System.cube - Column name

3) Usage of utf8mb3 charset
 Warning: The following objects use the utf8mb3 character set. It is recommended to convert them to use
 utf8mb4 instead, for improved Unicode support.
 More information: https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8mb3.html

 dbtest.view1.col1 - column's default character set: utf8

4) Table names in the mysql schema conflicting with new tables in 8.0
 No issues found

5) Partitioned tables using engines with non native partitioning
 Error: In MySQL 8.0 storage engine is responsible for providing its own
 partitioning handler, and the MySQL server no longer provides generic
 partitioning support. InnoDB and NDB are the only storage engines that
 provide a native partitioning handler that is supported in MySQL 8.0. A
 partitioned table using any other storage engine must be altered—either to
 convert it to InnoDB or NDB, or to remove its partitioning—before upgrading
 the server, else it cannot be used afterwards.
 More information:
 https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-configuration-changes

 dbtest.part1_hash - MyISAM engine does not support native partitioning

6) Foreign key constraint names longer than 64 characters
 No issues found

7) Usage of obsolete MAXDB sql_mode flag
 No issues found

8) Usage of obsolete sql_mode flags
 No issues found

9) ENUM/SET column definitions containing elements longer than 255 characters
 No issues found

10) Usage of partitioned tables in shared tablespaces
 Error: The following tables have partitions in shared tablespaces. Before upgrading to 8.0 they need
 to be moved to file-per-table tablespace. You can do this by running query like
 'ALTER TABLE table_name REORGANIZE PARTITION X INTO
 (PARTITION X VALUES LESS THAN (30) TABLESPACE=innodb_file_per_table);'
 More information: https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html#mysql-nutshell-removals

 dbtest.table1 - Partition p0 is in shared tablespace tbsp4
 dbtest.table1 - Partition p1 is in shared tablespace tbsp4

11) Circular directory references in tablespace data file paths
 No issues found

228

https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

Upgrade Checker Utility

12) Usage of removed functions
 Error: Following DB objects make use of functions that have been removed in
 version 8.0. Please make sure to update them to use supported alternatives
 before upgrade.
 More information:
 https://dev.mysql.com/doc/refman/8.0/en/mysql-nutshell.html#mysql-nutshell-removals

 dbtest.view1 - VIEW uses removed function PASSWORD

13) Usage of removed GROUP BY ASC/DESC syntax
 Error: The following DB objects use removed GROUP BY ASC/DESC syntax. They need to be altered so that
 ASC/DESC keyword is removed from GROUP BY clause and placed in appropriate ORDER BY clause.
 More information: https://dev.mysql.com/doc/relnotes/mysql/8.0/en/news-8-0-13.html#mysqld-8-0-13-sql-syntax

 dbtest.view1 - VIEW uses removed GROUP BY DESC syntax
 dbtest.func1 - FUNCTION uses removed GROUP BY ASC syntax

14) Removed system variables for error logging to the system log configuration
 No issues found

15) Removed system variables
 Error: Following system variables that were detected as being used will be
 removed. Please update your system to not rely on them before the upgrade.
 More information: https://dev.mysql.com/doc/refman/8.0/en/added-deprecated-removed.html#optvars-removed

 log_builtin_as_identified_by_password - is set and will be removed
 show_compatibility_56 - is set and will be removed

16) System variables with new default values
 Warning: Following system variables that are not defined in your
 configuration file will have new default values. Please review if you rely on
 their current values and if so define them before performing upgrade.
 More information: https://mysqlserverteam.com/new-defaults-in-mysql-8-0/

 back_log - default value will change
 character_set_server - default value will change from latin1 to utf8mb4
 collation_server - default value will change from latin1_swedish_ci to
 utf8mb4_0900_ai_ci
 event_scheduler - default value will change from OFF to ON
[...]

17) Zero Date, Datetime, and Timestamp values
 Warning: By default zero date/datetime/timestamp values are no longer allowed
 in MySQL, as of 5.7.8 NO_ZERO_IN_DATE and NO_ZERO_DATE are included in
 SQL_MODE by default. These modes should be used with strict mode as they will
 be merged with strict mode in a future release. If you do not include these
 modes in your SQL_MODE setting, you are able to insert
 date/datetime/timestamp values that contain zeros. It is strongly advised to
 replace zero values with valid ones, as they may not work correctly in the
 future.
 More information:
 https://lefred.be/content/mysql-8-0-and-wrong-dates/

 global.sql_mode - does not contain either NO_ZERO_DATE or NO_ZERO_IN_DATE
 which allows insertion of zero dates
 session.sql_mode - of 2 session(s) does not contain either NO_ZERO_DATE or
 NO_ZERO_IN_DATE which allows insertion of zero dates
 dbtest.date1.d - column has zero default value: 0000-00-00

18) Schema inconsistencies resulting from file removal or corruption
 No issues found

19) Tables recognized by InnoDB that belong to a different engine
 No issues found

20) Issues reported by 'check table x for upgrade' command
 No issues found

229

JSON output for the upgrade checker utility

21) New default authentication plugin considerations
 Warning: The new default authentication plugin 'caching_sha2_password' offers
 more secure password hashing than previously used 'mysql_native_password'
 (and consequent improved client connection authentication). However, it also
 has compatibility implications that may affect existing MySQL installations.
 If your MySQL installation must serve pre-8.0 clients and you encounter
 compatibility issues after upgrading, the simplest way to address those
 issues is to reconfigure the server to revert to the previous default
 authentication plugin (mysql_native_password). For example, use these lines
 in the server option file:

 [mysqld]
 default_authentication_plugin=mysql_native_password

 However, the setting should be viewed as temporary, not as a long term or
 permanent solution, because it causes new accounts created with the setting
 in effect to forego the improved authentication security.
 If you are using replication please take time to understand how the
 authentication plugin changes may impact you.
 More information:
 https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password-compatibility-issues
 https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password-replication

Errors: 7
Warnings: 36
Notices: 0

7 errors were found. Please correct these issues before upgrading to avoid compatibility issues.

• In this example, the checks carried out on the server instance returned some errors for the upgrade
scenario that were found on the checked server, so changes are required before the server instance can
be upgraded to the target MySQL 8.0 release.

• When you have made the required changes to clear the error count for the report, you should also
consider making further changes to remove the warnings. Those configuration improvements would
make the server instance more compatible with the target release. The server instance can, however, be
successfully upgraded without removing the warnings.

• As shown in this example, the upgrade checker utility might also provide advice and instructions for
further relevant checks that cannot be automated and that you should make manually, which are rated
as either warning or notice (informational) level.

JSON output for the upgrade checker utility

When you select JSON output using the outputFormat dictionary option, the JSON object returned by
the upgrade checker utility has the following key-value pairs:

serverAddress Host name and port number for MySQL Shell's connection to the
MySQL server instance that was checked.

serverVersion Detected MySQL version of the server instance that was checked.

targetVersion Target MySQL version for the upgrade checks.

errorCount Number of errors found by the utility.

warningCount Number of warnings found by the utility.

noticeCount Number of notices found by the utility.

230

JSON output for the upgrade checker utility

summary Text of the summary statement that would be provided at the end of the
text output (for example, "No known compatibility errors or issues were
found.").

checksPerformed An array of JSON objects, one for each individual upgrade issue that
was automatically checked (for example, usage of removed functions).
Each JSON object has the following key-value pairs:

id The ID of the check, which is a
unique string.

title A short description of the check.

status "OK" if the check ran successfully,
"ERROR" otherwise.

description A long description of the check (if
available) incorporating advice, or an
error message if the check failed to
run.

documentationLink If available, a link to documentation
with further information or advice.

detectedProblems An array (which might be empty)
of JSON objects representing the
errors, warnings, or notices that were
found as a result of the check. Each
JSON object has the following key-
value pairs:

level The
message
level,
one
of
Error,
Warning,
or
Notice.

dbObject A
string
identifying
the
database
object
to
which
the
message
relates.

description If
available,

231

JSON Import Utility

a
string
with
a
specific
description
of
the
issue
with
the
database
object.

manualChecks An array of JSON objects, one for each individual upgrade issue that is
relevant to your upgrade path and needs to be checked manually (for
example, the change of default authentication plugin in MySQL 8.0).
Each JSON object has the following key-value pairs:

id The ID of the manual check, which is
a unique string.

title A short description of the manual
check.

description A long description of the manual
check, with information and advice.

documentationLink If available, a link to documentation
with further information or advice.

11.2 JSON Import Utility
MySQL Shell's JSON import utility util.importJSON(), introduced in MySQL Shell 8.0.13, enables you
to import JSON documents from a file (or FIFO special file) or standard input to a MySQL Server collection
or relational table. The utility checks that the supplied JSON documents are well-formed and inserts them
into the target database, removing the need to use multiple INSERT statements or write scripts to achieve
this task.

From MySQL Shell 8.0.14, the import utility can process BSON (binary JSON) data types that are
represented in JSON documents. The data types used in BSON documents are not all natively supported
by JSON, but can be represented using extensions to the JSON format. The import utility can process
documents that use JSON extensions to represent BSON data types, convert them to an identical or
compatible MySQL representation, and import the data value using that representation. The resulting
converted data values can be used in expressions and indexes, and manipulated by SQL statements and
X DevAPI functions.

You can import the JSON documents to an existing table or collection or to a new one created for the
import. If the target table or collection does not exist in the specified database, it is automatically created
by the utility, using a default collection or table structure. The default collection is created by calling the
createCollection() function from a schema object. The default table is created as follows:

CREATE TABLE `dbname`.`tablename` (
 target_column JSON,
 id INTEGER AUTO_INCREMENT PRIMARY KEY
) CHARSET utf8mb4 ENGINE=InnoDB;

232

https://dev.mysql.com/doc/refman/8.0/en/insert.html

JSON Import Utility

The default collection name or table name is the name of the supplied import file (without the file
extension), and the default target_column name is doc.

To convert JSON extensions for BSON types into MySQL types, you must specify the
convertBsonTypes option when you run the import utility. Additional options are available to control the
mapping and conversion for specific BSON data types. If you import documents with JSON extensions
for BSON types and do not use this option, the documents are imported in the same way as they are
represented in the input file.

The JSON import utility requires an existing X Protocol connection to the server. The utility cannot operate
over a classic MySQL protocol connection.

In the MySQL Shell API, the JSON import utility is a function of the util global object, and has the
following signature:

importJSON (path, options)

path is a string specifying the file path for the file containing the JSON documents to be imported. This
can be a file written to disk, or a FIFO special file (named pipe). Standard input can only be imported with
the --import command line invocation of the utility.

options is a dictionary of import options that can be omitted if it is empty. (Before MySQL 8.0.14,
the dictionary was required.) The following options are available to specify where and how the JSON
documents are imported:

schema: "db_name" The name of the target database. If you omit this option, MySQL Shell
attempts to identify and use the schema name in use for the current
session, as specified in a URI-like connection string, \use command, or
MySQL Shell option. If the schema name is not specified and cannot be
identified from the session, an error is returned.

collection:
"collection_name"

The name of the target collection. This is an alternative to specifying
a table and column. If the collection does not exist, the utility creates
it. If you specify none of the collection, table, or tableColumn
options, the utility defaults to using or creating a target collection with
the name of the supplied import file (without the file extension).

table: "table_name" The name of the target table. This is an alternative to specifying a
collection. If the table does not exist, the utility creates it.

tableColumn:
"column_name"

The name of the column in the target table to which the JSON
documents are imported. The specified column must be present in the
table if the table already exists. If you specify the table option but omit
the tableColumn option, the default column name doc is used. If you
specify the tableColumn option but omit the table option, the name
of the supplied import file (without the file extension) is used as the table
name.

convertBsonTypes: true Recognizes and converts BSON data types that are represented using
extensions to the JSON format. The default for this option is false.
When you specify convertBsonTypes: true, each represented
BSON type is converted to an identical or compatible MySQL
representation, and the data value is imported using that representation.
Additional options are available to control the mapping and conversion
for specific BSON data types; for a list of these control options and
the default type conversions, see Section 11.2.3, “Conversions

233

JSON Import Utility

for representations of BSON data types”. The convertBsonOid
option must also be set to true, which is that option's default setting
when you specify convertBsonTypes: true. If you import
documents with JSON extensions for BSON types and do not use
convertBsonTypes: true, the documents are imported in the
same way as they are represented in the input file, as embedded JSON
documents.

convertBsonOid: true Recognizes and converts MongoDB ObjectIDs, which are a 12-byte
BSON type used as an _id value for documents, represented in
MongoDB Extended JSON strict mode. The default for this option is
the value of the convertBsonTypes option, so if that option is set to
true, MongoDB ObjectIDs are automatically also converted. When
importing data from MongoDB, convertBsonOid must always be set
to true if you do not convert the BSON types, because MySQL Server
requires the _id value to be converted to the varbinary(32) type.

extractOidTime:
"field_name"

Recognizes and extracts the timestamp value that is contained in a
MongoDB ObjectID in the _id field for a document, and places it into a
separate field in the imported data. extractOidTime names the field
in the document that contains the timestamp. The timestamp is the first
4 bytes of the ObjectID, which remains unchanged. convertBsonOid:
true must be set to use this option, which is the default when
convertBsonTypes is set to true.

The following examples, the first in MySQL Shell's JavaScript mode and the second in MySQL Shell's
Python mode, import the JSON documents in the file /tmp/products.json to the products collection
in the mydb database:

mysql-js> util.importJson("/tmp/products.json", {schema: "mydb", collection: "products"})

mysql-py> util.import_json("/tmp/products.json", {"schema": "mydb", "collection": "products"})

The following example in MySQL Shell's JavaScript mode has no options specified, so the dictionary is
omitted. mydb is the active schema for the MySQL Shell session. The utility therefore imports the JSON
documents in the file /tmp/stores.json to a collection named stores in the mydb database:

mysql-js> \use mydb
mysql-js> util.importJson("/tmp/stores.json")

The following example in MySQL Shell's JavaScript mode imports the JSON documents in the file /
europe/regions.json to the column jsondata in a relational table named regions in the mydb
database. BSON data types that are represented in the documents by JSON extensions are converted to a
MySQL representation:

mysql-js> util.importJson("/europe/regions.json", {schema: "mydb", table: "regions", tableColumn: "jsondata", convertBsonTypes: true});

The following example in MySQL Shell's JavaScript mode carries out the same import but without
converting the JSON representations of the BSON data types to MySQL representations. However, the
MongoDB ObjectIDs in the documents are converted as required by MySQL, and their timestamps are also
extracted:

mysql-js> util.importJson("/europe/regions.json", {schema: "mydb", table: "regions", tableColumn: "jsondata", convertBsonOid: true, extractOidTime: "idTime"});

When the import is complete, or if the import is stopped partway by the user with Ctrl+C or by an error, a
message is returned to the user showing the number of successfully imported JSON documents, and any
applicable error message. The function itself returns void, or an exception in case of an error.

234

Importing JSON documents with the mysqlsh command interface

The JSON import utility can also be invoked from the command line. Two alternative formats are available
for the command line invocation. You can use the mysqlsh command interface, which accepts input only
from a file (or FIFO special file), or the --import command, which accepts input from standard input or a
file.

11.2.1 Importing JSON documents with the mysqlsh command interface

With the mysqlsh command interface, you invoke the JSON import utility as follows:

mysqlsh user@host:port/mydb -- util importJson <path> [options]
or
mysqlsh user@host:port/mydb -- util import-json <path> [options]

For information on this syntax, see Section 5.8, “API Command Line Integration”. For the JSON import
utility, specify the parameters as follows:

user The user name for the user account that is used to run the JSON import
utility.

host The host name for the MySQL server.

port The port number for MySQL Shell's connection to the MySQL server.
The default port for this connection is 33060.

mydb The name of the target database. When invoking the JSON import utility
from the command line, you must specify the target database. You can
either specify it in the URI-like connection string, or using an additional
--schema command line option.

path The file path for the file (or FIFO special file) containing the JSON
documents to be imported.

options The --collection, --table, and --tableColumn options specify
a target collection or a target table and column. The relationships and
defaults when the JSON import utility is invoked using the mysqlsh
command interface are the same as when the corresponding options
are used in a MySQL Shell session. If you specify none of these
options, the utility defaults to using or creating a target collection with
the name of the supplied import file (without the file extension).

The --convertBsonTypes option converts BSON data types that
are represented using extensions to the JSON format. The additional
control options for specific BSON data types can also be specified; for
a list of these control options and the default type conversions, see
Section 11.2.3, “Conversions for representations of BSON data types”.
The --convertBsonOid option is automatically set on when you
specify --convertBsonTypes. When importing data from MongoDB,
--convertBsonOid must be specified if you do not convert the BSON
types, because MySQL Server requires the _id value to be converted
to the varbinary(32) type. --extractOidTime=field_name can
be used to extract the timestamp from the _id value into a separate
field.

The following example imports the JSON documents in the file products.json to the products
collection in the mydb database:

mysqlsh user@localhost/mydb -- util importJson products.json --collection=products

235

Importing JSON documents with the --import command

11.2.2 Importing JSON documents with the --import command

The --import command is available as an alternative to the mysqlsh command interface for command
line invocation of the JSON import utility. This command provides a short form syntax without using option
names, and it accepts JSON documents from standard input. The syntax is as follows:

mysqlsh user@host:port/mydb --import <path> [target] [tableColumn] [options]

As with the mysqlsh command interface, you must specify the target database, either in the URI-like
connection string, or using an additional --schema command line option. The first parameter for the --
import command is the file path for the file containing the JSON documents to be imported. To read
JSON documents from standard input, specify a dash (-) instead of the file path. The end of the input
stream is the end-of-file indicator, which is Ctrl+D on Unix systems and Ctrl+Z on Windows systems.

After specifying the path (or - for standard input), the next parameter is the name of the target collection or
table. If standard input is used, you must specify a target.

• If you use standard input and the specified target is a relational table that exists in the specified schema,
the documents are imported to it. You can specify a further parameter giving a column name, in which
case the specified column is used for the import destination. Otherwise the default column name doc is
used, which must be present in the existing table. If the target is not an existing table, the utility searches
for any collection with the specified target name, and imports the documents to it. If no such collection is
found, the utility creates a collection with the specified target name and imports the documents to it. To
create and import to a table, you must also specify a column name as a further parameter, in which case
the utility creates a relational table with the specified table name and imports the data to the specified
column.

• If you specify a file path and a target, the utility searches for any collection with the specified target
name. If none is found, the utility by default creates a collection with that name and imports the
documents to it. To import the file to a table, you must also specify a column name as a further
parameter, in which case the utility searches for an existing relational table and imports to it, or creates a
relational table with the specified table name and imports the data to the specified column.

• If you specify a file path but do not specify a target, the utility searches for any existing collection in
the specified schema that has the name of the supplied import file (without the file extension). If one is
found, the documents are imported to it. If no collection with the name of the supplied import file is found
in the specified schema, the utility creates a collection with that name and imports the documents to it.

If you are importing documents containing representations of BSON (binary JSON) data types,
you can also specify the options --convertBsonOid, --extractOidTime=field_name, --
convertBsonTypes, and the control options listed in Section 11.2.3, “Conversions for representations of
BSON data types”.

The following example reads JSON documents from standard input and imports them to a target named
territories in the mydb database. If no collection or table named territories is found, the utility
creates a collection named territories and imports the documents to it. If you want to create and
import the documents to a relational table named territories, you must specify a column name as a
further parameter.

mysqlsh user@localhost/mydb --import - territories

The following example with a file path and a target imports the JSON documents in the file /europe/
regions.json to the column jsondata in a relational table named regions in the mydb database. The
schema name is specified using the --schema command line option instead of in the URI-like connection
string:

mysqlsh user@localhost:33062 --import /europe/regions.json regions jsondata --schema=mydb

236

Conversions for representations of BSON data types

The following example with a file path but no target specified imports the JSON documents in the file /
europe/regions.json. If no collection or table named regions (the name of the supplied import
file without the extension) is found in the specified mydb database, the utility creates a collection named
regions and imports the documents to it. If there is already a collection named regions, the utility
imports the documents to it.

mysqlsh user@localhost/mydb --import /europe/regions.json

MySQL Shell returns a message confirming the parameters for the import, for example, Importing
from file "/europe/regions.json" to table `mydb`.`regions` in MySQL Server at
127.0.0.1:33062.

When an import is complete, or if the import is stopped partway by the user with Ctrl+C or by an error, a
message is returned to the user showing the number of successfully imported JSON documents, and any
applicable error message. The process returns zero if the import finished successfully, or a nonzero exit
code if there was an error.

11.2.3 Conversions for representations of BSON data types

When you specify the convertBsonTypes: true (--convertBsonTypes) option to convert BSON
data types that are represented by JSON extensions, by default, the BSON types are imported as follows:

Date (“date”) Simple value containing the value of the field.

Timestamp (“timestamp”) MySQL timestamp created using the time_t value.

Decimal (“decimal”) Simple value containing a string representation of the decimal value.

Integer (“int” or “long”) Integer value.

Regular expression (“regex”
plus options)

String containing the regular expression only, and ignoring the options.
A warning is printed if options are present.

Binary data (“binData”) Base64 string.

ObjectID (“objectId”) Simple value containing the value of the field.

The following control options can be specified to adjust the mapping and conversion of these BSON types.
convertBsonTypes: true (--convertBsonTypes) must be specified to use any of these control
options:

ignoreDate: true (--
ignoreDate)

Disable conversion of the BSON “date” type. The data is imported as an
embedded JSON document exactly as in the input file.

ignoreTimestamp: true
(--ignoreTimestamp)

Disable conversion of the BSON “timestamp” type. The data is imported
as an embedded JSON document exactly as in the input file.

decimalAsDouble: true
(--decimalAsDouble)

Convert the value of the BSON “decimal” type to the MySQL DOUBLE
type, rather than a string.

ignoreRegex: true (--
ignoreRegex)

Disable conversion of regular expressions (the BSON “regex” type). The
data is imported as an embedded JSON document exactly as in the
input file.

ignoreRegexOptions:
false (--
ignoreRegexOptions=false)

Include the options associated with a regular expression in the string,
as well as the regular expression itself (in the format /<regular
expression>/<options>). By default, the options are ignored
(ignoreRegexOptions: true), but a warning is printed if any

237

Table Export Utility

options were present. ignoreRegex must be set to the default of
false to specify ignoreRegexOptions.

ignoreBinary: true (--
ignoreBinary)

Disable conversion of the BSON “binData” type. The data is imported as
an embedded JSON document exactly as in the input file.

The following example imports documents from the file /europe/regions.json to the column
jsondata in a relational table named regions in the mydb database. BSON data types that are
represented by JSON extensions are converted to MySQL representations, with the exception of regular
expressions, which are imported as embedded JSON documents:

mysqlsh user@localhost/mydb --import /europe/regions.json regions jsondata --convertBsonTypes --ignoreRegex

11.3 Table Export Utility
MySQL Shell's table export utility util.exportTable(), introduced in MySQL Shell 8.0.22, exports a
MySQL relational table into a data file, either on the local server or in an Oracle Cloud Infrastructure Object
Storage bucket. The data can then be uploaded into a table on a target MySQL server using MySQL
Shell's parallel table import utility util.importTable() (see Section 11.4, “Parallel Table Import Utility”),
which uses parallel connections to provide rapid data import for large data files. The data file can also be
used to import data to a different application, or as a lightweight logical backup for a single data table.

By default, the table export utility produces a data file in the default format for MySQL Shell's parallel table
import utility. Preset options are available to export CSV files for either DOS or UNIX systems, and TSV
files. The table export utility cannot produce JSON data. You can also set field- and line-handling options
as for the SELECT...INTO OUTFILE statement to create data files in arbitrary formats.

When choosing a destination for the table export file, note that for import into a MySQL DB System, the
MySQL Shell instance where you run the parallel table import utility must be installed on an Oracle Cloud
Infrastructure Compute instance that has access to the MySQL DB System. If you export the table to a file
in an Object Storage bucket, you can access the Object Storage bucket from the Compute instance. If you
create the table export file on your local system, you need to transfer it to the Oracle Cloud Infrastructure
Compute instance using the copy utility of your choice, depending on the operating system you chose for
your Compute instance.

The following requirements apply to exports using the table export utility:

• MySQL 5.7 or later is required for the source MySQL instance and the destination MySQL instance.

• The upload method used to transfer files to an Oracle Cloud Infrastructure Object Storage bucket has a
file size limit of 1.2 TiB.

The table export utility uses the MySQL Shell global session to obtain the connection details of the target
MySQL server from which the export is carried out. You must open the global session (which can have an
X Protocol connection or a classic MySQL protocol connection) before running the utility. The utility opens
its own session for each thread, copying options such as connection compression and SSL options from
the global session, and does not make any further use of the global session. You can limit the maximum
rate of data transfer to balance the load on the network.

In the MySQL Shell API, the table export utility is a function of the util global object, and has the
following signature:

util.exportTable(table, outputUrl[, options])

table is the name of the relational data table to be exported to the data file. The table name can be
qualified with a valid schema name, and quoted with the backtick character if needed. If the schema is
omitted, the active schema for the MySQL Shell global session is used.

238

https://dev.mysql.com/doc/refman/8.0/en/select-into.html

Table Export Utility

If you are exporting the data to the local filesystem, outputUrl is a string specifying the path to the
exported data file, and the file name itself, with an appropriate extension. You can specify an absolute path
or a path relative to the current working directory. You can prefix a local directory path with the file://
schema. In this example in MySQL Shell's JavaScript mode, the user exports the employees table from
the hr schema using the default dialect. The file is written to the exports directory in the user's home
directory, and is given a .txt extension that is appropriate for a file in this format:

shell-js> util.exportTable("hr.employees", "file:///home/hanna/exports/employees.txt")

The target directory must exist before the export takes place, but it does not have to be empty. If the
exported data file already exists there, it is overwritten. For an export to a local directory, the data file is
created with the access permissions rw-r----- (on operating systems where these are supported). The
owner of the file is the user account that is running MySQL Shell.

If you are exporting the data to an Oracle Cloud Infrastructure Object Storage bucket, outputUrl is the
name for the data file in the bucket, including a suitable file extension. You can include directory separators
to simulate a directory structure. Use the osBucketName option to provide the name of the Object Storage
bucket, and the osNamespace option to identify the namespace for the bucket. In this example in MySQL
Shell's Python mode, the user exports the employees table from the hr schema as a file in TSV format to
the Object Storage bucket hanna-bucket:

shell-py> util.export_table("hr.employees", "dump/employees.tsv", {
 > dialect: "tsv", "osBucketName": "hanna-bucket", "osNamespace": "idx28w1ckztq" })

The namespace for an Object Storage bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface. A connection is established to the Object Storage bucket using
the default profile in the default Oracle Cloud Infrastructure CLI configuration file, or alternative details
that you specify using the ociConfigFile and ociProfile options. For instructions to set up a CLI
configuration file, see SDK and CLI Configuration File.

util.exportTable() can be used with partitioned and subpartitioned tables, but does not perform any
special handling of these. One file is always created per table by this utility, regardless of release version.

options is a dictionary of options that can be omitted if it is empty. The following options are available for
the table export utility:

dialect: [default|csv|
csv-unix|tsv]

Specify a set of field- and line-handling options for the format of
the exported data file. You can use the selected dialect as a base
for further customization, by also specifying one or more of the
linesTerminatedBy, fieldsTerminatedBy, fieldsEnclosedBy,
fieldsOptionallyEnclosed, and fieldsEscapedBy options to
change the settings.

The default dialect produces a data file matching what would be created
using a SELECT...INTO OUTFILE statement with the default settings
for that statement. .txt is an appropriate file extension to assign to
these output files. Other dialects are available to export CSV files for
either DOS or UNIX systems (.csv), and TSV files (.tsv).

The settings applied for each dialect are as follows:

Table 11.1 Dialect settings for table export utility

dialect linesTerminatedByfieldsTerminatedByfieldsEnclosedByfieldsOptionallyEnclosedfieldsEscapedBy

default [LF] [TAB] [empty] false \

239

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://dev.mysql.com/doc/refman/8.0/en/select-into.html

Table Export Utility

dialect linesTerminatedByfieldsTerminatedByfieldsEnclosedByfieldsOptionallyEnclosedfieldsEscapedBy

csv [CR][LF] , '' true \

csv-unix [LF] , '' false \

tsv [CR][LF] [TAB] '' true \

Note

1. The carriage return and line feed values
for the dialects are operating system
independent.

2. If you use the linesTerminatedBy,
fieldsTerminatedBy,
fieldsEnclosedBy,
fieldsOptionallyEnclosed, and
fieldsEscapedBy options, depending on
the escaping conventions of your command
interpreter, the backslash character (\) might
need to be doubled if you use it in the option
values.

3. Like the MySQL server with the
SELECT...INTO OUTFILE statement,
MySQL Shell does not validate the field-
and line-handling options that you specify.
Inaccurate selections for these options
can cause data to be exported partially or
incorrectly. Always verify your settings before
starting the export, and verify the results
afterwards.

linesTerminatedBy:
"characters"

One or more characters (or an empty string) with which the utility
terminates each of the lines in the exported data file. The default is as
for the specified dialect, or a linefeed character (\n) if the dialect option
is omitted. This option is equivalent to the LINES TERMINATED BY
option for the SELECT...INTO OUTFILE statement. Note that the
utility does not provide an equivalent for the LINES STARTING BY
option for the SELECT...INTO OUTFILE statement, which is set to the
empty string.

fieldsTerminatedBy:
"characters"

One or more characters (or an empty string) with which the utility
terminates each of the fields in the exported data file. The default is
as for the specified dialect, or a tab character (\t) if the dialect option
is omitted. This option is equivalent to the FIELDS TERMINATED BY
option for the SELECT...INTO OUTFILE statement.

fieldsEnclosedBy:
"character"

A single character (or an empty string) with which the utility encloses
each of the fields in the exported data file. The default is as for the
specified dialect, or the empty string if the dialect option is omitted.
This option is equivalent to the FIELDS ENCLOSED BY option for the
SELECT...INTO OUTFILE statement.

fieldsOptionallyEnclosed:
[true | false]

Whether the character given for fieldsEnclosedBy is to enclose
all of the fields in the exported data file (false), or to enclose a field

240

https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html

Table Export Utility

only if it has a string data type such as CHAR, BINARY, TEXT, or ENUM
(true). The default is as for the specified dialect, or false if the dialect
option is omitted. This option makes the fieldsEnclosedBy option
equivalent to the FIELDS OPTIONALLY ENCLOSED BY option for the
SELECT...INTO OUTFILE statement.

fieldsEscapedBy:
"character"

The character that is to begin escape sequences in the exported data
file. The default is as for the specified dialect, or a backslash (\) if
the dialect option is omitted. This option is equivalent to the FIELDS
ESCAPED BY option for the SELECT...INTO OUTFILE statement.
If you set this option to the empty string, no characters are escaped,
which is not recommended because special characters used by
SELECT...INTO OUTFILE must be escaped.

osBucketName: "string" The name of the Oracle Cloud Infrastructure Object Storage bucket to
which the exported data file is to be written. By default, the [DEFAULT]
profile in the Oracle Cloud Infrastructure CLI configuration file located at
~/.oci/config is used to establish a connection to the bucket. You
can substitute an alternative profile to be used for the connection with
the ociConfigFile and ociProfile options. For instructions to set
up a CLI configuration file, see SDK and CLI Configuration File.

osNamespace: "string" The Oracle Cloud Infrastructure namespace where the Object Storage
bucket named by osBucketName is located. The namespace for an
Object Storage bucket is displayed in the Bucket Information tab of
the bucket details page in the Oracle Cloud Infrastructure console, or
can be obtained using the Oracle Cloud Infrastructure command line
interface.

ociConfigFile: "string" An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/.oci/config.

ociProfile: "string" The profile name of the Oracle Cloud Infrastructure profile to use for
the connection, instead of the [DEFAULT] profile in the Oracle Cloud
Infrastructure CLI configuration file used for the connection.

maxRate: "string" The maximum number of bytes per second per thread for data read
throughput during the export. The unit suffixes k for kilobytes, M for
megabytes, and G for gigabytes can be used (for example, setting 100M
limits throughput to 100 megabytes per second per thread). Setting 0
(which is the default value), or setting the option to an empty string,
means no limit is set.

showProgress: [true |
false]

Display (true) or hide (false) progress information for the export. The
default is true if stdout is a terminal (tty), such as when MySQL
Shell is in interactive mode, and false otherwise. The progress
information includes the estimated total number of rows to be exported,
the number of rows exported so far, the percentage complete, and the
throughput in rows and bytes per second.

compression: "string" The compression type to use when writing the exported data file. The
default is to use no compression (none). The alternatives are to use
gzip compression (gzip) or zstd compression (zstd).

defaultCharacterSet:
"string"

The character set to be used during the session connections that
are opened by MySQL Shell to the server for the export. The

241

https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Parallel Table Import Utility

default is utf8mb4. The session value of the system variables
character_set_client, character_set_connection, and
character_set_results are set to this value for each connection.
The character set must be permitted by the character_set_client
system variable and supported by the MySQL instance.

11.4 Parallel Table Import Utility
MySQL Shell's parallel table import utility util.importTable(), introduced in MySQL Shell 8.0.17,
provides rapid data import to a MySQL relational table for large data files. The utility analyzes an input
data file, distributes it into chunks, and uploads the chunks to the target MySQL server using parallel
connections. The utility is capable of completing a large data import many times faster than a standard
single-threaded upload using a LOAD DATA statement.

When you run the parallel table import utility, you specify the mapping between the fields in the data
file or files, and the columns in the MySQL table. You can set field- and line-handling options as for the
LOAD DATA statement to handle data files in arbitrary formats. For multiple files, all the files must be in the
same format. The default dialect for the utility maps to a file created using a SELECT...INTO OUTFILE
statement with the default settings for that statement. The utility also has preset dialects that map to the
standard data formats for CSV files (created on DOS or UNIX systems), TSV files, and JSON, and you can
customize these using the field- and line-handling options as necessary. Note that JSON data must be in
document-per-line format.

A number of functions have been added to the parallel table import utility since it was introduced, so use
the most recent version of MySQL Shell to get the utility's full functionality.

Input preprocessing From MySQL Shell 8.0.22, the parallel table import utility can capture
columns from the data file or files for input preprocessing, in the same
way as with a LOAD DATA statement. The selected data can be
discarded, or you can transform the data and assign it to a column in
the target table.

Oracle Cloud Infrastructure
Object Storage import

Up to MySQL Shell 8.0.20, the data must be imported from a location
that is accessible to the client host as a local disk. From MySQL
Shell 8.0.21, the data can also be imported from an Oracle Cloud
Infrastructure Object Storage bucket, specified by the osBucketName
option.

Multiple data file import Up to MySQL Shell 8.0.22, the parallel table import utility can import
a single input data file to a single relational table. From MySQL Shell
8.0.23, the utility is also capable of importing a specified list of files,
and it supports wildcard pattern matching to include all relevant files
from a location. Multiple files uploaded by a single run of the utility are
placed into a single relational table, so for example, data that has been
exported from multiple hosts could be merged into a single table to be
used for analytics.

Compressed file handling Up to MySQL Shell 8.0.21, the parallel table import utility only accepts
an uncompressed input data file. The utility analyzes the data file,
distributes it into chunks, and uploads the chunks to the relational
table in the target MySQL server, dividing the chunks up between the
parallel connections. From MySQL Shell 8.0.22, the utility can also
accept data files compressed in the gzip (.gz) and zstd (.zst)
formats, detecting the format automatically based on the file extension.
The utility uploads a compressed file from storage in the compressed

242

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Function

format, saving bandwidth for that part of the transfer. Compressed files
cannot be distributed into chunks, so instead the utility uses its parallel
connections to decompress and upload multiple files simultaneously
to the target server. If there is only one input data file, the upload of a
compressed file can only use a single connection.

MySQL Shell's parallel table import utility supports the output from MySQL Shell's table export utility, which
can compress the data file it produces as output, and can export it to a local folder or an Object Storage
bucket. The default dialect for the parallel table import utility is the default for the output file produced by
the table export utility. The parallel table import utility can also be used to upload files from other sources.

MySQL Shell's dump loading utility util.loadDump() is designed to import the combination of chunked
output files and metadata produced by MySQL Shell's instance dump utility util.dumpInstance(),
schema dump utility util.dumpSchemas(), and table dump utility util.dumpTables(). The parallel
table import utility can be used in combination with the dump loading utility if you want to modify any of
the data in the chunked output files before uploading it to the target server. To do this, first use the dump
loading utility to load only the DDL for the selected table, to create the table on the target server. Then use
the parallel table import utility to capture and transform data from the output files for the table, and import
it to the target table. Repeat that process as necessary for any other tables where you want to modify the
data. Finally, use the dump loading utility to load the DDL and data for any remaining tables that you do not
want to modify, excluding the tables that you did modify. For a description of the procedure, see Modifying
Dumped Data.

The parallel table import utility requires an existing classic MySQL protocol connection to the target MySQL
server. Each thread opens its own session to send chunks of the data to the MySQL server, or in the
case of compressed files, to send multiple files in parallel. You can adjust the number of threads, number
of bytes sent in each chunk, and maximum rate of data transfer per thread, to balance the load on the
network and the speed of data transfer. The utility cannot operate over X Protocol connections, which do
not support LOAD DATA statements.

The data file or files to be imported must be in one of the following locations:

• A location that is accessible to the client host as a local disk.

• A remote location that is accessible to the client host through HTTP or HTTPS, specified with a URL.
Pattern matching is not supported for files accessed in this way.

• An Oracle Cloud Infrastructure Object Storage bucket (from MySQL Shell 8.0.21).

The data is imported to a single relational table in the MySQL server to which the active MySQL session is
connected.

The parallel table import utility uses LOAD DATA LOCAL INFILE statements to upload data, so the
local_infile system variable must be set to ON on the target server. You can do this by issuing the
following statement in SQL mode before running the parallel table import utility:

SET GLOBAL local_infile = 1;

To avoid a known potential security issue with LOAD DATA LOCAL, when the MySQL server replies to
the parallel table import utility's LOAD DATA requests with file transfer requests, the utility only sends
the predetermined data chunks, and ignores any specific requests attempted by the server. For more
information, see Security Considerations for LOAD DATA LOCAL.

Function

In the MySQL Shell API, the parallel table import utility is a function of the util global object, and has the
following signature:

243

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html

Examples

importTable ({file_name | file_list}, options)

file_name is a string specifying the name and path for a single file containing the data to be imported.
Alternatively, file_list is an array of file paths specifying multiple data files. On Windows, backslashes
must be escaped in file paths, or you can use forward slashes instead.

• For files that are accessible to the client host on a local disk, you can prefix the directory path with the
file:// schema, or allow it to default to that. For files accessed in this way, file paths can contain
the wildcards * (multiple characters) and ? (single character) for pattern matching. Note that if these
wildcard characters are present in file paths, the utility treats them as wildcards and might therefore
attempt an incorrect strategy for file transfer.

• For files that are accessible to the client host through HTTP or HTTPS, provide a URL or a list of
URLs, prefixed with the http:// or https:// schema as appropriate, in the format http[s]://
host.domain[:port]/path. For files accessed in this way, pattern matching is not available. The
HTTP server must support the Range request header, and must return the Content-Range response
header to the client.

• For files in an Oracle Cloud Infrastructure Object Storage bucket, specify a path to the file in the bucket,
and use the osBucketName option to specify the bucket name.

options is a dictionary of import options that can be omitted if it is empty. The options are listed after the
examples.

The function returns void, or an exception in case of an error. If the import is stopped partway by the user
with Ctrl+C or by an error, the utility stops sending data. When the server finishes processing the data it
received, messages are returned showing the chunk that was being imported by each thread at the time,
the percentage complete, and the number of records that were updated in the target table.

Examples

The following examples, the first in in MySQL Shell's JavaScript mode and the second in MySQL Shell's
Python mode, import the data in a single CSV file /tmp/productrange.csv to the products table in
the mydb database, skipping a header row in the file:

mysql-js> util.importTable("/tmp/productrange.csv", {schema: "mydb", table: "products", dialect: "csv-unix", skipRows: 1, showProgress: true})

mysql-py> util.import_table("/tmp/productrange.csv", {"schema": "mydb", "table": "products", "dialect": "csv-unix", "skipRows": 1, "showProgress": True})

The following example in MySQL Shell's Python mode only specifies the dialect for the CSV file. mydb is
the active schema for the MySQL Shell session. The utility therefore imports the data in the file /tmp/
productrange.csv to the productrange table in the mydb database:

mysql-py> \use mydb
mysql-py> util.import_table("/tmp/productrange.csv", {"dialect": "csv-unix"})

The following example in MySQL Shell's Python mode imports the data from multiple files, including a mix
of individually named files, ranges of files specified using wildcard pattern matching, and compressed files:

mysql-py> util.import_table(
 [
 "data_a.csv",
 "data_b*",
 "data_c*",
 "data_d.tsv.zst",
 "data_e.tsv.zst",
 "data_f.tsv.gz",
 "/backup/replica3/2021_01_12/data_g.tsv",
 "/backup/replica3/2021_01_13/*.tsv",

244

Options

],
 {"schema": "mydb", "table": "productrange"}
)

The parallel table import utility can also be invoked from the command line using the mysqlsh command
interface. With this interface, you invoke the utility as in the following examples:

mysqlsh mysql://root:@127.0.0.1:3366 --ssl-mode=DISABLED -- util import-table /r/mytable.dump --schema=mydb --table=regions --bytes-per-chunk=10M --linesTerminatedBy=$'\r\n'

When you import multiple data files, ranges of files specified using wildcard pattern matching are expanded
by MySQL Shell's glob pattern matching logic if they are quoted, as in the following example. Otherwise
they are expanded by the pattern matching logic for the user shell where you entered the mysqlsh
command.

mysqlsh mysql://root:@127.0.0.1:3366 -- util import-table data_a.csv "data_b*" data_d.tsv.zst --schema=mydb --table=productrange --osBucketName=mybucket

When you use the mysqlsh command's API reference argument to directly invoke the parallel table
import utility (the dash-dash-space sequence "-- "), before MySQL Shell 8.0.24, the columns option is
not supported because array values are not accepted, so the input lines in your data file must contain a
matching field for every column in the target table. From MySQL Shell 8.0.24, the option is supported, and
you can specify columns using a dictionary argument . Also note that as shown in the above example, line
feed characters must be passed using ANSI-C quoting in shells that support this function (such as bash,
ksh, mksh, and zsh). For information on the mysqlsh command-line integration, see Section 5.8, “API
Command Line Integration”.

Options

The following import options are available for the parallel table import utility to specify where and how the
data is imported:

schema: "db_name" The name of the target database on the connected MySQL server. If
you omit this option, the utility attempts to identify and use the schema
name in use for the current MySQL Shell session, as specified in a
connection URI string, \use command, or MySQL Shell option. If the
schema name is not specified and cannot be identified from the session,
an error is returned.

table: "table_name" The name of the target relational table. If you omit this option, the
utility assumes the table name is the name of the data file without the
extension. The target table must exist in the target database.

columns: array of column
names

An array of strings containing column names from the import file or files,
given in the order that they map to columns in the target relational table.
Use this option if the imported data does not contain all the columns of
the target table, or if the order of the fields in the imported data differs
from the order of the columns in the table. If you omit this option, input
lines are expected to contain a matching field for each column in the
target table.

From MySQL Shell 8.0.22, you can use this option to capture columns
from the import file or files for input preprocessing, in the same way
as with a LOAD DATA statement. When you use an integer value in
place of a column name in the array, that column in the import file or
files is captured as a user variable @int, for example @1. The selected
data can be discarded, or you can use the decodeColumns option to
transform the data and assign it to a column in the target table.

245

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Options

In this example in MySQL Shell's JavaScript mode, the second and
fourth columns from the import file are assigned to the user variables
@1 and @2, and no decodeColumns option is present to assign them to
any column in the target table, so they are discarded.

mysql-js> util.importTable('file.txt', {
 table: 't1',
 columns: ['column1', 1, 'column2', 2, 'column3']
 });

decodeColumns:
dictionary

A dictionary of key-value pairs that assigns import file columns captured
as user variables by the columns option to columns in the target table,
and specifies preprocessing transformations for them in the same way
as the SET clause of a LOAD DATA statement. This option is available
from MySQL Shell 8.0.22.

In this example in MySQL Shell's JavaScript mode, the first input
column from the data file is used as the first column in the target table.
The second input column, which has been assigned to the variable @1
by the columns option, is subjected to a division operation before being
used as the value of the second column in the target table.

mysql-js> util.importTable('file.txt', {
 columns: ['column1', 1],
 decodeColumns: {'column2': '@1 / 100'}
 });

In this example in MySQL Shell's JavaScript mode, the input columns
from the data file are both assigned to variables, then transformed in
various ways and used to populate the columns of the target table:

mysql-js> util.importTable('file.txt', {
 table: 't1',
 columns: [1, 2],
 decodeColumns: {
 'a': '@1',
 'b': '@2',
 'sum': '@1 + @2',
 'multiple': '@1 * @2',
 'power': 'POW(@1, @2)'
 }
 });

skipRows: number Skip this number of rows of data at the beginning of the import file, or in
the case of multiple import files, at the beginning of every file included
in the file list. You can use this option to omit an initial header line
containing column names from the upload to the table. The default is
that no rows are skipped.

replaceDuplicates:
[true|false]

Whether input rows that have the same value for a primary key or
unique index as an existing row should be replaced (true) or skipped
(false). The default is false.

dialect: [default|csv|
csv-unix|tsv|json]

Use a set of field- and line-handling options appropriate for the
specified file format. You can use the selected dialect as a base
for further customization, by also specifying one or more of the
linesTerminatedBy, fieldsTerminatedBy, fieldsEnclosedBy,
fieldsOptionallyEnclosed, and fieldsEscapedBy options to
change the settings. The default dialect maps to a file created using a

246

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Options

SELECT...INTO OUTFILE statement with the default settings for that
statement. This is the default for the output file produced by MySQL
Shell's table export utility. Other dialects are available to suit CSV files
(created on either DOS or UNIX systems), TSV files, and JSON data.
The settings applied for each dialect are as follows:

Table 11.2 Dialect settings for parallel table import utility

dialect linesTerminatedByfieldsTerminatedByfieldsEnclosedByfieldsOptionallyEnclosedfieldsEscapedBy

default [LF] [TAB] [empty] false \

csv [CR][LF] , '' true \

csv-unix [LF] , '' false \

tsv [CR][LF] [TAB] '' true \

json [LF] [LF] [empty] false [empty]

Note

1. The carriage return and line feed values
for the dialects are operating system
independent.

2. If you use the linesTerminatedBy,
fieldsTerminatedBy,
fieldsEnclosedBy,
fieldsOptionallyEnclosed, and
fieldsEscapedBy options, depending on
the escaping conventions of your command
interpreter, the backslash character (\) might
need to be doubled if you use it in the option
values.

3. Like the MySQL server with the LOAD DATA
statement, MySQL Shell does not validate
the field- and line-handling options that you
specify. Inaccurate selections for these
options can cause data to be imported into
the wrong fields, partially, and/or incorrectly.
Always verify your settings before starting the
import, and verify the results afterwards.

linesTerminatedBy:
"characters"

One or more characters (or an empty string) that terminates each of
the lines in the input data file or files. The default is as for the specified
dialect, or a linefeed character (\n) if the dialect option is omitted. This
option is equivalent to the LINES TERMINATED BY option for the LOAD
DATA statement. Note that the utility does not provide an equivalent for
the LINES STARTING BY option for the LOAD DATA statement, which
is set to the empty string.

fieldsTerminatedBy:
"characters"

One or more characters (or an empty string) that terminates each of
the fields in the input data file or files. The default is as for the specified
dialect, or a tab character (\t) if the dialect option is omitted. This
option is equivalent to the FIELDS TERMINATED BY option for the
LOAD DATA statement.

247

https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Options

fieldsEnclosedBy:
"character"

A single character (or an empty string) that encloses each of the fields
in the input data file or files. The default is as for the specified dialect, or
the empty string if the dialect option is omitted. This option is equivalent
to the FIELDS ENCLOSED BY option for the LOAD DATA statement.

fieldsOptionallyEnclosed:
[true | false]

Whether the character given for fieldsEnclosedBy encloses all
of the fields in the input data file or files (false), or encloses the
fields only in some cases (true). The default is as for the specified
dialect, or false if the dialect option is omitted. This option makes the
fieldsEnclosedBy option equivalent to the FIELDS OPTIONALLY
ENCLOSED BY option for the LOAD DATA statement.

fieldsEscapedBy:
"character"

The character that begins escape sequences in the input data file or
files. If this is not provided, escape sequence interpretation does not
occur. The default is as for the specified dialect, or a backslash (\) if
the dialect option is omitted. This option is equivalent to the FIELDS
ESCAPED BY option for the LOAD DATA statement.

osBucketName: "string" Added in MySQL Shell 8.0.21. The name of the Oracle Cloud
Infrastructure Object Storage bucket where the input data file is located.
By default, the [DEFAULT] profile in the Oracle Cloud Infrastructure
CLI configuration file located at ~/.oci/config is used to establish
a connection to the bucket. You can substitute an alternative profile to
be used for the connection with the ociConfigFile and ociProfile
options. For instructions to set up a CLI configuration file, see SDK and
CLI Configuration File.

osNamespace: "string" Added in MySQL Shell 8.0.21. The Oracle Cloud Infrastructure
namespace where the Object Storage bucket named by
osBucketName is located. The namespace for an Object Storage
bucket is displayed in the Bucket Information tab of the bucket details
page in the Oracle Cloud Infrastructure console, or can be obtained
using the Oracle Cloud Infrastructure command line interface.

ociConfigFile: "string" Added in MySQL Shell 8.0.21. An Oracle Cloud Infrastructure CLI
configuration file that contains the profile to use for the connection,
instead of the one in the default location ~/.oci/config.

ociProfile: "string" Added in MySQL Shell 8.0.21. The profile name of the Oracle
Cloud Infrastructure profile to use for the connection, instead of the
[DEFAULT] profile in the Oracle Cloud Infrastructure CLI configuration
file used for the connection.

characterSet: "charset" Added in MySQL Shell 8.0.21. This option specifies a character set
encoding with which the input data is interpreted during the import.
Setting the option to binary means that no conversion is done during
the import. When you omit this option, the import uses the character
set specified by the character_set_database system variable to
interpret the input data.

bytesPerChunk: "size" For a list of multiple input data files, this option is not available. For a
single input data file, this option specifies the number of bytes (plus any
additional bytes required to reach the end of the row) that threads send
for each LOAD DATA call to the target server. The utility distributes the
data into chunks of this size for threads to pick up and send to the target
server. The chunk size can be specified as a number of bytes, or using

248

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

the suffixes k (kilobytes), M (megabytes), G (gigabytes). For example,
bytesPerChunk="2k" makes threads send chunks of approximately
2 kilobytes. The minimum chunk size is 131072 bytes, and the default
chunk size is 50M.

threads: number The maximum number of parallel threads to use to send the data in the
input file or files to the target server. If you do not specify a number of
threads, the default maximum is 8. For a list of multiple input data files,
the utility creates the specified or maximum number of threads. For
a single input data file, the utility calculates an appropriate number of
threads to create up to this maximum, using the following formula:

min{max{1, threads}, chunks}}

where threads is the maximum number of threads, and chunks is the
number of chunks that the data will be split into, which is calculated by
dividing the file size by the bytesPerChunk size then adding 1. The
calculation ensures that if the maximum number of threads exceeds the
number of chunks that will actually be sent, the utility does not create
more threads than necessary.

Compressed files cannot be distributed into chunks, so instead the utility
uses its parallel connections to upload multiple files at a time. If there is
only one input data file, the upload of a compressed file can only use a
single connection.

maxRate: "rate" The maximum limit on data throughput in bytes per second per thread.
Use this option if you need to avoid saturating the network or the I/
O or CPU for the client host or target server. The maximum rate can
be specified as a number of bytes, or using the suffixes k (kilobytes),
M (megabytes), G (gigabytes). For example, maxRate="5M" limits
each thread to 5MB of data per second, which for eight threads gives a
transfer rate of 40MB/second. The default is 0, meaning that there is no
limit.

showProgress: [true |
false]

Display (true) or hide (false) progress information for the import. The
default is true if stdout is a terminal (tty), and false otherwise.

11.5 Instance Dump Utility, Schema Dump Utility, and Table Dump
Utility

MySQL Shell's instance dump utility util.dumpInstance() and schema dump utility
util.dumpSchemas(), introduced in MySQL Shell 8.0.21, support the export of all schemas or a
selected schema from an on-premise MySQL instance into an Oracle Cloud Infrastructure Object Storage
bucket or a set of local files. The table dump utility util.dumpTables(), introduced in MySQL Shell
8.0.22, supports the same operations for a selection of tables or views from a schema. The exported items
can then be imported into a MySQL Database Service DB System (a MySQL DB System, for short) or a
MySQL Server instance using the util.loadDump() utility (see Section 11.6, “Dump Loading Utility”). To
get the best functionality, always use the most recent version available of MySQL Shell's dump and dump
loading utilities.

MySQL Shell's instance dump utility, schema dump utility, and table dump utility provide Oracle Cloud
Infrastructure Object Storage streaming, MySQL Database Service compatibility checks and modifications,
parallel dumping with multiple threads, and file compression, which are not provided by mysqldump.

249

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

Progress information is displayed during the dump. You can carry out a dry run with your chosen set of
dump options to show information about what actions would be performed, what items would be dumped,
and (for the instance dump utility and schema dump utility) what MySQL Database Service compatibility
issues would need to be fixed, when you run the utility for real with those options.

When choosing a destination for the dump files, note that for import into a MySQL DB System, the MySQL
Shell instance where you run the dump loading utility must be installed on an Oracle Cloud Infrastructure
Compute instance that has access to the MySQL DB System. If you dump the instance, schema, or tables
to an Object Storage bucket, you can access the Object Storage bucket from the Compute instance. If you
create the dump files on your local system, you need to transfer them to the Oracle Cloud Infrastructure
Compute instance using using the copy utility of your choice, depending on the operating system you
chose for your Compute instance.

The dumps created by MySQL Shell's instance dump utility, schema dump utility, and table dump utility
comprise DDL files specifying the schema structure, and tab-separated .tsv files containing the data.
You can also choose to produce the DDL files only or the data files only, if you want to set up the exported
schema as a separate exercise from populating it with the exported data. You can choose whether or not
to lock the instance for backup during the dump for data consistency. By default, the dump utilities chunk
table data into multiple data files and compress the files.

If you need to dump the majority of the schemas in a MySQL instance, as an alternative strategy, you
can use the instance dump utility rather than the schema dump utility, and specify the excludeSchemas
option to list those schemas that are not to be dumped. Similarly, if you need to dump the majority of the
tables in a schema, you can use the schema dump utility with the excludeTables option rather than
the table dump utility. The information_schema, mysql, ndbinfo, performance_schema, and
sys schemas are always excluded from an instance dump. The data for the mysql.apply_status,
mysql.general_log, mysql.schema, and mysql.slow_log tables is always excluded from a schema
dump, although their DDL statements are included. You can also choose to include or exclude users and
their roles and grants, events, routines, and triggers.

By default, the time zone is standardized to UTC in all the timestamp data in the dump output, which
facilitates moving data between servers with different time zones and handling data that has multiple time
zones. You can use the tzUtc: false option to keep the original timestamps if preferred.

The MySQL Shell dump loading utility util.loadDump() supports loading exported instances and
schemas from an Object Storage bucket using a pre-authenticated request (PAR). From MySQL Shell
8.0.22 to 8.0.26, instances and schemas must be exported with the ociParManifest enabled to permit a
load operation from Object Storage using a PAR. For details, see the description for the ociParManifest
option. From MySQL Shell 8.0.27, with the introduction of support for PARs for all objects in a bucket or
objects in a bucket with a specific prefix, enabling the ociParManifest option when exporting instances
and schemas is no longer strictly necessary. For information about loading dumps using a PAR, see
Section 11.6, “Dump Loading Utility”.

The following requirements apply to dumps using the instance dump utility, schema dump utility, and table
dump utility:

• The utilities only support General Availability (GA) releases of MySQL Server versions.

• MySQL 5.7 or later is required for the destination MySQL instance.

• For the source MySQL instance, dumping from MySQL 5.7 or later is fully supported in all MySQL Shell
releases where the utilities are available. From MySQL Shell 8.0.22 through MySQL Shell 8.0.25, it is
possible to dump an instance, schema, or table from a MySQL 5.6 instance and load it into a MySQL 5.7
or later destination, but dumping user accounts from MySQL 5.6 is not supported. From MySQL Shell
8.0.26, dumping user accounts from MySQL 5.6 is supported.

250

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

• Object names in the instance or schema must be in the latin1 or utf8 characterset.

• Data consistency is guaranteed only for tables that use the InnoDB storage engine.

• The minimum required set of privileges that the user account used to run the utility must have on all the
schemas involved is as follows: BACKUP_ADMIN, EVENT, RELOAD, SELECT, SHOW VIEW, and TRIGGER.

• If the consistent option is set to false, the BACKUP_ADMIN and RELOAD privileges are not
required.

• If the consistent option is set to true, which is the default, the LOCK TABLES privilege on all
dumped tables can substitute for the RELOAD privilege if the latter is not available.

• If the dump is from a MySQL 5.6 or MySQL 5.7 instance, the EXECUTE privilege is also required if a
view in the dump calls a function to get its data (up until MySQL 8.0.27, when it is no longer needed).

• If the dump is from a MySQL 5.6 instance and includes user accounts (which is possible only with the
instance dump utility), the SUPER privilege is also required.

• From MySQL Shell 8.0.24, the user account used to run the utility needs the REPLICATION
CLIENT privilege in order for the utility to be able to include the binary log file name and position
in the dump metadata. If the user ID does not have that privilege, the dump continues but does
not include the binary log information. The binary log information can be used after loading the
dumped data into the replica server to set up replication with a non-GTID source server, using the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the CHANGE REPLICATION SOURCE TO
statement (which is available from MySQL Server 8.0.23).

• The upload method used to transfer files to an Oracle Cloud Infrastructure Object Storage bucket has a
file size limit of 1.2 TiB. In MySQL Shell 8.0.21, the multipart size setting means that the numeric limit on
multiple file parts applies first, creating a limit of approximately 640 GB. From MySQL Shell 8.0.22, the
multipart size setting has been changed to allow the full file size limit.

• The utilities convert columns with data types that are not safe to be stored in text form (such as BLOB) to
Base64. The size of these columns therefore must not exceed approximately 0.74 times the value of the
max_allowed_packet system variable (in bytes) that is configured on the target MySQL instance.

• For the table dump utility, exported views and triggers must not use qualified names to reference other
views or tables.

• The table dump utility does not dump routines, so any routines referenced by the dumped objects (for
example, by a view that uses a function) must already exist when the dump is loaded.

• For import into a MySQL DB System, set the ocimds option to true, to ensure compatibility with
MySQL Database Service.

• For compatibility with MySQL Database Service, all tables must use the InnoDB storage engine. The
ocimds option checks for any exceptions found in the dump, and the compatibility option alters the
dump files to replace other storage engines with InnoDB.

• For the instance dump utility and schema dump utility, for compatibility with MySQL Database Service,
all tables in the instance or schema must be located in the MySQL data directory and must use the
default schema encryption. The ocimds option alters the dump files to apply these requirements.

• A number of other security related restrictions and requirements apply to items such as tablespaces and
privileges for compatibility with MySQL Database Service. The ocimds option checks for any exceptions
found during the dump, and the compatibility option automatically alters the dump files to resolve
some of the compatibility issues. You might need (or prefer) to make some changes manually. For more
details, see the description for the compatibility option.

251

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_event
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_trigger
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

• For MySQL Database Service High Availability, which uses Group Replication, primary keys are required
on every table. From MySQL Shell 8.0.24, the ocimds option checks and reports an error for any tables
in the dump that are missing primary keys. The compatibility option can be set to ignore missing
primary keys if you do not need them, or to notify MySQL Shell’s dump loading utility to add primary keys
in invisible columns where they are not present. For details, see the description for the compatibility
option. If possible, instead of managing this in the utility, consider creating primary keys in the tables on
the source server before dumping them again.

The instance dump utility, schema dump utility, and table dump utility use the MySQL Shell global session
to obtain the connection details of the target MySQL server from which the export is carried out. You
must open the global session (which can have an X Protocol connection or a classic MySQL protocol
connection) before running one of the utilities. The utilities open their own sessions for each thread,
copying options such as connection compression and SSL options from the global session, and do not
make any further use of the global session.

In the MySQL Shell API, the instance dump utility, schema dump utility, and table dump utility are functions
of the util global object, and have the following signatures:

util.dumpInstance(outputUrl[, options])
util.dumpSchemas(schemas, outputUrl[, options])
util.dumpTables(schema, tables, outputUrl[, options])

For the schema dump utility, schemas specifies a list of one or more schemas to be dumped from the
MySQL instance.

For the table dump utility, schema specifies the schema that contains the items to be dumped, and
tables is an array of strings specifying the tables or views to be dumped. From MySQL Shell 8.0.23, the
table dump includes the information required to set up the specified schema in the target MySQL instance,
although it can be loaded into an alternative target schema by using the dump loading utility's schema
option. In MySQL Shell 8.0.22, schema information is not included, so the dump files produced by this
utility must be loaded into an existing target schema.

If you are dumping to the local filesystem, outputUrl is a string specifying the path to a local directory
where the dump files are to be placed. You can specify an absolute path or a path relative to the current
working directory. You can prefix a local directory path with the file:// schema. In this example, the
connected MySQL instance is dumped to a local directory, with some modifications made in the dump files
for compatibility with MySQL Database Service. The user first carries out a dry run to inspect the schemas
and view the compatibility issues, then runs the dump with the appropriate compatibility options applied to
remove the issues:

shell-js> util.dumpInstance("C:/Users/hanna/worlddump", {dryRun: true, ocimds: true})
Checking for compatibility with MySQL Database Service 8.0.21
...
Compatibility issues with MySQL Database Service 8.0.21 were found. Please use the
'compatibility' option to apply compatibility adaptations to the dumped DDL.
Util.dumpInstance: Compatibility issues were found (RuntimeError)
shell-js> util.dumpInstance("C:/Users/hanna/worlddump", {
 > ocimds: true, compatibility: ["strip_definers", "strip_restricted_grants"]})

The target directory must be empty before the export takes place. If the directory does not yet exist in
its parent directory, the utility creates it. For an export to a local directory, the directories created during
the dump are created with the access permissions rwxr-x---, and the files are created with the access
permissions rw-r----- (on operating systems where these are supported). The owner of the files and
directories is the user account that is running MySQL Shell.

The table dump utility can be used to select individual tables from a schema, for example if you want
to transfer tables between schemas. In this example in MySQL Shell's JavaScript mode, the tables
employees and salaries from the hr schema are exported to the local directory emp, which the utility
creates in the current working directory:

252

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

shell-js> util.dumpTables("hr", ["employees", "salaries"], "emp")

If you are dumping to an Oracle Cloud Infrastructure Object Storage bucket, outputUrl is a path that will
be used to prefix the dump files in the bucket, to simulate a directory structure. Use the osBucketName
option to provide the name of the Object Storage bucket, and the osNamespace option to identify the
namespace for the bucket. In this example in MySQL Shell's Python mode, the user dumps the world
schema from the connected MySQL instance to an Object Storage bucket, with the same compatibility
modifications as in the previous example:

shell-py> util.dumpSchemas(["world"], "worlddump", {
 > "osBucketName": "hanna-bucket", "osNamespace": "idx28w1ckztq",
 > "ocimds": "true", "compatibility": ["strip_definers", "strip_restricted_grants"]})

In the Object Storage bucket, the dump files all appear with the prefix worlddump, for example:

worlddump/@.done.json
worlddump/@.json
worlddump/@.post.sql
worlddump/@.sql
worlddump/world.json
worlddump/world.sql
worlddump/world@city.json
worlddump/world@city.sql
worlddump/world@city@@0.tsv.zst
worlddump/world@city@@0.tsv.zst.idx
...

The namespace for an Object Storage bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface. A connection is established to the Object Storage bucket using
the default profile in the default Oracle Cloud Infrastructure CLI configuration file, or alternative details
that you specify using the ociConfigFile and ociProfile options. For instructions to set up a CLI
configuration file, see SDK and CLI Configuration File

Beginning with MySQL Shell 8.0.27, all three of these dump utilities are partition aware (see Partitioning, in
the MySQL Manual). When a table being dumped is partitioned, each partition is treated as an independent
table; if the table has subpartitions each subpartition is treated as an independent table. This also means
that, when chunking is enabled, each partition or subpartition of a partitioned or subpartitioned table
is chunked independently. The base names of dump files created for partitioned tables use the format
schema@table@partition, where schema and table are, respectively the names of the parent
schema and table, and partition is the URL-encoded name of the partition or subpartition.

util.loadDump() from MySQL Shell 8.0.27 or later can load dumps of partitioned tables from partition-
aware versions of the dump utilities; util.loadDump() from versions of MySQL Shell previous to 8.0.27
cannot load dumps from MySQL Shell 8.0.27 or later. This is due to the inclusion of information beginning
with MySQL Shell 8.0.27 in the dump's metadata about features used in creating the dump; this addition is
not backward compatible.

options is a dictionary of options that can be omitted if it is empty. The following options are available for
the instance dump utility, the schema dump utility, and the table dump utility, unless otherwise indicated:

dryRun: [true | false] Display information about what would be dumped with the specified
set of options, and about the results of MySQL Database Service
compatibility checks (if the ocimds option is specified), but do not
proceed with the dump. Setting this option enables you to list out all of
the compatibility issues before starting the dump. The default is false.

osBucketName: "string" The name of the Oracle Cloud Infrastructure Object Storage bucket
to which the dump is to be written. By default, the [DEFAULT] profile
in the Oracle Cloud Infrastructure CLI configuration file located at

253

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

~/.oci/config is used to establish a connection to the bucket. You
can substitute an alternative profile to be used for the connection with
the ociConfigFile and ociProfile options. For instructions to set
up a CLI configuration file, see SDK and CLI Configuration File.

osNamespace: "string" The Oracle Cloud Infrastructure namespace where the Object Storage
bucket named by osBucketName is located. The namespace for an
Object Storage bucket is displayed in the Bucket Information tab of
the bucket details page in the Oracle Cloud Infrastructure console, or
can be obtained using the Oracle Cloud Infrastructure command line
interface.

ociConfigFile: "string" An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/.oci/config.

ociProfile: "string" The profile name of the Oracle Cloud Infrastructure profile to use for
the connection, instead of the [DEFAULT] profile in the Oracle Cloud
Infrastructure CLI configuration file used for the connection.

threads: int The number of parallel threads to use to dump chunks of data from the
MySQL instance. Each thread has its own connection to the MySQL
instance. The default is 4.

maxRate: "string" The maximum number of bytes per second per thread for data read
throughput during the dump. The unit suffixes k for kilobytes, M for
megabytes, and G for gigabytes can be used (for example, setting 100M
limits throughput to 100 megabytes per second per thread). Setting 0
(which is the default value), or setting the option to an empty string,
means no limit is set.

showProgress: [true |
false]

Display (true) or hide (false) progress information for the dump. The
default is true if stdout is a terminal (tty), such as when MySQL
Shell is in interactive mode, and false otherwise. The progress
information includes the estimated total number of rows to be dumped,
the number of rows dumped so far, the percentage complete, and the
throughput in rows and bytes per second.

compression: "string" The compression type to use when writing data files for the dump. The
default is to use zstd compression (zstd). The alternatives are to use
gzip compression (gzip) or no compression (none).

excludeSchemas: array of
strings

(Instance dump utility only) Exclude the named schemas from the
dump. Note that the information_schema, mysql, ndbinfo,
performance_schema, and sys schemas are always excluded from
an instance dump. If a named schema does not exist or is excluded
anyway, the utility ignores the item.

excludeTables: array of
strings

(Instance dump utility and schema dump utility only) Exclude
the named tables from the dump. Table names must be qualified
with a valid schema name, and quoted with the backtick character
if needed. Note that the data for the mysql.apply_status,
mysql.general_log, mysql.schema, and mysql.slow_log
tables is always excluded from a schema dump, although their DDL
statements are included. Tables named by the excludeTables option
do not have DDL files or data files in the dump. If a named table does

254

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

not exist in the schema or the schema is not included in the dump, the
utility ignores the item.

all: [true | false] (Table dump utility only) Setting this option to true includes all views
and tables from the specified schema in the dump. When you use this
option, set the tables parameter to an empty array. The default is
false.

users: [true | false] (Instance dump utility only) Include (true) or exclude (false) users
and their roles and grants in the dump. The default is true, so users
are included by default. The schema dump utility and table dump utility
do not include users, roles, and grants in a dump.

From MySQL Shell 8.0.22, you can use the excludeUsers or
includeUsers option to specify individual user accounts to be
excluded or included in the dump files. These options can also be used
with MySQL Shell's dump loading utility util.loadDump() to exclude
or include individual user accounts at the point of import, depending on
the requirements of the target MySQL instance.

Note

1. Dumping user accounts from a MySQL 5.6
instance is not supported. If you are dumping
from this version, set users: false.

2. In MySQL Shell 8.0.21, attempting to import
users to a MySQL DB System causes the
import to fail if the root user account or
another restricted user account name is
present in the dump files, so the import
of users to a MySQL DB System is not
supported in that release.

excludeUsers: array of
strings

(Instance dump utility only) Exclude the named user accounts from
the dump files. This option is available from MySQL Shell 8.0.22, and
you can use it to exclude user accounts that are not accepted for import
to a MySQL DB System, or that already exist or are not wanted on the
target MySQL instance. Specify each user account string in the format
"'user_name'@'host_name'" for an account that is defined with
a user name and host name, or "'user_name'" for an account that
is defined with a user name only. If you do not supply a host name, all
accounts with that user name are excluded. If a named user account
does not exist, the utility ignores the item.

includeUsers: array of
strings

(Instance dump utility only) Include only the named user accounts
in the dump files. Specify each user account string as for the
excludeUsers option. This option is available from MySQL Shell
8.0.22, and you can use it as an alternative to excludeUsers if
only a few user accounts are required in the dump. You can also
specify both options, in which case a user account matched by both an
includeUsers string and an excludeUsers string is excluded.

events: [true | false] (Instance dump utility and schema dump utility only) Include (true)
or exclude (false) events for each schema in the dump. The default is
true.

255

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

routines: [true |
false]

(Instance dump utility and schema dump utility only) Include (true)
or exclude (false) functions and stored procedures for each schema in
the dump. The default is true. Note that user-defined functions are not
included, even when routines is set to true.

triggers: [true |
false]

Include (true) or exclude (false) triggers for each table in the dump.
The default is true.

defaultCharacterSet:
"string"

The character set to be used during the session connections
that are opened by MySQL Shell to the server for the dump. The
default is utf8mb4. The session value of the system variables
character_set_client, character_set_connection, and
character_set_results are set to this value for each connection.
The character set must be permitted by the character_set_client
system variable and supported by the MySQL instance.

tzUtc: [true | false] Include a statement at the start of the dump to set the time zone to
UTC. All timestamp data in the dump output is converted to this time
zone. The default is true, so timestamp data is converted by default.
Setting the time zone to UTC facilitates moving data between servers
with different time zones, or handling a set of data that has multiple
time zones. Set this option to false to keep the original timestamps if
preferred.

consistent: [true |
false]

Enable (true) or disable (false) consistent data dumps by locking
the instance for backup during the dump. The default is true. When
true is set, the utility sets a global read lock using the FLUSH TABLES
WITH READ LOCK statement (if the user ID used to run the utility has
the RELOAD privilege), or a series of table locks using LOCK TABLES
statements (if the user ID does not have the RELOAD privilege but does
have LOCK TABLES). The transaction for each thread is started using
the statements SET SESSION TRANSACTION ISOLATION LEVEL
REPEATABLE READ and START TRANSACTION WITH CONSISTENT
SNAPSHOT. When all threads have started their transactions, the
instance is locked for backup (as described in LOCK INSTANCE FOR
BACKUP and UNLOCK INSTANCE Statements) and the global read
lock is released.

ddlOnly: [true |
false]

Setting this option to true includes only the DDL files for the dumped
items in the dump, and does not dump the data. The default is false.

dataOnly: [true |
false]

Setting this option to true includes only the data files for the dumped
items in the dump, and does not include DDL files. The default is
false.

chunking: [true |
false]

Enable (true) or disable (false) chunking for table data, which
splits the data for each table into multiple files. The default is true, so
chunking is enabled by default. Use bytesPerChunk to specify the
chunk size. In order to chunk table data into separate files, a primary
key or unique index must be defined for the table, which the utility uses
to select an index column to order and chunk the data. If a table does
not contain either of these, a warning is displayed and the table data is
written to a single file. If you set the chunking option to false, chunking
does not take place and the utility creates one data file for each table.

256

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/8.0/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/8.0/en/lock-instance-for-backup.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

bytesPerChunk: "string" Sets the approximate number of bytes to be written to each data file
when chunking is enabled. The unit suffixes k for kilobytes, M for
megabytes, and G for gigabytes can be used. The default is 64 MB
(64M) from MySQL Shell 8.0.22 (32 MB in MySQL Shell 8.0.21), and the
minimum is 128 KB (128k). Specifying this option sets chunking to
true implicitly. The utility aims to chunk the data for each table into files
each containing this amount of data before compression is applied. The
chunk size is an average and is calculated based on table statistics and
explain plan estimates.

ocimds: [true | false] Setting this option to true enables checks and modifications for
compatibility with MySQL Database Service. The default is false.
From MySQL Shell 8.0.23, this option is available for all the utilities, and
before that release, it is only available for the instance dump utility and
schema dump utility.

When this option is set to true, DATA DIRECTORY, INDEX
DIRECTORY, and ENCRYPTION options in CREATE TABLE statements
are commented out in the DDL files, to ensure that all tables are located
in the MySQL data directory and use the default schema encryption.
Checks are carried out for any storage engines in CREATE TABLE
statements other than InnoDB, for grants of unsuitable privileges to
users or roles, and for other compatibility issues. If any non-conforming
SQL statement is found, an exception is raised and the dump is halted.
Use the dryRun option to list out all of the issues with the items in the
dump before the dumping process is started. Use the compatibility
option to automatically fix the issues in the dump output.

From MySQL Shell 8.0.22 to MySQL Shell 8.0.26, when this option
is set to true and an Object Storage bucket name is supplied using
the osBucketName option, the ociParManifest option also
defaults to true, meaning that a manifest file is generated contains
pre-authenticated requests (PARs) for all of the files in the dump,
and the dump files can only be accessed using these PARs. From
MySQL Shell 8.0.27, with the introduction of support for PARs for all
objects in a bucket or objects in a bucket with a specific prefix, the
ociParManifest option is set to false by default and is only enabled
if set to true explicitly.

compatibility: array of
strings

Apply the specified requirements for compatibility with MySQL Database
Service for all tables in the dump output, altering the dump files as
necessary. From MySQL Shell 8.0.23, this option is available for all
the utilities, and before that release, it is only available for the instance
dump utility and schema dump utility.

The following modifications can be specified as an array of strings:

force_innodb Change CREATE TABLE statements
to use the InnoDB storage engine
for any tables that do not already use
it.

skip_invalid_accounts Remove user accounts created
with external authentication plugins
that are not supported in MySQL

257

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

Database Service. From MySQL
Shell 8.0.26, this option also
removes user accounts that do not
have passwords set, except where
an account with no password is
identified as a role, in which case it
is dumped using the CREATE ROLE
statement.

strip_definers Remove the DEFINER clause from
views, routines, events, and triggers,
so these objects are created with
the default definer (the user invoking
the schema), and change the SQL
SECURITY clause for views and
routines to specify INVOKER instead
of DEFINER. MySQL Database
Service requires special privileges to
create these objects with a definer
other than the user loading the
schema. If your security model
requires that views and routines have
more privileges than the account
querying or calling them, you must
manually modify the schema before
loading it.

strip_restricted_grants Remove specific privileges that
are restricted by MySQL Database
Service from GRANT statements,
so users and their roles cannot be
given these privileges (which would
cause user creation to fail). From
MySQL Shell 8.0.22, this option also
removes REVOKE statements for
system schemas (mysql and sys)
if the administrative user account
on an Oracle Cloud Infrastructure
Compute instance does not itself
have the relevant privileges, so
cannot remove them.

strip_tablespaces Remove the TABLESPACE clause
from GRANT statements, so all
tables are created in their default
tablespaces. MySQL Database
Service has some restrictions on
tablespaces.

ignore_missing_pks Make the instance, schema, or table
dump utility ignore any missing
primary keys when the dump is
carried out, so that the ocimds
option can still be used without the

258

https://dev.mysql.com/doc/refman/8.0/en/create-role.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

dump stopping due to this check.
Dumps created with this modification
cannot be loaded into a MySQL
Database Service High Availability
instance, because primary keys
are required for MySQL Database
Service High Availability, which
uses Group Replication. To add
the missing primary keys instead,
use the create_invisible_pks
modification, or consider creating
primary keys in the tables on the
source server.

create_invisible_pks Add a flag in the dump metadata to
notify MySQL Shell’s dump loading
utility to add primary keys in invisible
columns, for each table that does
not contain a primary key. This
modification enables a dump where
some tables lack primary keys to
be loaded into a MySQL Database
Service High Availability instance.
Primary keys are required for MySQL
Database Service High Availability,
which uses Group Replication.

The dump data is unchanged by
this modification, as the tables do
not contain the invisible columns
until they have been processed
by the dump loading utility. The
invisible columns (which are named
"my_row_id") have no impact on
applications that use the uploaded
tables.

Adding primary keys in this way does
not yet enable inbound replication
of the modified tables to a High
Availability instance, as that feature
currently requires the primary keys
to exist in both the source server
and the replica server. If possible,
instead of using this modification,
consider creating primary keys in
the tables on the source server,
before dumping them again. From
MySQL 8.0.23, you can do this
with no impact to applications by
using invisible columns to hold the
primary keys. This is a best practice
for performance and usability, and
helps the dumped database to work

259

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

seamlessly with MySQL Database
Service.

Note

MySQL
Shell’s dump
loading utility
can only
be used to
load dumps
created
with the
create_invisible_pks
modification
onto a target
MySQL
instance
at MySQL
Server 8.0.24
or later, due
to a limitation
on hidden
columns
in MySQL
8.0.23. The
dump loading
utility in
versions
of MySQL
Shell before
MySQL Shell
8.0.24 silently
ignores
the dump
metadata
flag and does
not add the
primary keys,
so ensure that
you use the
latest version
of the utility.

ociParManifest: [true |
false]

Setting this option to true generates a PAR for read access (an Object
Read PAR) for each item in the dump, and a manifest file listing all the
PAR URLs. The PARs expire after a week by default, which you can
change using the ociParExpireTime option.

This option is available from MySQL Shell 8.0.22 for the instance dump
utility and schema dump utility, and can only be used when exporting to

260

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

an Object Storage bucket (so with the osBucketName option set). From
MySQL Shell 8.0.23, this option is available for all the dump utilities.

From MySQL Shell 8.0.22 to MySQL Shell 8.0.26, when the ocimds
option is set to true and an Object Storage bucket name is supplied
using the osBucketName option, ociParManifest is set to true
by default, otherwise it is set to false by default. From MySQL Shell
8.0.27, with the introduction of support for PARs for all objects in a
bucket or objects in a bucket with a specific prefix, ociParManifest is
set to false by default and is only enabled if set to true explicitly.

The user named in the Oracle Cloud Infrastructure profile that is used
for the connection to the Object Storage bucket (the DEFAULT user
or another user as named by the ociProfile option) is the creator
for the PARs. This user must have PAR_MANAGE permissions and
appropriate permissions for interacting with the objects in the bucket, as
described in Using Pre-Authenticated Requests. If there is an issue with
creating the PAR for any object, the associated file is deleted and the
dump is stopped.

To enable loading of dump files created with the ociParManifest
option enabled, create a read-only PAR for the manifest file
(@.manifest.json) following the instructions in Using Pre-
Authenticated Requests. You can do this while the dump is still in
progress if you want to start loading the dump before it completes.
You can create this PAR using any user account that has the required
permissions. The PAR URL must then be used by the dump loading
utility to access the dump files through the manifest file. The URL is only
displayed at the time of creation, so copy it to durable storage.

Important

Before using this access method, assess the
business requirement for and the security
ramifications of pre-authenticated access to a
bucket or objects. A PAR gives anyone who has
the PAR access to the targets identified in the
request. Carefully manage the distribution of
PARs.

ociParExpireTime:
"string"

The expiry time for the PARs that are generated when the
ociParManifest option is set to true. The default is the current time
plus one week, in UTC format.

This option is available from MySQL Shell 8.0.22 for the instance dump
utility and schema dump utility. From MySQL Shell 8.0.23, this option is
available for all the dump utilities.

The expiry time must be formatted as an RFC 3339 timestamp, as
required by Oracle Cloud Infrastructure when creating a PAR. The
format is YYYY-MM-DDTHH-MM-SS immediately followed by either the
letter Z (for UTC time), or the UTC offset for the local time expressed
as [+|-]hh:mm, for example 2020-10-01T00:09:51.000+02:00.
MySQL Shell does not validate the expiry time, but any formatting error

261

https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm

Dump Loading Utility

causes the PAR creation to fail for the first file in the dump, which stops
the dump.

11.6 Dump Loading Utility

MySQL Shell's dump loading utility util.loadDump(), introduced in MySQL Shell 8.0.21, supports the
import into a MySQL Database Service DB System (a MySQL DB System, for short) or a MySQL Server
instance of schemas or tables dumped using MySQL Shell's Section 11.5, “Instance Dump Utility, Schema
Dump Utility, and Table Dump Utility”. The dump loading utility provides data streaming from remote
storage, parallel loading of tables or table chunks, progress state tracking, resume and reset capability,
and the option of concurrent loading while the dump is still taking place. To get the best functionality,
always use the most recent version available of MySQL Shell's dump and dump loading utilities.

For import into a MySQL DB System, MySQL Shell must be installed on an Oracle Cloud Infrastructure
Compute instance that has access to the MySQL DB System. If the dump files are in an Oracle Cloud
Infrastructure Object Storage bucket, you can access the Object Storage bucket from the Compute
instance. If the dump files are on your local system, you need to transfer them to the Oracle Cloud
Infrastructure Compute instance using the copy utility of your choice, depending on the operating system
you chose for your Compute instance. Ensure the dump was created with the ocimds option set to true
in MySQL Shell's instance dump utility or schema dump utility, for compatibility with MySQL Database
Service. MySQL Shell's table dump utility does not use this option.

Note

1. MySQL 5.7 or later is required for the destination MySQL instance.

2. The dump loading utility uses the LOAD DATA LOCAL INFILE statement, so
the global setting of the local_infile system variable on the target MySQL
instance must be ON for the duration of the import. By default, this system
variable is set to ON in a standard MySQL DB System configuration.

3. The LOAD DATA LOCAL INFILE statement uses nonrestrictive data
interpretation, which turns errors into warnings and continues with the load
operation. This process can include assigning default values and implicit default
values to fields, and converting invalid values to the closest valid value for the
column data type. For details of the statement's behavior, see LOAD DATA.

4. On the target MySQL instance, the dump loading utility checks whether the
sql_require_primary_key system variable is set to ON, and if it is, returns
an error if there is a table in the dump files with no primary key. By default, this
system variable is set to OFF in a standard MySQL DB System configuration.

5. The dump loading utility does not automatically apply the gtid_executed
GTID set from the source MySQL instance on the target MySQL instance. The
GTID set is included in the dump metadata from MySQL Shell's instance dump
utility, schema dump utility, or table dump utility, as the gtidExecuted field in
the @.json dump file. To apply these GTIDs on the target MySQL instance for
use with replication, use the updateGtidSet option or import them manually,
depending on the release of the target MySQL instance and the MySQL Shell
release. From MySQL Shell 8.0.23, this is supported on MySQL DB System
instances. See the description of the updateGtidSet option for details.

For output produced by the instance dump utility or schema dump utility, MySQL Shell's dump loading
utility uses the DDL files and tab-separated .tsv data files to set up the server instance or schema in the
target MySQL instance, then loads the data. Dumps containing only the DDL files or only the data files can

262

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_require_primary_key
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

Dump Loading Utility

be used to perform these tasks separately. The dump loading utility also lets you separately apply the DDL
files and data files from a regular dump that contains both sorts of files.

For output produced by MySQL Shell's table dump utility, from MySQL Shell 8.0.23, the dump contains the
information required to set up the schema that originally contained the table. By default, from that release,
the schema is recreated in the target MySQL instance if it does not already exist. Alternatively, you can
specify the schema option in the dump loading utility to load the table into an alternative schema in the
target MySQL instance, which must exist there. In MySQL Shell 8.0.22, the table dump utility's files do not
contain the schema information, so the target schema must exist in the target MySQL instance. In that
release, by default, the current schema of the global MySQL Shell session is used as the target schema, or
the schema option can be used to name the schema.

You can customize the import with further options in the dump loading utility:

• You can select individual tables or schemas to import or to exclude from the import.

• Users and their roles and grants are excluded by default, but you can choose to import them.

• You can specify a different character set for the data in the target MySQL instance to that used in the
dump files.

• You can update the ANALYZE TABLE histograms, even after the data has already been loaded.

• You can choose to skip binary logging on the target MySQL instance during the course of the import
using a SET sql_log_bin=0 statement.

You can carry out a dry run with your chosen set of dump loading options to show what actions would be
performed when you run the utility for real with those options.

The waitDumpTimeout option lets you apply a dump that is still in the process of being created. Tables
are loaded as they become available, and the utility waits for the specified number of seconds after new
data stops arriving in the dump location. When the timeout elapses, the utility assumes the dump is
complete and stops importing.

Progress state for an import is stored in a persistent progress state file, which records steps successfully
completed and steps that were interrupted or failed. By default, the progress state file is named load-
progress.server_uuid.json and created in the dump directory, but you can choose a different name
and location. The dump loading utility references the progress state file when you resume or retry the
import for a dump, and skips completed steps. De-duplication is automatically managed for tables that
were partially loaded. If you interrupt a dump in progress by using Ctrl + C, on the first use of that key
combination, no new tasks are started by the utility but existing tasks continue. Pressing Ctrl + C again
stops existing tasks, resulting in error messages. In either case, the utility can still resume the import from
where it stopped.

You can choose to reset the progress state and start the import for a dump again from the beginning, but
in this case the utility does not skip objects that were already created and does not manage de-duplication.
If you do this, to ensure a correct import, you must manually remove from the target MySQL instance all
previously loaded objects from that dump, including schemas, tables, users, views, triggers, routines, and
events. Otherwise, the import stops with an error if an object in the dump files already exists in the target
MySQL instance. With appropriate caution, you may use the ignoreExistingObjects option to make
the utility report duplicate objects but skip them and continue with the import. Note that the utility does not
check whether the contents of the object in the target MySQL instance and in the dump files are different,
so it is possible for the resulting import to contain incorrect or invalid data.

Important

Do not change the data in the dump files between a dump stopping and a dump
resuming. Resuming a dump after changing the data has undefined behavior and

263

Dump Loading Utility

can lead to data inconsistency and data loss. If you need to change the data after
partially loading a dump, manually drop all objects that were created during the
partial import (as listed in the progress state file), then run the dump loading utility
with the resetProgress option to start again from the beginning.

If you need to modify any data in the dump’s data files before importing it to the target MySQL instance,
you can do this by combining MySQL Shell’s parallel table import utility util.importTable() with the
dump loading utility. To do this, first use the dump loading utility to load only the DDL for the selected table,
to create the table on the target server. Then use the parallel table import utility to capture and transform
data from the output files for the table, and import it to the target table. Repeat that process as necessary
for any other tables where you want to modify the data. Finally, use the dump loading utility to load the
DDL and data for any remaining tables that you do not want to modify, excluding the tables that you did
modify. For a description of the procedure, see Modifying Dumped Data.

MySQL Shell supports loading dump files from an Object Storage bucket using a pre-authenticated request
(PAR). PARs provide a way to let users access a bucket or an object without having their own credentials.

Important

Before using this access method, assess the business requirement for and the
security ramifications of pre-authenticated access to a bucket or objects in a bucket.
A PAR gives anyone who has the PAR access to the targets identified in the
request. Carefully manage the distribution of PARs.

• From MySQL Shell 8.0.27, MySQL Shell supports using a read access PAR (an Object Read PAR)
for all objects in a bucket or objects in a bucket with a specific prefix. For information about creating
bucket PARs and prefix PARs, see Using Pre-Authenticated Requests. When using a bucket PAR
or prefix PAR, the dump loading utility requires a local progress state file. The content of the file is in
JSON format, so a text file with a .json extension is appropriate (for example, progress.json).
The following example shows the syntax for loading dump files using a PAR created for all objects in a
bucket:

shell-js> util.loadDump("BucketPARURL", progressFile: "progress.json"})

The same syntax is used to load objects in a bucket with a specific prefix, but in this case, the PAR URL
includes the prefix:

shell-js> util.loadDump("PrefixPARURL", progressFile: "progress.json"})

• From MySQL Shell 8.0.22, MySQL Shell supports using a read access PAR (an Object Read PAR)
created for a MySQL Shell dump manifest file (@.manifest.json) to load data from an Object Storage
bucket. For information about creating a PAR for a specific object such as a manifest file, see Using Pre-
Authenticated Requests. When the ociParManifest option is enabled, the MySQL Shell dump loading
utility creates a manifest file when exporting data to an Object Storage bucket. The manifest file contains
a PAR for each item in the dump. Prior to MySQL 8.0.27, if the ocimds option is enabled and a bucket
name is provided by the osBucketName option, ociParManifest is enabled automatically. From
MySQL Shell 8.0.27, with the introduction of support for PARs for all objects in a bucket or objects in a
bucket with a specific prefix, the ociParManifest option is set to false by default and is only enabled
if set to true explicitly.

When using a PAR created for a manifest file, a progress state file is required. The content of the file is
in JSON format, so a text file with a .json extension is appropriate (for example, progress.json).
The progress state file can be created in the same prefixed location as the dump files in the Object
Storage bucket, or it can be created locally. If the progress state file is created in the Object Storage
bucket, you must create a read-write access PAR (an Object Read Write PAR) for the progress state file.
For information about creating a PAR for a specific object, see Using Pre-Authenticated Requests. You

264

https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm

Dump Loading Utility

can use any user account with the required permissions to create a PAR for the progress state file. A
local progress state file does not require a PAR. Consider using a local progress state file if you do not
have the permissions required to create a PAR. Note that a local progress file does not permit resuming
progress from a different location in the event of a failure.

Note

Creating a dump with the ociParManifest option enabled generates a
manifest file containing a PAR for each item in the dump. Generating PARs for
each item in a dump is time consuming for large datasets, and an additional PAR
must be created for the manifest file and possibly for a progress state file. Also,
when PARs expire, the dump must be recreated to regenerate PARs for the items
in the dump. For these reasons, using a bucket or prefix PAR (supported from
MySQL Shell 8.0.27) is the recommended method for loading MySQL Shell dump
files from an Object Storage bucket. When using a bucket or prefix PAR, there
is only a single PAR to create and manage, and PARs are not required for each
item in the dump.

The following example shows the syntax for loading dump files using PARs created for the manifest file
and a progress state file. If using a local progress state file, the progressFile option specifies the path
to the local progress state file instead of a PAR URL.

shell-js> util.loadDump("PARURLofManifest", {osBucketName: "mds-bucket",
 osNamespace: "NamespaceID", progressFile: "RWPARUrlOfJsonProgressFile"})

While the dump is still in progress, the dump loading utility monitors and waits for new additions to the
manifest file, rather than to the Object Storage bucket.

The tables in a dump are loaded in parallel by the number of threads you specify using the threads
option, which defaults to 4. If table data was chunked when the dump was created, multiple threads can be
used for a table, otherwise each thread loads one table at a time. The dump loading utility schedules data
imports across threads to maximize parallelism. From MySQL Shell 8.0.27, a pool of background threads is
used to fetch the contents of files. If the dump files were compressed by MySQL Shell's dump utilities, the
dump loading utility handles decompression for them.

By default, fulltext indexes for a table are created only after the table is completely loaded, which speeds
up the import. You can choose to defer all index creation (except the primary index) until each table is
completely loaded. You can also opt to create all indexes during the table import. You can also choose
to disable index creation during the import, and create the indexes afterwards, for example if you want to
make changes to the table structure after loading.

For an additional improvement to data loading performance, you can disable the InnoDB redo log on the
target MySQL instance during the import. Note that this should only be done on a new MySQL Server
instance (not a production system), and this feature is not available on MySQL DB System. For more
information, see Disabling Redo Logging.

The dump loading utility uses the MySQL Shell global session to obtain the connection details of the target
MySQL instance to which the dump is to be imported. You must open the global session (which can have
an X Protocol connection or a classic MySQL protocol connection) before running the utility. The utility
opens its own sessions for each thread, copying options such as connection compression and SSL options
from the global session, and does not make any further use of the global session.

In the MySQL Shell API, the dump loading utility is a function of the util global object, and has the
following signature:

util.loadDump(url[, options])

265

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-redo-log.html#innodb-disable-redo-logging

Dump Loading Utility

If you are importing a dump that is located in the Oracle Cloud Infrastructure Compute instance's filesystem
where you are running the utility, url is a string specifying the path to a local directory containing the dump
files. You can prefix a local directory path with the file:// schema. In this example in MySQL Shell's
JavaScript mode, a dry run is carried out to check that there will be no issues when the dump files are
loaded from a local directory into the connected MySQL instance:

shell-js> util.loadDump("/mnt/data/worlddump", {dryRun: true})

If you are importing a dump from an Oracle Cloud Infrastructure Object Storage bucket, url is the path
prefix that the dump files have in the bucket, which was assigned using the outputUrl parameter
when the dump was created. Use the osBucketName option to provide the name of the Object Storage
bucket, and the osNamespace option to identify the namespace for the bucket. In this example in MySQL
Shell's JavaScript mode, the dump prefixed worlddump is loaded from an Object Storage bucket into the
connected MySQL DB System using 8 threads:

shell-js> util.loadDump("worlddump", {
 threads: 8, osBucketName: "hanna-bucket", osNamespace: "idx28w1ckztq"})

The namespace for an Object Storage bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface. A connection is established to the Object Storage bucket using
the default profile in the default Oracle Cloud Infrastructure CLI configuration file, or alternative details
that you specify using the ociConfigFile and ociProfile options. For instructions to set up a CLI
configuration file, see SDK and CLI Configuration File

util.loadDump() from releases of MySQL Shell previous to 8.0.27 cannot load dumps made by
versions of the MySQL Shell dump utilities from later releases.

options is a dictionary of options that can be omitted if it is empty. The following options are available:

dryRun: [true | false] Display information about what actions would be performed given the
specified options and dump files, including any errors that would be
returned based on the dump contents, but do not proceed with the
import. The default is false.

osBucketName: "string" The name of the Oracle Cloud Infrastructure Object Storage bucket
where the dump files are located. By default, the [DEFAULT] profile
in the Oracle Cloud Infrastructure CLI configuration file located at
~/.oci/config is used to establish a connection to the bucket. You
can substitute an alternative profile to be used for the connection with
the ociConfigFile and ociProfile options. For instructions to set
up a CLI configuration file, see SDK and CLI Configuration File.

osNamespace: "string" The Oracle Cloud Infrastructure namespace where the Object Storage
bucket named by osBucketName is located. The namespace for an
Object Storage bucket is displayed in the Bucket Information tab of
the bucket details page in the Oracle Cloud Infrastructure console, or
can be obtained using the Oracle Cloud Infrastructure command line
interface.

ociConfigFile: "string" An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/.oci/config.

ociProfile: "string" The profile name of the Oracle Cloud Infrastructure profile to use for
the connection, instead of the [DEFAULT] profile in the Oracle Cloud
Infrastructure CLI configuration file used for the connection.

266

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Dump Loading Utility

threads: number The number of parallel threads to use to upload chunks of data to
the target MySQL instance. Each thread has its own connection to
the MySQL instance. The default is 4. if the dump was created with
chunking enabled (which is the default), the utility can use multiple
threads to load data for a table; otherwise a thread is only used for one
table.

backgroundThreads:
number

The number of threads in the pool of background threads used to fetch
the contents of files. This option, and the thread pool, are available from
MySQL Shell 8.0.27. The default is the value of the threads option
for a dump loaded from the local server, or four times the value of the
threads option for a dump loaded from a non-local server.

progressFile: "string" Specifies the path to a local progress state file for tracking load
progress. Other values are permitted depending on the type of load
operation:

When loading a dump from local storage:

• The progressFile option may be omitted. In this case, a progress
state file named load-progress-server-uuid.json is
automatically created in the dump directory.

• The progressFile option can be set to an empty string to disable
progress state tracking, which means that the dump loading utility
cannot resume a partially completed import.

When loading a dump from OCI Object Storage using a pre-
authenticated request (PAR), the progressFile option is mandatory.

• If the load operation is performed using a bucket or prefix PAR, set
the progressFile option to the path of a local progress state file.

• If the load operation is performed using a manifest file PAR, set the
progressFile option to the path of a local progress state file or
specify a write PAR for a progress state file residing in the same
location as the manifest file.

showProgress: [true |
false]

Display (true) or hide (false) progress information for the import. The
default is true if stdout is a terminal (tty), such as when MySQL
Shell is in interactive mode, and false otherwise. The progress
information includes the number of active threads and their actions, the
amount of data loaded so far, the percentage complete and the rate of
throughput. When the progress information is not displayed, progress
state is still recorded in the dump loading utility's progress state file.

resetProgress: [true |
false]

Setting this option to true resets the progress state and starts the
import again from the beginning. The default is false. Note that with
this option, the dump loading utility does not skip objects that were
already created and does not manage de-duplication. If you want to use
this option, to ensure a correct import, you must first manually remove
from the target MySQL instance all previously loaded objects, including
schemas, tables, users, views, triggers, routines, and events from that
dump. Otherwise, the import stops with an error if an object in the dump
files already exists in the target MySQL instance. With appropriate
caution, you may use the ignoreExistingObjects option to make

267

Dump Loading Utility

the utility report duplicate objects but skip them and continue with the
import.

waitDumpTimeout: number Setting this option to a value greater than 0 activates concurrent loading
of the dump while it is still being produced. The value is a timeout (in
seconds) for which the utility waits for further data after all uploaded
data chunks in the dump location have been processed. This allows the
utility to import the dump while it is still in the process of being created.
Data is processed as it becomes available, and the import stops when
the timeout is exceeded with no further data appearing in the dump
location. The default setting, 0, means that the utility marks the dump
as complete when all uploaded data chunks have been processed and
does not wait for more data. With the default setting, concurrent loading
is disabled.

ignoreExistingObjects:
[true | false]

Import the dump even if it contains objects that already exist in the
target schema in the MySQL instance. The default is false, meaning
that an error is issued and the import stops when a duplicate object
is found, unless the import is being resumed from a previous attempt
using a progress state file, in which case the check is skipped. When
this option is set to true, duplicate objects are reported but no error
is generated and the import proceeds. This option should be used
with caution, because the utility does not check whether the contents
of the object in the target MySQL instance and in the dump files are
different, so it is possible for the resulting import to contain incorrect
or invalid data. An alternative strategy is to use the excludeTables
option to exclude tables that you have already loaded where you have
verified the object in the dump files is identical with the imported object
in the target MySQL instance. The safest choice is to remove duplicate
objects from the target MySQL instance before restarting the dump.

ignoreVersion: [true |
false]

Import the dump even if the major version number of the MySQL
instance from which the data was dumped is different to the major
version number of the MySQL instance to which the data will be
uploaded. The default is false, meaning that an error is issued and the
import does not proceed if the major version number is different. When
this option is set to true, a warning is issued and the import proceeds.
Note that the import will only be successful if the schemas in the dump
files have no compatibility issues with the new major version.

From MySQL Shell 8.0.23, this option also permits the import of a dump
created without the use of the ocimds option into a MySQL Database
Service instance.

Before attempting an import using the ignoreVersion option, use
MySQL Shell's upgrade checker utility checkForServerUpgrade()
to check the schemas on the source MySQL instance. Fix any
compatibility issues identified by the utility before dumping the schemas
and importing them to the target MySQL instance.

showMetadata: [true |
false]

Prints the gtid_executed GTID set and the binary log file name
and position from the source instance, taken from the dump metadata
included with dumps produced by MySQL Shell's instance dump utility,
schema dump utility, or table dump utility. The metadata is printed in
YAML format. This option is available from MySQL Shell 8.0.24.

268

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

Dump Loading Utility

The gtid_executed GTID set is always included in the dump as the
gtidExecuted field in the @.json dump file. The dump loading utility
does not automatically apply the gtid_executed GTID set from the
source MySQL instance on the target MySQL instance. To apply these
GTIDs on the target MySQL instance for use with replication, use the
updateGtidSet option or import them manually, depending on the
release of the target MySQL instance. From MySQL Shell 8.0.23, this is
supported on MySQL DB System instances. See the description of the
updateGtidSet option for details.

The binary log file name and position are included provided
that the user account used to run the dump utility had the
REPLICATION CLIENT privilege. The binary log file name and
position can be used to set up replication from a source server
that does not have GTIDs enabled and does not use GTID-
based replication, to a replica that has GTIDs enabled, using the
ASSIGN_GTIDS_TO_ANONYMOUS_TRANSACTIONS option of the
CHANGE REPLICATION SOURCE TO statement (which is available
from MySQL Server 8.0.23).

updateGtidSet: [off |
append | replace]

Apply the gtid_executed GTID set from the source MySQL instance,
as recorded in the dump metadata, to the gtid_purged GTID set on
the target MySQL instance. The gtid_purged GTID set holds the
GTIDs of all transactions that have been applied on the server, but do
not exist on any binary log file on the server. This option is available
from MySQL Shell 8.0.22, but in that release it is not supported on
MySQL DB System due to a permissions restriction. From MySQL
8.0.23, the option can also be used for a MySQL DB System instance.
The default is off, meaning that the GTID set is not applied.

Do not use this option for a dump produced by MySQL Shell's table
dump utility, only for dumps produced by MySQL Shell's instance dump
utility or schema dump utility. Also, do not use this option when Group
Replication is running on the target MySQL instance.

For MySQL instances that are not MySQL DB System instances, when
you set append or replace to update the GTID set, also set the
skipBinlog option to true. This ensures the GTIDs on the source
server match the GTIDs on the target server. For MySQL DB System
instances, this option is not used.

For a target MySQL instance from MySQL 8.0, you can set the option
to append, which appends the gtid_executed GTID set from the
source MySQL instance to the gtid_purged GTID set on the target
MySQL instance. The gtid_executed GTID set to be applied, which
is shown in the gtidExecuted field in the @.json dump file, must not
intersect with the gtid_executed set already on the target MySQL
instance. For example, you can use this option when importing a
schema from a different source MySQL instance to a target MySQL
instance that already has schemas from other source servers.

You can also use replace for a target MySQL instance from MySQL
8.0, to replace the gtid_purged GTID set on the target MySQL
instance with the gtid_executed GTID set from the source MySQL

269

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

Dump Loading Utility

instance. To do this, the gtid_executed GTID set from the source
MySQL instance must be a superset of the gtid_purged GTID set
on the target MySQL instance, and must not intersect with the set of
transactions in the target's gtid_executed GTID set that are not in its
gtid_purged GTID set.

For a target MySQL instance at MySQL 5.7, set the option to replace,
which replaces the gtid_purged GTID set on the target MySQL
instance with the gtid_executed GTID set from the source
MySQL instance. In MySQL 5.7, to do this the gtid_executed and
gtid_purged GTID sets on the target MySQL instance must be empty,
so the instance must be unused with no previously imported GTID sets.

In MySQL Shell 8.0.21, where this option is not available, you can apply
the GTID set manually on a MySQL Server instance (except where
Group Replication is in use). For MySQL DB System, this method is not
supported. To apply the GTID set, after the import, use MySQL Shell's
\sql command (or enter SQL mode) to issue the following statement
on the connected MySQL instance, copying the gtid_executed GTID
set from the gtidExecuted field in the @.json dump file in the dump
metadata:

shell-js> \sql SET @@GLOBAL.gtid_purged= "+gtidExecuted_set";

This statement, which works from MySQL 8.0, adds the source MySQL
Server instance's gtid_executed GTID set to the target MySQL
instance's gtid_purged GTID set. For MySQL 5.7, the plus sign (+)
must be omitted, and the gtid_executed and gtid_purged GTID
sets on the target MySQL instance must be empty. For more details,
see the description of the gtid_purged system variable in the release
of the target MySQL instance.

skipBinlog: [true |
false]

Skips binary logging on the target MySQL instance for the sessions
used by the utility during the course of the import, by issuing a SET
sql_log_bin=0 statement. The default is false, so binary logging is
active by default. For MySQL DB System, this option is not used, and
the import stops with an error if you attempt to set it to true. For other
MySQL instances, always set skipBinlog to true if you are applying
the gtid_executed GTID set from the source MySQL instance on
the target MySQL instance, either using the updateGtidSet option
or manually. When GTIDs are in use on the target MySQL instance
(gtid_mode=ON), setting this option to true prevents new GTIDs from
being generated and assigned as the import is being carried out, so
that the original GTID set from the source server can be used. The user
account must have the required permissions to set the sql_log_bin
system variable.

loadIndexes: [true |
false]

Create (true) or do not create (false) secondary indexes for tables.
The default is true. When this option is set to false, secondary
indexes are not created during the import, and you must create them
afterwards. This can be useful if you are loading the DDL files and data
files separately, and if you want to make changes to the table structure
after loading the DDL files. Afterwards, you can create the secondary
indexes by running the dump loading utility again with loadIndexes
set to true and deferTableIndexes set to all.

270

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

Dump Loading Utility

deferTableIndexes: [off
| fulltext | all]

Defer the creation of secondary indexes until after the table data is
loaded. This can reduce loading times. off means all indexes are
created during the table load. The default setting fulltext defers full-
text indexes only. all defers all secondary indexes and only creates
primary indexes during the table load, and also (from MySQL Shell
8.0.22) indexes defined on columns containing auto-increment values.
In MySQL Shell 8.0.21, do not set all if you have any unique key
columns containing auto-increment values.

analyzeTables: [off |
on | histogram]

Execute ANALYZE TABLE for tables when they have been loaded. on
analyzes all tables, and histogram analyzes only tables that have
histogram information stored in the dump. The default is off. You can
run the dump loading utility with this option to analyze the tables even if
the data has already been loaded.

characterSet: "string" The character set to be used for the import to the target MySQL
instance, for example in the CHARACTER SET option of the LOAD
DATA statement. The default is the character set given in the dump
metadata that was used when the dump was created by MySQL Shell's
instance dump utility, schema dump utility, or table dump utility, which
default to using utf8mb4. The character set must be permitted by
the character_set_client system variable and supported by the
MySQL instance.

schema: "string" The existing target schema into which a dump produced by MySQL
Shell's table dump utility must be loaded.

From MySQL Shell 8.0.23, this option is not required, because the
dump files from the table dump utility contain the information required to
set up the schema that originally contained the table. By default, from
that release, the schema is recreated in the target MySQL instance
if it does not already exist. Alternatively, you can specify the schema
option to load the table into an alternative schema in the target MySQL
instance, which must exist there.

In MySQL Shell 8.0.22, the dump files from the table dump utility do not
contain the schema information, so the target schema must exist in the
target MySQL instance. In that release, by default, the current schema
of the global shell session is used as the target schema, or the schema
option can be used to name the target schema.

excludeSchemas: array of
strings

Exclude the named schemas from the import. Note that the
information_schema, mysql, ndbinfo, performance_schema,
and sys schemas are always excluded from a dump that is created by
MySQL Shell's instance dump utility. If a named schema does not exist
in the dump files, the utility ignores the item.

includeSchemas: array of
strings

Load only the named schemas from the dump files. You can specify
both options, in which case a schema name matched by both an
includeSchemas string and an excludeSchemas string is excluded.

excludeTables: array of
strings

Exclude the named tables from the import. Table names must be
qualified with a valid schema name, and quoted with the backtick
character if needed. Note that the data for the mysql.apply_status,
mysql.general_log, mysql.schema, and mysql.slow_log
tables is always excluded from a dump created by MySQL Shell's

271

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Dump Loading Utility

schema dump utility, although their DDL statements are included.
Tables named by the excludeTables option are not uploaded to the
target MySQL instance. If a named table does not exist in the schema
or the schema does not exist in the dump files, the dump loading utility
ignores the item.

includeTables: array of
strings

Load only the named tables from the dump files. Table names must
be qualified with a valid schema name, and quoted with the backtick
character if needed. You can specify both options, in which case
a table name matched by both an includeTables string and an
excludeTables string is excluded.

loadDdl: [true |
false]

Setting this option to false excludes the DDL files in the dump from
the load. The default is true, meaning that the DDL files are loaded.

loadData: [true |
false]

Setting this option to false excludes the data files in the dump from the
load. The default is true, meaning that the data files are loaded.

loadUsers: [true |
false]

Import (true) or do not import (false) users and their roles and grants
into the target MySQL instance. The default is false, so users are
not imported by default. Statements for the current user are skipped.
From MySQL Shell 8.0.22, if a user already exists in the target MySQL
instance, an error is returned and the user's grants from the dump
files are not applied. From MySQL Shell 8.0.22, you can use the
excludeUsers or includeUsers option in the dump loading utility to
specify user accounts to be excluded or included in the import.

Note

In MySQL Shell 8.0.21, attempting to import
users to a MySQL DB System causes the
import to fail if the root user account or another
restricted user account name is present in the
dump files, so the import of users to a MySQL
DB System is not supported in that release.

MySQL Shell's schema dump utility and table dump utility do not include
users, roles, and grants in a dump, but the instance dump utility can,
and does by default. From MySQL Shell 8.0.22, the excludeUsers
and includeUsers options can also be used in the instance dump
utility to exclude or include named user accounts from the dump files.

If you specify true but the supplied dump files do not contain user
accounts, before MySQL Shell 8.0.23, the utility returns an error and
stops the import. From MySQL Shell 8.0.23, the utility instead returns a
warning and continues.

excludeUsers: array of
strings

Exclude the named user accounts from the import. This option is
available from MySQL Shell 8.0.22, and you can use it to exclude
user accounts that are not accepted for import to a MySQL DB
System, or that already exist or are not wanted on the target
MySQL instance. Specify each user account string in the format
"'user_name'@'host_name'" for an account that is defined with
a user name and host name, or "'user_name'" for an account that
is defined with a user name only. If you do not supply a host name, all

272

Dump Loading Utility

accounts with that user name are excluded. If a named user account
does not exist in the dump files, the utility ignores the item.

includeUsers: array of
strings

Include only the named user accounts in the import. Specify each
user account string as for the excludeUsers option. This option is
available from MySQL Shell 8.0.22, and you can use it as an alternative
to excludeUsers if only a few user accounts are required in the target
MySQL instance. You can also specify both options, in which case
a user account matched by both an includeUsers string and an
excludeUsers string is excluded.

createInvisiblePKs:
[true | false]

Add primary keys in invisible columns for each table in the
dump that does not contain a primary key. The true setting
is applied automatically if the dump was created with the
create_invisible_pks option by MySQL Shell’s instance
dump utility util.dumpInstance(), schema dump utility
util.dumpSchemas(), or table dump utility util.dumpTables().
The primary keys are only added if the DDL for the dump is loaded
(loadDdl: true). The invisible columns (which are named
"my_row_id") have no impact on applications that use the uploaded
tables.

createInvisiblePKs is present from MySQL Shell 8.0.24, and when
the true setting is in effect, the target MySQL instance must be MySQL
Server 8.0.24 or later, or the load fails. Invisible columns are available
from MySQL Server 8.0.23, but a limitation on them in that release
prevents the use of this function. The dump loading utility in versions
of MySQL Shell before MySQL Shell 8.0.24 silently ignores the dump
metadata flag and does not add the primary keys, so ensure that you
use the latest version of the utility.

Adding primary keys in this way does not yet enable inbound replication
of the modified tables to a High Availability instance, as that feature
currently requires the primary keys to exist in both the source server
and the replica server. If possible, instead of using this option, consider
creating primary keys in the tables on the source server, before
dumping them again. From MySQL 8.0.23, you can do this with no
impact to applications by using invisible columns to hold the primary
keys. This is a best practice for performance and usability, and helps
the dumped database to work seamlessly with MySQL Database
Service.

maxBytesPerTransaction:
number

The maximum number of bytes that can be loaded from a data
file in a single LOAD DATA statement. If a data file exceeds
the maxBytesPerTransaction value, multiple LOAD DATA
statements load data from the file in chunks less than or equal to the
maxBytesPerTransaction value. This option is available from
MySQL Shell 8.0.27.

The unit suffixes k for kilobytes, M for megabytes, and G for
gigabytes can be used. The minimum value is 4069 bytes. If
a lesser value is specified, the 4096 byte minimum is used
implicitly. If the maxBytesPerTransaction option is unset, the
bytesPerChunk value used to dump the data is used as the default
setting for files larger than 1.5 * the bytesPerChunk value. If the

273

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Modifying Dumped Data

maxBytesPerTransaction option is unset and the data file is less
than 1.5 * the bytesPerChunk value, the data is requested in a single
LOAD DATA statement.

If a data file contains a row that is larger than the
maxBytesPerTransaction setting, the row's data is requested in
a single LOAD DATA statement. A warning is emitted for the first row
encountered that exceeds the maxBytesPerTransaction setting.

If a load operation with a configured maxBytesPerTransaction
setting is interrupted and resumes execution, chunks that were already
loaded are skipped. The resumed load operation uses the current
maxBytesPerTransaction setting. The setting used before the
operation was interrupted is not saved to the progress state file.

An intended use for this option is to load data in smaller
chunks when a data file is too large for the target
server's limits, such as the limits defined by the server's
group_replication_transaction_size_limit or
max_binlog_cache_size settings. For example, If you
receive the error "MySQL Error 1197 (HY000): Multi-
statement transaction required more than
'max_binlog_cache_size' bytes of storage" when loading
data, set maxBytesPerTransaction to a value less than or equal to
the server instance’s max_binlog_cache_size setting.

Modifying Dumped Data

MySQL Shell’s parallel table import utility util.importTable() can be used in combination with the
dump loading utility util.loadDump() to modify data in the chunked output files before uploading it to
the target MySQL instance. You can modify the data for one table at a time by this method. Follow this
procedure, which works from MySQL Shell 8.0.23:

1. Use the dump loading utility with the loadDdl: true and loadData: false options, to load the
DDL file only, and create the selected table on the target MySQL instance with no data.

shell-js> util.loadDump("/mnt/data/proddump", {
 > includeTables: ["product.pricing"],
 > loadDdl: true,
 > loadData: false});

2. Use the parallel table import utility to capture and transform the data for the table, and import it to
the empty table on the target MySQL instance. In this example, the data for the pricing table is in
multiple compressed files, which are specified using wildcard pattern matching. The values from the id
and prodname columns in the dump files are assigned unchanged to the same columns in the target
table. The values from the price column in the dump files are captured and assigned to the variable
@1. The decodeColumns option is then used to reduce the prices by a standard amount, and the
reduced prices are placed in the price column of the target table.

shell-js> util.importTable ("/mnt/data/proddump/product@pricing@*.zst", {
 > schema: "product",
 > table: "pricing",
 > columns: ["id", "prodname", 1],
 > decodeColumns: { "price": "0.8 * @1"}});

3. Repeat Steps 1 and 2 as needed for any other tables in the dump files where you need to modify the
data.

274

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_transaction_size_limit
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_max_binlog_cache_size
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_max_binlog_cache_size

Modifying Dumped Data

4. When you have finished uploading all the tables and data that needed to be modified, use the dump
loading utility to load both the DDL and the data for any remaining tables that you do not need to
modify. Be sure to exclude the tables that you did modify in the previous steps.

shell-js> util.loadDump("/mnt/data/proddump", {excludeTables: ["product.pricing"]});

275

276

Chapter 12 MySQL Shell Logging and Debug

Table of Contents
12.1 Application Log ... 278
12.2 Verbose Output .. 279
12.3 System Logging for SQL Statements ... 280
12.4 Logging AdminAPI Operations ... 281

You can use MySQL Shell's logging feature to verify the state of MySQL Shell while it is running and to
troubleshoot any issues.

By default, MySQL Shell sends logging information at logging level 5 (error, warning, and informational
messages) to an application log file. You can also configure MySQL Shell to send the information to an
optional additional viewable location, and (from MySQL 8.0.17) to the console as verbose output.

You can control the level of detail to be sent to each destination. For the application log and additional
viewable location, you can specify any of the available levels as the maximum level of detail. For verbose
output, you can specify a setting that maps to a maximum level of detail. The following levels of detail are
available:

Table 12.1 Logging levels in MySQL Shell

Logging Level -
Numeric

Logging Level - Text Meaning Verbose Setting

1 none No logging 0

2 internal Internal Error 1

3 error Error 1

4 warning Warning 1

5 info Informational 1

6 debug Debug 2

7 debug2 Debug2 3

8 debug3 Debug3 4

From MySQL Shell 8.0.24, you can choose to send SQL statements that you issue interactively in MySQL
Shell's SQL mode to the operating system’s system logging facility (syslog on Unix, or the Windows
Event Log). SQL statements that would be excluded from the MySQL Shell code history are not sent to the
system logging facility.

By default, MySQL Shell does not log or output SQL statements that are executed by MySQL Shell itself
in the course of AdminAPI operations. From MySQL Shell 8.0.18, you can activate logging for these
statements if you want to observe the progress of these operations in terms of SQL execution, in addition
to the messages returned during the operations. The statements are written to the MySQL Shell application
log file as informational messages provided that the logging level is set to 5 or above. They are also sent to
the console as verbose output provided that the verbose setting is 1 or above.

By default, MySQL Shell sends all logging for a program to the same application log file, and all output for
a program to the same destination. From MySQL Shell 8.0.26, the function shell.createContext can
be used in MySQL Shell's Python mode to support multithreading by Python programs. The function is

277

Application Log

used inside a new Python thread to create a scope which isolates logging, interrupts, and delegates. The
context wrapper handles and isolates output printed to stdout and stderr and diagnostic output, and
also user input, with separate handling for passwords. You can also create an individual application log file
specific to the thread.

For instructions to configure the application log and the optional additional destination, which is stderr
on Unix-based systems or the OutputDebugString() function on Windows systems, see Section 12.1,
“Application Log”.

For instructions to send logging information to the console as verbose output, see Section 12.2, “Verbose
Output”.

For instructions to send interactive SQL statements to the system logging facility, see Section 12.3,
“System Logging for SQL Statements”.

For instructions to activate logging for SQL statements that are executed by AdminAPI operations, see
Section 12.4, “Logging AdminAPI Operations”.

12.1 Application Log

The location of the MySQL Shell application log file is the user configuration path and the file is named
mysqlsh.log. By default, MySQL Shell sends logging information at logging level 5 (error, warning, and
informational messages) to this file. To change the level of logging information that is sent, or to disable
logging to the application log file, choose one of these options:

• Use the --log-level command-line option when starting MySQL Shell.

• Use the MySQL Shell \option command to set the logLevel MySQL Shell configuration option. For
instructions to use this command, see Section 13.4, “Configuring MySQL Shell Options”.

• Use the shell.options object to set the logLevel MySQL Shell configuration option. For
instructions to use this configuration interface, see Section 13.4, “Configuring MySQL Shell Options”.

The available logging levels are as listed in Table 12.1, “Logging levels in MySQL Shell”. If you specify a
logging level of 1 or none for the option, logging to the application log file is disabled. All other values leave
logging enabled and set the level of detail in the log file. The option requires a value.

With the --log-level command-line option, you can specify the logging level using its text name or the
numeric equivalent, so the following examples have the same effect:

$> mysqlsh --log-level=4
$> mysqlsh --log-level=warning

With the logLevel MySQL Shell configuration option, you can only specify a numeric logging level.

If you prepend the logging level with @ (at sign), log entries are output to an additional viewable location as
well as being written to the MySQL Shell log file. The following examples have the same effect:

$> mysqlsh --log-level=@8
$> mysqlsh --log-level=@debug3

On Unix-based systems, the log entries are output to stderr in the output format that is currently set for
MySQL Shell. This is the value of the resultFormat MySQL Shell configuration option, unless JSON
wrapping has been activated by starting MySQL Shell with the --json command line option.

On Windows systems, the log entries are printed using the OutputDebugString() function, whose
output can be viewed in an application debugger, the system debugger, or a capture tool for debug output.

278

Log File Location on Windows

The MySQL Shell log file format is plain text and entries contain a timestamp and description of the
problem, along with the logging level from the above list. For example:

2016-04-05 22:23:01: Error: Default Domain: (shell):1:8: MySQLError: You have an error
in your SQL syntax; check the manual that corresponds to your MySQL server version for
the right syntax to use near '' at line 1 (1064) in session.sql("select * from t
limit").execute().all();

Log File Location on Windows

On Windows, the default path to the application log file is %APPDATA%\MySQL\mysqlsh\mysqlsh.log.
To find the location of %APPDATA% on your system, echo it from the command line. For example:

C:>echo %APPDATA%

C:\Users\exampleuser\AppData\Roaming

On Windows, the path is the %APPDATA% folder specific to the user, with MySQL\mysqlsh added. Using
the above example the path would be C:\Users\exampleuser\AppData\Roaming\MySQL\mysqlsh
\mysqlsh.log .

If you want the application log file to be stored in a different location, you can override the default user
configuration path by defining the environment variable MYSQLSH_USER_CONFIG_HOME. The value of this
variable replaces %AppData%\MySQL\mysqlsh\ on Windows.

From MySQL Shell 8.0.27, you can also use the --log-file option to override the user configuration
path when you run mysqlsh from the command line. The --log-file option applies to the individual
MySQL Shell instance, meaning that different instances can write to different locations.

Log File Location on Unix-based Systems

For a machine running Unix, the default path to the application log file is ~/.mysqlsh/mysqlsh.log
where “~” represents the user's home directory. The environment variable HOME also represents the user's
home directory. Appending .mysqlsh to the user's home directory determines the default path to the log.

If you want the application log file to be stored in a different location, you can override the default user
configuration path by defining the environment variable MYSQLSH_USER_CONFIG_HOME. The value of this
variable replaces ~/.mysqlsh/ on Unix.

From MySQL Shell 8.0.27, you can also use the --log-file option to override the user configuration
path when you run mysqlsh from the command line. The --log-file option applies to the individual
MySQL Shell instance, meaning that different instances can write to different locations.

12.2 Verbose Output
From MySQL 8.0.17, you can send MySQL Shell logging information to the console to help with
debugging. Logging messages sent to the console are given the verbose: prefix. When you send logging
information to the console, it is still sent to the application log file.

To send logging information to the console as verbose output, choose one of these options:

• Use the --verbose command-line option when starting MySQL Shell.

• Use the MySQL Shell \option command to set the verbose MySQL Shell configuration option. For
instructions to use this command, see Section 13.4, “Configuring MySQL Shell Options”.

• Use the shell.options object to set the verbose MySQL Shell configuration option. For instructions
to use this configuration interface, see Section 13.4, “Configuring MySQL Shell Options”.

279

System Logging for SQL Statements

The available settings are as listed in Table 12.1, “Logging levels in MySQL Shell”. The settings for the
verbose option display messages at the following levels of detail:

0 No messages. Equivalent to a logging level of 1 for the application log.

1 Internal error, error, warning, and informational messages. Equivalent to a
logging level of 5 for the application log.

2 Adds debug messages. Equivalent to a logging level of 6 for the application
log.

3 Adds debug2 messages. Equivalent to a logging level of 7 for the
application log.

4 Adds debug3 messages, the highest level of detail. Equivalent to a logging
level of 8 for the application log.

If the verbose option is not set on the command line or in the configuration file, or if you specify a setting
of 0 for the option, verbose output to the console is disabled. All other values enable verbose output
and set the level of detail for the messages sent to the console. If you specify the option without a value,
which is permitted as a command-line option when starting MySQL Shell (--verbose) but not with other
methods of setting the option, setting 1 (internal error, error, warning, and informational messages) is used.

12.3 System Logging for SQL Statements
From MySQL 8.0.24, SQL statements that you issue in MySQL Shell’s SQL mode can be sent to the
operating system’s system logging facility. On Unix, this is syslog; on Windows, it is the Windows Event
Log. The destination where logged messages appear is system dependent. On Linux, the destination is
often the /var/log/messages file.

When you activate system logging for SQL statements, the following items are written to the system
logging facility:

• SQL statements that you issue interactively in MySQL Shell’s SQL mode.

• Single SQL statements that you execute by entering them immediately after the \sql command while in
MySQL Shell’s JavaScript or Python mode.

• Instances of the \source command that you issue interactively in MySQL Shell’s SQL mode.

The following items are excluded and are not written to the system logging facility:

• The contents of a script file that you execute using the \source command. Only the \source
command itself is written to the system logging facility.

• SQL statements that MySQL Shell executes itself in the course of AdminAPI operations. You can
log these to the MySQL Shell application log file, as explained in Section 12.4, “Logging AdminAPI
Operations”.

• SQL statements that would be excluded from the MySQL Shell code history, as specified by the
history.sql.ignorePattern MySQL Shell configuration option, or the --histignore command-
line option (which sets the value of history.sql.ignorePattern for the current session only).

To send SQL statements that you issue in MySQL Shell’s SQL mode to the operating system’s system
logging facility, choose one of these options:

• Use the --syslog command-line option when starting MySQL Shell.

280

Log message format

• Use the MySQL Shell \option command to set the history.sql.syslog MySQL Shell configuration
option. For instructions to use this command, see Section 13.4, “Configuring MySQL Shell Options”.

• Use the shell.options object to set the history.sql.syslog MySQL Shell configuration option.
For instructions to use this configuration interface, see Section 13.4, “Configuring MySQL Shell Options”.

System logging for SQL statements only takes place when MySQL Shell is started in interactive mode, so
either a normal start or a start with the --interactive option. It does not take place if the --execute or
--file options are used at startup to run mysqlsh in batch mode to process a command or file.

Log message format

The log message for an SQL statement is formatted as a series of key-value pairs separated by a space
character. The key-value pairs are as follows:

SYSTEM_USER = The login name of the operating system user, or -- if this user name is
unknown.

MYSQL_USER = The name of the MySQL user, or -- if this user name is unknown.

CONNECTION_ID = The identifier for the MySQL Shell connection.

DB_SERVER = The server’s host name, or -- if the host name is unknown.

DB = The default database, or -- if no database has been selected.

QUERY = The text of the logged SQL statement.

The log message is truncated to 1024 bytes if it exceeds that length.

Here is a sample of output generated on Linux by using --syslog. This output is formatted for readability;
each logged message actually takes a single line.

Mar 1 17:35:33 myhost mysqlsh[33060]:
SYSTEM_USER=hanna_j MYSQL_USER=hanna
CONNECTION_ID=14 DB_SERVER=localhost DB='--'
QUERY='create table test.test (c int, my_row_id BIGINT AUTO_INCREMENT INVISIBLE PRIMARY KEY);'

12.4 Logging AdminAPI Operations

From MySQL Shell 8.0.18, you can include SQL statements that are executed in the course of AdminAPI
operations as part of the MySQL Shell logging information. By default, MySQL Shell does not log these
statements, and just logs the messages returned during the operations. Activating logging for these
statements lets you observe the progress of the operations in terms of SQL execution, which can help with
problem diagnosis for any errors.

When you activate logging for SQL statements from AdminAPI operations, the statements are written to
the MySQL Shell application log file as informational messages, provided that the logging level is set to
5 (which is the default for MySQL Shell's logging level) or above. If an additional viewable location was
specified with the logging level, the statements are sent there too. The statements are also sent to the
console as verbose output if the verbose option is set to 1 or above. Any passwords included in the SQL
statements are masked for logging and display and are not recorded or shown.

SQL statements executed by AdminAPI sandbox operations (dba.deploySandboxInstance(),
dba.startSandboxInstance(), dba.stopSandboxInstance(), dba.killSandboxInstance(),
and dba.deleteSandboxInstance()) are always excluded from logging and verbose output, even if
you have activated logging for regular AdminAPI operations.

281

Logging AdminAPI Operations

To log SQL statements executed by AdminAPI operations, choose one of these options:

• Use the --dba-log-sql command-line option when starting MySQL Shell.

• Use the MySQL Shell \option command to set the dba.logSql MySQL Shell configuration option.
For instructions to use this command, see Section 13.4, “Configuring MySQL Shell Options”.

• Use the shell.options object to set the dba.logSql MySQL Shell configuration option. For
instructions to use this configuration interface, see Section 13.4, “Configuring MySQL Shell Options”.

The available settings for the option are follows:

0 Do not log SQL statements executed by AdminAPI operations. This setting
is the default behavior if the option is not set on the command line or in the
configuration file, and can be set to deactivate this type of logging after use
if you only needed it temporarily.

1 Log SQL statements that are executed by AdminAPI operations, with
the exceptions of SELECT statements, SHOW statements, and statements
executed by sandbox operations.

2 Log SQL statements that are executed by regular AdminAPI operations
in full, including SELECT and SHOW statements, but do not log statements
executed by sandbox operations.

If you specify the option without a value, which is permitted for a command-line option when starting
MySQL Shell (--dba-log-sql) but not with other methods of setting the option, setting 1 is used.

282

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html

Chapter 13 Customizing MySQL Shell

Table of Contents
13.1 Working With Startup Scripts ... 283
13.2 Adding Module Search Paths .. 284

13.2.1 Module Search Path Environment Variables .. 285
13.2.2 Module Search Path Variable in Startup Scripts ... 285

13.3 Customizing the Prompt .. 286
13.4 Configuring MySQL Shell Options .. 286

MySQL Shell offers these customization options for you to change its behavior and code execution
environment to suit your preferences:

• Create startup scripts that are executed when MySQL Shell is started in JavaScript or Python mode. See
Section 13.1, “Working With Startup Scripts”.

• Add non-standard module search paths for JavaScript or Python mode. See Section 13.2, “Adding
Module Search Paths”.

• Customize the MySQL Shell prompt. See Section 13.3, “Customizing the Prompt”.

• Set configuration options to change MySQL Shell's behavior for the current session or permanently. See
Section 13.4, “Configuring MySQL Shell Options”.

13.1 Working With Startup Scripts
When MySQL Shell is started in JavaScript or Python mode, and also when you switch to JavaScript or
Python mode for the first time, MySQL Shell searches for startup scripts to be executed. The startup scripts
are JavaScript or Python specific scripts containing the instructions to be executed when MySQL Shell first
enters the corresponding language mode. Startup scripts let you customize the JavaScript or Python code
execution environment in any of these ways:

• Adding additional search paths for Python or JavaScript modules.

• Defining global functions or variables.

• Carrying out any other possible initialization through JavaScript or Python.

The relevant startup script is loaded when you start or restart MySQL Shell in either JavaScript or Python
mode, and also the first time you change to the other one of those modes while MySQL Shell is running.
After this, MySQL Shell does not search for startup scripts again, so implementing updates to a startup
script requires a restart of MySQL Shell if you have already entered the relevant mode. When MySQL Shell
is started in SQL mode or you switch to that mode, no startup script is loaded.

The startup scripts are optional, and you can create them if you want to use them for customization. The
startup scripts must be named as follows:

• For JavaScript mode: mysqlshrc.js

• For Python mode: mysqlshrc.py

You can place your startup scripts in any of the locations listed below. MySQL Shell searches all of the
stated paths, in the order stated, for startup scripts with the file name mysqlshrc and the file extension
that matches the scripting mode that is being initialized (.js by default if MySQL Shell is started with no
language mode specified). Note that MySQL Shell executes all appropriate startup scripts found for the

283

Adding Module Search Paths

scripting mode, in the order they are found. If something is defined in two different startup scripts, the script
executed later takes precedence.

1. In the platform's standard global configuration path.

• On Windows: %PROGRAMDATA%\MySQL\mysqlsh\mysqlshrc.[js|py]

• On Unix: /etc/mysql/mysqlsh/mysqlshrc.[js|py]

2. In the share/mysqlsh subdirectory of the MySQL Shell home folder, which can be defined by
the environment variable MYSQLSH_HOME, or identified by MySQL Shell. If MYSQLSH_HOME is not
defined, MySQL Shell identifies its own home folder as the parent folder of the folder named bin that
contains the mysqlsh binary, if such a folder exists. (For many standard installations it is therefore not
necessary to define MYSQLSH_HOME.)

• On Windows: %MYSQLSH_HOME%\share\mysqlsh\mysqlshrc.[js|py]

• On Unix: $MYSQLSH_HOME/share/mysqlsh/mysqlshrc.[js|py]

3. In the folder containing the mysqlsh binary, but only if the MySQL Shell home folder described in option
2 is neither specified nor identified by MySQL Shell in the expected standard location.

• On Windows: <mysqlsh binary path>\mysqlshrc.[js|py]

• On Unix: <mysqlsh binary path>/mysqlshrc.[js|py]

4. In the MySQL Shell user configuration path, as defined by the environment variable
MYSQLSH_USER_CONFIG_HOME.

• On Windows: %MYSQLSH_USER_CONFIG_HOME%\mysqlshrc.[js|py]

• On Unix: $MYSQLSH_USER_CONFIG_HOME/mysqlshrc.[js|py]

5. In the platform's standard user configuration path, but only if the MySQL Shell user configuration path
described in option 4 is not specified.

• On Windows: %APPDATA%\MySQL\mysqlsh\mysqlshrc.[js|py]

• On Unix: $HOME/.mysqlsh/mysqlshrc.[js|py]

13.2 Adding Module Search Paths
When you use the require() function in JavaScript or the import function in Python, the well-known
module search paths listed for the sys.path variable are used to search for the specified module. MySQL
Shell initializes the sys.path variable to contain the following module search paths:

• The folders specified by the module search path environment variable (MYSQLSH_JS_MODULE_PATH in
JavaScript mode, or PYTHONPATH in Python mode).

• For JavaScript, the subfolder share/mysqlsh/modules/js of the MySQL Shell home folder, or the
subfolder /modules/js of the folder containing the mysqlsh binary, if the home folder is not present.

• For Python, installation-dependent default paths, as for Python's standard import machinery.

MySQL Shell can also load the built-in modules mysql and mysqlx using the require() or import
function, and these modules do not need to be specified using the sys.path variable.

For JavaScript mode, MySQL Shell loads the first module found in the specified location that is (in order of
preference) a file with the specified name, or a file with the specified name plus the file extension .js, or

284

Module Search Path Environment Variables

an init.js file contained in a folder with the specified name. For Python mode, Python's standard import
machinery is used to load all modules for MySQL Shell.

For JavaScript mode, from MySQL Shell 8.0.19, MySQL Shell also provides support for loading of local
modules by the require() function. If you specify the module name or path prefixed with ./ or ../,
in batch mode, MySQL Shell searches for the specified module in the folder that contains the JavaScript
file or module currently being executed. In interactive mode, given one of those prefixes, MySQL Shell
searches in the current working directory. If the module is not found in that folder, MySQL Shell proceeds
to check the well-known module search paths specified by the sys.path variable.

You can add further well-known module search paths to the sys.path variable either by appending them
to the module search path environment variable for JavaScript mode or Python mode (see Section 13.2.1,
“Module Search Path Environment Variables”), or by appending them directly to the sys.path variable
using the MySQL Shell startup script for JavaScript mode or Python mode (see Section 13.2.2, “Module
Search Path Variable in Startup Scripts”). You can also modify the sys.path variable at runtime, which
changes the behavior of the require() or import function immediately.

13.2.1 Module Search Path Environment Variables

You can add folders to the module search path by adding them to the appropriate language-specific
module search path environment variable. MySQL Shell includes these folders in the well-known module
search paths when you start or restart MySQL Shell. If you want to add to the search path immediately,
modify the sys.path variable directly.

For JavaScript, add folders to the MYSQLSH_JS_MODULE_PATH environment variable. The value of this
variable is a list of paths separated by a semicolon character.

For Python, add folders to the PYTHONPATH environment variable. The value of this variable is a list
of paths separated by a semicolon character on Windows platforms, or by a colon character on Unix
platforms.

For JavaScript, folders added to the environment variable are placed at the end of the sys.path variable
value, and for Python, they are placed at the start.

Note that Python's behavior for loading modules is not controlled by MySQL Shell; the normal import
behaviors for Python apply.

13.2.2 Module Search Path Variable in Startup Scripts

The sys.path variable can be customized using the MySQL Shell startup script mysqlshrc.js for
JavaScript mode or mysqlshrc.py for Python mode. For more information on the startup scripts and
their locations, see Section 13.1, “Working With Startup Scripts”. Using the startup script, you can append
module paths directly to the sys.path variable.

Note that each startup script is only used in the relevant language mode, so the module search paths
specified in mysqlshrc.js for JavaScript mode are only available in Python mode if they are also listed in
mysqlshrc.py.

For Python modify the mysqlshrc.py file to append the required paths into the sys.path array:

Import the sys module
import sys

Append the additional module paths
sys.path.append('~/custom/python')
sys.path.append('~/other/custom/modules')

For JavaScript modify the mysqlshrc.js file to append the required paths into the sys.path array:

285

Customizing the Prompt

// Append the additional module paths
 sys.path = [...sys.path, '~/custom/js'];
 sys.path = [...sys.path, '~/other/custom/modules'];

A relative path that you append to the sys.path array is resolved relative to the current working directory.

The startup scripts are loaded when you start or restart MySQL Shell in either JavaScript or Python mode,
and also the first time you change to the other one of those modes while MySQL Shell is running. After
this, MySQL Shell does not search for startup scripts again, so implementing updates to a startup script
requires a restart of MySQL Shell if you have already entered the relevant mode. Alternatively, you can
modify the sys.path variable at runtime, in which case the require() or import function uses the new
search paths immediately.

13.3 Customizing the Prompt

The prompt of MySQL Shell can be customized using prompt theme files. To customize the prompt theme
file, either set the MYSQLSH_PROMPT_THEME environment variable to a prompt theme file name, or copy
a theme file to the ~/.mysqlsh/prompt.json directory on Linux and Mac, or the %AppData%\MySQL
\mysqlsh\prompt.json directory on Windows.

The user configuration path for the directory can be overridden on all platforms by defining the environment
variable MYSQLSH_USER_CONFIG_HOME. The value of this variable replaces %AppData%\MySQL
\mysqlsh\ on Windows or ~/.mysqlsh/ on Unix.

The format of the prompt theme file is described in the README.prompt file, and some sample prompt
theme files are included. On startup, if an error is found in the prompt theme file, an error message
is printed and a default prompt theme is used. Some of the sample prompt theme files require a
special font (for example SourceCodePro+Powerline+Awesome+Regular.ttf). If you set the
MYSQLSH_PROMPT_THEME environment variable to an empty value, MySQL Shell uses a minimal prompt
with no color.

Color display depends on the support available from the terminal. Most terminals support 256 colors in
Linux and Mac. In Windows, color support requires either a 3rd party terminal program with support for
ANSI/VT100 escapes, or Windows 10. By default, MySQL Shell attempts to detect the terminal type and
handle colors appropriately. If auto-detection does not work for your terminal type, or if you want to modify
the color mode due to accessibility requirements or for other purposes, you can define the environment
variable MYSQLSH_TERM_COLOR_MODE to force MySQL Shell to use a specific color mode. The possible
values for this environment variable are rgb, 256, 16, and nocolor.

13.4 Configuring MySQL Shell Options

You can configure MySQL Shell to match your preferences, for example to start up to a certain
programming language or to provide output in a particular format. Configuration options can be set for
the current session only, or options can be set permanently by persisting changes to the MySQL Shell
configuration file. Online help for all options is provided. You can configure options using the MySQL Shell
\option command, which is available in all MySQL Shell modes for querying and changing configuration
options. Alternatively in JavaScript and Python modes, use the shell.options object.

Valid Configuration Options

The following configuration options can be set using either the \option command or shell.options
scripting interface:

286

Valid Configuration Options

optionName DefaultValue Type Effect

autocomplete.nameCachetrue boolean Enable database
name caching for
autocompletion.

batchContinueOnErrorfalse boolean (READ ONLY) In SQL batch mode, force
processing to continue if
an error is found.

credentialStore.excludeFiltersempty array An array of URLs
for which automatic
password storage is
disabled, supports glob
characters * and ?.

credentialStore.helperDepends on platform string Name of the credential
helper used to fetch
or store passwords. A
special value default
is supported to use
the platform's default
helper. The special value
disabled disables the
credential store.

credentialStore.savePasswordsfalse string Controls automatic
password storage,
supported values:
always, prompt or
never.

dba.gtidWaitTimeout 60 integer greater than 0 The time in seconds
to wait for GTID
transactions to be
applied, when required
by AdminAPI operations
(see Section 7.5,
“Working with InnoDB
Cluster”).

dba.logSql 0 integer ranging from 0 to
2

Log SQL statements
that are executed by
AdminAPI operations
(see Chapter 12, MySQL
Shell Logging and
Debug).

dba.restartWaitTimeout60 integer greater than 0 The time in seconds
to wait for transactions
to be applied during a
recovery operation. Use
to configure a longer
timeout when a joining
instance has to recover
a large amount of data.
See Section 7.2.2, “Using

287

Valid Configuration Options

optionName DefaultValue Type Effect
MySQL Clone with
InnoDB Cluster”).

defaultCompress false boolean Request compression for
information sent between
the client and the server
in every global session.
Affects classic MySQL
protocol connections
only (see Section 4.3.5,
“Using Compressed
Connections”).

defaultMode None string (sql, js or py) The mode to use when
MySQL Shell is started
(SQL, JavaScript or
Python).

devapi.dbObjectHandlestrue boolean Enable table and
collection name handles
for the X DevAPI db
object.

history.autoSave false boolean Save (true) or clear
(false) entries in the
MySQL Shell code
history when you exit
the application (see
Section 5.5, “Code
History”).

history.maxSize 1000 integer The maximum number
of entries to store in
the MySQL Shell code
history.

history.sql.ignorePattern*IDENTIFIED* :
PASSWORD

string Strings that match these
patterns are not added
to the MySQL Shell code
history.

history.sql.syslog false boolean Send interactive SQL
statements to the
operating system’s
system logging facility
(see Section 12.3,
“System Logging for SQL
Statements”).

interactive true boolean (READ ONLY) Enable interactive mode.

logLevel Requires a value integer ranging from 1 to
8

Set a logging level for
the application log (see
Chapter 12, MySQL Shell
Logging and Debug).

mysqlPluginDir None string Set a persistent path
to the MySQL server's

288

Valid Configuration Options

optionName DefaultValue Type Effect
plugin directory. The path
is specified when client-
side plugins that ship with
the server are used for
authentication.

pager None string Use the specified
external pager tool
to display text and
results. Command-
line arguments for the
tool can be added (see
Section 4.6, “Using a
Pager”).

passwordsFromStdin false boolean Read passwords from
stdin instead of
terminal.

resultFormat table string (table, tabbed,
vertical, json | json/pretty,
ndjson | json/raw, json/
array)

The default output format
for printing result sets
(see Section 5.7, “Output
Formats”).

sandboxDir Depends on platform string The sandbox directory.
On Windows, the default
is C:\Users\MyUser
\MySQL\mysql-
sandboxes, and on
Unix systems, the default
is $HOME/mysql-
sandboxes.

showColumnTypeInfo false boolean In SQL mode, display
column metadata for
result sets.

showWarnings true boolean In SQL mode,
automatically display
SQL warnings if any.

useWizards true boolean Enable wizard mode.

verbose 1 integer ranging from 0 to
4

Enable verbose output
to the console and set
a level of detail (see
Chapter 12, MySQL Shell
Logging and Debug).

Note

String values are case-sensitive.

Options listed as “READ ONLY” cannot be modified.

The outputFormat option is now deprecated. Use resultFormat instead.

289

Using the \option Command

Using the \option Command

The MySQL Shell \option command enables you to query and change configuration options in all
modes, enabling configuration from SQL mode in addition to JavaScript and Python modes.

The command is used as follows:

• \option -h, --help [filter] - print help for options matching filter.

• \option -l, --list [--show-origin] - list all the options. --show-origin augments the list
with information about how the value was last changed, possible values are:

• Command line

• Compiled default

• Configuration file

• Environment variable

• User defined

• \option option_name - print the current value of the option.

• \option [--persist] option_name value or name=value - set the value of the option and if
--persist is specified save it to the configuration file.

• \option --unset [--persist] <option_name> - reset option's value to default and if --
persist is specified, removes the option from the MySQL Shell configuration file.

Note

The value of option_name and filter are case-sensitive.

See Valid Configuration Options for a list of possible values for option_name.

Using the shell.options Configuration Interface

The shell.options object is available in JavaScript and Python mode to change MySQL Shell option
values. You can use specific methods to configure the options, or key-value pairs as follows:

MySQL JS > shell.options['history.autoSave']=1

In addition to the key-value pair interface, the following methods are available:

• shell.options.set(optionName, value) - sets the optionName to value for this session, the
change is not saved to the configuration file.

• shell.options.setPersist(optionName, value) - sets the optionName to value
for this session, and saves the change to the configuration file. In Python mode, the method is
shell.options.set_persist.

• shell.options.unset(optionName) - resets the optionName to the default value for this session,
the change is not saved to the configuration file.

• shell.options.unsetPersist(optionName) - resets the optionName to the default value
for this session, and saves the change to the configuration file. In Python mode, the method is
shell.options.unset_persist.

290

Configuration File

Option names are treated as strings, and as such should be surrounded by ' characters. See Valid
Configuration Options for a list of possible values for optionName.

Use the commands to configure MySQL Shell options as follows:

MySQL JS > shell.options.set('history.maxSize', 5000)
MySQL JS > shell.options.setPersist('useWizards', 'true')
MySQL JS > shell.options.setPersist('history.autoSave', 1)

Return options to their default values as follows:

MySQL JS > shell.options.unset('history.maxSize')
MySQL JS > shell.options.unsetPersist('useWizards')

Configuration File

The MySQL Shell configuration file stores the values of the option to ensure they are persisted across
sessions. Values are read at startup and when you use the persist feature, settings are saved to the
configuration file.

The location of the configuration file is the user configuration path and the file is named options.json.
Assuming that the default user configuration path has not been overridden by defining the environment
variable MYSQLSH_USER_CONFIG_HOME, the path to the configuration file is:

• on Windows %APPDATA%\MySQL\mysqlsh

• on Unix ~/.mysqlsh where ~ represents the user's home directory.

The configuration file is created the first time you customize a configuration option. This file is internally
maintained by MySQL Shell and should not be edited manually. If an unrecognized option or an option with
an incorrect value is found in the configuration file on startup, MySQL Shell exits with an error.

291

292

Appendix A MySQL Shell Command Reference

Table of Contents
A.1 mysqlsh — The MySQL Shell ... 293

This appendix describes the mysqlsh command.

A.1 mysqlsh — The MySQL Shell
MySQL Shell is an advanced command-line client and code editor for MySQL. In addition to SQL, MySQL
Shell also offers scripting capabilities for JavaScript and Python. For information about using MySQL Shell,
see MySQL Shell 8.0. When MySQL Shell is connected to the MySQL Server through the X Protocol,
the X DevAPI can be used to work with both relational and document data, see Using MySQL as a
Document Store. MySQL Shell includes the AdminAPI that enables you to work with InnoDB Cluster,
InnoDB ClusterSet, and InnoDB ReplicaSet deployments; see Chapter 6, MySQL AdminAPI.

Many of the options described here are related to connections between MySQL Shell and a MySQL Server
instance. See Section 4.3, “MySQL Shell Connections” for more information.

mysqlsh supports the following command-line options.

Table A.1 mysqlsh Options

Option Name Description Introduced

-- Start of API command line
integration

--auth-method Authentication method to use

--cluster Connect to an InnoDB cluster 8.0.4

--column-type-info Print metadata for columns in
result sets

8.0.14

--compress Compress all information sent
between client and server

8.0.14

--connect-timeout Connection timeout for global
session

8.0.13

--credential-store-helper The Secret Store helper for
passwords

8.0.12

--database The schema to use (alias for --
schema)

--dba Enable X Protocol on connection
with MySQL 5.7 server

--dba-log-sql Log SQL statements that are
executed by AdminAPI operations

8.0.18

--dbpassword Password to use when connecting
to server

--dbuser MySQL user name to use when
connecting to server

--execute Execute the command and quit

--file File to process in batch mode

293

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html

mysqlsh — The MySQL Shell

Option Name Description Introduced

--force Continue in SQL and batch modes
even if errors occur

--get-server-public-key Request RSA public key from
server

--help Display help message and exit

--histignore Strings that are not added to the
history

8.0.3

--host Host on which MySQL server
instance is located

--import Import JSON documents from a
file or standard input

8.0.13

--interactive Emulate Interactive mode in batch
mode

--js, --javascript Start in JavaScript mode

--json Print output in JSON format

--log-file Log file location for this instance 8.0.27

--log-level Specify logging level

-ma Detect transport protocol for
session automatically

8.0.3

--mysql, -mc Create a session using classic
MySQL protocol

8.0.3

--mysql-plugin-dir Directory where the client-side
plugins are installed

8.0.27

--mysqlx, -mx Create a session using X Protocol 8.0.3

--name-cache Enable automatic loading of table
names based on the active default
schema

8.0.4

--no-name-cache Disable autocompletion 8.0.4

--no-password No password is provided for this
connection

--no-wizard, --nw Disable the interactive wizards

--pager The external pager tool used to
display output

8.0.13

--password Password to use when connecting
to server (alias for --dbpassword)

--passwords-from-stdin Read the password from stdin

--port TCP/IP port number for
connection

--py, --python Start in Python mode

--quiet-start Start without printing introductory
information

--recreate-schema Drop and recreate schema

294

mysqlsh — The MySQL Shell

Option Name Description Introduced

--redirect-primary Ensure connection to an InnoDB
cluster's primary

8.0.4

--redirect-secondary Ensure connection to an InnoDB
cluster's secondary

--result-format Set the output format for this
session

8.0.14

--save-passwords How passwords are stored in the
Secret Store

8.0.12

--schema The schema to use

--server-public-key-path Path name to file containing RSA
public key

--show-warnings Show warnings after each
statement if there are any (in SQL
mode)

--socket Unix socket file or Windows
named pipe to use (classic
MySQL protocol only)

--sql Start in SQL mode, auto-detecting
protocol to use for connection

--sqlc Start in SQL mode using a classic
MySQL protocol connection

--sqlx Start in SQL mode using an X
Protocol connection

8.0.3

--ssl-ca File that contains list of trusted
SSL Certificate Authorities

--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files

--ssl-cert File that contains X.509 certificate

--ssl-cipher Name of the SSL cipher to use

--ssl-crl File that contains certificate
revocation lists

--ssl-crlpath Directory that contains certificate
revocation list files

--ssl-key File that contains X.509 key

--ssl-mode Desired security state of
connection to server

--syslog Log interactive SQL statements to
the system logging facility

8.0.24

--tabbed Display output in tab separated
format

--table Display output in table format

--tls-version Permissible TLS protocol for
encrypted connections

295

mysqlsh — The MySQL Shell

Option Name Description Introduced

--uri Session information in URI format

--user MySQL user name to use when
connecting to server (alias for --
dbuser)

--verbose Activate verbose output to the
console

8.0.17

--version Display version information and
exit

--vertical Display all SQL results vertically

• --help, -?

Display a help message and exit.

• --

Marks the end of the list of mysqlsh options and the start of a command and its arguments for MySQL
Shell's API command line integration. You can execute methods of the MySQL Shell global objects from
the command line using this syntax:

mysqlsh [options] -- object method [arguments]

See Section 5.8, “API Command Line Integration” for more information.

• --auth-method=method

Authentication method to use for the account. Depends on the authentication plugin used for the
account's password. For MySQL Shell connections using classic MySQL protocol, specify the name of
the authentication plugin, for example caching_sha2_password. For MySQL Shell connections using
X Protocol, specify one of the following options:

AUTO Let the library select the authentication method.

FALLBACK Let the library select the authentication method, but do not use any
authentication method that is not compatible with MySQL 5.7.

FROM_CAPABILITIES Let the library select the authentication method, using the capabilities
announced by the server instance.

MYSQL41 Use the challenge-response authentication protocol supported
by MySQL 4.1 and later, which does not send a plaintext
password. This option is compatible with accounts that use the
mysql_native_password authentication plugin.

PLAIN Send a plaintext password for authentication. Use this option
only wih encrypted connections. This option can be used to
authenticate with cached credentials for an account that uses the
caching_sha2_password authentication plugin, provided there
is an SSL connection. See Using X Plugin with the Caching SHA-2
Authentication Plugin.

SHA256_MEMORY Authenticate using a hashed password stored in memory. This option
can be used to authenticate with cached credentials for an account

296

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-sha2-cache-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-sha2-cache-plugin.html

mysqlsh — The MySQL Shell

that uses the caching_sha2_password authentication plugin,
where there is a non-SSL connection. See Using X Plugin with the
Caching SHA-2 Authentication Plugin.

For MySQL Shell connections using classic MySQL protocol, specify the name of the authentication
plugin used by the user account, for example caching_sha2_password (which is the default
for user accounts created in MySQL 8.0). MySQL Shell uses the MySQL client library for client-
side authentication for these connections. The following authentication methods require additional
configuration:

clear_text_password The mysql_clear_password client-side plugin is required for
simple LDAP authentication. It is built in to the MySQL client library,
but for security it is not enabled by default. From MySQL Shell 8.0.27,
MySQL Shell enables and uses the plugin when you specify it with
the --auth-method=clear_text_password connection option.
This authentication type is only suitable for a secure connection that
uses SSL or sockets, so you must configure the secure connection
before using it. Note that with the option ssl-mode=preferred, the
SSL connection is not guaranteed, so a connection with this option
set is not considered to be an SSL connection. For more information,
see Section 4.3.3, “Using Encrypted Connections”.

authentication_ldap_sasl_client The authentication_ldap_sasl_client client-side plugin is
for SASL-based LDAP authentication, including GSSAPI/Kerberos
authentication. It is not built in to the MySQL client library, but it is
shipped in the MySQL Server packages. To load it, you must use the
--mysql-plugin-dir option (available from MySQL Shell 8.0.27)
to specify a path to the plugin in the MySQL Server packages.

authentication_kerberos_client The authentication_kerberos_client client-side plugin is for
Kerberos authentication. It is not built in to the MySQL client library,
but it is shipped in the MySQL Server packages. To load it, you must
use the --mysql-plugin-dir option (available from MySQL Shell
8.0.27) to specify a path to the plugin in the MySQL Server packages.

Cached ticket-granting tickets (TGTs) for Kerberos authentication are supported from MySQL 8.0.27
when the --auth-method option is used to specify the authentication_ldap_sasl_client
or authentication_kerberos_client plugin, and the --mysql-plugin-dir option is used to
provide a path to the plugin. To use cached TGTs, do not specify a user and password in the connection
options. When you specify one of these plugins and do not specify a user and password, MySQL Shell
does not supply the system user name, does not prompt for a password, and does not attempt to use the
Secret Store helper to retrieve or store credentials.

For more information, see Section 4.3.4, “Using LDAP and Kerberos Authentication”.

• --cluster

Ensures that the target server is part of an InnoDB Cluster and if so, sets the cluster global variable to
the cluster object.

297

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-sha2-cache-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-sha2-cache-plugin.html

mysqlsh — The MySQL Shell

• --column-type-info

In SQL mode, before printing the returned result set for a query, print metadata for each column in the
result set, such as the column type and collation.

The column type is returned as both the type used by MySQL Shell (Type), and the type used by the
original database (DBType). For MySQL Shell connections using classic MySQL protocol, DBType
is as returned by the protocol, and for X Protocol connections, DBType is inferred from the available
information. The column length (Length) is returned in bytes.

• --compress[={required|preferred|disabled}], -C [{required|preferred|
disabled}]

Controls compression of information sent between the client and the server using this connection. In
MySQL Shell 8.0.14 through 8.0.19 this option is available for classic MySQL protocol connections only,
and does not use the options required, preferred, and disabled. In those releases, when you
specify --compress, compression is activated if possible. From MySQL Shell 8.0.20 it is also available
for X Protocol connections, and you can optionally specify required, preferred, or disabled. When
just --compress is specified from MySQL Shell 8.0.20, the meaning is --compress=required. See
Section 4.3.5, “Using Compressed Connections” for information on using MySQL Shell's compression
control in all releases.

• --connect-timeout=ms

Configures how long MySQL Shell waits (in milliseconds) to establish a global session specified through
command-line arguments.

• --credential-store-helper=helper

The Secret Store Helper that is to be used to store and retrieve passwords. See Section 4.4, “Pluggable
Password Store”.

• --database=name, -D name

The default schema to use. This is an alias for --schema.

• --dba=enableXProtocol

Enable X Plugin on connection with a MySQL 5.7 server, so that you can use X Protocol connections for
subsequent connections. Requires a connection using classic MySQL protocol. Not relevant for MySQL
8.0 servers, which have X Plugin enabled by default.

• --dba-log-sql[=0|1|2]

Log SQL statements that are executed by AdminAPI operations (excluding sandbox operations). By
default, this category of statement is not written to the MySQL Shell application log file or sent to the
console as verbose output, even when the --log-level and --verbose options are set. The value
of the option is an integer in the range from 0 to 2. 0 does not log or display this category of statement,
which is the default behavior if you do not specify the option. 1 logs SQL statements that are executed
by AdminAPI operations, with the exceptions of SELECT statements and SHOW statements (this is the
default setting if you specify the option on the command line without a value). 2 logs SQL statements
that are executed by regular AdminAPI operations in full, including SELECT and SHOW statements. See
Chapter 12, MySQL Shell Logging and Debug for more information.

• --dbpassword[=password]

Deprecated in version 8.0.13 of MySQL Shell. Use --password[=password] instead.

298

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html

mysqlsh — The MySQL Shell

• --dbuser=user_name

Deprecated in version 8.0.13 of MySQL Shell. Use --user=user_name instead.

• --execute=command, -e command

Execute the command using the currently active language and quit. This option is mutually exclusive
with the --file=file_name option.

• --file=file_name, -f file_name

Specify a file to process in Batch mode. Any options specified after this are used as arguments of the
processed file.

• --force

Continue processing in SQL and Batch modes even if errors occur.

• --histignore=strings

Specify strings that are not added to the MySQL Shell history. Strings are separated by a colon.
Matching is case insensitive, and the wildcards * and ? can be used. The default ignored strings are
specified as “*IDENTIFIED*:*PASSWORD*”. See Section 5.5, “Code History”.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host. On Windows, if you specify --host=. or -h . (giving
the host name as a period), MySQL Shell connects using the default named pipe (which has the name
MySQL), or an alternative named pipe that you specify using the --socket option.

• --get-server-public-key

MySQL Shell equivalent of --get-server-public-key.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

Important

Only supported with classic MySQL protocol connections.

See Caching SHA-2 Pluggable Authentication.

• --import

Import JSON documents from a file or standard input to a MySQL Server collection or relational table,
using the JSON import utility. For instructions, see Section 11.2, “JSON Import Utility”.

• --interactive[=full], -i

Emulate Interactive mode in Batch mode.

• --js, --javascript

Start in JavaScript mode.

299

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_get-server-public-key
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html

mysqlsh — The MySQL Shell

• --json[={off|pretty|raw}]

Controls JSON wrapping for MySQL Shell output from this session. This option is intended for interfacing
MySQL Shell with other programs, for example as part of testing. For changing query results output to
use the JSON format, see --result-format.

When the --json option has no value or a value of pretty, the output is generated as pretty-printed
JSON. With a value of raw, the output is generated in raw JSON format. In any of these cases, the --
result-format option and its aliases and the value of the resultFormat MySQL Shell configuration
option are ignored. With a value of off, JSON wrapping does not take place, and result sets are output
as normal in the format specified by the --result-format option or the resultFormat configuration
option.

• --log-file=path

Change the location of the MySQL Shell application log file mysqlsh.log for this MySQL Shell
instance. The default location for the application log file is the user configuration path, which defaults
to %APPDATA%\MySQL\mysqlsh\ on Windows or ~/.mysqlsh/ on Unix. You can override
the user configuration path for all MySQL Shell instances by defining the environment variable
MYSQLSH_USER_CONFIG_HOME. The --log-file option applies to the individual MySQL Shell
instance, meaning that different instances can write to different locations.

• --log-level=N

Change the logging level for the MySQL Shell application log file mysqlsh.log, or disable logging to
the file. The option requires a value, which can be either an integer in the range from 1 to 8, or one of
none, internal, error, warning, info, debug, debug2, or debug3. Specifying 1 or none disables
logging to the application log file. Level 5 (info) is the default if you do not specify this option. See
Chapter 12, MySQL Shell Logging and Debug.

• -ma

Deprecated in version 8.0.13 of MySQL Shell. Automatically attempts to use X Protocol to create the
session's connection, and falls back to classic MySQL protocol if X Protocol is unavailable.

• --mysql, --mc

Sets the global session created at start up to to use a classic MySQL protocol connection. The --mc
option with two hyphens replaces the previous single hyphen -mc option from MySQL Shell 8.0.13.

• --mysql-plugin-dir=path

Sets a non-persistent path to the client-side authentication plugins by overriding the value of the
shell.options.mysqlPluginDir setting. Client-side plugins are shipped in the MySQL Server
packages and can be located relative to the MySQL base directory (the value of the basedir system
variable). For example:

• C:\program files\mysql\mysql Server 8.0\lib\plugin on Windows host types

• /usr/local/mysql/lib/plugin on Linux host types

For a list of the client authentication plugins that ship with the server, see Available Authentication
Plugins.

300

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html#pluggable-authentication-available-plugins
https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html#pluggable-authentication-available-plugins

mysqlsh — The MySQL Shell

• --mysqlx, --mx

Sets the global session created at start up to use an X Protocol connection. The --mx option with two
hyphens replaces the previous single hyphen -mx option from MySQL Shell 8.0.13.

• --name-cache

Enable automatic loading of table names based on the active default schema.

• --no-name-cache, -A

Disable loading of table names for autocompletion based on the active default schema and the DevAPI
db object. Use \rehash to reload the name information manually.

• --no-password

When connecting to the server, if the user has a passwordless account, which is insecure and not
recommended, or if socket peer-credential authentication is in use (for Unix socket connections), you
must use --no-password to explicitly specify that no password is provided and the password prompt is
not required.

• --no-wizard, -nw

Disables the interactive wizards provided by operations such as creating connections,
dba.configureInstance(), Cluster.rebootClusterFromCompleteOutage() and so on.
Use this option when you want to script MySQL Shell and not have the interactive prompts displayed.
For more information see Section 5.6, “Batch Code Execution” and Section 5.8, “API Command Line
Integration”.

• --pager=name

The external pager tool used by MySQL Shell to display text output for statements executed in SQL
mode and other selected commands such as online help. If you do not set a pager, the pager specified
by the PAGER environment variable is used. See Section 4.6, “Using a Pager”.

• --passwords-from-stdin

Read the password from standard input, rather than from the terminal. This option does not affect any
other password behaviors, such as the password prompt.

• --password[=password], -ppassword

The password to use when connecting to the server. The maximum password length that is accepted for
connecting to MySQL Shell is 128 characters.

• --password=password (-ppassword) with a value supplies a password to be used for the
connection. With the long form --password=, you must use an equals sign and not a space between
the option and its value. With the short form -p, there must be no space between the option and
its value. If a space is used in either case, the value is not interpreted as a password and might be
interpreted as another connection parameter.

Specifying a password on the command line should be considered insecure. See End-User Guidelines
for Password Security. You can use an option file to avoid giving the password on the command line.

• --password with no value and no equal sign, or -p without a value, requests the password prompt.

• --password= with an empty value has the same effect as --no-password, which specifies that the
user is connecting without a password. When connecting to the server, if the user has a passwordless

301

https://dev.mysql.com/doc/refman/8.0/en/password-security-user.html
https://dev.mysql.com/doc/refman/8.0/en/password-security-user.html

mysqlsh — The MySQL Shell

account, which is insecure and not recommended, or if socket peer-credential authentication is in
use (for Unix socket connections), you must use one of these methods to explicitly specify that no
password is provided and the password prompt is not required.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection. The default is port 33060.

• --py, --python

Start in Python mode.

• --pym

Execute the specified Python module as a script in MySQL Shell's Python mode. --pym works in the
same way as Python's -m command line option. This option is available from MySQL Shell 8.0.22.

• --quiet-start[=1|2]

Start without printing introductory information. MySQL Shell normally prints information about the
product, information about the session (such as the default schema and connection ID), warning
messages, and any errors that are returned during startup and connection. When you specify --quiet-
start with no value or a value of 1, information about the MySQL Shell product is not printed, but
session information, warnings, and errors are printed. With a value of 2, only errors are printed.

• --recreate-schema

Drop and recreate the schema that was specified in the connection options, either as part of a URI-like
connection string or using the --schema, --database, or -D option. The schema is deleted if it exists.

• --redirect-primary

Ensures that the target server is part of an InnoDB Cluster or InnoDB ReplicaSet and if it is not the
primary, finds the primary and connects to it. MySQL Shell exits with an error if any of the following is
true when using this option:

• No instance is specified

• On an InnoDB Cluster, Group Replication is not active

• InnoDB Cluster metadata does not exist

• There is no quorum

• --replicaset

Ensures that the target server belongs to an InnoDB ReplicaSet, and if so, populates the rs global
variable with the InnoDB ReplicaSet. You can then administer the InnoDB ReplicaSet using the rs
global variable, for example by issuing rs.status().

• --redirect-secondary

Ensures that the target server is part of a single-primary InnoDB Cluster or InnoDB ReplicaSet and if it
is not a secondary, finds a secondary and connects to it. MySQL Shell exits with an error if any of the
following is true when using this option:

• On an InnoDB Cluster, Group Replication is not active

• InnoDB Cluster metadata does not exist

302

mysqlsh — The MySQL Shell

• There is no quorum

• The cluster is not single-primary and is running in multi-primary mode

• There is no secondary available, for example because there is just one server instance

• --result-format={table|tabbed|vertical|json|json/pretty|ndjson|json/raw|
json/array}

Set the value of the resultFormat MySQL Shell configuration option for this session. Formats are as
follows:

table The default for interactive mode, unless another value has been
set persistently for the resultFormat configuration option in the
configuration file, in which case that default applies. The --table
alias can also be used.

tabbed The default for batch mode, unless another value has been set
persistently for the resultFormat configuration option in the
configuration file, in which case that default applies. The --tabbed
alias can also be used.

vertical Produces output equivalent to the \G terminator for an SQL query.
The --vertical or -E aliases can also be used.

json or json/pretty Produces pretty-printed JSON.

ndjson or json/raw Produces raw JSON delimited by newlines.

json/array Produces raw JSON wrapped in a JSON array.

If the --json command line option is used to activate JSON wrapping for output for the session, the --
result-format option and its aliases and the value of the resultFormat configuration option are
ignored.

• --save-passwords={always|prompt|never}

Controls whether passwords are automatically stored in the secret store. always means passwords
are always stored unless they are already in the store or the server URL is excluded by a filter. never
means passwords are never stored. prompt, which is the default, means users are asked whether to
store the password or not. See Section 4.4, “Pluggable Password Store”.

• --schema=name, -D name

The default schema to use.

• --server-public-key-path=file_name

MySQL Shell equivalent of --server-public-key-path.

If --server-public-key-path=file_name is given and specifies a valid public key file, it takes
precedence over --get-server-public-key.

Important

Only supported with classic MySQL protocol connections.

303

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path

mysqlsh — The MySQL Shell

See caching_sha2_password plugin Caching SHA-2 Pluggable Authentication.

• --show-warnings={true|false}

When true is specified, which is the default, in SQL mode, MySQL Shell displays warnings after each
SQL statement if there are any. If false is specified, warning are not displayed.

• --socket[=path], -S [path]

On Unix, when a path is specified, the path is the name of the Unix socket file to use for the connection.
If you specify --socket with no value and no equal sign, or -S without a value, the default Unix socket
file for the appropriate protocol is used.

On Windows, the path is the name of the named pipe to use for the connection. The pipe name is not
case-sensitive. On Windows, you must specify a path, and the --socket option is available for classic
MySQL protocol sessions only.

You cannot specify a socket if you specify a port or a host name other than localhost on Unix or a
period (.) on Windows.

• --sql

Start in SQL mode, auto-detecting the protocol to use if it is not specified as part of the connection
information. When the protocol to use is not specified, defaults to an X Protocol connection, falling back
to a classic MySQL protocol connection. To force a connection to use a specific protocol see the --sqlx
or --sqlc options. Alternatively, specify a protocol to use as part of a URI-like connection string or
use the --port option. See Section 4.3, “MySQL Shell Connections” and MySQL Shell Ports for more
information.

• --sqlc

Start in SQL mode forcing the connection to use classic MySQL protocol, for example to use MySQL
Shell with a server that does not support X Protocol. If you do not specify the port as part of the
connection, when you provide this option MySQL Shell uses the default classic MySQL protocol port
which is usually 3306. The port you are connecting to must support classic MySQL protocol, so for
example if the connection you specify uses the X Protocol default port 33060, the connection fails with
an error. See Section 4.3, “MySQL Shell Connections” and MySQL Shell Ports for more information.

• --sqlx

Start in SQL mode forcing the connection to use X Protocol. If you do not specify the port as part of
the connection, when you provide this option MySQL Shell uses the default X Protocol port which is
usually 33060. The port you are connecting to must support X Protocol, so for example if the connection
you specify uses the classic MySQL protocol default port 3306, the connection fails with an error. See
Section 4.3, “MySQL Shell Connections” and MySQL Shell Ports for more information.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to
find SSL keys and certificates. The mysqlsh SSL options function in the same way as the SSL options
for MySQL Server, see Command Options for Encrypted Connections for more information.

mysqlsh accepts these SSL options: --ssl-mode, --ssl-ca, --ssl-capath, --ssl-cert, --
ssl-cipher, --ssl-crl, --ssl-crlpath, --ssl-key, --tls-version.

• --syslog

304

https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-ports-reference-tables.html#mysql-shell-ports
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-ports-reference-tables.html#mysql-shell-ports
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-ports-reference-tables.html#mysql-shell-ports
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crlpath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version

mysqlsh — The MySQL Shell

Send SQL statements that you issue in MySQL Shell’s SQL mode to the operating system’s system
logging facility (syslog on Unix, or the Windows Event Log). System logging for SQL statements only
takes place when MySQL Shell is started in interactive mode, so either a normal start or a start with
the --interactive option. It does not take place if the --execute or --file options are used at
startup to run mysqlsh in batch mode. See Section 12.3, “System Logging for SQL Statements” for
more information.

• --tabbed

Display results in tab separated format in interactive mode. The default for that mode is table format.
This option is an alias of the --result-format=tabbed option.

• --table

Display results in table format in batch mode. The default for that mode is tab separated format. This
option is an alias of the --result-format=table option.

• --uri=str

Create a connection upon startup, specifying the connection options in a URI-like string as described at
Connecting to the Server Using URI-Like Strings or Key-Value Pairs.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose[=0|1|2|3|4]

Activate verbose output to the console and specify the level of detail. The value is an integer in the range
from 0 to 4. 0 displays no messages, which is the default verbosity setting when you do not specify the
option. 1 displays error, warning and informational messages (this is the default setting if you specify
the option on the command line without a value). 2, 3, and 4 add higher levels of debug messages. See
Chapter 12, MySQL Shell Logging and Debug for more information.

• --version, -V

Display the version of MySQL Shell and exit.

• --vertical, -E

Display results vertically, as when the \G terminator is used for an SQL query. This option is an alias of
the --result-format=vertical option.

305

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

306

	MySQL Shell 8.0
	Table of Contents
	Chapter 1 MySQL Shell Features
	Chapter 2 Installing MySQL Shell
	2.1 Installing MySQL Shell on Microsoft Windows
	2.2 Installing MySQL Shell on Linux
	2.3 Installing MySQL Shell on macOS

	Chapter 3 Using MySQL Shell Commands
	3.1 MySQL Shell Commands

	Chapter 4 Getting Started with MySQL Shell
	4.1 Starting MySQL Shell
	4.2 MySQL Shell Sessions
	4.2.1 Creating the Session Global Object While Starting MySQL Shell
	4.2.2 Creating the Session Global Object After Starting MySQL Shell
	4.2.3 Scripting Sessions in JavaScript and Python Mode

	4.3 MySQL Shell Connections
	4.3.1 Connecting using Individual Parameters
	4.3.2 Connecting using Unix Sockets and Windows Named Pipes
	4.3.3 Using Encrypted Connections
	4.3.4 Using LDAP and Kerberos Authentication
	4.3.5 Using Compressed Connections
	4.3.5.1 Compression Control For MySQL Shell 8.0.20 And Later
	4.3.5.2 Compression Control For MySQL Shell 8.0.14 Through 8.0.19

	4.4 Pluggable Password Store
	4.4.1 Pluggable Password Configuration Options
	4.4.2 Working with Credentials

	4.5 MySQL Shell Global Objects
	4.6 Using a Pager

	Chapter 5 MySQL Shell Code Execution
	5.1 Active Language
	5.2 Interactive Code Execution
	5.3 Code Autocompletion
	5.4 Editing Code
	5.5 Code History
	5.6 Batch Code Execution
	5.7 Output Formats
	5.7.1 Table Format
	5.7.2 Tab Separated Format
	5.7.3 Vertical Format
	5.7.4 JSON Format Output
	5.7.5 JSON Wrapping
	5.7.6 Result Metadata

	5.8 API Command Line Integration
	5.8.1 Command Line Integration Overview
	5.8.2 Command Line Integration Details
	5.8.2.1 Command Line Integration for MySQL Shell API Functions
	5.8.2.2 Defining Arguments
	5.8.2.3 Data Type Handling
	User Data Types
	Data Type Resolution

	5.8.2.4 Command Line Help
	5.8.2.5 Support for MySQL Shell Plugins

	5.9 JSON Integration

	Chapter 6 MySQL AdminAPI
	6.1 Using MySQL AdminAPI
	6.1.1 Installing AdminAPI Software Components
	6.1.2 Using Instances Running MySQL 5.7
	6.1.3 Configuring the Host Name
	6.1.4 Connecting to Server Instances
	6.1.5 Persisting Settings
	6.1.6 Retrieving a Handler Object
	6.1.7 Creating User Accounts for Administration
	6.1.8 Verbose Logging
	6.1.9 Finding the Primary
	6.1.10 Scripting AdminAPI

	6.2 AdminAPI MySQL Sandboxes
	6.2.1 Deploying Sandbox Instances
	6.2.2 Managing Sandbox Instances

	6.3 Tagging Metadata
	6.4 Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet
	6.4.1 Bootstrapping MySQL Router
	6.4.2 Configuring the MySQL Router User
	6.4.3 Deploying MySQL Router
	6.4.4 Using ReplicaSets with MySQL Router
	6.4.5 Testing InnoDB Cluster High Availability
	6.4.6 Working with a Cluster's Routers

	Chapter 7 MySQL InnoDB Cluster
	7.1 MySQL InnoDB Cluster Requirements
	7.2 Deploying a Production InnoDB Cluster
	7.2.1 Deploying a New Production InnoDB Cluster
	7.2.2 Using MySQL Clone with InnoDB Cluster
	7.2.2.1 Working with a Cluster that uses MySQL Clone

	7.2.3 Adopting a Group Replication Deployment

	7.3 Monitoring InnoDB Cluster
	7.4 Working with Instances
	7.5 Working with InnoDB Cluster
	7.6 Configuring InnoDB Cluster
	7.7 Troubleshooting InnoDB Cluster
	7.8 Upgrading an InnoDB Cluster
	7.8.1 Rolling Upgrades
	7.8.2 Upgrading InnoDB Cluster Metadata
	7.8.3 Troubleshooting InnoDB Cluster Upgrades

	7.9 InnoDB Cluster Tips
	7.10 InnoDB Cluster Limitations

	Chapter 8 MySQL InnoDB ClusterSet
	8.1 InnoDB ClusterSet Requirements
	8.2 InnoDB ClusterSet Limitations
	8.3 User Accounts for InnoDB ClusterSet
	8.4 Deploying InnoDB ClusterSet
	8.5 Integrating MySQL Router With InnoDB ClusterSet
	8.6 InnoDB ClusterSet Status and Topology
	8.7 InnoDB ClusterSet Controlled Switchover
	8.8 InnoDB ClusterSet Emergency Failover
	8.9 InnoDB ClusterSet Repair and Rejoin
	8.9.1 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters
	8.9.2 Repairing Member Servers and Clusters in an InnoDB ClusterSet
	8.9.3 Removing a Cluster from an InnoDB ClusterSet
	8.9.4 Rejoining a Cluster to an InnoDB ClusterSet

	Chapter 9 MySQL InnoDB ReplicaSet
	9.1 Deploying InnoDB ReplicaSet
	9.2 Adding Instances to a ReplicaSet
	9.3 Adopting an Existing Replication Set Up
	9.4 Working with InnoDB ReplicaSet

	Chapter 10 Extending MySQL Shell
	10.1 Reporting with MySQL Shell
	10.1.1 Creating MySQL Shell Reports
	10.1.2 Registering MySQL Shell Reports
	10.1.3 Persisting MySQL Shell Reports
	10.1.4 Example MySQL Shell Report
	10.1.5 Running MySQL Shell Reports
	10.1.6 Built-in MySQL Shell Reports
	10.1.6.1 Built-in MySQL Shell Report: Query
	10.1.6.2 Built-in MySQL Shell Report: Threads
	10.1.6.3 Built-in MySQL Shell Report: Thread

	10.2 Adding Extension Objects to MySQL Shell
	10.2.1 Creating User-Defined MySQL Shell Global Objects
	10.2.2 Creating Extension Objects
	10.2.3 Persisting Extension Objects
	10.2.4 Example MySQL Shell Extension Objects

	10.3 MySQL Shell Plugins
	10.3.1 Creating MySQL Shell Plugins
	10.3.1.1 Common Code and Packages

	10.3.2 Creating Plugin Groups
	10.3.3 Example MySQL Shell Plugins

	Chapter 11 MySQL Shell Utilities
	11.1 Upgrade Checker Utility
	11.2 JSON Import Utility
	11.2.1 Importing JSON documents with the mysqlsh command interface
	11.2.2 Importing JSON documents with the --import command
	11.2.3 Conversions for representations of BSON data types

	11.3 Table Export Utility
	11.4 Parallel Table Import Utility
	11.5 Instance Dump Utility, Schema Dump Utility, and Table Dump Utility
	11.6 Dump Loading Utility

	Chapter 12 MySQL Shell Logging and Debug
	12.1 Application Log
	12.2 Verbose Output
	12.3 System Logging for SQL Statements
	12.4 Logging AdminAPI Operations

	Chapter 13 Customizing MySQL Shell
	13.1 Working With Startup Scripts
	13.2 Adding Module Search Paths
	13.2.1 Module Search Path Environment Variables
	13.2.2 Module Search Path Variable in Startup Scripts

	13.3 Customizing the Prompt
	13.4 Configuring MySQL Shell Options

	Appendix A MySQL Shell Command Reference
	A.1 mysqlsh — The MySQL Shell

