MySQL Shell 8.0

Abstract

MySQL Shell is an advanced client and code editor for MySQL. This document describes the core features of
MySQL Shell. In addition to the provided SQL functionality, similar to mysql , MySQL Shell provides scripting
capabilities for JavaScript and Python and includes APIs for working with MySQL. X DevAPI enables you to work
with both relational and document data, see Using MySQL as a Document Store. AdminAPI enables you to work
with InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet.

MySQL Shell 8.0 is highly recommended for use with MySQL Server 8.0 and 5.7. Please upgrade to MySQL Shell
8.0. If you have not yet installed MySQL Shell, download it from the download site.

For notes detailing the changes in each release, see the MySQL Shell Release Notes.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information. This product may include third-party software, used under license. If you are using
a Commercial release of MySQL Shell, see MySQL Shell Commercial License Information User Manual for
licensing information, including licensing information relating to third-party software that may be included in
this Commercial release. If you are using a Community release of MySQL Shell, see MySQL Shell Community
License Information User Manual for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Document generated on: 2021-10-18 (revision: 71122)

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/downloads/shell
https://dev.mysql.com/doc/relnotes/mysql-shell/8.0/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/mysql-shell-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-shell-8.0-gpl-en.pdf
https://downloads.mysql.com/docs/licenses/mysql-shell-8.0-gpl-en.pdf

Table of Contents

1 MYSQL SNEII FEATUIES ...ttt ettt e ettt e ettt e et enb e e e entaeeees 1
2 Installing MySQL SHell ... ettt e 5
2.1 Installing MySQL Shell on Microsoft WINAOWSoveiiiiiiiiiiiiieciie e 5

2.2 Installing MySQL SHell ON LINUX ...uuiiiiiiieiiiiiee e eeneens 5

2.3 Installing MySQL Shell 0n MAaCOS ... 7

3 Using MySQL Shell COMMENTSccoiiiiiiiiiiie ettt 9
3.1 MySQL Shell COMMANGSccoitiieiiiie ettt e e e e e 9

4 Getting Started with MySQL Shell ... 15
4.1 Starting MYSQL Shell ... e 15

4.2 MYSQL SNEII SESSIONS ..ottt ettt e e 15
4.2.1 Creating the Sessi on Global Object While Starting MySQL Shell 16

4.2.2 Creating the Sessi on Global Object After Starting MySQL Shellc.cc..cceeeee. 17

4.2.3 Scripting Sessions in JavaScript and Python Modecccooooviiiiiiiiies 18

4.3 MYSQL Shell CONNECLIONS ... ciiiiiiieiiiii ettt e e e e enaans 19
4.3.1 Connecting using Individual Parametersccoeuiiiiiiiiiieiii e 21

4.3.2 Connecting using Unix Sockets and Windows Named Pipescccccvevievinnnnnnn. 22

4.3.3 Using Encrypted CONNECLIONSccuuuiiiiiiiiiiiii e e 23

4.3.4 Using LDAP and Kerberos AUtNeNtiCationoveiiiiiiiieiiiieeiiie e 24

4.3.5 Using Compressed CONNECLIONScc.uuiiiiiiiieeieiie ettt e e 27

4.4 Pluggable PasSWOrd STOTEiiiiiiiieiiii ettt e 30
4.4.1 Pluggable Password Configuration OPLioNScccuuuiiiiiiiinieiiiiiieeeiin e 31

4.4.2 Working With CredentialScoouuuiiiiiiii e 32

4.5 MySQL Shell GIobal ODJECEScccuuiiiiiitie et eees 32

4.6 USING @ PAYET ...ttt ettt ettt et 33

5 MYSQL Shell Coae EXECULIONiiiiiiiiiiiii ettt e e e e 35
5.1 ACHVE LANGUAGE ... eeeitiieeiiit ettt ettt ettt e e ettt e ettt e e et et e e e eete e e e eeta e e eentnaaeeene 35

5.2 Interactive Code EXECULIONieiiiii ettt ettt e e e e 36

5.3 Code AULOCOMPIELIONiiiiiiiee ettt ettt e ettt e e e et e e eena e eeees 37

o O o {111 T @ To [RSP PTPP 39

5.5 €O HISIOMY ...ttt ettt et e 40

5.6 BaAtCh CO0dE EXECULION .. .evuuiiiiiie ettt ettt e e e e et eeena s 41

5.7 OULPUL FOMMALSiieiiiiiieiii ettt et et e e e et e e e et e e e enans 42
B5.7.1 TABIE FOMMALeeiiieieee ettt e et e e eaa s 43

5.7.2 Tab Separated FOIMMALccouuuiiiiiiie et eeees 43

5.7.3 VErtiCal FOMALoiiiiiieiii e 44

5.7.4 JSON FOrmMat OULPULccuiiiiiiitieii ettt e e e e e 44

5.7.5 JSON WIEPPING . ..ceeetiieiiiiiiee ettt ettt e e et ettt e e et e e e e et e e e ea e e e enta e eeenes 46

5.7.6 RESUIL MELATATAcceeviieiiiii et 47

5.8 APl Command Line INtEGrationccoeuuiiiiiiieeiii et a7
5.8.1 Command Line INtegration OVEIVIEWoociiiiiiiiiiiiiieeeiiii e e 48

5.8.2 Command Line Integration DetailSc.uuiiiiiiiiiiiiiiiiieeei e 50

5.9 JSON INEGIALION ...eevtieeiiiti ettt ettt et ettt et e et e et et e et et e e e e e aae e e eenans 59

6 MYSQL AAMINAP ..o et ettt e ettt e et et e e et et r e et eaa e e e eeraaeaees 61
6.1 USing MySQL AAMINAP ...t eeaans 61
6.1.1 Installing AdminAPI Software COMPONENLSc..iiiitiiiiiieiiiee e 62

6.1.2 Using Instances RUNNINg MYSQL 5.7 ...ooouiiiiiiii e 62

6.1.3 Configuring the HOSt NAMEuiiiiii e 63

6.1.4 Connecting t0 Server INSLANCEScccuuuuiiiiiii e 64

6.1.5 PersiStiNg SEeIINGS .. .cccuuuiiiiiiiie it 65

6.1.6 Retrieving a Handler ODJECTociiiiiiiiii e 65

6.1.7 Creating User Accounts for AdminiStrationccceeveierinieiiiinneiii e 66

6.1.8 VErDOSE LOGGING . .vtuniiiriiieiiii ettt et ettt 67

6.1.9 FINdiNG the PriIMArYiii e 68

6.1.10 Scripting AMINAPTooi e 68

6.2 AdMINAP] MYSQL SANADOXESciieiiiiiiiiiie ettt 69

MySQL Shell 8.0

6.2.1 Deploying SandboX INSTANCESiviuuiiiii e e e aens 69
6.2.2 Managing SandboX INStANCESoiviiiiiiiici e 70

LSRRI 1= Vo o[g o T 1Y/ 1= ¢= Lo £ - 71
6.4 Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet 74
6.4.1 Bootstrapping MySQL ROULETciiiiiiii e e e e e 74
6.4.2 Configuring the MySQL ROULEN USETciiiiiiiiicii e 75
6.4.3 Deploying MySQL ROULETuiiiiiieiii e e e e e e e e eaens 75
6.4.4 Using ReplicaSets with MySQL ROULETc.iiiiiiiiiiiiiii e 77
6.4.5 Testing InnoDB Cluster High Availabilityc.ccccooiiiiiiiii e, 77
6.4.6 Working with @ CIUSLEr's ROULEIScc.uuiiiiiiii e e e e 78

7 MYSQL INNODB CIUSLETuiiiiiiiiee e et e e e e e e e e e e e e et e e e e e et eeaaneaaanaaes 81
7.1 MySQL INNODB Cluster REQUIFEMENLESciveeiiiiciii e e e e e e e e e e e e eanas 83
7.2 Deploying a Production INNODB CIUSLETccviuiiiiiiiii e e e 83
7.2.1 Deploying a New Production INNODB CIUSLETcccvvviiiiiieiiiieccie e 85
7.2.2 Using MySQL Clone with INNODB CIUSEENcivuniiiiiiiiie e 91
7.2.3 Adopting a Group Replication Deploymentccvvviiiiiiiineiiiicciee e 95

7.3 Monitoring INNODB CIUSLETiiiiieii e e e e e e 96
7.4 Working With INSTANCESuiiiiiiii e e e et e e e e eans 106
7.5 Working With INNODB CIUSLETiviiiciiici e e 108
7.6 Configuring INNODB CIUSTETuuiiiiieii e e e e e e e 111
7.7 Troubleshooting INNODB CIUSLETiiiiiciii e e e e e aens 117
7.8 Upgrading an INNODB CIUSLETciuuiiiiiiii e e e e e e e e e eaens 122
AR = T o] LT To T o | = o [= PPN 122
7.8.2 Upgrading InnoDB Cluster Metadatacoevuuiiiiiiiiiiiecii e e eee e 122
7.8.3 Troubleshooting INNoDB Cluster Upgradesccocouieiiiieiiiiiiii e 124

7.9 INNODB CIUSTE TIPS 1uuiitiiiii ettt et e e e e et e e e e e e e e e e e e e et e e et e e et s e e aaeeanaees 125
7.10 INNODB CluSter LIMITALIONScceuuiiiiiiiiiee et e e et e et s eeeeaan e aees 127
8 MYSQL INNODB ClIUSIEISEL . .evuiiiiiieii et e e e e e e e e et e e et e e ea e eees 131
8.1 INNODB ClusterSet REQUIFEMENTSciviiiiiiie e e e e e e e e e e e e ean s 133
8.2 INNODB ClusterSet LIMItAtIONSc...uuuiiiiiiiiiee e e e e eeees 137
8.3 User Accounts for INNODB CIUSIEISELc.uuuiiiiiiiiieiiiii et 137
8.4 Deploying INNODB CIUSIEISEL ... ccuuiiiii e e e e e e e e eees 140
8.5 Integrating MySQL Router With INnNODB CIUSIEISEtccovviiviiiiiiiieeii e 150
8.6 INnnoDB ClusterSet Status and TOPOIOGYuevvuniiiiiieiii e e e e 155
8.7 InnoDB ClusterSet Controlled SWItChOVETcooviiiiiiiiii e 163
8.8 INNoDB ClusterSet Emergency FailoVercoiviiiiiiiieii e 168
8.9 INnnoDB ClusterSet Repair and REJOINociiuiiiiiiiii e 173
8.9.1 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters 175
8.9.2 Repairing Member Servers and Clusters in an InnoDB ClusterSet 177
8.9.3 Removing a Cluster from an INnNODB CIUStErSetcccovevviiiiiiiiiiii e 178
8.9.4 Rejoining a Cluster to an INNODB CIUSLErSetcc.oviviiiiiiiiiiiii e, 181

9 MySQL INNODB REPICASEL .. .cvuiiiiiieii e et e e e e e e e e e et e e et eeanaaees 183
9.1 Deploying INNODB REPHCASELccvuiiiicii e 183
9.2 Adding Instances to a REPICASELociiiiiii e 186
9.3 Adopting an Existing Replication St Upccouiiiiiiiiiiiiciiic e 188
9.4 Working with INNODB REPICASELuiiiiiiii i e 189
10 Extending MySQL SheEllouiiiiiiii e e e e e e e e e 195
10.1 Reporting With MYSQL Shellooorniiiie e 195
10.1.1 Creating MySQL Shell REPOIS ... covuniiiiiiiii e 196
10.1.2 Registering MySQL Shell REPOIScccvuiiiiiieiiiiee e e 196
10.1.3 Persisting MySQL Shell REPOISccovuiiiiiieiieci e 198
10.1.4 Example MySQL Shell REPOItccuuiiiiieii e e 198
10.1.5 Running MySQL Shell REPOIScccuuiiiiiiii e 199
10.1.6 Built-in MySQL Shell REPOISciviiiiiiieie e e e aae e 200

10.2 Adding Extension Objects to MySQL Shellccoooiiiiiiii e, 203
10.2.1 Creating User-Defined MySQL Shell Global Objectscccoeeviiiiiiiiiiiiiis 203
10.2.2 Creating EXtension ODJECLScvuiiiiii e e e e 204

10.2.3 Persisting EXtENSION ODJECESiiiiiiii i 206

MySQL Shell 8.0

10.2.4 Example MySQL Shell Extension ODbJECtScocvviiiiiiiiiiiiccie e 206

10.3 MYSQL Shell PIUGINS ...eviiiiic et e e e e e e e e aa s 208
10.3.1 Creating MySQL Shell PIUGINScvuniiiiic e e 208

10.3.2 Creating PIUGQIN GIOUPSu.cvunieiiieeii et e et e s e e e e e e e e s e e e e e e st a e e eeaneees 209

10.3.3 Example MySQL Shell PIUGINScoouiiiiiiice e 209
ST T I 1= B 11T 213
11.1 Upgrade ChecKer ULIILYccoiiiiiei e e e e 213

7N 1510 |V o T oY A 1T SRR 220
11.2.1 Importing JSON documents with the mysqglsh command interface 222

11.2.2 Importing JSON documents with the --import commandcc..coeeeeis 223

11.2.3 Conversions for representations of BSON data typesccoovevviveviiiviineeinnenn, 224

B B = o T I ot o Yo T A0 1 225

11.4 Parallel Table IMport ULIlItYcoouniiiii e e e e 229

11.5 Instance Dump Utility, Schema Dump Utility, and Table Dump Utilitycc.c.co. 236

11.6 DUmMp Loading ULIIEYcoeen e e e e e e 249

12 MySQL Shell Logging and DEDUQuuiiiiniiiiicie e e e e e 263
D2 R Y o o] o= 11 T o T 1 T PPN 264

Y =Y oo =TI O 1 1 01U | PN 265

12.3 System Logging for SQL State@mentscouuiiiiiiiiiiiiei e 266

12.4 Logging AdMINAPT OPEIatiONSuuciiieiiiiee e et e e e e e e e e e e e eaa s 267

13 Customizing MYSQL ShEllcouniii e e 269
13.1 Working With STartup SCIPLSivvuiiii et e e e e e e aaae e 269

13.2 Adding Module Search Paths ..o 270
13.2.1 Module Search Path Environment Variablescccoovviiiiiiiiiiiiinieec 271

13.2.2 Module Search Path Variable in Startup SCriptscccoeeviiiviiiiiii e, 271

13.3 Customizing the PromMPt ... e e e e e e e e e 272

13.4 Configuring MySQL Shell OPtioNSiiiiiiiiii e e 272

A MySQL Shell Command REFEIENCEiiuuiiii i e eaas 277
A.1 mysqlsh — The MySQL Shelloooiniiiii e 277

Vi

Chapter 1 MySQL Shell Features

The following features are available in MySQL Shell.

Supported Languages

MySQL Shell processes code written in JavaScript, Python and SQL. Any executed code is processed
as one of these languages, based on the language that is currently active. There are also specific
MySQL Shell commands, prefixed with \ , which enable you to configure MySQL Shell regardless of the
currently selected language. For more information see Section 3.1, “MySQL Shell Commands”.

From version 8.0.18, MySQL Shell uses Python 3, rather than Python 2.7. For platforms that include a
system supported installation of Python 3, MySQL Shell uses the most recent version available, with

a minimum supported version of Python 3.6. For platforms where Python 3 is not included or is not at
the minimum supported version, MySQL Shell bundles Python 3.7.7 up to MySQL Shell 8.0.25, and
Python 3.9.5 from MySQL Shell 8.0.26. MySQL Shell maintains code compatibility with Python 2.6 and
Python 2.7, so if you require one of these older versions, you can build MySQL Shell from source using
the appropriate Python version.

Interactive Code Execution

MySQL Shell provides an interactive code execution mode, where you type code at the MySQL Shell
prompt and each entered statement is processed, with the result of the processing printed onscreen.
Unicode text input is supported if the terminal in use supports it. Color terminals are supported.

Multiple-line code can be written using a command, enabling MySQL Shell to cache multiple lines and
then execute them as a single statement. For more information see Multiple-line Support.

Batch Code Execution

In addition to the interactive execution of code, MySQL Shell can also take code from different sources
and process it. This method of processing code in a noninteractive way is called Batch Execution.

As batch execution mode is intended for script processing of a single language, it is limited to having
minimal non-formatted output and disabling the execution of commands. To avoid these limitations, use
the - - i nt er act i ve command-line option, which tells MySQL Shell to execute the input as if it were
an interactive session. In this mode the input is processed line by line just as if each line were typed in
an interactive session. For more information see Section 5.6, “Batch Code Execution”.

Supported APIs

MySQL Shell includes the following APIs implemented in JavaScript and Python which you can use to
develop code that interacts with MySQL.

» AdminAPI enables you to administer MySQL instances, using them to create InnoDB Cluster,
InnoDB ClusterSet, and InnoDB ReplicaSet deployments, and integrating MySQL Router.

< InnoDB Cluster provides an integrated solution for high availability and scalability using InnoDB
based MySQL databases. InnoDB Cluster is an alternative solution for using Group Replication,
without requiring advanced MySQL expertise. See Chapter 7, MySQL InnoDB Cluster.

* InnoDB ClusterSet provides disaster tolerance for Chapter 7, MySQL InnoDB Cluster deployments
by linking a primary InnoDB Cluster with one or more replicas of itself in alternate locations. See
Chapter 8, MySQL InnoDB ClusterSet.

< InnoDB ReplicaSet enables you to administer a set of MySQL instances running asynchronous
GTID-based replication. See Chapter 9, MySQL InnoDB ReplicaSet.

X Protocol Support

AdminAPI also provides operations to configure users for MySQL Router, to make integration
with InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet as simple as possible. For more
information on AdminAPI, see Chapter 6, MySQL AdminAPI.

» X DevAPI enables developers to work with both relational and document data when MySQL Shell is
connected to a MySQL server using the X Protocol. For more information, see Using MySQL as a
Document Store. For documentation on the concepts and usage of X DevAPI, see X DevAPI User
Guide.

X Protocol Support

MySQL Shell is designed to provide an integrated command-line client for all MySQL products which
support X Protocol. The development features of MySQL Shell are designed for sessions using the X
Protocol. MySQL Shell can also connect to MySQL Servers that do not support the X Protocol using
the classic MySQL protocol. A minimal set of features from the X DevAPI are available for sessions
created using the classic MySQL protocol.

Extensions

You can define extensions to the base functionality of MySQL Shell in the form of reports and
extension objects. Reports and extension objects can be created using JavaScript or Python, and can
be used regardless of the active MySQL Shell language. You can persist reports and extension objects
in plugins that are loaded automatically when MySQL Shell starts. MySQL Shell has several built-in
reports ready to use. See Chapter 10, Extending MySQL Shell for more information.

Utilities
MySQL Shell includes the following utilities for working with MySQL:

» An upgrade checker utility to verify whether MySQL server instances are ready for upgrade. Use
util.checkFor Server Upgrade() to access the upgrade checker.

* A JSON import utility to import JSON documents to a MySQL Server collection or table. Use
util.inportJSON() to access the import utility.

» A parallel table import utility that splits up a single data file and uses multiple threads to load the
chunks into a MySQL table.

See Chapter 11, MySQL Shell Utilities for more information.

APl Command Line Integration

MySQL Shell exposes much of its functionality using an APl command syntax that enables you to
easily integrate nysql sh with other tools. For example you can create bash scripts which administer
an InnoDB Cluster with this functionality. Use the mysql sh [options] -- shell _object

obj ect _net hod [net hod_ar gunment s] syntax to pass operations directly to MySQL Shell global
objects, bypassing the REPL interface. See Section 5.8, “API Command Line Integration”.

Output Formats

MySQL Shell can return results in table, tabbed, or vertical format, or as JSON output. To help
integrate MySQL Shell with external tools, you can activate JSON wrapping for all output when you
start MySQL Shell from the command line. For more information see Section 5.7, “Output Formats”.

Logging and Debug

MySQL Shell can log information about the execution process at your chosen level of detail. Logging
information can be sent to any combination of an application log file, an additional viewable destination,
and the console. For more information see Chapter 12, MySQL Shell Logging and Debug.

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/

Global Session

Global Session

In MySQL Shell, connections to MySQL Server instances are handled by a session object. When

you make the first connection to a MySQL Server instance, which can be done either while starting
MySQL Shell or afterwards, a MySQL Shell global object named sessi on is created to represent this
connection. This session is known as the global session because it can be used in all of the MySQL
Shell execution modes. In SQL mode the global session is used for executing statements, and in
JavaScript mode and Python mode it is available through an object named sessi on. You can create
further session objects using functions available in the mysql x and nysql JavaScript and Python
modules, and you can set one of these session objects as the sessi on global object so you can use it
in any mode. For more information, see Section 4.2, “MySQL Shell Sessions”.

Chapter 2 Installing MySQL Shell

Table of Contents

2.1 Installing MySQL Shell on Microsoft WINAOWSviiiiiiiiiiiiii e e 5
2.2 Installing MySQL Shell ON LINUX ...uuiiiniiiiiei e e e e e et e e e e e e et s e eanaeeanaeeeen 5
2.3 Installing MySQL Shell 0N MACOS ..o e e r e e aeas 7

This section describes how to download, install, and start MySQL Shell, which is an interactive
JavaScript, Python, or SQL interface supporting development and administration for MySQL Server.
MySQL Shell is a component that you can install separately.

MySQL Shell supports X Protocol and enables you to use X DevAPI in JavaScript or Python to develop
applications that communicate with a MySQL Server functioning as a document store. For information
about using MySQL as a document store, see Using MySQL as a Document Store.

Important

A For the Community and Commercial versions of MySQL Shell: Before installing
MySQL Shell, make sure you have the Visual C++ Redistributable for Visual
Studio 2015 (available at the Microsoft Download Center) installed on your
Windows system.

Requirements

MySQL Shell is available on Microsoft Windows, Linux, and macOS for 64-bit platforms.

2.1 Installing MySQL Shell on Microsoft Windows

To install MySQL Shell on Microsoft Windows using the MSI Installer, do the following:

1. Download the Windows (x86, 64-bit), MSI Installer package from http://dev.mysqgl.com/
downloads/shell/.

2. When prompted, click Run.

3. Follow the steps in the Setup Wizard.

2.2 Installing MySQL Shell on Linux

Note
@ Installation packages for MySQL Shell are available only for a limited number of
Linux distributions, and only for 64-bit systems.

For supported Linux distributions, the easiest way to install MySQL Shell on Linux is to use the MySQL
APT repository or MySQL Yum repository. For systems not using the MySQL repositories, MySQL
Shell can also be downloaded and installed directly.

Installing MySQL Shell with the MySQL APT Repository

For Linux distributions supported by the MySQL APT repository, follow one of the paths below:

« If you do not yet have the MySQL APT repository as a software repository on your system, do the
following:

< Follow the steps given in Adding the MySQL APT Repository, paying special attention to the
following:

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
http://www.microsoft.com/en-us/download/default.aspx
http://dev.mysql.com/downloads/shell/
http://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/doc/mysql-apt-repo-quick-guide/en/#apt-repo-setup

Installing MySQL Shell with the MySQL Yum Repository

 During the installation of the configuration package, when asked in the dialogue box to configure
the repository, make sure you choose MySQL 8.0 as the release series you want.

» Make sure you do not skip the step for updating package information for the MySQL APT
repository:

sudo apt-get update
« Install MySQL Shell with this command:
sudo apt-get install mysql-shel

« If you already have the MySQL APT repository as a software repository on your system, do the
following:

< Update package information for the MySQL APT repository:
sudo apt-get update

« Update the MySQL APT repository configuration package with the following command:
sudo apt-get install nysql-apt-config

When asked in the dialogue box to configure the repository, make sure you choose MySQL 8.0 as
the release series you want.

« Install MySQL Shell with this command:

sudo apt-get install nysql-shel

Installing MySQL Shell with the MySQL Yum Repository

For Linux distributions supported by the MySQL Yum repository, follow these steps to install MySQL
Shell:

» Do one of the following:

« If you already have the MySQL Yum repository as a software repository on your system and the
repository was configured with the new release package mysql 80- communi ty-r el ease.

« If you already have the MySQL Yum repository as a software repository on your system but have
configured the repository with the old release package nmysql - conmuni ty-r el ease, itis easiest
to install MySQL Shell by first reconfiguring the MySQL Yum repository with the new nysqgl 80-
conmmuni ty-r el ease package. To do so, you need to remove your old release package first,
with the following command :

sudo yum renove nysql - conmuni ty-rel ease
For dnf-enabled systems, do this instead:
sudo dnf erase nysql - conmuni ty-rel ease

Then, follow the steps given in Adding the MySQL Yum Repository to install the new release
package, mysql 80- conmuni ty-rel ease.

« If you do not yet have the MySQL Yum repository as a software repository on your system, follow
the steps given in Adding the MySQL Yum Repository.

* Install MySQL Shell with this command:

sudo yuminstall mnysql-shel

For dnf-enabled systems, do this instead:

https://dev.mysql.com/downloads/repo/apt/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-repo-setup
https://dev.mysql.com/downloads/repo/yum/
https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-repo-setup

Installing MySQL Shell from Direct Downloads from the MySQL Developer Zone

sudo dnf install mysql-shell

Installing MySQL Shell from Direct Downloads from the MySQL Developer

Zone

RPM, Debian, and source packages for installing MySQL Shell are also available for download at
Download MySQL Shell.

2.3 Installing MySQL Shell on macOS

To install MySQL Shell on macOS, do the following:

1.

2.

Download the package from http://dev.mysqgl.com/downloads/shell/.
Double-click the downloaded DMG to mount it. Finder opens.
Double-click the . pkg file shown in the Finder window.

Follow the steps in the installation wizard.

When the installer finishes, eject the DMG. (It can be deleted.)

https://dev.mysql.com/downloads/shell/
http://dev.mysql.com/downloads/shell/

Table of Contents

3.1 MySQL Shell COMMANGS .. .cooutiiiiiiii ettt e e et e e ettt e e e e eatreeeebtaeeeeteaaaees

Chapter 3 Using MySQL Shell Commands

This section describes the commands which configure MySQL Shell from the interactive code editor.
The commands enable you to control the MySQL Shell regardless of the current language being used.
For example you can get online help, connect to servers, change the current language being used,

run reports, use utilities, and so on. These commands are sometimes similar to the MySQL Shell
settings which can be configured using the nysql sh command options, see Appendix A, MySQL Shell

Command Reference.

3.1 MySQL Shell Commands

MySQL Shell provides commands which enable you to modify the execution environment of the code
editor, for example to configure the active programming language or a MySQL Server connection. The
following table lists the commands that are available regardless of the currently selected language.

As commands need to be available independent of the execution mode, they start with an escape

sequence, the \ character.

Command Alias/Shortcut Description

\ hel p \hor\? Print help about MySQL Shell, or
search the online help.

\quit \gor\exit Exit MySQL Shell.

\ In SQL mode, begin multiple-
line mode. Code is cached and
executed when an empty line is
entered.

\'status \'s Show the current MySQL Shell
status.

\js Switch execution mode to
JavaScript.

\ py Switch execution mode to
Python.

\ sql Switch execution mode to SQL.

\ connect \c Connect to a MySQL instance.

\reconnect Reconnect to the same MySQL
instance.

\ di sconnect Disconnect the global session.

\use \u Specify the schema to use.

\ source \. or sour ce (no backslash) Execute a script file using the
active language.

\ war ni ngs \W Show any warnings generated by
a statement.

\ nowar ni ngs \'w Do not show any warnings

generated by a statement.

\ hi story

View and edit command line
history.

Help Command

Command Alias/Shortcut Description

\rehash Manually update the
autocomplete name cache.

\option Query and change MySQL Shell
configuration options.

\ show Run the specified report using
the provided options and
arguments.

\'wat ch Run the specified report using

the provided options and
arguments, and refresh the
results at regular intervals.

\edit \e Open a command in the default
system editor then present it in
MySQL Shell.

\ pager \P Configure the pager which
MySQL Shell uses to display
text.

\ nopager Disable any pager which MySQL
Shell was configured to use.

\ system \! Run the specified operating
system command and display
the results in MySQL Shell.

Help Command

The \ hel p command can be used with or without a parameter. When used without a parameter a
general help message is printed including information about the available MySQL Shell commands,
global objects and main help categories.

When used with a parameter, the parameter is used to search the available help based on the mode
which the MySQL Shell is currently running in. The parameter can be a word, a command, an API
function, or part of an SQL statement. The following categories exist:

e Admi nAPI - details the dba global object and the AdminAPI, which enables you to work with InnoDB
Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet.

* X DevAPI - details the nysql x module as well as the capabilities of the X DevAPI, which enable
you to work with MySQL as a Document Store

» Shel | Conmands - provides details about the available built-in MySQL Shell commands.

» Shel | API - contains information about the shel | and uti | global objects, as well as the nysq|l
module that enables executing SQL on MySQL Servers.

* SQL Synt ax - entry point to retrieve syntax help on SQL statements.

To search for help on a topic, for example an API function, use the function name as a pattern. You
can use the wildcard characters ? to match any single character and * to match multiple characters
in a search. The wildcard characters can be used one or more times in the pattern. The following
namespaces can also be used when searching for help:

» dba for AdminAPI
* nysql x for X DevAPI

» nysql for ShellAPI for classic MySQL protocol

10

Connect, Reconnect, and Disconnect Commands

e shel | for other ShellAPI classes: Shel | , Sys, Opti ons

» commands for MySQL Shell commands

e cndl i ne for the nysql sh command interface

For example to search for help on a topic, issue \ hel p pattern and:
» use x devapi to search for help on the X DevAPI

e use\ c to search for help on the MySQL Shell\ connect command

» use get Cl ust er ordba. get Cl ust er to search for help on the AdminAPI dba. get Cl uster ()
operation

» use Tabl e or nysql x. Tabl e to search for help on the X DevAPI Tabl e class

» when MySQL Shell is running in JavaScript mode, use i sVi ew, Tabl e. i sVi ewor
nysql x. Tabl e. i sVi ewto search for help on the i sVi ewfunction of the Tabl e object

* when MySQL Shell is running in Python mode, use i s_vi ew, Tabl e. i s_vi ewor
nysql x. Tabl e. i s_vi ewto search for help on the i sVi ewfunction of the Tabl e object

e when MySQL Shell is running in SQL mode, if a global session to a MySQL server exists SQL help is
displayed. For an overview use sql synt ax as the search pattern.

Depending on the search pattern provided, one or more results could be found. If only one help topic
contains the search pattern in its title, that help topic is displayed. If multiple topic titles match the
pattern but one is an exact match, that help topic is displayed, followed by a list of the other topics with
pattern matches in their titles. If no exact match is identified, a list of topics with pattern matches in their
titles is displayed. If a list of topics is returned, you can select a topic to view from the list by entering
the command again with an extended search pattern that matches the title of the relevant topic.

Connect, Reconnect, and Disconnect Commands

The \ connect command is used to connect to a MySQL Server. See Section 4.3, “MySQL Shell
Connections”.

For example:

\ connect root @ ocal host: 3306
If a password is required you are prompted for it.

Use the - - mysql x (- - nx) option to create a session using the X Protocol to connect to MySQL server
instance. For example:

\ connect --nmysqgl x root @ ocal host : 33060

Use the - - mysql (- - nt) option to create a ClassicSession, enabling you to use classic MySQL
protocol to issue SQL directly on a server. For example:

\ connect --nysqgl root @ ocal host: 3306

The use of a single dash with the short form options (that is, - mx and - nt) is deprecated from version
8.0.13 of MySQL Shell.

The \ r econnect command is specified without any parameters or options. If the connection to

the server is lost, you can use the \ r econnect command, which makes MySQL Shell try several
reconnection attempts for the session using the existing connection parameters. If those attempts are
unsuccessful, you can make a fresh connection using the \ connect command and specifying the
connection parameters.

The \ di sconnect command, available from MySQL Shell 8.0.22, is also specified without any
parameters or options. The command disconnects MySQL Shell's global session (the session

11

Status Command

represented by the sessi on global object) from the currently connected MySQL server instance, so
that you can close the connection but still continue to use MySQL Shell.

If the connection to the server is lost, you can use the \ r econnect command, which makes MySQL
Shell try several reconnection attempts for the session using the existing connection parameters. If
those attempts are unsuccessful, you can make a fresh connection using the \ connect command and
specifying the connection parameters.

Status Command

The \ st at us command displays information about the current global connection. This includes
information about the server connected to, the character set in use, uptime, and so on.

Source Command

The \ sour ce command or its alias \ . can be used in MySQL Shell's interactive mode to execute code
from a script file at a given path. For example:

\'source /tnp/nydata. sql

You can execute either SQL, JavaScript or Python code. The code in the file is executed using the
active language, so to process SQL code the MySQL Shell must be in SQL mode.

different language than the currently selected execution mode language could

Warning
O As the code is executed using the active language, executing a script in a
lead to unexpected results.

From MySQL Shell 8.0.19, for compatibility with the nysql client, in SQL mode only, you can execute
code from a script file using the sour ce command with no backslash and an optional SQL delimiter.

sour ce or the alias \ . (which does not use an SQL delimiter) can be used both in MySQL Shell's
interactive mode for SQL, to execute a script directly, and in a file of SQL code processed in batch
mode, to execute a further script from within the file. So with MySQL Shell in SQL mode, you could now
execute the scriptin the / t np/ nydat a. sql file from either interactive mode or batch mode using any
of these three commands:

source /tnp/ nydata. sql ;

source /tnp/ nmydat a. sql
\'. /tnp/nydata. sql

The command \ sour ce /tnp/ nmydat a. sql is also valid, but in interactive mode only.

In interactive mode, the \ sour ce,\ . or sour ce command itself is added to the MySQL Shell history,
but the contents of the executed script file are not added to the history.

Use Command

The \ use command enables you to choose which schema is active, for example:

\use schema_nane

The \ use command requires a global development session to be active. The \ use command sets
the current schema to the specified scherma_nane and updates the db variable to the object that
represents the selected schema.

History Command

The \ hi st ory command lists the commands you have issued previously in MySQL Shell. Issuing
\ hi st ory shows history entries in the order that they were issued with their history entry number,
which can be used with the \ hi st ory del ete entry_ nunber command.

12

Rehash Command

The \ hi st ory command provides the following options:

* Use\ history save to save the history manually.

* Use\history del ete entrynunber to delete the individual history entry with the given number.

e Use\history delete firstnunber-I|astnunber to delete history entries within the range
of the given entry numbers. If | ast nunber goes past the last found history entry number, history
entries are deleted up to and including the last entry.

* Use\history del ete nunber - to delete the history entries from nunber up to and including the

last entry.

 Use\history del ete -nunber to delete the specified number of history entries starting with
the last entry and working back. For example, \ hi st ory del et e - 10 deletes the last 10 history
entries.

 Use\history cl ear to delete the entire history.

The history is not saved between sessions by default, so when you exit MySQL Shell the history of
what you issued during the current session is lost. If you want to keep the history across sessions,
enable the MySQL Shell hi st ory. aut oSave option. For more information, see Section 5.5, “Code
History”.

Rehash Command

When you have disabled the autocomplete name cache feature, use the \ r ehash command to
manually update the cache. For example, after you load a new schema by issuing the \ use schenma
command, issue \ r ehash to update the autocomplete name cache. After this autocomplete is aware
of the names used in the database, and you can autocomplete text such as table names and so on.
See Section 5.3, “Code Autocompletion”.

Option Command

The \ opt i on command enables you to query and change MySQL Shell configuration options in
all modes. You can use the \ opt i on command to list the configuration options that have been set
and show how their value was last changed. You can also use it to set and unset options, either for
the session, or persistently in the MySQL Shell configuration file. For instructions and a list of the
configuration options, see Section 13.4, “Configuring MySQL Shell Options”.

Pager Commands

You can configure MySQL Shell to use an external pager to read long onscreen output, such as the
online help or the results of SQL queries. See Section 4.6, “Using a Pager”.

Show and Watch Commands

The \ show command runs the named report, which can be either a built-in MySQL Shell report or a
user-defined report that has been registered with MySQL Shell. You can specify the standard options
for the command, and any options or additional arguments that the report supports. The \ wat ch
command runs a report in the same way as the \ show command, but then refreshes the results at
regular intervals until you cancel the command using Ctrl + C. For instructions, see Section 10.1.5,
“Running MySQL Shell Reports”.

Edit Command

The \ edit (\ €) command opens a command in the default system editor for editing, then presents
the edited command in MySQL Shell for execution. The command can also be invoked using the key
combination Ctrl-X Ctrl-E. For details, see Section 5.4, “Editing Code”.

13

System Command

System Command

The \ syst em(\ !) command runs the operating system command that you specify as an argument
to the command, then displays the output from the command in MySQL Shell. MySQL Shell returns
an error if it was unable to execute the command. The output from the command is returned as given
by the operating system, and is not processed by MySQL Shell's JISON wrapping function or by any
external pager tool that you have specified to display output.

14

Chapter 4 Getting Started with MySQL Shell

Table of Contents

4.1 Starting MySQL ShEllccouiiiie e e e 15
4.2 MYSQL ShEll SESSIONS .. cvuiiiiiiiii e e e e e e e e e 15
4.2.1 Creating the Sessi on Global Object While Starting MySQL Shellc...coeiiviiiens 16
4.2.2 Creating the Sessi on Global Object After Starting MySQL Shellccoooviiviin. 17
4.2.3 Scripting Sessions in JavaScript and Python Modeccoovviiiiiiiiiiecce e, 18
4.3 MYSQL Shell CONNECHIONS .. ccvuiiiiieeiie e e e e e e e et e et e e et e e e et e e et e e et aeeanaaees 19
4.3.1 Connecting using Individual Parametersccoiiiiiiieiii e 21
4.3.2 Connecting using Unix Sockets and Windows Named Pipesccccocviviviiiiviiiiciieeennnn, 22
4.3.3 Using Encrypted CONNECHONSccuuuiiiiiiiieii e e e e e e e e e e e e aan s 23
4.3.4 Using LDAP and Kerberos AuthentiCationcooevuiiiiiiiiiiiiei e ea e 24
4.3.5 Using CompressSed CONNECHIONSuiiutieiiiieii et e e e e e e e e e e e e e e e e eateeeanaeees 27
4.4 Pluggable PasSWOrd SEOIEcciuuiiiiiiiii e e e e e e e e e e r e e e e e e et e e et e e et e e eeaneeeen 30
4.4.1 Pluggable Password Configuration OptioNScoceviiiiiiiiiiiicei e e 31
4.4.2 Working With Credentialscccouiiiiiiii e e 32
4.5 MySQL Shell GIobal ODBJECLSuciiiiiiiiiciii e e e e e e e et e e e e eanes 32
ST 7 o T T - Vo [33

This section describes how to get started with MySQL Shell, explaining how to connect to a MySQL
server instance, and how to choose a session type.

4.1 Starting MySQL Shell

When MySQL Shell is installed you have the nmysqgl sh command available. Open a terminal window
(command prompt on Windows) and start MySQL Shell by issuing:

> nysql sh

This opens MySQL Shell without connecting to a server, by default in JavaScript mode. You change
mode using the \ sql , \ py, and \ j s commands.

4.2 MySQL Shell Sessions

In MySQL Shell, connections to MySQL Server instances are handled by a session object. The
following types of session object are available:

» Sessi on: Use this session object type for new application development to communicate with
MySQL Server instances where X Protocol is available. X Protocol offers the best integration with
MySQL Server. For X Protocol to be available, X Plugin must be installed and enabled on the
MySQL Server instance, which it is by default from MySQL 8.0. In MySQL 5.7, X Plugin must be
installed manually. See X Plugin for details. X Plugin listens to the port specified by nysql x_port,
which defaults to 33060, so specify this port with connections using a Sessi on.

» Cl assi cSessi on: Use this session object type to interact with MySQL Server instances that
do not have X Protocol available. This object is intended for running SQL against servers using
classic MySQL protocol. The development API available for this kind of session is very limited. For
example, there are none of the X DevAPI CRUD operations, no collection handling, and binding is
not supported. For development, prefer Sessi on objects whenever possible.

Important

A Cl assi cSessi on is specific to MySQL Shell and cannot be used with other
implementations of X DevAPI, such as MySQL Connectors.

15

https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_port

Creating the Sessi on Global Object While Starting MySQL Shell

When you make the first connection to a MySQL Server instance, which can be done either while
starting MySQL Shell or afterwards, a MySQL Shell global object named sessi on is created to
represent this connection. This particular session object is global because once created, it can be
used in all of the MySQL Shell execution modes: SQL mode, JavaScript mode, and Python mode. The
connection it represents is therefore referred to as the global session. The variable sessi on holds

a reference to this session object, and can be used in MySQL Shell in JavaScript mode and Python
mode to work with the connection.

The sessi on global object can be either the Sessi on type of session object or the Cl assi cSessi on
type of session object, according to the protocol you select when making the connection to a MySQL
Server instance. You can choose the protocol, and therefore the session object type, using a command
option, or specify it as part of the connection data that you provide. To see information about the
current global session, issue:

nysql-js []> session
<Cl assi cSessi on: user @xanpl e. com 3330>

When the global session is connected, this shows the session object type and the address of the
MySQL Server instance to which the global session is connected.

If you choose a protocol explicitly or indicate it implicitly when making a connection, MySQL Shell
tries to create the connection using that protocol, and returns an error if this fails. If your connection
parameters do not indicate the protocol, MySQL Shell first tries to make the connection using X
Protocol (returning the Sessi on type of session object), and if this fails, tries to make the connection
using classic MySQL protocol (returning the Cl assi cSessi on type of session object).

To verify the results of your connection attempt, use MySQL Shell's \ st at us command or the

shel | . st at us() method. These display the connection protocol and other information about the
connection represented by the sessi on global object, or return “Not Connected” if the sessi on global
object is not connected to a MySQL server. For example:

nysqgl-js []> shell.status()
M/SQL Shell version 8.0.18

Sessi on type: X Prot ocol

Connection |d: 198

Current schema:

Current user: user @xanpl e. com

SSL: Ci pher in use: TLS AES 256_GCM SHA384 TLSv1. 3
Using delimter: ;

Server version: 8.0.18 MySQL Community Server - GPL
Pr ot ocol version: X Protocol

Cient library: 8.0.18

Connecti on: TCP/ I P

TCP port: 33060

Server characterset: ut f 8nb4

Schema char act er set : ut f 8nb4

Client characterset: ut f 8nb4

Conn. characterset: ut f 8nb4

Conpr essi on: Enabl ed (zstd)

Upt i ne: 31 mn 42.0000 sec

Threads: 8 Questions: 2622 Slow queries: 0 Opens: 298 Flush tables: 3 Open tables: 217 Queries per s

This section focuses on explaining the session objects that represent connections to MySQL Server
instances, and the sessi on global object. For full instructions and examples for each of the ways
mentioned in this section to connect to MySQL Server instances, and the other options that are
available for the connections, see Section 4.3, “MySQL Shell Connections”.

4.2.1 Creating the Sessi on Global Object While Starting MySQL Shell

When you start MySQL Shell from the command line, you can specify connection parameters using
separate command options for each value, such as the user name, host, and port. For instructions
and examples to start MySQL Shell and connect to a MySQL Server instance in this way, see

16

Creating the Sessi on Global Object After Starting MySQL Shell

Section 4.3.1, “Connecting using Individual Parameters”. When you use this connection method,
you can add one of these options to choose the type of session object to create at startup to be the
sessi on global object:

* --nysql x (- - nx) creates a Sessi on object, which connects to the MySQL Server instance using X
Protocol.

e --nysql (--nt)creates a Cl assi cSessi on object, which connects to the MySQL Server instance
using classic MySQL protocol.

For example, this command starts MySQL Shell and establishes an X Protocol connection to a local
MySQL Server instance listening at port 33060:

$> nysqgl sh --nysqgl x -u user -h |ocal host -P 33060

If you are starting MySQL Shell in SQL mode, the - - sql x and - - sql ¢ options include a choice of
session object type, so you can specify one of these instead to make MySQL Shell use X Protocol or
classic MySQL protocol for the connection. For a reference for all the mysqgl sh command line options,
see Section A.1, “mysqlsh — The MySQL Shell”.

As an alternative to specifying the connection parameters using individual options, you can specify
them using a URI-like connection string. You can pass in this string when you start MySQL Shell from
the command line, with or without using the optional - - uri command option. When you use this
connection method, you can include the schene element at the start of the URI-like connection string
to select the type of session object to create. mysql x creates a Sessi on object using X Protocol,

or nysql creates a Cl assi cSessi on object using classic MySQL protocol. For example, either of
these commands uses a URI-like connection string to start MySQL Shell and create a classic MySQL
protocol connection to a local MySQL Server instance listening at port 3306:

$> nysql sh --uri nysql ://user @ ocal host : 3306
$> nysql sh nysql : //user @ ocal host : 3306

You can also specify the connection protocol as an option rather than as part of the URI-like connection
string, for example:

$> nysql sh --nysql --uri user @ ocal host: 3306

For instructions and examples to connect to a MySQL Server instance in this way, see Connecting to
the Server Using URI-Like Strings or Key-Value Pairs.

You may omit the connection protocol and let MySQL Shell automatically detect it based on your
other connection parameters. For example, if you specify port 33060 and there is no option stating
the connection protocol, MySQL Shell attempts to make the connection using X Protocol. If your
connection parameters do not indicate the protocol, MySQL Shell first tries to make the connection
using X Protocol, and if this fails, tries to make the connection using classic MySQL protocol.

4.2.2 Creating the Sessi on Global Object After Starting MySQL Shell

If you started MySQL Shell without connecting to a MySQL Server instance, you can use MySQL
Shell's\ connect command or the shel | . connect () method to initiate a connection and create the
sessi on global object. Alternatively, the shel | . get Sessi on() method returns the sessi on global
object.

MySQL Shell's\ connect command is used with a URI-like connection string, as described above and
in Connecting to the Server Using URI-Like Strings or Key-Value Pairs. You can include the schene
element at the start of the URI-like connection string to select the type of session object to create, for
example:

nmysql -j s> \connect nysql x://user @ ocal host : 33060

Alternatively, you can omit the schene element and use the command's - - nysql x (- - mx) option to
create a Sessi on object using X Protocol, or - - mysql (- - nt) to create a Cl assi cSessi on object
using classic MySQL protocol. For example:

17

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Scripting Sessions in JavaScript and Python Mode

nmysql -j s> \connect --mysql x user @ ocal host : 33060

The shel | . connect () method can be used in MySQL Shell as an alternative to the \ connect
command to create the sessi on global object. This connection method can use a URI-like connection
string, with the selected protocol specified as the schene element. For example:

nmysql -j s> shel | . connect (' nysql x: // user @ ocal host : 33060')

With the shel | . connect () method, you can also specify the connection parameters using key-
value pairs, supplied as a JSON object in JavaScript or as a dictionary in Python. The selected protocol
(mysql x or mysql) is specified as the value for the schene key. For example:

mysql -j s> shel | . connect ({schene: ' nmysql x', user:'user', host:'local host', port: 33060})

For instructions and examples to connect to a MySQL Server instance in these ways, see Connecting
to the Server Using URI-Like Strings or Key-Value Pairs.

You may omit the connection protocol and let MySQL Shell automatically detect it based on your other
connection parameters, such as specifying the default port for the protocol. To verify the protocol that
was used for a connection, use MySQL Shell's \ st at us command or the shel | . st at us() method.

If you use the \ connect command or the shel | . connect () method to create a new connection
when the sessi on global object already exists (either created during startup or afterwards), MySQL
Shell closes the existing connection represented by the sessi on global object. This is the case even
if you assign the new session object created by the shel | . connect () method to a different variable.
The value of the sessi on global object (referenced by the sessi on variable) is still updated with the
new connection details. If you want to have multiple concurrent connections available, create these
using the alternative functions described in Section 4.2.3, “Scripting Sessions in JavaScript and Python
Mode”.

4.2.3 Scripting Sessions in JavaScript and Python Mode

You can use functions available in JavaScript and Python mode to create multiple session objects of
your chosen types and assign them to variables. These session objects let you establish and manage
concurrent connections to work with multiple MySQL Server instances, or with the same instance in
multiple ways, from a single MySQL Shell instance.

Functions to create session objects are available in the nysql x and nysql JavaScript and

Python modules. These modules must be imported before use, which is done automatically when
MySQL Shell is used in interactive mode. The function mysql x. get Sessi on() opens an X

Protocol connection to a MySQL Server instance using the specified connection data, and returns a
Sessi on object to represent the connection. The functions nysql . get Cl assi cSessi on() and
nmysqgl . get Sessi on() open a classic MySQL protocol connection to a MySQL Server instance using
the specified connection data, and return a Cl assi cSessi on object to represent the connection.
With these functions, the connection protocol that MySQL Shell uses is built into the function rather
than being selected using a separate option, so you must choose the appropriate function to match the
correct protocol for the port.

From MySQL Shell 8.0.20, MySQL Shell provides its own openSessi on() method in the shel |
global object, which can be used in either JavaScript or Python mode. shel | . openSessi on() works
with both X Protocol and classic MySQL protocol. You specify the connection protocol as part of the
connection data, or let MySQL Shell automatically detect it based on your other connection parameters
(such as the default port number for the protocol).

The connection data for all these functions can be specified as a URI-like connection string, or as

a dictionary of key-value pairs. You can access the returned session object using the variable to
which you assign it. This example shows how to open a classic MySQL protocol connection using the
nmysqgl . get Cl assi cSessi on() function, which returns a Cl assi cSessi on object to represent the
connection:

nysql -j s> var sl = nysqgl.getC assi cSessi on(' user @ ocal host: 3306', 'password');

18

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

MySQL Shell Connections

nmysql -js> sl
<Cl assi cSessi on: user @ ocal host : 3306>

This example shows how to use shel | . openSessi on() in Python mode to open an X Protocol
connection with compression required for the connection. A Sessi on object is returned:

nysql - py> s2 = shel | . open_session(' nysql x://user @ ocal host: 33060?conpr essi on=requi red', 'password')

nysql - py> s2
<Sessi on: user @ ocal host : 33060>

Session objects that you create in JavaScript mode using these functions can only be used in
JavaScript mode, and the same happens if the session object is created in Python mode. You cannot
create multiple session objects in SQL mode. Although you can only reference session objects using
their assigned variables in the mode where you created them, you can use the shel | . set Sessi on()
method in any mode to set as the sessi on global object a session object that you have created and
assigned to a variable. For example:

nysql -j s> var s3 = nysqgl x. get Sessi on(' user @ ocal host: 33060', 'password');
nysql -j s> s3

<Sessi on: user @ ocal host : 33060>

nysql -j s> shel | . set Sessi on(s3);

<Sessi on: user @ ocal host : 33060>

nysql -j s> session

<Sessi on: user @ ocal host : 33060>

nysql -j s> shel | .status();

M/SQL Shell version 8.0.18

Sessi on type: X Prot ocol
Connection |d: 5

Current schema:

Current user: user @ ocal host
TCP port: 33060

The session object s3 is now available using the sessi on global object, so the X Protocol connection
it represents can be accessed from any of MySQL Shell's modes: SQL mode, JavaScript mode, and
Python mode. Details of this connection can also now be displayed using the shel | . st at us()
method, which only displays the details for the connection represented by the sessi on global object.
If the MySQL Shell instance has one or more open connections but none of them are set as the

sessi on global object, the shel | . st at us() method returns “Not Connected”.

A session object that you set using shel | . set Sessi on() replaces any existing session object
that was set as the sessi on global object. If the replaced session object was originally created and
assigned to a variable using one of the mysqgl x or nysqgl functions or shel | . openSessi on(), it
still exists and its connection remains open. You can continue to use this connection in the MySQL
Shell mode where it was originally created, and you can make it into the sessi on global object
again at any time using shel | . set Sessi on() . If the replaced session object was created with the
shel | . connect () method and assigned to a variable, the same is true. If the replaced session
object was created while starting MySQL Shell, or using the \ connect command, or using the

shel | . connect () method but without assigning it to a variable, its connection is closed, and you
must recreate the session object if you want to use it again.

4.3 MySQL Shell Connections

MySQL Shell can connect to MySQL Server using both X Protocol and classic MySQL protocol. You
can specify the MySQL server instance to which MySQL Shell connects globally in the following ways:

» When you start MySQL Shell, using the command parameters. See Section 4.3.1, “Connecting using
Individual Parameters”.

» When MySQL Shell is running, using the \ connect i nst ance command. See Section 3.1,
“MySQL Shell Commands”.

19

MySQL Shell Connections

e When running in Python or JavaScript mode, using the shel | . connect () method.

These methods of connecting to a MySQL server instance create the global session, which is a
connection that can be used in all of the MySQL Shell execution modes: SQL mode, JavaScript mode,
and Python mode. A MySQL Shell global object named sessi on represents this connection, and

the variable sessi on holds a reference to it. You can also create multiple additional session objects
that represent other connections to MySQL server instances, by using the shel | . openSessi on(),
nysql x. get Sessi on(), nmysql . get Sessi on(), ornmysql . get G assi cSessi on() function.
These connections can be used in the modes where you created them, and one of them at a time

can be assigned as MySQL Shell's global session so it can be used in all modes. For an explanation
of session objects, how to operate on the global session, and how to create and manage multiple
connections from a MySQL Shell instance, see Section 4.2, “MySQL Shell Sessions”.

All these different ways of connecting to a MySQL server instance support specifying the connection as
follows:

» Parameters specified with a URI-like string use a syntax such as nmyuser @xanpl e. com 3306/
mai n- schema. For the full syntax, see Connecting Using URI-Like Connection Strings.

» Parameters specified with key-value pairs use a syntax such as { user: ' myuser',
host : ' exanpl e. com, port: 3306, schena:' nai n-schema'}. These key-value pairs
are supplied in language-natural constructs for the implementation. For example, you can supply
connection parameters using key-value pairs as a JSON object in JavaScript, or as a dictionary in
Python. For the full syntax, see Connecting Using Key-Value Pairs.

See Connecting to the Server Using URI-Like Strings or Key-Value Pairs for more information.
Important

A Regardless of how you choose to connect it is important to understand
how passwords are handled by MySQL Shell. By default connections are
assumed to require a password. The password (which has a maximum
length of 128 characters) is requested at the login prompt, and can be stored
using Section 4.4, “Pluggable Password Store”. If the user specified has a
passwordless account, which is insecure and not recommended, or if socket
peer-credential authentication is in use (for example when using Unix socket
connections), you must explicitly specify that no password is provided and the
password prompt is not required. To do this, use one of the following methods:

 If you are connecting using a URI-like connection string, place a : after the
user in the string but do not specify a password after it.

« If you are connecting using key-value pairs, provide an empty string using
after the passwor d key.

« If you are connecting using individual parameters, either specify the - - no-
passwor d option, or specify the - - passwor d= option with an empty value.

If you do not specify parameters for a connection the following defaults are used:
» user defaults to the current system user name.
* host defaultsto| ocal host .

* port defaults to the X Plugin port 33060 when using an X Protocol connection, and port 3306 when
using a classic MySQL protocol connection.

To configure the connection timeout use the connect - t i meout connection parameter. The value
of connect - t i neout must be a non-negative integer that defines a time frame in milliseconds. The
timeout default value is 10000 milliseconds, or 10 seconds. For example:

/1 Decrease the tinmeout to 2 seconds.

20

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-uri
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-key-value-pairs
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Connecting using Individual Parameters

nmysql -j s> \connect user @xanpl e. con?connect -t i meout =2000
/1 Increase the tineout to 20 seconds
mysql -j s> \connect user @xanpl e. conf?connect -t i meout =20000

To disable the timeout set the value of connect - t i neout to 0, meaning that the client waits until the
underlying socket times out, which is platform dependent.

Instead of a TCP connection, you can connect using a Unix socket file or a Windows named pipe. For
instructions, see Section 4.3.2, “Connecting using Unix Sockets and Windows Named Pipes”.

If the MySQL server instance supports encrypted connections, you can enable and configure the
connection to use encryption. For instructions, see Section 4.3.3, “Using Encrypted Connections”.

You can also request that the connection uses compression for all data sent between the MySQL Shell
and the MySQL server instance. For instructions, see Section 4.3.5, “Using Compressed Connections”.

If the connection to the server is lost, you can use the \ r econnect command, which makes MySQL
Shell try several reconnection attempts for the current global session using the existing connection
parameters. The \ r econnect command is specified without any parameters or options. If those
attempts are unsuccessful, you can make a fresh connection using the \ connect command and
specifying the connection parameters.

4.3.1 Connecting using Individual Parameters

In addition to specifying connection parameters using a connection string, it is also possible to define
the connection data when starting MySQL Shell using separate command parameters for each value.
For a full reference of MySQL Shell command options see Section A.1, “mysqlsh — The MySQL Shell”.

Use the following connection related parameters:
e --user (-u)val ue

e --host (-h)val ue

e --port (-P)val ue

e --schemm or - - dat abase (- D) val ue

» --socket (-S)

The command options behave similarly to the options used with the mysql client described at
Connecting to the MySQL Server Using Command Options.

Use the following command options to control whether and how a password is provided for the
connection:

* --password=passwor d (- ppasswor d) with a value supplies a password (up to 128 characters) to
be used for the connection. With the long form - - passwor d=, you must use an equal sign and not a
space between the option and its value. With the short form - p, there must be no space between the
option and its value. If a space is used in either case, the value is not interpreted as a password and
might be interpreted as another connection parameter.

Specifying a password on the command line should be considered insecure. See End-User
Guidelines for Password Security. You can use an option file to avoid giving the password on the
command line.

» --passwor d with no value and no equal sign, or - p without a value, requests the password prompt.

* --no- password, or - - passwor d= with an empty value, specifies that the user is connecting
without a password. When connecting to the server, if the user has a passwordless account, which is
insecure and not recommended, or if socket peer-credential authentication is in use (for Unix socket
connections), you must use one of these methods to explicitly specify that no password is provided
and the password prompt is not required.

21

https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/password-security-user.html
https://dev.mysql.com/doc/refman/8.0/en/password-security-user.html

Connecting using Unix Sockets and Windows Named Pipes

When parameters are specified in multiple ways, for example using both the - - uri option and
specifying individual parameters such as - - user , the following rules apply:

« If an argument is specified more than once the value of the last appearance is used.

« If both individual connection arguments and - - ur i are specified, the value of - - uri is taken as the
base and the values of the individual arguments override the specific component from the base URI-
like string.

For example to override user from the URI-like string:

$> nysql sh --uri user @ocal host: 33065 --user otheruser

Connections from MySQL Shell to a server can be encrypted, and can be compressed, if you request
these features and the server supports them. For instructions to establish an encrypted connection, see
Section 4.3.3, “Using Encrypted Connections”. For instructions to establish a compressed connection,
see Section 4.3.5, “Using Compressed Connections”.

The following examples show how to use command parameters to specify connections. Attempt to
establish an X Protocol connection with a specified user at port 33065:

$> nysql sh --nysql x -u user -h |ocal host -P 33065

Attempt to establish a classic MySQL protocol connection with a specified user, requesting
compression for the connection:

$> nysql sh --nysqgl -u user -h |local host -C

4.3.2 Connecting using Unix Sockets and Windows Named Pipes

On Unix, MySQL Shell connections default to using Unix sockets when the following conditions are
met:

» A TCP port is not specified.
* A host name is not specified or it is equal to | ocal host .
e The - -socket or - S option is specified, with or without a path to a socket file.

If you specify - - socket with no value and no equal sign, or - S without a value, the default Unix
socket file for the protocol is used. If you specify a path to an alternative Unix socket file, that socket file
is used.

If a host name is specified but itis not | ocal host, a TCP connection is established instead. In this
case, if a TCP port is not specified the default value of 3306 is used.

On Windows, for MySQL Shell connections using classic MySQL protocol, if you specify the host name
as a period (.), MySQL Shell connects using a hamed pipe.

« If you are connecting using a URI-like connection string, specify user @
« If you are connecting using key-value pairs, specify { "host": "."}
* If you are connecting using individual parameters, specify - - host =. or-h .

By default, the pipe name My SQL is used. You can specify an alternative named pipe using the - -
socket option or as part of the URI-like connection string.

In URI-like strings, the path to a Unix socket file or Windows named pipe must be encoded, using either
percent encoding or by surrounding the path with parentheses. Parentheses eliminate the need to
percent encode characters such as the / directory separator character. If the path to a Unix socket file
is included in a URI-like string as part of the query string, the leading slash must be percent encoded,
but if it replaces the host name, the leading slash must not be percent encoded, as shown in the
following examples:

22

Using Encrypted Connections

nmysql -j s> \ connect
nmysql -j s> \ connect
nmysql -j s> \ connect
nmysql -j s> \ connect

user @ ocal host ?socket =9%2Ft mp%2Fnysql . sock
user @ ocal host ?socket =(/t np/ mysql . sock)
user @t mp9%2Fnysql . sock

user @/ t mp/ nysql . sock)

On Windows only, the named pipe must be prepended with the characters \ \ . \ as well as being either
encoded using percent encoding or surrounded with parentheses, as shown in the following examples:

(\\.\ naned: pi pe)
\\. \ naned¥%8Api pe

A

Important

On Windows, if one or more MySQL Shell sessions are connected to a MySQL
Server instance using a named pipe and you need to shut down the server, you
must first close the MySQL Shell sessions. Sessions that are still connected in
this way can cause the server to hang during the shutdown procedure. If this
does happen, exit MySQL Shell and the server will continue with the shutdown
procedure.

For more information on connecting with Unix socket files and Windows named pipes, see Connecting
to the MySQL Server Using Command Options and Connecting to the Server Using URI-Like Strings or

Key-Value Pairs.

4.3.3 Using Encrypted Connections

Using encrypted connections is possible when connecting to a TLS (sometimes referred to as SSL)
enabled MySQL server. Much of the configuration of MySQL Shell is based on the options used by
MySQL server, see Using Encrypted Connections for more information.

To configure an encrypted connection at startup of MySQL Shell, use the following command options:

» --ssl| : Deprecated, to be removed in a future version. Use - - ssl| - node. This option enables or
disables encrypted connections.

» --ssl -node : This option specifies the desired security state of the connection to the server.

e --ssl-ca=fil e_nane: The path to a file in PEM format that contains a list of trusted SSL

Certificate Autho

rities.

e --ssl-capat h=di r _nane: The path to a directory that contains trusted SSL Certificate Authority
certificates in PEM format.

e --ss|l-cert=fi

| e_nane: The name of the SSL certificate file in PEM format to use for

establishing an encrypted connection.

» --ssl-ci pher =nane: The name of the SSL cipher to use for establishing an encrypted connection.

e --ssl-key=fil
encrypted conne

e_nane: The name of the SSL key file in PEM format to use for establishing an
ction.

e --ssl-crl =nane: The path to a file containing certificate revocation lists in PEM format.

» --ssl-crl pat h=di r _nane: The path to a directory that contains files containing certificate
revocation lists in PEM format.

» --tls-version=version: The TLS protocols permitted for encrypted connections, specified as a
comma separated list. For example - -t | s-ver si on=TLSv1. 2, TLSv1. 3. The TLSv1 and TLSv1.1
connection protocols are now deprecated, and from MySQL Shell 8.0.25, if you specify either of

these, a warning

is returned.

e --tls-ciphersuites=suites: The TLS cipher suites permitted for encrypted connections,
specified as a colon separated list of TLS cipher suite names. For example - -t | s-

23

https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/connecting.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crlpath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites

Using LDAP and Kerberos Authentication

ci phersuites=TLS DHE PSK W TH AES 128 GCM SHA256: TLS CHACHA20 POLY1305_ SHA256.
Added in version 8.0.18.

Alternatively, the SSL options can be encoded as part of a URI-like connection string as part of the
guery element. The available SSL options are the same as those listed above, but written without the
preceding hyphens. For example, ssl - ca is the equivalent of - - ssl - ca.

Paths specified in a URI-like string must be percent encoded, for example:

ssl user @27. 0. 0. 1?ssl - ca%B8D%2Fr oot %2Fcl i ent cert %2Fca- cert . pen?26ssl - cer t ¥Y8DY2Fr o\
ot %2Fcl i ent cert %2Fcl i ent - cert. pen?26ssl| - key¥BDY2Fr oot %2Fcl i ent cert %2Fcl i ent - key
. pem

See Connecting to the Server Using URI-Like Strings or Key-Value Pairs for more information.

To establish an encrypted connection for a scripting session in JavaScript or Python mode, set the SSL
information in the connect i onDat a dictionary. For example:

mysql -j s> var sessi on=nysqgl x. get Sessi on({host: 'l ocal host",
user: 'root',
password: ' password',
ssl _ca: "path_to_ca_ file",
ssl _cert: "path_to_cert_file",
ssl _key: "path_to_key file"});

Sessions created using mysql x. get Sessi on(), nysql . get Sessi on(), or

nysql . get Cl assi cSessi on() use ssl - node=REQUI RED as the default if no ssl - node is
provided, and neither ssl - ca nor ssl - capat h is provided. If no ssl - node is provided and any of
ssl - ca or ssl - capat h is provided, created sessions default to ss| - node=VERI FY_CA.

See Connecting Using Key-Value Pairs for more information.

4.3.4 Using LDAP and Kerberos Authentication

MySQL Enterprise Edition supports authentication methods that enable MySQL Server to use LDAP
(Lightweight Directory Access Protocol), LDAP with Kerberos, or native Kerberos to authenticate
MySQL users. MySQL Shell 8.0.27 supports both LDAP and Kerberos authentication for classic
MySQL protocol connections. This functionality is not supported for X Protocol connections.

The sections that follow describe how to enable connections to MySQL server using LDAP and
Kerberos authentication. It is assumed that the server is running with the server-side plugin enabled
and that the client-side plugin is available on the client host.

Simple LDAP Authentication

SASL-Based LDAP Authentication

GSSAPI/Kerberos Authentication Through LDAP SASL

» Kerberos Authentication

Simple LDAP Authentication

MySQL and LDAP work together to fetch user, credential, and group information. For an overview of
the simple LDAP authentication process, see How LDAP Authentication of MySQL Users Works. To
use simple LDAP authentication with MySQL Shell, the following conditions must be satisfied:

» A user account must be created on the MySQL server that is set up to communicate with the LDAP
server. The MySQL user must be identified with the aut henti cat i on_| dap_si npl e server-side
plugin and optionally the LDAP user distinguished name (DN). For example:

CREATE USER ' adni n' @1 ocal host*

24

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-ciphersuites
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html#connecting-using-key-value-pairs
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-process

Using LDAP and Kerberos Authentication

| DENTI FI ED W TH aut henti cati on_| dap_si npl e
BY ' ui d=admi n, ou=Peopl e, dc=mny- donmai n, dc=com ;

The BY clause in this example indicates which LDAP entry the MySQL account authenticates
against. Specific attributes of the DN may vary depending on the LDAP server.

* MySQL Shell uses the client-side nysql _cl ear _passwor d plugin, which sends the password
to the server as cleartext. No password hashing or encryption is used, so a secure connection
(using SSL or sockets) between the MySQL Shell and server is required. For more information, see
Section 4.3.3, “Using Encrypted Connections” or Section 4.3.2, “Connecting using Unix Sockets and
Windows Named Pipes”.

» To minimize the security risk, the nysql cl ear _passwor d plugin must be enabled explicitly by
setting the value of the - - aut h- met hod command-line option to cl ear _t ext passwordona
secure connection. For example, the following command permits you to establish a global session for
the user created in the previous example:

$> nysql sh admi n@ ocal host : 3308 - - aut h- net hod=cl ear _t ext _password
Pl ease provide the password for 'adm n@ ocal host: 3308': admi n_password (adm n LDAP passwor d)

SASL-Based LDAP Authentication

MySQL Server is able to accept connections from users defined outside the MySQL grant tables in
LDAP directories. The client-side and server-side SASL LDAP plugins use SASL messages for secure
transmission of credentials within the LDAP protocol (see Using LDAP Pluggable Authentication).

For SASL-based authentication, the MySQL user must be identified with the
aut henti cation_I dap_sasl server-side plugin and optionally an LDAP entry the MySQL account
authenticates against. For example:

CREATE USER ' sammy' @ ocal host'
| DENTI FI ED W TH aut henti cati on_| dap_sasl
BY ' ui d=sammy_| dap, ou=Peopl e, dc=ny- donzi n, dc=con ;

The aut henti cati on_| dap_sasl _cl i ent client-side plugin ships with the MySQL Server
packages rather than being built into the | i brmysql cl i ent client library. MySQL Shell provides the
persistent connection option shel | . opt i ons. nysql Pl ugi nDi r that enables you to define where
the required plugin is located. Alternatively, you can override the persistent setting by specifying a

path with the non-persistent command-line option - - mysql - pl ugi n- di r . For example, the following
command permits you to establish a global session on a Linux host for the user created in the previous
example:

$> nysql sh sammy @ ocal host : 3308 --nysql - pl ugi n-dir="/usr/l ocal /nysql /i b/ pl ugi n"
Pl ease provide the password for 'sammy@ ocal host: 3308': sammy_password (sammy_| dap LDAP passwor d)

For additional usage examples, see LDAP Authentication with Proxying and LDAP Authentication
Group Preference and Mapping Specification.

GSSAPI/Kerberos Authentication Through LDAP SASL

MySQL Shell also supports Kerberos authentication through LDAP SASL. Using the Generic Security
Service Application Program Interface (GSSAPI) security abstraction interface, a connection of this
type authenticates to Kerberos to obtain service credentials, then uses those credentials in turn to
enable secure access to other services. GSSAPI/Kerberos is supported as an LDAP authentication
method for MySQL servers and MySQL Shell on Linux only.

A GSSAPI library and Kerberos services must be available to MySQL Server for the connection to
succeed. See The GSSAPI/Kerberos Authentication Method for server-side configuration information.

The following general example creates proxy user named | ucy @AW SQL. LOCAL that assumes
the privileges of the proxied user named pr oxi ed_kr b_usr . It presumes the realm domain
MYSQL. LOCAL is configured in the / et ¢/ kr b5. conf Kerberos configuration file.

25

https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage-proxying
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage-group-mapping
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-usage-group-mapping
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-pluggable-authentication-gssapi

Using LDAP and Kerberos Authentication

lucy@MYSQL.LOCAL' is quoted as a single value for LDAP Kerberos

Note
@ The user part of the account name includes the principal domain, so
authentication.

CREATE USER ' | ucy @WSQL. LOCAL'
| DENTI FI ED W TH aut henti cati on_| dap_sasl
BY ' #krb_gr p=proxi ed_krb_user"';
CREATE USER ' proxi ed_krb_user"';
GRANT ALL PRI VILEGES ON ny_db.* TO ' proxi ed_krb_user'
GRANT PROXY on 'proxied_krb_user' TO 'l ucy@WSQ.. LOCAL'

The following command permits you to establish a global session on a Linux host for the user created
in the previous example. You must specify the location of the server's plugin directory, either as the
persistent shel | . opti ons. nysql Pl ugi nDi r connection option or as a non-persistent command
option, for example:

$> nysql sh | ucy%0MYSQL. LOCAL: passwor d@ ocal host : 3308/ ny_db
--nysql - pl ugi n-di r="/usr/| ocal / nysql /1i b/ pl ugi n"

In this example, percent encoding (%¢0) replaces the reserved @character in the

principal name and passwor d is the value set for the MySQL Server variable

aut henti cation_I dap_sasl _bi nd_r oot _pwd. For the list of server variables related to Kerberos
authentication through LDAP SASL, see Configure the Server-Side SASL LDAP Authentication Plugin
for GSSAPI/Kerberos.

Prior to invoking MySQL Shell, you can obtain and cache a ticket-granting ticket from the key
distribution center independently of MySQL. In this case, invoke MySQL Shell without specifying a
user-name or password option:

$> nysql sh | ocal host: 3308/ ny_db - -aut h- met hod=aut henti cati on_| dap_sasl _cl i ent
--mysql - pl ugi n-di r="/usr/l ocal / nysqgl /li b/ pl ugin"

Specifying the - - aut h- net hod=aut henti cati on_| dap_sasl _cli ent option is mandatory when
user credentials are omitted.

Kerberos Authentication

MySQL Shell is capable of establishing connections for accounts that use the

aut henti cati on_ker ber os server-side authentication plugin, provided that the correct Kerberos
tickets are available or can be obtained from Kerberos. As of MySQL Enterprise Edition 8.0.27, that
capability is available on hosts running Linux and Windows (version 8.0.26 supports Linux only). For
detailed setup information, see Kerberos Pluggable Authentication.

Kerberos authentication can combine the user name (for example, | ucy) and the realm domain
specified in the user account (for example, MYSQL. LOCAL) to construct the user principal name
(UPN), such as | ucy@aSQL. LOCAL. To create a MySQL account that corresponds to the UPN
| ucy @WSQL. LOCAL, use this statement:

CREATE USER ' | ucy'
| DENTI FI ED W TH aut henti cati on_ker ber os
BY ' MYSQL. LOCAL' ;

The client-side plugin uses the UPN and password to obtain a ticket-granting ticket (TGT), uses the
TGT to obtain a MySQL service ticket (ST), and uses the ST to authenticate to the MySQL server.

The following command permits you to establish a global session on a Linux host for the user created
in the previous example. You must specify the location of the server's plugin directory, either as the
persistent shel | . opti ons. mysql Pl ugi nDi r connection option or as a non-persistent command
option, for example:

$> nysql sh | ucy: 3308 --nysql -plugin-dir="/usr/local/nysql/lib/plugin"
Pl ease provide the password for 'lucy@ocal host: 3308': UPN password

26

https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-gssapi-ldap-setup
https://dev.mysql.com/doc/refman/8.0/en/ldap-pluggable-authentication.html#ldap-gssapi-ldap-setup
https://dev.mysql.com/doc/refman/8.0/en/kerberos-pluggable-authentication.html

Using Compressed Connections

Prior to invoking MySQL Shell, you can obtain and cache a TGT from the key distribution center
independently of MySQL. In this case, invoke MySQL Shell without specifying a user-name or
password option:

$> nysql sh | ocal host: 3308 - - aut h- net hod=aut henti cati on_ker beros_cl i ent
--nmysql - pl ugi n-dir="/usr/l ocal /nysqgl /li b/ pl ugin"

Specifying the - - aut h- net hod=aut henti cati on_ker beros_cl i ent option is mandatory when
user credentials are omitted.

4.3.5 Using Compressed Connections

From MySQL Shell 8.0.14, you can request compression for MySQL Shell connections that use classic
MySQL protocol, and, from MySQL Shell 8.0.20, also for MySQL Shell connections that use X Protocol.
When compression is requested for a session, if the server supports compression and can agree a
compression algorithm with MySQL Shell, all information sent between the client and the server is
compressed. Compression is also applied if requested to connections used by a MySQL Shell utility,
such as the upgrade checker utility.

For X Protocol connections, the default is that compression is requested, and uncompressed
connections are allowed if the negotiations for a compressed connection do not succeed. For classic
MySQL protocol connections, the default is that compression is disabled. After the connection has
been made, the MySQL Shell \ st at us command shows whether or not compression is in use for a
session. The command displays a Conpr essi on: line that says Di sabl ed or Enabl ed to indicate
whether the connection is compressed. If compression is enabled, the compression algorithm in use is
also displayed.

You can set the def aul t Conpr ess MySQL Shell configuration option to request compression for
every global session. Because the default for X Protocol connections is that compression is requested
where the MySQL Shell release supports this, this configuration option only has an effect for classic
MySQL protocol connections.

For more information on how connection compression operates for X Protocol connections, see
Connection Compression with X Plugin. For more information on how connection compression
operates for classic MySQL protocol connections, and on the compression settings and capabilities of
a MySQL Server instance, see Connection Compression Control.

4.3.5.1 Compression Control For MySQL Shell 8.0.20 And Later

From MySQL Shell 8.0.20, for X Protocol connections and classic MySQL protocol connections,
whenever you create a session object to manage a connection to a MySQL Server instance, you can
specify whether compression is required, preferred, or disabled for that connection.

* requir ed requests a compressed connection from the server, and the connection fails if the server
does not support compression or cannot agree with MySQL Shell on a compression protocol.

» preferredrequests a compressed connection from the server, and falls back to an uncompressed
connection if if the server does not support compression or cannot agree with MySQL Shell on a
compression protocol. This is the default for X Protocol connections.

» di sabl ed requests an uncompressed connection, and the connection fails if the server only permits
compressed connections. This is the default for classic MySQL protocol connections.

From MySQL Shell 8.0.20, you can also choose which compression algorithms are allowed for the
connection. By default, MySQL Shell proposes the zlib, LZ4, and zstd algorithms to the server for X
Protocol connections, and the zlib and zstd algorithms for classic MySQL protocol connections (which
do not support the LZ4 algorithm). You can specify any combination of these algorithms. The order

in which you specify the compression algorithms is the order of preference in which MySQL Shell
proposes them, but the server might not be influenced by this preference, depending on the protocol
and the server configuration.

27

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html

Using Compressed Connections

Specifying any compression algorithm or combination of them automatically requests compression

for the connection, so you can do that instead of using a separate parameter to specify whether
compression is required, preferred, or disabled. With this method of connection compression control,
you indicate whether compression is required or preferred by adding the option unconpr essed
(which allows uncompressed connections) to the list of compression algorithms. If you do include
unconpr essed, compression is preferred, and if you do not include it, compression is required. You
can also pass in unconpr essed on its own to specify that compression is disabled. If you specify in
a separate parameter that compression is required, preferred, or disabled, this takes precedence over
using unconpr essed in the list of compression algorithms.

You can also specify a numeric compression level for the connection, which applies to any
compression algorithm for X Protocol connections, or to the zstd algorithm only on classic

MySQL protocol connections. For X Protocol connections, if the specified compression level is

not acceptable to the server for the algorithm that is eventually selected, the server chooses an
appropriate setting according to the behaviors listed in Connection Compression with X Plugin. For
example, if MySQL Shell requests a compression level of 7 for the zlib algorithm, and the server's
nysql x_defl ate_max_cl i ent _conpressi on_| evel system variable (which limits the maximum
compression level for deflate, or zlib, compression) is set to the default of 5, the server uses the highest
permitted compression level of 5.

If the MySQL server instance does not support connection compression for the protocol (which is the
case before MySQL 8.0.19 for X Protocol connections), or if it supports connection compression but
does not support specifying connection algorithms and a compression level, MySQL Shell establishes
the connection without specifying the unsupported parameters.

To request compression for a connection from MySQL Shell 8.0.20, use one of the following methods:

* If you are starting MySQL Shell from the command line and specifying connection parameters using
separate command options, use the - - conpr ess (- C) option, specifying whether compression is
required, preferred, or disabled for the connection. For example:

$> nysql sh --nysqgl x -u user -h |ocal host -C required

The - - conpr ess (- C) option is compatible with earlier releases of MySQL Shell (back to MySQL
8.0.14) and still accepts the boolean settings from those releases. From MySQL Shell 8.0.20, if you
specify just - - conpr ess (- C) without a parameter, compression is required for the connection.

The above example for an X Protocol connection proposes the zlib, LZ4, and zstd algorithms to the
server in that order of preference. If you prefer an alternative combination of compression algorithms,
you can specify this by using the - - conpr essi on- al gori t hns option to specify a string with a
comma-separated list of permitted algorithms. For X Protocol connections, you can use zl i b, | z4,
and zst d in any combination and order of preference. For classic MySQL protocol connections, you
canuse zIl i b and zst d in any combination and order of preference. The following example for a
classic MySQL protocol connection allows only the zstd algorithm:

$> nysql sh --nmysqgl -u user -h local host -C preferred --conpression-al gorithns=zstd

You can also use just - - conpr essi on- al gori t hns without the - - conpr ess (- C) option to
request compression. In this case, add unconpr essed to the list of algorithms if you want to allow
uncompressed connections, or omit it if you do not want to allow them. This style of connection
compression control is compatible with other MySQL clients such as nysql and nysql bi nl og.
The following example for a classic MySQL protocol connection has the same effect as the example
above where pr ef er r ed is specified as a separate option, that is, to propose compression with the
zstd algorithm but fall back to an uncompressed connection:

$> nysqgl sh --mysqgl -u user -h |ocal host --conpression-al gorithms=zstd, unconpressed

You can configure the compression level using the - - conpr essi on-1| evel or--zstd-

conpr essi on- | evel options, which are validated for classic MySQL protocol connections, but
not for X Protocol connections. - - conpr essi on- | evel specifies an integer for the compression
level for any algorithm for X Protocol connections, or for the zstd algorithm only on classic MySQL

28

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-connection-compression.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_deflate_max_client_compression_level

Using Compressed Connections

protocol connections. - - zst d- conpr essi on- | evel specifies an integer from 1 to 22 for the
compression level for the zstd algorithm, and is compatible with other MySQL clients such as nysql
and mysql bi nl og. For example, these connection parameters for an X Protocol connection specify
that compression is required for the global session and must use the LZ4 or zstd algorithm, with a
requested compression level of 5:

$> nysql sh --nmysqgl x -u user -h |ocal host -C required --conpression-al gorithnms=lz4,zstd --conpression-

« If you are using a URI-like connection string to specify connection parameters, either from the
command line, or with MySQL Shell's\ connect command, or with the shel | . connect (),
shel | . openSessi on(), nysqgl x. get Sessi on(), nysql . get Sessi on(), or
nysql . get C assi cSessi on() function, use the conpr essi on parameter in the query string to
specify whether compression is required, preferred, or disabled. For example:

nysqgl -j s> \ connect user @xanpl e. conPconpr essi on=preferred

$> nysql sh nysql x: // user @ ocal host : 33060?conpr essi on=di sabl ed

Select compression algorithms using the conpr essi on- al gori t hns parameter, and a
compression level using the conpr essi on- 1 evel parameter, as for the command line options.
(There is no zstd-specific compression level parameter for a URI-like connection string.) You
can also use the conpr essi on- al gori t hns parameter without the conpr essi on parameter,
including or omitting the unconpr essed option to allow or disallow uncompressed connections.
For example, both these sets of connection parameters specify that compression is preferred
but uncompressed connections are allowed, the zlib and zstd algorithms are acceptable, and a
compression level of 4 should be used:

nysqgl -j s> \ connect user @xanpl e. com 33060?conpr essi on=pr ef er r ed&conpr essi on- al gori t hms=zl i b, zst d&cong

nysql -j s> \ connect user @xanpl e. com 33060?conpr essi on-al gorithms=zlib, zstd, unconpr essed&conpr essi on-

« If you are using key-value pairs to specify connection parameters, either with MySQL
Shell's\ connect command or with the shel | . connect (), shel | . openSessi on(),
nysqgl x. get Sessi on(), nysql . get Sessi on(), ornmysql . get assi cSessi on() function,
use the conpr essi on parameter in the dictionary of options to specify whether compression is
required, preferred, or disabled. For example:

nysql -j s> var sl=nysqgl x. get Sessi on({host: 'l ocal host',
user: 'root’
password: ' password'
conpression: 'required' });

Select compression algorithms using the conpr essi on- al gori t hns parameter, and a
compression level using the conpr essi on- | evel parameter, as for the command line and URI-
like connection string methods. (There is no zstd-specific compression level parameter for key-value
pairs.) You can also use the conpr essi on- al gori t hns parameter without the conpr essi on
parameter, including or omitting the unconpr essed option to allow or disallow uncompressed
connections.

4.3.5.2 Compression Control For MySQL Shell 8.0.14 Through 8.0.19

In releases from MySQL Shell 8.0.14 through 8.0.19, compression can be requested only for
connections that use classic MySQL protocol. The default is that compression is not requested.
Compression in these releases uses the zlib compression algorithm. You cannot require compression
in these releases, so if compression is not supported by the server, the session falls back to an
uncompressed connection.

In these MySQL Shell releases, compression control is limited to enabling (by specifying t r ue) or
disabling (by specifying f al se) compression for a connection. If you use a MySQL Shell release
with this compression control to connect to a server instance at MySQL 8.0.18 or later, where client
requests for compression algorithms are supported, enabling compression is equivalent to proposing
the algorithm set z| i b,unconpr essed.

29

Pluggable Password Store

MySQL Shell cannot request compression in releases before 8.0.14.

To request compression for a connection in MySQL Shell 8.0.14 through 8.0.19, use one of the
following methods:

« If you are starting MySQL Shell from the command line and specifying connection parameters using
separate command options, use the - - conpr ess (- C) option, for example:

$> nysql sh --nysql -u user -h |ocal host -C

« If you are using a URI-like connection string to specify connection parameters, either from the
command line, or with MySQL Shell's\ connect command, or with the shel | . connect () method,
use the conpr essi on=t r ue parameter in the query string:

nysqgl -j s> \ connect user @xanpl e. conconpr essi on=t r ue

$> nysql sh nysql : //user @ ocal host : 3306?conpr essi on=tr ue

« If you are using key-value pairs to specify connection parameters, either with MySQL Shell's
\ connect command or with the nysql . get Cl assi cSessi on() method, use the conpr essi on
parameter in the dictionary of options:

nysql -j s> var sl=nysql.get Cl assi cSession({host: 'l ocal host',
user: 'root',
password: ' password',
conpression: 'true'});

4.4 Pluggable Password Store

To make working with MySQL Shell more fluent and secure you can persist the password for a
server connection using a secret store, such as a keychain. You enter the password for a connection
interactively and it is stored with the server URL as credentials for the connection. For example:

nysql -j s> \connect user @ ocal host: 3310

Creating a session to 'user @ocal host: 3310’

Pl ease provide the password for 'user@ocal host:3310': ***xxxxxx

Save password for 'user @ocal host:3310'? [Y]es/[N o/ Ne[v]er (default No): y

Once the password for a server URL is stored, whenever MySQL Shell opens a session it retrieves

the password from the configured Secret Store Helper to log in to the server without having to enter
the password interactively. The same holds for a script executed by MySQL Shell. If no Secret Store
Helper is configured the password is requested interactively.

Important

A MySQL Shell only persists the server URL and password through the means of
a Secret Store and does not persist the password on its own.

Passwords are only persisted when they are entered manually. If a password is
provided using either a server URI-like connection string or at the command line
when running nysql sh it is not persisted.

The maximum password length that is accepted for connecting to MySQL Shell
is 128 characters.

MySQL Shell provides built-in support for the following Secret Stores:

» MySQL login-path, available on all platforms supported by the MySQL server (as long as MySQL
client package is installed), and offers persistent storage. See mysql_config_editor — MySQL
Configuration Utility.

* macOS keychain, see here.

» Windows API, see here.

30

https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config-editor.html
https://developer.apple.com/documentation/security/keychain_services
https://docs.microsoft.com/en-us/windows/desktop/secauthn/credentials-management

Pluggable Password Configuration Options

When MySQL Shell is running in interactive mode, password retrieval is performed whenever a new
session is initiated and the user is going to be prompted for a password. Before prompting, the Secret
Store Helper is queried for a password using the session's URL. If a match is found this password

is used to open the session. If the retrieved password is invalid, a message is added to the log, the
password is erased from the Secret Store and MySQL Shell prompts you for a password.

If MySQL Shell is running in noninteractive mode (for example - - no- wi zar d was used), password
retrieval is performed the same way as in interactive mode. But in this case, if a valid password is not
found by the Secret Store Helper, MySQL Shell tries to open a session without a password.

The password for a server URL can be stored whenever a successful connection to a MySQL
server is made and the password was not retrieved by the Secret Store Helper. The decision
to store the password is made based on the cr edent i al St or e. savePasswor ds and
credenti al St ore. excl udeFi | t er s described here.

Automatic password storage and retrieval is performed when:

* nysgl sh is invoked with any connection options, when establishing the first session
 you use the built-in \ connect command

» you use the shel | . connect () method

* you use any AdminAPI methods that require a connection

4.4.1 Pluggable Password Configuration Options

To configure the pluggable password store, use the shel | . opt i ons interface, see Section 13.4,
“Configuring MySQL Shell Options” . The following options configure the pluggable password store.

shell.options.credentialStore.helper ="l ogi n- pat h"

A string which specifies the Secret Store Helper used to store and retrieve the passwords. By default,
this option is set to a special value def aul t which identifies the default helper on the current platform.
Can be set to any of the values returned by shel | . | i st Credent i al Hel per s() method. If

this value is set to invalid value or an unknown Helper, an exception is raised. If an invalid value is
detected during the startup of nysql sh, an error is displayed and storage and retrieval of passwords is
disabled. To disable automatic storage and retrieval of passwords, set this option to the special value
<di sabl ed>, for example by issuing:

shel | . options. set("credential Store. hel per", "<disabl ed>")

When this option is disabled, usage of all of the credential store MySQL Shell methods discussed here
results in an exception.

shell.options.credentialStore.savePasswords = "val ue"

A string which controls automatic storage of passwords. Valid values are:

» al ways - passwords are always stored, unless they are already available in the Secret Store or
server URL matches credenti al St or e. excl udeFi | t er s value.

* never - passwords are not stored.

e pronpt -ininteractive mode, if the server URL does not match the value of
shel | . credenti al Store. excl udeFi | t ers, you are prompted if the password should be
stored. The possible answers are yes to save this password, no to not save this password, never
to not save this password and to add the URL to cr edent i al St ore. excl udeFi |l ters. The
modified value of cr edent i al St ore. excl udeFi | t er s is not persisted, meaning it is in effect
only until MySQL Shell is restarted. If MySQL Shell is running in noninteractive mode (for example

31

Working with Credentials

the - - no- wi zar d option was used), the cr edent i al St or e. savePasswor ds option is always
never.

The default value for this option is pr onpt .
shell.options.credentialStore.excludeFilters = ["* @ryser ver. com *"];

A list of strings specifying which server URLs should be excluded from automatic storage of
passwords. Each string can be either an explicit URL or a glob pattern. If a server URL which is about
to be stored matches any of the strings in this options, it is not stored. The valid wildcard characters
are: * which matches any number of any characters, and ? which matches a single character.

The default value for this option is an empty list.

4.4.2 Working with Credentials

The following functions enable you to work with the Pluggable Password store. You can list the
available Secret Store Helpers, as well as list, store, and retrieve credentials.

var list = shell.listCredentialHelpers();

Returns a list of strings, where each string is a name of a Secret Store Helper available on the current
platform. The special values def aul t and <di sabl ed> are not in the list, but are valid values for the
credenti al St ore. hel per option.

shell.storeCredential(ur | [, passwor d]);

Stores given credentials using the current Secret Store Helper (cr edent i al St or e. hel per).
Throws an error if the store operation fails, for example if the current helper is invalid. If the URL
is already in the Secret Store, it is overwritten. This method ignores the current value of the
credenti al St ore. savePasswor ds and credenti al St ore. excl udeFi | t er s options. If a
password is not provided, MySQL Shell prompts for one.

shell.deleteCredential(url);

Deletes the credentials for the given URL using the current Secret Store Helper
(credenti al Store. hel per). Throws an error if the delete operation fails, for example the current
helper is invalid or there is no credential for the given URL.

shell.deleteAllCredentials();

Deletes all credentials managed by the current Secret Store Helper (cr edent i al St or e. hel per).
Throws an error if the delete operation fails, for example the current Helper is invalid.

var list = shell.listCredentials();

Returns a list of all URLs of credentials stored by the current Secret Store Helper
(credenti al Store. hel per).

4.5 MySQL Shell Global Objects

MySQL Shell includes a number of built-in global objects that exist in both JavaScript and Python
modes. The built-in MySQL Shell global objects are as follows:

» sessi on is available when a global session is established, and represents the global session.

» dba provides access to InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet administration
functions using the AdminAPI. See Chapter 6, MySQL AdminAPI.

32

Using a Pager

cl ust er represents an InnoDB Cluster. Only populated if the - - cl ust er option was provided
when MySQL Shell was started.

r s represents an InnoDB ReplicaSet (added in version 8.0.20). Only populated if the - -
repl i caset option was provided when MySQL Shell was started.

db is available when the global session was established using an X Protocol connection with a
default database specified, and represents that schema.

shel | provides access to various MySQL Shell functions, for example:

e shel | . opti ons provides functions to set and unset MySQL Shell preferences. See Section 13.4,
“Configuring MySQL Shell Options”.

e shel | . report s provides built-in or user-defined MySQL Shell reports as functions, with the
name of the report as the function. See Section 10.1, “Reporting with MySQL Shell”.

uti| provides various MySQL Shell tools, including the upgrade checker utility, the JSON import
utility, and the parallel table import utility. See Chapter 11, MySQL Shell Utilities.

Important

and must not be used, for example, as names of variables. If you assign one of
the global variables you override the above functionality, and to restore it you

A The names of the MySQL Shell global objects are reserved as global variables
must restart MySQL Shell.

You can also create your own extension objects and register them as additional MySQL Shell global
objects to make them available in a global context. For instructions to do this, see Section 10.2,
“Adding Extension Objects to MySQL Shell”.

4.6 Usi

ng a Pager

You can configure MySQL Shell to use an external pager tool such as | ess or nor e. Once a pager
is configured, it is used by MySQL Shell to display the text from the online help or the results of SQL
operations. Use the following configuration possibilities:

Configure the shel | . opti ons[pager] = "" MySQL Shell option, a string which specifies the
external command that displays the paged output. This string can can optionally contain command
line arguments which are passed to the external pager command. Correctness of the new value is
not checked. An empty string disables the pager.

Default value: empty string.

Configure the PAGER environment variable, which overrides the default value of
shel | . options["pager"] option. If shel | . opti ons[" pager"] was persisted, it takes
precedence over the PAGER environment variable.

The PACGER environment variable is commonly used on Unix systems in the same context as
expected by MySQL Shell, conflicts are not possible.

Configure the - - pager MySQL Shell option, which overrides the initial value of
shel | . opti ons["pager"] option even if it was persisted and PAGER environment variable is
configured.

Use the \ pager | \ P conmand MySQL Shell command to set the value of shel | .options["pager"]
option. If called with no arguments, restores the initial value of shel | . opti ons[" pager"] option
(the one MySQL Shell had at startup. Strings can be marked with " characters or not. For example,
to configure the pager:

e pass in no conmand or an empty string to restore the initial pager

33

Using a Pager

e pass in nor e to configure MySQL Shell to use the nor e command as the pager

e passinnore -10 to configure MySQL Shell to use the nor e command as the pager with the
option - 10

The MySQL Shell output that is passed to the external pager tool is forwarded with no filtering. If
MySQL Shell is using a prompt with color (see Section 13.3, “Customizing the Prompt”), the output
contains ANSI escape sequences. Some pagers might not interpret these escape sequences by
default, such as | ess, for which interpretation can be enabled using the - R option. nor e does interpret
ANSI escape sequences by default.

34

Chapter 5 MySQL Shell Code Execution

Table of Contents

LN Rt 1)V = o U = Vo [N 35
5.2 Interactive Code EXECULIONc.uuiiii et ettt ettt et e e e e eb e eaa s 36
LI o To (I AN U1 (o Tedo] 4] 0] =3 1o o I PSP 37
L o 111 T R0 T = 39
LR T @ To [T o 1] (] Y 40
5.6 BatCh COdE EXECULIONuiiiiiiii et et e et e e e e e eaas 41
5.7 OULPUL FOMMIALS .. euiiiiie e e e e e e e e e e et e e et e e e e e et e e e e e e anaenns 42
B5.7.1 TaBIE FOIMMAL ... et ettt e e e et e e e e ean s 43
5.7.2 Tab Separated FOIMMALc.uiiiiiiiiii e e e e e e e e e e e e e e eaaes 43
5.7.3 VErtiCAl FOIMMALceuiiiiieii et et e e e et e e e e eeaeees 44
5.7.4 JSON FOrmMAt OULPULiuiii e e e e e e e e e e e e e eneanaanes 44
LT ARSI 1T @ 1NN AT = T o o 11 o N 46
5.7.6 RESUIt METAGALAuiiiiieiiee e ettt e e e e e aa e a7
5.8 APl Command Line INtEQrationccoiiiiiiiiiiiiei e e e e e e e e anes 47
5.8.1 Command Line INtegration OVEIVIEWcouieiuieiuieiieii e e e e e e e e e e e e e aneeen 48
5.8.2 Command Line Integration DetailSc.oviniiiiiiiiii e 50
LIRS N A1 @ 1N\ I [g1 =Y = U1 o o 59

This section explains how code execution works in MySQL Shell.

5.1 Active Language

MySQL Shell can execute SQL, JavaScript or Python code, but only one language can be active at a
time. The active mode determines how the executed statements are processed:

« If using SQL mode, statements are processed as SQL which means they are sent to the MySQL
server for execution.

« If using JavaScript mode, statements are processed as JavaScript code.

« If using Python mode, statements are processed as Python code.

Note

@ From version 8.0.18, MySQL Shell uses Python 3. For platforms that include a
system supported installation of Python 3, MySQL Shell uses the most recent
version available, with a minimum supported version of Python 3.4.3. For
platforms where Python 3 is not included, MySQL Shell bundles Python 3.7.4.
MySQL Shell maintains code compatibility with Python 2.6 and Python 2.7, so if
you require one of these older versions, you can build MySQL Shell from source
using the appropriate Python version.

When running MySQL Shell in interactive mode, activate a specific language by entering the
commands: \ sqgl ,\js,\py.

When running MySQL Shell in batch mode, activate a specific language by passing any of these
command-line options: - - | s, - - py or - - sql . The default mode if none is specified is JavaScript.

Use MySQL Shell to execute the content of the file code. sql as SQL.
$> nysql sh --sqgl < code. sq

Use MySQL Shell to execute the content of the file code. j s as JavaScript code.

$> nysql sh < code.js

35

Interactive Code Execution

Use MySQL Shell to execute the content of the file code. py as Python code.
$> nysql sh --py < code. py

From MySQL Shell 8.0.16, you can execute single SQL statements while another language is active,
by entering the \ sql command immediately followed by the SQL statement. For example:

nysql - py> \sqgl select * fromsakila.actor limt 3;

The SQL statement does not need any additional quoting, and the statement delimiter is optional.
The command only accepts a single SQL query on a single line. With this format, MySQL Shell does
not switch mode as it would if you entered the \ sql command. After the SQL statement has been
executed, MySQL Shell remains in JavaScript or Python mode.

From MySQL Shell 8.0.18, you can execute operating system commands while any language is active,
by entering the \ syst emor \ ! command immediately followed by the command to execute. For
example:

nysql - py> \system echo Hello from M/SQ. Shel I!

MySQL Shell displays the output from the operating system command, or returns an error if it was
unable to execute the command.

5.2 Interactive Code Execution

The default mode of MySQL Shell provides interactive execution of database operations that you type
at the command prompt. These operations can be written in JavaScript, Python or SQL depending on
the current Section 5.1, “Active Language”. When executed, the results of the operation are displayed
on-screen.

As with any other language interpreter, MySQL Shell is very strict regarding syntax. For example, the
following JavaScript shippet opens a session to a MySQL server, then reads and prints the documents
in a collection:
var nySession = nysql x. get Sessi on(' user: pwd@ ocal host');
var result = nySession.getSchenma(' world_x').getCollection('countryinfo').find().execute();
var record = result.fetchOne();
whi | e(record) {
print(record);
record = result.fetchOne();

}

As seen above, the call to f i nd() is followed by the execut e() function. CRUD database
commands are only actually executed on the MySQL Server when execut e() is called. However,
when working with MySQL Shell interactively, execut e() is implicitly called whenever you press
Ret ur n on a statement. Then the results of the operation are fetched and displayed on-screen. The
rules for when you need to call execut e() or not are as follows:

» When using MySQL Shell in this way, calling execut e() becomes optional on:
e Col |l ection.add()
e Collection.find()
e Col l ection.renove()
e Col l ection. nodi fy()
e Table.insert()
e Tabl e. sel ect ()

e Tabl e. del et e()

36

Multiple-line Support

e Tabl e. updat e()

» Automatic execution is disabled if the object is assigned to a variable. In such a case calling
execut e() is mandatory to perform the operation.

» When a line is processed and the function returns any of the available Resul t objects, the
information contained in the Result object is automatically displayed on screen. The functions that
return a Result object include:

e The SQL execution and CRUD operations (listed above)

» Transaction handling and drop functions of the session objects in both mysqgl and nysql x
modules: -

e startTransaction()

e comit ()

e rol | back()

e dropSchema()

e dropCol | ection()

e C assicSession. runSgl ()

Based on the above rules, the statements needed in the MySQL Shell in interactive mode to establish
a session, query, and print the documents in a collection are as follows:

nmysql -j s> var nySession = nysql x. get Sessi on(' user: pwd@ ocal host"') ;
nmysql -j s> nySessi on. get Schema(' wor |l d_x").get Col |l ection(' countryinfo').find();

No call to execut e() is needed and the Result object is automatically printed.

Multiple-line Support

It is possible to specify statements over multiple lines. When in Python or JavaScript mode, multiple-
line mode is automatically enabled when a block of statements starts like in function definitions, if/
then statements, for loops, and so on. In SQL mode multiple line mode starts when the command \ is
issued.

Once multiple-line mode is started, the subsequently entered statements are cached.

For example:
nysql -sql > \
. create procedure get_actors()
begi n
select first_nane from sakil a.actor;
. end
Note
@ You cannot use multiple-line mode when you use the \ sql command with a
guery to execute single SQL statements while another language is active. The
command only accepts a single SQL query on a single line.

5.3 Code Autocompletion

MySQL Shell supports autocompletion of text preceding the cursor by pressing the Tab key. The
Section 3.1, “MySQL Shell Commands” can be autocompleted in any of the language modes. For

37

Autocompleting SQL

example typing \ con and pressing the Tab key autocompletes to \ connect . Autocompletion is
available for SQL, JavaScript and Python language keywords depending on the current Section 5.1,
“Active Language”.

Autocompletion supports the following text objects:

» In SQL mode - autocompletion is aware of schema names, table names, column names of the
current active schema.

» In JavaScript and Python modes autocompletion is aware of object members, for example:
 global object names such as sessi on, db, dba, shel | , nysql , mysql x, and so on.

« members of global objects such as sessi on. connect (), dba. confi gurelLocal | nstance(),
and so on.

« global user defined variables

» chained object property references such as shel | . opti ons. ver bose.

« chained X DevAPI method calls such as col . find().where().execute().fetchOne().
By default autocompletion is enabled, to change this behavior see Configuring Autocompletion.

Once you activate autocompletion, if the text preceding the cursor has exactly one possible match, the
text is automatically completed. If autocompletion finds multiple possible matches, it beeps or flashes
the terminal. If the Tab key is pressed again, a list of the possible completions is displayed. If no match
is found then no autocompletion happens.

Autocompleting SQL

When MySQL Shell is in SQL mode, autocompletion tries to complete any word with all possible
completions that match. In SQL mode the following can be autocompleted:

* SQL keywords - List of known SQL keywords. Matching is case-insensitive.

» SQL snippets - Certain common snippets, such as SHOVN CREATE TABLE, ALTER TABLE, CREATE
TABLE, and so on.

» Table names - If there is an active schema and database name caching is not disabled, all the tables
of the active schema are used as possible completions.

As a special exception, if a backtick is found, only table nhames are considered for completion. In SQL
mode, autocompletion is not context aware, meaning there is no filtering of completions based on the
SQL grammar. In other words, autocompleting SEL returns SELECT, but it could also include a table
called selfies.

Autocompleting JavaScript and Python

In both JavaScript and Python modes, the string to be completed is determined from right to left,
beginning at the current cursor position when Tab is pressed. Contents inside method calls are
ignored, but must be syntactically correct. This means that strings, comments and nested method calls
must all be properly closed and balanced. This allows chained methods to be handled properly. For
example, when you are issuing:

print (db. user.select().where("user in ('foo', '"bar')").e

Pressing the Tab key would cause autocompletion to try to complete the text
db. user. sel ect (). where(). e but this invalid code yields undefined behavior. Any whitespace,
including newlines, between tokens separated by a . is ignored.

38

https://dev.mysql.com/doc/refman/8.0/en/show-create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Configuring Autocompletion

Configuring Autocompletion

By default the autocompletion engine is enabled. This section explains how to disable autocompletion
and how to use the \ r ehash MySQL Shell command. Autocompletion uses a cache of database
name objects that MySQL Shell is aware of. When autocompletion is enabled, this name cache is
automatically updated. For example whenever you load a schema, the autocompletion engine updates
the name cache based on the text objects found in the schema, so that you can autocomplete table
names and so on.

To disable this behavior you can:
» Start MySQL Shell with the - - no- nane- cache command option.

* Modify the aut oconpl et e. naneCache and devapi . dbCbj ect Handl es keys of the
shel | . opti ons to disable the autocompletion while MySQL Shell is running.

When the autocompletion name cache is disabled, you can manually update the text objects
autocompletion is aware of by issuing \ r ehash. This forces a reload of the name cache based on the
current active schema.

To disable autocompletion while MySQL Shell is running use the following shel | . opt i ons keys:
« aut oconpl et e. naneCache: bool ean toggles autocompletion name caching for use by SQL.

» devapi . dbObj ect Handl es: bool ean toggles autocompletion name caching for use by the X
DevAPI db object, for example db. nyt abl e, db. mycol | ecti on.

Both keys are setto t r ue by default, and set to f al se if the - - no- nane- cache command option is
used. To change the autocompletion name caching for SQL while MySQL Shell is running, issue:

shel | . opti ons[' aut oconpl et e. naneCache'] =t rue
Use the \ r ehash command to update the name cache manually.

To change the autocompletion name caching for JavaScript and Python while MySQL Shell is running,
issue:

shel | . opti ons[' devapi . dbCbj ect Handl es'] =t rue

Again you can use the \ r ehash command to update the name cache manually.

5.4 Editing Code

MySQL Shell's\ edi t command (available from MySQL Shell 8.0.18) opens a command in the
default system editor for editing, then presents the edited command in MySQL Shell for execution. The
command can also be invoked using the short form \ e or key combination Ctrl-X Ctrl-E. If you specify
an argument to the command, this text is placed in the editor. If you do not specify an argument, the
last command in the MySQL Shell history is placed in the editor.

The EDI TOR and VI SUAL environment variables are used to identify the default system editor.

If the default system editor cannot be identified from these environment variables, MySQL Shell
uses not epad. exe on Windows and vi on any other platform. Command editing takes place in a
temporary file, which MySQL Shell deletes afterwards.

When you have finished editing, you must save the file and close the editor, MySQL Shell then
presents your edited text ready for you to execute by pressing Enter, or if you do not want to proceed,
to cancel by pressing Ctrl-C.

For example, here the user runs the MySQL Shell built-in report t hr eads with a custom set of
columns, then opens the command in the system editor to add display names for some of the columns:

\'show threads --foreground -o tid,cid,user, host, conmand, state, | astwait,|astwaitl

39

Code History

\e

\show t hreads --foreground -o tid=thread_id, cid=conn_id, user, host, command, state, | astwait=l ast_wait_event, |

5.5 Code History

Code which you issue in MySQL Shell is stored in the history, which can then be accessed using the
up and down arrow keys. You can also search the history using the incremental history search feature.
To search the history, use Ctrl+R to search backwards, or Ctrl+S to search forwards through the
history. Once the search is active, typing characters searches for any strings that match them in the
history and displays the first match. Use Ctrl+S or Ctrl+R to search for further matches to the current
search term. Typing more characters further refines the search. During a search you can press the
arrow keys to continue stepping through the history from the current search result. Press Enter to
accept the displayed match. Use Ctrl+C to cancel the search.

The hi st ory. naxSi ze MySQL Shell configuration option sets the maximum number of entries

to store in the history. The default is 1000. If the number of history entries exceeds the configured
maximum, the oldest entries are removed and discarded. If the maximum is set to 0, no history entries
are stored.

By default the history is not saved between sessions, so when you exit MySQL Shell the history of what
you issued during the current session is lost. You can save your history between sessions by enabling
the MySQL Shell hi st ory. aut oSave option. For example, to make this change permanent issue:

nmysql sh-j s> \option --persist history.autoSave=1

When the hi st ory. aut oSave option is enabled the history is stored in the MySQL Shell
configuration path, which is the ~/ . nysql sh directory on Linux and macOS, or the ¥%AppDat a%

\ MySQL\ nysgl sh folder on Windows. This path can be overridden on all platforms by defining the
environment variable M\YSQLSH USER_CONFI G_HOVE. The saved history is created automatically by
MySQL Shell and is readable only by the owner user. If the history file cannot be read or written to,
MySQL Shell logs an error message and skips the read or write operation. Prior to version 8.0.16,
history entries were saved to a single hi st or y file, which contained the code issued in all of the
MySQL Shell languages. In MySQL Shell version 8.0.16 and later, the history is split per active
language and the files are named hi st ory. sql , hi story. j s and hi story. py.

Issuing the MySQL Shell \ hi st or y command shows history entries in the order that they were
issued, together with their history entry number, which can be used with the \ hi st ory del ete

entry _nunber command. You can manually delete individual history entries, a specified numeric
range of history entries, or the tail of the history. You can also use \ hi st ory cl ear to delete the
entire history manually. When you exit MySQL Shell, if the hi st or y. aut oSave configuration option
has been set to t r ue, the history entries that remain in the history file are saved, and their numbering
is reset to start at 1. If the shel | . opti ons[" hi story. aut oSave"] configuration option is set to

f al se, which is the default, the history file is cleared.

Only code which you type interactively at the MySQL Shell prompt is added to the history. Code that is
executed indirectly or internally, for example when the \ sour ce command is executed, is not added to
the history. When you issue multi-line code, the new line characters are stripped in the history entry. If

the same code is issued multiple times it is only stored in the history once, reducing duplication.

You can customize the entries that are added to the history using the - - hi st i gnor e command
option. Additionally, when using MySQL Shell in SQL mode, you can configure strings which should not
be added to the history. This history ignore list is also applied when you use the \ sgql command with a
guery to execute single SQL statements while another language is active.

By default strings that match the glob patterns | DENTI FI ED or PASSWORD are not added to the
history. To configure further strings to match use either the - - hi sti gnor e command option, or

shel | . options["history.sql.ignorePattern"].Multiple strings can be specified, separated
by a colon (:). The history matching uses case-insensitive glob pattern like matching. Supported
wildcards are * (match any 0 or more characters) and ? (match exactly 1 character). The default strings
are specified as " * | DENTI FI ED* : * PASSWORD* " .

40

Batch Code Execution

The most recent executed statement is always available by pressing the Up arrow, even if the history
ignore list applies to it. This is so that you can make corrections without retyping all the input. If filtering
applies to the last executed statement, it is removed from the history as soon as another statement is
entered, or if you exit MySQL Shell immediately after executing the statement.

5.6 Batch Code Execution

As well as interactive code execution, MySQL Shell provides batch code execution from:
* A file loaded for processing.
A file containing code that is redirected to the standard input for execution.

» Code from a different source that is redirected to the standard input for execution.

Tip
; As an alternative to batch execution of a file, you can also control MySQL Shell
from a terminal, see Section 5.8, “API Command Line Integration”.

In batch mode, all the command logic described at Section 5.2, “Interactive Code Execution” is not
available, only valid code for the active language can be executed. When processing SQL code,

it is executed statement by statement using the following logic: read/process/print result. When
processing non-SQL code, it is loaded entirely from the input source and executed as a unit. Use the
--interactive (or-i)command-line option to configure MySQL Shell to process the input source
as if it were being issued in interactive mode; this enables all the features provided by the Interactive
mode to be used in batch processing.

Note
@ In this case, whatever the source is, it is read line by line and processed using
the interactive pipeline.

The input is processed based on the current programming language selected in MySQL Shell, which
defaults to JavaScript. You can change the default programming language using the def aul t Mode
MySQL Shell configuration option. Files with the extensions . | s, . py, and . sql are always processed
in the appropriate language mode, regardless of the default programming language.

This example shows how to load JavaScript code from a file for batch processing:
$> nysqlsh --file code.js

Here, a JavaScript file is redirected to standard input for execution:

$> nysql sh < code.js

This example shows how to redirect SQL code to standard input for execution:

$> echo "show dat abases;" | nysqlsh --sqgl --uri user@92.0.2.20: 33060

From MySQL Shell 8.0.22, the - - pymcommand line option is available to execute the specified Python
module as a script in Python mode. The option works in the same way as Python's - mcommand line
option.

Executable Scripts

On Linux you can create executable scripts that run with MySQL Shell by including a #! line as the first
line of the script. This line should provide the full path to MySQL Shell and include the - - f i | e option.
For example:

#! /usr/ | ocal / nysql -shel I / bi n/ nysql sh --file

41

SQL Execution in Scripts

print("Hello World\n");

The script file must be marked as executable in the filesystem. Running the script invokes MySQL Shell
and it executes the contents of the script.

SQL Execution in Scripts

SQL query execution for X Protocol sessions normally uses the sql () function, which takes an SQL
statement as a string, and returns a SqlExecute object that you use to bind and execute the query and
return the results. This method is described at Using SQL with Session. However, SQL query execution
for classic MySQL protocol sessions uses the runSql () function, which takes an SQL statement and
its parameters, binds the specified parameters into the specified query and executes the query in a
single step, returning the results.

If you need to create a MySQL Shell script that is independent of the protocol used for connecting

to the MySQL server, MySQL Shell provides a sessi on. runSgl () function for X Protocol, which
works in the same way as the r unSgl () function in classic MySQL protocol sessions. You can use
this function in MySQL Shell only in place of sqgl (), so that your script works with either an X Protocol
session or a classic MySQL protocol session. Sessi on. runSql () returns a SglResult object, which
matches the specification of the ClassicResult object returned by the classic MySQL protocol function,
so the results can be handled in the same way.

implementation in JavaScript and Python, and is not part of the standard X

Note
S Sessi on. runSgl () is exclusive to the MySQL Shell X DevAPI
DevAPI.

To browse the query results, you can use the f et chOneObj ect () function, which works for both
the classic MySQL protocol and X Protocol. This function returns the next result as a scripting object.
Column names are used as keys in the dictionary (and as object attributes if they are valid identifiers),
and row values are used as attribute values in the dictionary. Updates made to the object are not
persisted on the database.

For example, this code in a MySQL Shell script works with either an X Protocol session or a classic
MySQL protocol session to retrieve and output the name of a city from the given country:

var resultSet = nmySession.runSqgl ("SELECT * FROM city WHERE countrycode = ' AUT' ");
var row = resultSet.fetchOneject();
print(row ' Nane']);

5.7 Output Formats

MySQL Shell can print results in table, tabbed, or vertical format, or as pretty or raw JSON output.
From MySQL Shell 8.0.14, the MySQL Shell configuration option r esul t For mat can be used to
specify any of these output formats as a persistent default for all sessions, or just for the current
session. Changing this option takes effect immediately. For instructions to set MySQL Shell
configuration options, see Section 13.4, “Configuring MySQL Shell Options”. Alternatively, the
command line option - - r esul t - f or mat or its aliases (- -t abl e, - -t abbed, - -verti cal) can be
used at startup to specify the output format for a session. For a list of the command line options, see
Section A.1, “mysqlsh — The MySQL Shell”.

If the r esul t For mat configuration option has not been specified, when MySQL Shell is in interactive
mode, the default format for printing a result set is a formatted table, and when MySQL Shell is in batch
mode, the default format for printing a result set is tab separated output. When you set a default using
the r esul t For mat configuration option, this default applies in both interactive mode and batch mode.

The MySQL Shell function shel | . dunpRows() can format a result set returned by a query in any of
the output formats supported by MySQL Shell, and dump it to the console. (Note that the result set is
consumed by the function.)

42

https://dev.mysql.com/doc/x-devapi-userguide/en/using-sql.html

Table Format

To help integrate MySQL Shell with external tools, you can use the - - j son option to control JSON
wrapping for all MySQL Shell output when you start MySQL Shell from the command line. When
JSON wrapping is turned on, MySQL Shell generates either pretty-printed JSON (the default) or raw
JSON, and the value of the r esul t For mat MySQL Shell configuration option is ignored. When JSON
wrapping is turned off, or was not requested for the session, result sets are output as normal in the
format specified by the r esul t For mat configuration option.

The out put For mat configuration option is now deprecated. This option combined the JSON wrapping
and result printing functions. If this option is still specified in your MySQL Shell configuration file or
scripts, the behavior is as follows:

» With the j son orj son/ r awvalue, out put For mat activates JSON wrapping with pretty or raw
JSON respectively.

» With the t abl e, t abbed, orverti cal value, out put For mat turns off JSON wrapping and sets
the r esul t For nat configuration option for the session to the appropriate value.

5.7.1 Table Format

The table format is used by default for printing result sets when MySQL Shell is in interactive mode.
The results of the query are presented as a formatted table for a better view and to aid analysis.

To get this output format when running in batch mode, start MySQL Shell with the - -resul t -
f or mat =t abl e command line option (or its alias - - t abl e), or set the MySQL Shell configuration
option r esul t For mat tot abl e.

Example 5.1 Output in Table Format

M/SQL | ocal host: 33060+ ssl world_x JS > shell.options.set('resultFornmat’,'table")
M/SQL | ocal host: 33060+ ssl world_x JS > session.sql("select * fromcity where countrycode="AUT' ")

oo oe mocomoooooon foocomcoomooon foooomcoomoooo=o L +
| ID | Nane | CountryCode | District | Info |
oo oe mocomoooooon foocomcoomooon foooomcoomoooo=o L +
1523	Wen	AUT	Wen	{"Popul ation": 1608144}
1524	G az	AUT	Steiernmark	{"Popul ation": 240967}
1525	Linz	AUT	North Austria	{"Population": 188022}
1526	Sal zburg	AUT	Sal zburg	{"Popul ation": 144247}
1527	Innsbruck	AUT	Tiroli	{"Popul ation": 111752}
1528	Klagenfurt	AUT	Karnten	{"Popul ation": 91141}
oo oe mocomoooooon foocomcoomooon foooomcoomoooo=o L +
6 rows in set (0.0030 sec)

5.7.2 Tab Separated Format

The tab separated format is used by default for printing result sets when running MySQL Shell in batch
mode, to have better output for automated analysis.

To get this output format when running in interactive mode, start MySQL Shell with the - -resul t -
f or mat =t abbed command line option (or its alias - - t abbed), or set the MySQL Shell configuration
option r esul t For mat to t abbed.

Example 5.2 Output in Tab Separated Format

M/SQL | ocal host: 33060+ ssl world_x JS > shell.options.set('resultFornat’,"'tabbed")
M/SQL | ocal host : 33060+ ssl world_x JS > session.sql("select * fromcity where countrycode="AUT' ")
ID

Nane Count r yCode District I nfo
1523 W en AUT W en {" Popul ati on": 1608144}
1524 G az AUT St ei er mar k {" Popul ati on": 240967}
1525 Li nz AUT North Austria {"Popul ation": 188022}
1526 Sal zbur g AUT Sal zbur g {" Popul ati on": 144247}
1527 I nnsbruck AUT Tiroli {"Population": 111752}
1528 Kl agenf urt AUT Karnten {"Popul ation": 91141}

6 rows in set (0.0041 sec)

43

Vertical Format

5.7.3 Vertical Format

The vertical format option prints result sets vertically instead of in a horizontal table, in the same way as
when the \ G query terminator is used for an SQL query. Vertical format is more readable where longer
text lines are part of the output.

To get this output format, start MySQL Shell with the - - r esul t - f or mat =verti cal command line
option (or its alias - - verti cal), or set the MySQL Shell configuration option r esul t For mat to
vertical.

Example 5.3 Output in Vertical Format

M/SQL | ocal host: 33060+ ssl world_x JS > shell.options.set('resultFormat',"vertical"')
M/SQL | ocal host : 33060+ ssl world_x JS > session.sql("select * fromcity where countrycode="AUT" "
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkk* l r ow khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkk*
ID: 1523
Nane: Wen
Count ryCode: AUT
District: Wen
Info: {"Population": 1608144}
kkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkk* 2 r ow kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkk*x
I D: 1524
Name: G az
Count ryCode: AUT
District: Steiernmark
Info: {"Population": 240967}
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkk* 3 r ow khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkkkk*%
ID: 1525
Nane: Linz
Count ryCode: AUT
District: North Austria
Info: {"Population": 188022}
khkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkk* 4 r ow khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkkkkkkkkk*%
ID: 1526
Name: Sal zburg
Count ryCode: AUT
District: Sal zburg
Info: {"Population": 144247}
khkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkkkkkkkk* 5 r ow kkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkk*x
I D: 1527
Nane: | nnsbruck
Count ryCode: AUT
District: Tiroli
Info: {"Popul ation": 111752}
kkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkk*% 6 r ow kkhkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkk*
I D: 1528
Nane: Kl agenfurt
Count ryCode: AUT
District: Karnten
Info: {"Population": 91141}
6 rows in set (0.0027 sec)

5.7.4 JSON Format Output

MySQL Shell provides a number of JSON format options to print result sets:

jsonorjson/pretty These options both produce pretty-printed JSON.
ndj son orj son/ raw These options both produce raw JSON delimited by newlines.
j son/array This option produces raw JSON wrapped in a JSON array.

You can select these output formats by starting MySQL Shell with the - - r esul t - f or mat =val ue
command line option, or setting the MySQL Shell configuration option r esul t For mat .

In batch mode, to help integrate MySQL Shell with external tools, you can use the - - j son option to
control JSON wrapping for all output when you start MySQL Shell from the command line. When JSON

44

JSON Format Output

wrapping is turned on, MySQL Shell generates either pretty-printed JSON (the default) or raw JSON,
and the value of the r esul t For mat MySQL Shell configuration option is ignored. For instructions, see
Section 5.7.5, “*JSON Wrapping”.

Example 5.4 Output in Pretty-Printed JSON Format (j son orj son/ pretty)

MySQL | ocal host: 33060+ ssI world_x JS > shell.options.set('resultFormat',"'json')
MySQL | ocal host: 33060+ ssl world_x JS > session.sqgl("select * fromcity where countrycode="AUT" ")
{

"ID': 1523,

"Nanme": "Wen",

" Count ryCode": "AUT",

"District": "Wen",

"Info": {

" Popul ation": 1608144

"I D': 1524,
"Nane": "G az",
" Count ryCode": "AUT",
"District": "Steiermrk",
"Info": {

" Popul ation": 240967

"I D': 1525,
“Nane": "Linz",
" Count ryCode": "AUT",
"District": "North Austria",
"Info": {

" Popul ation": 188022

"I D': 1526,
“Nane": "Sal zburg",
" Count ryCode": "AUT",
"District": "Sal zburg",
"Info": {

"Popul ation": 144247

"I D': 1527,
“"Nane": "Innsbruck",
" Count ryCode": "AUT",
"District": "Tiroli",
"Info": {

"Popul ation": 111752

"ID': 1528,
"Nanme": "Klagenfurt",
" Count ryCode": "AUT",
"District": "Karnten",
"Info": {
"Popul ation": 91141

}

}

6 rows in set (0.0031 sec)

Example 5.5 Output in Raw JSON Format with Newline Delimiters (ndj son or j son/ r aw)

MySQL | ocal host: 33060+ ssI world_x JS > shell.options.set('resultFormat', ' ndjson')

MySQL | ocal host: 33060+ ssl world_x JS > session.sql("select * fromcity where countrycode="AUT" ")
{"1D':1523, "Nane": "W en", "CountryCode": "AUT","District":"Wen","Info":{"Popul ati on": 1608144}}

{"1D': 1524, "Nane": "G az", "CountryCode": "AUT","District":"Stei ermark", "I nfo":{"Popul ati on": 240967} }
{"1D"': 1525, "Nane": "Li nz", " CountryCode": "AUT","Di strict":"North Austria","Ilnfo":{"Popul ati on": 188022} }

45

JSON Wrapping

{"1D"': 1526, "Nane": " Sal zburg", " Count ryCode": " AUT", "Di strict":"Sal zburg", "I nfo":{"Popul ati on": 144247}}
{"1D"':1527, "Nane": "I nnsbruck", " Count ryCode": "AUT", "District":"Tiroli","Info":{"Popul ati on": 111752} }
{"1D"': 1528, "Nane": "Kl agenfurt", " CountryCode": "AUT", "District":"Karnten","Info": {"Popul ati on":91141}}
6 rows in set (0.0032 sec)

Example 5.6 Output in Raw JSON Format Wrapped in a JSON Array (j son/ arr ay)

MySQL | ocal host: 33060+ ssl world_x JS > shell.options.set('resultFormat',"'json/array')

MySQL | ocal host: 33060+ ssl world_x JS > session.sql("select * fromcity where countrycode=" AUT' ")

[

{"1D"':1523, "Nane": "W en", "CountryCode": "AUT","District":"Wen","Info":{"Popul ati on": 1608144}},

{"1D"': 1524, "Nane": "G az", "CountryCode": "AUT","District":"Stei ermark", "I nfo":{"Popul ati on": 240967} },
{"1D"': 1525, "Nane": "Li nz", " CountryCode": "AUT","District":"North Austria","Info":{"Popul ati on": 188022}},
{"ID': 1526, "Nane": " Sal zburg", " Count ryCode": "AUT", "Di strict":"Sal zburg", "I nfo": {"Popul ati on": 144247}},

{"ID': 1527, "Nane": "I nnsbruck", " CountryCode": "AUT","District":"Tiroli","Info": {"Popul ati on":111752}},
{"ID': 1528, "Nane": "Kl agenfurt", " CountryCode": " AUT", "Di strict":"Karnten", "I nfo": {"Popul ati on":91141}}
]

6 rows in set (0.0032 sec)

5.7.5 JSON Wrapping

To help integrate MySQL Shell with external tools, you can use the - - j son option to control JSON
wrapping for all MySQL Shell output when you start MySQL Shell from the command line. The - - j son
option only takes effect for the MySQL Shell session for which it is specified.

Specifying - -j son, --j son=pretty,or--json=rawturns on JSON wrapping for the session. With
--j son=pr et ty orwith no value specified, pretty-printed JSON is generated. With - - | son=r aw, raw
JSON is generated.

When JSON wrapping is turned on, any value that was specified for the r esul t For nat MySQL Shell
configuration option in the configuration file or on the command line (with the - - resul t - f or nat
option or one of its aliases) is ignored.

Specifying - - j son=of f turns off JSON wrapping for the session. When JSON wrapping is turned off,
or was not requested for the session, result sets are output as normal in the format specified by the
resul t For mat MySQL Shell configuration option.

Example 5.7 MySQL Shell Output with Pretty-Printed JSON Wrapping (- - j son or - -
j son=pretty)

$> echo "select * fromworld_x.city where countrycode=" AUT'" | nysqlsh --json --sql --uri user@ ocal host: 3¢
or
$> echo "select * fromworld_x.city where countrycode=" AUT'" | nysql sh --json=pretty --sql --uri user @ ocal
{
"hasData": true,
"rows": [
{

"I D': 1523,
"Nane": "Wen",
" Count ryCode": "AUT",
"District": "Wen",
"Info": {

" Popul ation": 1608144

"I D': 1524,
"Nane": "G az",
" Count ryCode": "AUT",
"District": "Steiermrk",
"Info": {

" Popul ation": 240967

"I D': 1525,
“Nane": "Linz",
" Count ryCode": "AUT",

46

Result Metadata

"District": "North Austria",
"Info": {

" Popul ation": 188022
}

"I D': 1526,
"Nane": "Sal zburg",
" Count ryCode": "AUT",
"District": "Sal zburg",
"Info": {

"Popul ation": 144247

"I D': 1527,
"Nane": "Ilnnsbruck",
" Count ryCode": "AUT",
"District": "Tiroli",
"Info": {

"Popul ation": 111752

"I D': 1528,
"Nanme": "Kl agenfurt",
" Count ryCode": "AUT",
"District": "Karnten",
"Info": {

"Popul ation": 91141

}

executionTi me": "0.0067 sec",
"af f ect edRowCount ": 0,
"affectedl tenmsCount": O,

"war ni ngCount ": 0,

"war ni ngsCount": 0,

“warni ngs": [],

"info": ""

"aut ol ncrenent Val ue": 0

}
Example 5.8 MySQL Shell Output with Raw JSON Wrapping (- - j son=r aw)

$> echo "select * fromworld_x.city where countrycode=' AUT'" | nysqlsh --json=raw --sql --uri user@oca
{"hasData":true, "rows": [{"I D": 1523, "Nane": "W en", " CountryCode": " AUT", "Di strict":"Wen","Info":{"Popul at

5.7.6 Result Metadata

When an operation is executed, in addition to any results returned, some additional information is
returned. This includes information such as the number of affected rows, warnings, duration, and so on,
when any of these conditions is true:

» JSON format is being used for the output
e MySQL Shell is running in interactive mode.

When JSON format is used for the output, the metadata is returned as part of the JSON object. In
interactive mode, the metadata is printed after the results.

5.8 APl Command Line Integration

MySQL Shell exposes much of its functionality through an APl command-line integration using a
syntax that provides access to objects and their functions without opening the interactive interface.
This enables you easily integrate mysql sh with other tools. For example if you want to automate how
you create an InnoDB Cluster using a bash script, you could use the command-line integration to call
AdminAPI operations. This functionality is similar to using the - - execut e option, but the command-

47

Command Line Integration Overview

line integration uses a simplified argument syntax which reduces the quoting and escaping that can be
required by terminals. Unlike batch mode, the command-line integration is stateless. This means that
operations which return an object to be used by further operations are not possible. The command-line
integration calls operations, or global object's functions, and returns.

5.8.1 Command Line Integration Overview

This section provides an overview of the command-line integration and some basic usage examples.
For more detailed information, see Section 5.8.2, “Command Line Integration Details”.

The following built-in MySQL Shell global objects are available:
* sessi on - represents the current global session.

« db - represents the default database for the global session, if that session was established using an
X Protocol connection with a default database specified. See Using MySQL as a Document Store.

» dba - provides access to AdminAPI, used to manage InnoDB Cluster, InnoDB ClusterSet, and
InnoDB ReplicaSet deployments. See Chapter 6, MySQL AdminAPI.

» cl uster -represents an InnoDB Cluster.
* I's - represents an InnoDB ReplicaSet.

» shel | - provides access to MySQL Shell functions, such as shel | . opt i ons for configuring
MySQL Shell options (see Section 13.4, “Configuring MySQL Shell Options”).

e util -provides access to MySQL Shell utilities. See Chapter 11, MySQL Shell Utilities.

For more information, see Section 4.5, “MySQL Shell Global Objects”.

MySQL Shell Command Line Integration Syntax

You access the command-line integration by starting the nysql sh application and passing in the
special - - option. When you start MySQL Shell in this way, the - - indicates the end of the list of
options (such as the server to connect to, which language to use, and so on) and everything after it

is passed to the command-line integration. The command-line integration supports a specific syntax,
which is based on the objects and methods used in the MySQL Shell interactive interface. To execute
an operation using command-line integration syntax, in your terminal issue:

nysql sh [options] -- [shell_object]+ object_nethod [argunents]
The syntax elements are:

» shel | _obj ect is a string which maps to a MySQL Shell global object. The command-line
integration supports nested objects. To call a function in a nested object, provide the list of objects in
the hierarchy separated by spaces, to reach the desired object.

» obj ect _net hod is the name of the method provided by the last shel | _obj ect . The method
names can be provided following either the JavaScript, or Python naming convention, or an
alternative command-line integration friendly format, where all known functions use all lower case
letters, and words are separated by hyphens. The name of a obj ect _net hod is automatically
converted from the standard JavaScript style camelCase name, where all case changes are replaced
with a - and turned into lowercase. For example, cr eat eCl ust er becomes cr eat e-cl ust er.

e argunent s are the arguments passed to the obj ect _net hod when it is called.

shel | _obj ect must match one of the exposed global objects, and any nested objects must be a
child object of the previous object provided in the list. The obj ect _net hod must match one of the
last object in the list's methods, and must be defined in one of the valid formats (JavaScript, Python or
command line friendly). If they do not correspond to a valid object and its methods, MySQL Shell exits
with status 10.

48

https://dev.mysql.com/doc/refman/8.0/en/document-store.html

Command Line Integration Overview

See the examples at MySQL Shell Command Line Integration Examples.
The Objects Available in the Command Line Integration

To find out which objects and methods are available in the command-line integration it is best to query
the MySQL Shell you are working with. This is because in addition to the standard objects bundled with
MySQL Shell, additional objects from plugins might also be exposed.

To get the list of objects supported by the command-line integration:

$ nysqglsh -- --help
This displays a list of objects and a brief description of what the object provides.

To get a list of the functions available in the command-line integration for an obj ect :

$ nysqlsh -- object --help
For more information, see Section 5.8.2.4, “Command Line Help”.
MySQL Shell Command Line Integration Argument Syntax

The ar gunent s list is optional and all arguments must follow a syntax suitable for command-line
use as described in this section. Special characters (such as spaces or \) and quoting are processed
by your system's shell (bash, cnd, and so on) before they are passed to MySQL Shell. If you are
unfamiliar with how your system shell deals with those character sequences as it parses a command,
you should try to avoid them. For example, to pass a parameter with quotes as part of the parameter
such as “list, of, names”, using just that syntax on the command line is not enough. You need to use
your system's shell syntax for escaping those quotes. If you do not, then MySQL Shell might not
receive the actual quotation marks. See Section 5.8.2.2, “Defining Arguments”.

There are two types of arguments that can be used in the list of arguments: anonymous arguments and
named arguments. Anonymous arguments are used to define simple type parameters such as strings,
numbers, boolean, null. Named arguments are used to define the values for list parameters and the
options in a dictionary parameter, they are key-value pairs, where the values are simple types. Their
usage must adhere to the following pattern:

[positional _argunent | naned_argunent] *

All parts of the syntax are optional and can be given in any order. These arguments are then converted
into the arguments passed to the method call in the following order:

* Named arguments that come from lists cause the values to be appended to the list parameter that
originated the named argument

* Named arguments that come from dictionaries cause the values to be added to the dictionary
parameter that originated the named argument

« If a dictionary parameter exists with no explicit options defined, this causes it to accept any nhamed
argument that does not belong to another List or Dictionary parameter

» Any remaining arguments provided to the function call are processed in the order they are provided
MySQL Shell Command Line Integration Examples

Using the command-line integration, calling MySQL Shell API functions is easier and less cumbersome
than with the - - execut e option. The following examples show how to use this functionality:

» To check a server instance is suitable for upgrade and return the results as JSON for further
processing:

$ nysqglsh -- util check-for-server-upgrade --user=root --host=local host --port=3301 --password='passv

49

Command Line Integration Details

The equivalent command in MySQL Shell interactive mode:

nysqgl -j s> util.checkFor Server Upgrade({user:'root', host:'local host', port:3301}, {password:'password'

» To deploy an InnoDB Cluster sandbox instance, listening on port 1234 and specifying the password
used to connect:

$ nysqgl sh -- dba depl oy- sandbox-i nstance 1234 --passwor d=password

The equivalent command in MySQL Shell interactive mode:

nysql - j s> dba. depl oySandbox| nst ance(1234, {password: password})

» To create an InnoDB Cluster using the sandbox instance listening on port 1234 and specifying the
name nmycl uster:

$ nysqgl sh root @ocal host: 1234 -- dba create-cluster mycl uster
The equivalent command in MySQL Shell interactive mode:
nmysql -j s> dba. createC uster (' mycluster")

» To check the status of an InnoDB Cluster using the sandbox instance listening on port 1234:

$ nysql sh root @ocal host: 1234 -- cluster status

The equivalent command in MySQL Shell interactive mode:

nmysql -j s> cluster.status()
e To configure MySQL Shell to turn the command history on:
$ nysql sh -- shell.options set_persist history.autoSave true

The equivalent command in MySQL Shell interactive mode:

nysql -j s> shel | . options. set_persist('history.autoSave', true)

5.8.2 Command Line Integration Details

This section provides detailed information about the MySQL Shell command-line integration.

5.8.2.1 Command Line Integration for MySQL Shell APl Functions

The MySQL Shell provides global objects that expose different functionality, such as dba for InnoDB
Cluster and InnoDB ReplicaSet management operations, ut i | for the utility functions, and so on.
Global objects provide functions which are called from the scripting modes in the MySQL Shell. In
addition to the interactive MySQL Shell integration, you can use the command-line integration to call
object functions directly from the terminal, enabling you to easily integrate with other tools.

When you use the APIs included with MySQL Shell in the interactive mode, the typical function syntax
is as follows:

obj ect. functi onNane(paraneterl, paraneter2, ..., paraneterN)

The parameters define the order in which the data should be provided to the API function. In most
cases, API functions expect the parameters in a specific data type, however there are a few exceptions
where a specific parameter can handle multiple data types. The data types used for parameters in API
functions can be one of the following:

» Scalars: string, numbers, booleans, null

» Lists

50

Command Line Integration Details

« Dictionaries: key-value pairs where the key is a string
* Objects

List parameters are typically restricted to contain elements of a pre-defined data type, for example a list
of strings, however, there could be list parameters that support items of different data types.

Dictionary parameters accept key-val ue pairs, where keys are strings. The val ue associated to a
key is usually expected to be of a pre-defined data type. However, there might be cases where different
data types are supported for values by the same key. Dictionary parameters can therefore be one of
the following types:

» A pre-defined set of keys-value pairs is allowed, in which case specifying keys not in the pre-defined
set results in an error.

* No pre-defined set of key-value pairs exists, the dictionary accepts any key

In other words, some dictionary parameters specify which keys are valid. For those parameters,
attempting to use a key outside of that set results in an error. When no pre-defined set of values exists,
any value of any data type can be used. Dictionary parameters that do not have a pre-defined list of
keys, accept any key-value pair as long as the key is not in the pre-defined set of a different dictionary
parameter.

To use the command-line integration to call API functions exposed by global objects without having to

start an interactive session in the MySQL Shell you must provide the required data in the correct way.

This includes defining the way an API function is called, as well as the way its parameters are mapped
from command-line arguments to API arguments.

Important

A Not all of the MySQL Shell functions are exposed by the command-line
integration. For example a function such as dba. get Cl ust er () relies on
returning an object which is then used in further operations. Such operations are
not exposed by the command-line integration.

Similarly, the MySQL Shell command-line integration does not support Objects
as parameters. Any API function with a parameter of type object cannot be
used with the command-line integration. The lifetime of the object is limited

to the lifetime of the MySQL Shell invocation that created it. Since nysql sh
exits immediately after executing an object method through this API syntax, any
objects received from or passed into an API call would immediately be out of
scope. This should be considered while developing MySQL Shell Plugins that
you want to expose with the command-line integration.

The general format to call a MySQL Shell API function from the command-line is:
$ nysql sh [shell options] -- [shell_object]+ object_function [anonynous_argunents| named ar gunent s] *
Where:

» shel | _obj ect: specifies a global object with functions exposed for command-line usage. Supports
nested objects in a list separated by spaces.

e obj ect functi on: specifies the API function of the last shel | _obj ect which should be
executed.

* [anonymous_ar gunent s| naned ar gunent s] *: specifies the arguments passed to the
obj ect function call

For most of the available APIs a single object is required, for example:

$ nysqlsh -- shell status

51

Command Line Integration Details

But for nested objects, the list of objects must be indicated. For example, to call a function exposed by
shel | . opti ons, such as set Per si st (opti onNane, val ue), use the syntax:

$ nysqlsh -- shell options set-persist defaultMde py
A similar situation might happen with nested objects defined in MySQL Shell Plugins.
The arguments you pass to functions can be divided into the following types:

« Anonymous Arguments: which are raw values provided to the command. For example, in the
following call 1, one and t r ue are anonymous arguments:

$ nysqlsh -- object command 1 one true

« Named Arguments: which are key-value pairs provided in the form of - - key=val ue. For example in
the following call, - - sanpl e and - - pat h are named arguments:

$ nysqlsh -- object command 1 one true --sanple=3 --path=sone/path

Given this division of arguments, the general format to call an API function from the command-line
integration is:

$ nysql sh [shell options] -- object command [anonynous argunents][nanmed ar gunent s]

The order of any anonynous ar gunment s is important as they are processed in a positional way.
On the other hand, naned ar gunent s can appear anywhere as they are processed first and are
associated to the corresponding parameter. Once hamed arguments are processed, the anonymous
arguments are processed in a positional way.

5.8.2.2 Defining Arguments

As mentioned in Section 5.8.2.1, “Command Line Integration for MySQL Shell API Functions”, most
of the APIs available in MySQL Shell expect a specific data type for the arguments being provided.
Values in command-line arguments can be provided using the JSON specification with the following
considerations. Some terminals do their own pre-processing of the data which can impact the way the
data is provided to MySQL Shell, and this varies depending on the terminal being used. For example:

» Some terminals split arguments if whitespace is found.
» Consecutive whitespace could be ignored by the splitting logic.
* Quotes could be removed.

MySQL Shell interprets the values as provided by the terminal it is running in, therefore you must
provide the data to the terminal in a way that is correctly formatted. For example:

. Important
A Some terminals require quotes to be escaped

» String arguments should be quoted in the following cases:
< They contain whitespace
e The argument is for a list parameter and contains commas
» They contain escaped characters

« The API parameter can accept different data types and the value (based on the JSON specification)
could be the wrong data type.

» When defining parameters using JSON, quote string values and string keys. Avoid using whitespace
outside of quoted items.

52

Command Line Integration Details

The following examples illustrate some of the handling of parameters.
» To pass in multiple parameters, each a single string, no quoting is required:
$ nysqlsh -- object function sinple string
In this case, MySQL Shell gets two arguments - argument 1 is si npl e, and argument 2 is st ri ng.

« If you want these two strings to be treated as a single parameter, they must be surrounded by quote
marks, as follows

$ nysqlsh -- object function "sinple string"
In this case, MySQL Shell gets one argument - argument 1 is si npl e stri ng.

» To use an argument which contains characters such as a backslash, the string must be quoted.
Otherwise the character is ignored. For example:

$ nysql sh -- object function sinple\tstring

In this case, MySQL Shell gets one argument - si npl et st ri ng, the backslash character (\) has
been ignored.

To ensure the backslash character is passed to MySQL Shell, surround the string with quotes:

$ nysql sh -- object function "sinple\tstring"
In this case, MySQL Shell gets one argument - si npl e\t stri ng.

When using the command-line integration, defining a JSON array has its own caveats. For example, in
the MySQL Shell interactive mode you define a JSON array as:

["sinple", 123]

To use the same array in the command-line integration requires specific quoting. The following
example illustrates how to correctly quote the JSON array:

» Attempting to pass the JSON array in the same way as the interactive mode does not work:

$ nysqlsh -- object function ["sinple", 123]

In this case, MySQL Shell gets two arguments - argument 1 is [si npl e, and argument 2 is 123] .
» Not using spaces in the array helps, but it is still an invalid JSON array:

$ nysql sh -- object function ["sinple", 123]

In this case, MySQL Shell gets one argument - [si npl e, 123].

e To make a valid JSON array, add escaped quotes within the already quoted string element, for
example:

$ nysqlsh -- object function ["\"sinple\"", 123]
In this case, MySQL Shell gets one argument - [" si npl e", 123] .

To use a JSON array which contains JSON objects requires quoting in a similar way. For example, in
the MySQL Shell interactive mode you define a JSON array which contains JSON objects as:

{"firstName":"John", "l ast Nane":"Sm th"}

The following example illustrates how to correctly quote the same array in the command-line
integration:

» Attempting to pass the JSON array in the same way as the interactive mode does not work:

53

Command Line Integration Details

$ nysqgl sh -- object function {"firstName":"John", "l ast Name": " Smi th"}

In this case, MySQL Shell gets two arguments - argument 1 is f i r st Nane: John and argument 2 is
| ast Name: Smi t h.

Using escaped quotes for string data leads to:

$ nysqlsh -- object function {"\"firstName\"":"\"John\"","\ "l astNane\"":"\"Smith\""}

In this case, MySQL Shell gets two arguments - argument 1 is " fi r st Nane": " John" and
argument 2 is " | ast Nane": " Smi th".

To fix this, you need to additionally quote the whole JSON object, to get:

$ nysqgl sh -- object function "{"\"firstName\"":"\"John\"","\ "l ast Name\"":"\"Smith\""}"

In this case, MySQL Shell gets one argument - {"fi r st Nane": "John","| ast Nane":"Sm th"}.

Due to the difficulties shown and the fact that the way the terminals in different platforms behave might
be different, the following formats are supported.

String Arguments

Strings require quoting only in the following cases:

The value contains spaces
The value itself contains commas and is for a list parameter (to avoid splitting)
The value contains escaped characters

The value is a number, nul | , t rue, f al se but it is meant to be a string. In these cases the value
should be quoted with inner escaped quotes. In other words, if a string value is "true”, it should be

defined in a CLI call as "true"".

List Arguments

In addition to a JSON array, an argument for a list parameter can be provided as:

a comma separated list of values

separate anonymous arguments

When a list parameter is being processed (in positional order), all of the remaining anonymous
arguments are part of the list. The following MySQL Shell CLI calls are equivalent:

Using a comma separated list of values:

$ nysqgl sh root @ocal host -- util dunp-schemas sakil a, enpl oyees

Using consecutive anonymous arguments:

$ nysql sh root @ocal host -- util dunp-schemas sakila enpl oyees

Using a JSON array:

$ nysql sh root @ocal host -- util dunmp-schemas ["\"sakila\"","\"enpl oyees\""]

Dictionary Arguments

Dictionaries are created using key-value pairs, the value for a key in a dictionary argument can also be
specified using named arguments:

- -key=val ue

54

Command Line Integration Details

The following MySQL Shell CLI call illustrates how the t hr eads and osBucket Nane keys are defined
for the options parameter inthe uti | . dunpl nst ance() function:

$ nysqlsh -- util dunp-instance ny-dunp --threads=8 --osBucket Name=ny- bucket
List Keys

You can define the values of a list key in a dictionary in the following ways:

» Defining the value as a JSON array.

» Defining the value as a comma separated list of values.

 Defining values for the key repeatedly.

For example, in the following calls, the definition of the excl udeSchemas key passed to the
util.dunpl nstance() operation is equivalent:

» Using a comma separated list of values:

$ nysqgl sh root @ocal host -- util dunp-instance --outputUl="my-dunmp" --excludeSchemas=sakil a, enpl oyee

» Using a JSON array:

$ nmysqgl sh root @ocal host -- util dunp-instance --outputUrl="my-dump" --excludeSchemas=["\"sakila\"",6"

 Defining several values for the - - excl udeSchenas key:
$ nysql sh root @ocal host -- util dunp-instance --outputUl="ny-dunp" --excludeSchemas=sakil a
Dictionary Keys
Nested dictionaries are supported with the following restrictions:
* Only one level of nesting is supported.
 Validation for inner pre-defined keys is not supported.
 Validation for inner expected data types is not supported.
The syntax to define a value for a key in a nested dictionary is as follows:
- - key=i nner Key=val ue

For example, to define the decodeCol urms key and passittothe uti | . i nport Tabl e() operation:

$ nysqlsh -- util inport-table --decodeCol um=nyCol unm=1
Additional Named Arguments

As shown in the previous section, dictionary parameters are supported through named arguments
using the - - key=val ue syntax. There is another case when arguments must be specified as named
arguments: parameters which are defined after a list parameter. The most convenient way to provide
arguments that belong to a list parameter is by using anonymous arguments, for example as shown in
the example at List Arguments:

$ nysql sh root @ocal host -- util dunp-schemas sakila enpl oyees

However, this example is missing the argument for the out put Ur | parameter, which is mandatory
fortheuti | . dunpSchenmas() operation. Because all of the remaining anonymous arguments are
included as items in the schemas list, there is no way to specify the out put Ur | as an anonymous
argument. For example the following would not work:

$ nysql sh root @ocal host -- util dunp-schemas sakila enpl oyees path/t o/ dunp

55

--excl uc

Command Line Integration Details

In this call, the path pat h/ t o/ dunp would be interpreted as another item in the schemas list. For this
reason, any parameter defined after a list parameter must be specified as a named argument when
calling the function from the command-line. For example:

$ nysql sh root @ocal host -- util dunp-schenas sakila enpl oyees --output Ul =pat h/t o/ dunp

5.8.2.3 Data Type Handling

In general, the data type of an argument is resolved using the following criteria, in order of priority:
» The expected data type for the target parameter.

» The data type of the value based on the JSON specification.

» User specified data type.

The last case is a complicated (and rare) case applicable for named arguments only. For example,
suppose you have a MySQL Shell Plugin function such as:

def set_object_attributes(variabl es)

Where var i abl es is a dictionary with no pre-defined set of values, thus it accepts any key, and
therefore accepts any data type for the value. To set a string attribute named st r eet Nunber with a
string value of 123, issue:

$ nysqlsh -- plugin set-object-attributes --streetNunber=123

Because there is no expected data type, the value 123 is interpreted as a numeric value according to
the JSON specification, but we wanted to store that as a string, not as a number.

Note
@ Currently there is no case of an API function like this unless user creates a
plugin as explained above.

User Data Types

To avoid issues with MySQL Shell trying to guess the type of input data, the command-line integration
supports forcing a specific data type, by specifying a named argument using the following syntax:

--key: type=val ue
Where t ype is one of:
o str

* int

* uint

* float

* bool

o list

* dict

* json

To store the value as a string, issue:

$ nysqlsh -- plugin set-object-attributes --streetNunber:str=1234

56

Command Line Integration Details

Important

A This format is allowed in any named argument, but it is only required when there
is no expected data type for the argument. If there is an expected data type for
the parameter and you specify a different data type, an error is raised.

Data Type Resolution

When you do not specify the data type, MySQL Shell attempts to resolve the data type using the
following logic. This data interpretation logic is based on the JSON specification but has some MySQL
Shell specific additions and limitations:

 Strings:
« Support both double quoted and single quoted strings.

» Support for hexadecimals such as \ xNN where NN is a hexadecimal digit. This is used to represent
ASCII characters in hexadecimal format.

« Support for vertical tabs escaped character

The following literals can also be defined:

undefined: define a value as undefined (not really needed in CLI so usage is discouraged).

true/false: creates a boolean value.
* null: define a null value.

Any value not covered by the JSON specification and the rules above is interpreted as a plain string.
5.8.2.4 Command Line Help

You can access the MySQL Shell online help when calling commands from the command-line
integration using the - - hel p (-h) CLI argument. Help is supported at the global, object and command
level.

Note
@ The built-in help CLI argument does not map to any APl argument and is
supported in all the objects and commands available in CLI.

The descriptions of the commands and parameters is taken from the existing documentation for the
target API function.

Global CLI Help

To retrieve the list of global objects available for CLI calls, use the following syntax:

$ nysqglsh -- --help

In this example, - - initiates the command-line integration section of the command. Using the - - hel p
or - h option alone after that lists the global objects available within this interface.

Object Help

To access the object help from the command-line integration, use the following syntax:
$ nysqlsh -- object --help
where obj ect is what you want help on, such as the dba global object. This call displays:

A brief description of the object.

57

Command Line Integration Details

A list of the available commands and a short description of them.

To retrieve the help for nested objects, provide the entire list of objects before the - - hel p argument.
For example, to get help on the shel | . opti ons functions, issue:

$ nysqlsh -- shell options --help

Command Help

To display help on commands from the command-line integration, use the following syntax:

$ nysql sh -- object command --help

This call displays details about the conmand, including:

A brief description of what the command does.

» The signature for calling the command.

* The list of anonymous arguments and a brief description of each.

» The list of named arguments, their expected data types, and a brief description explaining the
purpose of each argument.

For the case of commands in nested objects, the entire list of objects should be provided before the
command, for example:

$ nysql sh shel |l options set-persist --help

For parameters that expect a specific data type, the argument is listed as:

- - nane=t ype
Brief description of the paraneter

The type information represents the expected data type for the argument, for example: str, i nt,
ui nt, bool ,list,float,ordict.

For example, the consi st ent key of the dunp- schenas parameter:
$ nysqlsh -- util dunp-schenmas --help

- - consi st ent =<bool >
Enabl e or di sabl e consistent data dunps. Default: true

For parameters that support different data types, the argument is listed as:

--name[: t ype] =val ue
Bri ef description of the paraneter

For example, the col unms key of the uti | . i nport Tabl e() operation.
$ nysqglsh -- util inport-table --help

--col ums| : <t ype>] =<val ue>
Array of strings and/or integers (default: enpty array) - This..

5.8.2.5 Support for MySQL Shell Plugins

To use Section 10.3, “MySQL Shell Plugins” with the command-line integration, the functions must
be explicitly defined for CLI support. When an object defined in a MySQL Shell Plugin is enabled

for command-line integration, only the specific functions that were enabled are available for CLI
calls. From MySQL Shell version 8.0.24, when you add function members to an object, they support
the cl i boolean option. When cl i is settotrue, the function is available from the command-line

58

JSON Integration

integration. The cl i option defaults to false, therefore functions are not available from the command-
line integration unless specifically enabled. Any object with a function that has the cl i option enabled
causes its parent objects to be available in the command-line integration as well.

To make a function available through the command-line integration, set the cl i optiontot r ue when
you add the extension object member. For example:

shel | . addExt ensi onObj ect Menber (obj ect, "exanpl eFuncti on", exanpl eFuncti on,

{
brief:"Retrieves brief information",
details: ["Retrieves detailed information"],
cli: true,

par anet er s:
[
{

name: "parama",
type: "string",
brief: "parama brief"

}
]
1)

You could then use the exanpl eFuncti on() function from the command-line integration as follows:

nysql sh -- custonObj exanpl eFunction 1

If you have added an extension object member using a MySQL Shell version earlier than 8.0.24,

and you want to use it with the command-line integration, you must enable the cl i option. Use the
addExt ensi onObj ect Menber method as illustrated here to add the object member again, this time
enabling the cl i option.

5.9 JSON Integration

From MySQL Shell 8.0.27, you can activate a JSON shell mode to help with integration of MySQL Shell
with other applications that could use its functionality. In this mode, MySQL Shell accepts commands
formatted as JSON documents.

To activate the JSON shell mode, define the MYSQLSH JSON_SHELL environment variable. The
following commands can then be used:

{"execute":json-string} Executes the given code in the active MySQL Shell mode
(JavaScript, Python or SQL). The code is executed as a complete
unit, and an error is returned if it is incomplete.

{"command":j son-string} Executes the given MySQL Shell command (see Section 3.1,
“MySQL Shell Commands”).

{"conplete": Determines the options for auto-completion based on the given data
{"data":json-string[, and the current MySQL Shell context.
"of fset": uint}}}

59

60

Chapter 6 MySQL AdminAPI

Table of Contents

6.1 USINg MYSQL AdMINAP ... e e e e e e e e e et e e et e e e e e eea 61
6.1.1 Installing AdmIinAPI Software COMPONENESuiviinieiii i ieee e e r e e e e eees 62
6.1.2 Using Instances RUNNING MYSQL 5.7coouiiiiiii e 62
6.1.3 Configuring the HOSt NAMEuiii e e e 63
6.1.4 Connecting t0 SErVEr INSTANCEScccuiiiiieii e e e e e e e 64
6.1.5 PersiStiNg SEINGS ..uiiveeiiiii et e e e e e e r e 65
6.1.6 Retrieving a Handler ODJECTcoouiiiiiii e e e 65
6.1.7 Creating User Accounts for AdminiStrationcoceeiiiiiioiiin e 66
L0 I S I =T g o To 1= =T o To o o 67
6.1.9 FINAING the PriIMary ...ccceeiii i e e e e et e e e ean s 68
6.1.10 Scripting AAMINAPT .. .o e 68

6.2 AAMINAPT MySQL SANUDOXESuuiiiieiiiiieii et e e e e e e e e e e e e e e e et e e et e e et r e e et e e anneeaens 69
6.2.1 Deploying SandboX INSTANCESovvuiiiiiiciie e e e e e e e e e e e e e e eanees 69
6.2.2 Managing SandboX INSLANCESiiiiiiiiiieiii e e e e e e e e aens 70

LSRG 1= Vo o g To 1Y/ 1= r= Lo £ - P 71

6.4 Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet 74
6.4.1 Bootstrapping MYSQL ROULETiiieiiiiici e e e e e e e eeees 74
6.4.2 Configuring the MySQL ROULEI USEIcouiiiiiiiii et e e 75
6.4.3 Deploying MYSQL ROULETuiiiiiei et e e e e e e e e e e e e e e eanaeeaes 75
6.4.4 Using ReplicaSets with MySQL ROULETccuuiiiiiiiiiii e e e 77
6.4.5 Testing InnoDB Cluster High Availabilityccooiiiiiiiii e, 77
6.4.6 Working with @ CIUSLEI'S ROULEISccuuiiiiiiiie e e e e e e e e e 78

This chapter covers MySQL AdminAPI, provided with MySQL Shell, which enables you to administer
MySQL instances, using them to create InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet
deployments, and integrating MySQL Router.

6.1 Using MySQL AdminAPI

AdminAPI is provided by MySQL Shell, and is accessed through the dba global variable and its
associated methods. The dba variable's methods provide operations which enable you to deploy,
configure, and administer InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet. For example,
use the dba. cr eat eC ust er () method to create an InnoDB Cluster. In addition, AdminAPI supports
administration of some MySQL Router related tasks, such as creating and updating users that enable
you to integrate your InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet.

AdminAPI supports the following deployment scenarios:

» Production deployment: if you want to use a full production environment you need to configure the
required number of machines and then deploy your server instances to the machines.

» Sandbox deployment: if you want to test a deployment before committing to a full production
deployment, the provided sandbox feature enables you to quickly set up a test environment on your
local machine. Sandbox server instances are created with the required configuration and you can
experiment to become familiar with the technologies employed.

Important
A An AdminAPI sandbox deployment is not suitable for use in a full production
environment.

MySQL Shell provides two scripting language modes, JavaScript and Python, in addition to a native
SQL mode. Throughout this guide MySQL Shell is used primarily in JavaScript mode. When MySQL

61

Installing AdminAPI Software Components

Shell starts it is in JavaScript mode by default. Switch modes by issuing \ j s for JavaScript mode, and
\ py for Python mode. Ensure you are in JavaScript mode by issuing the \ | s.

Important

but AdminAPI requires TCP connections to a server instance. Socket based

A MySQL Shell enables you to connect to servers over a socket connection,
connections are not supported in AdminAPI.

This section assumes familiarity with MySQL Shell; see MySQL Shell 8.0 for further information.
MySQL Shell also provides online help for the AdminAPI. To list all available dba commands,
use the dba. hel p() method. For online help on a specific method, use the general format

obj ect . hel p(' met hodnane") . For example:

nysql -j s> dba. hel p(' get Cl uster"')
Retrieves a cluster fromthe Metadata Store.
SYNTAX
dba. get Cl uster ([nane] [, options])
WHERE

nane: Paraneter to specify the name of the cluster to be returned.
options: Dictionary with additional options.

In addition to this documentation, there is developer documentation for all AdminAPI methods in
the MySQL Shell JavaScript APl Reference or MySQL Shell Python API Reference, available from
Connectors and APIs.

6.1.1 Installing AdminAPI Software Components

How you install the software components required by AdminAPI depends on the type of deployment
you intend to use:

» For a production deployment, install the components to each machine. A production deployment
uses multiple remote host machines running MySQL server instances, so you need to connect to
each machine using a tool such as SSH or Windows remote desktop to carry out tasks such as
installing components.

» For a sandbox deployment, install the components to a single machine. A sandbox deployment is
local to a single machine, therefore the install needs to only be done once on the local machine.

Always use the most recent versions of MySQL Shell and MySQL Router that are available to you, and
ensure that their version is the same as or higher than the MySQL Server release. MySQL Shell and
MySQL Router can manage older MySQL Server releases, but older versions of the products cannot
manage features in newer MySQL Server releases.

Download and install the software components using the following documentation:
* MySQL Server - see Installing and Upgrading MySQL.

* MySQL Shell - see Chapter 2, Installing MySQL Shell.

* MySQL Router - see Installing MySQL Router.

Once you have installed the required software, this section has further information on using AdminAPI.
Follow the procedures to set up Chapter 7, MySQL InnoDB Cluster, Chapter 8, MySQL InnoDB
ClusterSet, or Chapter 9, MySQL InnoDB ReplicaSet.

6.1.2 Using Instances Running MySQL 5.7

62

https://dev.mysql.com/doc/index-connectors.html
https://dev.mysql.com/doc/refman/8.0/en/installing.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html

Configuring the Host Name

This documentation assumes you are using MySQL instances running the latest version of MySQL
8, and MySQL Shell 8. AdmIinAPI also supports using instances running MySQL 5.7, but many of the
features described require instances running MySQL 8. The following differences exist for instances
running MySQL 5.7:

* Instances running MySQL 5.7 do not support SET PERSI ST, so they cannot be
configured remotely, or automatically, unlike instances running MySQL 8. Instead, when
configuring MySQL 5.7 instances, each time you must connect to the instance and use the
dba. confi gureLocal | nst ance() operation. This operation persists the settings to the instances
option file when it is available locally. See Section 6.1.5, “Persisting Settings”.

* Instances running MySQL 5.7 do not support automatic node provisioning, so before joining them
to the cluster you must manually synchronize them with the other cluster instances. This means
either relying on Group Replication's distributed recovery, which requires binary logs with GTIDs
enabled and potentially a long wait when there is a large number of transactions to recover, or using
a tool such as MySQL Enterprise Backup to manually copy the data. With the addition of the MySQL
Clone plugin in version 8.0, instances can be provisioned by AdminAPI automatically. When you
add a version 8.0 instance supporting MySQL Clone, AdminAPI automatically chooses the best way
to bring the joining instance into synchrony with the existing instances. For example if the cluster
contains a large number of transactions, MySQL Clone is used to recover the data directly, and
any transactions processed by the cluster during the clone operation are then synchronized using
distributed recovery. You can monitor the progress of the operation directly from MySQL Shell, no
other tools are required. This makes tasks such as adding instances to expand the InnoDB Cluster
and improve the chances of high availability effortless. See Section 7.2.2, “Using MySQL Clone with
InnoDB Cluster”.

 Instances running MySQL 5.7 are not compatible with InnoDB ReplicaSet.
* Instances running MySQL 5.7 are not compatible with InnoDB ClusterSet.

» The InnoDB Cluster topology (whether it runs in single-primary or multi-primary mode) cannot be
dynamically changed when using MySQL 5.7 Servers. See Changing a Cluster's Topology.

* Instances running MySQL 5.7 are not compatible with the parallel replication applier. See
Configuring the Parallel Replication Applier.

* Instances running MySQL 5.7 do not support the aut oRej oi nTri es and exi t St at eActi on
options, which configure how many times instances try to rejoin a cluster and what happens when an
instance leaves. See Configuring Automatic Rejoin of Instances.

* Instances running MySQL 5.7 do not support the consi st ency option. See Configuring Failover
Consistency.

* Instances running MySQL 5.7 do not support the expel Ti nmeout option, which configures how long
the cluster waits before expelling an instance which has lost contact with the other instances.

To use these features, please upgrade your instances to MySQL 8.

6.1.3 Configuring the Host Name

In a production deployment, the instances which you use run on separate machines, therefore each
machine must have a unigque host name and be able to resolve the host names of the other machines
which run server instances. If this is not the case, you can:

» Configure each machine to map the IP of each other machine to a host name. See your operating
system documentation for details. This is the recommended solution.

» Set up a DNS service.

» Configure the r eport host variable in the MySQL configuration of each instance to a suitable
externally reachable address.

63

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host

Connecting to Server Instances

AdminAPI supports using IP addresses instead of host names. From MySQL Shell 8.0.18, AdminAPI
supports IPv6 addresses if the target MySQL Server version is higher than 8.0.13. When using MySQL
Shell 8.0.18 or higher, if all cluster instances are running 8.0.14 or higher then you can use an IPv6 or
hostname that resolves to an IPv6 address for instance connection strings and with options such as

| ocal Addr ess, groupSeeds and i pAl | ow i st. For more information on using IPv6 see Support
For IPv6 And For Mixed IPv6 And IPv4 Groups. Previous versions support IPv4 addresses only.

To verify whether the hostname of a MySQL server is correctly configured, execute the following query
to see how the instance reports its own address to other servers and try to connect to that MySQL
server from other hosts using the returned address:

SELECT coal esce(@@ eport _host, @@host nane);

6.1.4 Connecting to Server Instances

One of the core concepts of using AdminAPI is understanding connections to the MySQL instances
which make up your InnoDB Cluster, InnoDB ClusterSet, or InnoDB ReplicaSet. The requirements
for connections to the instances when administering, and for the connections between the instances
themselves, are as follows:

» Only TCP/IP connections are supported. Using Unix sockets or named pipes is not supported.

» Only classic MySQL protocol connections are supported. X Protocol is not supported.

Tip
; Your applications can use X Protocol - this requirement is for administration
operations using AdminAPI.

* InnoDB Cluster is intended to be deployed in a local area network. Deploying a single InnoDB
Cluster over a wide area network has a noticeable impact on write performance. A stable and
low latency network is important for InnoDB Cluster member servers to communicate with each
other using the underlying Group Replication technology for consensus on transactions. InnoDB
ClusterSet, however, is designed to be deployed across multiple datacenters, with each InnoDB
Cluster in a single datacenter and asynchronous replication channels linking them.

» InnoDB ReplicaSet may be used over a wide area network with no impact on write performance,
because the server instances are connected by asynchronous replication channels and do not
need consensus on transactions. However, replication lag will be greater over a wide area network,
causing the secondary servers in the InnoDB ReplicaSet to be further behind the primary server.

MySQL Shell enables you to work with various APIs, and supports specifying connections as explained
in Connecting to the Server Using URI-Like Strings or Key-Value Pairs. You can specify connections
using either URI-like strings, or key-value pairs. The Additional Connection parameters are not
supported in AdminAPI. This documentation demonstrates AdminAPI using URI-like connection strings.
For example, to connect as the user nyuser to the MySQL server instance at www. exanpl e. com on
port 3306 use the connection string:

nmyuser @ww. exanpl e. com 3306

To use this connection string with an AdminAPI operation such as dba. confi gur el nst ance(),
you need to ensure the connection string is interpreted as a string, for example by surrounding the
connection string with either single (") or double (") quote marks. If you are using the JavaScript
implementation of AdminAPI issue:

MySQL JS > dba. confi gurel nstance(' myuser @ww. exanpl e. com 3306")

Assuming you are running MySQL Shell in the default interactive mode, you are prompted for your
password. AdminAPI supports MySQL Shell's Section 4.4, “Pluggable Password Store”, and once you
store the password you used to connect to the instance you are no longer prompted for it.

64

https://dev.mysql.com/doc/refman/8.0/en/group-replication-ipv6.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-ipv6.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html#connection-parameters-additional

Persisting Settings

6.1.5 Persisting Settings

The AdminAPI commands you use to work with an InnoDB Cluster, InnoDB ClusterSet, InnoDB
ReplicaSet, and the individual member server instances in these deployments, modify the configuration
of MySQL Server on the instance. Depending on the way MySQL Shell is connected to an instance and
the version of MySQL Server installed on the instance, these configuration changes can be persisted
to the instance automatically. Persisting settings to the instance ensures that configuration changes are
retained after the instance restarts, for background information see SET PERSI ST. This is essential for
reliable usage, for example if settings are not persisted then an instance which has been added to a
cluster does not rejoin the cluster after a restart because configuration changes are lost.

Instances which meet the following requirements support persisting configuration changes
automatically:

e The instance is running MySQL version 8.0.11 or later.
e persisted_gl obal s_| oad is set to O\.
» The instance has not been started with the - - no- def aul t s option.

Instances which do not meet these requirements do not support persisting configuration changes
automatically, and when AdminAPI operations result in changes to the instance's settings to be
persisted you receive warnings such as:

WARNI NG On instance 'l ocal host:3320' nenbershi p change cannot be persisted since MySQL version 5.7.21
does not support the SET PERSI ST command (MySQL version >= 8.0.5 required). Please use the
<Dba>. confi gurelLocal | nstance conmand | ocally to persist the changes.

When AdminAPI commands are issued against the MySQL instance which MySQL Shell is currently
running on, in other words the local instance, MySQL Shell persists configuration changes directly

to the instance. On local instances which support persisting configuration changes automatically,
configuration changes are persisted to the instance's mysql d- aut o. cnf file and the configuration
change does not require any further steps. On local instances which do not support persisting
configuration changes automatically, you need to make the changes locally, see Configuring Instances
with dba. confi gur eLocal | nst ance().

When run against a remote instance, in other words an instance other than the one which MySQL Shell
is currently running on, if the instance supports persisting configuration changes automatically, the
AdminAPI commands persist configuration changes to the instance's nysql - aut o. conf option file.

If a remote instance does not support persisting configuration changes automatically, the AdminAPI
commands can not automatically configure the instance's option file. This means that AdminAPI
commands can read information from the instance, for example to display the current configuration, but
changes to the configuration cannot be persisted to the instance's option file. In this case, you need to
persist the changes locally, see Configuring Instances with dba. confi gureLocal | nst ance().

6.1.6 Retrieving a Handler Object

When you are working with AdminAPI, you use a handler object which represents the InnoDB Cluster,
InnoDB ClusterSet, or InnoDB ReplicaSet. You assign this object to a variable, and then use the
operations available to monitor and administer the InnoDB Cluster, InnoDB ClusterSet, or InnoDB
ReplicaSet.

To be able to retrieve the handler object, you establish a connection to one of the active instances
which belong to the InnoDB Cluster, InnoDB ClusterSet, or InnoDB ReplicaSet. For example, when you
create a cluster using dba. cr eat eCl ust er (), the operation returns a Cl ust er object which can

be assigned to a variable. You use this object to work with the cluster, for example to add instances or
check the cluster's status.

If you want to retrieve a Cl ust er object again at a later date, for example after restarting MySQL
Shell, use the dba. get Cl ust er ([nane], [opti ons]) function. For example:

65

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_persisted_globals_load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_no-defaults

Creating User Accounts for Administration

nmysql -j s> var clusterl = dba. getCl uster()

To retrieve the Cl ust er Set object representing an InnoDB ClusterSet deployment, use the
dba. get Cl uster Set () orcl uster.getC usterSet () function. For example:

nysql -j s> nycl usterset = dba. get Cl ust er Set ()

Note that when you use a Cl ust er Set object, the server instance from which you got it must still be
online in the InnoDB ClusterSet. If that server instance goes offline, the object no longer works and you
will need to get it again from a server that is still online in the InnoDB ClusterSet.

Use the dba. get Repl i caSet () operation to retrieve a Repl i caSet object. For example:

nmysql -j s> var replicasetl = dba. get ReplicaSet ()

If you do not specify a nane then the default object is returned. The returned object uses a new
session, independent from MySQL Shell's global session. This ensures that if you change the MySQL
Shell global session, the Cl ust er, Cl ust er Set, or Repl i caSet object maintains its session to the
server instance.

By default MySQL Shell attempts to connect to the primary instance when you retrieve a handler. Set
the connect ToPr i mar y option to configure this behavior.

e If connect ToPri nmary istrue and the active global MySQL Shell session is not to a primary
instance, MySQL Shell queries for the primary instance. If there is no quorum in a cluster, the
operation fails.

» Ifconnect ToPri nmary is f al se, the retrieved object uses the server instance specified for the
active session, in other words the same instance as MySQL Shell's current global session.

» If connect ToPri mary is not specified, MySQL Shell treats connect ToPri mary ast r ue, and falls
back to connect ToPri mary being f al se.

To force connecting to a secondary, establish a connection to the secondary instance and use the
connect ToPri mary option by issuing:

nmysql -j s> shel | . connect (secondary_mnenber)
nmysql -js> var clusterl = dba.getCl uster(testd uster, {connectToPrimary:false})

Tip
@ Remember that secondary instances have super read_onl y=0N, so you
cannot write changes to them.

6.1.7 Creating User Accounts for Administration

The user account used to administer an instance does not have to be the root account, however

the user needs to be assigned full read and write privileges on the metadata tables in addition to full
MySQL administrator privileges (SUPER, GRANT OPTI ON, CREATE, DROP and so on). In this procedure
the user i cadni n is shown in InnoDB Cluster examples, and r sadni n in InnoDB ReplicaSet
examples.

Important

A The user name and password of an administrator must be the same on all
instances.

In version 8.0.20 and later, use the set upAdmni nAccount (user) operation to create or upgrade

a MySQL user account with the necessary privileges to administer an InnoDB Cluster or InnoDB
ReplicaSet. To use the set upAdmi nAccount () operation, you must be connected as a MySQL user
with privileges to create users, for example as root. The set upAdm nAccount (user) operation
also enables you to upgrade an existing MySQL account with the necessary privileges before a

dba. upgr adeMet adat a() operation.

66

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Verbose Logging

The mandatory user argument is the name of the MySQL account you want to create or

upgrade to be used to administrator the account. The format of the user names accepted by the

set upAdni nAccount () operation follows the standard MySQL account name format, see Specifying
Account Names. The user argument format is user nanme[@ost] where host is optional and if it is
not provided it defaults to the %wildcard character.

For example, to create a user named i cadni n to administer an InnoDB Cluster assigned to the
variable myCl ust er, issue:

nysqgl -j s> nyCl ust er. set upAdni nAccount (' i cadnin')

M ssing the password for new account icadm n@o Please provide one.
Password for new account: ******xx
Confirm password: ******%x

Creating user icadnm n@b6
Setting user password.
Account icadm n@b was successfully created.

If you already have an administration user, for example created with a version prior to 8.0.20, use the
updat e option with the set upAdm nAccount () operation to upgrade the privileges of the existing
user. This is relevant during an upgrade, to ensure that the administration user is compatible. For
example, to upgrade the user named i cadmi n issue:

nysql -j s> nyCl ust er. set upAdni nAccount ('icadnmin', {'update':1})
Updati ng user icadnm n@b6
Account icadm n@b was successfully updated.

In versions prior to 8.0.20, the preferred method to create users for administration is using the

cl ust er Adm n option with the dba. conf i gur el nst ance() operation. The cl ust er Adni n option
must be used with a MySQL Shell connection based on a user which has the privileges to create users
with suitable privileges, in this example the root user is used. For example:

nysql -j s> dba. confi gurel nstance(' root @c-1:3306', {clusterAdnin: "'icadmin @ic-1%"});

The format of the user names accepted by the set upAdm nAccount () operation and the
cl ust er Adm n option follows the standard MySQL account name format, see Specifying Account
Names.

If only read operations are needed (such as for monitoring purposes), an account with more restricted
privileges can be used. See Configuring Users for AdminAPI.

6.1.8 Verbose Logging

When working with a production deployment it can be useful to configure verbose logging for MySQL
Shell. For example, the information in the log can help you to find and resolve any issues that might
occur when you are preparing server instances to work as part of InnoDB Cluster. To start MySQL
Shell with a verbose logging level, use the - - | og- | evel option:

$> nysql sh --1o0g-| evel =DEBUG3

The DEBUGS level is recommended, see - - | og- | evel for more information. When DEBUG3 is set

the MySQL Shell log file contains lines such as Debug: execute_sql (...) which contain the
SQL queries that are executed as part of each AdminAPI call. The log file generated by MySQL Shell
is located in ~/ . mysql sh/ nysql sh. | og for Unix-based systems; on Microsoft Windows systems it is
located in Y%APPDATA% My SQL\ nysql sh\ nysqgl sh. | og. See Chapter 12, MySQL Shell Logging and
Debug for more information.

In addition to enabling the MySQL Shell log level, you can configure the amount of output AdminAPI
provides in MySQL Shell after issuing each command. To enable the amount of AdminAPI output, in
MySQL Shell issue:

nysql -j s> dba. ver bose=2

67

https://dev.mysql.com/doc/refman/8.0/en/account-names.html
https://dev.mysql.com/doc/refman/8.0/en/account-names.html
https://dev.mysql.com/doc/refman/8.0/en/account-names.html
https://dev.mysql.com/doc/refman/8.0/en/account-names.html

Finding the Primary

This enables the maximum output from AdminAPI calls. The available levels of output are:

» 0 or OFF is the default. This provides minimal output and is the recommended level when not
troubleshooting.

» 1 or ON adds verbose output from each call to the AdminAPI.

» 2 adds debug output to the verbose output providing full information about what each call to
AdminAPI executes.

MySQL Shell can optionally log the SQL statements used by AdminAPI operations (with the exception
of sandbox operations), and can also display them in the terminal as they are executed. To configure
MySQL Shell to do this, see Section 12.4, “Logging AdminAPI Operations”.

6.1.9 Finding the Primary

When you are working with a single-primary InnoDB Cluster or an InnoDB ReplicaSet, you need to
connect to the primary instance for administration tasks so that configuration changes can be written to
the metadata. To find the current primary you can:

e Usethe--redirect-prinary option at MySQL Shell start up to ensure that the target server is
part of an InnoDB Cluster or InnoDB ReplicaSet. If the target instance is not the primary, MySQL
Shell finds the primary and connects to it.

e Usetheshel | . connect ToPri mary([instance, password]) operation (added in version
8.0.20), which checks whether the target instance belongs to a cluster or ReplicaSet. If so, MySQL
Shell opens a new session to the primary, sets the active global MySQL Shell session to the
established session and returns it.

If ani nst ance is not provided, the operation attempts to use the active global MySQL Shell
session. If an i nst ance is not provided and there is no active global MySQL Shell session, an
exception is thrown. If the target instance does not belong to a cluster or ReplicaSet the operation
fails with an error.

» Use the status operation, find the primary in the result, and manually connect to that instance.

6.1.10 Scripting AdminAPI

In addition to the interactive mode illustrated in this section, MySQL Shell supports running scripts in
batch mode. This enables you to automate processes using AdminAPI with scripts written in JavaScript
or Python, which can be run using MySQL Shell's - - f i | e option. For example:

$> nysql sh --file setup-innodb-cluster.js

the script and not to MySQL Shell. You can access those options using the
0s. ar gv array in JavaScript, or the sys. ar gv array in Python. In both cases,

Note
@ Any command line options specified after the script file name are passed to
the first option picked up in the array is the script name.

The contents of an example script file are shown here:

print ('l nnoDB C uster sandbox set up\n');

print(’ \n');

print('Setting up a MySQL I nnoDB Cluster with 3 M/SQL Server sandbox instances,\n');
print('installed in ~/nmysql -sandboxes, running on ports 3310, 3320 and 3330.\n\n');

var dbPass = shell.pronpt (' Pl ease enter a password for the MySQL root account: ', {type:"password"});

try {
print ('\nDepl oyi ng the sandbox instances."');

dba. depl oySandboxI| nst ance(3310, {password: dbPass});

68

AdminAPI MySQL Sandboxes

print('.");

dba. depl oySandboxI| nst ance(3320, {password: dbPass});
print('.");

dba. depl oySandboxI| nst ance(3330, {password: dbPass});
print('.\nSandbox instances depl oyed successfully.\n\n");

print('Setting up InnoDB Cluster...\n");
shel | . connect (' root @ ocal host : 3310', dbPass);

var cluster = dba.createC uster("prodC uster");

print (' Adding instances to the Custer.");

cl ust er. addl nstance({user: "root", host: "local host", port: 3320, password: dbPass});
print('.");

cl ust er. addl nstance({user: "root", host: "local host", port: 3330, password: dbPass});
print('.\nlnstances successfully added to the Cluster."');

print('\nlnnoDB C uster depl oyed successfully.\n");

} catch(e) {
print('\nThe I nnoDB Cluster could not be created.\n\nError: ' +
+ e.nessage + '\n');

}

AdminAPI is also supported by MySQL Shell's Section 5.8, “API Command Line Integration”. This
enables you to easily integrate AdminAPI into your environment. For example, to check the status of an
InnoDB Cluster using the sandbox instance listening on port 1234:

$ nysql sh root @ocal host: 1234 -- cluster status

This maps to the equivalent command in MySQL Shell:

nysql -j s> cluster.status()

6.2 AdminAPI MySQL Sandboxes

This section explains how to set up a sandbox deployment with AdminAPI. Initially deploying and using
local sandbox instances of MySQL is a good way to start your exploration of AdminAPI. You can fully
test out the functionality locally, prior to deployment on your production servers. AdminAPI has built-in
functionality for creating sandbox instances that are correctly configured to work with InnoDB Cluster,
InnoDB ClusterSet, and InnoDB ReplicaSet in a locally deployed scenario.

Important

A Sandbox instances are only suitable for deploying and running on your
local machine for testing purposes. In a production environment the MySQL

Server instances are deployed to various host machines on the network. See
Section 7.2, “Deploying a Production InnoDB Cluster” for more information.

Unlike a production deployment, where you work with instances and specify them by a connection
string, sandbox instances run locally on the same machine as which you are running MySQL Shell.
Therefore, to specify a sandbox instance you supply the port number which the MySQL sandbox
instance is listening on.

6.2.1 Deploying Sandbox Instances

Rather than using a production setup, where each instance runs on a separate host, AdminAPI
provides the dba. depl oySandbox| nst ance(port _numnber) operation. The port _nunber
argument is the TCP port number where the MySQL Server instance listens for connections. To deploy
a new sandbox instance which is bound to port 3310, issue:

nmysql -j s> dba. depl oySandbox| nst ance(3310)

By default the sandbox is created in a directory named $HOVE/ nysql - sandboxes/ port on
Unix systems. For Microsoft Windows systems the directory is Yuser profi | e% MySQL\ nysql -
sandboxes\ por t . Each sandbox instance is stored in a directory named after the port _nunber .

69

Managing Sandbox Instances

The root user's password for the instance is prompted for.

Important

A Each sandbox instance uses the root user and password, and it must be
the same on all sandbox instances which should work together. This is not
recommended in production.

To deploy another sandbox server instance, repeat the steps followed for the sandbox instance at port
3310, choosing different port numbers for each instance.

To change the directory which sandboxes are stored in, for example to run multiple sandboxes on one
host for testing purposes, use the MySQL Shell sandboxDi r option. For example to use a sandbox in
the / honme/ user / sandbox1 directory, issue:

nysql -j s> shel | . opti ons. sandboxDi r=' / honme/ user / sandbox1'

All subsequent sandbox related operations are then executed against the instances found at / hone/
user/ sandbox1.

When you deploy sandboxes, MySQL Shell searches for the nysql d binary which it then uses to
create the sandbox instance. You can configure where MySQL Shell searches for the mysqgl d binary
by configuring the PATH environment variable. This can be useful to test a new version of MySQL
locally before deploying it to production. For example, to use a nysql d binary at the path / hone/
user/ nysqgl -1 at est/ bi n/ issue:

PATH=/ horre/ user / nysql - | at est/ bi n/ : $PATH

Then run MySQL Shell from the terminal where the PATH environment variable is set. Any sandboxes
you deploy then use the mysql d binary found at the configured path.

The following options are supported by the dba. depl oySandbox| nst ance() operation:
e al | owRoot Fr omconfigures which host the root user can connect from. Defaults to r oot @6

» ignoreSsl Error configures secure connections on the sandbox instance. When
i gnor eSsl Error is true, which is the default, no error is issued during the operation if SSL
support cannot be provided and the server instance is deployed without SSL support. When
i gnor eSsl Error is set to false, the sandbox instance is deployed with SSL support, issuing an
error if SSL support cannot be configured.

* nysqgl dOpt i ons configures additional options on the sandbox instance. Defaults to an empty
string, and accepts a list of strings that specify options and values. For example nysqgl dOpt i ons:
["l ower _case_table nanes=1", "report_host="10.1.2.3"]}. The specified options are
written to the sandbox instance's option file.

» port X configures the port used for X Protocol connections. The default is calculated by multiplying
the port value by 10. The value is an integer between 1024 and 65535.

6.2.2 Managing Sandbox Instances

Once a sandbox instance is running, it is possible to change its status at any time using the following
commands. Specify the port number for the instance to identify it:

e To stop a sandbox instance use dba. st opSandbox| nst ance(i nst ance) . This stops the
instance gracefully, unlike dba. ki | | Sandbox| nst ance(i nst ance).

* To start a sandbox instance use dba. st art Sandbox| nst ance(i nst ance).

» To kill a sandbox instance use dba. ki | | Sandbox| nst ance(i nst ance) . This stops the instance
without gracefully stopping it and is useful in simulating unexpected halts.

70

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port

Tagging Metadata

» To delete a sandbox instance use dba. del et eSandbox| nst ance(i nst ance) . This completely
removes the sandbox instance from your file system.

6.3 Tagging Metadata

From version 8.0.21, a configurable tag framework is available, to allow the metadata of InnoDB
Cluster, InnoDB ClusterSet, or InnoDB ReplicaSet to be marked with additional information. Tags
make it possible to associate custom key-value pairs to a Cluster, ReplicaSet, or instance. Tags have
been reserved for MySQL Router usage, which enable a compatible MySQL Router to support hiding
instances from applications. The following tags are reserved for this purpose:

* _hi dden instructs MySQL Router to exclude the instance from the list of possible destinations for
client applications

e disconnect existing sessions_when_hi dden instructs the router to disconnect existing
connections from instances that are marked to be hidden

For more information, see Removing Instances from Routing.

In addition, the tags framework is user configurable. Custom tags can consist of any ASCII character
and provide a nanespace, which serves as a dictionary of key-value pairs that can be associated with
Clusters, ReplicaSets or their specific instances. Tag values can be any JSON value. This enables you
to add your own attributes on top of the metadata.

Showing Tags

The Cl ust er. opti ons() operation shows information about the tags assigned to individual cluster
instances as well as to the cluster itself. For example, the InnoDB Cluster assigned to myCl ust er
could show:

nmysql -j s> nyCl uster. options()
{

"cluster": {

"nanme": "test1l",
"tags": {
"ic-1:3306": [
{
"option": "_disconnect_existing_sessions_when_hi dden",

"val ue": true

"option": "_hidden",
"val ue": false

}

Il
"ic-2:3306":

[1.
"ic-3:3306": [],
"global ": [
{
"option": "location:"
"val ue": "US East"

}

This cluster has a global tag named | ocat i on which has the value US East, and instance i c- 1 has
been tagged.

Setting Tags on a Cluster Instance

You can set tags at the instance level, which enables you for example to mark an
instance as not available, so that applications and router treat it as offline. Use the

71

Removing Instances from Routing

Cluster.setlnstanceOption(instance, option, val ue) operation to set the value of

a tag for the instance. The i nst ance argument is a connection string to the target instance. The

opt i on argument must be a string with the format nanespace: opti on. The val ue parameter

is the value that should be assigned to opt i on in the specified nanespace. If the value is nul | ,

the opt i on is removed from the specified nanespace. For instances which belong to a cluster, the
set | nstanceQpti on() operation only accepts the t ag namespace. Any other namespace results in
an Argunment Error.

For example, to set the tag t est to t r ue on the nyCl ust er instancei c- 1, issue:

nmysql -j s> nyCl uster. setlnstanceOpti on(icadm n@c-1: 3306, "tag:test", true);

Removing Instances from Routing

When AdminAPI and MySQL Router are working together, they support specific tags that enable you
to mark instances as hidden and remove them from routing. MySQL Router then excludes such tagged
instances from the routing destination candidates list. This enables you to safely take a server instance
offline, so that applications and MySQL Router ignore it, for example while you perform maintenance
tasks, such as server upgrade or configuration changes.

When the _hi dden tag is set to true, this instructs MySQL Router to exclude the instance from the
list of possible destinations for client applications. The instance remains online, but is not routed

to for new incoming connections. The di sconnect _exi sting_sessi ons_when_hi dden tag
controls how existing connections to the instance are closed. This tag is assumed to be true, and it
instructs any MySQL Router instances s bootstrapped against the InnoDB Cluster, InnoDB ClusterSet,
or InnoDB ReplicaSet to disconnect any existing connections from the instance when the _hi dden
tag is true. When _di sconnect exi sting_sessi ons_when_hi dden is false, any existing

client connections to the instance are not closed if _hi dden is true. The reserved _hi dden and

_di sconnect _exi sting_sessi ons_when_hi dden tags are specific to instances and cannot be
used at the cluster level.

defaults to 60 seconds. This means that when you set tags, it takes up to 60
seconds for MySQL Router to detect the change. To reduce the waiting time,

Warning
O When the use_gr _noti ficati ons MySQL Router option is enabled, it
change use_gr _notificati ons to alower value.

For example, suppose you want to remove the i c- 1 instance which is part of an InnoDB Cluster
assigned to myCl ust er from the routing destinations. Use the set | nst anceQpt i on() operation to
enable the hi dden and _di sconnect _exi sting_sessi ons_when_hi dden tags:

nysql -j s> nyCl uster. setlnstanceOption(icadnm n@c-1: 3306, "tag:_hi dden", true);

You can verify the change in the metadata by checking the options. For example the change made to
i c- 1 would show in the options as:

mysql -j s> nyCl uster. options()

{
"cluster": {
"nanme": "testl",
"tags": {
"ic-1:3306": [
{
"option": "_disconnect_existing_sessions_when_hi dden",
"val ue": true
iE
{
"option": "_hidden",
"val ue": true
}
"ic-2:3306": [],
"ic-3:3306": [],

72

https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_use_gr_notifications
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_use_gr_notifications

Setting Tags on a Cluster

"global ": []

}

You can verify that MySQL Router has detected the change in the metadata by viewing the log file. A
MySQL Router that has detected the change made to i c- 1 would show a change such as:

2020-07- 03 16: 32: 16 netadata_cache | NFO [7f a9d164c700] Potenti al changes detected in cluster 'testC ust
2020-07- 03 16: 32: 16 netadata_cache | NFO [7f a9d164c700] view id = 4, (3 menbers)

2020-07-03 16: 32: 16 net adata_cache | NFO [7f a9d164c700] ic-1:3306 / 33060 - node=RW
2020-07-03 16: 32: 16 net adata_cache | NFO [7f a9d164c700] ic-1:3306 / 33060 - nopde=RO
2020-07-03 16: 32: 16 net adata_cache | NFO [7f a9d164c700] ic-1:3306 / 33060 - node=RO hi dden=yes di sco

2020-07-03 16:32:16 routing | NFO [7f a9d164c700] Routing routing:testCluster_x_ro |istening on 64470 got
2020-07-03 16:32:16 routing | NFO [7f a9d164c700] Routing routing:testC uster_x_rw |istening on 64460 got
2020-07-03 16:32:16 routing | NFO [7f a9d164c700] Routing routing:testCluster_rw listening on 6446 got re
2020-07-03 16:32:16 routing | NFO [7fa9d164c700] Routing routing:testCluster_ro |listening on 6447 got re

To bring the instance back online, use the set | nst anceOpt i on() operation to remove the tags, and
MySQL Router automatically adds the instance back to the routing destinations, and it becomes online
for applications. For example:

nmysql -j s> nyC uster. setlnstanceOpti on(i cadm n@c-1: 3306, "tag:_hidden", false);
Verify the change in the metadata by checking the options again:

nmysql -j s> nyCl uster. options()

{
"cluster": {
"nanme": "testl",
"tags": {
"ic-1:3306": [
{
"option": "_disconnect_existing_sessions_when_hi dden",
"val ue": true
b
{
"option": "_hidden",
"val ue": false
}
Il
"ic-2:3306": [],
"ic-3:3306": [],
"global ": []
}
}
}

Setting Tags on a Cluster

The Cl uster. set Opti on(option, val ue) operation enables you to change the value of a
namespace option for the whole cluster. The opt i on argument must be a string with the format
nanespace: opti on. The val ue parameter is the value to be assigned to opt i on in the specified
nanespace. If the value is nul | , the opt i on is removed from the specified nanespace. For Clusters,
the set Opt i on() operation accepts the t ag namespace. Any other namespace results in an
Argunent Error.

Tip

; Tags set at the cluster level do not override tags set at the instance level. You
cannot use Cl ust er. set Opti on() to remove all tags set at the instance
level.

There is no requirement for all the instances to be online, only that the cluster has quorum. To tag the
InnoDB Cluster assigned to myCl ust er with the | ocat i on tag set to US East, issue:

nysql -j s> nyCl uster.setOption("tag: | ocation", "US East")

73

User Defined Tagging

nmysql -j s> nyCl uster. options()
{

"cluster": {
"name": "testl",

"tags": {
"ic-1:3306":
"ic-2:3306":
"ic-3:3306":
"global ": [

{

———
—_— i —

"option": "location:",
"value": "US East"

}

User Defined Tagging

AdminAPI supports the t ag namespace, where you can store information in the key-value pairs
associated with a given Cluster, ReplicaSet or instance. The options under the t ag namespace are not
constrained, meaning you can tag with whatever information you choose, as long as it is a valid MySQL
ASCII identifier. You can use any name and value for a tag, as long as the name follows the following
syntax: _ or letters followed by alphanumeric and _ characters.

The nanespace option is a colon separated string with the format nanespace: opt i on, where
nanmespace is the name of the namespace and opt i on is the actual option name. You can set and
remove tags at the instance level, or at the Cluster or ReplicaSet level.

Tag names can have any value as long as it starts with a letter or underscore, optionally followed by
alphanumeric and _ characters, for example, *[a- zA- Z] [0- 9a- zA- Z_] *. Only built-in tags are
allowed to start with the underscore _ character.

How you use custom tags is up to you. You could set a custom tag on a Cluster to mark the region
which it is operating in. For example, you could set a custom tag named location, with a value of EMEA
on the cluster.

6.4 Using MySQL Router with AdminAPI, InnoDB Cluster, and
InnoDB ReplicaSet

This section describes how to integrate MySQL Router with InnoDB Cluster and InnoDB ReplicaSet.
For instructions to integrate MySQL Router with InnoDB ClusterSet, see Section 8.5, “Integrating
MySQL Router With InnoDB ClusterSet”.

For background information on MySQL Router, see MySQL Router 8.0.

6.4.1 Bootstrapping MySQL Router

You bootstrap MySQL Router against an InnoDB ReplicaSet or InnoDB Cluster to automatically
configure routing. The bootstrap process is a specific way of running MySQL Router, which does not
start the usual routing and instead configures the nysql r out er. conf file based on the metadata.

To bootstrap MySQL Router at the command-line, pass in the - - boot st r ap option when you start the
nysql rout er command, and it retrieves the topology information from the metadata and configures
routing connections to the server instances. Alternatively, on Windows use the MySQL Installer to
bootstrap MySQL Router, see MySQL Router Configuration with MySQL Installer.

Once MySQL Router has been bootstrapped, client applications then connect to the ports it publishes.
MySQL Router automatically redirects client connections to the instances based on the incoming port,
for example 6646 is used by default for read-write connections using classic MySQL protocol. In the
event of a topology change, for example due to an unexpected failure of an instance, MySQL Router

74

https://dev.mysql.com/doc/mysql-router/8.0/en/
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer-workflow.html#mysql-installer-workflow-nonserver-products

Configuring the MySQL Router User

detects the change and adjusts the routing to the remaining instances automatically. This removes
the need for client applications to handle failover, or to be aware of the underlying topology. For more
information, see Routing for MySQL InnoDB Cluster.

Note

@ Do not attempt to configure MySQL Router manually to redirect to the server
instances. Always use the - - boot st r ap option as this ensures that MySQL
Router takes its configuration from the metadata. See Cluster Metadata and
State.

6.4.2 Configuring the MySQL Router User

When MySQL Router connects to an InnoDB Cluster or InnoDB ReplicaSet, it requires a user account
which has the correct privileges. From MySQL Router version 8.0.19 this internal user can be specified
using the - - account option. In previous versions, MySQL Router created internal accounts at each
bootstrap of the cluster, which could result in a number of accounts building up over time. From MySQL
Shell version 8.0.20, you can use AdminAPI to set up the user account required for MySQL Router.

Use the set upRout er Account (user, [options]) operation to create a MySQL user account or
upgrade an existing account so that it can be used by MySQL Router to operate on an InnoDB Cluster
or InnoDB ReplicaSet. This is the recommended method of configuring MySQL Router with InnoDB
Cluster and InnoDB ReplicaSet.

To add a new MySQL Router account named nyRout er 1 to the InnoDB Cluster referenced by the
variable t est Cl ust er, issue:

nysql sh> test Cl uster. set upRout er Account (' myRouter1')

In this case, no domain is specified and so the account is created with the wildcard (%) character, which
ensures that the created user can connect from any domain. To limit the account to only be able to
connect from the exanpl e. comdomain, issue:

nmysql sh> test Cl ust er. set upRout er Account (' myRout er 1' @ exanpl e. conl)

The operation prompts for a password, and then sets up the MySQL Router user with the correct
privileges. If the InnoDB Cluster or InnoDB ReplicaSet has multiple instances, the created MySQL
Router user is propagated to all of the instances.

When you already have a MySQL Router user configured, for example if you were using a version prior
to 8.0.20, you can use the set upRout er Account () operation to reconfigure the existing user. In

this case, pass in the updat e option set to true. For example, to reconfigure the myd dRout er user,
issue:

nysql sh> test Cl uster. set upRout er Account (' nyd dRouter', {'update':1})

6.4.3 Deploying MySQL Router

The recommended deployment of MySQL Router is on the same host as the application. When using
a sandbox deployment, everything is running on a single host, therefore you deploy MySQL Router to
the same host. When using a production deployment, we recommend deploying one MySQL Router
instance to each machine used to host one of your client applications. It is also possible to deploy
MySQL Router to a common machine through which your application instances connect. For more
information, see Installing MySQL Router.

To bootstrap MySQL Router based on an InnoDB Cluster or InnoDB ReplicaSet, you need the URI-
like connection string to an online instance. Run the nysql r out er command and provide the - -
boot st r ap=i nst ance option, where i nst ance is the URI-like connection string to an online
instance. MySQL Router connects to the instance and uses the included metadata cache plugin to
retrieve the metadata, consisting of a list of server instance addresses and their role. For example:

$> nysqlrouter --bootstrap icadm n@c-1: 3306 --account=nysql router

75

https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-innodb-cluster.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-general-metadata.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-general-metadata.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_account
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap

Deploying MySQL Router

You are prompted for the instance password and encryption key for MySQL Router to use. This
encryption key is used to encrypt the instance password used by MySQL Router to connect to the
cluster. The ports you can use for client connections are also displayed. For additional bootstrap
related options, see Bootstrapping Options.

Tip
@ At this point MySQL Router has not been started so that it would route
connections. Bootstrapping is a separate process.

The MySQL Router bootstrap process creates a mysql r out er . conf file, with the settings based on
the metadata retrieved from the address passed to the - - boot st r ap option, in the above example

i cadm n@ c- 1: 3306. Based on the metadata retrieved, MySQL Router automatically configures
the mysql r out er . conf file, including a net adat a_cache section. If you are using MySQL Router
8.0.14 and later, the - - boot st r ap option automatically configures MySQL Router to track and store
active MySQL metadata server addresses at the path configured by dynam c_st at e. This ensures
that when MySQL Router is restarted it knows which MySQL metadata server addresses are current.
For more information, see the dynam c_st at e documentation.

In earlier MySQL Router versions, metadata server information was defined during MySQL Router's
initial bootstrap operation and stored statically as boot st rap_ser ver _addr esses in the
configuration file, which contained the addresses for all server instances in the cluster. For example:

[met adat a_cache: prodCl ust er]

router _id=1

boot st rap_server _addresses=nysql ://i cadm n@ c- 1: 3306, nysql : / /i cadm n@ c- 2: 3306, nysql : / /i cadnm n@ c- 3: 3306
user =nysql _router1_jy95yozko3k2

net adat a_cl ust er =pr odd ust er

ttl =300

Tip

@ If using MySQL Router 8.0.13 or earlier, when you change the topology of a
cluster by adding another server instance after you have bootstrapped MySQL
Router, you need to update boot st rap_server _addr esses based on the
updated metadata. Either restart MySQL Router using the - - boot st rap
option, or manually edit the boot st rap_server _addr esses section of the
nysqgl rout er. conf file and restart MySQL Router.

The generated MySQL Router configuration creates TCP ports which you use to connect to the cluster.
By default, ports for communicating with the cluster using both classic MySQL protocol and X Protocol
are created. To use X Protocol the server instances must have X Plugin installed and configured, which
is the default for MySQL 8.0 and later. The default available TCP ports are:

* 6446 - for classic MySQL protocol read-write sessions, which MySQL Router redirects incoming
connections to primary server instances.

* 6447 - for classic MySQL protocol read-only sessions, which MySQL Router redirects incoming
connections to one of the secondary server instances.

* 64460 - for X Protocol read-write sessions, which MySQL Router redirects incoming connections to
primary server instances.

* 64470 - for X Protocol read-only sessions, which MySQL Router redirects incoming connections to
one of the secondary server instances.

Depending on your MySQL Router configuration the port numbers might be different

to the above. For example if you use the - - conf - base- port option, or the
group_replication_single prinmary_ node variable. The exact ports are listed when you start
MySQL Router.

The way incoming connections are redirected depends on the underlying topology being used. For
example, when using a single-primary cluster, by default MySQL Router publishes a X Protocol and a

76

https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#mysql-router-command-options-bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_dynamic_state
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_dynamic_state
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_bootstrap_server_addresses
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_bootstrap_server_addresses
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_bootstrap_server_addresses
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_conf-base-port
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_single_primary_mode

Using ReplicaSets with MySQL Router

classic MySQL protocol port, which clients connect to for read-write sessions and which are redirected
to the cluster's single primary. With a multi-primary cluster read-write sessions are redirected to one

of the primary instances in a round-robin fashion. For example, this means that the first connection

to port 6446 would be redirected to the ic-1 instance, the second connection to port 6446 would be
redirected to the ic-2 instance, and so on. For incoming read-only connections MySQL Router redirects
connections to one of the secondary instances, also in a round-robin fashion. To modify this behavior
see therouti ng_strategy option.

Once bootstrapped and configured, start MySQL Router. If you used a system wide install with the - -
boot st r ap option then issue:

$> nysqlrouter &

If you installed MySQL Router to a directory using the - - di r ect or y option, use the st art . sh
script found in the directory you installed to. Alternatively set up a service to start MySQL Router
automatically when the system boots, see Starting MySQL Router. You can now connect a MySQL
client, such as MySQL Shell to one of the incoming MySQL Router ports as described above and see
how the client gets transparently connected to one of the server instances.

$> nysql sh --uri root @ocal host: 6442

To verify which instance you are actually connected to, simply issue an SQL query against the por t
status variable.

nmysql -j s> \sql
Switching to SQL node... Commands end with ;
nmysql -sqgl > sel ect @ort ;

+ommmmmmm +
| @@ort |
+ommmmmmm +
| 3310 |
+ommmmmmm +

6.4.4 Using ReplicaSets with MySQL Router

You can use MySQL Router 8.0.19 and later to bootstrap against an InnoDB ReplicaSet, see

Section 6.4, “Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet”. The only
difference in the generated MySQL Router configuration file is the addition of the cl ust er _t ype
option. When MySQL Router is bootstrapped against a ReplicaSet, the generated configuration file
includes:

cluster_type=rs
When you use MySQL Router with InnoDB ReplicaSet, be aware that:

» The read-write port of MySQL Router directs client connections to the primary instance of the
ReplicaSet

» The read-only port of MySQL Router direct client connections to a secondary instance of the
ReplicaSet, although it could also direct them to the primary

» MySQL Router obtains information about the ReplicaSet's topology from the primary instance

» MySQL Router automatically recovers when the primary instance becomes unavailable and a
different instance is promoted

You work with the MySQL Router instances which have been bootstrapped against a ReplicaSet in
exactly the same way as with InnoDB Cluster. See Section 6.4.6, “Working with a Cluster's Routers” for
information on Repl i caSet . | i st Rout ers() and Repl i caSet . renoveRout er Met adat a() .

6.4.5 Testing InnoDB Cluster High Availability

To test if InnoDB Cluster high availability works, simulate an unexpected halt by killing an instance. The
cluster detects the fact that the instance left the cluster and reconfigures itself. Exactly how the cluster

77

https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_routing_strategy
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_bootstrap
https://dev.mysql.com/doc/mysql-router/8.0/en/mysqlrouter.html#option_mysqlrouter_directory
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-server-starting.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-conf-options.html#option_mysqlrouter_cluster_type

Working with a Cluster's Routers

reconfigures itself depends on whether you are using a single-primary or multi-primary cluster, and the
role the instance serves within the cluster.

In single-primary mode:

« If the current primary leaves the cluster, one of the secondary instances is elected as the new
primary, with instances prioritized by the lowest ser ver _uui d. MySQL Router redirects read-write
connections to the newly elected primary.

« If a current secondary leaves the cluster, MySQL Router stops redirecting read-only connections to
the instance.

For more information see Single-Primary Mode.
In multi-primary mode:

 If a current "R/W" instance leaves the cluster, MySQL Router redirects read-write connections
to other primaries. If the instance which left was the last primary in the cluster then the cluster is
completely gone and you cannot connect to any MySQL Router port.

For more information see Multi-Primary Mode.

There are various ways to simulate an instance leaving a cluster, for example you can forcibly stop
the MySQL server on an instance, or use the AdminAPI dba. ki | | SandboxI| nst ance() if testing a
sandbox deployment. In this example assume there is a single-primary sandbox cluster deployment
with three server instances and the instance listening at port 3310 is the current primary. Simulate the
instance leaving the cluster unexpectedly:

nmysql -j s> dba. ki | | Sandbox| nst ance(3310)

The cluster detects the change and elects a new primary automatically. Assuming your session is
connected to port 6446, the default read-write classic MySQL protocol port, MySQL Router should
detect the change to the cluster's topology and redirect your session to the newly elected primary. To
verify this, switch to SQL mode in MySQL Shell using the \ sql command and select the instance's
port variable to check which instance your session has been redirected to. Notice that the first
SELECT statement fails as the connection to the original primary was lost. This means the current
session has been closed, MySQL Shell automatically reconnects for you and when you issue the
command again the new port is confirmed.

nmysql -j s> \sql

Switching to SQL node... Commands end with ;

nmysql -sql > SELECT @ort ;

ERROR: 2013 (HYO000): Lost connection to MySQL server during query
The gl obal session got di sconnect ed.

Attenpting to reconnect to 'root @ocal host: 6446'. ..

The gl obal session was successfully reconnect ed.

nmysql -sql > SELECT @ort ;

fmoccoooo +
| @@ort |
fmoccoooo +
| 3330 |
fmoccoooo +

1 rowin set (0.00 sec)

In this example, the instance at port 3330 has been elected as the new primary. This shows that the
InnoDB Cluster provided us with automatic failover, that MySQL Router has automatically reconnected
us to the new primary instance, and that we have high availability.

6.4.6 Working with a Cluster's Routers

You can bootstrap multiple instances of MySQL Router against InnoDB Cluster or InnoDB ReplicaSet.
From version 8.0.19, to show a list of all registered MySQL Router instances, issue:

Cluster.listRouters()

78

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-single-primary-mode.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-multi-primary-mode.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/select.html

Working with a Cluster's Routers

The result provides information about each registered MySQL Router instance, such as its name in the
metadata, the hostname, ports, and so on. For example, issue:

nmysql -js> Cluster.|istRouters()

{
"cl usterNane": "exanple",
"routers": {
"ic-1:3306": {
"host nane": "ic-1:3306",
"| ast Checkln": "2020-01-16 11:43:45",
"roPort": 6447,
"roXPort": 64470,
"rwPort": 6446,
"rwxPort": 64460,
"version": "8.0.19"
}
}
}

The returned information shows:
e The name of the MySQL Router instance.

» Last check-in timestamp, which is generated by a periodic ping from the MySQL Router stored in the
metadata

» Hostname where the MySQL Router instance is running

» Read-Only and Read-Write ports which the MySQL Router publishes for classic MySQL protocol
connections

» Read-Only and Read-Write ports which the MySQL Router publishes for X Protocol connections

 Version of this MySQL Router instance. The support for returning ver si on was added in 8.0.19. If
this operation is run against an earlier version of MySQL Router, the version field is nul | .

Additionally, the Cl uster. | i st Rout er s() operation can show a list of instances that do not support
the metadata version supported by MySQL Shell. Use the onl yUpgr adeRequi r ed option, for
example by issuing Cl uster. | i st Routers({' onl yUpgradeRequired' :"true'}). The returned
list shows only the MySQL Router instances registered with the Cl ust er which require an upgrade of
their metadata. See Section 7.8.2, “Upgrading InnoDB Cluster Metadata”.

MySQL Router instances are not automatically removed from the metadata, so for example as you
bootstrap more instances the InnoDB Cluster metadata contains a growing number of references

to instances. To remove a registered MySQL Router instance from a cluster's metadata, use the

Cl uster. renmoveRout er Met adat a(r out er) operation, added in version 8.0.19. Use the
Cluster.listRouters() operation to get the name of the MySQL Router instance you want to
remove, and pass it in as r out er . For example suppose your MySQL Router instances registered with
a cluster were:

nmysql -js> Cluster.|istRouters(){

"clusterNane": "testCluster",
“routers": {
"myRout er1": {
"host name": "exanpl el. cont',
"l ast Checkln": null,
"routerld": "1",
"roPort": "6447",
“rwPort": "6446"
"version": null
b
"myRout er2": {
"host name": "exanpl e2. cont',
"l ast Checkl n": "2019-11-27 16: 25: 00",
"routerld": "3",
"roPort": "6447",

79

Working with a Cluster's Routers

"rwPort": "6446"
"version": "8.0.19"

}

Based on the fact that the instance named “myRouter1” has nul | for “lastCheckin” and “version”, we
decide to remove this old instance from the metadata by issuing:

nysql -j s> cl uster. renoveRout er Met adat a(' myRouter1')

The MySQL Router instance specified is unregistered from the cluster by removing it from the InnoDB
Cluster metadata.

80

Chapter 7 MySQL InnoDB Cluster

Table of Contents

7.1 MySQL INNODB Cluster REQUINEIMENTSiiiiiiiieiiiie ettt e e 83
7.2 Deploying a Production INNODB CIUSTETciiuiiiiiiiiiieieei ettt e 83
7.2.1 Deploying a New Production INNODB CIUSENc..uuiiiiiiiiiiiiiiieeeei e 85
7.2.2 Using MySQL Clone with INNODB CIUSTEToiiiiiiieiiiiieee e 91
7.2.3 Adopting a Group Replication DeploymeNtoviiiiiiiiiiiiiiieee e 95
7.3 Monitoring INNODB CIUSTETouuiiiiiii et e s 96
7.4 WOrKiNg WIth INSTANCES .. .couuniiiiiii ettt e e et ettt e e et e e e eebe e eeene 106
7.5 Working with INNODB CIUSTETcoouiiiiiii et 108
7.6 Configuring INNODB CIUSTEYcciiiiiieeiii et e e e e e e 111
7.7 Troubleshooting INNODB CIUSTETuuiiiiii et e eees 117
7.8 Upgrading an INNODB CIUSLENuuiiiiiie e 122
7.8.1 ROING UPGIaOESceeiiiieiiiii ettt ettt ettt e e e e e e e e enan s 122
7.8.2 Upgrading INNODB Cluster Metadataooeiiuiiiieiiiiiieiiii e 122
7.8.3 Troubleshooting INNODB ClUSter UPGradesuiieieiiiiieiiiiieeeeiee et 124
7.9 INNODB CIUSTEE TiPS «.etttueiiittieetttt ettt e et ettt e et e e et ettt e ettt e e et et e e e et e e e e aaa s 125
7.10 INNODB CIUSter LIMITAtIONSuuiiiiiiiiii et e e e e e e eees 127

MySQL InnoDB Cluster provides a complete high availability solution for MySQL. By using AdminAPI,
which is included with MySQL Shell, you can easily configure and administer a group of at least three
MySQL server instances to function as an InnoDB Cluster.

Each MySQL server instance in an InnoDB Cluster runs MySQL Group Replication, which provides
the mechanism to replicate data within an InnoDB Cluster, with built-in failover. AdminAPI removes the
need to work directly with Group Replication in an InnoDB Cluster, but for more information see Group
Replication which explains the details. From MySQL 8.0.27, you can also set up Chapter 8, MySQL
InnoDB ClusterSet to provide disaster tolerance for InnoDB Cluster deployments by linking a primary
InnoDB Cluster with one or more replicas of itself in alternate locations, such as different datacenters.

MySQL Router can automatically configure itself based on the cluster you deploy, connecting client
applications transparently to the server instances. In the event of an unexpected failure of a server
instance the cluster reconfigures automatically. In the default single-primary mode, an InnoDB Cluster
has a single read-write server instance - the primary. Multiple secondary server instances are replicas
of the primary. If the primary fails, a secondary is automatically promoted to the role of primary. MySQL
Router detects this and forwards client applications to the new primary. Advanced users can also
configure a cluster to have multiple primaries.

The following diagram shows an overview of how the technologies work together:

81

https://dev.mysql.com/doc/refman/8.0/en/group-replication.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication.html
https://dev.mysql.com/doc/mysql-router/8.0/en/

Figure 7.1 InnoDB Cluster overview

Client App
MySQL I MySQL Shell
Connector , (Cluster Admin)
l
A I
|
|
Y
MySQL MySQL
Router Admin AP

MySQL Servers

1

Primary -

Instance R/W

Group
Replication
i
Secondary Secondary
Instance R/O Instance R/O

High Availability Cluster

Important

A InnoDB Cluster does not provide support for MySQL NDB Cluster. NDB Cluster
depends on the NDB storage engine as well as a number of programs specific to
NDB Cluster which are not furnished with MySQL Server 8.0; NDB is available
only as part of the MySQL NDB Cluster distribution. In addition, the MySQL
server binary (mysql d) that is supplied with MySQL Server 8.0 cannot be
used with NDB Cluster. For more information about MySQL NDB Cluster, see
MySQL NDB Cluster 8.0. MySQL Server Using InnoDB Compared with NDB
Cluster, provides information about the differences between the | nnoDB and
NDB storage engines.

82

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-compared.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-compared.html

MySQL InnoDB Cluster Requirements

7.1 MySQL InnoDB Cluster Requirements

Before installing a production deployment of InnoDB Cluster, ensure that the server instances you
intend to use meet the following requirements.

» InnoDB Cluster uses Group Replication and therefore your server instances must meet
the same requirements. See Group Replication Requirements. AdminAPI provides the
dba. checkl nst anceConf i gurati on() method to verify that an instance meets the Group
Replication requirements, and the dba. confi gur el nst ance() method to configure an instance to
meet the requirements.

Note
3 When using a sandbox deployment the instances are configured to meet
these requirements automatically.

» Group Replication members can contain tables using a storage engine other than | nnoDB, for
example Myl SAM Such tables cannot be written to by Group Replication, and therefore when using
InnoDB Cluster. To be able to write to such tables with InnoDB Cluster, convert all such tables to
| nnoDB before using the instance in an InnoDB Cluster.

» The Performance Schema must be enabled on any instance which you want to use with InnoDB
Cluster.

» The provisioning scripts that MySQL Shell uses to configure servers for use in InnoDB Cluster
require access to Python. On Windows MySQL Shell includes Python and no user configuration is
required. On Unix Python must be found as part of the shell environment. To check that your system
has Python configured correctly issue:

$ /usr/bin/env python

If a Python interpreter starts, no further action is required. If the previous command fails, create a
soft link between / usr / bi n/ pyt hon and your chosen Python binary. For more information, see
Supported Languages.

» From version 8.0.17, instances must use a unique ser ver _i d within an InnoDB Cluster. When you
use the Cl ust er. addl nst ance(i nst ance) operation, if the server i d of i nst ance is already
used by an instance in the cluster then the operation fails with an error.

» From version 8.0.23, instances should be configured to use the parallel replication applier. See
Configuring the Parallel Replication Applier.

 During the process of configuring an instance for InnoDB Cluster, the majority of the system
variables required for using an instance are configured. But AdminAPI does not configure the
transaction_i sol ati on system variable, which means that it defaults to REPEATABLE READ.
This does not impact a single-primary cluster, but if you are using a multi-primary cluster then unless
you rely on REPEATABLE READ semantics in your applications, we recommend using the READ
COWM TTED isolation level. See Group Replication Limitations.

7.2 Deploying a Production InnoDB Cluster

When working in a production environment, the MySQL server instances which make up an InnoDB
Cluster run on multiple host machines as part of a network rather than on single machine as described
in Section 6.2, “AdminAPI MySQL Sandboxes”. Before proceeding with these instructions you must
install the required software to each machine that you intend to add as a server instance to your
cluster, see Section 6.1.1, “Installing AdminAPI Software Components”.

The following diagram illustrates the scenario you work with in this section:

83

https://dev.mysql.com/doc/refman/8.0/en/group-replication-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/8.0/en/group-replication-limitations.html

Deploying a Production InnoDB Cluster

Figure 7.2 Production Deployment

Client
Application

MySQL MySQL
Shell Admin Router

T

Production InnoDB Cluster

MySQL Server
192.0.210

L "

MySQL Server MySQL Server
192.0.2.11 192.0.2.12

Important

machine which AdminAPI has local file access to and can persist configuration

A Unlike a sandbox deployment, where all instances are deployed locally to one
changes, for a production deployment you must persist any configuration

Deploying a New Production InnoDB Cluster

changes on the instance. How you do this depends on the version of MySQL
running on the instance, see Section 6.1.5, “Persisting Settings”.

To pass a server's connection information to AdminAPI, use URI-like connection strings or a
data dictionary; see Connecting to the Server Using URI-Like Strings or Key-Value Pairs. In this
documentation, URI-like strings are shown.

This section assumes that you have:
* installed the MySQL components to your instances
« installed MySQL Shell and can connect by specifying instances

» created a suitable administration user

7.2.1 Deploying a New Production InnoDB Cluster

The following sections describe how to deploy a new production InnoDB Cluster. In this procedure the
host name i c- nunber is used in examples.

» Configuring Production Instances

Creating the Cluster

Adding Instances to a Cluster
» User Accounts Created by InnoDB Cluster

» Configuring InnoDB Cluster Ports
Configuring Production Instances

AdminAPI provides the dba. conf i gur el nst ance() function that checks if an instance is suitably
configured for InnoDB Cluster usage, and configures the instance if it finds any settings which

are not compatible with InnoDB Cluster. You run the dba. confi gur el nst ance() command
against an instance and it checks all of the settings required to enable the instance to be used for
InnoDB Cluster usage. If the instance does not require configuration changes, there is no need to
modify the configuration of the instance, and the dba. confi gur el nst ance() command output
confirms that the instance is ready for InnoDB Cluster usage. If any changes are required to make
the instance compatible with InnoDB Cluster, a report of the incompatible settings is displayed,

and you can choose to let the command make the changes to the instance's option file. Depending
on the way MySQL Shell is connected to the instance, and the version of MySQL running on the
instance, you can make these changes permanent by persisting them to a remote instance's option
file, see Section 6.1.5, “Persisting Settings”. Instances which do not support persisting configuration
changes automatically require that you configure the instance locally, see Configuring Instances with
dba. confi gureLocal | nst ance() . Alternatively you can make the changes to the instance's
option file manually, see Using Option Files for more information. Regardless of the way you make
the configuration changes, you might have to restart MySQL to ensure the configuration changes are
detected.

The syntax of the dba. confi gur el nst ance() command is:

dba. confi gurel nstance([instance][, options])

where i nst ance is an instance definition, and opt i ons is a data dictionary with additional options to
configure the operation. The operation returns a descriptive text message about the result.

The i nst ance definition is the connection data for the instance. For example:

dba. confi gur el nst ance(' user @xanpl e: 3306")

For more information, see Connecting to the Server Using URI-Like Strings or Key-Value Pairs. If the
target instance already belongs to an InnoDB Cluster an error is generated and the process fails.

85

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Deploying a New Production InnoDB Cluster

The options dictionary can contain the following:

e nycnf Pat h - the path to the MySQL option file of the instance.

» out put Mycnf Pat h - alternative output path to write the MySQL option file of the instance.
* passwor d - the password to be used by the connection.

» cl ust er Adm n - the name of an InnoDB Cluster administrator user to be created. The supported
format is the standard MySQL account name format. Supports identifiers or strings for the user name
and host name. By default if unquoted it assumes input is a string. See Section 6.1.7, “Creating User
Accounts for Administration”.

* cl uster Adm nPasswor d - the password for the InnoDB Cluster administrator account being
created using cl ust er Adni n. Although you can specify using this option, this is a potential security
risk. If you do not specify this option, but do specify the cl ust er Adni n option, you are prompted for
the password at the interactive prompt.

» deprecated, and scheduled for removal in a future version

cl ear ReadOnl y - a boolean value used to confirm that super read_onl y should be set to off,
see Super Read-only and Instances.

* interactive - aboolean value used to disable the interactive wizards in the command execution,
so that prompts are not provided to the user and confirmation prompts are not shown.

e restart -aboolean value used to indicate that a remote restart of the target instance should be
performed to finalize the operation.

Although the connection password can be contained in the instance definition, this is insecure and
not recommended. Use the MySQL Shell Section 4.4, “Pluggable Password Store” to store instace
passwords securely.

Once dba. confi gurel nst ance() isissued against an instance, the command checks if the
instance's settings are suitable for InnoDB Cluster usage. A report is displayed which shows the
settings required by InnoDB Cluster . If the instance does not require any changes to its settings you
can use it in an InnoDB Cluster, and can proceed to Creating the Cluster. If the instance's settings are
not valid for InnoDB Cluster usage the dba. confi gur el nst ance() command displays the settings
which require modification. Before configuring the instance you are prompted to confirm the changes
shown in a table with the following information:

e Vari abl e - the invalid configuration variable.
e Current Val ue - the current value for the invalid configuration variable.
* Required Val ue - the required value for the configuration variable.

How you proceed depends on whether the instance supports persisting settings, see Section 6.1.5,
“Persisting Settings”. When dba. conf i gur el nst ance() is issued against the MySQL instance
which MySQL Shell is currently running on, in other words the local instance, it attempts to
automatically configure the instance. When dba. conf i gur el nst ance() is issued against a
remote instance, if the instance supports persisting configuration changes automatically, you can
choose to do this. If a remote instance does not support persisting the changes to configure it for
InnoDB Cluster usage, you have to configure the instance locally. See Configuring Instances with
dba. confi gurelLocal I nstance().

In general, a restart of the instance is not required after dba. conf i gur el nst ance() configures the
option file, but for some specific settings a restart might be required. This information is shown in the
report generated after issuing dba. conf i gur el nst ance() . If the instance supports the RESTART
statement, MySQL Shell can shutdown and then start the instance. This ensures that the changes
made to the instance's option file are detected by mysqld. For more information see RESTART.

86

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/refman/8.0/en/restart.html

Deploying a New Production InnoDB Cluster

is lost. If auto-reconnect is enabled, the connection is reestablished after the

Note
@ After executing a RESTART statement, the current connection to the instance
server restarts. Otherwise, the connection must be reestablished manually.

The dba. confi gur el nst ance() method verifies that a suitable user is available for cluster usage,
which is used for connections between members of the cluster, see Section 6.1.7, “Creating User
Accounts for Administration”.

If you do not specify a user to administer the cluster, in interactive mode a wizard enables you to
choose one of the following options:

* enable remote connections for the root user, not recommended in a production environment
* create a new user

* no automatic configuration, in which case you need to manually create the user

Tip

@ If the instance has super read_onl y=0ONthen you might need to confirm
that AdminAPI can set super _read_onl y=0OFF. See Super Read-only and
Instances for more information.

Creating the Cluster

Once you have prepared your instances, use the dba. cr eat eCl ust er () function to create the
cluster, using the instance which MySQL Shell is connected to as the seed instance for the cluster.

The seed instance is replicated to the other instances that you add to the cluster, making them

replicas of the seed instance. In this procedure the ic-1 instance is used as the seed. When you issue
dba. cr eat eCl ust er (nane) MySQL Shell creates a classic MySQL protocol session to the server
instance connected to the MySQL Shell's current global session. For example, to create a cluster called
t est Cl ust er and assign the returned cluster to a variable called cl ust er :

nysql -j s> var cluster = dba.createC uster('testC uster')

Val i dating instance at icadm n@c-1: 3306. ..

This instance reports its own address as ic-1

I nstance configuration is suitable.

Creating InnoDB cluster 'testCluster' on 'icadm n@c-1:3306'...

Addi ng Seed I nstance. ..

Cluster successfully created. Use O uster.addl nstance() to add MySQ. i nst ances.
At least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

This pattern of assigning the returned cluster to a variable enables you to then execute further
operations against the cluster using the Cluster object's methods. The returned Cluster object uses a
new session, independent from the MySQL Shell's global session. This ensures that if you change the
MySQL Shell global session, the Cluster object maintains its session to the instance.

To be able to administer a cluster, you must ensure that you have a suitable user which

has the required privileges. The recommended approach is to create an administration

user. If you did not create an administration user when configuring your instances, use the

Cl ust er. set upAdn nAccount () operation. For example to create a user named i cadm n that can
administer the InnoDB Cluster assigned to the variable cl ust er, issue:

nmysql -j s> cl uster. set upAdni nAccount (i cadmni n)
See Configuring Users for AdminAPI for more information on cluster administration users.

The dba. creat eC ust er () operation supports MySQL Shell'si nt er act i ve option. When
i nteractive is on, prompts appear in the following situations:

» when run on an instance that belongs to a cluster and the adopt Fr om& option is false, you are
asked if you want to adopt an existing cluster

87

https://dev.mysql.com/doc/refman/8.0/en/restart.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Deploying a New Production InnoDB Cluster

« when the f or ce option is not used (not setto t r ue), you are asked to confirm the creation of a
multi-primary cluster

the loopback network interface configured. For correct InnoDB Cluster usage

Note
@ If you encounter an error related to metadata being inaccessible you might have
disable the loopback interface.

To check the cluster has been created, use the cluster instance's st at us() function. See Checking a
cluster's Status with Cl ust er. st at us().

Tip

@ Once server instances belong to a cluster it is important to only administer
them using MySQL Shell and AdminAPI. Attempting to manually change the
configuration of Group Replication on an instance once it has been added to a
cluster is not supported. Similarly, modifying server variables critical to InnoDB
Cluster, such as ser ver _uui d, after an instance is configured using AdminAPI
is not supported.

When you create a cluster using MySQL Shell 8.0.14 and later, you can set the amount of time to
wait before instances are expelled from the cluster, for example when they become unreachable.
Pass the expel Ti meout option to the dba. cr eat eC ust er () operation, which configures

the group_replication_nmenber expel tineout variable on the seed instance. The

expel Ti neout option can take an integer value in the range of 0 to 3600. All instances running
MySQL server 8.0.13 and later which are added to a cluster with expel Ti neout configured are
automatically configured to have the same expel Ti neout value as configured on the seed instance.

For information on the other options which you can pass to dba. cr eat eCl ust er (), see Section 7.5,
“Working with InnoDB Cluster”.

Adding Instances to a Cluster

Use the Cl ust er. addl nst ance(i nst ance) function to add more instances to the cluster, where
i nst ance is connection information to a configured instance, see Configuring Production Instances.
From version 8.0.17, Group Replication implements compatibility policies which consider the patch
version of the instances, and the Cl ust er . addl nst ance() operation detects this and in the event
of an incompatibility the operation terminates with an error. See Checking the MySQL Version on
Instances and Combining Different Member Versions in a Group

You need a minimum of three instances in the cluster to make it tolerant to the failure of one instance.
Adding further instances increases the tolerance to failure of an instance. To add an instance to the
cluster issue:

nysql -j s> cl uster. addl nstance('icadm n@ c-2: 3306')

A new instance will be added to the InnoDB cluster. Depending on the anpunt of
data on the cluster this mght take froma few seconds to several hours.

Pl ease provide the password for 'icadm n@c-2:3306": **xxxxxxx

Addi ng instance to the cluster ...

Val i dating instance at ic-2:3306...

This instance reports its own address as ic-2

I nstance configuration is suitable.

The instance 'icadm n@c-2:3306' was successfully added to the cluster.

When a new instance is added to the cluster, the local address for this instance is automatically added
tothe group_replication_group_seeds variable on all online cluster instances in order to allow
them to use the new instance to rejoin the group, if needed.

Note
@ The instances listed in group_repl i cation_group_seeds are used
according to the order in which they appear in the list. This ensures user

88

https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_member_expel_timeout
https://dev.mysql.com/doc/refman/8.0/en/group-replication-online-upgrade-combining-versions.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds

Deploying a New Production InnoDB Cluster

specified settings are used first and preferred. See Customizing InnoDB
Clusters for more information.

If you are using MySQL 8.0.17 or later you can choose how the instance recovers the transactions
it requires to synchronize with the cluster. Only when the joining instance has recovered all of the
transactions previously processed by the cluster can it then join as an online instance and begin

processing transactions. For more information, see Section 7.2.2, “Using MySQL Clone with InnoDB

Cluster”.

Also in 8.0.17 and later, you can configure how Cl ust er . addl nst ance() behaves, letting recovery
operations proceed in the background or monitoring different levels of progress in MySQL Shell.

Depending on which option you chose to recover the instance from the cluster, you see different output

in MySQL Shell. Suppose that you are adding the instance ic-2 to the cluster, and ic-1 is the seed or

donor.

* When you use MySQL Clone to recover an instance from the cluster, the output looks like:

Val i dating instance at ic-2:3306...

This instance reports its own address as ic-2: 3306

I nstance configuration is suitable.

A new instance will be added to the |InnoDB cluster. Depending on the amount of

data on the cluster this mght take froma few seconds to several hours.

Addi ng instance to the cluster...

Moni toring recovery process of the new cluster menber. Press "C to stop nmonitoring and | et
Cl one based state recovery is now i n progress.

NOTE: A server restart is expected to happen as part of the clone process. If the

server does not support the RESTART command or does not conme back after a

while, you may need to manual ly start it back.

* Waiting for clone to finish...

NOTE: ic-2:3306 is being cloned fromic-1: 3306

** Stage DROP DATA: Conpl et ed

** Cl one Transfer

FI LE COPY #####HHIHHHHHIHHHHHH T T R 100% Conpl et ed
PAGE COPY #####HIHHHHHIIHIHHH I T . 100% Conpl et ed
REDO COPY #####HIHHHHHBIHIHHH T T . 100% Conpl et ed
NOTE: ic-2:3306 is shutting down...

* Waiting for server restart... ready

* jc-2:3306 has restarted, waiting for clone to finish...

** Stage RESTART: Conpl et ed

* Clone process has finished: 2.18 GB transferred in 7 sec (311.26 MB/s)

State recovery already finished for 'ic-2:3306'

The instance 'ic-2:3306' was successfully added to the cluster.

The warnings about server restart should be observed, you might have to manually restart an
instance. See RESTART Statement.

When you use incremental recovery to recover an instance from the cluster, the output looks like:

Incremental distributed state recovery is now in progress.
* Waiting for incremental recovery to finish...

NOTE: 'ic-2:3306" is being recovered from'ic-1:3306

* Distributed recovery has finished

To cancel the monitoring of the recovery phase, issue CONTROL+C. This stops the monitoring but
the recovery process continues in the background. The wai t Recovery integer option can be used

with the Cl ust er . addl nst ance() operation to control the behavior of the command regarding the

recovery phase. The following values are accepted:

0: do not wait and let the recovery process finish in the background;
1: wait for the recovery process to finish;

2: wait for the recovery process to finish; and show detailed static progress information;

it contint

3: wait for the recovery process to finish; and show detailed dynamic progress information (progress

bars);

89

https://dev.mysql.com/doc/refman/8.0/en/restart.html

Deploying a New Production InnoDB Cluster

By default, if the standard output which MySQL Shell is running on refers to a terminal, the
wai t Recovery option defaults to 3. Otherwise, it defaults to 2. See Monitoring Recovery Operations.

To verify the instance has been added, use the cluster instance's st at us() function. For example this
is the status output of a sandbox cluster after adding a second instance:

nysql -j s> cluster.status()
{
"clusterName": "testC uster"”,
"def aul t ReplicaSet": {
"name": "defaul t",
“primary": "ic-1:3306",
"ssl": "REQUI RED',
"status": "OK _NO TOLERANCE",
"statusText": "Cluster is NOT tolerant to any failures.",
"topol ogy": {
"ic-1:3306": {
"address": "ic-1:3306",
"mode": "RI'W,
"readReplicas": {},
"role": "HA",
"status": "ONLI NE"

b
"ic-2:3306": {

"address": "ic-2:3306",
“mode”: "R O,
"readReplicas": {},
“role": "HA"

"status": "ONLI NE"

}
I
"groupl nf or mati onSour ceMenber": "nysql://icadm n@ c- 1: 3306"

How you proceed depends on whether the instance is local or remote to the instance MySQL Shell

is running on, and whether the instance supports persisting configuration changes automatically,

see Section 6.1.5, “Persisting Settings”. If the instance supports persisting configuration changes
automatically, you do not need to persist the settings manually and can either add more instances

or continue to the next step. If the instance does not support persisting configuration changes
automatically, you have to configure the instance locally. See Configuring Instances with

dba. confi gureLocal | nstance() . This is essential to ensure that instances rejoin the cluster in the
event of leaving the cluster.

Tip

; If the instance has super _r ead_onl y=0ON then you might need to confirm
that AdminAPI can set super _r ead_onl y=CFF. See Super Read-only and
Instances for more information.

Once you have your cluster deployed you can configure MySQL Router to provide high availability, see
Section 6.4, “Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet”.

User Accounts Created by InnoDB Cluster

As part of using Group Replication, InnoDB Cluster creates internal recovery users which enable
connections between the servers in the cluster. These users are internal to the cluster, and the user
name of the generated users follows a naming scheme of nysqgl i nnodb_cl uster _server i d@
% where ser ver _i d is unique to the instance. In versions earlier than 8.0.17 the user name of

the generated users followed a naming scheme of nysql i nnodb_cl uster _r[10 nunbers].
The hostname used for the internal users depends on whether the i pAl | owl i st option has been
configured. If i pAl | owl i st is not configured, it defaults to AUTOVATI C and the internal users

are created using both the wildcard %character and | ocal host for the hostname value. When

i pAl'l ow i st has been configured, for each address in the i pAl | owl i st list an internal user is
created. For more information, see Creating an Allowlist of Servers.

90

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id

Using MySQL Clone with InnoDB Cluster

Each internal user has a randomly generated password. From version 8.0.18, AdminAPI enables you
to change the generated password for internal users. See Resetting Recovery Account Passwords.
The randomly generated users are given the following grants:

GRANT REPLI CATI ON SLAVE ON *.* to internal user;

The internal user accounts are created on the seed instance and then replicated to the other instances
in the cluster. The internal users are:

* generated when creating a new cluster by issuing dba. cr eat eCl ust er ()
» generated when adding a new instance to the cluster by issuing Cl ust er . addl nst ance() .

In addition, the Cl ust er. rej oi nl nst ance() operation can also result in a new internal user being
generated when the i pAl | owl i st option is used to specify a hosthame. For example by issuing:

Cluster.rejoinlnstance({i pAllowist: "192.168.1.1/22"});

all previously existing internal users are removed and a new internal user is created, taking into
account the i pAl | owl i st value used.

For more information on the internal users required by Group Replication, see User Credentials For
Distributed Recovery.

Configuring InnoDB Cluster Ports

Instances that belong to a cluster use different ports for different types of communication. In addition
to the default port at 3306, which is used for client connections over classic MySQL protocol, and
the nysql x_port, which defaults to 33060 and is used for X Protocol client connections, there

is also a port for internal connections between the instances in the cluster which is not used for

client connections. This port is configured by the | ocal Addr ess option, which configures the
group_replication_| ocal address system variable, and this port must be open so that the
instances in the cluster can communicate with each other. For example, if your firewall is blocking this
port then the instances cannot communicate with each other, and the cluster cannot function. Similarly,
if your instances are using SELinux, you need to ensure that all of the required ports used by InnoDB
Cluster are open so that the instances can communicate with each other. See Setting the TCP Port
Context for MySQL Features and MySQL Shell Ports.

When you create a cluster or add instances to a cluster, by default the | ocal Addr ess portis
calculated by multiplying the target instance's port value by 10 and then adding one to the result.

For example, when the port of the target instance is the default value of 3306, the calculated

| ocal Addr ess port is 33061. You should ensure that port numbers used by your cluster instances are
compatible with the way | ocal Addr ess is calculated. For example, if the server instance being used
to create a cluster has a port number higher than 6553, the dba. cr eat eCl ust er () operation fails
because the calculated | ocal Addr ess port number exceeds the maximum valid port which is 65535.
To avoid this situation either use a lower por t value on the instances you use for InnoDB Cluster, or
manually assign the | ocal Addr ess value, for example:

nysql -j s> dba. createC uster('testCluster', {'local Address':'icadm n@c-1:33061'}

7.2.2 Using MySQL Clone with InnoDB Cluster

In MySQL 8.0.17, InnoDB Cluster integrates the MySQL Clone plugin to provide automatic provisioning
of joining instances. The process of retrieving the cluster's data so that the instance can synchronize
with the cluster is called distributed recovery. When an instance needs to recover a cluster's
transactions we distinguish between the donor, which is the cluster instance that provides the data,
and the receiver, which is the instance that receives the data from the donor. In previous versions,
Group Replication provided only asynchronous replication to recover the transactions required for the
joining instance to synchronize with the cluster so that it could join the cluster. For a cluster with a large
amount of previously processed transactions it could take a long time for the new instance to recover
all of the transactions before being able to join the cluster. Or a cluster which had purged GTIDs, for
example as part of regular maintenance, could be missing some of the transactions required to recover

91

https://dev.mysql.com/doc/refman/8.0/en/group-replication-user-credentials.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-user-credentials.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-options-system-variables.html#sysvar_mysqlx_port
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/selinux.html
https://dev.mysql.com/doc/refman/8.0/en/selinux-context-mysql-feature-ports.html
https://dev.mysql.com/doc/refman/8.0/en/selinux-context-mysql-feature-ports.html
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-ports-reference-tables.html#mysql-shell-ports
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_port

Using MySQL Clone with InnoDB Cluster

the new instance. In such cases the only alternative was to manually provision the instance using
tools such as MySQL Enterprise Backup, as shown in Using MySQL Enterprise Backup with Group
Replication.

MySQL Clone provides an alternative way for an instance to recover the transactions required to
synchronize with a cluster. Instead of relying on asynchronous replication to recover the transactions,
MySQL Clone takes a snapshot of the data on the donor instance and then transfers the snapshot to
the receiver.

Warning
O All previous data in the receiver is destroyed during a clone operation. All
MySQL settings not stored in tables are however maintained.

Once a clone operation has transferred the snapshot to the receiver, if the cluster has processed
transactions while the snapshot was being transferred, asynchronous replication is used to recover
any required data for the receiver to be synchronized with the cluster. This can be much more efficient
than the instance recovering all of the transactions using asynchronous replication, and avoids any
issues caused by purged GTIDs, enabling you to quickly provision new instances for InnoDB Cluster.
For more information, see The Clone Plugin and Cloning for Distributed Recovery

In contrast to using MySQL Clone, incremental recovery is the process where an instance joining a
cluster uses only asynchronous replication to recover an instance from the cluster. When an InnoDB
Cluster is configured to use MySQL Clone, instances which join the cluster use either MySQL Clone
or incremental recovery to recover the cluster's transactions. By default, the cluster automatically
chooses the most suitable method, but you can optionally configure this behavior, for example to
force cloning, which replaces any transactions already processed by the joining instance. When you
are using MySQL Shell in interactive mode, the default, if the cluster is not sure it can proceed with
recovery it provides an interactive prompt. This section describes the different options you are offered,
and the different scenarios which influence which of the options you can choose.

In addition, the output of Cl ust er. st at us() for members in RECOVERI NG state includes recovery
progress information to enable you to easily monitor recovery operations, whether they are using
MySQL Clone or incremental recovery. InnoDB Cluster provides additional information about instances
using MySQL Clone in the output of Cl ust er. stat us().

7.2.2.1 Working with a Cluster that uses MySQL Clone

An InnoDB Cluster that uses MySQL Clone provides the following additional behavior.

dba. creat eCl ust er () and MySQL Clone

From version 8.0.17, by default when a new cluster is created on an instance where the MySQL Clone
plugin is available then it is automatically installed and the cluster is configured to support cloning. The
InnoDB Cluster recovery accounts are created with the required BACKUP_ADM N privilege.

Set the di sabl eCl one Boolean option to t r ue to disable MySQL Clone for the cluster. In this case
a metadata entry is added for this configuration and the MySQL Clone plugin is uninstalled if it is
installed. You can set the di sabl eCl one option when you issue dba. creat eCl ust er (), or at any
time when the cluster is running using Cl ust er . set Opti on().

Cl uster. addl nstance(i nstance) and MySQL Clone

MySQL Clone can be used for a joining i nst ance if the new instance is running

MySQL 8.0.17 or later, and there is at least one donor in the cluster (included in the
group_replication_group_seeds list) running MySQL 8.0.17 or later. A cluster using MySQL
Clone follows the behavior documented at Adding Instances to a Cluster, with the addition of a
possible choice of how to transfer the data required to recover the instance from the cluster. How
Cl ust er. addl nst ance(i nst ance) behaves depends on the following factors:

» Whether MySQL Clone is supported.

92

https://dev.mysql.com/doc/refman/8.0/en/group-replication-enterprise-backup.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-enterprise-backup.html
https://dev.mysql.com/doc/refman/8.0/en/clone-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-cloning.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds

Using MySQL Clone with InnoDB Cluster

« Whether incremental recovery is possible or not, which depends on the availability of binary logs. For
example, if a donor instance has all binary logs required (GTl D_PURGED is empty) then incremental
recovery is possible. If no cluster instance has all binary logs required then incremental recovery is
not possible.

* Whether incremental recovery is appropriate or not. Even though incremental recovery might be
possible, because it has the potential to clash with data already on the instance, the GTID sets on
the donor and receiver are checked to make sure that incremental recovery is appropriate. The
following are possible results of the comparison:

« New: the receiver has an empty GTl D_EXECUTED GTID set
« |dentical: the receiver has a GTID set identical to the donor’'s GTID set

« Recoverable: the receiver has a GTID set that is missing transactions but these can be recovered
from the donor

« Irrecoverable: the donor has a GTID set that is missing transactions, possibly they have been
purged

« Diverged: the GTID sets of the donor and receiver have diverged

When the result of the comparison is determined to be Identical or Recoverable, incremental
recovery is considered appropriate. When the result of the comparison is determined to be
Irrecoverable or Diverged, incremental recovery is not considered appropriate.

For an instance considered New, incremental recovery cannot be considered appropriate because
it is impossible to determine if the binary logs have been purged, or even if the GTI D_PURGED

and GTI D_EXECUTED variables were reset. Alternatively, it could be that the server had already
processed transactions before binary logs and GTIDs were enabled. Therefore in interactive mode,
you have to confirm that you want to use incremental recovery.

* The state of the gt i dSet | sConpl et e option. If you are sure a cluster has been created with a
complete GTID set, and therefore instances with empty GTID sets can be added to it without extra
confirmations, set the cluster level gt i dSet | sConpl et e Boolean optionto t r ue.

are recovered regardless of any data they contain, use with caution. If you try

Warning
O Setting the gt i dSet | sConpl et e option to t r ue means that joining servers
to add an instance which has applied transactions you risk data corruption.

The combination of these factors influence how instances join the cluster when you issue

Cl uster. addl nstance(). TherecoveryMet hod option is set to aut o by default, which means
that in MySQL Shell's interactive mode, the cluster selects the best way to recover the instance from
the cluster, and the prompts advise you how to proceed. In other words the cluster recommends using
MySQL Clone or incremental recovery based on the best approach and what the server supports. If
you are not using interactive mode and are scripting MySQL Shell, you must set r ecover yMet hod
to the type of recovery you want to use - either cl one or i ncr enent al . This section explains the
different possible scenarios.

When you are using MySQL Shell in interactive mode, the main prompt with all of the possible options
for adding the instance is:

Pl ease select a recovery nethod [C]lone/[l]ncrenental recovery/[A]bort (default Cl one):

Depending on the factors mentioned, you might not be offered all of these options. The scenarios
described later in this section explain which options you are offered. The options offered by this prompt
are:

» Clone: choose this option to clone the donor to the instance which you are adding to the cluster,
deleting any transactions the instance contains. The MySQL Clone plugin is automatically installed.

93

Using MySQL Clone with InnoDB Cluster

The InnoDB Cluster recovery accounts are created with the required BACKUP_ADM N privilege.
Assuming you are adding an instance which is either empty (has not processed any transactions) or
which contains transactions you do not want to retain, select the Clone option. The cluster then uses
MySQL Clone to completely overwrite the joining instance with a snapshot from an donor cluster
member. To use this method by default and disable this prompt, set the cluster's r ecover yMet hod
option to cl one.

 Incremental recovery choose this option to use incremental recovery to recover all transactions
processed by the cluster to the joining instance using asynchronous replication. Incremental recovery
is appropriate if you are sure all updates ever processed by the cluster were done with GTIDs
enabled, there are no purged transactions and the new instance contains the same GTID set as
the cluster or a subset of it. To use this method by default, set the r ecover yMet hod option to
i ncrenent al .

The combination of factors mentioned influences which of these options is available at the prompt as
follows:

manually changed outside of AdminAPI, then the cluster might decide to use
Clone recovery instead of following these scenarios.

Note
@ If the group_replication_cl one_t hreshol d system variable has been
* In a scenario where
« incremental recovery is possible
« incremental recovery is not appropriate

¢ Clone is supported

you can choose between any of the options. It is recommended that you use MySQL Clone, the
default.

* In a scenario where

« incremental recovery is possible

« incremental recovery is appropriate

you are not provided with the prompt, and incremental recovery is used.
* In a scenario where

* incremental recovery is possible

< incremental recovery is not appropriate

« Clone is not supported or is disabled

you cannot use MySQL Clone to add the instance to the cluster. You are provided with the prompt,
and the recommended option is to proceed with incremental recovery.

* In a scenario where
 incremental recovery is not possible
¢ Clone is not supported or is disabled

you cannot add the instance to the cluster and an ERROR: The target instance nust
be either cloned or fully provisioned before it can be added to the
target cluster. Cluster. addl nstance: |Instance provisioning required

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_clone_threshold

Adopting a Group Replication Deployment

Cluster.

(Runti meError) is shown. This could be the result of binary logs being purged from all cluster
instances. It is recommended to use MySQL Clone, by either upgrading the cluster or setting the
di sabl eCl one optionto f al se.

* In a scenario where
« incremental recovery is not possible
e Clone is supported

you can only use MySQL Clone to add the instance to the cluster. This could be the result of the
cluster missing binary logs, for example when they have been purged.

Once you select an option from the prompt, by default the progress of the instance recovering the
transactions from the cluster is displayed. This monitoring enables you to check the recovery phase is
working and also how long it should take for the instance to join the cluster and come online. To cancel
the monitoring of the recovery phase, issue CONTROL+C.

checkl nst anceSt at e() and MySQL Clone

When the Cl ust er. checkl nst anceSt at e() operation is run to verify an instance against a cluster
that is using MySQL Clone, if the instance does not have the binary logs, for example because they
were purged but Clone is available and not disabled (di sabl eCl one is f al se) the operation provides
a warning that the Clone can be used. For example:

The cluster transactions cannot be recovered on the instance, however,
Clone is available and can be used when adding it to a cluster.

{
"reason": "all _purged",
"state": "warning"

}

Similarly, on an instance where Clone is either not available or has been disabled and the binary logs
are not available, for example because they were purged, then the output includes:

The cluster transacti ons cannot be recovered on the instance.

{

"reason": "all_purged",
"state": "warning"

}

dba. checkl nst anceConfi gurati on() and MySQL Clone

When the dba. checkl nst anceConfi gurati on() operation is run against an instance that has
MySQL Clone available but it is disabled, a warning is displayed.

7.2.3 Adopting a Group Replication Deployment

If you have an existing deployment of Group Replication and you want to use it to create a cluster,
pass the adopt Fr omGR option to the dba. cr eat eC ust er () function. The created InnoDB Cluster
matches whether the replication group is running as single-primary or multi-primary.

To adopt an existing Group Replication group, connect to a group member using MySQL Shell.

In the following example a single-primary group is adopted. We connect to gr - nenber - 2, a
secondary instance, while gr - menber - 1 is functioning as the group's primary. Create a cluster using
dba. creat eCl ust er (), passing in the adopt Fr onGR option. For example:

nysql -j s> var cluster = dba.createC uster (' prodC uster', {adoptFronGR true});
A new I nnoDB cluster will be created on instance 'root @r-nenber-2: 3306 .

Creating I nnoDB cluster 'prodCluster' on 'root@r-nenber-2:3306'...

95

Monitoring InnoDB Cluster

Addi ng Seed I nstance. ..

Cluster successfully created. Use cluster.addl nstance() to add MySQL i nstances.
At least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

Tip

; If the instance has super _r ead_onl y=0ONthen you might need to confirm
that AdminAPI can set super _r ead_onl y=0OFF. See Super Read-only and
Instances for more information.

The new cluster matches the mode of the group. If the adopted group was running in single-primary
mode then a single-primary cluster is created. If the adopted group was running in multi-primary mode
then a multi-primary cluster is created.

7.3 Monitoring InnoDB Cluster

This section describes how to use AdminAPI to monitor an InnoDB Cluster.
* Using Cl ust er. descri be()

» Checking a cluster's Status with Cl ust er. st at us()

» Monitoring Recovery Operations

» InnoDB Cluster and Group Replication Protocol

» Checking the MySQL Version on Instances

Using Cl ust er. descri be()

To get information about the structure of the InnoDB Cluster itself, use the Cl ust er. descri be()
function:

nysql -j s> cluster. describe();

{
"clusterNane": "testC uster",
"defaul t ReplicaSet": {
"nane": "defaul t",
"topol ogy": [
{
"address": "ic-1:3306",
"l abel ": "ic-1:3306",
"role": "HA"
b
{
"address": "ic-2:3306",
"l abel ": "ic-2:3306",
"role": "HA"
b
{
"address": "ic-3:3306",
"l abel ": "ic-3:3306",
"role": "HA"
}
|
}
}

The output from this function shows the structure of the InnoDB Cluster including all of its configuration
information, and so on. The address, label and role values match those described at Checking a
cluster's Status with Cl ust er. st at us() .

Checking a cluster's Status with Cl uster. st at us()

96

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Checking a cluster's Status with Cl ust er. st at us()

Cluster objects provide the st at us() method that enables you to check how a cluster is running.
Before you can check the status of the InnoDB Cluster, you need to get a reference to the InnoDB
Cluster object by connecting to any of its instances. However, if you want to make changes to the
configuration of the cluster, you must connect to a "R/W" instance. Issuing st at us() retrieves the
status of the cluster based on the view of the cluster which the server instance you are connected to is
aware of and outputs a status report.

Important

A The instance's state in the cluster directly influences the information provided
in the status report. Therefore ensure the instance you are connected to has a
status of ONLI NE.

For information about how the InnoDB Cluster is running, use the cluster's st at us() method:

nysql -j s> var cluster = dba.getC uster()
nmysql -j s> cluster.status()

{
"clusterName": "testcluster",
"defaul t ReplicaSet": {
"name": "default",
"primary": "ic-1:3306",
"ssl": "REQUI RED',
"status": "OK',
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"ic-1:3306": {
"address": "ic-1:3306",
"node": "RI'W,
"readReplicas": {},
"role": "HA",
"status": "ONLI NE"
s
"ic-2:3306": {
"address": "ic-2:3306",
"node": "R O,
"readReplicas": {},
"role": "HA",
"status": "ONLI NE"
s
"ic-3:3306": {
"address": "ic-3:3306",
"node": "R O,
"readReplicas": {},
"role": "HA",
"status": "ONLINE"
}
}
F
"groupl nf or mati onSour ceMenber": "nmysql://icadm n@ c-1: 3306"
}

The output of Cl ust er . st at us() provides the following information:
» cl ust er Nane: name assigned to this cluster during dba. creat eCl uster ().

» def aul t Repl i caSet : the server instances which belong to an InnoDB Cluster and contain the data
set.

* pri mary: displayed when the cluster is operating in single-primary mode only. Shows the address
of the current primary instance. If this field is not displayed, the cluster is operating in multi-primary
mode.

» ssl : whether secure connections are used by the cluster or not. Shows values of REQUI RED
or DI SABLED, depending on how the nenber Ss| Mode option was configured during either
createCl uster () oraddl nst ance(). The value returned by this parameter corresponds to the

97

Checking a cluster's Status with Cl ust er. st at us()

value of the gr oup_replication_ssl _node server variable on the instance. See Securing your
Cluster.

st at us: The status of this element of the cluster. For the overall cluster this describes the high
availability provided by this cluster. The status is one of the following:

¢ ONLI NE: The instance is online and participating in the cluster.
« OFFLI NE: The instance has lost connection to the other instances.

* RECOVERI NG: The instance is attempting to synchronize with the cluster by retrieving transactions
it needs before it can become an ONLI NE member.

« UNREACHABLE: The instance has lost communication with the cluster.

« ERROR: The instance has encountered an error during the recovery phase or while applying a
transaction.

Important

to ON. To leave the ERROR state you must manually configure the instance

A Once an instance enters ERROR state, the super _read_onl y option is set
with super _read_onl y=0OFF.

* (M SSI NG : The state of an instance which is part of the configured cluster, but is currently
unavailable.

by Group Replication. MySQL Shell uses this state to indicate instances
that are registered in the metadata, but cannot be found in the live cluster

Note
g The M SSI NG state is specific to InnoDB Cluster, it is not a state generated
view.

t opol ogy: The instances which have been added to the cluster.
Host nanme of instance: The host name of an instance, for example localhost:3310.
r ol e: what function this instance provides in the cluster. Currently only HA, for high availability.

node: whether the server is read-write ("R/W") or read-only ("R/Q"). From version 8.0.17, this is

derived from the current state of the super r ead_onl y variable on the instance, and whether the
cluster has quorum. In previous versions the value of mode was derived from whether the instance
was serving as a primary or secondary instance. Usually if the instance is a primary, then the mode
is "R/W", and if the instance is a secondary the mode is "R/Q". Any instances in a cluster that have
no visible quorum are marked as "R/O", regardless of the state of the super _read_onl y variable.

groupl nf or mat i onSour ceMenber : the internal connection used to get information about the
cluster, shown as a URI-like connection string. Usually the connection initially used to create the
cluster.

To display more information about the cluster use the ext ended option. From version 8.0.17, the
ext ended option supports integer or Boolean values. To configure the additional information that
Cluster.status({' extended' :val ue}) provides, use the following values:

» 0: disables the additional information, the default

» 1:includes information about the Group Replication Protocol Version, Group name, cluster member

UUIDs, cluster member roles and states as reported by Group Replication, and the list of fenced
system variables

» 2:includes information about transactions processed by connection and applier

98

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_ssl_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Checking a cluster's Status with Cl ust er . st at us()

» 3:includes more detailed statistics about the replication performed by each cluster member.

Setting ext ended using Boolean values is the equivalent of setting the integer values 0 and 1. In
versions prior to 8.0.17, the ext ended option was only Boolean. Similarly prior versions used the

guer yMenber s Boolean option to provide more information about the instances in the cluster, which
is the equivalent of setting ext ended to 3. The quer yMenber s option is deprecated and scheduled to
be removed in a future release.

When you issue Cl ust er. st at us({' ext ended' : 1}), or the ext ended option is settot r ue, the
output includes:

« the following additional attributes for the def aul t Repl i caSet object:

* GRProt ocol Ver si on is the Group Replication Protocol Version being used in the cluster.

Tip

@ InnoDB Cluster manages the Group Replication Protocol version being
used automatically, see InnoDB Cluster and Group Replication Protocol for
more information.

e groupNane is the group's name, a UUID.
« the following additional attributes for each object of the t opol ogy object:

e fenceSysVar s a list containing the name of the fenced system variables which are
configured by AdminAPI. Currently the fenced system variables considered are r ead _onl vy,
super _read_only and of fl i ne_node. The system variables are listed regardless of their
value.

e instanceErrors for each instance, displaying any diagnostic information that can be detected
for the instance. For example, if the instance is a secondary and the super read_onl y variable
is not set to ON, then a warning is shown. This information can be used to troubleshoot errors.

 nmenber | d Each cluster member UUID.

« nmenber Rol e the Member Role as reported by the Group Replication plugin, see the
MEMBER _ROLE column of the r epl i cati on_gr oup_nenber s table.

e nmenber St at e the Member State as reported by the Group Replication plugin, see the
VEMBER STATE column of the r epl i cati on_gr oup_nenber s table.

To see information about recovery and regular transaction I/O, applier worker thread statistics and
any lags; applier coordinator statistics, if the parallel replication applier is enabled; error, and other
information from the receiver and applier threads, use a value of 2 or 3 for ext ended. When you

use these values, a connection to each instance in the cluster is opened so that additional instance
specific statistics can be queried. The exact statistics that are included in the output depend on the
state and configuration of the instance and the server version. This information matches that shown in
thereplication_group_menber st ats table, see the descriptions of the matching columns for
more information. Instances which are ONLI NE have a t r ansact i ons section included in the output.
Instances which are RECOVERI NG have a r ecover y section included in the output. When you set
ext ended to 2, in either case, these sections can contain the following:

» appl i edCount : see COUNT_TRANSACTI ONS_REMOTE_APPLI ED

» checkedCount : see COUNT_TRANSACTI ONS_CHECKED

e commi ttedAl | Menber s: see TRANSACTI ONS_COW TTED_ALL_MEMBERS
e conflictsDet ectedCount:see COUNT_CONFLI CTS DETECTED

* i nAppl i er QueueCount : see COUNT_TRANSACTI ONS_REMOTE | N_APPLI ER_QUEUE

99

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_offline_mode
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-group-members-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-group-members-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-group-member-stats-table.html

Checking a cluster's Status with Cl ust er . st at us()

i nQueueCount : see COUNT_TRANSACTI ONS_| N_QUEUE
| ast Conflict Free: see LAST_CONFLI CT_FREE_TRANSACTI ON
proposedCount : see COUNT_TRANSACTI ONS_LOCAL_ PROPOSED

rol | backCount : see COUNT_TRANSACTI ONS_LOCAL_ROLLBACK

When you set ext ended to 3, the connect i on section shows information from the
replication_connection_st at us table. A value of 3 is the equivalent of setting the deprecated
guer yMenber s optionto t r ue. The connect i on section can contain the following:

The current | yQueuei ng section has information about the transactions currently queued:

i medi at eCommi t Ti nest anp: see
QUEUEI NG_TRANSACTI ON_I MVEDI ATE_COW T_TI MESTAMP

i mredi at eCommi t ToNowTi ne: see
QUEUEI NG_TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP minus NOW()

ori gi nal Commi t Ti mest anp: see QUEUEI NG_TRANSACTI ON_ORI G NAL_COW T_TI MESTAMP

ori gi nal Comm t ToNowTi nme: see QUEUEI NG_TRANSACTI ON_CORI G NAL_COWM T_TI MESTAMP
minus NOW()

start Ti mest anp: see QUEUEI NG_TRANSACTI ON_START_QUEUE_TI MESTAMP
transacti on: see QUEUEI NG_TRANSACTI ON

| ast Heart beat Ti nest anp: see LAST _HEARTBEAT _TI MESTAMP

The | ast Queued section has information about the most recently queued transaction:

endTi mest anp: see LAST_QUEUED TRANSACTI ON_END_QUEUE_TI MESTAMP

i medi at eCommi t Ti nest anp: see
LAST_QUEUED_ TRANSACTI ON_I| MVEDI ATE_COWM T_TI MESTAMP

i mredi at eCommi t TOEndTi ne:
LAST QUEUED TRANSACTI ON_| MVEDI ATE_COVM T_TI MESTAMP minus NOW()

ori gi nal Conmi t Ti mest anp: see
LAST_QUEUED_ TRANSACTI ON_ORI Gl NAL_COWM T_TI MESTAMP

ori gi nal Conmi t TOEndTi me: LAST_QUEUED TRANSACTI ON_ ORI G NAL_COW T_TI MESTAMP
minus NOW()

queueTi me: LAST_QUEUED TRANSACTI ON_END_QUEUE_TI MESTAVP minus
LAST_QUEUED TRANSACTI ON_START _QUEUE_TI MESTAMP

start Ti mest anp: see LAST_QUEUED TRANSACTI ON_START_QUEUE_TI MESTAMP
transacti on: see LAST_QUEUED_TRANSACTI ON

recei vedHear t beat s: see COUNT_RECElI VED HEARTBEATS

recei vedTransact i onSet : see RECElI VED TRANSACTI ON_SET

t hr eadl d: see THREAD | D

Instances which are using a multithreaded replica have a wor ker s section which
contains information about the worker threads, and matches the information shown by the
replication_applier_status_by worker table.

100

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html

Checking a cluster's Status with Cl ust er . st at us()

The | ast Appl i ed section shows the following information about the last transaction applied by the
worker:

. appl yTi me: see LAST_APPLI ED_TRANSACTI ON_END_APPLY_TI MESTAMP minus
LAST_APPLI ED_TRANSACTI ON_START_APPLY_TI MESTAMP

» endTi mest anp: see LAST_APPLI ED_TRANSACTI ON_END_APPLY_TI MESTAMP

* i mmedi at eConmi t Ti nest anp: see
LAST_APPLI ED_TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP

e i Mmedi at eConmi t TOEndTi ne: see
LAST_APPLI ED TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP minus NOW()

e original Conmi t Ti mest anp: see
LAST_APPLI ED_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAWP

e origi nal Comm t TOEndTi ne: see
LAST_APPLI ED TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP minus NOW()

o startTi mest anp: see LAST_APPLI ED_TRANSACTI ON_START_APPLY_TI MESTAMP
e transacti on: see LAST_APPLI ED_TRANSACTI ON

The current| yAppl yi ng section shows the following information about the transaction currently
being applied by the worker:

e i Medi at eCommi t Ti mest anp: see
APPLYI NG_TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP

e i Mmedi at eConmi t ToNowTi ne: see
APPLYI NG_TRANSACTI ON_I MVEDI ATE_COW T_TI MESTAMP minus NOW()

e original Commi t Ti nest anp: see APPLYI NG_TRANSACTI ON_ORI G NAL_COW T_TI MESTAMWP

e origi nal Comm t ToNowTi ne: see APPLYI NG_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMWP
minus NOW()

e start Ti mest anp: see APPLYlI NG_TRANSACTI ON_START_APPLY_TI MESTAWP
e transacti on: see APPLYI NG _TRANSACTI ON

The | ast Pr ocessed section has the following information about the last transaction processed by the
worker:

* bufferTi me: LAST_PROCESSED TRANSACTI ON_END_BUFFER_TI MESTAMP minus
LAST_PROCESSED TRANSACTI ON_START_BUFFER_TI MESTAVP

* endTi mest anp: see LAST_PROCESSED_TRANSACTI ON_END_BUFFER_TI MESTAMP

* i mmedi at eConmi t Ti nest anp: see
LAST_PROCESSED TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP

e i Mmmedi at eConmi t TOEndTi ne:
LAST PROCESSED TRANSACTI ON_| MVEDI ATE_COW T_TI MESTAMP minus
LAST PROCESSED TRANSACTI ON_END BUFFER TI MESTAMP

e original Conmi t Ti mest anp: see
LAST_PROCESSED TRANSACTI ON_ORI Gl NAL_COWM T_TI MESTAWP

e origi nal Conm t TOEndTi ne:
LAST_PROCESSED_TRANSACTI ON_ORI G NAL_COWM T_TI MESTAMP minus
LAST_PROCESSED TRANSACTI ON_END_ BUFFER_TI MESTAMP

. startTi mest anp: see LAST_PROCESSED TRANSACTI ON_START_BUFFER_TI MESTAMP

101

Monitoring Recovery Operations

e transacti on: see LAST_PROCESSED TRANSACTI ON

If the parallel replication applier is enabled, then the number of objects in the workers

array intransacti ons orr ecovery matches the number of configured workers and an
additional coordinator object is included. The information shown matches the information in the
replication_applier_status_ by coordi nator table. The object can contain;

The current| yProcessi ng section has the following information about the transaction being
processed by the worker:

e i mredi at eConmi t Ti mest anp: see
PROCESSI NG_TRANSACTI ON_I| MVEDI ATE_COWM T_TI MESTAMP

i mredi at eConmmi t ToNowTi ne: PROCESSI NG_TRANSACTI ON_| MVEDI ATE_COWM T_TI MESTAMP
minus NOW()

e original Conm t Ti mest anp: see
PROCESSI NG_TRANSACTI ON_CRI G NAL_COWM T_TI MESTAMP

e ori gi nal Comm t ToNowTi me: PROCESSI NG_TRANSACTI ON_CORI G NAL_COWM T_TI MESTAMP
minus NOW()

o startTi mest anp: see PROCESS|I NG_TRANSACTI ON_START_BUFFER_TI MESTAMP
e transacti on: see PROCESSI NG TRANSACTI ON

wor ker objects have the following information if an error was detected in the
replication_applier_status_by worker table:

e | ast Errno: see LAST_ERROR_NUMBER
e | astError:see LAST _ERROR MESSAGE
e | ast ErrorTi nest anp: see LAST _ERROR_TI VESTAVP

connect i on objects have the following information if an error was detected in the
replication_connection_st at us table:

e | ast Errno: see LAST_ERROR_NUMBER
e | astError:see LAST _ERROR MESSAGE
e | ast ErrorTi mest anp: see LAST _ERROR_TI VESTAVP

coor di nat or objects have the following information if an error was detected in the
replication_applier_status_by coordi nator table:

e | ast Errno: see LAST_ERROR_NUMBER
e | astError:see LAST _ERROR MESSAGE

e | ast ErrorTi nest anp: see LAST _ERROR_TI VESTAWVP

Monitoring Recovery Operations

The output of Cl ust er . st at us() shows information about the progress of recovery operations for
instances in RECOVERI NG state. Information is shown for instances recovering using either MySQL
Clone, or incremental recovery. Monitor these fields:

 TherecoveryStatusText field includes information about the type of recovery being used.
When MySQL Clone is working the field shows “Cloning in progress”. When incremental recovery is
working the field shows “Distributed recovery in progress”.

* When MySQL Clone is being used, the r ecovery field includes a dictionary with the following fields:

102

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-coordinator-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-worker-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-connection-status-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-replication-applier-status-by-coordinator-table.html

Monitoring Recovery Operations

e cl oneSt art Ti me: The timestamp of the start of the clone process

e cl oneSt at e: The state of the clone progress

e current St age: The current stage which the clone process has reached

e current St agePr ogr ess: The current stage progress as a percentage of completion
e current St ageSt at e: The current stage state

Example Cl ust er . st at us() output, trimmed for brevity:

"recovery": {

“cloneStartTime": "2019-07-15 12:50: 22. 730",
"“cloneState": "In Progress"”,

"current Stage": "FILE COPY",

"current StageProgress": 61.726837675213865,
"current StageState": "In Progress”

}

’ ecoveryStatusText": "Cloning in progress"”,

When incremental recovery is being used and the ext ended option is set to 1 or greater, the
recovery field includes a dictionary with the following fields:

e state: The state of the gr oup_replicati on_recovery channel

e recover yChannel : Displayed for instances performing incremental recovery or in which the
recovery channel status is not off. Incremental recovery utilises the receiver thread to receive
transactions from the source, and the applier thread applies the received transactions on the
instance. Provides the following information:

e applierQueuedTransacti onSet Si ze: The number of transactions currently queued, which
are waiting to be applied.

e appl i er St at e: The current state of the replication applier, either ON or OFF.

e appl i er St at us: The current status of the applier threads. An aggregation of the states shown
in the appl i er Thr eadSt at e field. Can be one of:

» APPLI ED ALL: there are no queued transactions waiting to be applied
« APPLYI NG there are transactions being applied

* ON: thread is connected and there are no queued transactions

ERROR: there was an error while applying transactions
» OFF: the applier thread is disabled

e appl i er Thr eadSt at e: The current state of any applier threads. Provides detailed information
about exactly what the applier thread is doing. For more information, see Replication SQL
Thread States.

e recei ver St at us: The current status of the receiver thread. An aggregation of the states
shown in the r ecei ver Thr eadSt at e field. Can be one of:

» ON: the receiver thread has successfully connected and is ready to receive
» CONNECTI NG the receiver thread is connecting to the source

» ERROR: there was an error while receiving transactions

103

https://dev.mysql.com/doc/refman/8.0/en/replica-sql-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/replica-sql-thread-states.html

InnoDB Cluster and Group Replication Protocol

» OFF: the receiver thread has gracefully disconnected

e recei ver ThreadSt at e: The current state of the receiver thread. Provides detailed information
about exactly what the receiver thread is doing. For more information, see Replication I/O
(Receiver) Thread States.

e sour ce: The source of the transactions which are being applied.

Example Cl ust er . st at us() output, trimmed for brevity:

"recovery": {
"recoveryChannel ": {
"appl i er QueuedTr ansact i onSet Si ze": 2284,
"applierStatus": "APPLYING',
"applierThreadState": "QOpening tables",
"receiverStatus": "ON',
"recei verThreadState": "Queueing master event to the relay |og",
"source": "ic-2:3306"

b
"state" "ON'

InnoDB Cluster and Group Replication Protocol

From MySQL 8.0.16, Group Replication has the concept of a communication protocol for the

group, see Setting a Group's Communication Protocol Version for background information. The

Group Replication communication protocol version usually has to be managed explicitly, and set to
accommodate the oldest MySQL Server version that you want the group to support. However, InnoDB
Cluster automatically and transparently manages the communication protocol versions of its members,
whenever the cluster topology is changed using AdminAPI operations. A cluster always uses the most
recent communication protocol version that is supported by all the instances that are currently part of
the cluster or joining it.

» When an instance is added to, removed from, or rejoins the cluster, or a rescan or reboot operation
is carried out on the cluster, the communication protocol version is automatically set to a version
supported by the instance that is now at the earliest MySQL Server version.

* When you carry out a rolling upgrade by removing instances from the cluster, upgrading them, and
adding them back into the cluster, the communication protocol version is automatically upgraded
when the last remaining instance at the old MySQL Server version is removed from the cluster prior
to its upgrade.

To see the communication protocol version being used in a cluster, use the Cl ust er. st at us()
function with the ext ended option enabled. The communication protocol version is returned in the
GRPr ot ocol Ver si on field, provided that the cluster has quorum and no cluster members are
unreachable.

Checking the MySQL Version on Instances

The following operations can report information about the MySQL Server version running on the
instance:

e Cluster.status()

e Cluster.describe()

e Cluster.rescan()

The behavior varies depending on the MySQL Server version of the Cl ust er object session.

e Cluster.status()

104

https://dev.mysql.com/doc/refman/8.0/en/replica-io-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/replica-io-thread-states.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-communication-protocol.html

Checking the MySQL Version on Instances

If either of the following requirements are met, a ver si on string attribute is returned for each
instance JSON object of the t opol ogy object:

e The Cl ust er object's current session is version 8.0.11 or later.

e The Cl ust er object's current session is running a version earlier than version 8.0.11 but the
ext ended option is set to 3 (or the deprecated quer yMenber s ist r ue).

For example on an instance running version 8.0.16:

"t opol ogy": {
"ic-1:3306": {

"address": "ic-1:3306"
"nmode": "RI'W,
"readReplicas": {},
"role": "HA",
"status": "ONLINE",
"version": "8.0.16"

}

For example on an instance running version 5.7.24:

"t opol ogy": {
"ic-1:3306": {

"address": "ic-1:3306"
“mode": "RIW,
"readReplicas": {},
“role": "HA",
"status": "ONLI NE",
“version": "5.7.24"

}

Cl uster. describe()

If the Cl ust er object's current session is version 8.0.11 or later, a ver si on string attribute is
returned for each instance JSON object of the t opol ogy object

For example on an instance running version 8.0.16:

"topol ogy": [
{
"address": "ic-1:3306"
"l abel ": "ic-1:3306",
“role": "HA",
“version": "8.0.16"
}

]

Cluster.rescan()

If the Cl ust er object's current session is version 8.0.11 or later, and the Cl ust er. rescan()
operation detects instances which do not belong to the cluster, a ver si on string attribute is returned
for each instance JSON object of the newl yDi scover edl nst ance object.

For example on an instance running version 8.0.16:

"new yDi scover edl nst ances": |

{
“host": "ic-4:3306",
“menber _i d": "82a67a06-2ba3- 11e9- 8cfc- 3c6aa7197deb"
“name": null
“version": "8.0.16"
}

105

Working with Instances

7.4 Working with Instances

This section describes the AdminAPI operations which apply to instances. You can configure instances
before using them with InnoDB Cluster, check the state of an instance, and so on.

* Using dba. checkl nst anceConfi gurati on()
» Configuring Instances with dba. conf i gur eLocal | nst ance()

* Checking Instance State

Using dba. checkl nst anceConfi gurati on()

Before creating a production deployment from server instances you need to check that MySQL

on each instance is correctly configured. In addition to dba. confi gur el nst ance(),

which checks the configuration as part of configuring an instance, you can use the

dba. checkl nst anceConfi gurati on(i nstance) function. This ensures that the i nst ance
satisfies the Section 7.1, “MySQL InnoDB Cluster Requirements” without changing any configuration
on the instance. This does not check any data that is on the instance, see Checking Instance State for
more information.

The user which you use to connect to the i nst ance must have suitable privileges, for example as
configured at Configuring Users for AdminAPI. The following demonstrates issuing this in a running
MySQL Shell:

nmysql -j s> dba. checkl nst anceConfi guration('icadm n@c-1: 3306')

Pl ease provide the password for 'icadm n@c-1:3306": ***

Val i dating MySQL i nstance at ic-1:3306 for use in an InnoDB cluster...

This instance reports its own address as ic-1

Clients and other cluster nmenmbers will comunicate with it through this address by default.
If this is not correct, the report_host MySQL system vari abl e shoul d be changed.

Checki ng whet her existing tables conply with G oup Replication requirenents...
No inconpati bl e tabl es detected

Checki ng i nstance configuration...

Some configuration options need to be fixed:

S R . Fm m o e oo ieooaaaodolooo.-
| Variabl e | Current Value | Required Value | Note

S R . Fm m o e oo ieooaaaodolooo.-
| enforce_gtid_consistency | OFF | ON | Update read-only variable and restart the ser
| gtid_node | OFF | ON | Update read-only variable and restart the ser
| server_id | 1 | | Update read-only variable and restart the ser
S R . Fm m o e oo ieooaaaodolooo.-

Pl ease use the dba.configurel nstance() comrand to repair these issues.

"config_errors": [
"action": "restart",
“current": "OFF",
"option": "enforce_gtid_consistency",
“required": "ON'
"action": "restart",
“current": "OFF",
"option": "gtid_node",
“required": "ON'
"action": "restart",
"current": "1",
"option": "server_id",

106

Configuring Instances with dba. confi gur eLocal | nst ance()

"required":
}
|

tatus": "error"

}

Repeat this process for each server instance that you plan to use as part of your cluster. The report
generated after running dba. checkl nst anceConfi gur ati on() provides information about any
configuration changes required before you can proceed. The act i on field in the confi g _error
section of the report tells you whether MySQL on the instance requires a restart to detect any change
made to the configuration file.

Configuring Instances with dba. confi gureLocal | nst ance()

Instances which do not support persisting configuration changes automatically (see Section 6.1.5,
“Persisting Settings”) require you to connect to the server, run MySQL Shell, connect to the instance
locally and issue dba. confi gur eLocal | nst ance() . This enables MySQL Shell to modify the
instance's option file after running the following commands against a remote instance:

e dba. configurel nstance()

e dba. createC uster()

e Cluster. addl nstance()

e Cluster.renovel nstance()

» Cluster.rejoinlnstance()
Important

A Failing to persist configuration changes to an instance's option file can result in
the instance not rejoining the cluster after the next restart.

The recommended method is to log in to the remote machine, for example using SSH, run MySQL
Shell as the root user and then connect to the local MySQL server. For example, use the - - uri option
to connect to the local i nst ance:

$> sudo -i nysqgl sh --uri=instance

Alternatively use the \ connect command to log in to the local instance. Then issue
dba. confi gurel nstance(i nstance), where i nst ance is the connection information to the local
instance, to persist any changes made to the local instance's option file.

nmysql -j s> dba. confi gureLocal | nstance('i cadm n@ c-2: 3306)

Repeat this process for each instance in the cluster which does not support persisting configuration
changes automatically. For example if you add 2 instances to a cluster which do not support persisting
configuration changes automatically, you must connect to each server and persist the configuration
changes required for InnoDB Cluster before the instance restarts. Similarly if you modify the cluster
structure, for example changing the number of instances, you need to repeat this process for each
server instance to update the InnoDB Cluster metadata accordingly for each instance in the cluster.

Checking Instance State

The cl ust er. checkl nst anceSt at e() function can be used to verify the existing data on an
instance does not prevent it from joining a cluster. This process works by validating the instance's
global transaction identifier (GTID) state compared to the GTIDs already processed by the cluster. For
more information on GTIDs see GTID Format and Storage. This check enables you to determine if an
instance which has processed transactions can be added to the cluster.

The following demonstrates issuing this in a running MySQL Shell;

107

https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-concepts.html

Working with InnoDB Cluster

nmysql -j s> cl uster. checkl nstanceState('icadm n@ c-4: 3306')

The output of this function can be one of the following:

» OK new: the instance has not executed any GTID transactions, therefore it cannot conflict with the
GTIDs executed by the cluster

» OK recoverable: the instance has executed GTIDs which do not conflict with the executed GTIDs of
the cluster seed instances

* ERROR diverged: the instance has executed GTIDs which diverge with the executed GTIDs of the
cluster seed instances

» ERROR lost_transactions: the instance has more executed GTIDs than the executed GTIDs of the
cluster seed instances

Instances with an OK status can be added to the cluster because any data on the instance is
consistent with the cluster. In other words the instance being checked has not executed any
transactions which conflict with the GTIDs executed by the cluster, and can be recovered to the same
state as the rest of the cluster instances.

7.5 Working with InnoDB Cluster

This section explains how to work with InnoDB Cluster, and how to handle common administration
tasks.

* Removing Instances from the InnoDB Cluster
 Dissolving an InnoDB Cluster

» Changing a Cluster's Topology

Removing Instances from the InnoDB Cluster

You can remove an instance from a cluster at any time should you wish to do so. This can be done with
the Cl ust er. renovel nst ance(i nst ance) method, as in the following example:

nysql -j s> cl uster.renovel nstance(' root @ ocal host: 3310')

The instance will be renoved fromthe InnoDB cluster. Depending on the instance
bei ng the Seed or not, the Metadata session nmight becone invalid. |If so, please
start a new session to the Metadata Storage R/ Wi nstance.

Attenpting to | eave fromthe G oup Replication group...

The instance 'l ocal host: 3310' was successfully removed fromthe cluster.

You can optionally pass in the i nt er act i ve option to control whether you are prompted to confirm
the removal of the instance from the cluster. In interactive mode, you are prompted to continue with
the removal of the instance (or not) in case it is not reachable. The cl ust er. r enovel nst ance()
operation ensures that the instance is removed from the metadata of all the cluster members which are
ONLI NE, and the instance itself. The last instance that remains in ONLI NE status in an InnoDB Cluster
cannot be removed using this operation.

When the instance being removed has transactions which still need to be applied, AdminAPI waits

for up to the number of seconds configured by the MySQL Shell dba. gt i dWai t Ti neout option for
transactions (GTIDs) to be applied. The MySQL Shell dba. gt i dWai t Ti neout option has a default
value of 60 seconds, see Section 13.4, “Configuring MySQL Shell Options” for information on changing
the default. If the timeout value defined by dba. gt i d\Wai t Ti neout is reached when waiting for
transactions to be applied and the f or ce option is f al se (or not defined) then an error is issued and
the remove operation is aborted. If the timeout value defined by dba. gti dWai t Ti neout is reached

108

Dissolving an InnoDB Cluster

when waiting for transactions to be applied and the f or ce option is set to t r ue then the operation
continues without an error and removes the instance from the cluster.

Important

A The f or ce option should only be used with
Cluster.renovel nst ance(i nstance) when you want to ignore any errors,
for example unprocessed transactions or an instance being UNREACHABLE,
and do not plan to reuse the instance with the cluster. Ignoring errors when
removing an instance from the cluster could result in an instance which is not in
synchrony with the cluster, preventing it from rejoining the cluster at a later time.
Only use the f or ce option when you plan to no longer use the instance with
the cluster, in all other cases you should always try to recover the instance and
only remove it when it is available and healthy, in other words with the status
ONLI NE.

Dissolving an InnoDB Cluster

To dissolve an InnoDB Cluster you connect to a read-write instance, for example the primary in a
single-primary cluster, and use the Cl ust er . di ssol ve() command. This removes all metadata and
configuration associated with the cluster, and disables Group Replication on the instances. Any data
that was replicated between the instances is not removed.

Important

A There is no way to undo the dissolving of a cluster. To create it again use
dba. createC uster().

The C ust er. di ssol ve() operation can only configure instances which are ONLI NE or reachable. If
members of a cluster cannot be reached by the member where you issued the Cl ust er. di ssol ve()
command you have to decide how the dissolve operation should proceed. If there is any chance you
want to rejoin any instances that are identified as missing from the cluster, it is strongly recommended
to cancel the dissolve operation and first bring the missing instances back online, before proceeding
with a dissolve operation. This ensures that all instances can have their metadata updated correctly,
and that there is no chance of a split-brain situation. However, if the instances from the cluster which
cannot be reached have permanently left the cluster there could be no choice but to force the dissolve
operation, which means that the missing instances are ignored and only online instances are affected
by the operation.

which could not be reached during the dissolve operation continuing to operate,
creating the risk of a split-brain situation. Only ever force a dissolve operation
to ignore missing instances if you are sure there is no chance of the instance

Warning
O Forcing the dissolve operation to ignore cluster instances can result in instances
coming online again.

In interactive mode, if members of a cluster are not reachable during a dissolve operation then an
interactive prompt is displayed, for example:

nmysql -j s> C uster. dissol ve()

The cluster still has the follow ng regi stered instances:
{
"clusterNane": "testd uster",
"def aul t ReplicaSet": {
"nane": "default",
"topol ogy": [
{
"address": "ic-1:3306",
"l abel ": "ic-1:3306",
"role": "HA"
1,

109

Dissolving an InnoDB Cluster

{
"address": "ic-2:3306",
"l abel ": "ic-2:3306",
"role": "HA"

b

{
"address": "ic-3:3306",
"l abel ": "ic-3:3306",
"role": "HA"

}

}

}
WARNI NG You are about to dissolve the whole cluster and | ose the high

availability features provided by it. This operation cannot be reverted. Al

menbers will be renpved fromthe cluster and replication will be stopped,
internal recovery user accounts and the cluster metadata will be dropped. User
data will be maintained intact in all instances.

Are you sure you want to dissolve the cluster? [y/N: y

ERROR: The instance 'ic-2:3306" cannot be renpved because it is on a '(MSSING'
state. Please bring the instance back ONLINE and try to dissolve the cluster
again. If the instance is permanently not reachable, then you can choose to
proceed with the operation and only renove the instance fromthe C uster

Met adat a.

Do you want to continue anyway (only the instance nmetadata will be renoved)?
LY/N: y
Instance 'ic-3:3306' is attenpting to | eave the cluster... Instance 'ic-1:3306'

is attenpting to | eave the cluster...

WARNI NG The cluster was successfully dissolved, but the follow ng instance was
ski pped: 'ic-2:3306'. Please nake sure this instance is permanently unavail abl e
or take any necessary nmanual action to ensure the cluster is fully dissolved.

In this example, the cluster consisted of three instances, one of which was offline when dissolve was
issued. The error is caught, and you are given the choice how to proceed. In this case the missing
i c- 2 instance is ignored and the reachable members have their metadata updated.

When MySQL Shell is running in non-interactive mode, for example when running a batch file, you can
configure the behavior of the Cl ust er . di ssol ve() operation using the f or ce option. To force the
dissolve operation to ignore any instances which are unreachable, issue:

nmysql -j s> Custer.dissolve({force: true})

Any instances which can be reached are removed from the cluster, and any unreachable instances
are ignored. The warnings in this section about forcing the removal of missing instances from a cluster
apply equally to this technique of forcing the dissolve operation.

You can also use the i nt er act i ve option with the Cl ust er. di ssol ve() operation to override
the mode which MySQL Shell is running in, for example to make the interactive prompt appear when
running a batch script. For example:

nysql -j s> Cluster.dissolve({interactive: true})

The dba. gti dWai t Ti nreout MySQL Shell option configures how long the Cl ust er . di ssol ve()
operation waits for cluster transactions to be applied before removing a target instance from the cluster,
but only if the target instance is ONLI NE. An error is issued if the timeout is reached when waiting for
cluster transactions to be applied on any of the instances being removed, except if force: true is used,
which skips the error in that case.

Note
@ After issuing cl ust er . di ssol ve(), any variable assigned to the Cl ust er
object is no longer valid.

110

Changing a Cluster's Topology

Changing a Cluster's Topology

By default, an InnoDB Cluster runs in single-primary mode, where the cluster has one primary server
that accepts read and write queries (R/W), and all of the remaining instances in the cluster accept only
read queries (R/O). When you configure a cluster to run in multi-primary mode, all of the instances in
the cluster are primaries, which means that they accept both read and write queries (R/W). If a cluster
has all of its instances running MySQL server version 8.0.15 or later, you can make changes to the
topology of the cluster while the cluster is online. In previous versions it was necessary to completely
dissolve and re-create the cluster to make the configuration changes. This uses the group action
coordinator exposed through the functions described at Configuring an Online Group, and as such you
should observe the rules for configuring online groups.

Note
@ multi-primary mode is considered an advanced mode

Usually a single-primary cluster elects a new primary when the current primary leaves the cluster
unexpectedly, for example due to an unexpected halt. The election process is normally used to choose
which of the current secondaries becomes the new primary. To override the election process and force
a specific server to become the new primary, use the Cl ust er. set Pri maryl nst ance(i nstance)
function, where i nst ance specifies the connection to the instance which should become the new
primary. This enables you to configure the underlying Group Replication group to choose a specific
instance as the new primary, bypassing the election process.

You can change the mode (sometimes described as the topology) which a cluster is running in
between single-primary and multi-primary using the following operations:

e Cluster.sw tchToMul ti PrimaryMde(), which switches the cluster to multi-primary mode. All
instances become primaries.

e Cluster.sw tchToSi ngl ePri maryNMode([i nstance]), which switches the cluster to single-
primary mode. If i nst ance is specified, it becomes the primary and all the other instances become
secondaries. If i nst ance is not specified, the new primary is the instance with the highest member
weight (and the lowest UUID in case of a tie on member weight).

7.6 Configuring InnoDB Cluster

This section describes how to use AdminAPI to configure an InnoDB Cluster.
» Setting Options for InnoDB Cluster

e Customizing InnoDB Clusters

» Configuring the Election Process

» Configuring Failover Consistency

» Configuring Automatic Rejoin of Instances

» Configuring the Parallel Replication Applier

» Securing your Cluster

» Creating an Allowlist of Servers

Setting Options for InnoDB Cluster

You can check and modify the settings in place for an InnoDB Cluster while the instances are online.
To check the current settings of a cluster, use the following operation:

111

https://dev.mysql.com/doc/refman/8.0/en/group-replication-configuring-online-group.html

Customizing InnoDB Clusters

» Cluster.options(), which lists the configuration options for the cluster and its instances. A
boolean option al | can also be specified to include information about all Group Replication system
variables in the output.

You can configure the options of an InnoDB Cluster at a cluster level or instance level, while instances
remain online. This avoids the need to remove, reconfigure and then again add the instance to change
InnoDB Cluster options. Use the following operations:

e Cluster.setOption(option, val ue) tochange the settings of all cluster instances globally or
cluster global settings such as cl ust er Nane.

» Cluster.setlnstanceOption(instance, option, val ue) tochange the settings of
individual cluster instances

The way which you use InnoDB Cluster options with the operations listed depends on whether the
option can be changed to be the same on all instances or not. These options are changeable at both
the cluster (all instances) and per instance level:

» aut oRej oi nTri es: integer value to define the number of times an instance attempts to rejoin the
cluster after being expelled. See Configuring Automatic Rejoin of Instances.

e exit StateActi on: string value indicating the Group Replication exit state action. See Configuring
Automatic Rejoin of Instances.

* nenber Wi ght : integer value with a percentage weight for automatic primary election on failover.
See Configuring the Election Process.

e tag: opti on: built-in and user-defined tags to be associated to the cluster. See Section 6.3,
“Tagging Metadata”.

These options are changeable at the cluster level only:
e cl ust er Nane: string value to define the cluster name

» di sabl eCl one: boolean value used to disable the clone usage on the cluster. See
dba. creat eCl ust er () and MySQL Clone.

» expel Ti meout : integer value to define the time period in seconds that cluster members should wait
for a non-responding member before evicting it from the cluster. See Creating the Cluster.

« fail over Consi st ency: string value indicating the consistency guarantees that the cluster
provides. See Configuring Automatic Rejoin of Instances.

This option is changeable at the per instance level only:

« | abel : a string identifier of the instance

Customizing InnoDB Clusters

When you create a cluster and add instances to it, values such as the group name, the local

address, and the seed instances are configured automatically by AdminAPI. These default values are
recommended for most deployments, but advanced users can override the defaults by passing the
following options to the dba. creat eCl ust er () and Cl ust er. addl nst ance().

To customize the name of the replication group created by InnoDB Cluster, pass the gr oupNane
option to the dba. cr eat eCl ust er () command. This sets the gr oup_r epl i cati on_group_nane
system variable. The name must be a valid UUID.

To customize the address which an instance provides for connections from other instances, pass the
| ocal Addr ess option to the dba. creat eCl uster () and cl ust er. addl nst ance() commands.
Specify the address in the format host : port. This sets the group_replication_| ocal address

112

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address

Configuring the Election Process

system variable on the instance. The address must be accessible to all instances in the cluster, and
must be reserved for internal cluster communication only. In other words do not use this address for
communication with the instance.

To customize the instances used as seeds when an instance joins the cluster, pass the gr oupSeeds
option to the dba. creat eCl ust er () and Cl ust er. addl nst ance() operations. Seed instances
are contacted when a new instance joins a cluster and are used to provide data to the new

instance. The addresses of the seed instances are specified as a comma separated list such as

host 1: port 1,host 2: port 2. This configures the gr oup_r epl i cati on_group_seeds system
variable. When a new instance is added to a cluster, the local address of this instance is automatically
appended to the list of group seeds of all online cluster members in order to allow them to use the new
instance to rejoin the group if necessary.

appear in the list. This means that a user specified seed is used first and

Note
@ the instances in the seed list are used according to the order in which they
preferred over automatically added instances.

For more information see the documentation of the system variables configured by these AdminAPI
options.

Configuring the Election Process

You can optionally configure how a single-primary cluster elects a new primary, for example to prefer
one instance as the new primary to fail over to. Use the nenber Wi ght option and pass it to the

dba. creat eCl uster () and Cl ust er. addl nst ance() methods when creating your cluster. The
menber Wi ght option accepts an integer value between 0 and 100, which is a percentage weight

for automatic primary election on failover. When an instance has a higher precentage number set by
nmenber Wi ght , it is more likely to be elected as primary in a single-primary cluster. When a primary
election takes place, if multiple instances have the same nmenber Wi ght value, the instances are then
prioritized based on their server UUID in lexicographical order (the lowest) and by picking the first one.

Setting the value of menber Wi ght configures the gr oup_repl i cati on_nmenber _wei ght system
variable on the instance. Group Replication limits the value range from 0 to 100, automatically adjusting
it if a higher or lower value is provided. Group Replication uses a default value of 50 if no value is
provided. See Single-Primary Mode for more information.

For example to configure a cluster where i c- 3 is the preferred instance to fail over to in the event that
i c- 1, the current primary, leaves the cluster unexpectedly use nenber Wi ght as follows:

dba. createC uster (' clusterl', {menber Wi ght: 35})

var mycluster = dba.getC uster()

nycl ust er. addl nst ance(' i cadm n@c2', {nmenberWei ght: 25})
nmycl ust er. addl nst ance('i cadm n@c3', {nmenber Wi ght: 50})

Configuring Failover Consistency

Group Replication provides the ability to specify the failover guarantees (eventual or “read your
writes”) if a primary failover happens in single-primary mode (see Configuring Transaction Consistency
Guarantees). You can configure the failover guarantees of an InnoDB Cluster at creation by passing
the consi st ency option (prior to version 8.0.16 this option was the f ai | over Consi st ency
option, which is now deprecated) to the dba. cr eat eCl ust er () operation, which configures the
group_replication_consi stency system variable on the seed instance. This option defines
the behavior of a new fencing mechanism used when a new primary is elected in a single-primary
group. The fencing restricts connections from writing and reading from the new primary until it has
applied any pending backlog of changes that came from the old primary (sometimes referred to as
“read your writes”). While the fencing mechanism is in place, applications effectively do not see time
going backward for a short period of time while any backlog is applied. This ensures that applications
do not read stale information from the newly elected primary.

113

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_member_weight
https://dev.mysql.com/doc/refman/8.0/en/group-replication-single-primary-mode.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-configuring-consistency-guarantees.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-configuring-consistency-guarantees.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_consistency

Configuring Automatic Rejoin of Instances

The consi st ency option is only supported if the target MySQL server version is 8.0.14 or later,

and instances added to a cluster which has been configured with the consi st ency option are
automatically configured to have gr oup_repl i cati on_consi st ency the same on all cluster
members that have support for the option. The variable default value is controlled by Group Replication
and is EVENTUAL, change the consi st ency option to BEFORE_ON PRI MARY_ FAI LOVERto enable
the fencing mechanism. Alternatively use consi st ency=0 for EVENTUAL and consi st ency=1 for
BEFORE_ON_PRI MARY_FAI LOVER.

but is allowed because the cluster can later be changed into single-primary

Note
@ Using the consi st ency option on a multi-primary InnoDB Cluster has no effect
mode with the Cl ust er. swi t chToSi ngl ePri mar yMode() operation.

Configuring Automatic Rejoin of Instances

Instances running MySQL 8.0.16 and later support the Group Replication automatic rejoin functionality,
which enables you to configure instances to automatically rejoin the cluster after being expelled.

See Responses to Failure Detection and Network Partitioning for background information. AdminAPI
provides the aut oRej oi nTri es option to configure the number of tries instances make to rejoin

the cluster after being expelled. By default instances do not automatically rejoin the cluster. You can
configure the aut oRej oi nTri es option at either the cluster level or for an individual instance using
the following commands:

» dba.createC uster()

e Cluster. addl nstance()
 Cluster.setOption()

» Cluster.setlnstanceOption()

The aut oRej oi nTri es option accepts positive integer values between 0 and 2016 and the default
value is 0, which means that instances do not try to automatically rejoin. When you are using the
automatic rejoin functionality, your cluster is more tolerant to faults, especially temporary ones such
as unreliable networks. But if quorum has been lost, you should not expect members to automatically
rejoin the cluster, because majority is required to rejoin instances.

Instances running MySQL version 8.0.12 and later have the
group_replication_exit_state_action variable, which you can configure using the
AdminAPIl exi t St at eAct i on option. This controls what instances do in the event of leaving the
cluster unexpectedly. By default the exi t St at eAct i on option is READ_ONLY, which means that
instances which leave the cluster unexpectedly become read-only. If exi t St at eAct i on is set to
OFFLI NE_MODE (available from MySQL 8.0.18), instances which leave the cluster unexpectedly
become read-only and also enter offline mode, where they disconnect existing clients and do not
accept new connections (except from clients with administrator privileges). If exi t St at eAct i on is
set to ABORT_SERVER then in the event of leaving the cluster unexpectedly, the instance shuts down
MySQL, and it has to be started again before it can rejoin the cluster. Note that when you are using the
automatic rejoin functionality, the action configured by the exi t St at eAct i on option only happens in
the event that all attempts to rejoin the cluster fail.

There is a chance you might connect to an instance and try to configure it using the AdminAPI, but at
that moment the instance could be rejoining the cluster. This could happen whenever you use any of
these operations:

e Cluster.status()
e dba.getC uster()

e Cluster.rejoinlnstance()

114

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_consistency
https://dev.mysql.com/doc/refman/8.0/en/group-replication-responses-failure.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_exit_state_action

Configuring the Parallel Replication Applier

e Cluster. addl nstance()
 Cluster.renovel nstance()

e Cluster.rescan()

e Cluster.checkl nstanceSt ate()

These operations might provide extra information while the instance is automatically rejoining the
cluster. In addition, when you are using Cl ust er . r enovel nst ance() , if the target instance is
automatically rejoining the cluster the operation aborts unless you pass in f or ce: t r ue.

Configuring the Parallel Replication Applier

From version 8.0.23 instances support and enable parallel replication applier threads, sometimes
referred to as a multi-threaded replica. Using multiple replica applier threads in parallel improves the
throughput of both the replication applier and incremental recovery.

This means that on instances running 8.0.23 and later, the following system variables must be
configured:

* binlog transacti on_dependency_tracki ng=\\RI TESET
* sl ave_preserve_conmt_order=0N

» slave_parallel type=LOG CAL_CLOCK

e transaction wite _set extracti on=XXHASH64

By default, the number of applier threads (configured by the sl ave paral | el _wor ker s system
variable) is set to 4.

When you upgrade a cluster that has been running a version of MySQL server and MySQL Shell
earlier than 8.0.23, the instances are not configured to use the parallel replication applier. If the parallel
applier is not enabled, the output of the Cl ust er . st at us() operation shows a message in the

i nst anceEr r or s field, for example:

"instanceErrors": [
"NOTE: The required parallel-appliers settings are not enabl ed on
the instance. Use dba.configurelnstance() to fix it."

In this situation you should reconfigure your instances, so that they use the parallel replication

applier. For each instance that belongs to the InnoDB Cluster, update the configuration by issuing
dba. confi gurel nstance(i nst ance) . Note that usually dba. confi gur el nst ance() is used
before adding the instance to a cluster, but in this special case there is no need to remove the instance
and the configuration change is made while it is online.

Information about the parallel replication applier is displayed in the output of the

Cluster. status(extended=1) operation. For example, if the parallel replication applier is
enabled, then the t opol ogy section output for the instance shows the number of threads under
appl i er Wor ker Thr eads. The system variables configured for the parallel replication applier are
shown in the output of the Cl ust er. opt i ons() operation.

You can configure the number of threads which an instance uses for the parallel replication applier
with the appl i er Wor ker Thr eads option, which defaults to 4 threads. The option accepts integers
in the range of 0 to 1024 and can only be used with the dba. confi gur el nst ance() and

dba. confi gureRepl i caSet | nst ance() operations. For example, to use 8 threads, issue:

nysql -j s> dba. confi gurel nstance(i nstance, {applierWrkerThreads: 8, restart: true})

115

https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_transaction_dependency_tracking
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_preserve_commit_order
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_type
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_transaction_write_set_extraction
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_slave_parallel_workers

Securing your Cluster

Note
@ The change to the number of threads used by the parallel replication applier
only occurs after the instance is restarted and has rejoined the cluster.

To disable the parallel replication applier, set the appl i er Wor ker Thr eads option to 0.

Securing your Cluster

Server instances can be configured to use secure connections. For general information on using
secure connections with MySQL see Using Encrypted Connections. This section explains how to
configure a cluster to use encrypted connections. An additional security possibility is to configure which
servers can access the cluster, see Creating an Allowlist of Servers.

Important

the servers to the i pAl | owl i st . For example, when using the commercial
version of MySQL, SSL is enabled by default and you need to configure the

A Once you have configured a cluster to use encrypted connections you must add
i pAl'l ow i st option for all instances. See Creating an Allowlist of Servers.

When using dba. cr eat eCl ust er () to set up a cluster, if the server instance provides encryption
then it is automatically enabled on the seed instance. Pass the nenber Ss| Mbde option to the

dba. cr eat eCl ust er () method to specify a different SSL mode. The SSL mode of a cluster can only
be set at the time of creation. The nenber Ssl Mode option is a string that configures the SSL mode to
be used, it defaults to AUTO. The following modes are supported:

» DI SABLED: Ensure SSL encryption is disabled for the seed instance in the cluster.

* AUTC Automatically enable SSL encryption if the server instance supports it, or disable encryption if
the server does not support it.

» REQUI RED: Enable SSL encryption for the seed instance in the cluster. If it cannot be enabled, an
error is raised.

» (added in version 8.0.24) VERI FY_CA: Like REQUI RED, but additionally verify the server Certificate
Authority (CA) certificate against the configured CA certificates. The connection attempt fails if no
valid matching CA certificates are found.

* (added in version 8.0.24) VERI FY_| DENTI TY: Like VERI FY_CA, but additionally perform host name
identity verification by checking the host name the client uses for connecting to the server against the
identity in the certificate that the server sends to the client.

For example, to set the cluster to use REQUI RED, issue:

nmysql -j s> var nmyd uster = dba. created uster ({nmenber Ssl Mode: ' REQUI RED })

If you choose to use the VERI FY_CA or VERI FY_| DENTI TY mode, on each cluster instance you
must manually supply the CA certificates using the ss| _ca and/or ss| _capat h option. For more
information on these modes, see - - ssl - node=node.

When you use the Cl ust er . addl nst ance() and Cl ust er. rej oi nl nst ance() operations, SSL
encryption on the instance is enabled or disabled based on the setting used for the cluster. Use the
nmenber Ssl Mode option with either of these operations to set the instance to use a different mode of
encryption.

When using dba. cr eat eCl ust er () with the adopt Fr onGR option to adopt an existing Group
Replication group, no SSL settings are changed on the adopted cluster:

* menber Ss| Mbde cannot be used with adopt Fr onGR.

116

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_ca
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ssl_capath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode

Creating an Allowlist of Servers

« If the SSL settings of the adopted cluster are different from the ones supported by the MySQL Shell,
in other words SSL for Group Replication recovery and Group Communication, both settings are not
modified. This means you are not be able to add new instances to the cluster, unless you change the
settings manually for the adopted cluster.

MySQL Shell always enables or disables SSL for the cluster for both Group Replication recovery and
Group Communication, see Securing Group Communication Connections with Secure Socket Layer
(SSL). A verification is performed and an error issued in case those settings are different for the seed
instance (for example as the result of a dba. cr eat eCl ust er () using adopt Fr onGR) when adding
a new instance to the cluster. SSL encryption must be enabled or disabled for all instances in the
cluster. Verifications are performed to ensure that this invariant holds when adding a new instance to
the cluster.

The dba. depl oySandbox| nst ance() command attempts to deploy sandbox instances with SSL
encryption support by default. If it is not possible, the server instance is deployed without SSL support.
See Section 6.2.1, “Deploying Sandbox Instances”.

Creating an Allowlist of Servers

When using a cluster's cr eat eCl ust er (), addl nstance(), andr ej oi nl nst ance() methods
you can optionally specify a list of approved servers that belong to the cluster, referred to as an
allowlist. By specifying the allowlist explicitly in this way you can increase the security of your cluster
because only servers in the allowlist can connect to the cluster. Using the i pAl | owl i st option
(previously i pWhi t el i st, now deprecated) configures the group_replication_ip_allowi st
system variable on the instance. By default, if not specified explicitly, the allowlist is automatically set
to the private network addresses that the server has network interfaces on. To configure the allowlist,
specify the servers to add with the i pAl | owl i st option when using the method. IP addresses must
be specified in IPv4 format. Pass the servers as a comma separated list, surrounded by quotes. For
example:

nmysql -j s> cluster. addl nstance("i cadm n@ c- 3: 3306", {ipAlowist: "203.0.113.0/24, 198.51.100.110"})

This configures the instance to only accept connections from servers at addresses 203. 0. 113. 0/ 24
and 198. 51. 100. 110. The allowlist can also include host names, which are resolved only when a
connection request is made by another server.

Warning

O Host names are inherently less secure than IP addresses in an allowlist. MySQL
carries out FCrDNS verification, which provides a good level of protection, but
can be compromised by certain types of attack. Specify host names in your
allowlist only when strictly necessary, and ensure that all components used for
name resolution, such as DNS servers, are maintained under your control. You
can also implement name resolution locally using the hosts file, to avoid the use
of external components.

7.7 Troubleshooting InnoDB Cluster

This section describes how to troubleshoot an InnoDB Cluster.
* Rejoining an Instance to a Cluster

» Restoring a Cluster from Quorum Loss

Rebooting a Cluster from a Major Outage

» Rescanning a Cluster

Rejoining an Instance to a Cluster

117

https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-secure-socket-layer-support-ssl.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_ip_allowlist

Restoring a Cluster from Quorum Loss

If an instance leaves the cluster, for example because it lost connection, and for some reason it could
not automatically rejoin the cluster, it might be necessary to rejoin it to the cluster at a later stage. To
rejoin an instance to a cluster issue Cl ust er. rej oi nl nstance(i nst ance).

Tip

; If the instance has super _read_onl y=0ONthen you might need to confirm
that AdminAPI can set super _read_onl y=0OFF. See Super Read-only and
Instances for more information.

In the case where an instance has not had its configuration persisted (see Section 6.1.5, “Persisting
Settings”), upon restart the instance does not rejoin the cluster automatically. The solution is to issue
cluster.rejoinlnstance() so thatthe instance is added to the cluster again and ensure the
changes are persisted. Once the InnoDB Cluster configuration is persisted to the instance's option file it
rejoins the cluster automatically.

If you are rejoining an instance which has changed in some way then you might have to modify

the instance to make the rejoin process work correctly. For example, when you restore a MySQL
Enterprise Backup backup, the ser ver _uui d changes. Attempting to rejoin such an instance fails
because InnoDB Cluster instances are identified by the ser ver _uui d variable. In such a situation,
information about the instance's old ser ver _uui d must be removed from the InnoDB Cluster
metadata and then a Cl ust er. rescan() must be executed to add the instance to the metadata
using it's new ser ver _uui d. For example:

cluster.renpvel nstance("root @ nst anceW t hd dUUI D: 3306", {force: true})

cluster.rescan()

In this case you must pass the f or ce option to the Cl ust er. renovel nst ance() method because
the instance is unreachable from the cluster's perspective and we want to remove it from the InnoDB
Cluster metadata anyway.

Restoring a Cluster from Quorum Loss

If an instance (or instances) fail, then a cluster can lose its quorum, which is the ability to vote in a

new primary. This can happen when there is a failure of enough instances that there is no longer a
majority of the instances which make up the cluster to vote on Group Replication operations. See Fault-
tolerance. When a cluster loses quorum you can no longer process write transactions with the cluster,
or change the cluster's topology, for example by adding, rejoining, or removing instances. However if
you have an instance online which contains the InnoDB Cluster metadata, it is possible to restore a
cluster with quorum. This assumes you can connect to an instance that contains the InnoDB Cluster
metadata, and that instance can contact the other instances you want to use to restore the cluster.

Important

scenario if incorrectly used and should be considered a last resort. Make
absolutely sure that there are no partitions of this group that are still operating

A This operation is potentially dangerous because it can create a split-brain
somewhere in the network, but not accessible from your location.

Connect to an instance which contains the cluster's metadata, then use the
Cluster.forceQuorumlsi ngPartitionO (instance) operation, which restores the cluster
based on the metadata on i nst ance, and then all the instances that are ONLI NE from the point of
view of the given instance definition are added to the restored cluster.

nysql -j s> cluster.forceQuorunisi ngPartitionO ("icadm n@ c-1: 3306")

Restoring replicaset 'default' fromloss of quorum by using the partition conposed of [icadm n@ c-1: 330¢

Pl ease provide the password for 'icadm n@c-1:3306": **xxxx

118

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-fault-tolerance.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-fault-tolerance.html

Rebooting a Cluster from a Major Outage

Restoring the InnoDB cluster ...
The |1 nnoDB cl uster was successfully restored using the partition fromthe instance 'icadni n@ c-1: 3306

WARNI NG To avoid a split-brain scenario, ensure that all other menbers of the replicaset
are renoved or joined back to the group that was restored.

In the event that an instance is not automatically added to the cluster, for example if its settings were
not persisted, use Cl ust er . rej oi nl nst ance() to manually add the instance back to the cluster.

The restored cluster might not, and does not have to, consist of all of the original instances which made
up the cluster. For example, if the original cluster consisted of the following five instances:

e jc-1
e ic-2
*ic-3
e ic-4
*ic-5

and the cluster experiences a split-brain scenario, withi c-1,i c- 2, and i c- 3 forming one

partition while i c- 4 and i c- 5 form another partition. If you connectto i c- 1 and issue
Cluster.forceQuorunJsi ngPartitionOf ("icadm n@c-1: 3306") to restore the cluster the
resulting cluster would consist of these three instances:

e jc-1
e jCc-2
e jc-3

becauseic-1seesic-2andic-3as ONLI NEand doesnotseeic-4andi c-5.

Rebooting a Cluster from a Major Outage

If your cluster suffers from a complete outage, you can ensure it is reconfigured correctly using

dba. r eboot Cl ust er Fr onConpl et eQut age() . This operation takes the instance which MySQL
Shell is currently connected to and uses its metadata to recover the cluster. In the event that a cluster's
instances have completely stopped, the instances must be started and only then can the cluster be
started. For example if the machine a sandbox cluster was running on has been restarted, and the
instances were at ports 3310, 3320 and 3330, issue:

nysql -j s> dba. st art Sandbox| nst ance(3310)
nysql -j s> dba. st art Sandbox| nst ance(3320)
nysql -j s> dba. st art Sandbox| nst ance(3330)

This ensures the sandbox instances are running. In the case of a production deployment you
would have to start the instances outside of MySQL Shell. Once the instances have started,

you need to connect to an instance with the GTID superset, which means the instance which

had applied the most transaction before the outage. If you are unsure which instance contains

the GTID superset, connect to any instance and follow the interactive messages from the

dba. r eboot Cl ust er Fr onConpl et eCut age() operation, which detects if the instance you are
connected to contains the GTID superset. Reboot the cluster by issuing:

nysql -j s> var cluster = dba.reboot C uster FronConpl et eQut age() ;

The dba. r eboot C ust er Fr onConpl et eQut age() operation then follows these steps to ensure the
cluster is correctly reconfigured:

119

Rescanning a Cluster

e The InnoDB Cluster metadata found on the instance which MySQL Shell is currently connected to
is checked to see if it contains the GTID superset, in other words the transactions applied by the
cluster. If the currently connected instance does not contain the GTID superset, the operation aborts
with that information. See the subsequent paragraphs for more information.

« If the instance contains the GTID superset, the cluster is recovered based on the metadata of the
instance.

» Assuming you are running MySQL Shell in interactive mode, a wizard is run that checks which
instances of the cluster are currently reachable and asks if you want to rejoin any discovered
instances to the rebooted cluster.

» Similarly, in interactive mode the wizard also detects instances which are currently not reachable and
asks if you would like to remove such instances from the rebooted cluster.

If you are not using MySQL Shell's interactive mode, you can use the r ej oi nl nst ances and
renovel nst ances options to manually configure instances which should be joined or removed during
the reboot of the cluster.

If you encounter an error such as The active session instance isn't the nost updated
in conmparison with the ONLI NE i nstances of the Cluster's netadata. thenthe
instance you are connected to does not have the GTID superset of transactions applied by the cluster.
In this situation, connect MySQL Shell to the instance suggested in the error message and issue

dba. r eboot Cl ust er Fr onConpl et eCut age() from that instance.

Tip

; To manually detect which instance has the GTID superset rather than using the
interactive wizard, check the gt i d_execut ed variable on each instance. For
example issue:

nysqgl - sql > SHOW VARI ABLES LI KE 'gtid_executed';

The instance which has applied the largest GTID set of transactions contains
the GTID superset.

If this process fails, and the cluster metadata has become badly corrupted, you might need to drop
the metadata and create the cluster again from scratch. You can drop the cluster metadata using
dba. dr opMet adat aSchena() .

Warning
O The dba. dr opMet adat aSchenma() method should only be used as a last
resort, when it is not possible to restore the cluster. It cannot be undone.

If you are using MySQL Router with the cluster, when you drop the metadata, all current connections
are dropped and new connections are forbidden. This causes a full outage.

Rescanning a Cluster

If you make configuration changes to a cluster outside of the AdminAPI commands, for example by
changing an instance's configuration manually to resolve configuration issues or after the loss of an
instance, you need to update the InnoDB Cluster metadata so that it matches the current configuration
of instances. In these cases, use the Cl ust er. rescan() operation, which enables you to update
the InnoDB Cluster metadata either manually or using an interactive wizard. The Cl ust er. rescan()
operation can detect new active instances that are not registered in the metadata and add them,

or obsolete instances (no longer active) still registered in the metadata, and remove them. You can
automatically update the metadata depending on the instances found by the command, or you can
specify a list of instance addresses to either add to the metadata or remove from the metadata. You
can also update the topology mode stored in the metadata, for example after changing from single-
primary mode to multi-primary mode outside of AminAPI.

120

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
replication-gtids-concepts-gtid-sets

Rescanning a Cluster

The syntax of the command is Cl ust er. rescan([opti ons]). The opti ons dictionary supports the
following:

» interactive: boolean value used to disable or enable the wizards in the command execution.
Controls whether prompts and confirmations are provided. The default value is equal to MySQL Shell
wizard mode, specified by shel | . opti ons. useW zar ds.

« addl nst ances: list with the connection data of the new active instances to add to the metadata, or
“auto” to automatically add missing instances to the metadata. The value “auto” is case-insensitive.

« Instances specified in the list are added to the metadata, without prompting for confirmation

 In interactive mode, you are prompted to confirm the addition of newly discovered instances that
are not included in the addl nst ances option

< In non-interactive mode, newly discovered instances that are not included in the addl nst ances
option are reported in the output, but you are not prompted to add them

» renovel nst ances: list with the connection data of the obsolete instances to remove from the
metadata, or “auto” to automatically remove obsolete instances from the metadata.

« Instances specified in the list are removed from the metadata, without prompting for confirmation

* In interactive mode, you are prompted to confirm the removal of obsolete instances that are not
included in the r enovel nst ances option

* In non-interactive mode, obsolete instances that are not included in the r enovel nst ances option
are reported in the output but you are not prompted to remove them

» updat eTopol ogyMode: boolean value used to indicate if the topology mode (single-primary or
multi-primary) in the metadata should be updated (true) or not (false) to match the one being used by
the cluster. By default, the metadata is not updated (false).

 If the value is t r ue then the InnoDB Cluster metadata is compared to the current mode being
used by Group Replication, and the metadata is updated if necessary. Use this option to update
the metadata after making changes to the topology mode of your cluster outside of AdminAPI.

« Ifthe value is f al se then InnoDB Cluster metadata about the cluster's topology mode is not
updated even if it is different from the topology used by the cluster's Group Replication group

« If the option is not specified and the topology mode in the metadata is different from the topology
used by the cluster's Group Replication group, then:

« Ininteractive mode, you are prompted to confirm the update of the topology mode in the
metadata

 In non-interactive mode, if there is a difference between the topology used by the cluster's
Group Replication group and the InnoDB Cluster metadata, it is reported and no changes are
made to the metadata

¢ When the metadata topology mode is updated to match the Group Replication mode, the auto-
increment settings on all instances are updated as described at InnoDB Cluster and Auto-
increment.

» upgradeCommPr ot ocol : boolean value used to indicate if the Group Replication communication
protocol version should be upgraded (true) or not (false) to the version supported by the instance in
the cluster that is at the lowest MySQL release. By default, the communication protocol version is not
upgraded (false). AdminAPI operations before MySQL Shell 8.0.26 upgraded automatically where
possible, but the process can cause delays in the cluster. From MySQL Shell 8.0.26, AdminAPI
operations that cause a topology change return a message if the communication protocol version
can be upgraded, and you can use this option to carry out the upgrade at a suitable time. It is

121

Upgrading an InnoDB Cluster

advisable to upgrade to the highest available version of the Group Replication communication
protocol to support the latest features, such as message fragmentation for large transactions. For
more information, see Setting a Group's Communication Protocol Version.

« Ifthe value is t r ue then the Group Replication communication protocol version is upgraded to the
version supported by the instance in the cluster that is at the lowest MySQL release.

« If the value is f al se then the Group Replication communication protocol version is not upgraded.

7.8 Upgrading an InnoDB Cluster

This section explains how to upgrade your cluster. Much of the process of upgrading an InnoDB
Cluster consists of upgrading the instances in the same way as documented at Upgrading Group
Replication. This section focuses on the additional considerations for upgrading InnoDB Cluster. Before
starting an upgrade, you can use the MySQL Shell Section 11.1, “Upgrade Checker Utility” to verify
instances are ready for the upgrade.

From version 8.0.19, if you try to bootstrap MySQL Router against a cluster and it discovers that the
metadata version is 0.0.0, this indicates that a metadata upgrade is in progress, and the bootstrap fails.
Wait for the metadata upgrade to complete before you try to bootstrap again. When MySQL Router

is operating normally (not bootstrapping), if it discovers the metadata version is 0.0.0 (upgrade in
progress) it does not proceed with the metadata refresh it was about to begin. Instead, MySQL Router
continues using the last metadata it has cached. All the existing user connections are maintained, and
any new connections are routed according to the cached metadata. The Metadata refresh restarts
when the Metadata version is no longer 0.0.0. In the regular (not bootstrapping) mode, MySQL Router
works with both version 1.x.x and 2.x.x. metadata, and the version can change between TTL refreshes.
This ensures routing continues while the cluster is upgraded.

Although it is possible to have instances in a cluster which run multiple MySQL versions, for example
version 5.7 and 8.0, such a mix is not recommended for prolonged use. For example, in a cluster using
a mix of versions, if an instance running version 5.7 leaves the cluster and then MySQL Clone is used
for a recovery operation, the instance running the lower version can no longer join the cluster because
the BACKUP_ADM N privilege becomes a requirement. Running a cluster with multiple versions is
intended as a temporary situation to aid in migration from one version to another, and should not be
relied on for long term use.

7.8.1 Rolling Upgrades

When upgrading the metadata schema of clusters deployed by MySQL Shell versions before 8.0.19, a
rolling upgrade of existing MySQL Router instances is required. This process minimizes disruption to
applications during the upgrade. The rolling upgrade process must be performed in the following order:

1. Run the latest MySQL Shell version, connect the global session to the cluster and issue
dba. upgr adeMet adat a() . This step ensures that any MySQL Router accounts configured for the
cluster have their privileges modified to be compatible with the new version. The upgrade function
stops if an outdated MySQL Router instance is detected, at which point you can stop the upgrade
process in MySQL Shell to resume later.

2. Upgrade any detected out of date MySQL Router instances to the latest version. It is recommended
to use the same MySQL Router version as MySQL Shell version.

3. Continue or restart the dba. upgr adeMet adat a() operation to complete the metadata upgrade.

7.8.2 Upgrading InnoDB Cluster Metadata

As AdminAPI evolves, some releases might require you to upgrade the metadata of existing clusters to
ensure they are compatible with newer versions of MySQL Shell. For example, the addition of InnoDB
ReplicaSet in version 8.0.19 means that the metadata schema has been upgraded to version 2.0.

122

https://dev.mysql.com/doc/refman/8.0/en/group-replication-communication-protocol.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-upgrade.html
https://dev.mysql.com/doc/refman/8.0/en/group-replication-upgrade.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin

Upgrading InnoDB Cluster Metadata

Regardless of whether you plan to use InnoDB ReplicaSet or not, to use MySQL Shell 8.0.19 or later
with a cluster deployed using an earlier version of MySQL Shell, you must upgrade the metadata of
your cluster.

Warning
O Without upgrading the metadata you cannot use MySQL Shell 8.0.19 to change
the configuration of a cluster created with earlier versions. For example, you can
only perform read operations against the cluster such as Cl ust er . st at us(),
Cl uster.describe(),andCl uster.options().
This dba. upgr adeMet adat a() operation compares the version of the metadata schema found on
the cluster MySQL Shell is currently connected to with the version of the metadata schema supported
by this MySQL Shell version. If the installed metadata version is lower, an upgrade process is started.
The dba. upgr adeMet adat a() operation then upgrades any automatically created MySQL Router
users to have the correct privileges. Manually created MySQL Router users with a name not starting
with nysql _rout er _are not automatically upgraded. This is an important step in upgrading your
cluster, only then can the MySQL Router application be upgraded. To get information on which of the
MySQL Router instances registered with a cluster require the metadata upgrade, issue:

cluster.listRouters({' onlyUpgradeRequired' :'true'})
{
"cl usterName": "mycluster"”,
"routers": {
"exanple.com:": {
"host name": "exanpl e.cont',
"| ast Checkl n": "2019-11-26 10:10: 37",
"roPort": 6447,
"roXPort": 64470,
"rwPort": 6446,
"rwxPort": 64460,
"“version": "8.0.18"

Warning
O A cluster which is using the new metadata cannot be administered by earlier
MySQL Shell versions, for example once you upgrade to version 8.0.19 you can
no longer use version 8.0.18 or earlier to administer the cluster.
To upgrade a cluster's metadata, connect MySQL Shell's global session to your cluster and use the
dba. upgr adeMet adat a() operation to upgrade the cluster's metadata to the new metadata. For
example:

nysqgl -j s> \ connect user @xanpl e. com 3306

nysql -j s> dba. upgr adeMet adat a()
| nnoDB O ust er Met adat a Upgr ade

The cluster you are connected to is using an outdated netadata schema version
1.0.1 and needs to be upgraded to 2.0.0.

W t hout doing this upgrade, no Admi nAPl calls except read only operations wll
be al | owed.

The grants for the MySQL Router accounts that were created automatically when
boot st rappi ng need to be updated to match the new netadata version's

requi renments.

Updati ng router accounts...

NOTE: 2 router accounts have been updat ed.

Upgr adi ng netadata at 'exanple.com 3306' fromversion 1.0.1 to version 2.0.0.
Creating backup of the netadata schena...

Step 1 of 1: upgrading from1.0.1 to 2.0.0...

Renovi ng net adat a backup. ..

123

Troubleshooting InnoDB Cluster Upgrades

Upgr ade process successfully finished, netadata schema is now on version 2.0.0

If you encounter an error related to the cluster administration user missing privileges, use the
Cl ust er. set upAdm nAccount () operation with the update option to grant the user the correct
privileges. See Configuring Users for AdminAPI.

7.8.3 Troubleshooting InnoDB Cluster Upgrades

This section covers trouble shooting the upgrade process.

Handling Host Name Changes

MySQL Shell uses the host value of the provided connection parameters as the target hostname
used for AdminAPI operations, namely to register the instance in the metadata (for the

dba. createC uster () and Cl ust er. addl nst ance() operations). However, the actual host
used for the connection parameters might not match the host nane that is used or reported by
Group Replication, which uses the value of the r eport _host system variable when it is defined
(in other words it is not NULL), otherwise the value of host nane is used. Therefore, AdminAPI

now follows the same logic to register the target instance in the metadata and as the default

value for the group_replication_| ocal _address variable on instances, instead of using

the host value from the instance connection parameters. When the r eport _host variable is

set to empty, Group Replication uses an empty value for the host but AdminAPI (for example in
commands such as dba. checkl nst anceConfi guration(), dba. confi gurel nstance(),
dba. creat eCl ust er (), and so on) reports the hostname as the value used which is inconsistent
with the value reported by Group Replication. If an empty value is set for the r eport _host system
variable, an error is generated. (Bug #28285389)

For a cluster created using a MySQL Shell version earlier than 8.0.16, an attempt to reboot the cluster
from a complete outage performed using version 8.0.16 or higher results in this error. This is caused
by a mismatch of the Metadata values with the r eport _host or host nane values reported by the
instances. The workaround is to:

1. Identify which of the instances is the “seed”, in other words the one with the most recent GTID set.
The dba. r eboot Cl ust er Fr onConpl et eCQut age() operation detects whether the instance is a
seed and the operation generates an error if the current session is not connected to the most up-to-
date instance.

2. Setthereport_host system variable to the value that is stored in the Metadata
schema for the target instance. This value is the host nane: port pair used in the
instance definition upon cluster creation. The value can be consulted by querying the
nysql _i nnodb_cl ust er _net adat a. i nst ances table.

For example, suppose a cluster was created using the following sequence of commands:

nysgl -j s> \c cl usterAdnmi n@ ocal host : 3306
nysqgl -j s> dba. creat eCl uster ("nmyCl uster")

Therefore the hostname value stored in the metadata is “localhost” and for that reason,
report host must be set to “localhost” on the seed.

3. Reboot the cluster using only the seed instance. At the interactive prompts do not add the
remaining instances to the cluster.

4. Use C uster.rescan() to add the other instances back to the cluster.
5. Remove the seed instance from the cluster

6. Stop mysqgld on the seed instance and either remove the forced r epor t _host setting (step 2), or
replace it with the value previously stored in the Metadata value.

7. Restart the seed instance and add it back to the cluster using Cl ust er . addl nst ance()

124

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_hostname
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host

InnoDB Cluster Tips

This allows a smooth and complete upgrade of the cluster to the latest MySQL Shell version. Another
possibility, that depends on the use-case, is to simply set the value of r eport _host on all cluster
members to match what has been registered in the Metadata schema upon cluster creation.

7.9 InnoDB Cluster Tips

This section describes some information which is good to know when using InnoDB Cluster.
* Super Read-only and Instances

» Configuring Users for AdminAPI

* InnoDB Cluster and Auto-increment

» InnoDB Cluster and Binary Log Purging

» Resetting Recovery Account Passwords

Super Read-only and Instances

Whenever Group Replication stops, the super read_onl y variable is set to ON to ensure no
writes are made to the instance. When you try to use such an instance with the following AdminAPI
commands you are given the choice to set super read_onl y=0OFF on the instance:

» dba. confi gurel nstance()
« dba. configureLocal | nstance()
» dba. dr opMet adat aSchena()

When AdminAPI encounters an instance which has super _r ead_onl y=QN, in interactive mode you
are given the choice to set super _read_onl y=0OFF. For example:

nmysql -j s> var nyCl uster = dba. dropMet adat aSchema()

Are you sure you want to renove the Metadata? [y/N: y

The MySQL instance at 'l ocal host: 3310' currently has the super_read_only system
variable set to protect it frominadvertent updates from applications. You nust

first unset it to be able to perform any changes to this instance.

For nore infornation see:

https://dev. nysql . com doc/ r ef man/ en/ server - syst em vari abl es. ht m #sysvar _super _read_onl y.

Do you want to di sable super_read_only and continue? [y/N: vy

Met adat a Schena successful |y renpved.

The number of current active sessions to the instance is shown. You must ensure that no applications
can write to the instance inadvertently. By answering y you confirm that AdminAPI can write to

the instance. If there is more than one open session to the instance listed, exercise caution before
permitting AdminAPI to set super _read_onl y=0OFF.

Configuring Users for AdminAPI

Working with instances that belong to an InnoDB Cluster or InnoDB ReplicaSet requires that you
connect to the instances with a user that has the correct privileges to administer the instances.
AdminAPI provides the following ways to administer suitable users:

* Inversion 8.0.20 and later, use the set upAdmi nAccount (user) operation, which creates or
upgrades a MySQL user account with the necessary privileges to administer an InnoDB Cluster or
InnoDB ReplicaSet.

 In versions prior to 8.0.20, the preferred method to create users for administration is using the
cl ust er Adm n option with the dba. conf i gur el nst ance() operation.

125

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_report_host
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

InnoDB Cluster and Auto-increment

For more information, see Section 6.1.7, “Creating User Accounts for Administration”. If you want to
manually configure an administration user, that user requires the following privileges, all with GRANT
OPTI ON:

» Global privileges on *.* for RELOAD, SHUTDOWN, PROCESS, FI LE, SELECT, SUPER,
REPLI CATI ON SLAVE, REPLI CATI ON CLI ENT, REPLI CATI ON_APPLI ER, CREATE USER,
SYSTEM VARI ABLES ADM N, PERSI ST RO VARI ABLES ADM N, BACKUP_ADM N, CLONE_ADM N,

and EXECUTE.
Note
@ SUPER includes the following required privileges:
SYSTEM VARI ABLES_ADM N, SESSI ON_VARI ABLES_ADM N,
REPLI CATI ON_SLAVE_ADM N, GROUP_REPLI| CATI ON_ADM N,
REPLI CATI ON_SLAVE_ADM N, ROLE_ADM N.

» Schema specific privileges for nysql i nnodb_cl ust er net adat a. *,
nysql _i nnodb_cl uster_netadata_bkp. *, and
nysql _i nnodb_cl uster_ netadata_previous. * are ALTER, ALTER ROUTI NE, CREATE,
CREATE ROUTI NE, CREATE TEMPORARY TABLES, CREATE VI EW DELETE, DROP, EVENT,
EXECUTE, | NDEX, | NSERT, LOCK TABLES, REFERENCES, SHOW VI EW TRI GGER, UPDATE; and for
nysql . * are | NSERT, UPDATE, DELETE.

privileges are subject to change between releases. Therefore the recommended
way to administer accounts is using the operations described at Section 6.1.7,

Note
@ This list of privileges is based on the current version of MySQL Shell. The
“Creating User Accounts for Administration”

If only read operations are needed, for example to create a user for monitoring purposes, an account
with more restricted privileges can be used. To give the user your _user the privileges needed to
monitor InnoDB Cluster issue:

GRANT SELECT ON nysgl _i nnodb_cl uster_netadata.* TO your_user@ % ;

GRANT SELECT ON nysql . sl ave_master_info TO your_user @ % ;

GRANT SELECT ON performance_schema. gl obal _status TO your user@ % ;

GRANT SELECT ON performance_schena. gl obal _vari abl es TO your _user @ % ;

GRANT SELECT ON performance_schema. replication_applier_configuration TO your user@ % ;
GRANT SELECT ON performance_schema. replication_applier_status TO your _user@% ;

GRANT SELECT ON performance_schema. replication_applier_status_by coordinator TO your user @ % ;
GRANT SELECT ON performance_schema. replication_applier_status_by worker TO your_user @ % ;
GRANT SELECT ON performance_schenma. replicati on_connection_configuration TO your_user @ % ;
GRANT SELECT ON performance_schena. replication_connecti on_status TO your_user @ % ;

GRANT SELECT ON performance_schema. replication_group_nenber_stats TO your_user @ % ;

GRANT SELECT ON performance_schema. replication_group_nmenbers TO your user@ % ;

GRANT SELECT ON performance_schema. t hreads TO your user@% W TH GRANT OPTI ON;

For more information, see Account Management Statements.

InnoDB Cluster and Auto-increment

When you are using an instance as part of an InnoDB Cluster, the aut o_i ncrenent _i ncr enent
and aut o_i ncrenent _of f set variables are configured to avoid the possibility of auto increment
collisions for multi-primary clusters up to a size of 9 (the maximum supported size of a Group
Replication group). The logic used to configure these variables can be summarized as:

* If the group is running in single-primary mode, then set aut o_i ncr enent _i ncrenent to 1 and
aut o_i ncrenent of fset to 2.

* If the group is running in multi-primary mode, then when the cluster has 7 instances or less set
auto_increnent _increnent to7andauto_increnent_offset tol+server_ id%7.1fa

126

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_shutdown
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_file
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-applier
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_persist-ro-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_clone-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_session-variables-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_group-replication-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-slave-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_role-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_alter
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_alter-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-temporary-tables
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-view
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_drop
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_event
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_index
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_references
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_trigger
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/8.0/en/account-management-statements.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id

InnoDB Cluster and Binary Log Purging

multi-primary cluster has 8 or more instances set aut o_i ncrenent _i ncr enent to the number of
instances and aut o_i ncrenent _of fset tol +server _i d % the number of instances.

InnoDB Cluster and Binary Log Purging

In MySQL 8, the binary log is automatically purged (as defined by bi nl og_expi re_| ogs_seconds).
This means that a cluster which has been running for a longer time than

bi nl og_expire_| ogs_seconds could eventually not contain an instance with a complete binary
log that contains all of the transactions applied by the instances. This could result in instances needing
to be provisioned automatically, for example using MySQL Enterprise Backup, before they could join
the cluster. Instances running 8.0.17 and later support the MySQL Clone plugin, which resolves this
issue by providing an automatic provisioning solution which does not rely on incremental recovery,

see Section 7.2.2, “Using MySQL Clone with InnoDB Cluster”. Instances running a version earlier than
8.0.17 only support incremental recovery, and the result is that, depending on which version of MySQL
the instance is running, instances might have to be provisioned automatically. Otherwise operations
which rely on distributed recovery, such as Cl ust er. addl nst ance() and so on might fail.

On instances running earlier versions of MySQL the following rules are used for binary log purging:

* Instances running a version earlier than 8.0.1 have no automatic binary log purging because the
default value of expi re_| ogs_days is 0.

 Instances running a version later than 8.0.1 but earlier than 8.0.4 purge the binary log after 30 days
because the default value of expi re_| ogs_days is 30.

 Instances running a version later than 8.0.10 purge the binary log after 30 days because
the default value of bi nl og_expi re_| ogs_seconds is 2592000 and the default value of
expi re_| ogs_days is 0.

Thus, depending on how long the cluster has been running binary logs could have been purged and
you might have to provision instances manually. Similarly, if you manually purged binary logs you could
encounter the same situation. Therefore you are strongly advised to upgrade to a version of MySQL
later than 8.0.17 to take full advantage of the automatic provisioning provided by MySQL Clone for
distributed recovery, and to minimize downtime while provisioning instances for your InnoDB Cluster.

Resetting Recovery Account Passwords

From version 8.0.18, you can use the Cl ust er. reset Recover yAccount sPasswor d() operation
to reset the passwords for the internal recovery accounts created by InnoDB Cluster, for example to
follow a custom password lifetime policy. Use the Cl ust er. r eset Recover yAccount sPasswor d()
operation to reset the passwords for all internal recovery accounts used by the cluster. The operation
sets a new random password for the internal recovery account on each instance which is online. If

an instance cannot be reached, the operation fails. You can use the f or ce option to ignore such
instances, but this is not recommended, and it is safer to bring the instance back online before using
this operation. This operation only applies to the passwords created by InnoDB Cluster and cannot be
used to update manually created passwords.

administer privileges, in particular CREATE USER, in order to ensure that the
password of recovery accounts can be changed regardless of the password
verification-required policy. In other words, independent of whether the

Note
@ The user which executes this operation must have all the required
passwor d_require_current system variable is enabled or not.

7.10 InnoDB Cluster Limitations

This section describes the known limitations of InnoDB Cluster. As InnoDB Cluster uses Group
Replication, you should also be aware of its limitations, see Group Replication Limitations.

127

https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_increment
https://dev.mysql.com/doc/refman/8.0/en/replication-options-source.html#sysvar_auto_increment_offset
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_expire_logs_seconds
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_expire_logs_seconds
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_expire_logs_seconds
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_expire_logs_days
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_password_require_current
https://dev.mysql.com/doc/refman/8.0/en/group-replication-limitations.html

InnoDB Cluster Limitations

« If a session type is not specified when creating the global session, MySQL Shell provides automatic
protocol detection which attempts to first create a NodeSession and if that fails it tries to create a
ClassicSession. With an InnoDB cluster that consists of three server instances, where there is one
read-write port and two read-only ports, this can cause MySQL Shell to only connect to one of the
read-only instances. Therefore it is recommended to always specify the session type when creating
the global session.

* When adding non-sandbox server instances (instances which you have configured manually rather
than using dba. depl oySandboxI| nst ance()) to a cluster, MySQL Shell is not able to persist any
configuration changes in the instance's configuration file. This leads to one or both of the following
scenarios:

1. The Group Replication configuration is not persisted in the instance's configuration file and upon
restart the instance does not rejoin the cluster.

2. The instance is not valid for cluster usage. Although the instance can be verified with
dba. checkl nst anceConfi gurati on(), and MySQL Shell makes the required configuration
changes in order to make the instance ready for cluster usage, those changes are not persisted
in the configuration file and so are lost once a restart happens.

If only a happens, the instance does not rejoin the cluster after a restart.

If b also happens, and you observe that the instance did not rejoin the cluster after a restart, you
cannot use the recommended dba. r eboot Cl ust er Fr onConpl et eCut age() in this situation to
get the cluster back online. This is because the instance loses any configuration changes made by
MySQL Shell, and because they were not persisted, the instance reverts to the previous state before
being configured for the cluster. This causes Group Replication to stop responding, and eventually
the command times out.

To avoid this problem it is strongly recommended to use dba. confi gur el nst ance() before
adding instances to a cluster in order to persist the configuration changes.

e The use of the - - def aul t s-extra-fi | e option to specify an option file is not supported by
InnoDB Cluster server instances. InnoDB Cluster only supports a single option file on instances and
no extra option files are supported. Therefore for any operation working with the instance's option
file the main one should be specified. If you want to use multiple option files you have to configure
the files manually and make sure they are updated correctly considering the precedence rules of the
use of multiple option files and ensuring that the desired settings are not incorrectly overwritten by
options in an extra unrecognized option file.

« Attempting to use instances with a host name that resolves to an IP address which does not match a
real network interface fails with an error that Thi s i nstance reports its own address as
t he host nane. This is not supported by the Group Replication communication layer. On Debian
based instances this means instances cannot use addresses such as user @ ocal host because
localhost resolves to a non-existent IP (such as 127.0.1.1). This impacts on using a sandbox
deployment, which usually uses local instances on a single machine.

A workaround is to configure the r eport _host system variable on each instance to use the actual
IP address of your machine. Retrieve the IP of your machine and add r eport _host =l P of your
machi ne to the ny. cnf file of each instance. You need to ensure the instances are then restarted to
make the change.

* When executing dba. cr eat eCl ust er () or adding an instance to an existing InnoDB Cluster by
running Cl ust er . addl nst ance() , the following errors are logged to MySQL error log:

2020- 02- 10T10: 53: 43. 727246Z 12 [ERROR] [MY-011685] [Repl] Plugin
group_replication reported: 'The group nane option is nmandatory'
2020- 02- 10T10: 53: 43. 727292Z 12 [ERROR] [MY-011660] [Repl] Plugin
group_replication reported: 'Unable to start G oup Replication on boot'

These messages are harmless and relate to the way AdminAPI starts Group Replication.

128

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_defaults-extra-file

InnoDB Cluster Limitations

* When using a sandbox deployment, each sandbox instance uses a copy of the nysqgl d binary found
in the $PATH in the local mysqgl-sandboxes directory. If the version of nysql d changes, for example
after an upgrade, sandboxes based on the previous version fail to start. This is because the sandbox
binary is outdated compared to the dependencies found under the basedi r . Sandbox instances
are not designed for production, therefore they are considered transient and are not supported for
upgrade.

A workaround for this issue is to manually copy the upgraded nmysql d binary into the bi n directory
of each sandbox. Then start the sandbox by issuing dba. st art Sandbox| nst ance() . The
operation fails with a timeout, and the error log contains:

2020- 03-26T11: 43: 12. 9691317 5 [Systen] [My-013381] [Server] Server upgrade
from'80019' to '80020' started.

2020- 03-26T11: 44: 03. 5430822 5 [Systen] [My-013381] [Server] Server upgrade
from'80019' to '80020" conpl eted.

Although the operation seems to fail with a timeout, the sandbox has started successfully.

» InnoDB Cluster does not manage manually configured asynchronous replication channels. Group
Replication and AdminAPI do not ensure that the asynchronous replication is active on the primary
only, and state is not replicated across instances. This can lead to various scenarios where
replication no longer works, as well as potentially causing a split brain. Therefore, replication
between one InnoDB Cluster and another is also not supported.

129

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir

130

Chapter 8 MySQL InnoDB ClusterSet

Table of Contents

8.1 INNODB ClusterSet REQUITEMENTScoiiiiieiiii ettt eeere s 133
8.2 INNODB ClusterSet LIMITAtIONSuuiiiiiiiieiiiii e e eeeens 137
8.3 User Accounts for INNODB CIUSIEISELiiiiiiiiiiiiii e 137
8.4 Deploying INNODB CIUSTEISELuuiiiiiiii ettt et e e e e e ena e eeee 140
8.5 Integrating MySQL Router With INNODB CIUSTEISEtc.uuiiiiiiiiieiiii e 150
8.6 INnNoDB ClusterSet Status and TOPOIOGYcveeruuiiiiiiieieii e 155
8.7 InnoDB ClusterSet Controlled SWILCNOVETuuiiiiiiiiiii e 163
8.8 INnoDB ClusterSet EMergency FailOVErcoooiiiiiiiiiii e 168
8.9 InnoDB ClusterSet Repair and REJOINcoiuuiiiiiiii e 173
8.9.1 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters 175
8.9.2 Repairing Member Servers and Clusters in an InnoDB ClusterSetccccoeeveevinnnnnn. 177
8.9.3 Removing a Cluster from an INNODB CIUSLEISEtuvieiiiiiieiiiiiieeeei e 178
8.9.4 Rejoining a Cluster to an INNODB CIUSLEISEetcccovuiiiiiiiiieiii e 181

MySQL InnoDB ClusterSet provides disaster tolerance for InnoDB Cluster deployments by linking

a primary InnoDB Cluster with one or more replicas of itself in alternate locations, such as different
datacenters. InnoDB ClusterSet automatically manages replication from the primary cluster to the
replica clusters using a dedicated ClusterSet replication channel. If the primary cluster becomes
unavailable due to the loss of the data center or the loss of network connectivity to it, you can make a
replica cluster active instead to restore the availability of the service. See Chapter 7, MySQL InnoDB
Cluster for information on deploying InnoDB Cluster.

Emergency failover between the primary InnoDB Cluster and a replica cluster in an InnoDB ClusterSet
deployment can be triggered by an administrator through MySQL Shell (see MySQL Shell 8.0), using
AdminAPI (see Section 6.1, “Using MySQL AdminAPI"), which is included with MySQL Shell. You can
also carry out a controlled switchover from the primary cluster to a replica cluster while the primary
cluster is still available, for example if a configuration change or maintenance is required on the primary
cluster. MySQL Router (see MySQL Router 8.0) automatically routes client applications to the right
clusters in an InnoDB ClusterSet deployment.

A replica cluster in an InnoDB ClusterSet deployment cannot diverge from the primary cluster while it
remains a passive replica, because it does not accept writes. It can be read by applications, although

a typical amount of replication lag for asynchronous replication should be expected, so the data might
not be complete yet. The minimum size of a replica cluster is a single member server instance, but

a minimum of three members is recommended for fault tolerance. If more members are needed, for
example because the replica cluster has become a primary cluster through a switchover or failover, you
can add further instances at any time through MySQL Shell using AdminAPI. There is no defined limit
on the number of replica clusters that you can have in an InnoDB ClusterSet deployment.

The example InnoDB ClusterSet deployment in the following diagram consists of a primary InnoDB
Cluster in the Rome datacenter, with replica clusters in the Lisbon and Brussels datacenters. The
primary cluster and its replica clusters each consist of three member server instances, one primary and
two secondaries.

131

https://dev.mysql.com/doc/mysql-router/8.0/en/

Figure 8.1 InnoDB ClusterSet Overview

ooo ooo ooo ooo ooo ooo

ooo goo [=]=]=] ooo [=]=]=] ooo

= = [= = =
Reporting Application Application Reporting Application Application Application Reporting Application

Read/Write Read Only

,,f.‘,/'_“‘

oy g oy

- Ssccnuary @ <& - Secondary Sscannary —Secondary Sscumiary E & Secondary
My My:
InnoDB Cluster InnoDB Cluster InnoDB Cluster
@ REPLICA @ PRIMARY @ REPLICA @
. .’ .. R

Lisbon Rome Brussels

My Router Router Router Router My Router My. Router
Target: Lisbon Target PRIMARY Target Rome Target PRIMARY Target: PRIMARY Target: Brussels
Primary \ e / Primary
m Async #Async
Replication | ™ __j..a=-=" === "ceeelgl - Replication »

Asynchronous replication channels replicate transactions from the primary cluster to the replica
clusters. A ClusterSet replication channel named cl ust er set _repl i cati on is set up on each
cluster during the InnoDB ClusterSet creation process, and when a cluster is a replica, it uses the
channel to replicate transactions from the primary. The underlying Group Replication technology
manages the channel and ensures that replication is always taking place between the primary server
of the primary cluster (as the sender), and the primary server of the replica cluster (as the receiver). If
a new primary is elected for either the primary cluster or the replica cluster, the ClusterSet replication
channel is automatically re-established between them.

Although each cluster in the example InnoDB ClusterSet deployment has a primary MySQL server,
only the primary server of the primary InnoDB Cluster accepts write traffic from client applications.

The replica clusters do not. MySQL Router instances route all write traffic to the primary cluster in the
Rome datacenter, where it is handled by the primary server. Most of the read traffic is also routed to
the primary cluster, but the reporting applications that only make read requests are specifically routed
to the replica cluster in their local datacenter instead, to save on networking resources. Notice that the
MySQL Router instances that handle read and write traffic are set to route traffic to the primary InnoDB
Cluster in the InnoDB ClusterSet whichever one that is. So if one of the other clusters becomes the
primary following a controlled switchover or emergency failover, those MySQL Router instances will
route traffic to that cluster instead.

It is important to know that InnoDB ClusterSet prioritizes availability over data consistency in order

to maximize disaster tolerance. Consistency within each individual InnoDB Cluster is guaranteed by
the underlying Group Replication technology. However, normal replication lag or network partitions
can mean that some or all of the replica clusters are not fully consistent with the primary cluster at the
time the primary cluster experiences an issue. In these scenarios, if you trigger an emergency failover,
any unreplicated or divergent transactions are at risk of being lost, and can only be recovered and
reconciled manually (if they can be accessed at all). There is no guarantee that data will be preserved
in the event of an emergency failover.

You should therefore always make an attempt to repair or reconnect the primary cluster before
triggering an emergency failover. AdminAPI removes the need to work directly with Group Replication
to repair an InnoDB Cluster. If the primary cluster cannot be repaired quickly enough or cannot

be reached, you can go ahead with the emergency failover to a replica InnoDB Cluster, to restore
availability for applications. During a controlled switchover process, data consistency is assured, and
the original primary cluster is demoted to a working read-only replica cluster. However, during an
emergency failover process, data consistency is not assured, so for safety, the original primary cluster
is marked as invalidated during the failover process. If the original primary cluster remains online, it
should be shut down as soon as it can be contacted.

132

https://dev.mysql.com/doc/refman/8.0/en/group-replication.html

InnoDB ClusterSet Requirements

You can rejoin an invalidated primary cluster to the InnoDB ClusterSet topology afterwards, provided
that there are no issues and the transaction set is consistent with the other clusters in the topology.
Checking, restoring, and rejoining the invalidated primary cluster does not happen automatically - an
administrator needs to do this using AdminAPI commands. You can choose to repair the invalidated
primary cluster and bring it back online, or you can discard the original primary cluster, continue to use
the new primary cluster as the primary, and create new replica clusters.

8.1 InnoDB ClusterSet Requirements

The basis of an InnoDB ClusterSet deployment is an existing InnoDB Cluster at MySQL 8.0.27 or
higher, and a number of standalone MySQL Server instances that can be formed into replica clusters
to provide disaster tolerance for this primary cluster. If you want to try out InnoDB ClusterSet, you can
use MySQL Shell 8.0.27 or higher to set up a sandbox deployment on your local machine. You will
need to install MySQL Server 8.0.27 or higher and MySQL Router 8.0.27 or higher. Using AdminAPI
commands in MySQL Shell, you can create sandbox MySQL Server instances, set up an InnoDB
Cluster using some of them, then follow the instructions in this section to set up an InnoDB ClusterSet
deployment using the others as replica clusters. For instructions to deploy and manage sandbox
instances, see Section 6.2, “AdminAPI MySQL Sandboxes”.

To set up a production deployment of InnoDB ClusterSet, ensure that you have the following
components in place:

Software components MySQL Server 8.0.27 or higher, MySQL Shell 8.0.27 or higher,
and MySQL Router 8.0.27 or higher are required to set up an
InnoDB ClusterSet deployment. These are the software components
required by AdminAPI. See Section 6.1.1, “Installing AdminAPI
Software Components”.

Always use the most recent versions of MySQL Shell and MySQL
Router that are available to you, and ensure that their version is the
same as or higher than the MySQL Server release. Both products
can manage older MySQL Server releases, but older versions
cannot manage features in newer MySQL Server releases.

An InnoDB Cluster An existing InnoDB Cluster that is to be the primary cluster. This is
the cluster for which the InnoDB ClusterSet deployment provides
disaster tolerance. A Group Replication group can be adopted as
an InnoDB Cluster. For instructions to set up an InnoDB Cluster
or adopt a Group Replication group, see Section 7.2, “Deploying a
Production InnoDB Cluster”.

The InnoDB Cluster that is to be the primary cluster must meet
these requirements:

¢ The cluster must not already be part of an InnoDB ClusterSet
deployment. An InnoDB Cluster can only participate in one
InnoDB ClusterSet deployment.

< All member server instances in the cluster must be at MySQL
8.0.27 or higher.

¢ The InnoDB Cluster metadata version must be 2.1.0 or higher.
When you carry out any operation on a cluster (for example a
dba. get Cl ust er () command), AdminAPI warns you if the
cluster's metadata needs updating. You can update the metadata
to an appropriate version for InnoDB ClusterSet operations by
issuing a dba. upgr adeMet adat a() command in MySQL Shell
8.0.27 or higher. Note that after you upgrade a cluster's metadata,
it cannot be administered by older MySQL Shell versions. For

133

InnoDB ClusterSet Requirements

Standalone MySQL Server
instances

more information, see Section 7.8.2, “Upgrading InnoDB Cluster
Metadata”.

* The cluster must be in single-primary mode. An InnoDB Cluster
can be in single-primary or multi-primary mode, but InnoDB
ClusterSet does not support multi-primary mode. You can use
acluster.sw tchToSi ngl ePri maryMode() command in
MySQL Shell to convert a cluster in multi-primary mode to single-
primary mode, and choose an instance to be the primary server.

e Thegroup_replication_view change_uui d system
variable must be set on the member servers in the cluster
to supply an alternative UUID for view change events. From
MySQL 8.0.27, an InnoDB Cluster that is created using the
dba. creat e ust er () command, or rescanned using the
Cl uster.rescan() command, gets a value generated and
set for this system variable. An InnoDB Cluster created before
MySQL 8.0.27 might not have this system variable set, but
the InnoDB ClusterSet creation process checks for this and
fails with a warning if it is absent. In that case, you can run a
Cl uster.rescan() operation then retry the InnoDB ClusterSet
creation process.

« There must be no inbound replication channels
on any member server from servers outside the
group. The channels created automatically by Group
Replication (gr oup_replicati on_applier and
group_replication_recovery) are allowed.

* You need to know the InnoDB Cluster server configuration
account user name and password for the cluster (see Section 8.3,
“User Accounts for InnoDB ClusterSet”). This is the account that
was set up using dba. conf i gur el nst ance on the member
servers in the InnoDB Cluster. You will need to create this
account on the MySQL Server instances that will form the replica
clusters, and use it to set them up.

Note
@ You cannot use an InnoDB Cluster

administrator account (set up using

cl uster. set upAdni nAccount ())

to set up the standalone MySQL

Server instances for the replica cluster.
cl uster. set upAdni nAccount () is
not available on a standalone instance,
and if you create one of those accounts
on the standalone instances using

dba. confi gur el nst ance or manually,
it will subsequently be replicated from the
primary cluster, causing replication to stop
with an error.

¢ At the time when you create the InnoDB ClusterSet deployment,
the InnoDB Cluster must be online and healthy, and its primary
member server must be reachable using MySQL Shell.

A number of standalone MySQL Server instances which you can
make into one or more replica clusters. A minimum of three member

134

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid

InnoDB ClusterSet Requirements

servers in each replica cluster is recommended for fault tolerance,
although the InnoDB ClusterSet deployment can include replica
clusters consisting of a single server instance. In a production
deployment for disaster tolerance, each replica cluster would be in
an alternate location, such as a different datacenter.

Each of the MySQL Server instances that you use in the replica
clusters must meet these requirements:

e The server is not already part of an InnoDB ClusterSet
deployment, InnoDB ClusterSet, or InnoDB ReplicaSet.

* You do not need the data on the server. If the server has
previously been used for processing transactions, the data will be
overwritten when it is made into a member of the replica cluster
(unless the transactions happen to be a subset of those on the
primary cluster).

e The server is not part of a currently running Group Replication
group (even if the individual server has left the group). You
cannot adopt an existing Group Replication group or a current
or ex-member of it as a replica cluster. If you want to use server
instances that are currently in a replication group, issue STOP
GROUP_REPLI CATI ON on all the members of the group, so that
the group is fully offline. The separate server instances can then
be made into a replica cluster using AdminAPI.

Important

A Exercise caution over using former Group
Replication group members as members
of an InnoDB ClusterSet replica cluster,
especially if you made a lot of changes
to the Group Replication configuration
options, or if the group was created in
a much earlier release and you made
configuration changes based on the
situation in that release.

The InnoDB ClusterSet replica cluster

creation process overwrites any existing
persisted Group Replication configuration
options for which you specify new settings

on the command. It also always overwrites

the following system variables, even if

you do not specify them on the command:
group_replication_group_nane,
group_replication_group_seeds,
group_replication_|l ocal _address,
group_replication_view change_uui d,
and
group_replication_enforce_update_everywhe
However, other Group Replication
configuration options that you have

changed are left as they were. These

custom settings could potentially interfere

with the running or performance of InnoDB
ClusterSet, which expects the MySQL

8.0.27 defaults to be used for Group

135

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_enforce_update_everywhere_checks

InnoDB ClusterSet Requirements

MySQL Router instances

Replication configuration options that are
not changed during the InnoDB ClusterSet
replica cluster creation process.

If you do want to use a configured

Group Replication server, check

and remove any customizations if
possible, in particular checking that the
group_replication_single_prinmary_node
system variable is set to the default of

ON. The safest option for an ex-Group
Replication group member in this situation
is to reinstall MySQL Server, rather than
upgrading the installation to MySQL
8.0.27.

e The server is at MySQL 8.0.27 or higher. If you want to provision
further member servers for the replica cluster by cloning, all the
servers must be at the same release and on the same operating
system.

* The server has a server ID (ser ver _i d system variable) and
server UUID (ser ver _uui d system variable) that are unique in
the entire InnoDB ClusterSet, including any offline or unreachable
member servers.

« No inbound replication channels are configured
on the server. Only the Group Replication
channels (group_replication_applier and
group_replication_recovery) are allowed.

* The server can connect to the primary cluster in the InnoDB
ClusterSet, and the primary cluster can connect to it.

¢ At the time when you create the InnoDB ClusterSet deployment,
the server must be online and healthy, and reachable using
MySQL Shell.

The required user account credentials, InnoDB ClusterSet
metadata, and Group Replication configuration will be set up during
the InnoDB ClusterSet replica cluster creation process.

One or more MySQL Router instances to route client application
traffic to the appropriate clusters in the InnoDB ClusterSet
deployment. The recommended deployment of MySQL Router is on
the same host as the client application.

Important

A If you are using an existing InnoDB

Cluster as the primary cluster in your
InnoDB ClusterSet deployment, and you
bootstrapped MySQL Router against that
cluster already, bootstrap it again using

the - - f or ce option against the InnoDB
ClusterSet, then stop and restart MySQL
Router. The settings in the MySQL Router
instance's static configuration file need to be
updated for InnoDB ClusterSet. Follow the

136

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_single_primary_mode
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_id
https://dev.mysql.com/doc/refman/8.0/en/replication-options.html#sysvar_server_uuid

InnoDB ClusterSet Limitations

process described in Section 8.5, “Integrating
MySQL Router With InnoDB ClusterSet” to
do this.

8.2 InnoDB ClusterSet Limitations

InnoDB ClusterSet uses InnoDB Cluster technology, which in turn uses Group Replication technology.
The limitations for both of those technologies therefore apply to server instances used with InnoDB
ClusterSet. See Section 7.10, “InnoDB Cluster Limitations” and Group Replication Limitations.

» InnoDB ClusterSet prioritizes availability over consistency in order to maximize disaster tolerance.
Normal replication lag or network partitions can mean that some or all of the replica clusters are not
fully consistent with the primary cluster at the time the primary cluster experiences an issue. In these
scenarios, if you trigger an emergency failover, any unreplicated or divergent transactions are at risk
of being lost, and can only be recovered and reconciled manually (if they can be accessed at all).
There is no guarantee that data will be preserved in the event of an emergency failover.

If you cannot tolerate any loss of transactions or data during a failover, instead of using InnoDB
ClusterSet as your solution, consider using a single InnoDB Cluster with the member servers
deployed across multiple datacenters. Bear in mind that this solution would have a noticeable impact
on write performance, as a stable and low latency network is important for InnoDB Cluster member
servers to communicate with each other for consensus on transactions.

» InnoDB ClusterSet does not fail over automatically to a replica cluster. Because a loss of
transactions is possible, and data consistency is not guaranteed, an administrator must make and
implement the decision to carry out an emergency failover. If the original primary cluster remains
online, it should be shut down as soon as it can be contacted.

» InnoDB ClusterSet only supports asynchronous replication, and cannot use semisynchronous
replication.

* InnoDB ClusterSet only supports single-primary mode for the primary and replica InnoDB Cluster
instances. Multi-primary mode is not supported.

* An InnoDB ClusterSet deployment can only contain a single read-write primary cluster. All replica
clusters are read-only. An active-active setup, with multiple primary clusters, is not permitted,
because data consistency is not guaranteed in the event that a cluster fails.

* An InnoDB Cluster can participate in only one InnoDB ClusterSet deployment. Each InnoDB
ClusterSet deployment therefore provides an availability and disaster recovery solution for a single
InnoDB Cluster.

» An existing InnoDB Cluster cannot be used as a replica cluster in an InnoDB ClusterSet deployment.
A replica cluster must be started from a single server instance, as a new InnoDB Cluster. It is
possible to use server instances that are part of a Group Replication group as a replica cluster, but
you must completely end the Group Replication group first, and be careful of any customized Group
Replication settings that might affect InnoDB ClusterSet. For more information, see Section 8.1,
“InnoDB ClusterSet Requirements”.

8.3 User Accounts for InnoDB ClusterSet

The member servers in an InnoDB Cluster make use of three types of user accounts. One InnoDB
Cluster server configuration account is used to configure the server instances for the cluster. One or
more InnoDB Cluster administrator accounts can be created for administrators to manage the server
instances after the cluster has been set up. One or more MySQL Router accounts can be created for
MySQL Router instances to connect to the cluster. Each of the user accounts must exist on all of the
member servers in the InnoDB Cluster, with the same user name and the same password.

In an InnoDB ClusterSet deployment, every member server is part of an InnoDB Cluster, so they
require the same types of user accounts. The user accounts from the primary cluster are used for all of

137

https://dev.mysql.com/doc/refman/8.0/en/group-replication-limitations.html

User Accounts for InnoDB ClusterSet

the clusters in the deployment. Each of the user accounts must exist on every member server in every
cluster in the deployment - both the primary cluster and the replica clusters.

InnoDB Cluster server
configuration account

InnoDB Cluster administrator
accounts

This account is used to create and configure the member servers
of an InnoDB Cluster and InnoDB ClusterSet deployment. Each
member server has only one server configuration account. The
same user account name and password must be used on every
member server in the cluster. You can use the r oot account on
the servers for this purpose, but if you do this, the r oot account on
every member server in the cluster must have the same password.
This is not recommended for security reasons.

The preferred approach is to create the InnoDB Cluster server
configuration account using a dba. conf i gur el nst ance()
command with the cl ust er Adm n option. For better security,
specify the password at the interactive prompt, otherwise specify

it using the cl ust er Adm nPasswor d option. Create the same
account, with the same user name and password, in the same way
on every server instance that will be part of the InnoDB Cluster -
both the instance to which you connect to create the cluster, and the
instances that will join the cluster after that.

The dba. confi gur el nst ance() command grants the account
the required permissions automatically. You may set up the
account manually if you prefer, granting it the permissions listed in
Configuring Users for AdminAPI. The account needs full read and
write privileges on the InnoDB Cluster metadata tables, in addition
to full MySQL administrator privileges.

The InnoDB Cluster server configuration account that you

create using the dba. confi gur el nst ance() operation is not
replicated to other servers in the InnoDB Cluster or in the InnoDB
ClusterSet deployment. MySQL Shell disables binary logging for the
dba. confi gurel nst ance() operation. This means that you must
create the account on every server instance individually.

In an InnoDB ClusterSet deployment, the same InnoDB Cluster
server configuration account must exist on every server instance
that is used in the deployment. When you set up a replica cluster,
you therefore need to issue a dba. confi gur el nst ance()
command with the cl ust er Admi n option to create the account on
every server instance that is going to be part of the replica cluster.
The command must name the InnoDB Cluster server configuration
account from the primary cluster, and you must specify the same
password for it. You need to do this step before joining the instances
into the replica cluster, so the account is available to configure the
replica InnoDB Cluster and the InnoDB ClusterSet deployment
metadata and replication.

These accounts can be used to administer InnoDB Cluster and
InnoDB ClusterSet after you have completed the configuration
process. You can set up more than one of them. Each account must
exist on every member server in an InnoDB Cluster with the same
user name and password, and on every member server of every
cluster in an InnoDB ClusterSet deployment.

To create an InnoDB Cluster administrator account
for an InnoDB ClusterSet deployment, you issue a
cl uster. setupAdm nAccount () command on one member

138

User Accounts for InnoDB ClusterSet

MySQL Router accounts

server in the primary cluster, after you have added all the
instances to that cluster. This command creates an account

with the user name and password that you specify, with all the
required permissions. A transaction to create an account with

cl uster. set upAdnm nAccount () is sent to all the other server
instances in the cluster to create the account on them.

If the primary InnoDB Cluster already existed when you began

to set up the InnoDB ClusterSet deployment, an InnoDB Cluster
administrator account likely already exists. In that case, you do not
need to issue cl ust er. set upAdm nAccount () again, unless
you want to create further InnoDB Cluster administrator accounts.

The replica clusters in an InnoDB ClusterSet deployment must
have the same set of InnoDB Cluster administrator accounts

as the primary cluster. However, when you create the replica
clusters, do not attempt to set up the InnoDB Cluster administrator
accounts yourself. The transactions to create accounts with

cl uster. set upAdnm nAccount () are written to the binary log
for the primary cluster, and they are automatically replicated from
the primary cluster to the replica clusters during the provisioning
process. When a replica cluster applies these transactions it creates
the same accounts on the member servers in the replica cluster.

If the accounts already exist on a server in the replica cluster, this
causes a replication error, and the server cannot join the cluster. So
you need to wait for them to be replicated.

If a transaction to create an InnoDB Cluster administrator account
happened a while back on the primary cluster, it might take some
time for the transaction to be replicated and for the account to
appear on a replica cluster. Selecting cloning as the provisioning
method for the replica cluster speeds up the process.

Note
@ If the primary InnoDB Cluster was set up

in a version before MySQL Shell 8.0.20,

the cl ust er. set upAdm nAccount ()
command might have been used with the
updat e option to update the privileges of the
InnoDB Cluster server configuration account.
This is a special use of the command that

is not written to the binary log, and is not
replicated to the replica clusters.

When the InnoDB ClusterSet deployment is complete, you may

use cl ust er. set upAdni nAccount () to create further InnoDB
Cluster administrator accounts for the ClusterSet. You can do this
while connected to any member server in the InnoDB ClusterSet
deployment, either in the primary cluster or in a replica cluster. The
transaction to create the account is routed to the primary cluster to
be executed, then replicated to all the servers in the replica clusters,
where it creates the account on all of them.

These accounts are used by MySQL Router to connect to server
instances in an InnoDB Cluster and in an InnoDB ClusterSet
deployment. You can set up more than one of them. Each account
must exist on every member server in an InnoDB Cluster with the

139

Deploying InnoDB ClusterSet

same user name and password, and on every member server of
every cluster in an InnoDB ClusterSet deployment.

The process to create a MySQL Router account is the same

as for an InnoDB Cluster administrator account, but using a

cl uster. set upRout er Account () command. You create

the accounts on one member server in the primary cluster, or

use accounts that already exist, if the primary InnoDB Cluster
already existed when you began to set up the InnoDB ClusterSet
deployment. Then let the replica clusters apply the transactions to
create the accounts on their member servers. For instructions to
create or upgrade a MySQL Router account, see Section 6.4.2,
“Configuring the MySQL Router User”.

8.4 Deploying InnoDB ClusterSet

Follow this procedure to deploy a sandbox or production InnoDB ClusterSet deployment. A sandbox
deployment is where all the MySQL server instances and other software run on a single machine. For a
production deployment, the server instances and other software are on separate machines.

The procedure assumes you already have the following components, as listed in Section 8.1, “InnoDB
ClusterSet Requirements”:

» An existing InnoDB Cluster that meets the requirements stated in Section 8.1, “InnoDB ClusterSet
Requirements”. This is the primary cluster that the InnoDB ClusterSet deployment supports.

* MySQL Shell 8.0.27 or higher, connected to the existing InnoDB Cluster. MySQL Shell's AdminAPI
commands are used in the deployment procedure.

» MySQL Router 8.0.27 or higher, to bootstrap against InnoDB ClusterSet. MySQL Router instances
that you had already bootstrapped against the existing InnoDB Cluster can be reused in an InnoDB
ClusterSet deployment, but you need to bootstrap them again to implement the InnoDB ClusterSet
configuration.

» A number of standalone MySQL Server instances (which are not part of an InnoDB Cluster or
InnoDB ReplicaSet) to make into one or more replica clusters. They must meet the requirements
stated in Section 8.1, “InnoDB ClusterSet Requirements”. A minimum of three member servers in
each replica cluster is recommended for tolerance of failures.

The user account that you use during the InnoDB ClusterSet deployment procedure is the InnoDB
Cluster server configuration account from the primary cluster. This is the account that was created

on the primary cluster's member servers using a dba. conf i gur el nst ance() command with the

cl ust er Adm n option. Each member server has only one server configuration account. The same
user account name and password must be used on every member server in the cluster, and you need
to create it on all the servers in the InnoDB ClusterSet deployment. It is possible to use the r oot
account as the InnoDB Cluster server configuration account, but this is not recommended, because it
means the r oot account on every member server in the cluster must have the same password. For
more information, see Section 8.3, “User Accounts for InnoDB ClusterSet”.

To set up the InnoDB ClusterSet deployment, follow this procedure:

1. Connect to any member server in the existing InnoDB Cluster with MySQL Shell, using the InnoDB
Cluster server configuration account to make the connection. For example:

2. nysqgl-js> \connect icadm n@?27.0.0.1: 3310

Creating a session to 'icadm n@?27.0.0.1: 3310’

Pl ease provide the password for 'icadm n@27.0.0.1: 3310": *****xxkkkkkxx
Save password for 'icadm n@27.0.0.1:3310'? [Y]es/[N o/ Ne[v]er (default No):
Fet chi ng schema nanes for autoconpletion... Press "C to stop.

Cl osing old connection. ..

Your MySQL connection id is 59

Server version: 8.0.27-commercial MySQL Enterprise Server - Conmerci al

140

Deploying InnoDB ClusterSet

No default schema sel ected; type \use <schema> to set one.
<Cl assi cSessi on:i cadm n@27.0.0. 1: 3310>

In this example:

e icadm n@?27.0.0. 1: 3310 is the URI-like connection string for any member server instance
that is online in the InnoDB Cluster.

The URI-like connection string is comprised of the following elements:
e i cadm n is the user name for the InnoDB Cluster server configuration account.

e 127.0.0. 1: 3310 is the host and port for the member server instance, as displayed by the
cluster.status() command.

Issue a dba. get Cl ust er () command to get the Cl ust er object that represents the InnoDB
Cluster, assigning it to a variable so that you can work with it. For example:

nmysql -js> clusterl = dba. getC uster()
<C uster: cl ust erone>

In this example, cl ust er one is the name of the existing InnoDB Cluster, as shown in the
cl ust er Nane field returned by the cl ust er. st at us() command, and the returned Cl ust er
object is assigned to the variable cl ust er 1.

It is important to do this when you are connected to the server instance using the InnoDB Cluster
server configuration account. The returned object defaults to using the account it was fetched with
for operations where permissions are required. Some operations during the InnoDB ClusterSet
deployment process require permissions, and the default user account stored in the object is used
for this, so that the process does not need to store any other user accounts.

Issue acl uster. createC usterSet () command, using the Cl ust er object, to create the
InnoDB ClusterSet with the existing InnoDB Cluster as the primary cluster. For example:

nysql -j s> nyclusterset = clusterl.createC usterSet('testclusterset')

A new ClusterSet will be created based on the Custer 'clusterone'.

* Validating Custer 'clusterone' for CusterSet conpliance.

* Creating InnoDB ClusterSet 'testclusterset' on 'clusterone'...

* Updating netadata. ..

ClusterSet successfully created. Use ClusterSet.createReplicaC uster() to add Replica Clusters to it

<Cl uster Set:testclusterset>

In this example, cl ust er one is the name of the existing InnoDB Cluster, cl ust er 1 is the variable
to which the returned Cl ust er object was assigned, t est cl ust er set is the name for the
InnoDB ClusterSet that you are creating, and nycl ust er set is the variable to which the returned
Cl ust er Set object is assigned.

e The domai nNane parameter is required and specifies the name of the InnoDB ClusterSet
deployment that you are creating (t est cl ust er set in the example). Only alphanumeric
characters, hyphens (-), underscores (), and periods (.) can be used, and the name must not
start with a number. The maximum length is 63 characters.

« Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them. For example:

nysql -j s> nyclusterset = clusterl.createClusterSet('testclusterset', {dryRun: true})
* Validating Cluster 'clusterone' for CusterSet conpliance.

NOTE: dryRun option was specified. Validations will be executed, but no changes will be appli ed.

141

Deploying InnoDB ClusterSet

* Creating InnoDB ClusterSet 'clusterset' on 'clusterone'...

* Updating netadata. ..
dryRun fi ni shed.

e Usethe cl ust er Set Repl i cati onSsl Mode option if you want to require or disable encryption
(TLS/SSL) for the replication channels in the InnoDB ClusterSet deployment. The default
setting, AUTQ, enables encryption if the server instance supports it, and disables it if it does not.
REQUI RED enables encryption for all the replication channels, and DI SABLED disables encryption
for all the replication channels. For example:

nmysql -j s> nyclusterset = clusterl.createClusterSet('testclusterset', {dryRun: true, clusterSetReplica

When you issue the cl ust er. creat eCl ust er Set () command, MySQL Shell checks that the
target InnoDB Cluster complies with the requirements to become the primary cluster in an InnoDB
ClusterSet deployment, and returns an error if it does not. If the target InnoDB Cluster meets the
requirements, MySQL Shell carries out the following setup tasks:

< Updates the metadata schema to include InnoDB ClusterSet metadata.

e Setsthe skip replica_start system variable to ONon all the member servers so that
replication threads are not automatically started.

* Adds the target InnoDB Cluster to the InnoDB ClusterSet in the metadata and marks it as the
primary cluster.

« Returns the Cl ust er Set object that represents the InnoDB ClusterSet.

Verify that the InnoDB ClusterSet deployment that you have created is healthy by issuing a
clusterSet.status() command, using the returned Cl ust er Set object. For example:

nysqgl -j s> nycl usterset. status()

"clusters": {
"clusterone": {
"clusterRole": "PR MARY",
"gl obal Status": "OK',
“primary": "127.0.0. 1: 3310"

}

domai nNanme": "testclusterset”,

"gl obal Pri maryl nstance": "127.0.0.1: 3310",
"primaryCl uster": "clusterone",

"status": "HEALTHY",

"statusText": "All Clusters available."

}

You can also use acl uster. stat us() command to view the cluster itself. Alternatively, you can
select the extended output for cl ust er Set . st at us() to see the detailed status for the clusters
in the InnoDB ClusterSet topology. For example:

nmysql -j s> nycl ust erset. st atus({extended: 1})

"clusters": {
“clusterone": {

“clusterRol e": "PRI MARY",

"gl obal Status": "OK",

“primary": "127.0.0.1:3310",

“status": "OK",

"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",

"t opol ogy": {

"127.0.0. 1: 3310": {

"address": "127.0.0.1:3310",
"menber Rol e": " PRI MARY",

"node": "RIW,
“status": "ONLINE",
"version": "8.0.27"

142

https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_replica_start

Deploying InnoDB ClusterSet

s
"127.0.0.1:3320": {
"address": "127.0.0.1: 3320",
"nmenber Rol e": " SECONDARY",
"nmode": "R O,
“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"

"127.0.0.1:3330": {

"address": "127.0.0.1: 3330",

"menber Rol e": " SECONDARY",

"nmode": "R O,

“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",

"version": "8.0.27"
}
},
"transactionSet": "953a51d5-2690- 11ec-ba07-00059a3c7a00: 1, c51c1lbl5-269e-1lec- b9ba- 00059:¢
}
},
"domai nNane": "testclusterset",

"gl obal Pri maryl nstance": "127.0.0.1: 3310",
"met adat aServer": "127.0.0.1: 3310",

“primaryCluster”: "clusterone",
"status": "HEALTHY",
"statusText": "All Custers available."

See Section 8.6, “InnoDB ClusterSet Status and Topology” for more information and a description
of the output from the cl ust er Set . st at us() command.

If you want to get the Cl ust er Set object representing the InnoDB ClusterSet for a
connected server instance at any time, for example after restarting MySQL Shell, use a
dba. get Cl uster Set () orcluster.getC usterSet() command. For example:

nysql -j s> nycl usterset = dba. get Cl uster Set ()
<Cl ust er Set: testcl usterset>

Assigning a returned Cl ust er or Cl ust er Set object to a variable enables you to execute further
operations against the cluster or ClusterSet using the object's methods. The returned object uses
a new session, independent from MySQL Shell's global session. This ensures that if you change
the MySQL Shell global session, the Cl ust er or Cl ust er Set object maintains its session to the
server instance. Note that when you use the object, the server instance from which you got it must
still be online in the InnoDB ClusterSet. If that server instance goes offline, the object no longer
works and you will need to get it again from a server that is still online.

Create the InnoDB Cluster server configuration account on each of the standalone server instances
that will be part of the replica cluster, by issuing a dba. conf i gur el nst ance() command with
the cl ust er Admi n option. The account to create is the InnoDB Cluster server configuration
account from the primary cluster, which you used to create the ClusterSet. Don't specify any of

the InnoDB Cluster administrator accounts (created with cl ust er . set upAdmi nAccount ()).
These will be automatically transferred from the primary cluster to the replica clusters during the
provisioning process.

You do not need to connect to the standalone server instances beforehand, as the connection
string is included in the command. In the connection string, use an account with full MySQL
administrator permissions, including permissions to create accounts (W TH GRANT OPTI ON). In
this example, the r oot account is used:

nysql -j s> dba. confi gurel nstance(' root @27.0.0. 1: 4410', {clusterAdnmin: 'icadnmin'})

Pl ease provide the password for 'root @27.0.0.1:4410" : *******kkxkskkkx
Save password for 'root@27.0.0.1:4410'? [Y]es/[NJ o/ Ne[v]er (default No):

143

Deploying InnoDB ClusterSet

Configuring local MySQL instance |istening at port 4410 for use in an | nnoDB cluster...

NOTE: |nstance detected as a sandbox.

Pl ease note that sandbox instances are only suitable for deploying test clusters for use within
the sanme host.

This instance reports its own address as 127.0.0. 1: 4410
Password for new account: ****x*xxkkxxskx
Confi rm passwor d: **xx*kkkkkkkkk

appl i erWrkerThreads will be set to the default val ue of 4.
The instance '127.0.0.1:4410' is valid to be used in an I nnoDB cl uster.

Cluster admin user 'icadmn' created.
The instance '127.0.0.1:4410' is already ready to be used in an InnoDB cluster.

Successful ly enabl ed parallel appliers.

In this example, r oot @27. 0. 0. 1: 4410 is the URI-like connection string for the standalone
server, and i cadmni n is the user name for the InnoDB Cluster server configuration account that
will be created on the instance. For better security, specify the password for the InnoDB Cluster
server configuration account at the interactive prompt as shown in the example, or you can provide
it using the cl ust er Adm nPasswor d option. The dba. confi gur el nst ance() command
grants the account the required permissions automatically, although you may set up the account
manually if you prefer, granting it the permissions listed in Configuring Users for AdminAPI. For
more details of the dba. confi gur el nst ance() command and its options, see Configuring
Production Instances.

When you issue dba. confi gurel nstance(), MySQL Shell verifies that the server instance
meets the requirements for use with InnoDB Cluster. The requirements for InnoDB ClusterSet will
be checked when you issue the commands to create the replica cluster and add instances to it.

7. Connect to any active instance in the primary cluster that is already in the InnoDB ClusterSet
deployment, using the InnoDB Cluster server configuration account. Ensure you still have the
Cl ust er Set object that was returned when you created the InnoDB ClusterSet, or fetch it again
using dba. get Cl ust er Set () orcl uster. get C ust er Set () . Again, it is important to do
this when you are connected to the server instance using the InnoDB Cluster server configuration
account. The default user account stored in the object is used for some operations during the
InnoDB ClusterSet deployment process, regardless of the account that you specify on the
connection.

8. Issue aclusterSet.createReplicaC uster() command using the Cl ust er Set object to
create the replica cluster, naming one of the standalone server instances. This server instance will
be the replica cluster's primary. The command returns a Cl ust er object for the replica cluster, and
you can assign this to a variable if you want. For example:

nysql -j s> cluster2 = nyclusterset.createReplicaC uster("127.0.0.1:4410", "clustertw", {recoveryProgres
Setting up replica 'clustertwo’ of cluster 'clusterone' at instance '127.0.0.1:4410'.

A new I nnoDB cluster will be created on instance '127.0.0.1:4410'.

Val i dating instance configuration at 127.0.0. 1: 4410. ..

NOTE: |nstance detected as a sandbox.

Pl ease note that sandbox instances are only suitable for deploying test clusters for use within
the same host.

This instance reports its own address as 127.0.0. 1: 4410

I nstance configuration is suitable.

NOTE: G oup Replication will conmunicate with other nmenbers using '127.0.0.1:44101'. Use the

| ocal Address option to override.

* Checking transaction state of the instance...

NOTE: The target instance '127.0.0.1:4410' has not been pre-provisioned (GTID set is enpty). The

144

Deploying InnoDB ClusterSet

Shell is unable to decide whether replication can conpletely recover its state.

The safest and nbst convenient way to provision a new instance is through autonmatic clone
provi sioning, which will conpletely overwite the state of '127.0.0.1:4410' with a physical
snapshot from an existing clusterset menber. To use this method by default, set the
'recoveryMet hod' option to 'clone'.

WARNING It should be safe to rely on replication to increnentally recover the state of the new
Replica Cluster if you are sure all updates ever executed in the ClusterSet were done with GTlDs
enabl ed, there are no purged transactions and the instance used to create the new Replica C uster
contains the sane GIID set as the ClusterSet or a subset of it. To use this method by default,
set the 'recoveryMethod' option to 'increnental"'.

Pl ease sel ect a recovery nethod [C]lone/[|]ncremental recovery/[A] bort (default C one):
Waiting for clone process of the new menber to conplete. Press "C to abort the operation.
* Waiting for clone to finish...

NOTE: 127.0.0.1:4410 is being cloned from 127.0. 0. 1: 3310

** Stage DROP DATA: Conpl et ed

NOTE: 127.0.0.1:4410 is shutting down. ..

* Waiting for server restart... ready

* 127.0.0.1: 4410 has restarted, waiting for clone to finish...

** Stage FILE COPY: Conpl eted

** Stage PAGE COPY: Conpl eted

** Stage REDO COPY: Conpl eted

** Stage FILE SYNC: Conpl et ed

** Stage RESTART: Conpl et ed

* Clone process has finished: 72.61 MB transferred in about 1 second (~72.61 MB/S)

Creating InnoDB cluster 'clustertwo' on '127.0.0.1: 4410 ...

Addi ng Seed I nstance. ..

Cluster successfully created. Use C uster.addl nstance() to add MySQL i nstances.
At |least 3 instances are needed for the cluster to be able to withstand up to
one server failure.

* Configuring O usterSet managed replication channel...
** Changi ng replication source of 127.0.0.1:4410 to 127.0.0. 1: 3310

* Waiting for instance to synchronize with PRIMARY Cluster. ..
** Transactions replicated #####HHHHHHHTHHHHHHHHHH T 100%
* Updati ng topol ogy

Replica Cluster 'clustertw' successfully created on ClusterSet 'testclusterset'.

<Cl uster:cl ustertwo>

For the cl ust er Set . creat eRepl i caCl ust er () command:

e Thei nst ance parameter is required and specifies the host and port number of the standalone
server's MySQL Server instance. This is the server instance that is going to be the primary of the
replica cluster. In the example command above, thisis 127. 0. 0. 1: 4410.

* The cl ust er Nane parameter is required and specifies an identifier for the replica cluster. In
the example command above, cl ust er t wo is used. The name must be unique in the InnoDB
ClusterSet, and it must follow the InnoDB Cluster naming requirements. Only alphanumeric
characters, hyphens (-), underscores (_), and periods (.) can be used, and the name must not
start with a number. The maximum length is 63 characters. The cluster name is case sensitive.

* Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

e Usetheinteracti ve option to enable or disable confirmation prompts for the provisioning
method. The default is the value of MySQL Shell's useW zar ds option.

* Use the recover yMet hod option if you want to select a provisioning method. If you do not
specify this as an option, the default setting AUTOis used. In that case, the function compares

145

Deploying InnoDB ClusterSet

the GTID set on the server instance to the GTID set on the primary cluster, and attempts to
determine the most appropriate provisioning method. If this cannot be determined, the function
prompts you to select a provisioning method, or cancels the operation if you are not in interactive
mode.

The provisioning process, which is called distributed recovery, can use cloning, where the

state of the server instance is completely overwritten by a physical snapshot taken from an
existing member server in the cluster. To select this in advance, specify the CLONE setting. The
alternative is incremental state transfer from an existing member server's binary log, in this case
a member of the primary cluster. Here, the server instance receives and applies transactions
from the primary cluster that it does not already have. To select this in advance, specify the

I NCREMENTAL setting.

e Use the cl oneDonor option if you want to select a specific server to provide the snapshot that
overwrites the current server, if distributed recovery is carried out by cloning. The operation
chooses a secondary member of the primary cluster by default, or the primary if no secondary is
available. The selected server instance must be a member of the primary cluster in the InnoDB
ClusterSet. Specify a host and port number. IPv6 addresses are not supported for this option.

* Usetherecover yProgress option to specify the verbosity level (0, 1, or 2) for the distributed
recovery process. Setting 0 shows no progress information, 1 shows detailed static progress
information, and 2 shows detailed dynamic progress information using progress bars. 2 is the
default if standard output is a terminal, otherwise 1 is the default.

e Use the ti neout option if you want to set a timeout to wait for the server instance to
synchronize with the primary cluster after it has been provisioned and the ClusterSet replication
channel has been established. By default there is no timeout.

¢ Use the nanual St art OnBoot option to specify whether Group Replication starts automatically
and rejoins the cluster when the MySQL server starts up, or whether it must be started manually.
The default, f al se, means Group Replication starts automatically.

¢ The options nenber Ssl Mode, i pAl | owl i st, | ocal Addr ess, exi t St at eActi on,
menber Wi ght , consi st ency, expel Ti meout , and aut oRej oi nTri es are available if you
want to configure the setup of Group Replication for the replica InnoDB Cluster. These options
work in the same way as they do for an InnoDB Cluster that is not part of a ClusterSet. For
details of the options, see Section 7.6, “Configuring InnoDB Cluster”.

« ltis possible to use the options | ocal Addr ess, gr oupNane, and gr oupSeeds to set a Group
Replication local address, group identifier, and list of group seeds, respectively. However, this
is not recommended, as incorrect values can cause errors in Group Replication. Only use these
options if you already experienced an issue with the values selected by the InnoDB ClusterSet
setup process for these items.

When you issue the cl ust er Set . cr eat eRepl i caC ust er () command, MySQL Shell checks
that the target server instance complies with the requirements to become the primary server in a
replica InnoDB Cluster in an InnoDB ClusterSet deployment, and returns an error if it does not. If
the instance meets the requirements, MySQL Shell carries out the following setup tasks:

< Creates the ClusterSet replication channel cl ust er set _repli cati on, and creates
a replication user with a random password. This is an asynchronous replication channel
between the target instance and the primary server of the primary cluster, which is
managed by InnoDB ClusterSet. Encryption is configured for the channel according to the
cl ust er Set Repl i cat i onSsl Mode option for the InnoDB ClusterSet. MySQL Shell verifies
that the replication setup is working, and returns an error if it is not.

» Provisions the MySQL Server instance with the dataset from the primary InnoDB Cluster and
synchronizes the GTID set, using the selected recovery method. Note that if there is a large

146

Deploying InnoDB ClusterSet

amount of data in the ClusterSet's member servers, distributed recovery could take several
hours.

< Adds the InnoDB Cluster administrator accounts and the MySQL Router administrator accounts
on the server instance. If the instance is provisioned by state transfer from the binary log, the
provisioning process includes the transactions that create the accounts, or else the accounts are
transferred during cloning. Either way, these accounts become available on the server instance.
See Section 8.3, “User Accounts for InnoDB ClusterSet” for more information.

« Configures and starts Group Replication for the replica cluster. The InnoDB
ClusterSet replica cluster creation process overwrites any existing persisted
Group Replication configuration options for which you specify new settings on the
clusterSet.createReplicaC uster() command. It also always overwrites
the following configuration options, even if you do not specify them on the command:
group_replication_group_nane,group_replication_group_seeds,
group_replication_| ocal address, group_replication_view change uuid, and
group_replication_enforce_update_everywhere_checks. However, any other Group
Replication configuration options that you changed on the server instance prior to using it in the
replica cluster are left as they were. See the important note about this in Section 8.1, “InnoDB
ClusterSet Requirements”.

Sets the ski p_replica_start system variable to ON so that replication threads are not
automatically started on the server, and sets the super _read_onl y system variable so that
clients cannot write transactions to the server.

Disables the Group Replication member action
mysql di sabl e super _read only if prinmary sothatsuper read only remains set
on the primary of the cluster after a view change.

Enables the Group Replication member action

mysqgl start_failover_channel s _if_primary so that asynchronous connection failover
for replicas is enabled for the ClusterSet replication channel. With this function enabled, if the
primary that is replicating goes offline or into an error state, the new primary starts replication on
the same channel when it is elected.

Transfers the ClusterSet metadata to the server instance, creates the replica cluster in the
InnoDB ClusterSet, and adds the target server instance to it as the primary.

Returns the Cl ust er object for the replica cluster.

Using the Cl ust er object that was returned for the replica cluster by
clusterSet.createReplicaC uster(),issueacluster.addl nstance command naming
another of the standalone server instances. This server instance will be a secondary in the replica
cluster. For example:

nmysql -j s> cluster2. addl nstance('i cadm n@27.0.0. 1: 4420')

NOTE: The target instance '127.0.0.1:4420' has not been pre-provisioned (GIID set is enpty).
Shell is unable to decide whether clone based recovery is safe to use.

The safest and nbst convenient way to provision a new instance is through automatic clone
provi sioning, which will conpletely overwite the state of '127.0.0.1:4420' with a physical
snapshot from an existing cluster nenber. To use this nethod by default, set the
‘recoveryMet hod' option to 'clone'.

Pl ease sel ect a recovery nethod [C]lone/[A]bort (default Cone): c
Val i dating instance configuration at |ocal host: 4420...
NOTE: |nstance detected as a sandbox.

The

Pl ease note that sandbox instances are only suitable for deploying test clusters for use within

the sane host.
This instance reports its own address as 127.0.0. 1: 4420

I nstance configuration is suitable.

147

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_name
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_group_seeds
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_local_address
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_enforce_update_everywhere_checks
https://dev.mysql.com/doc/refman/8.0/en/replication-options-replica.html#sysvar_skip_replica_start
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Deploying InnoDB ClusterSet

NOTE: Group Replication will communicate with other menbers using '127.0.0.1:44201'. Use the
| ocal Address option to override.

A new instance will be added to the |InnoDB cluster. Depending on the anmount of
data on the cluster this mght take froma few seconds to several hours.

Addi ng instance to the cluster...

* Waiting for the Cluster to synchronize with the PRIMARY Cluster. ..
** Transactions replicated ######HHHHHHHHHHHHHHHHH T 100%
* Configuring O usterSet managed replication channel...

** Changi ng replication source of 127.0.0.1:4420 to 127.0.0. 1: 3310

Moni toring recovery process of the new cluster nmenber. Press "C to stop nonitoring and
let it continue in background.
Cl one based state recovery is now i n progress.

NOTE: A server restart is expected to happen as part of the clone process. If the
server does not support the RESTART command or does not come back after a
while, you may need to manual ly start it back.

* Waiting for clone to finish...

NOTE: 127.0.0.1:4420 is being cloned from 127. 0. 0. 1: 4410
** Stage DROP DATA: Conpl et ed

** Cl one Transfer

EI LE COPY HHHHHH R R R B B EE . 100% Comml et ed
HHH A HHFHH T HH T H T H A H T H A H T H A H A H A H T () nplete

PAGE COPY HHHHHH R R R R B S 100% Comml et ed
HHH A HHFHH T HH T H T H T H T H A H T H A H A H T () nplete

REDO COPY H#HHHHH R R R B B EEE . 100% Comml et ed
HHH A HHHHH T HH T H A H T H A H T H R H A H T () nplete

NOTE: 127.0.0.1:4420 is shutting down. ..

* Waiting for server restart... ready

* 127.0.0.1: 4420 has restarted, waiting for clone to finish...

** Stage RESTART: Conpl et ed

* Clone process has finished: 72.61 MB transferred in about 1 second (~72.61 MB/S)

State recovery already finished for '127.0.0. 1: 4420

The instance '127.0.0. 1: 4420 was successfully added to the cluster.
For more details on the cl ust er. addl nst ance command, see Adding Instances to a Cluster.

If you need to get the Cl ust er object for the replica cluster again, connect to any active

instance in the replica cluster using the InnoDB Cluster server configuration account and issue
dba. get Cl ust er (). This account is used for some of the operations in the setup process. If the
setup process finds that the account is not present on the standalone server instance, an error is
returned, and you will need to issue dba. confi gur el nst ance() to create the account.

When the command is successful, the server instance is added to the replica cluster and
provisioned with the data for the InnoDB ClusterSet. The donor for a cloning operation will be from
the replica cluster, not the primary cluster.

10. Repeat the cl ust er . addl nst ance operation to add all of the standalone server instances to the
replica cluster. A minimum of three instances is recommended for tolerance to failures. You can
have up to nine member servers in a replica cluster, which is a limit built into the underlying Group
Replication technology.

11. Verify that the completed replica cluster and the InnoDB ClusterSet deployment are healthy.
You can do this using a cl ust er. st at us() command to view the replica cluster, and a
cl usterSet.status() command to view the InnoDB ClusterSet deployment. Alternatively, you
can select the extended output for cl ust er Set . st at us() to see the detailed status for all the
clusters. For example:

nysqgl -j s> nycl ust erset. stat us({extended: 1})
"clusters": {

“clusterone": {
“clusterRol e": "PRI MARY",

148

Deploying InnoDB ClusterSet

"gl obal Status": "OK",
“primary": "127.0.0.1:3310",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"t opol ogy": {
"127.0.0. 1: 3310": {
"address": "127.0.0.1: 3310",
"menber Rol e": " PRI MARY",

"node": "RIW,
“status": "ONLINE",
"version": "8.0.27"

s
"127.0.0.1:3320": {
"address": "127.0.0.1: 3320",
"menber Rol e": " SECONDARY",
"nmode": "R O,
“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
s
"127.0.0.1:3330": {
"address": "127.0.0.1: 3330",
"menber Rol e": " SECONDARY",
"nmode": "R O,
“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"

}
s
"transactionSet": "953a51d5-2690-11ec-ba07-00059a3c7a00: 1, c51c1bl15-269e- 11lec- b9ba- 00059:
s
"“clustertwo": {
“clusterRol e": "REPLICA",
"clusterSetReplication": {
“applierStatus": "APPLIED ALL",
"applierThreadState": "Waiting for an event from Coordi nator",
“appl i er Wr ker Thr eads": 4,
"receiver": "127.0.0. 1: 4410",
“receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
"source": "127.0.0.1:3310"
s
"clusterSetReplicationStatus": "OK",
"gl obal Status": "OK",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"t opol ogy": {
"127.0.0. 1: 4410": {
"address": "127.0.0. 1: 4410",
"menber Rol e": " PRI MARY",
"mode": "R O',
“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
s
"127.0.0. 1: 4420": {
"address": "127.0.0. 1: 4420",
"menber Rol e": " SECONDARY",
"mode": "R O',
“replicationLagFrom medi at eSource": "",
“replicationLagFronOri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
s
"127.0.0. 1: 4430": {
"address": "127.0.0. 1: 4430",
"menber Rol e": " SECONDARY",
"nmode": "R O',
“replicationLagFrom medi at eSource": "",

149

Integrating MySQL Router With InnoDB ClusterSet

“replicationLagFronOri gi nal Source":
"status": "ONLINE",
“version": "8.0.27"

}

transactionSet": "Of 6ff279-2764- 11ec-ba06-00059a3c7a00: 1-5, 953a51d5- 2690- 11ec- ba07- 00059a3
"transacti onSet Consi st encyStatus": "OK",

"transactionSet Errant &i dSet":

"transactionSet M ssing& i dSet":

}

domai nName": "testclusterset",
"gl obal Pri maryl nstance": "127.0.0.1: 3310",
"nmet adat aServer": "127.0.0. 1: 3310",

“primaryCluster": "clusterone",
"status": "HEALTHY",
"statusText": "All Custers available."

}

See Section 8.6, “InnoDB ClusterSet Status and Topology” for more information on the output of
the cl ust er Set . st at us() command.

12. Add further replica clusters as required, by repeating the above steps with a different set of
standalone instances. There is no defined limit on the number of replica clusters that you can have
in an InnoDB ClusterSet deployment. The process is the same in each case, as summarized here:

» Create the InnoDB Cluster server configuration account on each of the standalone server
instances by issuing a dba. confi gur el nst ance() command with the cl ust er Adni n option.

» Fetch the Cl ust er Set object using dba. get Cl ust er Set () or
cluster.getd usterSet (), whenyou are connected to a member of the InnoDB ClusterSet
using the InnoDB Cluster server configuration account. You can get the object from any member
server in the primary cluster or in one of the replica clusters that you created already.

e Issue acl usterSet.creat eReplicaC uster() command using the Cl ust er Set object to
create the replica cluster, naming one of the standalone server instances.

* Using the Cl ust er object that was returned for the replica cluster by
clusterSet.createReplicaC uster(),issueacluster.addl nstance command
naming another of the standalone server instances.

* Repeat the cl ust er. addl nst ance operation to add all of the standalone server instances to
the replica cluster.

 Verify that the completed replica cluster and the InnoDB ClusterSet deployment are healthy, for
example by using a cl ust er Set . st at us() command with extended output.

13. Bootstrap MySQL Router instances against the InnoDB ClusterSet to manage application traffic,
and configure them as appropriate. By default, MySQL Router directs all read and write requests to
whichever cluster is currently the primary cluster in an InnoDB ClusterSet deployment, but you can
configure a MySQL Router instance to route traffic only to a specific cluster. For instructions, see
Section 8.5, “Integrating MySQL Router With InnoDB ClusterSet”.

8.5 Integrating MySQL Router With InnoDB ClusterSet

MySQL Router routes client application traffic to the appropriate clusters in an InnoDB ClusterSet
deployment. You can set a global policy for MySQL Router instances that are used with the InnoDB
ClusterSet deployment, and override this with settings for individual MySQL Router instances.

When you bootstrap a MySQL Router instance against an InnoDB ClusterSet deployment, it is aware
of the complete topology of the ClusterSet, and can manage write and read traffic appropriately. If a
controlled switchover or emergency failover takes place, the MySQL Router instances connected with
the InnoDB ClusterSet are aware of this and route traffic to the new primary cluster, except for any

150

Integrating MySQL Router With InnoDB ClusterSet

instances that you have configured to send traffic to a specific cluster. If a cluster is invalidated, MySQL
Router instances stop read and write traffic to it, except for any instances that you have configured to
continue sending read traffic in that situation.

For each MySQL Router instance that you are using with InnoDB ClusterSet, you can choose to
configure it to follow the primary cluster, or to connect only to a specific target InnoDB Cluster. You can
change between these modes online using MySQL Shell.

Follow the primary In this mode, MySQL Router directs application traffic, both writes
and reads, to the cluster in the InnoDB ClusterSet deployment that
is currently the primary cluster. This mode is the default.

Named target cluster In this mode, MySQL Router directs application traffic to the InnoDB
Cluster that you specify. This can be the primary cluster in the
InnoDB ClusterSet deployment, or it can be a replica cluster. If the
target cluster is currently the primary cluster, MySQL Router opens
the write port and applications can write to the instance. If the target
cluster is currently a read-only replica cluster, MySQL Router allows
only read traffic, and denies write traffic. If this situation changes
due to a switchover or failover to or from the target cluster, MySQL
Router changes the permitted request types accordingly. This mode
is useful if an application makes only read requests, which can be
made on a replica cluster, and you want to keep that traffic routed to
a local cluster.

You can also configure MySQL Router to allow or disallow read traffic to a cluster that has been
marked as | NVALI DATED. A cluster in this state is not currently functioning at all as part of the InnoDB
ClusterSet deployment, and cannot receive writes. Although the cluster does not necessarily have

any technical issues, its data is becoming stale. The default is that MySQL Router disallows reads as
well as writes to an invalidated cluster (the dr op_al | setting), but you can choose to allow reads (the
accept _r o setting).

To bootstrap MySQL Router against InnoDB ClusterSet, you need to use an InnoDB Cluster
administrator account, or the InnoDB Cluster server configuration account, which also has the required
permissions. MySQL Router then uses the MySQL Router administrator account to connect to the
instances in the InnoDB ClusterSet deployment. You need to specify the user name and password

for both these accounts during the bootstrap operation. See Section 8.3, “User Accounts for InnoDB
ClusterSet” for more information.

Important

A If you are using an existing InnoDB Cluster as the primary cluster in your
InnoDB ClusterSet deployment, and you bootstrapped MySQL Router against
that cluster already, follow the relevant parts of this process to bootstrap it
again using the - - f or ce option against the InnoDB ClusterSet, then stop
and restart MySQL Router. The settings in the MySQL Router instance's static
configuration file need to be updated for InnoDB ClusterSet.

To integrate MySQL Router with an InnoDB ClusterSet deployment, follow this process:

1. If you haven't already done so, install MySQL Router instances as appropriate for your topology.
The recommended deployment of MySQL Router is on the same host as the client application.
When using a sandbox deployment, everything is running on a single host, therefore you deploy
MySQL Router to the same host. When using a production deployment, we recommend deploying
one MySQL Router instance to each machine used to host one of your client applications. It is also
possible to deploy MySQL Router to a common machine through which your application instances
connect. For instructions, see Installing MySQL Router.

2. Connect to any active member server instance in the InnoDB ClusterSet deployment, using an
InnoDB Cluster administrator account. You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. Get the Cl ust er Set object using a

151

https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-installation.html

Integrating MySQL Router With InnoDB ClusterSet

dba. get Cl usterSet () orcluster.getC usterSet() command. It isimportant to get the

Cl ust er Set object when you are connected to the server instance using an appropriate account.
The default user account stored in the object is used for some operations, regardless of the account
that you specify on the connection. For example:

nmysql -j s> \connect adm n2@27.0. 0. 1: 3310

nysql -j s> nycl usterset = dba. get Cl uster Set ()
<Cl ust er Set : t estcl ust erset >

In this example:

e adm n2@27. 0. 0. 1: 3310 is the URI-like connection string for any member server instance
that is online in the cluster.

The URI-like connection string is comprised of the following elements:
¢ adm n2 is the user name for the InnoDB Cluster administrator account.

e 127.0.0. 1: 3310 is the host and port for the member server instance, as displayed by the
cluster.status() command.

* The returned Cl ust er Set object is assigned to the variable nycl ust er set .

3. Verify that the InnoDB ClusterSet deployment is healthy, by issuing cl ust er Set . st at us() in
MySQL Shell while connected to any member server in the cluster. For example:

nysql -j s> nycl ust erset. st atus({extended: 1})

Select the extended output to see the detailed status for the clusters in the InnoDB ClusterSet
topology. This gives you the host and port for each member server, so you can choose one to
bootstrap MySQL Router against. See Section 8.6, “InnoDB ClusterSet Status and Topology” for
more information.

4. For each MySQL Router instance, run the mysql r out er command in a suitable shell on
the instance where MySQL Router is installed, to bootstrap MySQL Router against InnoDB
ClusterSet. In this example, the f or ce option is used because MySQL Router has previously been
bootstrapped against the primary InnoDB Cluster:

$> nysql router --bootstrap icadm n@27.0.0.1:3310 --account=nyRouterl --nane=' Ronel' --force
Pl ease enter MySQL password for icadm n:
Boot strappi ng system MySQL Router instance...

Pl ease enter MySQL password for nyRouter1:

- Creating account(s) (only those that are needed, if any)

Verifying account (using it to run SQL queries that would be run by Router)
Storing account in keyring

- Creating configuration C./Program Fil es/ MySQL/ MyYSQL Rout er 8.0/ mysql rout er. conf

MySQL Router configured for the ClusterSet 'testclusterset'
After this M/SQL Router has been started with the generated configuration
> net start mysqlrouter
o > C:\Program Fi | es\ MySQL\ MySQL Rout er 8.0\ bi n\nmysqlrouter.exe -c C./Program Fi |l es/ M\ySQL/ M\ySQL Rout e
ClusterSet 'testclusterset' can be reached by connecting to:

MySQL O assic protocol

- Read/Wite Connections: |ocal host: 6446
- Read/ Only Connections: |ocal host: 6447

MySQL X protocol

- Read/Wite Connections: |ocal host: 6448

152

Integrating MySQL Router With InnoDB ClusterSet

- Read/ Only Connections: |ocal host: 6449

In this example:

e icadm n@?27. 0. 0. 1: 3310 is the URI-like connection string for any member server instance
that is online in the InnoDB ClusterSet deployment. The instance can be in the primary cluster
or in a replica cluster. If the instance is not the primary server in the primary cluster, InnoDB
ClusterSet will route the transaction to that server, provided that the InnoDB ClusterSet
deployment is healthy.

The URI-like connection string is comprised of the following elements:

e i cadm n is the user name for an InnoDB Cluster administrator account that was set up using
the cl ust er. set upAdmi nAccount () command on the primary cluster, then replicated to
the replica clusters. The bootstrap operation prompts you for the password for the account. The
password for an InnoDB Cluster administrator account is the same on all the server instances in
the InnoDB ClusterSet deployment.

e 127.0.0. 1: 3310 is the host and port for the member server instance, as displayed by the
clusterSet. status() command.

e myRout er 1 is the user name for a MySQL Router administrator account that was set up using
the cl ust er. set upRout er Account () command on the primary cluster. The account is the
same on all the server instances in the InnoDB ClusterSet deployment. The bootstrap operation
prompts you for the password for the account.

e --nane can be used to assign a non-default name to the MySQL Router instance, to make it
easily identifiable in the output from InnoDB ClusterSet status commands.

e --forceisrequired if you are bootstrapping MySQL Router again for an existing InnoDB Cluster
where it was previously bootstrapped.

MySQL Router connects to the server instance and retrieves the InnoDB ClusterSet metadata. The
process is the same as when you bootstrap MySQL Router against an individual InnoDB Cluster.
For more details about the process, see Section 6.4.3, “Deploying MySQL Router”.

After you bootstrap each MySQL Router instance, verify that it is now correctly bootstrapped
against the InnoDB ClusterSet deployment, by issuing cl ust er Set . | i st Rout er s() in MySQL
Shell while connected to any member server in the InnoDB ClusterSet. The command returns
details of all the registered MySQL Router instances, or a router instance that you specify. For
example:

nmysql -j s> nycl usterset.|istRouters()

“domai nNane": "testclusterset",
“routers": {
"Ronmel": ({
“host name": " mynachi ne",

"l ast Checkl n": 2021-10-15 11:58: 37,
"roPort": 6447,

"roXPort": 6449,

"rwPort": 6446,

"rwXPort": 6448,

“"targetCluster": "primry",
“version": "8.0.27"

s

"Rome2": {
"host name": "mynachi ne2",

"l ast Checkl n": 2021-10-15 11:58: 37,
"roPort": 6447,

"roXPort": 6449,

"rwPort": 6446,

"rwXPort": 6448,

153

Integrating MySQL Router With InnoDB ClusterSet

“"targetCluster": "primry"
“version": "8.0.27"

}
See MySQL Router Status for InnoDB ClusterSet for more information.

To see the routing options that are set for each MySQL Router instance, and the global policy for
the InnoDB ClusterSet deployment, issue cl ust er Set . routi ngOpt i ons() in MySQL Shell
while connected to any member server in the InnoDB ClusterSet deployment. For example:

nysqgl -j s> nycl usterset.routi ngOptions()
{

"donai nNane": "testclusterset"

"global": {
"invalidated_cluster_policy": "drop_all"
“"target_cluster": "primry"

}

outers": {
"Ronmel": {
“"target_cluster": "primary"
"invalidated_cluster_policy": "accept_ro"

}
"Rome2": {}

}

By default, a MySQL Router instance sends traffic to the primary cluster, and disallows
both read and write traffic to a cluster that is marked as | NVALI DATED. See MySQL Router
Status for InnoDB ClusterSet for more information and an explanation of the output of the
clusterSet.routingOptions() command.

If you want to change the global routing policy or the routing policy for an individual MySQL Router
instance, issue cl ust er Set . set Rout i ngOpt i on() in MySQL Shell while connected to any
member server in the InnoDB ClusterSet deployment. You can only set one routing option at a time.
It takes a few seconds for a MySQL Router instance to pick up changes to a routing policy.

For example, this command issued for the InnoDB ClusterSet mycl ust er set changes the target
cluster for a MySQL Router instance to the cluster cl ust er t wo:

nysql -j s> nmycl ust erset. set Routi ngOpti on(' Ronel', 'target_cluster', 'clustertwo')
Routing option 'target_cluster' successfully updated in router 'Ronmel'.

In this example, nycl ust er set is the variable for the Cl ust er Set object, Ronel is the name of
the MySQL Router instance, and cl ust er t wo is the name of the specific cluster to target.

To set the routing policy for the instance back to following the primary, issue this command:

nysql -j s> nycl ust erset. set Routi ngOption(' Romel', 'target_cluster', 'primary')
Routing option 'target_cluster' successfully updated in router 'Romel'.

To clear a routing policy for an instance, use the cl ust er Set . set Routi ngOpti on() command
to set the relevant policy to nul | . For example:

nysqgl -j s> nycl usterset. set Routi ngOpti on(' Ronel', 'target_cluster', null)
Routing option 'target_cluster' successfully updated in router 'Ronel'

To set the global routing policy, do not specify a MySQL Router instance, just the policy name
and the setting. See MySQL Router Status for InnoDB ClusterSet for more information and an
explanation of the available routing options.

When you are ready to start accepting connections, configure the applications to use the ports
where MySQL Router is listening for traffic to the InnoDB ClusterSet deployment. Then start the
MySQL Router instances using a suitable shell or script in the servers where MySQL Router is
installed. See Starting MySQL Router.

154

https://dev.mysql.com/doc/mysql-router/8.0/en/mysql-router-server-starting.html

InnoDB ClusterSet Status and Topology

8.6 InnoDB ClusterSet Status and Topology

AdminAPI's cl ust er Set . st at us() command returns a JSON object describing the status of an
InnoDB ClusterSet deployment. The output includes the status of the InnoDB ClusterSet deployment
itself and the global and cluster status of each InnoDB Cluster in the ClusterSet. The extended

output adds the status of each member server in each cluster, information about the asynchronous
replication channels managed by InnoDB ClusterSet, and other configuration and status information.
The command reports the status of ClusterSet replication as well as of the servers themselves. If there
are any issues, warning and error messages are included to explain the problem in more detail.

The MySQL Shell instance where you use cl ust er Set . st at us() can be connected to any active
member of the InnoDB ClusterSet. The metadata can be retrieved from the primary cluster by way of
any other cluster that is active in the InnoDB ClusterSet.

If there is an issue with any of the clusters in the InnoDB ClusterSet, Section 8.9, “InnoDB ClusterSet
Repair and Rejoin” explains the procedure for fixing it and rejoining the cluster to the ClusterSet (or
removing it if the issue cannot be fixed). If the cluster with the issue is the primary cluster, you first
need to carry out a controlled switchover if it is still functioning (as described in Section 8.7, “InnoDB
ClusterSet Controlled Switchover”), or an emergency failover if it is not functioning or cannot be
contacted (as described in Section 8.8, “InnoDB ClusterSet Emergency Failover”).

You can use the ext ended option, which defaults to 0, to increase the verbosity level of the output as
follows:

» extended: O or omitting the option returns basic information about the availability status of
the InnoDB ClusterSet deployment, each InnoDB Cluster in the ClusterSet, and the ClusterSet
replication status for each replica cluster.

» extended: 1 adds the topology for each InnoDB Cluster in the ClusterSet, the status of each
individual member server in each cluster, and more detailed information about the ClusterSet
replication channel's status for each replica cluster.

 extended: 2 adds further details about each individual member server in each cluster and about
the ClusterSet replication channel, including the GTID set.

» extended: 3 addsimportant configuration settings for the ClusterSet replication channel, such as
the connection retry settings.

For example:

nmysql -j s> nycl usterset. st atus({extended: 1})
{
"clusters": {
"clusterone": {
"clusterRol e": "PRI MARY",
"gl obal Status": "OK",
“primary": "127.0.0.1:3310",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0.1:3310": {
"address": "127.0.0.1:3310",
"menber Rol e": " PRI MARY",

"node": "RIW,
"status": "ONLI NE",
"version": "8.0.27"

"127.0.0.1:3320": {
"address": "127.0.0.1:3320",
"menber Rol e": " SECONDARY",
"nmode": "R O',
“replicationLagFromn medi at eSour ce":
"replicationLagFronCri gi nal Source":
"status": "ONLINE",
"version": "8.0.27"

155

InnoDB ClusterSet Status and Topology

"127.0.0.1:3330": {
"address": "127.0.0.1:3330",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"replicationLagFromnm medi at eSour ce":
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"

}
iE
"transactionSet": "953a51d5-2690-11ec-ba07-00059a3c7a00: 1, c51clb15-269e- 11ec- b9ba- 00059a3c7a00:
iE
"clustertwo": {
“clusterRol e": "REPLICA",
"clusterSetReplication": {
"applierStatus": "APPLIED ALL",
"applierThreadState": "Waiting for an event from Coordinator",
"appl i er Wr ker Thr eads": 4,
“"receiver": "127.0.0.1: 4410",
"receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
"source": "127.0.0.1:3310"
iE
"clusterSetReplicationStatus": "OK',
"gl obal Status": "OK",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0. 1: 4410": {
"address": "127.0.0.1: 4410",
"menber Rol e": " PRI MARY",
"mode": "R O,
"replicationLagFromn medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
iE
"127.0.0. 1: 4420": {
"address": "127.0.0.1: 4420",
"menber Rol e": " SECONDARY",
"mode": "R O,
"replicationLagFromn medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
iE
"127.0.0. 1: 4430": {
"address": "127.0.0.1: 4430",
"menber Rol e": " SECONDARY",
"mode": "R O,
"replicationLagFromnm medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",

"version": "8.0.27"
}
b
"transactionSet": "Of 6ff279-2764- 11ec-ba06-00059a3c7a00: 1-5, 953a51d5- 2690- 11ec- ba07- 00059a3c7al
"transacti onSet Consi st encyStatus": "OK",

"transactionSetErrantGidSet": "",
"transacti onSet M ssingGidSet": ""

}
i
"dormai nNane": "testclusterset",

"gl obal Pri maryl nstance": "127.0.0.1:3310",
"met adat aServer": "127.0.0.1:3310",

"primaryC uster": "clusterone",
"status": "HEALTHY",
"statusText": "All Custers available."

}

To get a handle to a Cl ust er Set object representing the InnoDB ClusterSet for a target server
instance, use a dba. get Cl ust er Set () orcl uster. get C ust er Set () command. These

156

InnoDB ClusterSet Status and Topology

commands work if the target server instance is a member of an InnoDB Cluster that is part of an
InnoDB ClusterSet deployment, even if the primary cluster for the InnoDB ClusterSet deployment is not
currently reachable. The target server instance itself must be reachable when you use the object. If the
target instance is a member of a cluster that has been marked as invalidated, the command returns a
warning, but still returns the Cl ust er Set object. If the target instance is not currently a member of an
InnoDB ClusterSet deployment, the command returns an error. The Cl ust er Set object contains the
connection details of the server that you retrieved it from, so a Cl ust er Set object that you previously
retrieved from a member server that is now offline will not work any more, and you would need to get it
again from a server that is online in the InnoDB ClusterSet deployment.

The Cl ust er Set object defaults to using the account it was fetched with for operations where
permissions are required. It is important to get the object when you are connected to the server
instance using an appropriate user account for the operations you want to perform using it. Some
operations during the InnoDB ClusterSet deployment process require permissions, and the default
user account stored in the object is used for this, so that the process does not need to store any other
user accounts. For monitoring and troubleshooting an InnoDB ClusterSet that you already set up, an
InnoDB Cluster administrator account is appropriate. For the initial cluster deployment process, the
InnoDB Cluster server configuration account is appropriate. For more information, see Section 8.3,
“User Accounts for InnoDB ClusterSet”.

When you use the cl ust er Set . st at us() function, the overall ClusterSet status (st at us field)
reported for an InnoDB ClusterSet deployment can be one of the following:

HEALTHY The primary cluster in the InnoDB ClusterSet is functioning
acceptably, and all of the replica clusters are functioning acceptably.

AVAI LABLE The primary cluster in the InnoDB ClusterSet is functioning
acceptably, but one or more of the replica clusters has impaired
functioning or is not functioning.

UNAVAI LABLE The primary cluster in the InnoDB ClusterSet is not functioning,
because it is offline or has lost quorum, or MySQL Shell cannot
contact the primary cluster to determine its status.

The overall ClusterSet status reported for an InnoDB ClusterSet deployment depends on the overall
status of each InnoDB Cluster. An InnoDB Cluster in a ClusterSet reports three statuses:

* The global status (gl obal St at us field) is the status of the InnoDB Cluster with regards to its role
in the InnoDB ClusterSet. This status shows whether the cluster can still function acceptably in the
InnoDB ClusterSet deployment, even if it has some issues, such as a member server being currently
offline. An InnoDB Cluster can be marked as invalidated during a failover, regardless of the status of
the member servers, and if so this is shown as the global status.

» The cluster status (st at us field) is the status of the InnoDB Cluster with regards to its own
functioning. This status shows whether the cluster has any technical issues, such as one or more
members being offline, a loss of quorum, or a Group Replication error state. A cluster can tolerate
certain issues but still function acceptably as part of an InnoDB ClusterSet deployment. For this
reason, with the default verbosity level, the cl ust er Set . st at us() function only reports the
cluster status for those clusters where it is causing a global status issue. To view the cluster status
for all clusters in the InnoDB ClusterSet whether or not it is causing a global status issue, use the
ext ended option to specify a higher verbosity level.

» The ClusterSet replication status (cl ust er Set Repl i cat i onSt at us field) is the status of the
ClusterSet replication channel for a replica InnoDB Cluster. This status shows whether the replica
cluster has any issues with replicating from the primary cluster, so that these can be considered
separately from any technical issues with the member servers in the cluster. A replica InnoDB
Cluster reports the ClusterSet replication status whether or not it is causing a global status issue. A
primary InnoDB Cluster does not have this status field, because the ClusterSet replication channel is
not operating on the primary cluster.

157

InnoDB ClusterSet Status and Topology

At higher verbosity levels, the extended output for the cl ust er Set . st at us() function shows the
status of each member server in each InnoDB Cluster. The output includes the member's Group
Replication state (menber St at e field) and for a server in a replica cluster, the state of replication on
the member. For information on the Group Replication states, see Group Replication Server States.

The global status (gl obal St at us field) reported for an InnoDB Cluster can be one of the following:

XK

OK_NOT_REPLI CATI NG

OK_NOT_CONSI STENT

OK_M SCONFI GURED

NOT_OK

UNKNOWN

I NVALI DATED

The cluster is functioning acceptably in the InnoDB ClusterSet
deployment. At least one of the member servers in the cluster is in
Group Replication's ONLI NE state, and the replication group has
quorum. If the cluster is a replica cluster, the ClusterSet replication
status is also OK. This global status does not necessarily mean
there are no technical issues with the cluster. Some members might
be offline, or the cluster might have too few members to provide
tolerance for failures. However, the cluster is functioning well
enough to continue as part of the InnoDB ClusterSet deployment. A
primary cluster or a replica cluster can have this global status.

The cluster is functioning acceptably, but replication has stopped
on the ClusterSet replication channel, either as a controlled stop or
due to a replication error. Only a replica cluster can have this global
status.

The cluster is functioning acceptably, but the set of transactions

on the cluster (the GTID set) has diverged from that on the primary
cluster, such that there are extra transactions on the replica cluster
that the primary cluster does not have. Replication might have
stopped on the ClusterSet replication channel, either as a controlled
stop or due to a replication error, or the channel might still be
replicating. Only a replica cluster can have this global status.

A replica cluster with this status is not available for a planned
switchover, although a forced failover is possible.

The cluster is functioning acceptably, but an incorrect configuration
has been detected for the ClusterSet replication channel. For
example, the channel might be replicating from the wrong source.
The replication channel might be still running, or replication might
have stopped. Only a replica cluster can have this global status.

The cluster is not functioning at all as part of the InnoDB ClusterSet
deployment due to a technical issue. It has lost quorum or all
member servers are in Group Replication's OFFLI NE status. A
primary cluster or a replica cluster can have this global status. If

a primary cluster has this global status, the InnoDB ClusterSet
deployment is given the status UNAVAI LABLE.

The cluster is the primary cluster for the InnoDB ClusterSet
deployment but MySQL Shell currently cannot contact it to
determine its status. While the primary cluster cannot be
contacted, the InnoDB ClusterSet deployment is given the status
UNAVAI LABLE.

The cluster was invalidated during a failover process. During a
controlled switchover process, data consistency is assured, and
the original primary cluster is demoted to a working read-only
replica cluster. However, during an emergency failover process,
data consistency is not assured, so for safety, the original primary
cluster is marked as invalidated during the failover process. Replica
clusters are also marked as invalidated if they are unreachable

or unavailable at the time of the failover, or during a controlled

158

https://dev.mysql.com/doc/refman/8.0/en/group-replication-server-states.html

InnoDB ClusterSet Status and Topology

switchover. A cluster with this global status is not functioning at all
as part of the InnoDB ClusterSet deployment. The cluster does not
necessarily have any technical issues, and might be capable of
rejoining the InnoDB ClusterSet deployment after manual validation.
If the cluster can be contacted, you should verify that it has been
shut down, so that it is not accepting new transactions.

The cluster status (st at us field) reported for an InnoDB Cluster can be one of the following, which can
all be reported for a primary cluster or a replica cluster:

(0

OK_PARTI AL

OK_NO_TOLERANCE

OK_NO TOLERANCE_PARTI AL

NO_QUORUM

OFFLI NE

ERRCR

All the member servers in the cluster are in Group Replication's
ONLI NE state, and there are three or more members in the cluster.

At least three of the member servers in the cluster are in Group
Replication's ONLI NE state. However, one or more member servers
are in Group Replication's OFFLI NE, RECOVERI NG, ERROR, or
UNREACHABLE state, so they are not currently participating as active
members of the cluster. A cluster in this situation is functioning well
enough to continue as part of the InnoDB ClusterSet deployment,
but to bring it up to OK status, resolve the issues with the member
servers.

All the member servers in the cluster are in Group Replication's
ONLI NE state, but there are less than three members in the cluster,
so it does not have sufficient tolerance for failures. A cluster in

this situation is functioning well enough to continue as part of the
InnoDB ClusterSet deployment, but to bring it up to OK status, add
more member servers.

One or two member servers in the cluster are in Group Replication's
ONLI NE state, but one or more are in Group Replication's OFFLI NE,
RECOVERI NG, ERROR, or UNREACHABLE state. The cluster therefore
does not have sufficient tolerance for failures because of the
unavailability of some members. A cluster in this situation is
functioning well enough to continue as part of the InnoDB ClusterSet
deployment, but to bring it up to OK status, resolve the issues with
the member servers.

The cluster does not have quorum, meaning that a majority of the
replication group's member servers are unavailable for agreeing

on a decision. Group Replication is able to reconfigure itself to the
new group number if members leave voluntarily or are expelled

by a group decision, so a loss of quorum means that the missing
member servers have either failed or been cut off from the others
by a network partition. A cluster in this situation cannot function as
part of the InnoDB ClusterSet deployment. To bring a cluster in this
state up to OK status, see Section 8.9, “InnoDB ClusterSet Repair
and Rejoin”.

All the member servers in the cluster are in Group Replication's
OFFLI NE state. A cluster in this situation cannot function as part

of the InnoDB ClusterSet deployment. To bring a cluster in this
state up to OK status if it is not currently supposed to be offline, see
Section 8.9, “InnoDB ClusterSet Repair and Rejoin”.

All the member servers in the cluster are in Group Replication's

ERROR state. A cluster in this situation cannot function as part of the
InnoDB ClusterSet deployment. To bring a cluster in this state up to
OK status, see Section 8.9, “InnoDB ClusterSet Repair and Rejoin”.

159

InnoDB ClusterSet Topology

InnoDB ClusterSet Topology

UNKNOWN

I NVALI DATED

MySQL Shell cannot currently contact any member servers to
determine the cluster's status. If this is the primary cluster, the
InnoDB ClusterSet deployment is given the status UNAVAI LABLE.

The cluster was invalidated during a failover process. During a
controlled switchover process, data consistency is assured, and

the original primary cluster is demoted to a working read-only
replica cluster. However, during an emergency failover process,
data consistency is not assured, so for safety, the original primary
cluster is marked as invalidated during the failover process. Replica
clusters are also marked as invalidated if they are unreachable

or unavailable at the time of the failover, or during a controlled
switchover. A cluster with this global status is not functioning at all
as part of the InnoDB ClusterSet deployment. The cluster does not
necessarily have any technical issues, and might be capable of
rejoining the InnoDB ClusterSet deployment after manual validation.
If the cluster can be contacted, you should verify that it has been
shut down, so that it is not accepting new transactions. To handle
this situation, see Section 8.9, “InnoDB ClusterSet Repair and
Rejoin”.

The cluster status relates to technical issues with the InnoDB Cluster as a Group Replication group,
rather than to the process of replication. For a replica cluster, the ClusterSet replication status
(cl ust er Set Repl i cat i onSt at us field) is also reported as follows:

XK

STOPPED

ERROR

M SCONFI GURED

M SSI NG

UNKNOWN

The ClusterSet replication channel is running.

The ClusterSet replication channel has been stopped in a controlled
manner. This status is shown when the receiver thread, applier
thread, or both threads have been stopped.

The ClusterSet replication channel has stopped due to a replication
error, such as an incorrect configuration or a set of transactions that
differs from the set on the primary cluster.

An incorrect configuration has been detected for the ClusterSet
replication channel, such as replicating from the wrong source. The
channel might be still running, or replication might have stopped.

The ClusterSet replication channel does not exist on the servers in
this cluster.

MySQL Shell cannot currently contact the replica cluster to
determine the replication channel's status.

If a cluster's only issue is with the ClusterSet replication channel, issuing the
clusterSet.rejoinC uster() command for the cluster automatically corrects the channel's
configuration if necessary and restarts the channel. This might be sufficient to fix the issue. For
instructions to do this, see Section 8.9.4, “Rejoining a Cluster to an InnoDB ClusterSet”.

If you just want to view the topology of the InnoDB ClusterSet, and do not need status information,
you can use the cl ust er Set . descri be() function instead. This function returns a JSON object
describing the topology of an InnoDB ClusterSet deployment, and giving the IP address and identifier
of each member server in each InnoDB Cluster. For example:

nysql -j s> nycl ust erset. descri be()

"clusters": {

160

MySQL Router Status for InnoDB ClusterSet

"clusterone": {
"clusterRol e": "PRI MARY",

"topol ogy": [
{
"address": "127.0.0.1:3310",
"l abel ": "127.0.0.1: 3310"
iE
{
"address": "127.0.0.1:3320",
"l abel ": "127.0.0. 1: 3320"
iE
{
"address": "127.0.0.1: 3330",
"l abel ": "127.0.0. 1: 3330"
}
]
iE
"clustertwo": {
"clusterRol e": "REPLICA",
"topol ogy": [
{
"address": "127.0.0.1: 4410",
"l abel ": "127.0.0. 1: 4410"
iE
{
"address": "127.0.0. 1: 4420",
"l abel ": "127.0.0. 1: 4420"
iE
{
"address": "127.0.0. 1: 4430",
"l abel ": "127.0.0. 1: 4430"
}
]
}
iE
"domai nNanme": "testclusterset”,
"primaryC uster": "clusterone"

This information is also provided by the extended output for the cl ust er Set . st at us() function.

MySQL Router Status for InnoDB ClusterSet

To see the MySQL Router instances that are registered for the InnoDB ClusterSet, issue the

clusterSet.listRouters() commandin MySQL Shell while connected to any member server in
the InnoDB ClusterSet deployment. The command returns details of all the registered MySQL Router
instances, or a single router instance that you specify using its router instance definition. For example:

nmysql -j s> nycl usterset.|istRouters()

{
"domai nNane": "testclusterset",
“routers": {
"Ronel": {
"host nane": "mynmachi ne",

"| ast Checkl n": 2021-10-15 11:58: 37,
"roPort": 6447,

"roXPort": 6449,

"rwPort": 6446,

"rwxPort": 6448,

“"targetCl uster”: "primry",
“version": "8.0.27"

IE

"Rome2": {
"host name": "mynmachi ne2",

"| ast Checkl n": 2021-10-15 11:58: 37,
"roPort": 6447,

"roXPort": 6449,

"rwPort": 6446,

"rwxPort": 6448,

“"targetCluster”: "primry",

161

MySQL Router Status for InnoDB ClusterSet

"version": "8.0.27"

}

The instance information includes the name of the MySQL Router instance, the port numbers for read
and write traffic using MySQL classic protocol and X Protocol, the target cluster, and the time the
instance last checked in with the target cluster. If MySQL Router is at a lower version than that required
to work with this InnoDB ClusterSet deployment, the instance information states this.

To see the routing options that are set for each MySQL Router instance, and the global policy for the
InnoDB ClusterSet deployment, issue cl ust er Set . rout i ngOpti ons() in MySQL Shell while
connected to any member server in the InnoDB ClusterSet deployment. A setting for a specific MySQL
Router instance overrides a global policy. For example:

mysql -j s> nycl usterset.routingOptions()
{
"domai nNane": "testclusterset",
"global ": {
"invalidated_cluster_policy": "drop_all",
"target_cluster": "primry"

}

"

outers": {

"Ronmel": {
"target_cluster": "primry"
"invalidated_cl uster_policy": "accept_ro"
b
"Rone2": {}

}

If a particular routing option is not displayed for a MySQL Router instance, as in the example
above for Rone2, it means the instance does not have that policy set, and it follows the global
policy. The output for Ronel shows "t arget cluster™: "primary", which is the same as the
global policy. This is because Ronel has had the routing option explicitly setto " pri mary" by a
cl uster Set. set Routi ngOpti on() command, in which case it is displayed. To clear a routing
option, setittonul | .

The routing options are as follows:

"target _cluster": With this setting, MySQL Router directs traffic from client

“primry" applications to the cluster in the InnoDB ClusterSet deployment that
is currently the primary cluster. A primary cluster can accept both
read and write traffic. Follow the primary mode is the default for the
global policy and for individual MySQL Router instances.

"target _cluster": With this setting, MySQL Router directs traffic from applications to

"cl ust er Nane" the specified cluster in the InnoDB ClusterSet deployment, whether
it is currently in the role of the primary cluster or a replica cluster.
If the target cluster is currently the primary cluster, MySQL Router
opens the write port and applications can write to the instance. If the
target cluster is currently a read-only replica cluster, MySQL Router
allows only read traffic, and denies write traffic. If this situation
changes due to a switchover or failover to or from the target cluster,
MySQL Router changes the permitted request types accordingly.
This mode is useful if an application makes only read requests,
which can be made on a replica cluster, and you want to keep that
traffic routed to a local cluster. Note that the cluster name is case
sensitive.

"“inval i dat ed_cl ust er _pol i cWith this setting, when a cluster is marked as | NVALI DATED,
"drop_al I'" MySQL Router disallows both read and write traffic to it from
applications. A cluster in this state is not currently functioning at all

162

InnoDB ClusterSet Controlled Switchover

as part of the InnoDB ClusterSet deployment, and cannot receive
writes. It might be a former primary cluster that was marked as
invalidated during an emergency failover process, or a replica
cluster that was marked as invalidated because it was unreachable
or unavailable at the time of a failover or during a controlled
switchover. This setting is the default for the global policy and for
individual MySQL Router instances.

“invalidated_cl uster_pol i cwith this setting, when a cluster is marked as | NVALI DATED,

"accept _ro" MySQL Router allows read traffic to it from applications but drops
write traffic. Although an invalidated cluster does not necessarily
have any technical issues, the data is becoming stale, so this setting
means that stale reads will take place unless the issue is resolved
soon. However, this setting can provide higher availability in cases
where stale reads are not a high priority.

You can change the routing options for MySQL Router instances in an InnoDB ClusterSet deployment
using the cl ust er Set . set Rout i ngOpt i on() command. For instructions to do this, see
Section 8.5, “Integrating MySQL Router With InnoDB ClusterSet”.

8.7 InnoDB ClusterSet Controlled Switchover

A controlled switchover makes a selected replica cluster into the primary cluster for the InnoDB
ClusterSet deployment. During a controlled switchover process, data consistency is assured. The
process verifies that the selected replica cluster is synchronized with the primary cluster (which might
mean a short wait if there is replication lag), then makes that cluster into the primary of the InnoDB
ClusterSet. The original primary cluster is demoted to a working read-only replica cluster. You can then
take the original primary offline if necessary, repair any issues, and bring it back into operation in the
InnoDB ClusterSet deployment.

Follow the controlled switchover procedure if the primary cluster in an InnoDB ClusterSet deployment
is functioning acceptably, but you need to carry out maintenance or fix some minor issues to improve
the primary cluster's function. A primary cluster that is functioning acceptably has the global status OK
when you check it using AdminAPI's cl ust er Set . st at us() command in MySQL Shell.

If the primary cluster is not functioning acceptably (with the global status NOT _OK) in the

InnoDB ClusterSet deployment, first try to repair any issues using AdminAPI through

MySQL Shell. For example, if the primary cluster has lost quorum, it can be restored using a
cluster.forceQuorunmJsi ngPartitionOf command. For instructions to do this, see Section 8.9,
“InnoDB ClusterSet Repair and Rejoin”.

If you cannot fix the issue by working with the primary cluster (for example, because you cannot
contact it), you need to perform an emergency failover. An emergency failover is designed for disaster
recovery when the primary cluster is suddenly unavailable. That procedure carries the risk of losing
transactions and creating a split-brain situation for the InnoDB ClusterSet. If you do need to carry out
an emergency failover, follow the procedure in Section 8.8, “InnoDB ClusterSet Emergency Failover” to
ensure that the risk is managed.

The diagram shows the effects of a controlled switchover in an example InnoDB ClusterSet
deployment. The primary cluster in the Rome datacenter requires maintenance, so a controlled
switchover has been carried out to make the replica cluster in the Brussels datacenter into the primary
of the InnoDB ClusterSet deployment, and demote the Rome cluster to a replica. The ClusterSet
replication channel on the Rome cluster has been activated by the controlled switchover process, and
it is replicating transactions from the Brussels cluster. Now that the Rome cluster is a replica cluster,
the member servers or the complete cluster can safely be taken offline if required to carry out the
maintenance work.

163

InnoDB ClusterSet Controlled Switchover

Figure 8.2 InnoDB ClusterSet Switchover

ooo oon goo ooo
ooo goono ooo ooo
— — — —
Reporting Application Application Application Reporting Application
\ \ \ \
\ . \ \ \
| Read/Write ﬁead Only I I
My Router My Router My Router My Router
Target: Rome Target: PRIMARY Target: PRIMARY Target: Brussels
/
/ \
/ Primary Primary \
/ |
I ~ |
\ .. Async S\ LT /
—_— Seeel Replication e =T
\ L [— Seeteecsae=e bl = = ~ L - i,
\ | . . 4 o =1 -,
- Secondary — - - Secondary ~Secondary — . ~.Secondary
My My
InnoDB Cluster InnoDB Cluster
REPLICA PRIMARY
. .7 U o
_— cenee’ _— S ceaae” S
Rome Brussels

The MySQL Router instances in the example InnoDB Cluster deployment that were set to follow the
primary have routed read and write traffic to the Brussels cluster which is now the primary. The MySQL
Router instance that was routing read traffic to the Brussels cluster by name when it was a replica
cluster, continues to route traffic to it, and is not affected by the fact that the cluster is now the primary
rather than a replica cluster. Similarly, the MySQL Router instance that was routing read traffic to the
Rome cluster by nhame can continue to do this, because the replica cluster still accepts read traffic.

To carry out a controlled switchover for the primary InnoDB Cluster, follow this procedure:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cl uster. set upAdn nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. Get the Cl ust er Set object using
dba. get Cl usterSet () orcluster. getCl usterSet() command. Itisimportant to use an
InnoDB Cluster administrator account or server configuration account so that the default user
account stored in the Cl ust er Set object has the correct permissions. For example:

nmysql -j s> \connect adm n2@27.0. 0. 1: 3310

Creating a session to 'adm n2@z27.0. 0. 1: 3310°

Pl ease provide the password for 'adm n2@27.0.0. 1: 3310":
Save password for 'adm n2@27.0.0.1:3310' ? [Y]es/[N o/ Ne[v] er
Fet ching schema nanes for autoconpletion... Press "C to stop.
Cl osing ol d connection...

Your MySQL connection id is 52

Server version: 8.0.27-conmmercial MySQL Enterprise Server -
No default schema sel ected; type \use <schema> to set one.
<C assi cSessi on: adm n2@.27. 0. 0. 1: 3310>

nmysql -j s> nycl usterset = dba. get Cl uster Set ()

<Cl usterSet:testclusterset>

*kkkkk kK

(default No):

Commrer ci al

In this example:

164

InnoDB ClusterSet Controlled Switchover

e adm n2@27. 0. 0. 1: 3310 is the URI-like connection string for any member server instance
that is online in the cluster.

The URI-like connection string is comprised of the following elements:
e adm n2 is the user name for an InnoDB Cluster administrator account.

e 127.0.0. 1: 3310 is the host and port for the member server instance, as displayed by the
cluster.status() command.

e The returned Cl ust er Set object is assigned to the variable mycl ust er set .

Check the status of the whole InnoDB ClusterSet deployment using AdminAPI's
cl usterSet.status() command in MySQL Shell. Use the ext ended option to view detailed
information for all the clusters in the deployment, and check for any issues. For example:

nysqgl -j s> nycl ust erset. st at us({extended: 1})
For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

Identify a suitable replica cluster that can take over as the primary cluster. A replica cluster's
eligibility for a controlled switchover depends on its global status, as reported by the
cl usterSet.status() command:

Table 8.1 Permitted Cluster Operations By Status

InnoDB Cluster Global Routable Controlled Emergency
Status in ClusterSet Switchover Failover
K Yes Yes Yes
OK_NOT_REPLI CATI NG Yes, if specified as target Yes Yes
cluster by name
OK_NOT_CONSI STENT Yes, if specified as target No Yes
cluster by name
OK_M SCONFI GURED Yes Yes Yes
NOT_OK No No No
| NVALI DATED Yes, if specified as target No No
cluster by name and
accept _r o routing policy is
set
UNKNOWN Connected MySQL Router |No No
instances might still be
routing traffic to the cluster

A replica cluster with the global status OK_NOT_CONSI STENT has a set of transactions on the
cluster (the GTID set) that is inconsistent with the GTID set on the primary cluster. InnoDB
ClusterSet does not permit a controlled switchover to a cluster in this state, because clients would
access incorrect data. An emergency failover is possible, if the cluster has the most up to date set
of transactions among the available options.

Check the routing options that are set for each MySQL Router instance, and the global policy for
the InnoDB ClusterSet deployment, by issuing a cl ust er Set . rout i ngOpt i ons() command
in MySQL Shell while connected to any member server in the InnoDB ClusterSet deployment. For
example:

nysqgl -j s> nycl usterset.routi ngOptions()

“domai nNane": "testclusterset"
"global ": {

165

InnoDB ClusterSet Controlled Switchover

"“inval i dated_cl uster_policy": "drop_all"
“"target_cluster": "primary"
h
“routers": {
"Ronmel": {
“"target_cluster": "primary"
I
"Rone2": {}
}

By default, a MySQL Router instance sends traffic to whichever cluster is currently the primary in
the InnoDB ClusterSet deployment. If all the MySQL Router instances are set to follow the primary
("target _cluster": "primary"), traffic will be automatically redirected to the new primary
cluster within a few seconds of the switchover. If a routing option is not displayed for a MySQL
Router instance, as in the example above for Rone2, it means the instance does not have that
policy set, and it follows the global policy.

If any of the instances are set to target the current primary cluster by name ("t arget _cl uster":
"name_of primary_cl uster"), they will not redirect traffic to the new primary. In that situation,
if it is appropriate for the application, you can use the cl ust er Set . set Rout i ngOpti on()
command to change the routing policy for those instances. You could change those instances to

follow the primary ("t arget _cluster™: "primary"), in which case that option can be set now.
For example:
nysql -j s> nycl usterset. set Routi ngOption(' Ronel', 'target_cluster', 'primry')

Routing option 'target_cluster' successfully updated in router 'Romel'.

In this example, nycl ust er set is the variable for the Cl ust er Set object, and Rone1l is the
name of the MySQL Router instance.

Or you could specify the replica cluster that will take over as the primary, in which case set the
option ("target _cluster": "nanme_of _new_primary_cl uster") after the switchover has
taken place, when you have verified that it has worked.

5. Issue acl usterSet.setPrimaryC uster() command, naming the replica cluster that will take
over as the new primary cluster. Use the Cl ust er Set object that you retrieved using an InnoDB
Cluster administrator account, with the dba. get Cl ust er Set () orcl ust er. get Cl uster Set ()
command. For example:

nysql -j s> nycl usterset.setPrimaryCl uster('clustertwo')
Switching the primary cluster of the clusterset to 'clustertwo'
* Verifying clusterset status
** Checking cluster clustertwo

Cluster 'clustertwo' is available
** Checking cluster clusterone

Cluster 'clusterone' is available

* Refreshing replication account of denoted cluster

* Synchroni zi ng transacti on backl og at 127.0.0. 1: 4410

** Transactions replicated #####BHHHHHBHHHHHHBHHHHHBHHHHHH R HH AT T T 100%
* Updati ng netadata

* Updating topol ogy

** Changing replication source of 127.0.0.1:3330 to 127.0.0. 1: 4410
* Acquiring locks in replicaset instances

** Pre-synchroni zi ng SECONDARI ES

** Acquiring global |ock at PRI MARY

** Acquiring global |ock at SECONDARI ES

* Synchroni zi ng renai ning transactions at pronoted prinary
** Transactions replicated #####BHHHHHBRHHHHHBHHHHH TR HHH R HH AT 100%
* Updating replica clusters

166

InnoDB ClusterSet Controlled Switchover

Cluster 'clustertwo’' was pronpted to PRI MARY of the clusterset. The PRI MARY instance is '127.0.0. 1:

For the cl ust er Set . set Pri maryCl ust er () command:

e The cl ust er Nane parameter is required and specifies the identifier used for the replica cluster
in the InnoDB ClusterSet, as given in the output from the cl ust er Set . st at us() command. In
the example, cl ust er t wo is the cluster that is to become the new primary.

« Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

e Usethe ti meout option to set the maximum number of seconds to wait for the replica cluster to
synchronize with the primary cluster before the switchover takes place. If the timeout expires, the
switchover is canceled.

e Usetheinval i dat eRepl i caCl ust er s option to name any replica clusters that are
unreachable or unavailable. These will be marked as invalidated during the switchover process.
The switchover is canceled if any unreachable or unavailable replica clusters that you do not
name are discovered during the process. In this situation you must either repair and rejoin
the replica clusters then retry the command, or name them on this option when you retry the
command, and fix them later.

When you issue the cl ust er Set . set Pri maryC ust er () command, MySQL Shell checks that
the target replica cluster complies with the requirements to take over as the primary cluster, and
returns an error if it does not. If the target replica cluster meets the requirements, MySQL Shell
carries out the following tasks:

» Checks for any unreachable or unavailable replica clusters that have not been specified using
i nval i dat eRepl i cad usters.

« Waits for the target replica cluster to synchronize with the current primary cluster by applying
any outstanding transactions from the primary. If the timeout set by the t i neout option expires
before the replica cluster has finished applying transactions, the switchover is canceled.

< Locks the current primary cluster by issuing a FLUSH TABLES W TH READ LOCK
statement and setting the super _read_onl y system variable on all member servers,
to prevent further changes during the switchover. The Group Replication member action
mysql di sabl e super _read only if prinary is disabled so that super _read only
remains set after the failover.

« Reconciles the differences in view change events between the current primary cluster and the
replica clusters so that the GTID sets are identical. These Group Replication internal transactions
are identified by the UUID specified by the gr oup_r epl i cati on_vi ew_change_uui d system
variable. MySQL Shell injects empty transactions on all the replica clusters to match the view
change events on the primary cluster.

« Updates the ClusterSet replication channel on all replica clusters to replicate from the target
cluster as the new primary cluster.

< Disables super _read_onl y on the primary server of the target cluster, and enables the Group
Replication member action nysql _di sabl e _super _read _only if_ primary to handle any
changes to the primary server in that cluster.

» Disables the Group Replication member action
nysql _di sabl e_super _read_only_if _pri mary on the primary server of the old primary
cluster, so that it remains read-only, and enables the Group Replication member action
mysqgl _start _failover_channel s _if_prinmary on that server to enable asynchronous
connection failover for replicas on the ClusterSet replication channel.

167

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

InnoDB ClusterSet Emergency Failover

» Sets the target cluster as the primary cluster in the ClusterSet metadata, and changes the old
primary cluster into a replica cluster.

Issue a cl ust er Set . st at us() command again using the ext ended option, to verify the status
of the InnoDB ClusterSet deployment.

If you have any MySQL Router instances to switch over to targeting the new primary cluster, do that
now. For example:

nysql -j s> nycl usterset. set Routi ngOption(' Ronmel', 'target_cluster', 'clustertwo')
Routing option 'target_cluster' successfully updated in router 'Romel'.

In this example, mycl ust er set is the variable for the Cl ust er Set object, Ronel is the name of
the MySQL Router instance, and cl ust er t wo is the name of the specific cluster to target. When
you have finished, issue a cl ust er Set . r out i ngOpt i ons() command to check that all the
MySQL Router instances are now routing correctly.

Now you can work with the old primary cluster to fix issues or carry out maintenance. If you had to
invalidate any replica clusters during the switchover process, you can repair these as well and add
them back into the InnoDB ClusterSet. Section 8.9, “InnoDB ClusterSet Repair and Rejoin” explains
how to repair issues with a cluster, how to rejoin a cluster to the InnoDB ClusterSet, and how to
make a cluster into the primary cluster again.

8.8 InnoDB ClusterSet Emergency Failover

An emergency failover makes a selected replica cluster into the primary InnoDB Cluster for the InnoDB
ClusterSet deployment. This procedure can be used when the current primary cluster is not working

or cannot be contacted. During an emergency failover process, data consistency is not assured, so for
safety, the original primary cluster is marked as invalidated during the failover process. If the original
primary cluster remains online, it should be shut down as soon as it can be contacted. You can repair
and rejoin an invalidated primary cluster to the InnoDB ClusterSet topology afterwards, provided that
you can fix the issues.

When the primary InnoDB Cluster in an InnoDB ClusterSet deployment has an issue or you cannot
access it, do not immediately implement an emergency failover to a replica cluster. Instead, you should
always start by attempting to repair the currently active primary cluster.

Important

A Why Not Just Fail Over? The replica clusters in the InnoDB ClusterSet

topology are doing their best to keep themselves synchronized with the primary
cluster. However, depending on the volume of transactions and the speed

and capacity of the network connections between the primary cluster and the
replica clusters, replica clusters can fall behind the primary cluster in receiving
transactions and applying the changes to their data. This is called replication
lag. Some replication lag is to be expected in most replication topologies,

and is quite likely in an InnoDB ClusterSet deployment where the clusters are
geographically dispersed and in different data centers.

Also, it is possible for the primary cluster to become disconnected from other
elements of the InnoDB ClusterSet topology by a network partition, but remain
online. If that happens, some replica clusters might stay with the primary cluster,
and some instances and client applications might continue to connect to the
primary cluster and apply transactions. In this situation, the partitioned areas

of the InnoDB ClusterSet topology begin to diverge from each other, with a
different transaction set on each group of servers.

When there is replication lag or a network partition, if you trigger an emergency
failover to a replica cluster, any unreplicated or divergent transactions on the
primary cluster are at risk of being lost. In the case of a network partition,

168

InnoDB ClusterSet Emergency Failover

the failover can create a split-brain situation, where the different parts of the
topology have divergent transaction sets. You should therefore always make
an attempt to repair or reconnect the primary cluster before triggering an
emergency failover. If the primary cluster cannot be repaired quickly enough or
cannot be reached, you can go ahead with the emergency failover.

The diagram shows the effects of an emergency failover in an example InnoDB ClusterSet deployment.
The primary cluster in the Rome datacenter has gone offline, so an emergency failover has been
carried out to make the replica cluster in the Brussels datacenter into the primary InnoDB Cluster of the
InnoDB ClusterSet deployment. The Rome cluster has been marked as invalidated, and its status in
the InnoDB ClusterSet deployment has been demoted to a replica cluster, although it is not currently
able to replicate transactions from the Brussels cluster.

Figure 8.3 InnoDB ClusterSet Failover

oono oono goo ooo
oono oon oono ooo
— — — —
Reporting Application Application Application Reporting Application

\ \ \ \

\) \ \ \
| Read/Write ﬁead Only I I
r # V4 V4
My Router My Router My Router My Router
Target: Rome Target: PRIMARY Target: PRIMARY Target: B\russels

\
\
|
|

]

~
\ -
\‘ .’ e R . *
Ssccn&ary — . Secondary
My
InnoDB Cluster
PRIMARY
.~ . 4
S Ttenae” ’ S
Rome Brussels

The MySQL Router instances that were set to follow the primary have routed read and write traffic

to the Brussels cluster which is now the primary. The MySQL Router instance that was routing read
traffic to the Brussels cluster by name when it was a replica cluster, continues to route traffic to it, and
is not affected by the fact that the cluster is now the primary rather than a replica cluster. However,
the MySQL Router instance that was routing read traffic to the Rome cluster by name cannot currently
send any traffic there. The reporting application in this example does not need to report when the local
datacenter is offline, but if the application did still need to function, the MySQL Router instance should
have its routing options changed either to follow the primary or to send traffic to the Brussels cluster.

To carry out an emergency failover for the primary InnoDB Cluster, follow this procedure:

1. Using MySQL Shell, connect to any member server that is still active in the InnoDB
ClusterSet deployment, using an InnoDB Cluster administrator account (created with
cl uster. set upAdm nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions.

When the connection is established, get the Cl ust er Set object from that member server using
adba. get ClusterSet() orcluster.getC usterSet() command. ACl ust er Set object

169

InnoDB ClusterSet Emergency Failover

that you previously retrieved from a member server that is now offline will not work any more,

S0 you need to get it again from a server that is online. It is important to use an InnoDB Cluster
administrator account or server configuration account so that the default user account stored in the
Cl ust er Set object has the correct permissions. For example:

nysql -j s> \connect adm n2@27.0. 0. 1: 4410

Creating a session to 'adm n2@?27.0.0. 1: 4410°

Pl ease provide the password for 'adm n2@27.0.0. 1: 4410 : ******xx

Save password for 'adm n2@27.0.0.1:4410"? [Y]es/[NJ o/ Ne[v]er (default No):
Fet ching schema nanes for autoconpletion... Press "C to stop.

Cl osing old connection. ..

Your MySQL connection id is 71

Server version: 8.0.27-conmmercial MySQ Enterprise Server - Conmerci al

No default schema sel ected; type \use <schema> to set one.

<C assi cSessi on: adm n2@?27. 0. 0. 1: 4410>

nysql -j s> nycl usterset = dba. get Cl ust er Set ()
<Cl usterSet:testclusterset>

Check the status of the whole deployment using AdminAPI's cl ust er Set . st at us() function
in MySQL Shell. Use the ext ended option to see exactly where and what the issues are. For
example:

nysql -j s> nycl usterset. stat us({extended: 1})

For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

An InnoDB Cluster can tolerate some issues and be functioning well enough to continue as part of
the InnoDB ClusterSet deployment. A primary cluster that is functioning acceptably has the global
status OK when you check it using the cl ust er Set . st at us() command. For example, if one of
the member servers in a cluster goes offline, even if that server is the primary, the underlying Group
Replication technology can handle this situation and reconfigure itself.

If the primary cluster is still functioning acceptably in the InnoDB ClusterSet deployment according
to the reported status, but you need to carry out maintenance or fix some minor issues to improve
the primary cluster's function, you can carry out a controlled switchover to a replica cluster. You
can then take the primary cluster offline if necessary, repair any issues, and bring it back into
operation in the InnoDB ClusterSet deployment. For instructions to do this, see Section 8.7,
“InnoDB ClusterSet Controlled Switchover”.

If the primary cluster is not functioning acceptably (with the global status NOT _OK) in the InnoDB
ClusterSet deployment, but you can contact it, first try to repair any issues using AdminAPI
through MySQL Shell. For example, if the primary cluster has lost quorum, it can be restored
using acl ust er. f or ceQuor umJsi ngPar titi onOf command. For instructions to do this, see
Section 8.9, “InnoDB ClusterSet Repair and Rejoin”.

If you cannot carry out a controlled switchover, and you cannot fix the issue quickly enough by
working with the primary cluster (for example, because you cannot contact it), proceed with the
emergency failover. First identify a suitable replica cluster that can take over as the primary cluster.
A replica cluster's eligibility for an emergency failover depends on its global status, as reported by
the cl ust er Set . st at us() command:

Table 8.2 Permitted Cluster Operations By Status

InnoDB Cluster Global Routable Controlled Emergency
Status in ClusterSet Switchover Failover
K Yes Yes Yes
OK_NOT_REPLI CATI NG Yes, if specified as target Yes Yes

cluster by name
OK_NOT_CONSI STENT Yes, if specified as target No Yes

cluster by name

170

InnoDB ClusterSet Emergency Failover

InnoDB Cluster Global Routable Controlled Emergency
Status in ClusterSet Switchover Failover
OK_M SCONFI GURED Yes Yes Yes
NOT_OK No No No
| NVALI DATED Yes, if specified as target No No
cluster by name and
accept _r o routing policy is
set
UNKNOAN Connected Router instances |No No
might still be routing traffic to
the cluster

The replica cluster you select must have the most up to date set of transactions (GTID set) among
all of the replica clusters that are reachable. If more than one replica cluster is eligible for the
emergency failover, check the replication lag for each cluster (which is shown in the extended
output for the cl ust er Set . st at us() command). Select the replica cluster with the least
replication lag, which should therefore have the most transactions. The emergency failover process
checks the GTID sets for all the replica clusters that are currently reachable, and tells you if another
cluster is more up to date, so you can try again with that cluster.

Check the routing options that are set for each MySQL Router instance, and the global policy for
the InnoDB ClusterSet deployment, by issuing a cl ust er Set . rout i ngOpt i ons() command
in MySQL Shell while connected to any member server in the InnoDB ClusterSet deployment. For
example:

nysqgl -j s> nycl usterset.routi ngOptions()
{

"donai nNane": "testclusterset"
"global": {
"invalidated_cluster_policy": "drop_all"
“target_cluster": "primry"
H
"routers": {
"Ronel": {
“"target_cluster": "primry"
H
"Ronme2": {}

}

If all the MySQL Router instances are set to follow the primary ("t ar get _cl uster":
“primary"), traffic will be automatically redirected to the new primary cluster within a few seconds
of the failover. If a routing option is not displayed for a MySQL Router instance, as in the example
above with "t ar get _cl ust er" for Rone2, it means the instance does not have that policy set,
and it follows the global policy.

If any of the instances are set to target the current primary cluster by name ("t arget _cl uster":
"name_of _primary_cl uster"), they will not redirect traffic to the new primary. When the
primary cluster is not functioning, the cl ust er Set . set Rout i ngOpt i on() command cannot

be used to change the routing options, so you cannot redirect the traffic handled by that MySQL
Router instance until failover to the new primary cluster is complete.

If you can, try to verify that the original primary cluster is offline, and if it is online, attempt to shut it
down. If it remains online and continues to receive traffic from clients, a split-brain situation can be
created where the separated parts of the InnoDB ClusterSet diverge.

To proceed with the emergency failover, issue a cl ust er Set . f orcePri maryCl uster ()
command, naming the replica cluster that will take over as the new primary cluster. For example:

nmysql -j s> nycl usterset.forcePrimaryC uster("clustertwo")
Fai l i ng-over primary cluster of the clusterset to 'clustertwo'

171

InnoDB ClusterSet Emergency Failover

* Verifying primary cluster status
None of the instances of the PRI MARY cluster 'clusterone' could be reached.
* Verifying clusterset status
** Checking cluster clustertwo
Cluster 'clustertwo' is available
** Checki ng whet her target cluster has the nost recent GTID set
* Pronoting cluster 'clustertwo'
* Updati ng net adat a

PRI MARY cluster failed-over to 'clustertwo’'. The PRI MARY instance is '127.0.0. 1: 4410
Former PRI MARY cl uster was | NVALI DATED, transactions that were not yet replicated nay be |ost.

Inthe cl uster Set. forcePrimaryC uster() command:

e The cl ust er Nane parameter is required and specifies the identifier used for the replica cluster
in the InnoDB ClusterSet, as given in the output from the cl ust er Set . st at us() command. In
the example, cl ust er t wo is the cluster that is to become the new primary.

« Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

« Usetheinval i dat eRepl i caCl ust er s option to name any replica clusters that are
unreachable or unavailable. These will be marked as invalidated during the failover process.
The failover is canceled if any unreachable or unavailable replica clusters that you do not name
are discovered during the process. In this situation you must either repair and rejoin the replica
clusters then retry the command, or name them on this option when you retry the command, and
fix them later.

When you issue the cl ust er Set . f or cePri mar yCl ust er () command, MySQL Shell checks
that the target replica cluster complies with the requirements to take over as the primary cluster,
and returns an error if it does not.

If the target replica cluster meets the requirements, MySQL Shell carries out the following tasks:

< Attempts to contact the current primary cluster, and stops the failover if it actually can be
reached.

» Checks for any unreachable or unavailable replica clusters that have not been specified using
i nval i dat eRepl i caCl ust er s, and stops the failover if any are found.

« Marks all replica clusters listed in i nval i dat eRepl i caCl ust er s as invalidated, and marks
the old primary cluster as invalidated.

¢ Checks that the target replica cluster has the most up to date GTID set among the available
replica clusters. This involves stopping the ClusterSet replication channel in all of the replica
clusters.

» Updates the ClusterSet replication channel on all replica clusters to replicate from the target
cluster as the new primary cluster.

» Sets the target cluster as the primary cluster in the ClusterSet metadata, and changes the old
primary cluster into a replica cluster, although it is not currently functioning as a replica cluster
because it is marked as invalidated.

During an emergency failover, MySQL Shell does not attempt to synchronize the target replica
cluster with the current primary cluster, and does not lock the current primary cluster. If the original
primary cluster remains online, it should be shut down as soon as it can be contacted.

9. If you have any MySQL Router instances to switch over to targeting the new primary cluster,
do that now. You can change them to follow the primary ("t arget _cluster": "prinmary"),

172

InnoDB ClusterSet Repair and Rejoin

or specify the replica cluster that has taken over as the primary ("t arget _cl uster":
"nanme_of new primary_cluster"). For example:

mysql -j s> nycl usterset. set Routi ngOpti on(' Ronel', 'target_cluster', 'primary')

or

nmysql -j s> nmycl usterset. set Routi ngOpti on(' Ronel', 'target_cluster', 'clustertwo')
Routing option 'target_cluster' successfully updated in router 'Romel'.

Issue acl usterSet.routingQOptions() command to check that all the MySQL Router
instances are now routing correctly.

10.Issue a cl ust er Set . st at us() command again using the ext ended option, to verify the status
of the InnoDB ClusterSet deployment.

11. If and when you are able to contact the old primary cluster again, first ensure that no application
traffic is being routed to it, and take it offline. Then follow the process in Section 8.9, “InnoDB
ClusterSet Repair and Rejoin” to check the transactions and decide how to arrange the InnoDB
ClusterSet topology going forward.

If you had to invalidate any replica clusters during the switchover process, if and when you are able
to contact them again, you can use the process in Section 8.9, “InnoDB ClusterSet Repair and
Rejoin” to repair them and add them back into the InnoDB ClusterSet.

8.9 InnoDB ClusterSet Repair and Rejoin

Use this information if you need to repair a cluster in an InnoDB ClusterSet deployment. You can use
the information here in any of the following situations:

» A cluster in the InnoDB ClusterSet requires maintenance but has no issues with its functioning.

» A cluster is functioning acceptably in the InnoDB ClusterSet deployment but has some issues, such
as member servers that are offline.

A cluster is not functioning acceptably and needs to be repaired.

» A cluster has been marked as invalidated during an emergency failover or controlled switchover
procedure.

Section 8.6, “InnoDB ClusterSet Status and Topology” explains how to check the status of an InnoDB
Cluster and of the whole InnoDB ClusterSet deployment, and the situations in which a cluster might
need repair. You can identify the following situations from the output of the cl ust er Set . st at us()
command:

* A cluster does not have quorum (that is, not enough members are online to have a majority).
* No members of a cluster can be reached.

» A cluster's ClusterSet replication channel is stopped.

» A cluster's ClusterSet replication channel is configured incorrectly.

» Acluster's GTID set is inconsistent with the GTID set on the primary cluster in the InnoDB
ClusterSet.

» A cluster has been marked as invalidated. If the cluster is still online, the command warns that a split-
brain situation might result.

If the cluster is the primary cluster in the InnoDB ClusterSet deployment, before repairing it, you might
need to carry out a controlled switchover or an emergency failover to demote it to a replica cluster.
After that, you can take the cluster offline if necessary to repair it, and the InnoDB ClusterSet will
remain available during that time.

» A controlled switchover is suitable if the primary cluster is functioning acceptably but requires
maintenance or has minor issues. A primary cluster that is functioning acceptably has the global

173

InnoDB ClusterSet Repair and Rejoin

status OK when you check it using the cl ust er Set . st at us() command. Section 8.7, “InnoDB
ClusterSet Controlled Switchover” explains how to perform this operation.

» An emergency failover is suitable if you cannot contact the primary cluster at all. Section 8.8,
“InnoDB ClusterSet Emergency Failover” explains how to perform this operation.

« If the primary cluster is not functioning acceptably (with the global status NOT _OK) but it can be
contacted, make an attempt to repair any issues using the information in this section. An emergency
failover carries the risk of losing transactions and creating a split-brain situation for the InnoDB
ClusterSet. If you cannot repair the primary cluster quickly enough to restore availability, proceed
with an emergency failover and then repair it if possible.

Follow this procedure to repair an InnoDB Cluster that is part of an InnoDB ClusterSet deployment:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cl uster. set upAdnm nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. When the connection is established, get
the Cl ust er Set object using a dba. get Cl ust er Set () orcl uster. get Cl uster Set ()
command. It is important to use an InnoDB Cluster administrator account or server configuration
account so that the default user account stored in the Cl ust er Set object has the correct
permissions. For example:

nysqgl -j s> \connect admi n2@27.0. 0. 1: 4410

Creating a session to 'adm n2@?27.0.0. 1: 4410'

Pl ease provide the password for 'adm n2@27.0.0. 1: 4410" ; *******x
Save password for 'adm n2@27.0.0.1:4410'? [Y]es/[NJ o/ Ne[v]er (default No):
Fet chi ng schema nanes for autoconpletion... Press ~C to stop.

Cl osing ol d connection...

Your MySQL connection id is 42

Server version: 8.0.27-comercial MySQL Enterprise Server - Conmerci al
No default schema sel ected; type \use <schema> to set one.

<Cl assi cSessi on: adni n2@.27. 0. 0. 1: 4410>

nysqgl -j s> nycl usterset = dba. get Cl ust er Set ()

<Cl uster Set:testclusterset>

2. Check the status of the whole deployment using AdminAPI's cl ust er Set . st at us() command
in MySQL Shell. Use the ext ended option to see exactly where and what the issues are. For
example:

nysql -j s> nycl ust erset. status({extended: 1})
For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

3. Still using an InnoDB Cluster administrator account (created with
cl uster. set upAdm nAccount ()) or InnoDB Cluster server configuration account, get the
Cl ust er object using dba. get C ust er (). You can either connect to any member server in the
cluster you are repairing, or connect to any member of the InnoDB ClusterSet and use the nane
parameter on dba. get Cl ust er () to specify the cluster you want. For example:

nysql -j s> cluster2 = dba. get Cl uster Set ()
<Cl uster: cl ustertwo>

4. Check the status of the cluster using AdminAPI's cl ust er. st at us() command in MySQL Shell.
Use the ext ended option to get the most details about the cluster. For example:

nysql -j s> cluster2. status({extended: 2})
For an explanation of the output, see Checking a cluster's Status with Cl ust er. st at us().

5. If the set of transactions (the GTID set) on the cluster is inconsistent, fix this first. The
cl usterSet. status() command warns you if a replica cluster's GTID set is inconsistent with
the GTID set on the primary cluster in the InnoDB ClusterSet. A replica cluster in this state has the
global status OK_NOT_CONSI STENT. You also need to check the GTID set on a former primary
cluster, or a replica cluster, that has been marked as invalidated during a controlled switchover

174

Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters

or emergency failover procedure. A cluster with extra transactions compared to the other clusters

in the ClusterSet can continue to function acceptably in the ClusterSet while it stays active.
However, a cluster with extra transactions cannot rejoin the ClusterSet. Section 8.9.1, “Inconsistent
Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters” explains how to check for and resolve
issues with the transactions on a server.

6. If there is a technical issue with a member server in the cluster, or with the overall membership of
the cluster (such as insufficient fault tolerance or a loss of quorum), you can work with individual
member servers or adjust the cluster membership to resolve this. Section 8.9.2, “Repairing Member
Servers and Clusters in an InnoDB ClusterSet” explains what operations are available to work with
the member servers in a cluster.

7. If you cannot repair a cluster, you can remove it from the InnoDB ClusterSet using a
clusterSet.renoveC uster () command. For instructions to do this, see Section 8.9.3,
“Removing a Cluster from an InnoDB ClusterSet”. A removed InnoDB Cluster cannot be added
back into an InnoDB ClusterSet deployment. If you want to use the server instances in the
deployment again, you will need to dissolve the InnoDB Cluster, and set up a new cluster using the
instances as standalone instances.

8. When you have repaired a cluster or carried out the required maintenance, you can rejoin it to the
InnoDB ClusterSet using a cl ust er Set . r ej oi n() command. This command validates that
the cluster is able to rejoin, updates and starts the ClusterSet replication channel, and removes
any invalidated status from the cluster. For instructions to do this, see Section 8.9.4, “Rejoining a
Cluster to an InnoDB ClusterSet”.

8.9.1 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet
Clusters

AdminAPI's cl ust er Set . st at us() command warns you if an InnoDB Cluster's GTID set is
inconsistent with the GTID set on the primary cluster in the InnoDB ClusterSet. A cluster in this state
has extra transactions compared to the other clusters in the InnoDB ClusterSet, and has the global
status OK_NOT_CONSI STENT. The cluster continues to function in the InnoDB ClusterSet with this
status, and you can carry out an emergency failover to it if its GTID set is the most up to date of the
available replica clusters. However, it is not eligible for a controlled switchover, because the difference
in transactions might result in clients accessing incorrect data. The cluster also cannot rejoin the
InnoDB ClusterSet with extra transactions if it goes offline.

A replica cluster in an InnoDB ClusterSet is read-only, so if it has always been a replica cluster,

it should not contain extra transactions unless changes were made on the cluster without using
AdminAPI commands. A situation that can create a diverged set of transactions with no outside
changes is when the primary cluster becomes unreachable and an emergency failover procedure is
used. If the primary cluster remains online after the failover, it could continue to accept transactions
from clients through any MySQL Router instances that are still connected to it, and pass these to any
replica clusters that are still connected to it. Alternatively, significant replication lag might cause the
replica cluster selected as the replacement primary cluster to be missing some transactions from the
primary cluster. In that case, when the old primary cluster initially comes back online as an invalidated
replica cluster, the transactions that were never transferred to the replica are identified as extra
transactions.

The extended output for the cl ust er Set . st at us() command identifies the extra transactions. For
example:

nmysql -j s> nycl usterset. status({extended: 1})
{
"clusters": {
"clusterone": {
"clusterErrors": [
"ERROR: Errant transactions detected"
1,
"clusterRol e": "REPLI CA",
"clusterSetReplication": {
"applierStatus": "APPLIED ALL",

175

Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters

"applierThreadState": "Waiting for an event from Coordinator"”,
"appl i er Wr ker Thr eads": 4,
“"receiver": "127.0.0.1:3310",
"receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",
"source": "127.0.0.1:4410"
iE
"clusterSetReplicationStatus": "OK',
"gl obal Status": "OK_NOT_CONSI STENT",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0.1:3310": {
"address": "127.0.0.1:3310",
"menber Rol e": " PRI MARY",
"mode": "R O,
"replicationLagFromnm medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
iE
"127.0.0.1:3320": {
"address": "127.0.0.1:3320",
"menber Rol e": " SECONDARY",
"mode": "R O,
"replicationLagFromn medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
iE
"127.0.0.1:3330": {
"address": "127.0.0.1:3330",
"menber Rol e": " SECONDARY",
"mode": "R O,
"replicationLagFromnm medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",

“version": "8.0.27"
}
iE
"transactionSet": "54ff337b-2ccf-1lec-95da-3c6aa7197deb: 1- 131, 54f f 3ed7- 2ccf - 11ec- 95da- 3c6aa719;
"transacti onSet Consi st encyStatus": "1 NCONSI STENT",
"transacti onSet Consi stencyStatusText": "There are 1 transactions that were executed in this ins

"transactionSet Errant GidSet": "c06527d6-2ce3-11lec-a55e-3c6aa7197deb: 1",
"transactionSetM ssingGidSet": ""
iE
"clustertwo": {
"clusterRol e": "PRI MARY",
"gl obal Status": "OK",
“primary": "127.0.0.1:4410",
"status": "OK",
"statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",
"topol ogy": {
"127.0.0. 1: 4410": {
"address": "127.0.0.1: 4410",
"menber Rol e": " PRI MARY",

"node": "RIW,
"status": "ONLINE",
"version": "8.0.27"

iE
"127.0.0. 1: 4420": {
"address": "127.0.0. 1: 4420",
"menber Rol e": " SECONDARY",
"nmode": "R O,
"replicationLagFromn medi at eSource": "",
"replicationLagFronCri gi nal Source": "",
"status": "ONLINE",
“version": "8.0.27"
iE
"127.0.0. 1: 4430": {
"address": "127.0.0. 1: 4430",
"menber Rol e": " SECONDARY",

176

Repairing Member Servers and Clusters in an InnoDB ClusterSet

"nmode": "R O,

"replicationLagFromnm medi at eSource": "",
"replicationLagFronCri gi nal Source":
"status": "ONLINE",

"version": "8.0.27"

}
i
"transactionSet": "54ff337b-2ccf-1lec-95da-3c6aa7197deb: 1- 131, 54f f 3ed7- 2ccf - 11ec- 95da- 3c6aa
}

domai nNanme": "testclusterset”,

"gl obal Pri maryl nstance": "127.0.0. 1: 4410",

"met adat aServer": "127.0.0. 1: 4410",

"primaryC uster”: "clustertwo",

"status": "AVAI LABLE",

"statusText": "Primary Cluster available, there are issues with a Replica cluster."

}

Check the binary logs for the affected servers to see what the extra transactions actually contain. If
they do not affect the data on the server, you could try to undo them manually. However, if they do
affect the data, undoing them might create further inconsistency in the data if updates were made later
to the same rows.

The safest method to reconcile the servers' data is to identify the server in the InnoDB ClusterSet
deployment that has the best data (the most transactions, the most recent transactions, or the most
important transactions) and use MySQL's cloning functionality to transfer the content from that server to
the affected servers. For instructions to do this, see Cloning Remote Data.

Another option is to remove the affected InnoDB Cluster from the InnoDB ClusterSet deployment
following the procedure in Section 8.9.3, “Removing a Cluster from an InnoDB ClusterSet”, and set up
a new InnoDB Cluster in its place.

If you are able to deal with the problem transactions, use a cl ust er Set . r ej oi nCl uster ()
operation to rejoin the InnoDB Cluster to the InnoDB ClusterSet deployment. For instructions to do that,
see Section 8.9.4, “Rejoining a Cluster to an InnoDB ClusterSet”.

8.9.2 Repairing Member Servers and Clusters in an InnoDB ClusterSet

Depending on the issues or maintenance requirements for the cluster, the following operations
are available for you to work with its member servers. Unless otherwise stated, use Cl ust er and
Cl ust er Set objects that you fetched with an InnoDB Cluster administrator account or server
configuration account, so that the default user account stored in the Cl ust er Set object has the
correct permissions.

« Add further server instances to the cluster, using the cl ust er . addl nst ance() command, as
described in the procedure at Section 8.4, “Deploying InnoDB ClusterSet”. For more details of the
command, see Adding Instances to a Cluster.

Note that for this operation, you need to use the InnoDB Cluster server configuration account and
a Cl ust er object that was fetched using that account. The account must also exist on the server
instance, as explained in Section 8.3, “User Accounts for InnoDB ClusterSet”.

When you use this command to add a member server to an InnoDB Cluster that is part of an InnoDB
ClusterSet deployment, the server instance is added to the cluster and provisioned with the data for
the InnoDB ClusterSet. The ClusterSet replication channel is set up on the instance, and the required
configuration to operate in an InnoDB ClusterSet deployment is applied.

» Rejoin a server instance that was previously part of the cluster but could not automatically rejoin
the cluster, using the cl ust er. rej oi nl nst ance() command. For details of this operation, see
Rejoining an Instance to a Cluster. You will need to identify and deal with any transactions on the
server instance that are not in the transaction set for the cluster.

When you use this command to rejoin a member server to an InnoDB Cluster that is part of an
InnoDB ClusterSet deployment, the server instance is rejoined to the cluster and provisioned with the

177

https://dev.mysql.com/doc/refman/8.0/en/clone-plugin-remote.html

Removing a Cluster from an InnoDB ClusterSet

data for the InnoDB ClusterSet. The ClusterSet replication channel is set up on the instance, and the
required configuration to operate in an InnoDB ClusterSet deployment is applied.

» Remove a server instance from the cluster, using the cl ust er. r enovel nst ance() command.
Specify the host name and port number of the server instance that is to be removed. For details of
this operation, see Removing Instances from the InnoDB Cluster. A f or ce option is available, but
this should only be used as a last resort.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL
Shell resets all configuration that was applied for InnoDB ClusterSet and resets the ClusterSet
replication channel settings.

» Change the primary of the cluster to another member server, using the
cluster.setPrimarylnstance(instance) command. Specify the host name and port
number of the server instance that is to be the primary. Changing the primary allows you to carry
out maintenance and upgrades on the current primary server, or to select a primary if Group
Replication's own election process does not automatically elect the primary server that you want.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL
Shell stops the ClusterSet replication channel on the server beforehand, and restarts it afterwards.
Also, if the cluster is a replica cluster, MySQL Shell keeps the primary as read-only, rather than
making it read-write as would normally be the case with the primary of an InnoDB Cluster.

» Restore a cluster that has lost quorum by forcing quorum with the remaining instances, using the
cluster. forceQuorumdsi ngPartitionO (instance) command. Specify the host name
and port number of an online server instance with the correct metadata. The operation makes the
cluster consist of this and the other reachable instances, and excludes the partitioned instances. This
operation can create a split-brain scenario, so it should be considered a last resort. For details of this
operation, see Restoring a Cluster from Quorum Loss.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL
Shell checks whether the target cluster is still a valid part of the ClusterSet, and warns you if it has
been invalidated. It also automatically restarts the ClusterSet replication channel afterwards. If the
cluster is a replica cluster, MySQL Shell keeps the primary as read-only, rather than making it read-
write as would normally be the case with the primary of an InnoDB Cluster.

* Reboot a cluster that is completely offline, using the
dba. r eboot Cl ust er Fr onConpl et eCut age() command. For details of this operation, see
Rebooting a Cluster from a Major Outage.

When you use this command with a member server in an InnoDB ClusterSet deployment, MySQL
Shell checks whether the target cluster is still a valid part of the ClusterSet, and warns you if it

has been invalidated. If the cluster was not invalidated, MySQL Shell rejoins it to the InnoDB
ClusterSet deployment immediately after the reboot. If the cluster was invalidated, you must use a
clusterSet.rejoinC uster() operation to rejoin it to the InnoDB ClusterSet deployment. For
instructions to do that, see Section 8.9.4, “Rejoining a Cluster to an InnoDB ClusterSet”.

MySQL Shell also automatically restarts the ClusterSet replication channel after this operation. If the
cluster is a replica cluster, MySQL Shell keeps the primary as read-only, rather than making it read-
write as would normally be the case with the primary of an InnoDB Cluster.

You cannot dissolve an InnoDB Cluster that is currently part of an InnoDB ClusterSet deployment.
If you do want to dissolve and discard the InnoDB Cluster, you must remove it from the InnoDB
ClusterSet first, as described in Section 8.9.3, “Removing a Cluster from an InnoDB ClusterSet”.

8.9.3 Removing a Cluster from an InnoDB ClusterSet

If you cannot repair a cluster, you can remove it from the InnoDB ClusterSet using a
clusterSet.renmved uster () command. A f or ce option is available if the cluster cannot be
contacted at all.

178

Removing a Cluster from an InnoDB ClusterSet

Important

A The primary cluster in an InnoDB ClusterSet cannot be removed using this
command. If you do need to remove the primary cluster, you must first carry
out a controlled switchover (see Section 8.7, “InnoDB ClusterSet Controlled
Switchover”) or an emergency failover (see Section 8.8, “InnoDB ClusterSet
Emergency Failover”) to demote the primary cluster to a replica cluster, and
promote one of the replica clusters to be the primary cluster. After that, the
former primary cluster can be removed using this procedure.

A removed InnoDB Cluster cannot be added back into an InnoDB ClusterSet
deployment. If you want to use the server instances in the deployment again,
you will need to dissolve the InnoDB Cluster, and set up a new cluster using the
instances as standalone instances.

To remove a cluster from the InnoDB ClusterSet, follow this procedure:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one
of the replica clusters, using an InnoDB Cluster administrator account (created with
cl uster.set upAdni nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. When the connection is established, get the
Cl ust er Set object using dba. get Cl ust er Set () orcl uster. get C ust er Set () command.
It is important to use an InnoDB Cluster administrator account or server configuration account so
that the default user account stored in the Cl ust er Set object has the correct permissions. For
example:

nysgl -j s> \connect admi n2@27.0. 0. 1: 4410

Creating a session to 'adm n2@?27.0.0.1: 4410

Pl ease provide the password for 'adm n2@27.0.0. 1: 4410" ;: *******x
Save password for 'adm n2@27.0.0.1:4410'? [Y]es/[NJ o/ Ne[v]er (default No):
Fet chi ng schema nanes for autoconpletion... Press ~C to stop

Cl osing ol d connection..

Your MySQL connection id is 33

Server version: 8.0.27-comercial MySQL Enterprise Server - Conmercia
No default schema sel ected; type \use <schema> to set one

<O assi cSessi on: adm n2@.27. 0. 0. 1: 4410>

nysqgl -j s> nycl usterset = dba. get Cl ust er Set ()

<Cl usterSet:testclusterset>

2. Check the status of the whole deployment using AdminAPI's cl ust er Set . st at us() function in
MySQL Shell. For example:

nysqgl -j s> nycl ust erset. st at us({extended: 1})
For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

When you issue the cl ust er Set . r enoveC ust er () command, there must be an active and
reachable primary cluster in the InnoDB ClusterSet deployment, and this must not be the cluster
you are removing. The cluster you are removing must currently have the status of a replica cluster.
It can be invalidated, and does not have to be reachable.

3. Check the routing options that are set for each MySQL Router instance, and the global policy
for the InnoDB ClusterSet deployment, by issuing cl ust er Set . rout i ngOpti ons() in
MySQL Shell while connected to any member server in the InnoDB ClusterSet deployment.
Verify that no MySQL Router instances are routing traffic to the cluster that you are going to
remove. If any are, you must change their settings to route traffic to another cluster using a
cl usterSet. set Routi ngOQpti on() command, as described in Section 8.5, “Integrating MySQL
Router With InnoDB ClusterSet”. A cluster cannot be removed if any MySQL Router instances
known to the InnoDB ClusterSet deployment are routing traffic to it.

4. Issue acl usterSet.renoveC uster () command, naming the cluster that you want to remove
from the InnoDB ClusterSet. For example:

179

Removing a Cluster from an InnoDB ClusterSet

mysql -j s> nmycl usterset.renoveC uster (' clusterone')
The Cluster 'clusterone' will be renpbved fromthe | nnoDB Cl uster Set .

* Waiting for the Cluster to synchronize with the PRIMARY Cluster. ..

** Transactions replicated ######HHHHHHHHHHHHHHHHHH T R 100%
* Updati ng topol ogy

** Transactions replicated ######HHHHHHHHHHHHHHHHHH T R 100%
* Stopping and del eting Cl usterSet managed replication channel...

The Cluster 'clusterone’' was renmoved fromthe C usterSet.

e The cl ust er Nane parameter is required and specifies the identifier used for the cluster in the
InnoDB ClusterSet, as given in the output from the cl ust er Set . st at us() command. In the
example, cl ust er one is the cluster that is to be removed.

< Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

¢ Use the ti meout option to specify the maximum number of seconds to wait for the cluster to
synchronize with the primary cluster in the InnoDB ClusterSet.

« Use the f or ce option to remove the cluster from the ClusterSet when the cluster's primary
instance is not reachable.

When you issue the cl ust er Set . r enoveC ust er () command, MySQL Shell checks that the
primary cluster in the InnoDB ClusterSet deployment is reachable, that the target cluster is not the
primary cluster, and that no MySQL Router instances are routing traffic to the target cluster. If any
of these conditions are not met, an error is returned. If they are met, MySQL Shell carries out the
following tasks to remove the target cluster:

» Drops the replication user that was created for the ClusterSet replication channel on the target
cluster.

« Synchronizes the primary server of the target cluster with the primary cluster of the InnoDB
ClusterSet, and waits for all transactions to be applied locally. If the timeout expires before this is
completed, the operation fails. If synchronization does not work, try again with the f or ce option.

« Stops the ClusterSet replication channel, then removes the channel and resets its configuration
to the default values.

« Removes the target cluster's metadata and member information from the InnoDB ClusterSet
metadata. At this point, the removed InnoDB Cluster becomes an independent entity with its own
metadata.

* Leaves the super _read_onl y system variable set on all the member servers, to ensure that no
updates are performed on the removed InnoDB Cluster. If you want to use the cluster outside the
InnoDB ClusterSet, you must unfence it manually by removing this setting on the primary server.

The target cluster has now been removed from the InnoDB ClusterSet.

5. Issue acl usterSet. status() command again using the ext ended option, to verify the status
of the InnoDB ClusterSet deployment.

6. A removed InnoDB Cluster cannot be added back into an InnoDB ClusterSet deployment. If you
want to use the server instances in the deployment again, you will need to dissolve the InnoDB
Cluster, and set up a new cluster using the instances as standalone instances. Note that the Group
Replication configuration is not removed from the server instances, so you should exercise caution
when reusing these in an InnoDB ClusterSet deployment, as explained in Section 8.1, “InnoDB
ClusterSet Requirements”. As the instances were configured for an InnoDB ClusterSet deployment,
the possibility of issues is lower, but you should be aware. If you do want to proceed, Dissolving an
InnoDB Cluster explains how to dissolve a cluster.

180

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_super_read_only

Rejoining a Cluster to an InnoDB ClusterSet

8.9.4 Rejoining a Cluster to an InnoDB ClusterSet

If an InnoDB Cluster is part of an InnoDB ClusterSet deployment, MySQL Shell automatically restores
it to its role in the topology immediately after a reboot, provided that it is functioning acceptably and has
not been marked as invalidated. However, if a cluster has been marked as invalidated or its ClusterSet
replication channel has stopped, you must use a cl ust er Set . r ej oi nCl ust er () operation to rejoin
it to the InnoDB ClusterSet deployment.

The cl ust er Set . rej oi nCl ust er () operation verifies that the target cluster meets these
requirements:

The cluster has previously been a member of the ClusterSet.

The cluster has quorum (sufficient members are online to form a majority).
The cluster's primary server is reachable.

The cluster is not holding any metadata locks or InnoDB transaction locks.

The cluster's GTID set (gt i d_execut ed) contains no extra transactions compared to

the active members of the ClusterSet, with the exception of view change events. These

Group Replication internal transactions are identified by the UUID specified by the
group_replication_view change_uui d system variable, and the cluster rejoin process can
reconcile them.

If the cluster meets these requirements, the operation restarts the ClusterSet replication channel and
removes the | NVALI DATED status. If it does not, you will need to fix any issues that were identified and
retry the command.

Follow this procedure to rejoin an InnoDB Cluster to the InnoDB ClusterSet:

1. Using MySQL Shell, connect to any member server in the primary cluster or in one

of the replica clusters, using an InnoDB Cluster administrator account (created with

cl uster. set upAdnm nAccount ()). You may also use the InnoDB Cluster server configuration
account, which also has the required permissions. When the connection is established, get the

Cl ust er Set object using dba. get Cl ust er Set () orcl uster. get d ust er Set () command.
It is important to use an InnoDB Cluster administrator account or server configuration account so
that the default user account stored in the Cl ust er Set object has the correct permissions. For
example:

nmysql -j s> \connect adm n2@27.0. 0. 1: 3310

Creating a session to 'adm n2@z27.0.0. 1: 3310°

Pl ease provide the password for 'adm n2@27.0.0. 1: 3310" : ******xx
Save password for 'admi n2@27.0.0.1:3310"? [Y]es/[N o/ Ne[v]er (default No):
Fet chi ng schema nanes for autoconpletion... Press "C to stop.

Cl osing old connection. ..

Your MySQL connection id is 28

Server version: 8.0.27-commercial MySQ Enterprise Server - Conmerci al
No default schema sel ected; type \use <schema> to set one.

<Cl assi cSessi on: adm n2@.27. 0. 0. 1: 3310>

nmysql -j s> nycl usterset = dba. get Cl uster Set ()

<Cl uster Set:testclusterset>

Check the status of the whole deployment using AdminAPI's cl ust er Set . st at us() function in
MySQL Shell. For example:

nysql -j s> nycl usterset. stat us({extended: 1})
For an explanation of the output, see Section 8.6, “InnoDB ClusterSet Status and Topology”.

Issue a cl ust er Set . rej oi nCl ust er () command, naming the cluster that you want to rejoin to
the InnoDB ClusterSet. For example:

mysql -j s> mycl usterset.rejoinCluster('clustertwo')

181

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_view_change_uuid

Rejoining a Cluster to an InnoDB ClusterSet

Rej oining cluster 'clustertwo’ to the clusterset
NOTE: Cluster 'clustertw' is invalidated
* Updati ng net adat a

* Rej oi ning cluster

** Changi ng replication source of 127.0.0.1:4420 to 127.0.0. 1: 3310
** Changi ng replication source of 127.0.0.1:4430 to 127.0.0. 1: 3310
** Changi ng replication source of 127.0.0.1:4410 to 127.0.0. 1: 3310

Cluster 'clustertwo' was rejoined to the clusterset
For the cl ust er Set. rej oi nCl ust er () command:

e The cl ust er Nane parameter is required and specifies the identifier used for the cluster in the
InnoDB ClusterSet, as given in the output from the cl ust er Set . st at us() command. In the
example, cl ust er t wo is the name of the cluster that is being rejoined.

* Use the dr yRun option if you want to carry out validations and log the changes without actually
executing them.

When you issue the cl ust er Set . r ej oi nCl ust er () command, MySQL Shell checks that the
target cluster meets the requirements to rejoin the ClusterSet, and returns an error if it does not. If
the target cluster meets the requirements, MySQL Shell carries out the following tasks:

» Checks whether the ClusterSet replication channel is replicating from the current primary cluster,
and reconfigures it to do that if it isn't already.

» Restarts the ClusterSet replication channel.
» Clears the | NVALI DATED status for the cluster.

The target cluster rejoins the InnoDB ClusterSet as a replica cluster, even if it was previously a
primary cluster. A controlled switchover is required if you want to make the target cluster into the
primary cluster.

Note that if the target cluster has members that are not online or not reachable when you issue

the cl ust er Set . rej oi nCl ust er () command, these members are not correctly configured

by the command. If you no longer require these instances, you can remove them using the
cluster.renovel nstance() command. If you repair these instances or bring them online
again, issue the cl ust er Set . r ej oi nCl ust er () command again after those members return to
the cluster.

Issue a cl ust er Set . st at us() command again using the ext ended option, to verify the status
of the InnoDB ClusterSet deployment.

If you do want to make the rejoined cluster into the primary cluster, issue a
clusterSet.setPrimaryC uster() command, naming the rejoined cluster. Section 8.7,
“InnoDB ClusterSet Controlled Switchover” has instructions for the procedure, including how to
direct MySQL Router instances to send traffic to the new primary cluster.

182

Chapter 9 MySQL InnoDB ReplicaSet

Table of Contents

9.1 Deploying INNODB REPICASELccouuiiiiiiiieii e 183
9.2 Adding Instances t0 @& REPICASELcoouuiiiiiiii e 186
9.3 Adopting an Existing Replication Set Uuuiiiiiiiiiiiii e 188
9.4 Working with INNODB REPICASELuuiiiiiiiiiei e 189

The AdminAPI includes support for InnoDB ReplicaSet, that enables you to administer a set of MySQL

instances running asynchronous GTID-based replication in a similar way to InnoDB Cluster. An InnoDB
ReplicaSet consists of a single primary and multiple secondaries (traditionally referred to as the MySQL
replication source and replicas). You administer your ReplicaSets using a Repl i caSet object and the

AdminAPI operations, for example to check the status of the InnoDB ReplicaSet, and manually failover

to a new primary in the event of a failure.

Similar to InnoDB Cluster, MySQL Router supports bootstrapping against InnoDB ReplicaSet, which
means you can automatically configure MySQL Router to use your InnoDB ReplicaSet without

having to manually configure it. This makes InnoDB ReplicaSet a quick and easy way to get MySQL
replication and MySQL Router up and running, making it well suited to scaling out reads, and provides
manual failover capabilities in use cases that do not require the high availability offered by InnoDB
Cluster.

In addition to deploying an InnoDB ReplicaSet using AdminAPI, you can adopt an existing replication
setup. AdminAPI configures the InnoDB ReplicaSet based on the topology of the replication setup.
Once the replication setup has been adopted, you administer it in the same way as an InnoDB
ReplicaSet deployed from scratch. This enables you to take advantage of AdminAPI and MySQL
Router without the need to create a new ReplicaSet. For more information see Section 9.3, “Adopting
an Existing Replication Set Up”.

InnoDB ReplicaSet Limitations.

An InnoDB ReplicaSet has several limitations compared to an InnoDB Cluster, so it is recommended
that you deploy InnoDB Cluster wherever possible. Generally, an InnoDB ReplicaSet on its own does
not provide high availability. Among the limitations of InnoDB ReplicaSet are:

* No automatic failover. In events where the primary becomes unavailable, a failover needs to be
triggered manually using AdminAPI before any changes are possible again. However, secondary
instances remain available for reads.

» No protection from partial data loss due to an unexpected halt or unavailability. Transactions that
have not yet been applied by the time of the halt could become lost.

» No protection against inconsistencies after an unexpected exit or unavailability. If a failover promotes
a secondary while the former primary is still available (for example due to a network partition),
inconsistencies could be introduced because of the split-brain.

* InnoDB ReplicaSet does not support a multi-primary mode. Data consistency cannot be guaranteed
with classic replication topologies that allow writes in all members.

» Read scale-out is limited because InnoDB ReplicaSet is based on asynchronous replication and
therefore there is no possible tuning of flow control as there is with Group Replication.

 All secondary members replicate from a single source. For some particular scenarios or use-cases,
this might have an impact on the source. For example, lots of very small updates going on.

9.1 Deploying InnoDB ReplicaSet

183

InnoDB ReplicaSet Prerequisites

You deploy InnoDB ReplicaSet in a similar way to InnoDB Cluster. First you configure some MySQL
server instances, the minimum is two instances, see Section 6.1, “Using MySQL AdminAPI”". One
functions as the primary, in this tutorial r s- 1; the other instance functions as the secondary, in this
tutorial r s- 2; which replicates the transactions applied by the primary. This is the equivalent of the
source and replica known from asynchronous MySQL replication. Then you connect to one of the
instances using MySQL Shell, and create a ReplicaSet. Once the ReplicaSet has been created, you
can add instances to it.

InnoDB ReplicaSet is compatible with sandbox instances, which you can use to deploy locally, for
example for testing purposes. See Section 6.2.1, “Deploying Sandbox Instances” for instructions.
However, this tutorial assumes you are deploying a production InnoDB ReplicaSet, where each
instance is running on a different host.

InnoDB ReplicaSet Prerequisites

To use InnoDB ReplicaSet you should be aware of the following prerequisites:
* Only instances running MySQL version 8.0 and later are supported

» Only GTID-based replication is supported, binary log file position replication is not compatible with
InnoDB ReplicaSet

» Only Row Based Replication (RBR) is supported, Statement Based Replication (SBR) is
unsupported

» Replication filters are not supported
» Unmanaged replication channels are not allowed on any instance

* A ReplicaSet consists of maximum one primary instance, and one or multiple secondaries are
supported. Although there is no limit to the number of secondaries you can add to a ReplicaSet,
each MySQL Router connected to a ReplicaSet has to monitor each instance. Therefore, the more
instances that are added to a ReplicaSet, the more monitoring has to be done.

» The ReplicaSet must be entirely managed by MySQL Shell. For example, the replication account
is created and managed by MySQL Shell. Making configuration changes to the instance outside of
MySQL Shell, for example using SQL statements directly to change the primary, is not supported.
Always use MySQL Shell to work with InnoDB ReplicaSet.

AdminAPI and InnoDB ReplicaSet enable you to work with MySQL replication without a deep
understanding of the underlying concepts. However, for background information see Replication.

Configuring InnoDB ReplicaSet Instances

Use dba. confi gureRepl i caSet | nstance(instance) to configure each instance you want to
use in your replica set. MySQL Shell can either connect to an instance and then configure it, or you can
pass ini nst ance to configure a specific remote instance. To use an instance in a ReplicaSet, it must
support persisting settings. See Section 6.1.5, “Persisting Settings”.

When you connect to the instance for administration tasks you require a user with suitable privileges.
The preferred method to create users to administer a ReplicaSet is using the set upAdmi nAccount ()
operation. See Section 6.1.7, “Creating User Accounts for Administration”. Alternatively, the

dba. confi gureRepl i caSet | nstance() operation can optionally create an administrator account,
if the cl ust er Admi n option is provided. The account is created with the correct set of privileges
required to manage InnoDB ReplicaSet.

Tip
; The administrator account must have the same user name and password
across all instances of the same cluster or replica set.

184

https://dev.mysql.com/doc/refman/8.0/en/replication.html

Creating an InnoDB ReplicaSet

To configure the instance at r s- 1: 3306, with a cluster administrator named r sadmi n issue:

nysql -j s> dba. confi gureRepl i caSet| nstance('root @s-1:3306', {clusterAdmin: "'rsadmn' @rs-1%"});

The interactive prompt requests the password required by the specified user. To configure the instance
MySQL Shell is currently connected to, you can specify a null instance definition. For example issue:

mysql -j s> dba. confi gureReplicaSetlnstance('', {clusterAdnmin: "'rsadmin' @rs-1%"});

The interactive prompt requests the password required by the specified user. This checks the instance
which MySQL Shell is currently connected to is valid for use in an InnoDB ReplicaSet. Settings which
are not compatible with InnoDB ReplicaSet are configured if possible. The cluster administrator
account is created with the privileges required for InnoDB ReplicaSet.

Creating an InnoDB ReplicaSet

Once you have configured your instances, connect to an instance and use

dba. cr eat eRepl i caSet () to create a managed ReplicaSet that uses MySQL asynchronous
replication, as opposed to MySQL Group Replication used by InnoDB Cluster. The MySQL instance
which MySQL Shell is currently connected to is used as the initial primary of the ReplicaSet.

The dba. creat eRepl i caSet () operation performs several checks to ensure that the instance
state and configuration are compatible with a managed ReplicaSet and if so, a metadata schema is
initialized on the instance. If you want to check the operation but not actually make any changes to the
instances, use the dr yRun option. This checks and shows what actions the MySQL Shell would take
to create the ReplicaSet. If the ReplicaSet is created successfully, a Repl i caSet object is returned.
Therefore it is best practice to assign the returned Repl i caSet to a variable. This enables you to
work with the ReplicaSet, for example by calling the Repl i caSet . st at us() operation. To create a
ReplicaSet named exanpl e on instance r s- 1 and assign it to the r s variable, issue:

nysql -j s> \connect root@s-1: 3306

nysql -j s> var rs = dba. creat eRepl i caSet ("exanpl e")
A new replicaset with instance 'rs-1:3306' will be created.

* Checking MySQL instance at rs-1: 3306

This instance reports its own address as rs-1: 3306
rs-1:3306: Instance configuration is suitable.

* Updating netadata...

Repl i caSet object successfully created for rs-1:3306.
Use rs.add_i nstance() to add nore asynchronously replicated instances to this replicaset
and rs.status() to check its status.

To verify that the operation was successful, you work with the returned Repl i caSet object. For
example this provides the Repl i caSet . st at us() operation, which displays information about the
ReplicaSet. We already assigned the returned Repl i caSet to the variable r s, so issue:

nmysql -j s> rs.status()
{
"replicaSet": {
"name": "exanple",
“primary": "rs-1:3306",
"status": "AVAI LABLE",
"statusText": "All instances avail able.",
"topol ogy": {
"rs-1:3306": {
"address": "rs-1:3306",
"i nstanceRol e": " PRI MARY",
"node": "RIW,
"status": "ONLINE"

"type": "ASYNC'

185

Adding Instances to a ReplicaSet

}

This output shows that the ReplicaSet named exanpl e has been created, and that the primary
is rs- 1. Currently there is only one instance, and the next task is to add more instances to the
ReplicaSet.

9.2 Adding Instances to a ReplicaSet

When you have created a ReplicaSet you can use the Repl i caSet . addl nst ance() operation

to add an instance as a read-only secondary replica of the current primary of the ReplicaSet. The
primary of the ReplicaSet must be reachable and available during this operation. MySQL Replication
is configured between the added instance and the primary, using an automatically created MySQL
account with a random password. Before the instance can be an operational secondary, it must be in
synchrony with the primary. This process is called recovery, and InnoDB ReplicaSet supports different
methods which you configure with the r ecover yMet hod option.

For an instance to be able to join a ReplicaSet, various prerequisites must be satisfied. They are
automatically checked by Repl i caSet . addl nst ance(), and the operation fails if any issues are
found. Use dba. confi gur eRepl i caSet | nst ance() to validate and configure binary log and
replication related options before adding an instance. MySQL Shell connects to the target instance
using the same user name and password used to obtain the Repl i caSet handle object. All instances
of the ReplicaSet are expected to have the same administrator account with the same grants and
passwords. A custom administrator account with the required grants can be created while an instance
is configured with dba. conf i gur eRepl i caSet | nst ance() . See Configuring InnoDB ReplicaSet
Instances.

Recovery Methods for InnoDB ReplicaSet

When new instances are added to an InnoDB ReplicaSet they need to be provisioned with the existing
data which it contains. This can be done automatically using one of the following methods:

* MySQL Clone, which takes a snapshot from an online instance and then replaces any data on the
new instance with the snapshot. MySQL Clone is well suited for joining a new blank instance to an
InnoDB ReplicaSet. It does not rely on there being a complete binary log of all transactions applied
by the InnoDB ReplicaSet.

Warning
O All previous data on the instance being added is destroyed during a clone
operation. All MySQL settings not stored in tables are however maintained.

 incremental recovery, which relies on MySQL Replication to apply all missing transactions on the
new instance. If the amount of transactions missing on the new instance is small, this can be the
fastest method. However, this method is only usable if at least one online instance in the InnoDB
ReplicaSet has a complete binary log, containing the entire transaction history of the InnoDB
ReplicaSet. This method cannot be used if the binary logs have been purged from all members or
if the binary log was only enabled after databases already existed in the instance. If there is a very
large amount of transactions to apply, there could be a long delay before the instance can join the
InnoDB ReplicaSet.

When an instance is joining a ReplicaSet, recovery is used in much the same way that it is in

InnoDB Cluster. MySQL Shell attempts to automatically select a suitable recovery method. If it is not
possible to choose a method safely, MySQL Shell prompts for what to use. For more information, see
Section 7.2.2, “Using MySQL Clone with InnoDB Cluster”. This section covers the differences when
adding instances to a ReplicaSet.

Adding Instances to a ReplicaSet

Use the Repl i caSet . addl nst ance(i nst ance) operation to add secondary instances to the
Repl i caSet . You specify the i nst ance as a URI-like connection string. The user you specify must

186

Adding Instances to a ReplicaSet

have the privileges required and must be the same on all instances in the ReplicaSet, see Configuring

InnoDB ReplicaSet Instances.

For example, to add the instance at r s- 2 with user r sadmi n, issue:
nysql -j s> rs. addl nstance(' rsadm n@s-2")

Addi ng instance to the replicaset...

* Performng validation checks

This instance reports its own address as rsadm n@s- 2
rsadm n@s-2: |Instance configuration is suitable.

* Checki ng async replication topol ogy...
* Checking transaction state of the instance...

NOTE: The target instance 'rsadm n@s-2' has not been pre-provisioned (GTlD set
is enpty). The Shell is unable to decide whether replication can conpletely
recover its state. The safest and npbst convenient way to provision a new
instance is through automatic cl one provisioning, which will conpletely
overwite the state of 'rsadm n@s-2' with a physical snapshot from an existing
replicaset nenber. To use this nethod by default, set the 'recoveryMethod'
option to 'clone'.

WARNING It should be safe to rely on replication to increnentally recover the

state of the new instance if you are sure all updates ever executed in the

replicaset were done with GIlDs enabl ed, there are no purged transacti ons and

the new i nstance contains the sane GIID set as the replicaset or a subset of it.

To use this nmethod by default, set the 'recoveryMethod' option to 'increnental'.

Pl ease sel ect a recovery nethod [C]lone/[l]ncremental recovery/[A]bort (default C one):

In this case we did not specify the recovery method, so the operation advises you on how to best

proceed. In this example we choose the clone option because we do not have any existing transactions

on the instance joining the ReplicaSet. Therefore there is no risk of deleting data from the joining
instance.

Pl ease select a recovery nethod [C]lone/[l]ncremental recovery/[A]bort (default Clone): C

* Updati ng topol ogy

Waiting for clone process of the new nmenber to conplete. Press "C to abort the operation.
* Waiting for clone to finish...

NOTE: rsadmi n@s-2 is being cloned fromrsadm n@s-1

** Stage DROP DATA: Conpl et ed

** Clone Transfer

FI LE COPY #H###HH#HHHHHHHHHHHHHH T R 100% Conpl et ed
PAGE COPY #H###HIHHHHIHHHHHH I H T R 100% Conpl et ed
REDO COPY ###{HIHHHHIHHHHHHHHHH A R 100% Conpl et ed
** Stage RECOVERY: \

NOTE: rsadm n@s-2 is shutting down...

* Waiting for server restart... ready
* rsadmi n@s-2 has restarted, waiting for clone to finish...
* C one process has finished: 59.63 MB transferred in about 1 second (~1.00 B/s)

** Configuring rsadm n@s-2 to replicate fromrsadm n@s-1
** WAiting for new instance to synchronize with PRI MARY. ..

The instance 'rsadm n@s-2' was added to the replicaset and is replicating fromrsadm n@s-1.

Assuming the instance is valid for InnoDB ReplicaSet usage, recovery proceeds. In this case the

newly joining instance uses MySQL Clone to copy all of the transactions it has not yet applied from the
primary, then it joins the ReplicaSet as an online instance. To verify, use the Repl i caSet . st at us()

operation:

nmysql -j s> rs.status()
{
"replicaSet": {
"nanme": "exanple",

“primary": "rs-1:3306",

187

Adopting an Existing Replication Set Up

"status": "AVAlI LABLE",
"statusText": "All instances avail able.",
"topol ogy": {
"rs-1:3306": {
"address": "rs-1:3306",
"i nst anceRol e": " PRI MARY",
"node": "RIW,
"status": "ONLINE"

b
"rs-2:3306": {
"address": "rs-2:3306",
"i nst anceRol e": " SECONDARY",
"nmode": "R O',
"replication": {
"applierStatus": "APPLIED ALL",

"applierThreadState": "Replica has read all relay |log; waiting for nore updates"”,
"receiverStatus": "ON',
"recei verThreadState": "Waiting for source to send event",

"replicationLag": null

b

"status": "ONLI NE"
}

b

"type": "ASYNC'

}

This output shows that the ReplicaSet named exanpl e now consists of two MySQL instances, and
that the primary is r s- 1. Currently there is one secondary instance at r s- 2, which is a replica of the
primary. The ReplicaSet is online, which means that the primary and secondary are in synchrony. At
this point the ReplicaSet is ready to process transactions.

If you want to override the interactive MySQL Shell mode trying to choose the most suitable recovery
method, use the r ecover yMet hod option to configure how the instance recovers the data required

to be able to join the ReplicaSet. For more information, see Section 7.2.2, “Using MySQL Clone with
InnoDB Cluster”.

9.3 Adopting an Existing Replication Set Up

As an alternative to creating a new InnoDB ReplicaSet, you can also adopt an existing replication setup
using the adopt Fr omAR option with dba. cr eat eRepl i caSet () . The replication setup is scanned,
and if it is compatible with the InnoDB ReplicaSet Prerequisites, ADminAPI creates the necessary
metadata. Once the replication setup has been adopted, you can only use AdminAPI to administer the
InnoDB ReplicaSet.

To convert an existing replication setup to an InnoDB ReplicaSet connect to the primary, also referred
to as the source. The replication topology is automatically scanned and validated, starting from the
instance MySQL Shell's global session is connected to. The configuration of all instances is checked
during adoption, to ensure they are compatible with InnoDB ReplicaSet usage. All replication channels
must be active and their transaction sets as verified through GTID sets must be consistent. Instances
are assumed to have the same state or be able to converge. All instances that are part of the topology
are automatically added to the ReplicaSet. The only changes made by this operation to an adopted
ReplicaSet are the creation of the metadata schema. Existing replication channels are not changed
during adoption, although they could be changed during subsequent primary switch operations.

For example, to adopt a replication topology consisting of the MySQL server instances on exanpl el
and exanpl e2 to an InnoDB ReplicaSet, connect to the primary at exanpl el and issue:

nysql -js> rs = dba. createReplicaSet ('testadopt', {'adoptFromAR :1})
A new replicaset with the topol ogy visible from'exanpl el: 3306' will be created.

* Scanning replication topol ogy...
** Scanni ng state of instance exanpl el: 3306
** Scanni ng state of instance exanpl e2: 3306

188

Working with InnoDB ReplicaSet

* Di scovering async replication topology starting with exanpl el: 3306
Di scover ed topol ogy:
- exanpl el: 3306: uui d=00371d66- 3c45- 11ea- 804b- 080027337932 read_onl y=no
- exanpl e2: 3306: uui d=59e4f 26e- 3c3c- 11lea- 8b65- 080027337932 read_onl y=no
- replicates from exanpl el: 3306
sour ce="| ocal host: 3310" channel = stat us=0ON recei ver =ON appl i er =ON

* Checki ng configuration of discovered instances...

This instance reports its own address as exanpl el: 3306
exanpl el: 3306: | nstance configuration is suitable.

This instance reports its own address as exanpl e2: 3306
exanpl e2: 3306: | nstance configuration is suitable.

* Checki ng di scovered replication topol ogy...
exanpl el: 3306 detected as the PRI MARY.
Replication state of exanple2:3306 is OK

Val i dati ons conpl eted successful ly.
* Updating netadata. ..

Repl i caSet object successfully created for exanpl el: 3306.
Use rs.add_instance() to add nore asynchronously replicated instances to
this replicaset and rs.status() to check its status.

Once the InnoDB ReplicaSet has been adopted, you can use it in the same way that you would
use a ReplicaSet which was created from scratch. From this point you must administer the InnoDB
ReplicaSet using only AdminAPI.

9.4 Working with InnoDB ReplicaSet

You work with an InnoDB ReplicaSet in much the same way as you would work with an InnoDB
Cluster. For example as seen in Adding Instances to a ReplicaSet, you assign a Repl i caSet object to
a variable and call operations that administer the ReplicaSet, such as Repl i caSet . addl nst ance()
to add instances, which is the equivalent of Cl ust er . addl nst ance() in InnoDB Cluster. Thus,
much of the documentation at Section 7.5, “Working with InnoDB Cluster” also applies to InnoDB
ReplicaSet. The following operations are supported by Repl i caSet objects:

» You get online help for Repl i caSet objects, and the AdminAPI, using \ hel p Repl i caSet
or ReplicaSet. hel p() and\ hel p dba ordba. hel p() . See Section 6.1, “Using MySQL
AdminAPI".

* You can quickly check the name of a Repl i caSet object using either nane or
Repl i caSet . get Nane() . For example the following are equivalent:

nmysql -j s> rs. nane
exanpl e

nmysql -j s> rs. get Nane()
exanpl e

» You check information about a ReplicaSet using the Repl i caSet . st at us() operation, which
supports the ext ended option to get different levels of detail. For example:

« the default for ext ended is O, a regular level of details. Only basic information about the status
of the instance and replication is included, in addition to non-default or unexpected replication
settings and status.

» setting ext ended to 1 includes Metadata Version, server UUID, replication information such as
lag and worker threads, the raw information used to derive the status of the instance, size of the
applier queue, value of system variables that protect against unexpected writes and so on.

e setting ext ended to 2 includes important replication related configuration settings, such as
encrypted connections, and so on.

189

Planned Changes of the ReplicaSet Primary

The output of Repl i caSet . st at us(ext ended=1) is very similar to

Cl uster. status(extended=1), but the main difference is that the r epl i cat i on field is always
available because InnoDB ReplicaSet relies on MySQL Replication all of the time, unlike InnoDB
Cluster which uses it during incremental recovery. For more information on the fields, see Checking
a cluster's Status with Cl uster. status().

» You change the instances being used for a ReplicaSet using the Repl i caSet . addl nst ance()
and Repl i caSet . renovel nst ance() operations. See Adding Instances to a ReplicaSet, and
Removing Instances from the InnoDB Cluster.

» Use ReplicaSet.rejoinlnstance() toadd an instance that was removed back to a ReplicaSet,
for example after a failover.

e Use the Repl i caSet. set Pri maryl nst ance() operation to safely perform a change of the
primary of a ReplicaSet to another instance. See Planned Changes of the ReplicaSet Primary.

» Usethe ReplicaSet. forcePrinmaryl nstance() operation to perform a forced failover of the
primary. See Forcing the Primary Instance in a ReplicaSet.

» You work with the MySQL Router instances which have been bootstrapped against a
ReplicaSet in exactly the same way as with InnoDB Cluster. See Section 6.4.6, “Working
with a Cluster's Routers” for information on Repl i caSet . | i st Rout er s() and
Repl i caSet . renoveRout er Met adat a() . For specific information on using MySQL Router with
InnoDB ReplicaSet see Section 6.4.4, “Using ReplicaSets with MySQL Router”.

» From version 8.0.23 InnoDB ReplicaSet supports and enables the parallel replication
applier, sometimes referred to as a multi-threaded replica. Using the parallel replication
applier with InnoDB ReplicaSet requires that your instances have the correct settings
configured. If you are upgrading from an earlier version, instances require an updated
configuration. For each instance that belongs to the InnoDB ReplicaSet, update the
configuration by issuing dba. confi gur eRepl i caSet | nst ance(i nst ance) . Typically
dba. confi gureRepl i caSet | nst ance() is used before adding the instance to a replica set, but
in this special case there is no need to remove the instance and the configuration change is made
while it is online. For more information, see Configuring the Parallel Replication Applier.

InnoDB ReplicaSet instances report information about the parallel replication applier in the output of
the Repl i caSet . st at us(ext ended=1) operation under the r epl i cat i on field.

For more information, see the linked InnoDB Cluster sections.

The following operations are specific to InnoDB ReplicaSet and can only be called against a
Repl i caSet object:

Planned Changes of the ReplicaSet Primary

Use the Repl i caSet . set Pri maryl nst ance() operation to safely perform a change of the
primary of a ReplicaSet to another instance. The current primary is demoted to a secondary and made
read-only, while the promoted instance becomes the new primary and is made read-write. All other
secondary instances are updated to replicate from the new primary. MySQL Router instances which
have been bootstrapped against the ReplicaSet automatically start redirecting read-write clients to the
new primary.

For a safe change of the primary to be possible, all replica set instances must be reachable by MySQL
Shell and have consistent GTl1 D_EXECUTED sets. If the primary is not available, and there is no way
to restore it, a forced failover might be the only option instead, see Forcing the Primary Instance in a
ReplicaSet.

During a change of primary, the promoted instance is synchronized with the old primary, ensuring that
all transactions present on the primary are applied before the topology change is committed. If this

190

Forcing the Primary Instance in a ReplicaSet

synchronization step takes too long or is not possible on any of the secondary instances, the operation
is aborted. In such a situation, these problematic secondary instances must be either repaired or
removed from the ReplicaSet for the fail over to be possible.

Forcing the Primary Instance in a ReplicaSet

Unlike InnoDB Cluster, which supports automatic failover in the event of an unexpected failure of

the primary, InnoDB ReplicaSet does not have automatic failure detection or a consensus based
protocol such as that provided by Group Replication. If the primary is not available, a manual failover

is required. An InnoDB ReplicaSet which has lost its primary is effectively read-only, and for any

write changes to be possible a new primary must be chosen. In the event that you cannot connect

to the primary, and you cannot use Repl i caSet . set Pri maryl nst ance() to safely perform a
switchover to a new primary as described at Planned Changes of the ReplicaSet Primary, use the
ReplicaSet.forcePrimarylnstance() operation to perform a forced failover of the primary. This
is a last resort operation that must only be used in a disaster type scenario where the current primary is
unavailable and cannot be restored in any way.

Warning
O A forced failover is a potentially destructive action and must be used with
caution.

If a target instance is not given (or is null), the most up-to-date instance is automatically selected and
promoted to be the new primary. If a target instance is provided, it is promoted to a primary, while other
reachable secondary instances are switched to replicate from the new primary. The target instance
must have the most up-to-date GTI D_EXECUTED set among reachable instances, otherwise the
operation fails.

A failover is different from a planned primary change because it promotes a secondary instance without
synchronizing with or updating the old primary. That has the following major consequences:

» Any transactions that had not yet been applied by a secondary at the time the old primary failed are
lost.

« If the old primary is actually still running and processing transactions, there is a split-brain and the
datasets of the old and new primaries diverge.

If the last known primary is still reachable, the Repl i caSet . f or cePri maryl nst ance() operation
fails, to reduce the risk of split-brain situations. But it is the administrator's responsibility to ensure that
the old primary it is not reachable by the other instances to prevent or minimize such scenarios.

After a forced failover, the old primary is considered invalid by the new primary and can no longer be
part of the replica set. If at a later date you find a way to recover the instance, it must be removed from
the ReplicaSet and re-added as a new instance. If there were any secondary instances that could not
be switched to the new primary during the failover, they are also considered invalid.

Data loss is possible after a failover, because the old primary might have had transactions that were
not yet replicated to the secondary being promoted. Moreover, if the instance that was presumed to
have failed is still able to process transactions, for example because the network where it is located is
still functioning but unreachable from MySQL Shell, it continues diverging from the promoted instances.
Recovering once transaction sets on instances have diverged requires manual intervention and could
not be possible in some situations, even if the failed instances can be recovered. In many cases, the
fastest and simplest way to recover from a disaster that required a forced failover is by discarding such
diverged transactions and re-provisioning a new instance from the newly promoted primary.

InnoDB ReplicaSet Locking

From version 8.0.20, AdminAPI uses a locking mechanism to avoid different operations from
performing changes on an InnoDB ReplicaSet simultaneously. Previously, different instances of

191

Tagging ReplicaSets

MySQL Shell could connect to an InnoDB ReplicaSet at the same time and execute AdminAPI
operations simultaneously. This could lead to inconsistent instance states and errors, for example
if Repl i caSet . addl nst ance() and Repl i caSet.set Pri maryl nstance() were executed in
parallel.

The InnoDB ReplicaSet operations have the following locking:

» dba. upgr adeMet adat a() and dba. creat eRepl i caSet () are globally exclusive operations.
This means that if MySQL Shell executes these operations on an InnoDB ReplicaSet, no other
operations can be executed against the InnoDB ReplicaSet or any of its instances.

* ReplicaSet.forcePrimarylnstance() and ReplicaSet.setPrinmarylnstance() are
operations that change the primary. This means that if MySQL Shell executes these operations
against an InnoDB ReplicaSet, no other operations which change the primary, or instance change
operations can be executed until the first operation completes.

* ReplicaSet. addl nstance(), ReplicaSet.rejoinlnstance(),and
Repl i caSet . renovel nst ance() are operations that change an instance. This means that
if MySQL Shell executes these operations on an instance, the instance is locked for any further
instance change operations. However, this lock is only at the instance level and multiple instances
in an InnoDB ReplicaSet can each execute one of this type of operation simultaneously. In other
words, at most one instance change operation can be executed at a time, per instance in the InnoDB
ReplicaSet.

» dba. get ReplicaSet () and Repl i caSet . st at us() are InnoDB ReplicaSet read operations and
do not require any locking.

In practice, if you try to execute an InnoDB ReplicaSet related operation while another operation that
cannot be executed concurrently is still running, you get an error indicating that a lock on a needed
resource failed to be acquired. In this case, you should wait for the running operation which holds the
lock to complete, and only then try to execute the next operation. For example:

nysql -j s> rs. addl nst ance("adnm n@ s2: 3306") ;

ERROR: The operation cannot be executed because it failed to acquire the | ock on
instance 'rs1:3306'. Another operation requiring exclusive access to the
instance is still in progress, please wait for it to finish and try again.

Repl i caSet . addl nst ance: Failed to acquire |ock on instance 'rsl:3306' (MySQLSH
51400)

In this example, the Repl i caSet . addl nst ance() operation failed because the lock
on the primary instance (r s1: 3306) could not be acquired, for example because a
ReplicaSet. set Primaryl nstance() operation (or other similar operation) was still running.

Tagging ReplicaSets

Tagging is supported by ReplicaSets, and their instances. For the purpose of tagging, ReplicaSets
support the set Opti on(), setlnstanceQpti on() and opti ons() operations. These operations
function in generally the same way as their Cl ust er equivalents. For more information, see

Section 6.3, “Tagging Metadata”. This section documents the differences in working with tags for
ReplicaSets.

Important

instances. For ReplicaSets, the options documented at Setting Options for
InnoDB Cluster are not supported. The only supported option is the tagging

A There are no other options which can be configured for ReplicaSets and their
described here.

The Repl i caSet . opti ons() operation shows information about the tags assigned to individual
ReplicaSet instances as well as to the ReplicaSet itself.

192

Tagging ReplicaSets

The opt i on argument of Repl i caSet . set Opti on() and Repl i caSet. set | nstanceQpti on()
only support options with the t ag namespace and throw an error otherwise.

The Repl i caSet . setl nstanceOpti on(instance, option, value) and
Repl i caSet.set Opti on(option, val ue) operations behave in the same way as the Cl ust er
equivalent operations.

There are no differences in hiding instances as described at Removing Instances from Routing. For
example, to hide the ReplicaSet instance r s- 1, issue:

nysql -j s> nyRepl i caSet. set| nstanceOption(i cadm n@s-1: 3306, "tag:_hi dden", true);

A MySQL Router that has been bootstrapped against the ReplicaSet detects the change and removes
the r s- 1 instance from the routing destinations.

193

194

Chapter 10 Extending MySQL Shell

Table of Contents

10.1 Reporting With MySQL Shellcooouiiii e 195
10.1.1 Creating MySQL Shell REPOISccceviiiiiiiie e 196
10.1.2 Registering MySQL Shell REPOISc.uuniiiiiiiieiii e 196
10.1.3 Persisting MySQL Shell REPOIScuuuiiiiiiiiiii e e 198
10.1.4 Example MySQL Shell REPOI .. .cciuiiiiiii e 198
10.1.5 Running MySQL Shell REPOITSuiiiiiiiiiiiiiii et 199
10.1.6 Built-in MySQL Shell REPOITSuuiiiiiiieeiiii et 200

10.2 Adding Extension Objects to MySQL Shellccouiiiiiiiiii e 203
10.2.1 Creating User-Defined MySQL Shell Global ObJECEScocvvviiviiiiiiiieiec e 203
10.2.2 Creating EXtENSION ODJECES ...covuviiiiiiiie e 204
10.2.3 Persisting EXtENSION ODJECESuuiiiiiiiiieiiii e 206
10.2.4 Example MySQL Shell EXtension ODJECESc..oiiiiiiiiiiiiiiii e 206

10.3 MySQL SHEll PIUGINS ...euiiiiii ettt ettt e et e et e e e ebe s 208
10.3.1 Creating MYySQL Shell PIUGINSciiiiiiiiiii e 208
10.3.2 Creating PIUGIN GrOUPSuuiiiiiiiieiiii ettt ettt e et e et eeeae e 209
10.3.3 Example MySQL Shell PIUGINSoiiiiii et 209

You can define extensions to the base functionality of MySQL Shell in the form of reports and
extension objects. Reports and extension objects can be created using JavaScript or Python, and can
be used regardless of the active MySQL Shell language. You can persist reports and extension objects
in plugins that are loaded automatically when MySQL Shell starts.

* MySQL Shell reports are available from MySQL Shell 8.0.16. See Section 10.1, “Reporting with
MySQL Shell”.

» Extension objects are available from MySQL Shell 8.0.17. See Section 10.2, “Adding Extension
Objects to MySQL Shell”.

» Reports and extension objects can be stored as MySQL Shell plugins from MySQL Shell 8.0.17. See
Section 10.3, “MySQL Shell Plugins”.

10.1 Reporting with MySQL Shell

MySQL Shell enables you to set up and run reports to display live information from a MySQL server,
such as status and performance information. MySQL Shell's reporting facility supports both built-

in reports and user-defined reports. The reporting facility is available from MySQL Shell 8.0.16.
Reports can be created directly at the MySQL Shell interactive prompt, or defined in scripts that are
automatically loaded when MySQL Shell starts.

A report is a plain JavaScript or Python function that performs operations to generate the desired
output. You register the function as a MySQL Shell report through the shel | . r egi st er Report ()
method in JavaScript or the shel | . regi st er _report () method in Python. Section 10.1.1,
“Creating MySQL Shell Reports” has instructions to create, register, and store your reports. You can
store your report as part of a MySQL Shell plugin (see Section 10.3, “MySQL Shell Plugins”).

Reports written in any of the supported languages (JavaScript, Python, or SQL) can be run
regardless of the active MySQL Shell language. Reports can be run once using the MySQL Shell

\ show command, or run and then refreshed continuously in a MySQL Shell session using the

\ wat ch command. They can also be accessed as API functions using the shel | . r eport s object.
Section 10.1.5, “Running MySQL Shell Reports” explains how to run reports in each of these ways.

MySQL Shell includes a number of built-in reports, described in Section 10.1.6, “Built-in MySQL Shell
Reports”.

195

Creating MySQL Shell Reports

10.1.1 Creating MySQL Shell Reports

You can create and register a user-defined report for MySQL Shell in either of the supported scripting
languages, JavaScript and Python. The reporting facility handles built-in reports and user-defined
reports using the same API frontend scheme.

Reports can specify a list of report-specific options that they accept, and can also accept a specified
number of additional arguments. Your report can support both, one, or neither of these inputs. When

you request help for a report, MySQL Shell provides a listing of options and arguments, and any

available descriptions of these that are provided when the report is registered.

Signature

The signature for the Python or JavaScript function to be registered as a MySQL Shell report must be
as follows:

Di ct report(Session session, List argv, Dict options);

Where:

» session is a MySQL Shell session object that is to be used to execute the report.

e ar gv is an optional list containing string values of additional arguments that are passed to the report.

» opti ons is an optional dictionary with key names and values that correspond to any report-specific
options and their values.

Report types

A report function is expected to return data in a specific format, depending on the type you use when
registering it:

List type Returns output as a list of lists, with the first list consisting of the
names of columns, and the remainder being the content of rows.
MySQL Shell displays the output in table format by default, or in
vertical format if the - - verti cal or - - E option was specified
on the \ showor \ wat ch command. The values for the rows are
converted to string representations of the items. If a row has fewer
elements than the number of column names, the missing elements
are considered to be NULL. If a row has more elements than the
number of column names, the extra elements are ignored. When
you register this report, use the type “list”.

Report type Returns free-form output as a list containing a single item. MySQL
Shell displays this output using YAML. When you register this
report, use the type “report”.

Print type Prints the output directly to screen, and return an empty list to
MySQL Shell to show that the output has already been displayed.
When you register this report, use the type “print”.

To provide the output, the API function for the report must return a dictionary with the key r eport, and
a list of JSON objects, one for each of the items in your returned list. For the List type, use one element
for each list, for the Report type use a single element, and for the Print type use no elements.

10.1.2 Registering MySQL Shell Reports

To register your user-defined report with MySQL Shell, call the shel | . regi st er Report () method
in JavaScript or shel | . regi ster_report () in Python. The syntax for the method is as follows:

196

Registering MySQL Shell Reports

shel | . regi st er Report (nanme, type, report[, description])
Where:

e nane is a string giving the unique name of the report.

* type is a string giving the report type which determines the output format, either “list”, “report”, or
“print”.

e report isthe function to be called when the report is invoked.

» descri ption is a dictionary with options that you can use to specify the options that the report
supports, additional arguments that the report accepts, and help information that is provided in the
MySQL Shell help system.

The nane, t ype, and r eport parameters are all required. The report name must meet the following
requirements:

It must be unique in your MySQL Shell installation.

It must be a valid scripting identifier, so the first character must be a letter or underscore character,
followed by any number of letters, numbers, or underscore characters.

« It can be in mixed case, but it must still be unique in your MySQL Shell installation when converted to
lower case.

The report name is not case-sensitive during the registration process and when running the report
using the \ showand \ wat ch commands. The report name is case-sensitive when calling the
corresponding API function at the shel | . r epor t s object. There you must call the function using the
exact name that was used to register the report, whether you are in Python or JavaScript mode.

The optional dictionary contains the following keys, which are all optional:
bri ef A brief description of the report.

details A detailed description of the report, provided as an array of strings.
This is provided when you use the \ hel p command or the - - hel p
option with the \ show command.

options Any report-specific options that the report can accept. Each
dictionary in the array describes one option, and must contain the
following keys:

e nane (string, required): The name of the option in the long form,
which must be a valid scripting identifier.

e brief (string, optional): A brief description of the option.

* shortcut (string, optional): An alternate name for the option as a
single alphanumeric character.

« det ai | s (array of strings, optional): A detailed description of the
option. This is provided when you use the \ hel p command or the
- - hel p option with the \ show command.

e type (string, optional): The value type of the option. The
permitted values are “string”, “bool”, “integer”, and “float”, with a
default of “string” if t ype is not specified. If “bool” is specified,
the option acts as a switch: it defaults to f al se if not specified,
defaults to t r ue (and accepts no value) when you run the report
using the \ showor \ wat ch command, and must have a valid
value when you run the report using the shel | . report s object.

197

Persisting MySQL Shell Reports

e required (bool, optional): Whether the option is required. If
requi r ed is not specified, it defaults to f al se. If the option type
is “bool” then r equi r ed cannot be true.

« val ues (array of strings, optional): A list of allowed values for
the option. Only options with type “string” can have this key. If
val ues is not specified, the option accepts any values.

argc A string specifying the number of additional arguments that the
report expects, which can be one of the following:

¢ An exact number of arguments, which is specified as a single
number.

e Zero or more arguments, which is specified as an asterisk.

« Arange of argument numbers, which is specified as two numbers
separated by a dash (for example, “1-5").

* A range of argument numbers with a minimum but no maximum,
which is specified as a number and an asterisk separated by a
dash (for example, “1-*").

10.1.3 Persisting MySQL Shell Reports

A MySQL Shell report must be saved with a file extension of . | s for JavaScript code, or . py for
Python code, to match the scripting language used for the report. The file extension is not case-
sensitive.

The preferred way to persist a report is by adding it into a MySQL Shell plugin. Plugins and plugin
groups are loaded automatically when MySQL Shell starts, and the functions that they define and
register are available immediately. In a MySQL Shell plugin, the file containing the initialization script
must be named i nit.j s orinit.py as appropriate for the language. For instructions to use MySQL
Shell plugins, see Section 10.3, “MySQL Shell Plugins”.

As an alternative, scripts containing reports can be stored directly in the i ni t . d folder in the MySQL
Shell user configuration path. When MySQL Shell starts, all files found in the i ni t . d folder with a

.] s or. py file extension are processed automatically and the functions in them are made available.
(In this location, the file name does not matter to MySQL Shell.) The default MySQL Shell user
configuration path is ~/ . nysql sh/ on Unix and %AppDat a% MySQL\ nysqgl sh\ on Windows.

The user configuration path can be overridden on all platforms by defining the environment variable
MYSQLSH_USER_CONFI G_HOVE.

10.1.4 Example MySQL Shell Report

This example user-defined report sessi ons shows which sessions currently exist.

def sessions(session, args, options):
Sys = session. get_schema('sys')
sessi on_view = sys. get_tabl e(' session')
query = session_vi ew. sel ect (

‘thd_id', 'conn_id', 'user', 'db', 'current_statenent',

'statement _| atency AS |atency', 'current_nmenory AS nmenory')
if (options.has_key('limt")):

limt = int(options['limt'])

query.limt(limt)

resul t query. execut e()

report [resul t.get_col um_names()]

for rowin result.fetch_all():
report. append(list(row))

198

Running MySQL Shell Reports

return {'report': report}

shel | . regi ster_report(

' sessions',
"list',
sessi ons,
{
"brief': 'Shows which sessions exist.',
"details': ['You need the SELECT privil ege on sys.session view and the underlying tables and fu
‘options': [
{
"nanme': 'limt",
"brief': 'The maxi mum nunber of rows to return.',
"shortcut': "I
"type': 'integer'
}
Il
"argc': 'O
}

)
10.1.5 Running MySQL Shell Reports

Built-in reports and user-defined reports that have been registered with MySQL Shell can be run in any
interactive MySQL Shell mode (JavaScript, Python, or SQL) using the \ showor \ wat ch command, or
called using the shel | . report s object from JavaScript or Python scripts. The \ show command or

\ wat ch command with no parameters list all the available built-in and user-defined reports.

Using the Show and Watch Commands

To use the \ showand \ wat ch commands, an active MySQL session must be available.

The \ show command runs the named report, which can be either a built-in MySQL Shell report or
a user-defined report that has been registered with MySQL Shell. You can specify any options or
additional arguments that the report supports. For example, the following command runs the built-in
report quer y, which takes as an argument a single SQL statement:

\ show query show sessi on status
The report name is case-insensitive, and the dash and underscore characters are treated as the same.
The \ show command also provides the following standard options:

e --vertical (or- E)displays the results from a report that returns a list in vertical format, instead of
table format.

» --hel p displays any provided help for the named report. (Alternatively, you can use the \ hel p
command with the name of the report, which displays help for the report function.)

Standard options and report-specific options are given before the arguments. For example, the
following command runs the built-in report quer y and returns the results in vertical format:

\show query --vertical show session status

The \ wat ch command runs a report in the same way as the \ show command, but then refreshes the
results at regular intervals until you cancel the command using Ctrl + C. The \ wat ch command has
additional standard options to control the refresh behavior, as follows:

e --interval =fl oat (or-i fl oat) specifies a number of seconds to wait between refreshes. The
default is 2 seconds. Fractional seconds can be specified, with a minimum interval of 0.1 second,
and the interval can be set up to a maximum of 86400 seconds (24 hours).

- - nocl s specifies that the screen is not cleared before refreshes, so previous results can still be
seen.

199

Built-in MySQL Shell Reports

For example, the following command uses the built-in report quer y to display the statement counter
variables and refresh the results every 0.5 seconds:

\wat ch query --interval =0.5 show gl obal status |ike ' Con®

Quotes are interpreted by the command handler rather than directly by the server, so if they are used in
a query, they must be escaped by preceding them with a backslash (\).

Using the shel | . report s Object

Built-in MySQL Shell reports and user-defined reports that have been registered with MySQL Shell
can also be accessed as API functions in the shel | . report s object. The shel | . r eport s object is
available in JavaScript and Python mode, and uses the report name supplied during the registration as
the function name. The function has the following signature:

Di ct report(Session session, List argv, Dict options);

Where:

» sessi onis a MySQL Shell session object that is to be used to execute the report.

» argv is a list containing string values of additional arguments that are passed to the report.

» opti ons is a dictionary with key hames and values that correspond to any report-specific options
and their values. The short form of the options cannot be used with the shel | . r eport s object.

The return value is a dictionary with the key r epor t , and a list of JSON objects containing the report.
For the List type of report, there is an element for each list, for the Report type there is a single
element, and for the Print type there are no elements.

With the shel | . r eport s object, if a dictionary of options is present, the ar gv list is required even if
there are no additional arguments. Use the \ hel p report _nane command to display the help for the
report function and check whether the report requires any arguments or options.

For example, the following code runs a user-defined report named sessi ons which shows the
sessions that currently exist. A MySQL Shell session object is created to execute the report. A report-
specific option is used to limit the number of rows returned to 10. There are no additional arguments,
so the ar gv list is present but empty.

report = shell.reports. sessions(shell.getSession(), [], {'limt':10});

10.1.6 Built-in MySQL Shell Reports

MySQL Shell includes built-in reports to display the following information:
» The results of any specified SQL query (quer y, available from MySQL Shell 8.0.16).

» A listing of the current threads in the connected MySQL server (t hr eads, available from MySQL
Shell 8.0.18).

» Detailed information about a specified thread (t hr ead, available from MySQL Shell 8.0.18).

As with user-defined reports, the built-in reports can be run once using the MySQL Shell \ show
command, or run and then refreshed continuously in a MySQL Shell session using the \ wat ch
command. The built-in reports support the standard options for the \ showand \ wat ch commands in
addition to their report-specific options, unless noted otherwise in their descriptions. They can also be
accessed as API functions using the shel | . r epor t s object. Section 10.1.5, “Running MySQL Shell
Reports” explains how to run reports in each of these ways.

10.1.6.1 Built-in MySQL Shell Report: Query

The built-in MySQL Shell report quer y is available from MySQL Shell 8.0.16. It executes the single
SQL statement that is provided as an argument, and returns the results using MySQL Shell's reporting

200

Built-in MySQL Shell Reports

facility. You can use the quer y report as a convenient way to generate simple reports for your
immediate use.

The query report has no report-specific options, but the standard options for the \ showand \ wat ch
commands may be used, as described in Section 10.1.5, “Running MySQL Shell Reports”.

For example, the following command uses the quer y report to display the statement counter variables
and refresh the results every 0.5 seconds:

\wat ch query --interval =0.5 show gl obal status |ike ' Con®

10.1.6.2 Built-in MySQL Shell Report: Threads

The built-in MySQL Shell report t hr eads is available from MySQL Shell 8.0.18. It lists the current
threads in the connected MySQL server which belong to the user account that is used to run the report.
The report works with servers running all supported MySQL 5.7 and MySQL 8.0 versions. If any item of
information is not available in the MySQL Server version of the target server, the report leaves it out.

The t hr eads report provides information for each thread drawn from various sources including
MySQL's Performance Schema. Using the report-specific options, you can choose to show foreground
threads, background threads, or all threads. You can report a default set of information for each thread,
or select specific information to include in the report from a larger number of available choices. You can
filter, sort, and limit the output. For details of the report-specific options and the full listing of information
that you can include in the report, issue one of the following MySQL Shell commands to view the report
help:

\ hel p t hreads
\'show t hreads --help

In addition to the report-specific options, the t hr eads report accepts the standard options for the

\ showand \ wat ch commands, as described in Section 10.1.5, “Running MySQL Shell Reports”. The
t hr eads report is of the list type, and by default the results are returned as a table, but you can use
the - -vertical (or-E) option to display them in vertical format.

The t hr eads report uses MySQL Server's f or mat _st at ement () function (see The
format_statement() Function). Any truncated statements displayed in the report are truncated according
to the setting for the st at enment _truncat e_| en option in MySQL Server's sys_conf i g table,
which defaults to 64 characters.

The following list summarizes the capabilities provided by the report-specific options for the t hr eads
report. See the report help for full details and the short forms of the options:

--foreground, - - List foreground threads only, background threads only, or all

background, - - al | threads. The report displays a default set of appropriate fields for
your thread type selection, unless you use the - - f or nat option to
specify your own choice of fields instead.

--format Define your own custom set of information to display for each
thread, specified as a comma-separated list of columns (and display
names, if you want). The report help lists all of the columns that you
can include to customize your report.

--where,--order-by,-- Filter the returned results using logical expressions (- - wher e), sort

desc,--limt on selected columns (- - or der - by), sort in descending instead of
ascending order - - desc), or limit the number of returned threads
(--limt).

For example, the following command runs the t hr eads report to display all foreground threads, with

a custom set of information comprising the thread ID, ID of any spawning thread, connection ID, user
name and host name, client program name, type of command that the thread is executing, and memory
allocated by the thread:

201

https://dev.mysql.com/doc/refman/8.0/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/8.0/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/8.0/en/sys-sys-config.html

Built-in MySQL Shell Reports

nmysql -j s> \show threads --foreground -o tid,ptid,cid,user, host, prognhane, conmand, menory

10.1.6.3 Built-in MySQL Shell Report: Thread

The built-in MySQL Shell report t hr ead is available from MySQL Shell 8.0.18. It provides detailed
information about a specific thread in the connected MySQL server. The report works with servers
running all supported MySQL 5.7 and MySQL 8.0 versions. If any item of information is not available in
the MySQL Server version of the target server, the report leaves it out.

The t hr ead report provides information for the selected thread and its activity, drawn from various
sources including MySQL's Performance Schema. By default, the report shows information on the
thread used by the current connection, or you can identify a thread by its ID or by the connection ID.
You can select one or more categories of information, or view all of the available information about the
thread. For details of the report-specific options and the information that you can include in the report,
issue one of the following MySQL Shell commands to view the report help:

\ hel p thread
\show t hread --help

In addition to the report-specific options, the t hr ead report accepts most of the standard options for
the \ showand \ wat ch commands, as described in Section 10.1.5, “Running MySQL Shell Reports”.
The exception is the - - ver ti cal (or - E) option for the \ show command, which is not accepted.
The t hr ead report has a custom output format that includes vertical listings and tables presented in
different sections, and you cannot change this output format.

The t hr eads report uses MySQL Server's f or mat _st at enent () function (see The
format_statement() Function). Any truncated statements displayed in the report are truncated according
to the setting for the st at enment _truncat e_| en option in MySQL Server's sys_confi g table,
which defaults to 64 characters.

The following list summarizes the capabilities provided by the report-specific options for the t hr eads
report. See the report help for full details and the short forms of the options:

--tid,--cid Identify the thread ID or connection ID on which you want to report.

- - general Show basic information about the thread. This information is
returned by default if you do not use any of the following options.

--brief Show a brief description of the thread on one line.
--client Show information about the client connection and client session.
--innodb Show information about the current InnoDB transaction using the

thread, if any.

- -1 ocks Show information about locks blocking and blocked by the thread.

--prep-stnts Show information about the prepared statements allocated for the
thread.

--status Show information about the session status variables for the thread.

You can specify a list of prefixes to match, in which case only
matching variables are displayed.

--vars Show information about the session system variables for the thread.
You can specify a list of prefixes to match, in which case only
matching variables are displayed.

--user-vars Show information about the user-defined variables for the thread.
You can specify a list of prefixes to match, in which case only
matching variables are displayed.

202

https://dev.mysql.com/doc/refman/8.0/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/8.0/en/sys-format-statement.html
https://dev.mysql.com/doc/refman/8.0/en/sys-sys-config.html

Adding Extension Objects to MySQL Shell

--all Show all of the above information, except for the brief description.

For example, the following command runs the t hr ead report for the thread with thread ID 53, and
returns general information about the thread, details of the client connection, and information about any
locks that the thread is blocking or is blocked by:

nmysql -py> \show thread --tid 53 --general --client --1ocks

10.2 Adding Extension Objects to MySQL Shell

From MySQL Shell 8.0.17, you can define extension objects and make them available as part of user-
defined MySQL Shell global objects. When you create and register an extension object, it is available in
both JavaScript and Python modes.

An extension object comprises one or more members. A member can be a basic data type value, a
function written in native JavaScript or Python, or another extension object. You construct and register
extension objects using functions provided by the built-in global object shel | . You can continue to
extend the object by adding further members to it after it has been registered with MySQL Shell.

Note

@ You can register an extension object containing functions directly as a MySQL
Shell global object. However, for good management of your extension objects,
it can be helpful to create one or a small number of top-level extension objects
to act as entry points for all your extension objects, and to register these top-
level extension objects as MySQL Shell global objects. You can then add
your current and future extension objects as members of an appropriate top-
level extension object. With this structure, a top-level extension object that is
registered as a MySQL Shell global object provides a place for developers to
add various extension objects created at different times and stored in different
MySQL Shell plugins.

10.2.1 Creating User-Defined MySQL Shell Global Objects

To create a new MySQL Shell global object to act as an entry point for your extension objects, first
create a new top-level extension object using the built-in shel | . cr eat eExt ensi onObj ect ()
function in JavaScript or shel | . cr eat e_ext ensi on_obj ect () in Python:

shel | . cr eat eExt ensi onObj ect ()

Then register this top-level extension object as a MySQL Shell global object by calling the
shel | . regi st er d obal () method in JavaScript or shel | . regi st er _gl obal () in Python. The
syntax for the method is as follows:

shel | . regi st erd obal (nane, object[, definition])
Where:

* nane is a string giving the name (and class) of the global object. The name must be a valid scripting
identifier, so the first character must be a letter or underscore character, followed by any number
of letters, numbers, or underscore characters. The name must be unique in your MySQL Shell
installation, so it must not be the name of a built-in MySQL Shell global object (for example, db,
dba, cl ust er, sessi on, shel I ,util)and it must not be a name you have already used for a
user-defined MySQL Shell global object. The examples below show how to check whether the name
already exists before registering the global object.

Important

access the object in both JavaScript and Python modes. It is therefore good

A The name that you use to register the global object is used as-is when you
practice to use a simple one-word name for the global object (for example,

203

Creating Extension Objects

ext). If you register the global object with a complex name in camel case

or snake case (for example, myCust onbj ect), when you use the global
object, you must specify the name as it was registered. Only the names used
for members are handled in a language-appropriate way.

» 0bj ect is the extension object that you are registering as a MySQL Shell global object. You can
only register an extension object once.

» definitionisan optional dictionary with help information for the global object that is provided in
the MySQL Shell help system. The dictionary contains the following keys:

e brief (string, optional): A short description of the global object to be provided as help information.

e det ai | s (list of strings, optional): A detailed description of the global object to be provided as help
information.

10.2.2 Creating Extension Objects

To create a new extension object to provide one or more functions, data types, or further
extension objects, use the built-in shel | . cr eat eExt ensi onChj ect () function in JavaScript or
shel | . creat e_ext ensi on_obj ect () in Python:

shel | . cr eat eExt ensi onObj ect ()

To add members to the extension object, use the built-in shel | . addExt ensi onChj ect Menber ()
function in JavaScript or shel | . add_ext ensi on_obj ect _nmenber () in Python:

shel | . addExt ensi onOhj ect Menber (obj ect, nane, nenber[, definition])
Where:
» obj ect is the extension object where the new member is to be added.

* nane is the name of the new member. The name must be a valid scripting identifier, so the first

character must be a letter or underscore character, followed by any number of letters, numbers,

or underscore characters. The name must be unique among the members that have already been
added to the same extension object, and if the member is a function, the name does not have to
match the name of the defined function. The name should preferably be specified in camel case,
even if you are using Python to define and add the member. Specifying the member name in camel
case enables MySQL Shell to automatically enforce naming conventions. MySQL Shell makes the
member available in JavaScript mode using camel case, and in Python mode using snake case.

e nenber is the value of the new member, which can be any of the following:

"o " ou

< A supported basic data type. The supported data types are “none” or “null”, “bool”, “number”

(integer or floating point), “string”, “array”, and “dictionary”.

» A JavaScript or Python function. You can use native code in the body of functions that are added
as members to an extension object, provided that the interface (parameters and return values)
is limited to the supported data types in Table 10.1, “Supported data type pairs for extension
objects”. The use of other data types in the interface can lead to undefined behavior.

* Another extension object.

e definitionisan optional dictionary that can contain help information for the member, and also if
the member is a function, a list of parameters that the function receives. Help information is defined
using the following attributes:

e bri ef is a brief description of the member.

e det ai | s is a detailed description of the member, provided as a list of strings. This is provided
when you use the MySQL Shell \ hel p command.

204

Creating Extension Objects

Parameters for a function are defined using the following attribute:

e par anet er s is a list of dictionaries describing each parameter that the function receives. Each
dictionary describes one parameter, and can contain the following keys:

e nane (string, required): The name of the parameter.

* type (string, required): The data type of the parameter, one of “string”, “integer”, “bool”, “float”,
“array”, “dictionary”, or “object”. If the type is “object”, the cl ass or cl asses key can also be
used. If the type is “string”, the val ues key can also be used. If the type is “dictionary”, the

opt i ons key can also be used.

« cl ass (string, optional, allowed when data type is “object”): Defines the object type that is
allowed as a parameter.

« cl asses (list of strings, optional, allowed when data type is “object”): A list of classes defining
the object types that are allowed as a parameter. The supported object types for cl ass
and cl asses are those that are exposed by the MySQL Shell APls, for example Sessi on,
Cl assi cSessi on, Tabl e, or Col | ecti on. An error is raised if an object type is passed to the
function that is not in this list.

« val ues (list of strings, optional, allowed when data type is “string”): A list of values that are valid
for the parameter. An error is raised if a value is passed to the function that is not in this list.

« opti ons (list of options, optional, allowed when data type is “dictionary”): A list of options that
are allowed for the parameter. Options use the same definition structure as the parameters, with
the exception that if r equi r ed is not specified for an option, it defaults to f al se. MySQL Shell
validates the options specified by the end user and raises an error if an option is passed to the
function that is not in this list. In MySQL Shell 8.0.17 through 8.0.19, this parameter is required
when the data type is “dictionary”, but from MySQL Shell 8.0.20 it is optional. If you create a
dictionary with no list of options, any options that the end user specifies for the dictionary are
passed directly through to the function by MySQL Shell with no validation.

e required (bool, optional): Whether the parameter is required. If r equi r ed is not specified for
a parameter, it defaults to t r ue.

» brief (string, optional): A short description of the parameter to be provided as help information.

« det ai | s (list of strings, optional): A detailed description of the parameter to be provided as help
information.

An extension object is considered to be under construction until it has been registered as a MySQL
Shell global object, or added as a member to another extension object that is registered as a MySQL
Shell global object. An error is returned if you attempt to use an extension object in MySQL Shell when
it has not yet been registered.

Cross Language Considerations

An extension object can contain a mix of members defined in Python and members defined in
JavaScript. MySQL Shell manages the transfer of data from one language to the other as parameters
and return values. Table 10.1, “Supported data type pairs for extension objects” shows the data types
that MySQL Shell supports when transferring data between languages, and the pairs that are used as
representations of each other:

Table 10.1 Supported data type pairs for extension objects

JavaScript Python
Boolean Boolean
String String

205

Persisting Extension Objects

JavaScript Python
Integer Long
Number Float

Null None
Array List

Map Dictionary

An extension object is literally the same object in both languages.

10.2.3 Persisting Extension Objects

A script to define and register extension objects must have a file extension of . j s for JavaScript code,
or . py for Python code, to match the language used for the script. The file extension is not case-
sensitive.

The preferred way to persist an extension object is by adding it into a MySQL Shell plugin. Plugins and
plugin groups are loaded automatically when MySQL Shell starts, and the functions that they define
and register are available immediately. In a MySQL Shell plugin, the file containing the initialization
script must be named i nit.j s orinit.py as appropriate for the language. A plugin can only contain
code in one language, so if you are creating an extension object with a mix of members defined in
Python and members defined in JavaScript, you must store the members as separate language-
appropriate plugins. For instructions to use MySQL Shell plugins, see Section 10.3, “MySQL Shell
Plugins”.

As an alternative, scripts containing extension objects can be stored directly in the i ni t . d folder in the
MySQL Shell user configuration path. When MySQL Shell starts, all files found in the i ni t . d folder
with a . j s or. py file extension are processed automatically and the functions that they register are
made available. (In this location, the file name does not matter to MySQL Shell.) The default MySQL
Shell user configuration path is ~/ . mysql sh/ on Unix and %AppDat a% MySQL\ mysql sh\ on
Windows. The user configuration path can be overridden on all platforms by defining the environment
variable M\YSQLSH USER CONFI G_HOVE.

10.2.4 Example MySQL Shell Extension Objects

Example 10.1 Creating and Registering Extension Objects - Python

This example creates a function hel | o_wor | d() which is made available through the user-
defined MySQL Shell global object denp. The code creates a new extension object and adds the
hel | o_wor | d() function to it as a member, then registers the extension object as the MySQL Shell
global object deno.
Define a hello_world function that will be exposed by the gl obal object 'denp'
def hello_world():

print(“"Hello world!")

Create an extension object where the hello_world function will be registered

pl ugi n_obj = shell.create_extension_object()
shel | . add_ext ensi on_obj ect _nmenber (pl ugi n_obj, "hellowWrld", hello_world,
{"brief": "Prints 'Hello world!'", "paraneters": []})

Registering the 'denp' gl obal object
shel | . regi ster_gl obal ("dermp", plugin_obj,
{"brief": "A denp plugin that showcases M/SQL Shell's plugin feature."})

Note that the member name is specified in camel case in the

shel | . add_ext ensi on_obj ect _nenber () function. When you call the member in Python mode,
use snake case for the member name, and MySQL Shell automatically handles the conversion. In
JavaScript mode, the function is called like this:

206

Example MySQL Shell Extension Objects

nmysql -j s> deno. hel | oWor | d()

In Python mode, the function is called like this:

nmysql - py> deno. hel | o_wor | d()
Example 10.2 Creating and Registering Extension Objects - JavaScript

This example creates an extension object with the function | i st Tabl es() as a member, and
registers it directly as the MySQL Shell global object t ool s:

/'l Define a |listTables function that will be exposed by the gl obal object tools

function |istTabl es(session, schemaNanme, options) {

/] Create an extension object and add the |istTables function to it as a menber
var object = shell.createExtensi onObj ect ()

shel | . addExt ensi onQbj ect Menber (obj ect, "li st Tabl es", |i st Tabl es,

{

brief:"Retrieves the tables froma given schema.",
details: ["Retrieves the tables of the schema naned schemaNane.",
"If excludeCollections is true, the collection tables will not be ret
par amet ers:
[
{

name: "session",

type: "object",

cl ass: "Session",

brief: "An X Protocol session object."

nane: "“schemaNane",
type: "string",
brief: "The name of the schema fromwhich the table list will be pulled.”

name: "options",
type: "dictionary",
brief: "Additional options that affect the function behavior.",

options: [
{
nane: "excludeVi ews",
type: "bool",
brief: "If set to true, the views will not be included on the Iist, def
I
{
nane: "excludeCol |l ections",
type: "bool",
brief: "If set to true, the collections will not be included on the |is
}

/'l Register the extension object as the gl obal object "tools"
shel | . regi sterd obal ("tool s", object, {brief:"d obal object for Exanpl eCom adm nistrator tools",
details:[

"d obal object to access honegrown Exanpl eCom admi ni strator tools.",
"Add new tools to this global object as nenbers with shell.addExtensi onCbj ect Men

In JavaScript mode, the function is called like this:

nysql -j s> tool s.|istTabl es(session, "world_x", {excludeViews: true})

207

MySQL Shell Plugins

In Python mode, the function is called like this:

nysql - py> tool s.|ist_tabl es(session, "world_x", {"excludeViews": True})

10.3 MySQL Shell Plugins

From MySQL Shell 8.0.17, you can extend MySQL Shell with user-defined plugins that are loaded
at startup. Plugins can be written in either JavaScript or Python, and the functions they contain are
available in MySQL Shell in both JavaScript and Python modes.

10.3.1 Creating MySQL Shell Plugins

MySQL Shell plugins can be used to contain functions that are registered as MySQL Shell reports (see
Section 10.1, “Reporting with MySQL Shell”), and functions that are members of extension objects that
are made available by user-defined MySQL Shell global objects (see Section 10.2, “Adding Extension
Objects to MySQL Shell”). A single plugin can contain and register more than one function, and can
contain a mix of reports and members of extension objects. Functions that are registered as reports or
members of extension objects by a MySQL Shell plugin are available immediately when MySQL has
completed startup.

A MySQL Shell plugin is a folder containing an initialization script appropriate for the language (an
init.jsorinit.py file). The initialization script is the entry point for the plugin. A plugin can only
contain code in one language, so if you are creating an extension object with a mix of members defined
in Python and members defined in JavaScript, you must store the members as separate language-
appropriate plugins.

For a MySQL Shell plugin to be loaded automatically at startup, its folder must be located under
the pl ugi ns folder in the MySQL Shell user configuration path. MySQL Shell searches for any
initialization scripts in this location. MySQL Shell ignores any folders in the pl ugi ns location whose
name begins with a dot (.) but otherwise the name you use for a plugin's folder is not important.

The default path for the pl ugi ns folderis ~/ . nysql sh/ pl ugi ns on Unix and %®ppDat a% My SQL
\ mysqgl sh\ pl ugi ns in Windows. The user configuration path can be overridden on all platforms by
defining the environment variable M\YSQLSH USER CONFI G_HOVE. The value of this variable replaces
%AppDat a% MySQL\ nmysql sh\ on Windows or ~/ . nysql sh/ on Unix.

When an error is found while loading plugins, a warning is shown and the error details are available
in the MySQL Shell application log. To see more details on the loading process use the - - | 0g-
| evel =debug option when starting MySQL Shell.

When a MySQL Shell plugin is loaded, the following objects are available as global variables:
* The built in global objects shel | , dba, and uti | .

* The Shell API main module nysql .

* The X DevAPI main module nysql x.

* The AdminAPI main module dba.

10.3.1.1 Common Code and Packages

If you use common code or inner packages in Python code that is part of a MySQL Shell plugin or
plugin group, you must follow these requirements for naming and importing to avoid potential clashes
between package names:

» The plugin or plugin group's top-level folder, and each inner folder that is to be recognized as a
package, must be a valid regular package name according to Python's PEP 8 style guide, using only
letters, numbers, and underscores.

208

Creating Plugin Groups

« Each inner folder that is to be recognized as a package must contain afilenamed __init__ . py.

» When importing, the full path for the package name must be specified. For example, if a plugin group
named ext contains a plugin named deno, which has an inner package named sr ¢ containing a
module named sanpl e, the module must be imported as follows:

from ext.denp.src inport sanple

10.3.2 Creating Plugin Groups

You can create a plugin group by placing the folders for multiple MySQL Shell plugins in a containing
folder under the pl ugi ns folder. A plugin group can contain a mix of plugins defined using JavaScript
and plugins defined using Python. Plugin groups can be used to organize plugins that have something
in common, for example:

 Plugins that provide reports on a particular theme.
* Plugins that reuse the same common code.

* Plugins that add functions to the same extension object.

If a subdirectory of the pl ugi ns folder does not contain an initialization script (aninit.j s or

i nit.py file), MySQL Shell treats it as a plugin group and searches its subfolders for the initialization
scripts for the plugins. The containing folder can contain other files with code that is shared by the
plugins in the plugin group. As for a plugin's subfolder, the containing folder is ignored if its name
begins with a dot (.) but otherwise the name is not important to MySQL Shell.

For example, a plugin group comprising all the functions provided by the user-defined MySQL Shell
global object ext can be structured like this:

* The folder C: \ User s\ exanpl euser\ AppDat a\ Roani ng\ MySQL\ mysql sh\ pl ugi ns\ ext is the
containing folder for the plugin group.

e Common code for the plugins is stored in this folder at C: \ User s\ exanpl euser\ AppDat a
\ Roam ng\ MySQL\ nysqgl sh\ pl ugi ns\ ext\ conmon. py

» The plugins in the plugin group are stored in subfolders of the ext folder, each with ani ni t . py file,
for example C: \ User s\ exanpl euser \ AppDat a\ Roam ng\ MySQL\ nysql sh\ pl ugi ns\ ext
\ hel | oWor |l d\i ni t. py.

* The plugins import the common code from ext . conmon and use its functions.

10.3.3 Example MySQL Shell Plugins

Example 10.3 MySQL Shell plugin containing a report and an extension object

This example defines a function show_pr ocesses() to display the currently running processes, and

a function ki I | _process() to kill a process with a specified ID. show_pr ocesses() is going to
be a MySQL Shell report, and ki | | _process() is going to be a function provided by an extension
object.

The code registers show _processes() as a MySQL Shell report pr oc using the

shel | . regi ster_report () method. Toregister ki | | _process() asext.process. kill(),
the code checks whether the global object ext and the extension object pr ocess already exist, and
creates and registers them if not. The ki | | _process() function is then added as a member to the
pr ocess extension object.

The plugin code is saved as the file ~/ . nysql sh/ pl ugi ns/ ext/ process/init. py. At startup,
MySQL Shell traverses the folders in the plugins folder, locates this i ni t . py file, and executes the

209

Example MySQL Shell Plugins

code. The report pr oc and the function ki | | () are registered and made available for use. The global
object ext and the extension object pr ocess are created and registered if they have not yet been
registered by another plugin, otherwise the existing objects are used.

Define a show processes function that generates a MySQL Shell report

def show_processes(session, args, options):
query = "SELECT I D, USER HOST, COWAND, | NFO FROM | NFORVMATI ON_SCHEMA. PROCESSLI ST
if (options.has_key(' command')):
query += " WHERE COMWAND = '9%'" % options[' command']

result = session.sql (query).execute();
report = []
if (result.has_data()):
report = [result.get_col um_nanes()]
for rowin result.fetch_all():
report.append(list(row))

return {"report”: report}
Define a kill_process function that will be exposed by the gl obal object 'ext'
def kill _process(session, id):

result = session.sqgl ("KILL CONNECTI ON %" % d). execut e()

Regi ster the show_processes function as a MySQL Shel |l report

shel |l . register_report("proc", "list", show processes, {"brief":"Lists the processes on the target server.",
"options": [{
“name": "command”,
“shortcut”: "c",
"brief": "Use this option to |ist processes over
HD
Register the kill_process function as ext.process.kill ()

Check if gl obal object 'ext' has already been registered
if "ext' in globals():

gl obal _obj = ext

el se:
Otherw se regi ster new gl obal object nanmed 'ext’
gl obal _obj = shel |l . create_extensi on_obj ect ()

shel | . regi ster_gl obal ("ext", gl obal _obj,
{"brief":"MySQL Shell extension plugins."})

Add the 'process' extension object as a nmenber of the 'ext' gl obal object
try:

pl ugi n_obj = gl obal _obj . process
except | ndexError:

|f the 'process' extension object has not been registered yet, do it now

pl ugi n_obj = shell.create_extensi on_object ()
shel | . add_ext ensi on_obj ect _nenber (gl obal _obj, "process", plugin_obj,
{"brief": "Uility object for process operations."})

Add the kill _process function to the 'process' extension object as nmenber "kill"'
try:

shel | . add_ext ensi on_obj ect _nmenber (pl ugi n_obj, "kill", kill_process, {"brief": "Kills the process with t

"paranmeters": [
{

"nanme": "sessi on",
"type":"object",
"class": " Session",

"brief": "The session to be used on the
IE
{

"name":"id",

"type":"integer",

"brief": "The ID of the process to be kil

210

Example MySQL Shell Plugins

except Exception as e

}
]
b

shell .1 og("ERROR', "Failed to register ext.process.kill ({0}).".

format (str(e).rstrip()))

Here, the user runs the report pr oc using the MySQL Shell \ showcommand, then uses the
ext . process. kil | () function to stop one of the listed processes:

nysql - py> \ show proc

dimccodimcoccoccsoocoooso drmocooccoos
| ID] USER | HOST

dimccodimcoccoccsoocoooso drmocooccoos
| 66 | root | 1 ocal host
| 67 | root | 1 ocal host
| 4 | event_scheduler | |ocal host
dimccodimcoccoccsoocoooso drmocooccoos

nysql - py> ext. process. kil | (session

nysql - py> \ show proc

dimccodimcoccoccsoocoooso drmocooccoos
| ID] USER | HOST

dimccodimcoccoccsoocoooso drmocooccoos
| 66 | root | 1 ocal host
| 4 | event_scheduler | |ocal host
dimccodimcoccoccsoocoooso drmocooccoos

: 53998 |
: 34022 |

COVMVAND |

I NFO

PLUG N: SELECT I D, USER, HOST, COMVAND, |NFO FROM
NULL
NULL

PLUG N: SELECT I D, USER, HOST, COMVAND, | NFO FROM
NULL

211

212

Chapter 11 MySQL Shell Utilities

Table of Contents

11.1 Upgrade CheCKer ULITILYcooeuuiiiiii ettt e et e e e et eeeba e eeees 213
11.2 JSON IMPOIt ULHILY oeeeeeeeiii ettt e e e e bt e e e e b s 220
11.2.1 Importing JISON documents with the mysglsh command interfaceccccooeeevnnnnen. 222
11.2.2 Importing JSON documents with the --import commandc.ocooiiiiiiiiiinieniiinneees 223
11.2.3 Conversions for representations of BSON data typescoeeuviieiiiiiiiiiiiiinieeeiiineeeens 224
11.3 Table EXPOrt ULIILY ...oceueiiiei et e et e e et e e e 225
11.4 Parallel Table IMPort ULIILYuiiiiii e 229
11.5 Instance Dump Utility, Schema Dump Utility, and Table Dump Utilityccccooeviiiiiiiiiiinnnnens 236
11.6 DUMP LOAAING ULIILY ...t 249

MySQL Shell includes utilities for working with MySQL. To access the utilities from within MySQL Shell,
use the ut i | global object, which is available in JavaScript and Python modes, but not SQL mode.
The ut i | global object provides the following functions:

checkFor Ser ver Upgr ade() An upgrade checker utility that enables you to verify whether
MySQL server instances are ready for upgrade. See Section 11.1,
“Upgrade Checker Utility”.

i mport JSON() A JSON import utility that enables you to import JSON documents to
a MySQL Server collection or table. See Section 11.2, “JSON Import
Utility”.

export Tabl e() A table export utility that exports a MySQL relational table into

a data file, which can then be uploaded into a table on a target
MySQL server using MySQL Shell's parallel table import utility, or
to import data to a different application, or as a light-weight logical
backup for a single data table. See Section 11.3, “Table Export
Utility”.

i mport Tabl e() A parallel table import utility that splits up a single data file and
uses multiple threads to load the chunks into a MySQL table. See
Section 11.4, “Parallel Table Import Utility”.

dunpl nst ance(), An instance dump utility, schema dump utility, and table dump
dunpSchenas(), utility that can export all schemas, a selected schema, or selected
dunpTabl es() tables and views, from a MySQL instance into an Oracle Cloud

Infrastructure Object Storage bucket or a set of local files. See
Section 11.5, “Instance Dump Utility, Schema Dump Utility, and
Table Dump Utility”.

| oadDunp() A dump loading utility that can import schemas dumped using
MySQL Shell's instance dump utility and schema dump utility into a
MySQL instance. See Section 11.6, “Dump Loading Utility”.

11.1 Upgrade Checker Utility

The uti | . checkFor Server Upgrade() function is an upgrade checker utility that enables you to
verify whether MySQL server instances are ready for upgrade. From MySQL Shell 8.0.13, you can
select a target MySQL Server release to which you plan to upgrade, ranging from the first MySQL
Server 8.0 General Availability (GA) release (8.0.11), up to the MySQL Server release number

that matches the current MySQL Shell release number. The upgrade checker utility carries out the
automated checks that are relevant for the specified target release, and advises you of further relevant
checks that you should make manually.

213

Upgrade Checker Utility

You can use the upgrade checker utility to check MySQL 5.7 server instances for compatibility
errors and issues for upgrading. From MySQL Shell 8.0.13, you can also use it to check MySQL 8.0
server instances at another GA status release within the MySQL 8.0 release series. If you invoke
checkFor Server Upgr ade() without specifying a MySQL Server instance, the instance currently
connected to the global session is checked. To see the currently connected instance, issue the

\ st at us command.

Note
@ 1. The upgrade checker utility does not support checking MySQL Server
instances at a version earlier than MySQL 5.7.

2. MySQL Server only supports upgrade between GA releases. Upgrades
from non-GA releases of MySQL 5.7 or 8.0 are not supported. For more
information on supported upgrade paths, see Upgrade Paths.

From MySQL Shell 8.0.16, the upgrade checker utility can check the configuration file (ny. cnf or

nmy. i ni) for the server instance. The utility checks for any system variables that are defined in the
configuration file but have been removed in the target MySQL Server release, and also for any system
variables that are not defined in the configuration file and will have a different default value in the target
MySQL Server release. For these checks, when you invoke checkFor Ser ver Upgr ade() , you must
provide the file path to the configuration file.

The upgrade checker utility can operate over either an X Protocol connection or a classic MySQL
protocol connection, using either TCP or Unix sockets. You can create the connection beforehand,
or specify it as arguments to the function. The utility always creates a new session to connect to the
server, so the MySQL Shell global session is not affected.

Up to MySQL Shell 8.0.20, the user account that is used to run the upgrade checker utility must have
ALL privileges. From MySQL Shell 8.0.21, the user account requires RELOAD, PROCESS, and SELECT
privileges.

The upgrade checker utility can generate its output in text format, which is the default, or in JSON
format, which might be simpler to parse and process for use in devops automation.

The upgrade checker utility has the following signature:

checkFor Server Upgr ade (ConnectionData connectionData, Dictionary options)

Both arguments are optional. The first provides connection data if the connection does not already
exist, and the second is a dictionary that you can use to specify the following options:

passwor d The password for the user account that is used to run the upgrade
checker utility. You can provide the password using this dictionary
option or as part of the connection details. If you do not provide the
password, the utility prompts for it when connecting to the server.

t ar get Ver si on The target MySQL Server version to which you plan to upgrade.
In MySQL Shell 8.0.26, you can specify release 8.0.11 (the first
MySQL Server 8.0 GA release), 8.0.12, 8.0.13, 8.0.14, 8.0.15,
8.0.16, 8.0.17, 8.0.18, 8.0.19, 8.0.20, 8.0.21, 8.0.22, 8.0.23, 8.0.24,
8.0.25, or 8.0.26. If you specify the short form version number 8.0,
or omit the t ar get Ver si on option, the utility checks for upgrade to
the MySQL Server release number that matches the current MySQL
Shell release number.

configPath The local path to the ny. cnf or my. i ni configuration file for the
MySQL server instance that you are checking, for example, C:
\ Progr anDat a\ MySQL\ M\ySQ. Server 8.0\ ny.ini.Ifyou
omit the file path and the upgrade checker utility needs to run a
check that requires the configuration file, that check fails with a
message informing you that you must specify the file path.

214

https://dev.mysql.com/doc/refman/8.0/en/upgrade-paths.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select

Upgrade Checker Utility

out put For nat The format in which the output from the upgrade checker utility is
returned. The default if you omit the option is text format (TEXT). If
you specify JSON, well-formatted JSON output is returned instead,
in the format listed in JSON output for the upgrade checker utility.

For example, the following commands verify then check the MySQL server instance currently
connected to the global session, with output in text format:

nysql sh> \ st at us
M/SQL Shel |l version 8.0.26

Server version: 5.7.33-10og MySQL Community Server (GPL)

nmysql sh> util.checkFor Server Upgrade()

The following command checks the MySQL server at URI user @xanpl e. com 3306 for upgrade to
the first MySQL Server 8.0 GA status release (8.0.11). The user password and the configuration file
path are supplied as part of the options dictionary, and the output is returned in the default text format:

nmysql sh> util.checkFor Server Upgrade(' user @xanpl e. com 3306' , {"password":"password", "targetVersion":"8

The following command checks the same MySQL server for upgrade to the MySQL Server release
number that matches the current MySQL Shell release number (the default), and returns JSON output
for further processing:

nmysql sh> util.checkFor Server Upgr ade(' user @xanpl e. com 3306', {"password":"password", "outputFormat":"JS

From MySQL 8.0.13, you can start the upgrade checker utility from the command line using the

nysql sh command interface. For information on this syntax, see Section 5.8, “API Command Line
Integration”. The following example checks a MySQL server for upgrade to release 8.0.26, and returns
JSON output:

nmysql sh -- util checkFor Server Upgrade user @ ocal host: 3306 --target-version=8.0.26 --output-fornmat=JSON

The connection data can also be specified as named options grouped together by using curly brackets,
as in the following example, which also shows that lower case and hyphens can be used for the
method name rather than camelCase:

nmysql sh -- util check-for-server-upgrade { --user=user --host=local host --port=3306 } --target-version=

The following example uses a Unix socket connection and shows the older format for invoking the utility
from the command line, which is still valid:

./ bin/nysqgl sh --socket =/tnp/ nysql .sock --user=user -e "util.checkFor Server Upgrade()"

To get help for the upgrade checker utility, issue:

nysql sh> util . hel p("checkFor Server Upgrade")

util.checkFor Server Upgrade() no longer returns a value (before MySQL Shell 8.0.13, the value
0, 1, or 2 was returned).

When you invoke the upgrade checker utility, MySQL Shell connects to the server instance and tests
the settings described at Preparing Your Installation for Upgrade. For example:

The MySQL server at exanpl e.com 3306, version
5.7.33-enterprise-comercial -advanced - MySQL Enterprise Server - Advanced Edition (Commrercial),
wi || now be checked for conpatibility issues for upgrade to MySQL 8.0. 26. ..

1) Usage of old tenporal type
No i ssues found

2) Usage of db objects with nanmes conflicting with new reserved keywords
War ni ng: The fol | owi ng obj ects have nanmes that conflict with new reserved keywords.
Ensure queries sent by your applications use "quotes’ when referring to themor they will result in €
More information: https://dev.nysql.com doc/ref man/ en/ keywor ds. ht m

dbt est. System - Tabl e nane

215

https://dev.mysql.com/doc/refman/8.0/en/upgrade-prerequisites.html

Upgrade Checker Utility

dbt est. System JSON_TABLE - Col utm nane
dbt est. System cube - Col utm nane

3) Usage of utf8nmb3 charset
Warni ng: The followi ng objects use the utf8nmb3 character set. It is reconmended to convert themto use
utf8nb4 instead, for inproved Uni code support.
More information: https://dev. mysql.com doc/refman/ 8. 0/ en/ char set - uni code- ut f 8nb3. ht ni

dbtest.viewl.coll - colum's default character set: utf8

4) Tabl e names in the nysgl schema conflicting with newtables in 8.0
No issues found

5) Partitioned tables using engines with non native partitioning
Error: In M/SQL 8.0 storage engine is responsible for providing its own
partitioning handler, and the MySQL server no | onger provides generic
partitioning support. InnoDB and NDB are the only storage engi nes that
provide a native partitioning handler that is supported in MySQL 8.0. A
partitioned tabl e using any other storage engi ne nust be altered—either to
convert it to InnoDB or NDB, or to renpbve its partitioni ng—before upgradi ng
the server, else it cannot be used afterwards.
More i nfornation:
https://dev. nysqgl . conf doc/ r ef man/ 8. 0/ en/ upgr adi ng- f rom pr evi ous-seri es. ht m #upgr ade- conf i gur ati on- chanc

dbtest. part1l_hash - Myl SAM engi ne does not support native partitioning

6) Foreign key constraint names |onger than 64 characters
No issues found

7) Usage of obsol ete MAXDB sqgl _node fl ag
No issues found

8) Usage of obsol ete sqgl _node flags
No issues found

9) ENUM SET col umm definitions containing el ements |onger than 255 characters
No issues found

10) Usage of partitioned tables in shared tabl espaces
Error: The follow ng tables have partitions in shared tabl espaces. Before upgrading to 8.0 they need
to be noved to file-per-table tablespace. You can do this by running query |ike
" ALTER TABLE t abl e_nane REORGANI ZE PARTI TION X | NTO
(PARTI TI ON X VALUES LESS THAN (30) TABLESPACE=i nnodb_file_per_table);"'
More information: https://dev. nmysql.com doc/refman/8. 0/ en/ nysql - nut shel | . ht M #nysql - nut shel | - renoval s

dbtest.tablel - Partition pO is in shared tabl espace tbsp4
dbtest.tablel - Partition pl is in shared tabl espace tbsp4

11) Gircular directory references in tabl espace data file paths
No issues found

12) Usage of renoved functions
Error: Foll owi ng DB objects make use of functions that have been renoved in
version 8.0. Please nake sure to update themto use supported alternatives
bef ore upgrade.
More i nfornation:
https://dev. nysqgl . conl doc/ r ef man/ 8. 0/ en/ nmysql - nut shel | . ht M #mysql - nut shel | -renoval s

dbtest.viewl - VIEWuses renoved function PASSWORD
13) Usage of renmpved GROUP BY ASC/ DESC synt ax
Error: The followi ng DB objects use renpved GROUP BY ASC/ DESC syntax. They need to be altered so that
ASC/ DESC keyword is renmoved from GROUP BY cl ause and pl aced in appropriate ORDER BY cl ause.
More information: https://dev. mysql.com doc/rel notes/nysql/8.0/en/news-8-0-13. ht m #nmysqgl d- 8- 0- 13- sql - synt

dbtest.viewl - VIEWuses renmpved GROUP BY DESC synt ax
dbtest.funcl - FUNCTI ON uses renoved GROUP BY ASC synt ax

14) Renmpbved system variables for error logging to the system | og configuration
No issues found

15) Renpved system vari abl es

216

Upgrade Checker Utility

Error: Followi ng systemvariables that were detected as being used will be
renmoved. Pl ease update your systemto not rely on them before the upgrade.
More information: https://dev. nmysql.com doc/refman/ 8. 0/ en/ added- depr ecat ed- r enpved. ht ml #opt var s- r enov

log_builtin_as_identified by _password - is set and will be renoved
show_conpatibility 56 - is set and will be renoved

16) System variables with new default val ues
Warni ng: Fol | owi ng system vari abl es that are not defined in your
configuration file will have new default values. Please review if you rely on
their current values and if so define them before perform ng upgrade.
More information: https://nysqgl serverteam com new def aul ts-i n-mysql - 8-0/

back_| og - default value will change

character_set_server - default value will change fromlatinl to utf8nb4

collation_server - default value will change fromlatinl_swedish_ci to
ut f 8nb4_0900_ai _ci

event _schedul er - default value will change from OFF to ON

(-]

17) Zero Date, Datetime, and Ti nestanp val ues

Warni ng: By default zero date/datetinme/tinmestanp val ues are no | onger all owed
in MWSQ., as of 5.7.8 NO ZERO | N DATE and NO _ZERO DATE are included in
SQL_MODE by default. These nodes should be used with strict node as they wll
be nmerged with strict node in a future release. If you do not include these
nmodes in your SQL_MODE setting, you are able to insert
date/datetime/tinestanp val ues that contain zeros. It is strongly advised to
repl ace zero values with valid ones, as they may not work correctly in the
future.

More i nfornation:
https://| efred. be/ content/nysql - 8- 0- and- wr ong- dat es/

gl obal . sql _nmobde - does not contain either NO ZERO DATE or NO _ZERO | N_DATE
which allows insertion of zero dates

session.sqgl _node - of 2 session(s) does not contain either NO ZERO DATE or
NO_ZERO | N_DATE whi ch all ows insertion of zero dates

dbtest.datel.d - colum has zero default val ue: 0000-00-00

18) Schemm inconsistencies resulting fromfile renoval or corruption
No issues found

19) Tabl es recogni zed by I nnoDB that belong to a different engine
No issues found

20) Issues reported by 'check table x for upgrade' comrand
No issues found

21) New default authentication plugin considerations

Warni ng: The new default authentication plugin 'caching_sha2_password' offers
nmore secure password hashi ng than previously used 'nysqgl _native_password
(and consequent inproved client connection authentication). However, it also
has compatibility inplications that may affect existing M/SQL installations
If your MySQL installation nust serve pre-8.0 clients and you encounter
conpatibility issues after upgrading, the sinplest way to address those
issues is to reconfigure the server to revert to the previous default
aut henti cation plugin (nysqgl _native_password). For exanple, use these |lines
in the server option file:

[nysgl d]
def aul t _aut henti cati on_pl ugi n=nysql _nati ve_password

However, the setting should be viewed as tenporary, not as a |long term or
per manent sol uti on, because it causes new accounts created with the setting
in effect to forego the inproved authentication security.
If you are using replication please take time to understand how t he
aut henti cati on plugin changes may i npact you.
More i nfornation:
https://dev. nysqgl . conf doc/ r ef man/ 8. 0/ en/ upgr adi ng- f rom previ ous-seri es. ht m #upgr ade- cachi ng- sha2- pa
https://dev. nysqgl . conf doc/ r ef man/ 8. 0/ en/ upgr adi ng- f rom previ ous-seri es. ht m #upgr ade- cachi ng- sha2- pa

Errors: 7
War ni ngs: 36

217

JSON output for the upgrade checker utility

Notices: O

7 errors were found. Pl ease correct these issues before upgrading to avoid conpatibility issues

« In this example, the checks carried out on the server instance returned some errors for the upgrade
scenario that were found on the checked server, so changes are required before the server instance
can be upgraded to the target MySQL 8.0 release.

* When you have made the required changes to clear the error count for the report, you should
also consider making further changes to remove the warnings. Those configuration improvements
would make the server instance more compatible with the target release. The server instance can,
however, be successfully upgraded without removing the warnings.

» As shown in this example, the upgrade checker utility might also provide advice and instructions for
further relevant checks that cannot be automated and that you should make manually, which are
rated as either warning or notice (informational) level.

JSON output for the upgrade checker utility

When you select JSON output using the out put For nat dictionary option, the JSON object returned
by the upgrade checker utility has the following key-value pairs:

serverAddress

serverVersion
targetVersion
errorCount
warningCount
noticeCount

summary

checksPerformed

Host name and port number for MySQL Shell's connection to the
MySQL server instance that was checked.

Detected MySQL version of the server instance that was checked.
Target MySQL version for the upgrade checks.

Number of errors found by the utility.

Number of warnings found by the utility.

Number of notices found by the utility.

Text of the summary statement that would be provided at the end
of the text output (for example, "No known compatibility errors or
issues were found.").

An array of JSON objects, one for each individual upgrade issue
that was automatically checked (for example, usage of removed
functions). Each JSON object has the following key-value pairs:

id The ID of the check, which is a
unigue string.

title A short description of the check.

status "OK" if the check ran
successfully, "ERROR"
otherwise.

description A long description of the check (if

available) incorporating advice,
or an error message if the check
failed to run.

If available, a link to
documentation with further
information or advice.

documentationLink

218

JSON output for the upgrade checker utility

manualChecks

detectedProblems

An array (which might be empty)
of JSON obijects representing

the errors, warnings, or notices
that were found as a result of the
check. Each JSON object has the
following key-value pairs:

level

dbObject

description

An array of JSON objects, one for each individual upgrade issue
that is relevant to your upgrade path and needs to be checked
manually (for example, the change of default authentication plugin in
MySQL 8.0). Each JSON object has the following key-value pairs:

id

title

The ID of the manual check,
which is a unique string.

A short description of the manual
check.

219

The
messa
level,
one

of
Error,
Warnin
or
Notice.

A
string
identify
the
databa
object
to
which
the
messa
relates

If
availab
a
string
with

a
specific
descrig
of

the
issue
with
the
databa
object.

JSON Import Utility

description A long description of the manual
check, with information and
advice.

documentationLink If available, a link to

documentation with further
information or advice.

11.2 JSON Import Utility

MySQL Shell's JSON import utility ut i | . i mpor t JSON() , introduced in MySQL Shell 8.0.13, enables
you to import JISON documents from a file (or FIFO special file) or standard input to a MySQL Server
collection or relational table. The utility checks that the supplied JSON documents are well-formed and
inserts them into the target database, removing the need to use multiple | NSERT statements or write
scripts to achieve this task.

From MySQL Shell 8.0.14, the import utility can process BSON (binary JSON) data types that are
represented in JSON documents. The data types used in BSON documents are not all natively
supported by JSON, but can be represented using extensions to the JSON format. The import utility
can process documents that use JSON extensions to represent BSON data types, convert them to an
identical or compatible MySQL representation, and import the data value using that representation.
The resulting converted data values can be used in expressions and indexes, and manipulated by SQL
statements and X DevAPI functions.

You can import the JSON documents to an existing table or collection or to a new one created for
the import. If the target table or collection does not exist in the specified database, it is automatically
created by the utility, using a default collection or table structure. The default collection is created by
calling the cr eat eCol | ect i on() function from a schema object. The default table is created as
follows:

CREATE TABLE " dbnane’. tabl enane” (
target _col utm JSON,
id | NTEGER AUTO_| NCREMENT PRI MARY KEY
) CHARSET utf8nb4 ENG NE=I nnoDB;

The default collection name or table name is the name of the supplied import file (without the file
extension), and the default t ar get _col urm name is doc.

To convert JSON extensions for BSON types into MySQL types, you must specify the

conver t BsonTypes option when you run the import utility. Additional options are available to control
the mapping and conversion for specific BSON data types. If you import documents with JISON
extensions for BSON types and do not use this option, the documents are imported in the same way as
they are represented in the input file.

The JSON import utility requires an existing X Protocol connection to the server. The utility cannot
operate over a classic MySQL protocol connection.

In the MySQL Shell API, the JSON import utility is a function of the ut i | global object, and has the
following signature:

i mport JSON (path, options)

pat h is a string specifying the file path for the file containing the JSON documents to be imported. This
can be a file written to disk, or a FIFO special file (named pipe). Standard input can only be imported
with the - - i nport command line invocation of the utility.

opt i ons is a dictionary of import options that can be omitted if it is empty. (Before MySQL 8.0.14,
the dictionary was required.) The following options are available to specify where and how the JSON
documents are imported:

schema: "db_nane" The name of the target database. If you omit this option, MySQL
Shell attempts to identify and use the schema name in use for

220

https://dev.mysql.com/doc/refman/8.0/en/insert.html

JSON Import Utility

the current session, as specified in a URI-like connection string,
\ use command, or MySQL Shell option. If the schema name is
not specified and cannot be identified from the session, an error is

returned.
col I ection: The name of the target collection. This is an alternative to specifying
"col | ecti on_nane" a table and column. If the collection does not exist, the utility

creates it. If you specify none of the col | ecti on, t abl e, or

t abl eCol umm options, the utility defaults to using or creating a
target collection with the name of the supplied import file (without
the file extension).

table: "tabl e_nane" The name of the target table. This is an alternative to specifying a
collection. If the table does not exist, the utility creates it.

t abl eCol umm: The name of the column in the target table to which the JSON
"col um_nane" documents are imported. The specified column must be present
in the table if the table already exists. If you specify the t abl e
option but omit the t abl eCol umm option, the default column name
doc is used. If you specify the t abl eCol unm option but omit the
t abl e option, the name of the supplied import file (without the file
extension) is used as the table name.

convertBsonTypes: true Recognizes and converts BSON data types that are represented
using extensions to the JSON format. The default for this option
is f al se. When you specify convert BsonTypes: true, each
represented BSON type is converted to an identical or compatible
MySQL representation, and the data value is imported using
that representation. Additional options are available to control
the mapping and conversion for specific BSON data types; for
a list of these control options and the default type conversions,
see Section 11.2.3, “Conversions for representations of BSON
data types”. The convert BsonQO d option must also be set to
t r ue, which is that option's default setting when you specify
convertBsonTypes: true. If youimport documents with JSON
extensions for BSON types and do not use conver t BsonTypes:
t r ue, the documents are imported in the same way as they are
represented in the input file, as embedded JSON documents.

convertBsonQO d: true Recognizes and converts MongoDB ObjectIDs, which are a 12-
byte BSON type used as an _i d value for documents, represented
in MongoDB Extended JSON strict mode. The default for this
option is the value of the convert BsonTypes option, so if that
option is setto t r ue, MongoDB ObjectIDs are automatically also
converted. When importing data from MongoDB, convert BsonG d
must always be setto t r ue if you do not convert the BSON types,
because MySQL Server requires the _i d value to be converted to
the var bi nary(32) type.

extract Q dTi ne: Recognizes and extracts the timestamp value that is contained in

"field _nane" a MongoDB ObjectID in the i d field for a document, and places
it into a separate field in the imported data. ext ract G dTi ne
names the field in the document that contains the timestamp.
The timestamp is the first 4 bytes of the ObjectID, which remains
unchanged. convert BsonQ d: true must be set to use this
option, which is the default when convert BsonTypes is set to
true.

221

Importing JSON documents with the mysglsh command interface

The following examples, the first in MySQL Shell's JavaScript mode and the second in MySQL Shell's
Python mode, import the JSON documents in the file / t np/ pr oduct s. j son to the pr oduct s
collection in the nydb database:

nysql -js> util.inportJson("/tnp/products.json", {schema: "nydb", collection: "products"})

nysql -py> util.inport_json("/tnp/products.json", {"schema": "nydb", "collection": "products"})

The following example in MySQL Shell's JavaScript mode has no options specified, so the dictionary
is omitted. mydb is the active schema for the MySQL Shell session. The utility therefore imports the
JSON documents in the file / t np/ st or es. j son to a collection named st or es in the mydb database:

nysql -j s> \use nydb
nmysql -js> util.inportJson("/tnp/stores.json")

The following example in MySQL Shell's JavaScript mode imports the JSON documents in the file /
eur ope/ regi ons. j son to the column j sondat a in a relational table named r egi ons in the nmydb
database. BSON data types that are represented in the documents by JSON extensions are converted
to a MySQL representation:

nmysql -js> util.inportJson("/europel/regions.json", {schema: "nydb", table: "regions", tableColum: "jsondat:

The following example in MySQL Shell's JavaScript mode carries out the same import but without
converting the JSON representations of the BSON data types to MySQL representations. However, the
MongoDB ObijectIDs in the documents are converted as required by MySQL, and their timestamps are
also extracted:

nmysql -js> util.inportJson("/europel/regions.json", {schema: "nmydb", table: "regions", tableColum: "jsondat:é

When the import is complete, or if the import is stopped partway by the user with Ctrl+C or by an error,
a message is returned to the user showing the number of successfully imported JSON documents, and
any applicable error message. The function itself returns void, or an exception in case of an error.

The JSON import utility can also be invoked from the command line. Two alternative formats are
available for the command line invocation. You can use the mysql sh command interface, which
accepts input only from a file (or FIFO special file), or the - - i nport command, which accepts input
from standard input or a file.

11.2.1 Importing JSON documents with the mysqglsh command interface

With the nysql sh command interface, you invoke the JSON import utility as follows:

nmysql sh user @ost: port/nydb -- util inportJson <path> [options]
or
nmysql sh user @ost: port/nydb -- util inport-json <path> [options]

For information on this syntax, see Section 5.8, “API Command Line Integration”. For the JSON import
utility, specify the parameters as follows:

user The user name for the user account that is used to run the JISON
import utility.

host The host nhame for the MySQL server.

port The port number for MySQL Shell's connection to the MySQL

server. The default port for this connection is 33060.

nydb The name of the target database. When invoking the JSON import
utility from the command line, you must specify the target database.
You can either specify it in the URI-like connection string, or using
an additional - - schena command line option.

pat h The file path for the file (or FIFO special file) containing the JSON
documents to be imported.

222

Importing JSON documents with the --import command

options The - -col l ection,--tabl e,and - -t abl eCol urm options
specify a target collection or a target table and column. The
relationships and defaults when the JSON import utility is invoked
using the nmysql sh command interface are the same as when the
corresponding options are used in a MySQL Shell session. If you
specify none of these options, the utility defaults to using or creating
a target collection with the name of the supplied import file (without
the file extension).

The - - conver t BsonTypes option converts BSON data types
that are represented using extensions to the JSON format. The
additional control options for specific BSON data types can also
be specified; for a list of these control options and the default type
conversions, see Section 11.2.3, “Conversions for representations
of BSON data types”. The - - convert BsonQ d option is
automatically set on when you specify - - convert BsonTypes.
When importing data from MongoDB, - - conver t BsonGO d must
be specified if you do not convert the BSON types, because
MySQL Server requires the _i d value to be converted to the

var bi nary(32) type. --extract Q dTi ne=fi el d_nane can be
used to extract the timestamp from the _i d value into a separate
field.

The following example imports the JSON documents in the file pr oduct s. j son to the pr oduct s
collection in the mydb database:

nmysql sh user @ocal host/nydb -- util inportJson products.json --collection=products

11.2.2 Importing JSON documents with the --import command

The - - i nport command is available as an alternative to the nysql sh command interface for
command line invocation of the JSON import utility. This command provides a short form syntax
without using option names, and it accepts JSON documents from standard input. The syntax is as
follows:

nmysql sh user @ost : port/nydb --inport <path> [target] [tabl eColum] [options]

As with the nysql sh command interface, you must specify the target database, either in the URI-
like connection string, or using an additional - - schena command line option. The first parameter for
the - - i nport command is the file path for the file containing the JSON documents to be imported.
To read JSON documents from standard input, specify a dash (-) instead of the file path. The end of
the input stream is the end-of-file indicator, which is Ctrl+D on Unix systems and Ctrl+Z on Windows
systems.

After specifying the path (or - for standard input), the next parameter is the name of the target
collection or table. If standard input is used, you must specify a target.

« If you use standard input and the specified target is a relational table that exists in the specified
schema, the documents are imported to it. You can specify a further parameter giving a column
name, in which case the specified column is used for the import destination. Otherwise the default
column name doc is used, which must be present in the existing table. If the target is not an
existing table, the utility searches for any collection with the specified target name, and imports
the documents to it. If no such collection is found, the utility creates a collection with the specified
target name and imports the documents to it. To create and import to a table, you must also specify
a column name as a further parameter, in which case the utility creates a relational table with the
specified table name and imports the data to the specified column.

« If you specify a file path and a target, the utility searches for any collection with the specified target
name. If none is found, the utility by default creates a collection with that name and imports the
documents to it. To import the file to a table, you must also specify a column name as a further

223

Conversions for representations of BSON data types

parameter, in which case the utility searches for an existing relational table and imports to it, or
creates a relational table with the specified table name and imports the data to the specified column.

« If you specify a file path but do not specify a target, the utility searches for any existing collection
in the specified schema that has the name of the supplied import file (without the file extension). If
one is found, the documents are imported to it. If no collection with the name of the supplied import
file is found in the specified schema, the utility creates a collection with that name and imports the
documents to it.

If you are importing documents containing representations of BSON (binary JSON) data types,

you can also specify the options - - convert BsonQO d, - -extract O dTi ne=fi el d_nane, - -
convert BsonTypes, and the control options listed in Section 11.2.3, “Conversions for representations
of BSON data types”.

The following example reads JSON documents from standard input and imports them to a target
namedterritories inthe nydb database. If no collection or table named territori es is found,
the utility creates a collection named t erri t ori es and imports the documents to it. If you want

to create and import the documents to a relational table named t errit ori es, you must specify a
column name as a further parameter.

nysql sh user @ocal host/nydb --inport - territories

The following example with a file path and a target imports the JSON documents in the file / eur ope/
regi ons. j son to the column j sondat a in a relational table named r egi ons in the nydb database.
The schema name is specified using the - - schema command line option instead of in the URI-like
connection string:

nmysql sh user @ ocal host: 33062 --inport /europe/regions.json regions jsondata --schema=nydb

The following example with a file path but no target specified imports the JSON documents in the

file / eur ope/ r egi ons. j son. If no collection or table named r egi ons (the name of the supplied
import file without the extension) is found in the specified mydb database, the utility creates a collection
named r egi ons and imports the documents to it. If there is already a collection named r egi ons, the
utility imports the documents to it.

nmysql sh user @ ocal host/ nydb --inport /europe/regions.json

MySQL Shell returns a message confirming the parameters for the import, for example, | nporti ng
fromfile "/europe/regions.json" to table “nydb . 'regions’ in MySQ. Server
at 127.0.0. 1: 33062.

When an import is complete, or if the import is stopped partway by the user with Ctrl+C or by an error,
a message is returned to the user showing the number of successfully imported JSON documents,
and any applicable error message. The process returns zero if the import finished successfully, or a
nonzero exit code if there was an error.

11.2.3 Conversions for representations of BSON data types

When you specify the conver t BsonTypes: true (--convert BsonTypes) option to convert BSON
data types that are represented by JSON extensions, by default, the BSON types are imported as
follows:

Date (“date”) Simple value containing the value of the field.

Timestamp (“timestamp”) MySQL timestamp created using the t i ne_t value.

Decimal (“decimal”) Simple value containing a string representation of the decimal value.
Integer (“int” or “long”) Integer value.

Regular expression (“regex” String containing the regular expression only, and ignoring the

plus options) options. A warning is printed if options are present.

Binary data (“binData”) Base64 string.

224

Table Export Utility

ObjectID (“objectld”)

Simple value containing the value of the field.

The following control options can be specified to adjust the mapping and conversion of these BSON

types. convert BsonTypes:

control options:

i gnoreDate: true(--
i gnor eDat e)

i gnor eTi mestanp: true
(- -1 gnoreTi mest anp)

deci mal AsDoubl e: true
(- - deci nal AsDoubl e)

i gnor eRegex: true (--
i gnor eRegex)

true (--convert BsonTypes) must be specified to use any of these

Disable conversion of the BSON “date” type. The data is imported
as an embedded JSON document exactly as in the input file.

Disable conversion of the BSON “timestamp” type. The data is
imported as an embedded JSON document exactly as in the input
file.

Convert the value of the BSON “decimal” type to the MySQL
DOUBLE type, rather than a string.

Disable conversion of regular expressions (the BSON “regex” type).
The data is imported as an embedded JSON document exactly as in

the input file.

i gnor eRegexOpt i ons: Include the options associated with a regular expression in the

fal se (-- string, as well as the regular expression itself (in the format /

i gnor eRegexOpt i ons=f al se) <regul ar expressi on>/ <opt i ons>). By default, the options
are ignored (i gnor eRegexOpt i ons: true), butawarning is
printed if any options were present. i gnor eRegex must be set to
the default of f al se to specify i gnor eRegexQpt i ons.

i gnoreBinary: true(--
i gnor eBi nary)

Disable conversion of the BSON “binData” type. The data is
imported as an embedded JSON document exactly as in the input
file.

The following example imports documents from the file / eur ope/ r egi ons. j son to the column
j sondat a in a relational table named r egi ons in the mydb database. BSON data types that are
represented by JSON extensions are converted to MySQL representations, with the exception of
regular expressions, which are imported as embedded JSON documents:

nysql sh user @ ocal host/nydb --inport /europe/regions.json regions jsondata --convertBsonTypes --ignoreF

11.3 Table Export Utility

MySQL Shell's table export utility uti | . export Tabl e(), introduced in MySQL Shell 8.0.22, exports
a MySQL relational table into a data file, either on the local server or in an Oracle Cloud Infrastructure
Object Storage bucket. The data can then be uploaded into a table on a target MySQL server using
MySQL Shell's parallel table import utility uti | . i nport Tabl e() (see Section 11.4, “Parallel Table
Import Utility”), which uses parallel connections to provide rapid data import for large data files. The
data file can also be used to import data to a different application, or as a lightweight logical backup for
a single data table.

By default, the table export utility produces a data file in the default format for MySQL Shell's parallel
table import utility. Preset options are available to export CSV files for either DOS or UNIX systems,
and TSV files. The table export utility cannot produce JSON data. You can also set field- and line-
handling options as for the SELECT. . . | NTO OUTFI LE statement to create data files in arbitrary
formats.

When choosing a destination for the table export file, note that for import into a MySQL DB System,
the MySQL Shell instance where you run the parallel table import utility must be installed on an Oracle
Cloud Infrastructure Compute instance that has access to the MySQL DB System. If you export

the table to a file in an Object Storage bucket, you can access the Object Storage bucket from the
Compute instance. If you create the table export file on your local system, you need to transfer it to the
Oracle Cloud Infrastructure Compute instance using the copy utility of your choice, depending on the
operating system you chose for your Compute instance.

225

https://dev.mysql.com/doc/refman/8.0/en/select-into.html

Table Export Utility

The following requirements apply to exports using the table export utility:
» MySQL 5.7 or later is required for the source MySQL instance and the destination MySQL instance.

» The upload method used to transfer files to an Oracle Cloud Infrastructure Object Storage bucket
has a file size limit of 1.2 TiB.

The table export utility uses the MySQL Shell global session to obtain the connection details of the
target MySQL server from which the export is carried out. You must open the global session (which
can have an X Protocol connection or a classic MySQL protocol connection) before running the utility.
The utility opens its own session for each thread, copying options such as connection compression and
SSL options from the global session, and does not make any further use of the global session. You can
limit the maximum rate of data transfer to balance the load on the network.

In the MySQL Shell API, the table export utility is a function of the ut i | global object, and has the
following signature:

util.exportTabl e(table, outputUrl[, options])

t abl e is the name of the relational data table to be exported to the data file. The table name can be
qualified with a valid schema name, and quoted with the backtick character if needed. If the schema is
omitted, the active schema for the MySQL Shell global session is used.

If you are exporting the data to the local filesystem, out put Ur | is a string specifying the path to

the exported data file, and the file name itself, with an appropriate extension. You can specify an
absolute path or a path relative to the current working directory. You can prefix a local directory path
withthefil e:// schema. In this example in MySQL Shell's JavaScript mode, the user exports the
enpl oyees table from the hr schema using the default dialect. The file is written to the export s
directory in the user's home directory, and is given a . t xt extension that is appropriate for a file in this
format:

shell -js> util.exportTabl e("hr.enpl oyees", "file:///hone/hannal/ exports/enpl oyees.txt")

The target directory must exist before the export takes place, but it does not have to be empty. If the
exported data file already exists there, it is overwritten. For an export to a local directory, the data file is
created with the access permissions rw-r - - - - - (on operating systems where these are supported).
The owner of the file is the user account that is running MySQL Shell.

If you are exporting the data to an Oracle Cloud Infrastructure Object Storage bucket, out put Ur | is
the name for the data file in the bucket, including a suitable file extension. You can include directory
separators to simulate a directory structure. Use the osBucket Nae option to provide the name of the
Object Storage bucket, and the osNanespace option to identify the namespace for the bucket. In this
example in MySQL Shell's Python mode, the user exports the enpl oyees table from the hr schema
as a file in TSV format to the Object Storage bucket hanna- bucket :

shel | -py> util.export_tabl e("hr.enpl oyees", "dunp/enployees.tsv", {
> dialect: "tsv"', "osBucketNane": "hanna-bucket", "osNanespace": "idx28wlckztqg" })

The namespace for an Object Storage bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface. A connection is established to the Object Storage bucket using
the default profile in the default Oracle Cloud Infrastructure CLI configuration file, or alternative details
that you specify using the oci Confi gFi | e and oci Prof i | e options. For instructions to set up a CLI
configuration file, see SDK and CLI Configuration File.

util.exportTabl e() can be used with partitioned and subpatrtitioned tables, but does not perform
any special handling of these. One file is always created per table by this utility, regardless of release
version.

opt i ons is a dictionary of options that can be omitted if it is empty. The following options are available
for the table export utility:

226

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Table Export Utility

di al ect: [default]|csv]| Specify a set of field- and line-handling options for the format

csv-uni x| t sv] of the exported data file. You can use the selected dialect as
a base for further customization, by also specifying one or
more of the | i nesTer m nat edBy, fi el dsTer ni nat edBy,
fi el dsEncl osedBy, fi el dsOpti onal | yEncl osed, and
fi el dsEscapedBy options to change the settings.

The default dialect produces a data file matching what would be
created using a SELECT. . . | NTO OUTFI LE statement with the
default settings for that statement. . t xt is an appropriate file
extension to assign to these output files. Other dialects are available
to export CSYV files for either DOS or UNIX systems (. csv), and
TSV files (. t sv).

The settings applied for each dialect are as follows:

Table 11.1 Dialect settings for table export utility

di al ect |1 nesTer |fii red tosolyf riier at seEer B e eetplfii cord ad S Belbragd emtR
defaul t |[LF] [TAB] [empty] |fal se \
csv [CR][LF] |, " true \
CSvV- [LF] , " fal se \
uni x
tsv [CR][LF] |[TAB] " true \
Note

@ 1. The carriage return and line feed values

for the dialects are operating system

independent.

2. Ifyouusethel i nesTerm nat edBy,
fiel dsTerm nat edBy,
fi el dsEncl osedBy,
fiel dsOptional | yEncl osed, and
fi el dsEscapedBy options, depending
on the escaping conventions of your
command interpreter, the backslash
character (\) might need to be doubled if
you use it in the option values.

3. Like the MySQL server with the
SELECT. . . I NTO QUTFI LE statement,
MySQL Shell does not validate the
field- and line-handling options that you
specify. Inaccurate selections for these
options can cause data to be exported
partially or incorrectly. Always verify your
settings before starting the export, and
verify the results afterwards.

| i nesTer m nat edBy: One or more characters (or an empty string) with which the utility
"characters" terminates each of the lines in the exported data file. The default
is as for the specified dialect, or a linefeed character (\ n) if the
dialect option is omitted. This option is equivalent to the LI NES
TERM NATED BY option for the SELECT. . . | NTO OUTFI LE
statement. Note that the utility does not provide an equivalent for the

227

https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html

Table Export Utility

fiel dsTerni nat edBy:
"charact ers”

fi el dsEncl osedBy:
“character"

fiel dsOptional | yEncl osed:

[true | false]

fi el dsEscapedBy:
"character"

osBucket Nane: "string"

osNanmespace: "string"

oci ConfigFile: "string'

oci Profile: "string"

nmaxRate: "string"

LI NES STARTI NG BY option for the SELECT. . . | NTO OUTFI LE
statement, which is set to the empty string.

One or more characters (or an empty string) with which the

utility terminates each of the fields in the exported data file. The
default is as for the specified dialect, or a tab character (\ t) if the
dialect option is omitted. This option is equivalent to the FI ELDS
TERM NATED BY option for the SELECT. . . | NTO OUTFI LE
statement.

A single character (or an empty string) with which the utility encloses
each of the fields in the exported data file. The default is as for the
specified dialect, or the empty string if the dialect option is omitted.
This option is equivalent to the FI ELDS ENCLOSED BY option for
the SELECT. . . | NTO OUTFI LE statement.

Whether the character given for f i el dsEncl osedBy is to
enclose all of the fields in the exported data file (f al se), or to
enclose a field only if it has a string data type such as CHAR,

Bl NARY, TEXT, or ENUM(t r ue). The default is as for the specified
dialect, or f al se if the dialect option is omitted. This option
makes the f i el dsEncl osedBy option equivalent to the FI ELDS
OPTI ONALLY ENCLGCSED BY option for the SELECT. . . | NTO
OUTFI LE statement.

The character that is to begin escape sequences in the exported
data file. The default is as for the specified dialect, or a backslash
(\) if the dialect option is omitted. This option is equivalent to

the FI ELDS ESCAPED BY option for the SELECT. . . | NTO
QUTFI LE statement. If you set this option to the empty string,

no characters are escaped, which is not recommended because
special characters used by SELECT. . . | NTO OUTFI LE must be
escaped.

The name of the Oracle Cloud Infrastructure Object Storage
bucket to which the exported data file is to be written. By default,
the [DEFAULT] profile in the Oracle Cloud Infrastructure CLI
configuration file located at ~/ . oci / conf i g is used to establish
a connection to the bucket. You can substitute an alternative
profile to be used for the connection with the oci Confi gFi | e and
oci Profi | e options. For instructions to set up a CLI configuration
file, see SDK and CLI Configuration File.

The Oracle Cloud Infrastructure namespace where the Object
Storage bucket named by osBucket Nane is located. The
namespace for an Object Storage bucket is displayed in the Bucket
Information tab of the bucket details page in the Oracle Cloud
Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface.

An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/ . oci / confi g.

The profile name of the Oracle Cloud Infrastructure profile to use
for the connection, instead of the [DEFAULT] profile in the Oracle
Cloud Infrastructure CLI configuration file used for the connection.

The maximum number of bytes per second per thread for data read
throughput during the export. The unit suffixes k for kilobytes, Mfor

228

https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Parallel Table Import Utility

megabytes, and Gfor gigabytes can be used (for example, setting
100Mlimits throughput to 100 megabytes per second per thread).
Setting 0 (which is the default value), or setting the option to an
empty string, means no limit is set.

showProgress: [true | Display (t r ue) or hide (f al se) progress information for the export.

fal se] The defaultis t r ue if st dout is a terminal (t t y), such as when
MySQL Shell is in interactive mode, and f al se otherwise. The
progress information includes the estimated total number of rows
to be exported, the number of rows exported so far, the percentage
complete, and the throughput in rows and bytes per second.

conpression: "string" The compression type to use when writing the exported data file.
The default is to use no compression (none). The alternatives are to
use gzip compression (gzi p) or zstd compression (zst d).

def aul t Char act er Set : The character set to be used during the session connections that

“string" are opened by MySQL Shell to the server for the export. The
default is ut f 8mb4. The session value of the system variables
character_set _client,character_set connection,
and character _set results are set to this value for
each connection. The character set must be permitted by the
character_set _client system variable and supported by the
MySQL instance.

11.4 Parallel Table Import Utility

MySQL Shell's parallel table import utility uti | . i nport Tabl e(), introduced in MySQL Shell 8.0.17,
provides rapid data import to a MySQL relational table for large data files. The utility analyzes an input
data file, distributes it into chunks, and uploads the chunks to the target MySQL server using parallel
connections. The utility is capable of completing a large data import many times faster than a standard
single-threaded upload using a LOAD DATA statement.

When you run the parallel table import utility, you specify the mapping between the fields in the data
file or files, and the columns in the MySQL table. You can set field- and line-handling options as for the
LOAD DATA statement to handle data files in arbitrary formats. For multiple files, all the files must be
in the same format. The default dialect for the utility maps to a file created using a SELECT. . . | NTO
QUTFI LE statement with the default settings for that statement. The utility also has preset dialects that
map to the standard data formats for CSV files (created on DOS or UNIX systems), TSV files, and
JSON, and you can customize these using the field- and line-handling options as necessary. Note that
JSON data must be in document-per-line format.

A number of functions have been added to the parallel table import utility since it was introduced, so
use the most recent version of MySQL Shell to get the utility's full functionality.

Input preprocessing From MySQL Shell 8.0.22, the parallel table import utility can
capture columns from the data file or files for input preprocessing, in
the same way as with a LOAD DATA statement. The selected data
can be discarded, or you can transform the data and assign it to a
column in the target table.

Oracle Cloud Infrastructure Up to MySQL Shell 8.0.20, the data must be imported from a

Object Storage import location that is accessible to the client host as a local disk. From
MySQL Shell 8.0.21, the data can also be imported from an Oracle
Cloud Infrastructure Object Storage bucket, specified by the
osBucket Nane option.

Multiple data file import Up to MySQL Shell 8.0.22, the parallel table import utility can import
a single input data file to a single relational table. From MySQL Shell
8.0.23, the utility is also capable of importing a specified list of files,

229

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Parallel Table Import Utility

and it supports wildcard pattern matching to include all relevant files
from a location. Multiple files uploaded by a single run of the utility
are placed into a single relational table, so for example, data that
has been exported from multiple hosts could be merged into a single
table to be used for analytics.

Compressed file handling Up to MySQL Shell 8.0.21, the parallel table import utility only
accepts an uncompressed input data file. The utility analyzes the
data file, distributes it into chunks, and uploads the chunks to the
relational table in the target MySQL server, dividing the chunks up
between the parallel connections. From MySQL Shell 8.0.22, the
utility can also accept data files compressed in the gzi p (. gz) and
zstd (. zst) formats, detecting the format automatically based
on the file extension. The utility uploads a compressed file from
storage in the compressed format, saving bandwidth for that part of
the transfer. Compressed files cannot be distributed into chunks, so
instead the utility uses its parallel connections to decompress and
upload multiple files simultaneously to the target server. If there is
only one input data file, the upload of a compressed file can only
use a single connection.

MySQL Shell's parallel table import utility supports the output from MySQL Shell's table export utility,
which can compress the data file it produces as output, and can export it to a local folder or an Object
Storage bucket. The default dialect for the parallel table import utility is the default for the output file
produced by the table export utility. The parallel table import utility can also be used to upload files from
other sources.

MySQL Shell's dump loading utility ut i | . | oadDunp() is designed to import the combination

of chunked output files and metadata produced by MySQL Shell's instance dump utility

util.dunpl nstance(), schema dump utility uti | . dunpSchenas(), and table dump utility
util.dunpTabl es() . The parallel table import utility can be used in combination with the dump
loading utility if you want to modify any of the data in the chunked output files before uploading it to
the target server. To do this, first use the dump loading utility to load only the DDL for the selected
table, to create the table on the target server. Then use the parallel table import utility to capture and
transform data from the output files for the table, and import it to the target table. Repeat that process
as necessary for any other tables where you want to modify the data. Finally, use the dump loading
utility to load the DDL and data for any remaining tables that you do not want to modify, excluding the
tables that you did modify. For a description of the procedure, see Modifying Dumped Data.

The parallel table import utility requires an existing classic MySQL protocol connection to the target
MySQL server. Each thread opens its own session to send chunks of the data to the MySQL server, or
in the case of compressed files, to send multiple files in parallel. You can adjust the number of threads,
number of bytes sent in each chunk, and maximum rate of data transfer per thread, to balance the load
on the network and the speed of data transfer. The utility cannot operate over X Protocol connections,
which do not support LOAD DATA statements.

The data file or files to be imported must be in one of the following locations:
» A location that is accessible to the client host as a local disk.

* A remote location that is accessible to the client host through HTTP or HTTPS, specified with a URL.
Pattern matching is not supported for files accessed in this way.

» An Oracle Cloud Infrastructure Object Storage bucket (from MySQL Shell 8.0.21).

The data is imported to a single relational table in the MySQL server to which the active MySQL
session is connected.

The parallel table import utility uses LOAD DATA LOCAL | NFI LE statements to upload data, so the
| ocal i nfil e system variable must be set to ON on the target server. You can do this by issuing the
following statement in SQL mode before running the parallel table import utility:

230

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile

Function

SET GLOBAL local _infile = 1;

To avoid a known potential security issue with LOAD DATA LOCAL, when the MySQL server replies to
the parallel table import utility's LOAD DATA requests with file transfer requests, the utility only sends
the predetermined data chunks, and ignores any specific requests attempted by the server. For more
information, see Security Considerations for LOAD DATA LOCAL.

Function

In the MySQL Shell API, the parallel table import utility is a function of the ut i | global object, and has
the following signature:

inmport Table ({file_name | file_list}, options)

file_name is a string specifying the name and path for a single file containing the data to be
imported. Alternatively, fil e | i st is an array of file paths specifying multiple data files. On Windows,
backslashes must be escaped in file paths, or you can use forward slashes instead.

 For files that are accessible to the client host on a local disk, you can prefix the directory path with
thefil e:// schema, or allow it to default to that. For files accessed in this way, file paths can
contain the wildcards * (multiple characters) and ? (single character) for pattern matching. Note that
if these wildcard characters are present in file paths, the utility treats them as wildcards and might
therefore attempt an incorrect strategy for file transfer.

 For files that are accessible to the client host through HTTP or HTTPS, provide a URL or a list of
URLs, prefixed with the htt p: // or ht t ps: // schema as appropriate, in the format ht t p[s]://
host . domai n[: port]/ pat h. For files accessed in this way, pattern matching is not available. The
HTTP server must support the Range request header, and must return the Content-Range response
header to the client.

 For files in an Oracle Cloud Infrastructure Object Storage bucket, specify a path to the file in the
bucket, and use the osBucket Nane option to specify the bucket name.

opt i ons is a dictionary of import options that can be omitted if it is empty. The options are listed after
the examples.

The function returns void, or an exception in case of an error. If the import is stopped partway by the
user with Ctrl+C or by an error, the utility stops sending data. When the server finishes processing the
data it received, messages are returned showing the chunk that was being imported by each thread at
the time, the percentage complete, and the number of records that were updated in the target table.

Examples

The following examples, the first in in MySQL Shell's JavaScript mode and the second in MySQL
Shell's Python mode, import the data in a single CSV file / t np/ pr oduct r ange. csv to the pr oduct s
table in the mydb database, skipping a header row in the file:

mysql -js> util.inportTable("/tnp/productrange.csv", {schema: "nydb", table: "products", dialect: "csv-u

nysql -py> util.inport_table("/tnp/productrange.csv', {"schema": "nydb", "table": "products", "dialect"

The following example in MySQL Shell's Python mode only specifies the dialect for the CSV file. mydb
is the active schema for the MySQL Shell session. The utility therefore imports the data in the file /
t mp/ pr oduct range. csv to the product r ange table in the nydb database:

nysql - py> \use nydb
nysql -py> util.inport_table("/tnp/productrange.csv', {"dialect": "csv-unix"})

The following example in MySQL Shell's Python mode imports the data from multiple files, including
a mix of individually named files, ranges of files specified using wildcard pattern matching, and
compressed files:

nmysql - py> util.inport_tabl e(
[

231

https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html

Options

"data_a. csv"

"data_b*",

"data_c*",

"data_d.tsv.zst",

"data_e.tsv.zst"

"data_f.tsv.gz"

"/ backup/replica3/2021_01_12/data_g.tsv"
"/ backup/replica3/2021_01_13/*.tsv"

s
{"schema": "nydb", "table": "productrange"}

)

The parallel table import utility can also be invoked from the command line using the nysqgl sh
command interface. With this interface, you invoke the utility as in the following examples:

nysql sh nysql ://root: @27.0.0.1: 3366 --ssl-nmde=Dl SABLED -- util inport-table /r/nytable.dunp --schema=nydl

When you import multiple data files, ranges of files specified using wildcard pattern matching are
expanded by MySQL Shell's glob pattern matching logic if they are quoted, as in the following example.
Otherwise they are expanded by the pattern matching logic for the user shell where you entered the
mysql sh command.

nysql sh nysql ://root: @27.0.0.1:3366 -- util inport-table data_a.csv "data_b*" data_d.tsv.zst --schema=nydl

When you use the nysqgl sh command's API reference argument to directly invoke the parallel table
import utility (the dash-dash-space sequence "- - "), before MySQL Shell 8.0.24, the col unms option
is not supported because array values are not accepted, so the input lines in your data file must contain
a matching field for every column in the target table. From MySQL Shell 8.0.24, the option is supported,
and you can specify columns using a dictionary argument . Also note that as shown in the above
example, line feed characters must be passed using ANSI-C quoting in shells that support this function
(such as bash, ksh, nksh, and zsh). For information on the nysql sh command-line integration, see
Section 5.8, “API Command Line Integration”.

Options

The following import options are available for the parallel table import utility to specify where and how
the data is imported:

schema: "db_nane" The name of the target database on the connected MySQL server.
If you omit this option, the utility attempts to identify and use the
schema name in use for the current MySQL Shell session, as
specified in a connection URI string, \ use command, or MySQL
Shell option. If the schema name is not specified and cannot be
identified from the session, an error is returned.

tabl e: "tabl e_nane" The name of the target relational table. If you omit this option, the
utility assumes the table name is the name of the data file without
the extension. The target table must exist in the target database.

columms: array of colum An array of strings containing column names from the import file

nanes or files, given in the order that they map to columns in the target
relational table. Use this option if the imported data does not contain
all the columns of the target table, or if the order of the fields in the
imported data differs from the order of the columns in the table. If
you omit this option, input lines are expected to contain a matching
field for each column in the target table.

From MySQL Shell 8.0.22, you can use this option to capture
columns from the import file or files for input preprocessing, in the
same way as with a LOAD DATA statement. When you use an
integer value in place of a column name in the array, that column
in the import file or files is captured as a user variable @ nt , for
example @. The selected data can be discarded, or you can use

232

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Options

decodeCol umms:
di ctionary

ski pRows: numnber

repl aceDupl i cat es:
[true|fal se]

di al ect: [default]|csv|
csv-uni x| tsv|j son]

the decodeCol unms option to transform the data and assign it to a
column in the target table.

In this example in MySQL Shell's JavaScript mode, the second

and fourth columns from the import file are assigned to the user
variables @ and @, and no decodeCol urms option is present to
assign them to any column in the target table, so they are discarded.

nysql-js> util.inportTable('file.txt', {
table: "t1',
colums: ['columl', 1, 'colum?2', 2, 'colum3']

1)

A dictionary of key-value pairs that assigns import file columns
captured as user variables by the col urms option to columns in the
target table, and specifies preprocessing transformations for them in
the same way as the SET clause of a LOAD DATA statement. This
option is available from MySQL Shell 8.0.22.

In this example in MySQL Shell's JavaScript mode, the first input
column from the data file is used as the first column in the target
table. The second input column, which has been assigned to the
variable @ by the col umms option, is subjected to a division
operation before being used as the value of the second column in
the target table.

nysql-js> util.inportTable('file.txt', {
colums: ['columl', 1],
decodeCol ums: {'colum?2': '@ / 100'}
B

In this example in MySQL Shell's JavaScript mode, the input
columns from the data file are both assigned to variables, then
transformed in various ways and used to populate the columns of
the target table:

nysql-js> util.inportTable('file.txt', {
table: '"t1',
colums: [1, 2],
decodeCol ums: {

taln @,
@,
‘sum: '@ + @'

‘nultiple': '@ * @
'pover': 'PON@, @)
}
B

Skip this number of rows of data at the beginning of the import file,
or in the case of multiple import files, at the beginning of every file
included in the file list. You can use this option to omit an initial
header line containing column names from the upload to the table.
The default is that no rows are skipped.

Whether input rows that have the same value for a primary key
or unique index as an existing row should be replaced (t r ue) or
skipped (f al se). The defaultis f al se.

Use a set of field- and line-handling options appropriate for

the specified file format. You can use the selected dialect as

a base for further customization, by also specifying one or
more of the | i nesTer m nat edBy, fi el dsTer ni nat edBy,
fiel dsEncl osedBy, fi el dsOpti onal | yEncl osed, and

fi el dsEscapedBy options to change the settings. The default

233

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Options

dialect maps to a file created using a SELECT. . . | NTO OUTFI LE
statement with the default settings for that statement. This is the
default for the output file produced by MySQL Shell's table export
utility. Other dialects are available to suit CSV files (created on
either DOS or UNIX systems), TSV files, and JSON data. The
settings applied for each dialect are as follows:

Table 11.2 Dialect settings for parallel table import utility

di al ect |l nesTer |fii red tosolyf riier at e i ces etBpltfii rh al S Belbragd entiyd

defaul t |[LF] [TAB] [empty] |fal se \

csv [CR][LF] |, " true \

CSvV- [LF] , " fal se \

uni x

tsv [CR][LF] |[TAB] " true \

j son [LF] [LF] [empty] |fal se [empty]

Note

@ 1. The carriage return and line feed values
for the dialects are operating system
independent.

2. Ifyou use the | i nesTer ni nat edBy,
fi el dsTer ni nat edBy,
fi el dsEncl osedBy,
fiel dsOptional | yEncl osed, and
fi el dsEscapedBy options, depending
on the escaping conventions of your
command interpreter, the backslash
character (\) might need to be doubled if
you use it in the option values.

3. Like the MySQL server with the LOAD
DATA statement, MySQL Shell does
not validate the field- and line-handling
options that you specify. Inaccurate
selections for these options can cause
data to be imported into the wrong fields,
partially, and/or incorrectly. Always verify
your settings before starting the import,
and verify the results afterwards.

| i nesTer n nat edBy: One or more characters (or an empty string) that terminates each

“characters" of the lines in the input data file or files. The default is as for the
specified dialect, or a linefeed character (\ n) if the dialect option is
omitted. This option is equivalent to the LI NES TERM NATED BY
option for the LOAD DATA statement. Note that the utility does not
provide an equivalent for the LI NES STARTI NG BY option for the
LOAD DATA statement, which is set to the empty string.

fiel dsTerni nat edBy: One or more characters (or an empty string) that terminates each

“characters" of the fields in the input data file or files. The default is as for the
specified dialect, or a tab character (\ t) if the dialect option is
omitted. This option is equivalent to the FI ELDS TERM NATED BY
option for the LOAD DATA statement.

234

https://dev.mysql.com/doc/refman/8.0/en/select-into.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Options

fi el dsEncl osedBy:
"character™

fiel dsOptional | yEncl osed:

[true | false]

fi el dsEscapedBy:
"character”

osBucket Nanme: "string"
osNanespace: "string"
oci ConfigFile: "string"
oci Profile: "string"
characterSet: "charset”
byt esPer Chunk: "size"

A single character (or an empty string) that encloses each of the
fields in the input data file or files. The default is as for the specified
dialect, or the empty string if the dialect option is omitted. This
option is equivalent to the FI ELDS ENCLOSED BY option for the
LOAD DATA statement.

Whether the character given for f i el dsEncl osedBy encloses
all of the fields in the input data file or files (f al se), or encloses
the fields only in some cases (t r ue). The default is as for the
specified dialect, or f al se if the dialect option is omitted. This
option makes the fi el dsEncl osedBy option equivalent to the

FI ELDS OPTI ONALLY ENCLOSED BY option for the LOAD DATA
statement.

The character that begins escape sequences in the input data file or
files. If this is not provided, escape sequence interpretation does not
occur. The default is as for the specified dialect, or a backslash (\) if
the dialect option is omitted. This option is equivalent to the FI ELDS
ESCAPED BY option for the LOAD DATA statement.

Added in MySQL Shell 8.0.21. The name of the Oracle Cloud
Infrastructure Object Storage bucket where the input data file is
located. By default, the [DEFAULT] profile in the Oracle Cloud
Infrastructure CLI configuration file located at ~/ . oci / confi g is
used to establish a connection to the bucket. You can substitute

an alternative profile to be used for the connection with the

oci Confi gFi | e and oci Profi| e options. For instructions to set
up a CLI configuration file, see SDK and CLI Configuration File.

Added in MySQL Shell 8.0.21. The Oracle Cloud Infrastructure
namespace where the Object Storage bucket named by
osBucket Nane is located. The namespace for an Object Storage
bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can

be obtained using the Oracle Cloud Infrastructure command line
interface.

Added in MySQL Shell 8.0.21. An Oracle Cloud Infrastructure CLI
configuration file that contains the profile to use for the connection,
instead of the one in the default location ~/ . oci / confi g.

Added in MySQL Shell 8.0.21. The profile name of the Oracle
Cloud Infrastructure profile to use for the connection, instead of
the [DEFAULT] profile in the Oracle Cloud Infrastructure CLI
configuration file used for the connection.

Added in MySQL Shell 8.0.21. This option specifies a character set
encoding with which the input data is interpreted during the import.
Setting the option to bi nar y means that no conversion is done
during the import. When you omit this option, the import uses the
character set specified by the char act er _set dat abase system
variable to interpret the input data.

For a list of multiple input data files, this option is not available. For
a single input data file, this option specifies the number of bytes
(plus any additional bytes required to reach the end of the row)

that threads send for each LOAD DATA call to the target server.
The utility distributes the data into chunks of this size for threads

to pick up and send to the target server. The chunk size can be
specified as a number of bytes, or using the suffixes k (kilobytes), M

235

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_database
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

(megabytes), G (gigabytes). For example, byt esPer Chunk="2k"
makes threads send chunks of approximately 2 kilobytes. The
minimum chunk size is 131072 bytes, and the default chunk size is
50M.

t hreads: nunber The maximum number of parallel threads to use to send the data
in the input file or files to the target server. If you do not specify a
number of threads, the default maximum is 8. For a list of multiple
input data files, the utility creates the specified or maximum number
of threads. For a single input data file, the utility calculates an
appropriate number of threads to create up to this maximum, using
the following formula:

m n{ max{1, threads}, chunks}}

where t hr eads is the maximum number of threads, and chunks

is the number of chunks that the data will be split into, which is
calculated by dividing the file size by the byt esPer Chunk size then
adding 1. The calculation ensures that if the maximum number of
threads exceeds the number of chunks that will actually be sent, the
utility does not create more threads than necessary.

Compressed files cannot be distributed into chunks, so instead the
utility uses its parallel connections to upload multiple files at a time.
If there is only one input data file, the upload of a compressed file
can only use a single connection.

maxRate: "rate" The maximum limit on data throughput in bytes per second
per thread. Use this option if you need to avoid saturating the
network or the 1/0 or CPU for the client host or target server. The
maximum rate can be specified as a number of bytes, or using the
suffixes k (kilobytes), M (megabytes), G (gigabytes). For example,
maxRat e="5M' limits each thread to 5MB of data per second,
which for eight threads gives a transfer rate of 40MB/second. The
default is 0, meaning that there is no limit.

showProgress: [true | Display (t r ue) or hide (f al se) progress information for the
fal se] import. The defaultis t r ue if stdout is a terminal (tty), and f al se
otherwise.

11.5 Instance Dump Utility, Schema Dump Utility, and Table Dump

Utility

MySQL Shell's instance dump utility ut i | . dunpl nst ance() and schema dump utility
util.dunpSchenmas(), introduced in MySQL Shell 8.0.21, support the export of all schemas or a
selected schema from an on-premise MySQL instance into an Oracle Cloud Infrastructure Object
Storage bucket or a set of local files. The table dump utility ut i | . dunpTabl es(), introduced in
MySQL Shell 8.0.22, supports the same operations for a selection of tables or views from a schema.
The exported items can then be imported into a MySQL Database Service DB System (a MySQL DB
System, for short) or a MySQL Server instance using the ut i | . | oadDunp() utility (see Section 11.6,
“Dump Loading Utility”). To get the best functionality, always use the most recent version available of
MySQL Shell's dump and dump loading utilities.

MySQL Shell's instance dump utility, schema dump utility, and table dump utility provide Oracle

Cloud Infrastructure Object Storage streaming, MySQL Database Service compatibility checks and
modifications, parallel dumping with multiple threads, and file compression, which are not provided by
nmysqgl dunp. Progress information is displayed during the dump. You can carry out a dry run with your
chosen set of dump options to show information about what actions would be performed, what items

236

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

would be dumped, and (for the instance dump utility and schema dump utility) what MySQL Database
Service compatibility issues would need to be fixed, when you run the utility for real with those options.

When choosing a destination for the dump files, note that for import into a MySQL DB System, the
MySQL Shell instance where you run the dump loading utility must be installed on an Oracle Cloud
Infrastructure Compute instance that has access to the MySQL DB System. If you dump the instance,
schema, or tables to an Object Storage bucket, you can access the Object Storage bucket from the
Compute instance. If you create the dump files on your local system, you need to transfer them to the
Oracle Cloud Infrastructure Compute instance using using the copy utility of your choice, depending on
the operating system you chose for your Compute instance.

The dumps created by MySQL Shell's instance dump utility, schema dump utility, and table dump
utility comprise DDL files specifying the schema structure, and tab-separated . t sv files containing the
data. You can also choose to produce the DDL files only or the data files only, if you want to set up the
exported schema as a separate exercise from populating it with the exported data. You can choose
whether or not to lock the instance for backup during the dump for data consistency. By default, the
dump utilities chunk table data into multiple data files and compress the files.

If you need to dump the majority of the schemas in a MySQL instance, as an alternative strategy,

you can use the instance dump utility rather than the schema dump utility, and specify the

excl udeSchemas option to list those schemas that are not to be dumped. Similarly, if you need

to dump the majority of the tables in a schema, you can use the schema dump utility with the

excl udeTabl es option rather than the table dump utility. The i nf or nat i on_schena, nysql ,

ndbi nf o, per f or nance_schenm, and sys schemas are always excluded from an instance

dump. The data for the nysql . appl y_st at us, nysql . general _| og, nysql . schensm, and

nysqgl . sl ow_| og tables is always excluded from a schema dump, although their DDL statements are
included. You can also choose to include or exclude users and their roles and grants, events, routines,
and triggers.

By default, the time zone is standardized to UTC in all the timestamp data in the dump output, which
facilitates moving data between servers with different time zones and handling data that has multiple
time zones. You can use the t zUt c: f al se option to keep the original timestamps if preferred.

The MySQL Shell dump loading utility uti | . | oadDunp() supports loading exported instances and
schemas from an Object Storage bucket using a pre-authenticated request (PAR). From MySQL
Shell 8.0.22 to 8.0.26, instances and schemas must be exported with the oci Par Mani f est enabled
to permit a load operation from Object Storage using a PAR. For details, see the description for the
oci Par Mani f est option. From MySQL Shell 8.0.27, with the introduction of support for PARs for all
objects in a bucket or objects in a bucket with a specific prefix, enabling the oci Par Mani f est option
when exporting instances and schemas is no longer strictly necessary. For information about loading
dumps using a PAR, see Section 11.6, “Dump Loading Utility”.

The following requirements apply to dumps using the instance dump utility, schema dump utility, and
table dump utility:

» The utilities only support General Availability (GA) releases of MySQL Server versions.
» MySQL 5.7 or later is required for the destination MySQL instance.

» For the source MySQL instance, dumping from MySQL 5.7 or later is fully supported in all MySQL
Shell releases where the utilities are available. From MySQL Shell 8.0.22 through MySQL Shell
8.0.25, it is possible to dump an instance, schema, or table from a MySQL 5.6 instance and load it
into a MySQL 5.7 or later destination, but dumping user accounts from MySQL 5.6 is not supported.
From MySQL Shell 8.0.26, dumping user accounts from MySQL 5.6 is supported.

» Object names in the instance or schema must be inthe | ati n1 or ut f 8 characterset.
» Data consistency is guaranteed only for tables that use the | nnoDB storage engine.

» The minimum required set of privileges that the user account used to run the utility must have on all
the schemas involved is as follows: BACKUP_ADM N, EVENT, RELOAD, SELECT, SHOW VI EW and
TRI GGER.

237

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_event
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_show-view
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_trigger

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

e Ifthe consi st ent optionis setto f al se, the BACKUP_ADM N and RELOAD privileges are not
required.

« If the consi st ent option is setto t r ue, which is the default, the LOCK TABLES privilege on all
dumped tables can substitute for the RELOAD privilege if the latter is not available.

 If the dump is from a MySQL 5.6 or MySQL 5.7 instance, the EXECUTE privilege is also required
if a view in the dump calls a function to get its data (up until MySQL 8.0.27, when it is no longer
needed).

 If the dump is from a MySQL 5.6 instance and includes user accounts (which is possible only with
the instance dump utility), the SUPER privilege is also required.

From MySQL Shell 8.0.24, the user account used to run the utility needs the REPLI CATI ON

CLI ENT privilege in order for the utility to be able to include the binary log file name and position

in the dump metadata. If the user ID does not have that privilege, the dump continues but does

not include the binary log information. The binary log information can be used after loading the
dumped data into the replica server to set up replication with a non-GTID source server, using the
ASSI GN_GTI DS_TO ANONYMOUS_TRANSACTI ONS option of the CHANGE REPLI CATI ON SOURCE
TOstatement (which is available from MySQL Server 8.0.23).

The upload method used to transfer files to an Oracle Cloud Infrastructure Object Storage bucket
has a file size limit of 1.2 TiB. In MySQL Shell 8.0.21, the multipart size setting means that the
numeric limit on multiple file parts applies first, creating a limit of approximately 640 GB. From
MySQL Shell 8.0.22, the multipart size setting has been changed to allow the full file size limit.

The utilities convert columns with data types that are not safe to be stored in text form (such as
BLOB) to Base64. The size of these columns therefore must not exceed approximately 0.74 times
the value of the mex_al | owed_packet system variable (in bytes) that is configured on the target
MySQL instance.

For the table dump utility, exported views and triggers must not use qualified nhames to reference
other views or tables.

The table dump utility does not dump routines, so any routines referenced by the dumped objects
(for example, by a view that uses a function) must already exist when the dump is loaded.

For import into a MySQL DB System, set the oci ntds option to t r ue, to ensure compatibility with
MySQL Database Service.

For compatibility with MySQL Database Service, all tables must use the | nnoDB storage engine. The
oci mds option checks for any exceptions found in the dump, and the conpat i bi | i t y option alters
the dump files to replace other storage engines with | nnoDB.

For the instance dump utility and schema dump utility, for compatibility with MySQL Database
Service, all tables in the instance or schema must be located in the MySQL data directory and
must use the default schema encryption. The oci nds option alters the dump files to apply these
requirements.

A number of other security related restrictions and requirements apply to items such as tablespaces
and privileges for compatibility with MySQL Database Service. The oci nds option checks for any
exceptions found during the dump, and the conpat i bi | i t y option automatically alters the dump
files to resolve some of the compatibility issues. You might need (or prefer) to make some changes
manually. For more details, see the description for the conpati bi | i ty option.

For MySQL Database Service High Availability, which uses Group Replication, primary keys are
required on every table. From MySQL Shell 8.0.24, the oci nds option checks and reports an error
for any tables in the dump that are missing primary keys. The conpat i bi | i t y option can be set to
ignore missing primary keys if you do not need them, or to notify MySQL Shell’'s dump loading utility
to add primary keys in invisible columns where they are not present. For details, see the description

238

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_backup-admin
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

for the conpat i bi | i ty option. If possible, instead of managing this in the utility, consider creating
primary keys in the tables on the source server before dumping them again.

The instance dump utility, schema dump utility, and table dump utility use the MySQL Shell global
session to obtain the connection details of the target MySQL server from which the export is carried
out. You must open the global session (which can have an X Protocol connection or a classic MySQL
protocol connection) before running one of the utilities. The utilities open their own sessions for each
thread, copying options such as connection compression and SSL options from the global session, and
do not make any further use of the global session.

In the MySQL Shell API, the instance dump utility, schema dump utility, and table dump utility are
functions of the ut i | global object, and have the following signatures:

util.dunpl nstance(outputUrl[, options])
util.dunpSchemas(schemas, outputUrl[, options])
util.dunpTabl es(schema, tables, outputUrl[, options])

For the schema dump utility, schemnas specifies a list of one or more schemas to be dumped from the
MySQL instance.

For the table dump utility, schena specifies the schema that contains the items to be dumped, and

t abl es is an array of strings specifying the tables or views to be dumped. From MySQL Shell 8.0.23,
the table dump includes the information required to set up the specified schema in the target MySQL
instance, although it can be loaded into an alternative target schema by using the dump loading utility's
schena option. In MySQL Shell 8.0.22, schema information is not included, so the dump files produced
by this utility must be loaded into an existing target schema.

If you are dumping to the local filesystem, out put Ur | is a string specifying the path to a local directory
where the dump files are to be placed. You can specify an absolute path or a path relative to the
current working directory. You can prefix a local directory path withthe fi | e: // schema. In this
example, the connected MySQL instance is dumped to a local directory, with some modifications made
in the dump files for compatibility with MySQL Database Service. The user first carries out a dry run

to inspect the schemas and view the compatibility issues, then runs the dump with the appropriate
compatibility options applied to remove the issues:

shell -j s> util.dunpl nstance("C:/Users/hanna/wor| ddump", {dryRun: true, ocinds: true})
Checking for conpatibility with MySQL Dat abase Service 8.0.21

Conpatibility issues with M/SQL Dat abase Service 8.0.21 were found. Please use the
"conpatibility' option to apply conpatibility adaptati ons to the dunped DDL.
Util.dunpl nstance: Conpatibility issues were found (RuntineError)
shell -j s> util.dunpl nstance("C:/Users/hanna/ wor| ddunmp", {
> ocinds: true, conpatibility: ["strip_definers", "strip_restricted_grants"]})

The target directory must be empty before the export takes place. If the directory does not yet exist

in its parent directory, the utility creates it. For an export to a local directory, the directories created
during the dump are created with the access permissions r wxr - x- - -, and the files are created with
the access permissions r wr - - - - - (on operating systems where these are supported). The owner of
the files and directories is the user account that is running MySQL Shell.

The table dump utility can be used to select individual tables from a schema, for example if you want
to transfer tables between schemas. In this example in MySQL Shell's JavaScript mode, the tables
enpl oyees and sal ari es from the hr schema are exported to the local directory enp, which the
utility creates in the current working directory:

shell -js> util.dunpTabl es("hr", ["enpl oyees", "salaries"], "enmp")

If you are dumping to an Oracle Cloud Infrastructure Object Storage bucket, out put Ur | is a path

that will be used to prefix the dump files in the bucket, to simulate a directory structure. Use the
osBucket Nane option to provide the name of the Object Storage bucket, and the osNanespace
option to identify the namespace for the bucket. In this example in MySQL Shell's Python mode, the
user dumps the wor | d schema from the connected MySQL instance to an Object Storage bucket, with
the same compatibility modifications as in the previous example:

239

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

shel | -py> util.dunpSchemas(["world"], "worlddump", {
> "osBucket Name": "hanna- bucket", "osNanmespace": "idx28wlckztq",
> "oci mds": "true", "conpatibility": ["strip_definers", "strip_restricted_grants"]})

In the Object Storage bucket, the dump files all appear with the prefix wor | ddunp, for example:

wor | ddunp/ @ done. j son

wor | ddunp/ @j son

wor | ddunp/ @ post . sql

wor | ddunp/ @ sql

wor | ddunp/ wor | d. j son

wor | ddunp/ wor | d. sql

wor | ddunp/ wor | d@ity.json

wor | ddunp/ wor |l d@i ty. sql

wor | ddunp/ wor | d@i t y@D. t sv. zst

wor | ddunp/ wor | d@i ty@D. t sv. zst . i dx

The namespace for an Object Storage bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface. A connection is established to the Object Storage bucket using
the default profile in the default Oracle Cloud Infrastructure CLI configuration file, or alternative details
that you specify using the oci Confi gFi | e and oci Prof i | e options. For instructions to set up a CLI
configuration file, see SDK and CLI Configuration File

Beginning with MySQL Shell 8.0.27, all three of these dump utilities are partition aware (see
Partitioning, in the MySQL Manual). When a table being dumped is partitioned, each patrtition is treated
as an independent table; if the table has subpartitions each subpartition is treated as an independent
table. This also means that, when chunking is enabled, each partition or subpartition of a partitioned or
subpartitioned table is chunked independently. The base names of dump files created for partitioned
tables use the format schema@ abl e@artiti on, where schema and t abl e are, respectively the
names of the parent schema and table, and parti ti on is the URL-encoded name of the partition or
subpartition.

util.loadbDunmp() from MySQL Shell 8.0.27 or later can load dumps of partitioned tables from
partition-aware versions of the dump utilities; uti | . | oadDunp() from versions of MySQL Shell
previous to 8.0.27 cannot load dumps from MySQL Shell 8.0.27 or later. This is due to the inclusion of
information beginning with MySQL Shell 8.0.27 in the dump's metadata about features used in creating
the dump; this addition is not backward compatible.

opt i ons is a dictionary of options that can be omitted if it is empty. The following options are available
for the instance dump utility, the schema dump utility, and the table dump utility, unless otherwise
indicated:

dryRun: [true | false] Displayinformation about what would be dumped with the specified
set of options, and about the results of MySQL Database Service
compatibility checks (if the oci nds option is specified), but do not
proceed with the dump. Setting this option enables you to list out all
of the compatibility issues before starting the dump. The default is
fal se.

osBucket Name: "string" The name of the Oracle Cloud Infrastructure Object Storage bucket
to which the dump is to be written. By default, the [DEFAULT]
profile in the Oracle Cloud Infrastructure CLI configuration file
located at ~/ . oci / confi g is used to establish a connection to the
bucket. You can substitute an alternative profile to be used for the
connection with the oci Conf i gFi | e and oci Profi | e options.
For instructions to set up a CLI configuration file, see SDK and CLI
Configuration File.

osNanespace: "string" The Oracle Cloud Infrastructure namespace where the Object
Storage bucket named by osBucket Nane is located. The
namespace for an Object Storage bucket is displayed in the Bucket

240

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

oci Conf

oci Pr of

t hr eads

maxRat e

showPr ogr ess:

fal se]

conpres

i gFi | e:

"string"

ile: "string"

coint

. "string"

[true |

sion: "string"

excl udeSchemas:

strings

excl udeTabl es:

strings

all: |

users:

array of

array of

true | false]

[true |

fal se]

Information tab of the bucket details page in the Oracle Cloud
Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface.

An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/ . oci / confi g.

The profile name of the Oracle Cloud Infrastructure profile to use
for the connection, instead of the [DEFAULT] profile in the Oracle
Cloud Infrastructure CLI configuration file used for the connection.

The number of parallel threads to use to dump chunks of data from
the MySQL instance. Each thread has its own connection to the
MySQL instance. The default is 4.

The maximum number of bytes per second per thread for data read
throughput during the dump. The unit suffixes k for kilobytes, Mfor
megabytes, and Gfor gigabytes can be used (for example, setting
100Mlimits throughput to 100 megabytes per second per thread).
Setting O (which is the default value), or setting the option to an
empty string, means no limit is set.

Display (t r ue) or hide (f al se) progress information for the dump.
The defaultis t r ue if st dout is a terminal (t t y), such as when
MySQL Shell is in interactive mode, and f al se otherwise. The
progress information includes the estimated total number of rows
to be dumped, the number of rows dumped so far, the percentage
complete, and the throughput in rows and bytes per second.

The compression type to use when writing data files for the dump.
The default is to use zstd compression (zst d). The alternatives are
to use gzip compression (gzi p) or no compression (none).

(Instance dump utility only) Exclude the named schemas from the
dump. Note that the i nf or mat i on_schens, nysql , ndbi nf o,
per f or mance_schensa, and sys schemas are always excluded
from an instance dump. If a named schema does not exist or is
excluded anyway, the utility ignores the item.

(Instance dump utility and schema dump utility only) Exclude
the named tables from the dump. Table names must be qualified
with a valid schema name, and quoted with the backtick character
if needed. Note that the data for the nysql . appl y_st at us,
nysql . general _| og, nysql . schemg, and nysql . sl ow_| og

t abl es is always excluded from a schema dump, although

their DDL statements are included. Tables named by the

excl udeTabl es option do not have DDL files or data files in the
dump. If a named table does not exist in the schema or the schema
is not included in the dump, the utility ignores the item.

(Table dump utility only) Setting this option to t r ue includes all
views and tables from the specified schema in the dump. When you
use this option, set the t abl es parameter to an empty array. The
defaultis f al se.

(Instance dump utility only) Include (t r ue) or exclude (f al se)
users and their roles and grants in the dump. The defaultis t r ue,
so users are included by default. The schema dump utility and table
dump utility do not include users, roles, and grants in a dump.

241

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

excl udeUsers: array of
strings

i ncl udeUsers: array of
strings

events: [true | false]

routines: [true
fal se]

triggers: [true |
fal se]

def aul t Char act er Set :
"string"

From MySQL Shell 8.0.22, you can use the excl udeUser s or

i ncl udeUser s option to specify individual user accounts to be
excluded or included in the dump files. These options can also be
used with MySQL Shell's dump loading utility ut i | . | oadDunp()
to exclude or include individual user accounts at the point of import,
depending on the requirements of the target MySQL instance.

Note
@ 1. Dumping user accounts from a MySQL
5.6 instance is not supported. If you are

dumping from this version, set user s:
fal se.

2. In MySQL Shell 8.0.21, attempting to
import users to a MySQL DB System
causes the import to fail if the r oot
user account or another restricted user
account name is present in the dump
files, so the import of users to a MySQL
DB System is not supported in that
release.

(Instance dump utility only) Exclude the named user accounts
from the dump files. This option is available from MySQL Shell
8.0.22, and you can use it to exclude user accounts that are not
accepted for import to a MySQL DB System, or that already exist
or are not wanted on the target MySQL instance. Specify each user
account string in the format "' user _nanme' @ host _nane' " for
an account that is defined with a user name and host name, or
"'user_nane'" for an account that is defined with a user name
only. If you do not supply a host name, all accounts with that user
name are excluded. If a named user account does not exist, the
utility ignores the item.

(Instance dump utility only) Include only the named user accounts
in the dump files. Specify each user account string as for the

excl udeUser s option. This option is available from MySQL Shell
8.0.22, and you can use it as an alternative to excl udeUser s if
only a few user accounts are required in the dump. You can also
specify both options, in which case a user account matched by

both ani ncl udeUser s string and an excl udeUser s string is
excluded.

(Instance dump utility and schema dump utility only) Include
(t rue) or exclude (f al se) events for each schema in the dump.
The defaultis t r ue.

(Instance dump utility and schema dump utility only) Include
(t rue) or exclude (f al se) functions and stored procedures for
each schema in the dump. The defaultis t r ue. Note that user-
defined functions are not included, even when r out i nes is set to
true.

Include (t r ue) or exclude (f al se) triggers for each table in the
dump. The defaultis t r ue.

The character set to be used during the session connections
that are opened by MySQL Shell to the server for the dump. The

242

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

tzUc: [true |

fal se]

consistent: [true

fal se]

ddlOnly: [true |

fal se]

dataOnly: [true |

fal se]

chunking: [true

fal se]

byt esPer Chunk:

"string"

default is ut f 8mb4. The session value of the system variables
character_set _client,character_set_connecti on,
and character_set _resul ts are set to this value for

each connection. The character set must be permitted by the
character_set client system variable and supported by the
MySQL instance.

Include a statement at the start of the dump to set the time zone

to UTC. All timestamp data in the dump output is converted to this
time zone. The defaultis t r ue, so timestamp data is converted

by default. Setting the time zone to UTC facilitates moving data
between servers with different time zones, or handling a set of data
that has multiple time zones. Set this option to f al se to keep the
original timestamps if preferred.

Enable (t r ue) or disable (f al se) consistent data dumps by locking
the instance for backup during the dump. The defaultist r ue.
When t r ue is set, the utility sets a global read lock using the FLUSH
TABLES W TH READ LOCK statement (if the user ID used to

run the utility has the RELQAD privilege), or a series of table locks
using LOCK TABLES statements (if the user ID does not have the
REL OAD privilege but does have LOCK TABLES). The transaction
for each thread is started using the statements SET SESSI ON
TRANSACTI ON | SOLATI ON LEVEL REPEATABLE READ and
START TRANSACTI ON W TH CONSI STENT SNAPSHOT. When

all threads have started their transactions, the instance is locked

for backup (as described in LOCK INSTANCE FOR BACKUP

and UNLOCK INSTANCE Statements) and the global read lock is
released.

Setting this option to t r ue includes only the DDL files for the
dumped items in the dump, and does not dump the data. The
defaultis f al se.

Setting this option to t r ue includes only the data files for the
dumped items in the dump, and does not include DDL files. The
defaultis f al se.

Enable (t r ue) or disable (f al se) chunking for table data, which
splits the data for each table into multiple files. The defaultis t r ue,
so chunking is enabled by default. Use byt esPer Chunk to specify
the chunk size. In order to chunk table data into separate files, a
primary key or unique index must be defined for the table, which the
utility uses to select an index column to order and chunk the data. If
a table does not contain either of these, a warning is displayed and
the table data is written to a single file. If you set the chunking option
to f al se, chunking does not take place and the utility creates one
data file for each table.

Sets the approximate number of bytes to be written to each data
file when chunking is enabled. The unit suffixes k for kilobytes, M
for megabytes, and Gfor gigabytes can be used. The default is

64 MB (64M from MySQL Shell 8.0.22 (32 MB in MySQL Shell
8.0.21), and the minimum is 128 KB (128k). Specifying this option
sets chunki ng to t r ue implicitly. The utility aims to chunk the
data for each table into files each containing this amount of data
before compression is applied. The chunk size is an average and is
calculated based on table statistics and explain plan estimates.

243

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_lock-tables
https://dev.mysql.com/doc/refman/8.0/en/lock-instance-for-backup.html
https://dev.mysql.com/doc/refman/8.0/en/lock-instance-for-backup.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

ocinds: [true | false]

conpatibility:
strings

array of

Setting this option to t r ue enables checks and modifications for
compatibility with MySQL Database Service. The defaultis f al se.
From MySQL Shell 8.0.23, this option is available for all the utilities,
and before that release, it is only available for the instance dump
utility and schema dump utility.

When this option is setto t r ue, DATA DI RECTORY, | NDEX

DI RECTORY, and ENCRYPTI ON options in CREATE TABLE
statements are commented out in the DDL files, to ensure that all
tables are located in the MySQL data directory and use the default
schema encryption. Checks are carried out for any storage engines
in CREATE TABLE statements other than | nnoDB, for grants of
unsuitable privileges to users or roles, and for other compatibility
issues. If any non-conforming SQL statement is found, an exception
is raised and the dump is halted. Use the dr yRun option to list out
all of the issues with the items in the dump before the dumping
process is started. Use the conpat i bi | i t y option to automatically
fix the issues in the dump output.

From MySQL Shell 8.0.22 to MySQL Shell 8.0.26, when this option
is setto t r ue and an Object Storage bucket name is supplied using
the osBucket Nane option, the oci Par Mani f est option also
defaults to t r ue, meaning that a manifest file is generated contains
pre-authenticated requests (PARSs) for all of the files in the dump,
and the dump files can only be accessed using these PARs. From
MySQL Shell 8.0.27, with the introduction of support for PARs for
all objects in a bucket or objects in a bucket with a specific prefix,
the oci Par Mani f est option is set to f al se by default and is only
enabled if setto t r ue explicitly.

Apply the specified requirements for compatibility with MySQL

Database Service for all tables in the dump output, altering the
dump files as necessary. From MySQL Shell 8.0.23, this option
is available for all the utilities, and before that release, it is only
available for the instance dump utility and schema dump utility.

The following modifications can be specified as an array of strings:

force_i nnodb Change CREATE TABLE
statements to use the | nnoDB
storage engine for any tables that
do not already use it.

skip_invalid_accounts Remove user accounts created
with external authentication
plugins that are not supported in
MySQL Database Service. From
MySQL Shell 8.0.26, this option
also removes user accounts
that do not have passwords set,
except where an account with no
password is identified as a role,
in which case it is dumped using
the CREATE ROLE statement.

strip_definers Remove the DEFI NER clause
from views, routines, events,
and triggers, so these objects
are created with the default

244

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/create-role.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

strip restricted grants

strip_tabl espaces

i gnore_m ssi ng_pks

definer (the user invoking the
schema), and change the SQL
SECURI TY clause for views and
routines to specify | NVOKER
instead of DEFI NER. MySQL
Database Service requires
special privileges to create
these objects with a definer
other than the user loading the
schema. If your security model
requires that views and routines
have more privileges than the
account querying or calling them,
you must manually modify the
schema before loading it.

Remove specific privileges

that are restricted by MySQL
Database Service from GRANT
statements, so users and

their roles cannot be given
these privileges (which would
cause user creation to fail).
From MySQL Shell 8.0.22,

this option also removes
REVOKE statements for system
schemas (nmysql and sys) if the
administrative user account on
an Oracle Cloud Infrastructure
Compute instance does not itself
have the relevant privileges, so
cannot remove them.

Remove the TABLESPACE clause
from GRANT statements, so all
tables are created in their default
tablespaces. MySQL Database
Service has some restrictions on
tablespaces.

Make the instance, schema,

or table dump utility ignore any
missing primary keys when the
dump is carried out, so that

the oci nds option can still be
used without the dump stopping
due to this check. Dumps
created with this modification
cannot be loaded into a

MySQL Database Service High
Availability instance, because
primary keys are required for
MySQL Database Service High
Availability, which uses Group
Replication. To add the missing
primary keys instead, use the
create_invisible_pks
modification, or consider creating

245

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/revoke.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

create_invisible pks

primary keys in the tables on the
source server.

Add a flag in the dump metadata
to notify MySQL Shell’'s dump
loading utility to add primary keys
in invisible columns, for each
table that does not contain a
primary key. This modification
enables a dump where some
tables lack primary keys to be
loaded into a MySQL Database
Service High Availability
instance. Primary keys are
required for MySQL Database
Service High Availability, which
uses Group Replication.

The dump data is unchanged by
this modification, as the tables do
not contain the invisible columns
until they have been processed
by the dump loading utility. The
invisible columns (which are
named "my_row i d") have no
impact on applications that use
the uploaded tables.

Adding primary keys in this way
does not yet enable inbound
replication of the modified tables
to a High Availability instance,

as that feature currently requires
the primary keys to exist in both
the source server and the replica
server. If possible, instead of
using this modification, consider
creating primary keys in the
tables on the source server,
before dumping them again.
From MySQL 8.0.23, you can do
this with no impact to applications
by using invisible columns to hold
the primary keys. This is a best
practice for performance and
usability, and helps the dumped
database to work seamlessly with
MySQL Database Service.

Note
@ MySQL
Shell's
dump
loading
utility
can only
be used

246

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

to load
dumps
created
with the
create_invisible_
modification
onto a
target
MySQL
instance
at MySQL
Server
8.0.24

or later,
duetoa
limitation
on hidden
columns
in MySQL
8.0.23.
The dump
loading
utility in
versions
of MySQL
Shell
before
MySQL
Shell
8.0.24
silently
ignores
the dump
metadata
flag and
does not
add the
primary
keys, so
ensure
that you
use the
latest
version of
the utility.

oci ParMani fest: [true | Setting this optiontotrue generates a PAR for read access (an

fal se] Object Read PAR) for each item in the dump, and a manifest file
listing all the PAR URLs. The PARs expire after a week by default,
which you can change using the oci Par Expi r eTi e option.

This option is available from MySQL Shell 8.0.22 for the instance
dump utility and schema dump utility, and can only be used when
exporting to an Object Storage bucket (so with the osBucket Nane

247

Instance Dump Utility, Schema Dump Utility, and Table Dump Utility

oci Par Expi r eTi ne:
"string"

option set). From MySQL Shell 8.0.23, this option is available for all
the dump utilities.

From MySQL Shell 8.0.22 to MySQL Shell 8.0.26, when the oci nds
option is setto t r ue and an Object Storage bucket name is
supplied using the osBucket Nane option, oci Par Mani f est is
setto t r ue by default, otherwise it is set to f al se by default. From
MySQL Shell 8.0.27, with the introduction of support for PARs for

all objects in a bucket or objects in a bucket with a specific prefix,
oci Par Mani f est is setto f al se by default and is only enabled if
settotrue explicitly.

The user named in the Oracle Cloud Infrastructure profile that is
used for the connection to the Object Storage bucket (the DEFAULT
user or another user as named by the oci Pr of i | e option) is

the creator for the PARs. This user must have PAR_MANAGE
permissions and appropriate permissions for interacting with the
objects in the bucket, as described in Using Pre-Authenticated
Requests. If there is an issue with creating the PAR for any object,
the associated file is deleted and the dump is stopped.

To enable loading of dump files created with the oci Par Mani f est
option enabled, create a read-only PAR for the manifest file

(@ mani f est . j son) following the instructions in Using Pre-
Authenticated Requests. You can do this while the dump is still in
progress if you want to start loading the dump before it completes.
You can create this PAR using any user account that has the
required permissions. The PAR URL must then be used by the
dump loading utility to access the dump files through the manifest
file. The URL is only displayed at the time of creation, so copy it to
durable storage.

Important

A Before using this access method, assess the
business requirement for and the security
ramifications of pre-authenticated access
to a bucket or objects. A PAR gives anyone
who has the PAR access to the targets
identified in the request. Carefully manage
the distribution of PARs.

The expiry time for the PARs that are generated when the
oci Par Mani f est option is set to true. The default is the current
time plus one week, in UTC format.

This option is available from MySQL Shell 8.0.22 for the instance
dump utility and schema dump utility. From MySQL Shell 8.0.23, this
option is available for all the dump utilities.

The expiry time must be formatted as an RFC 3339 timestamp,
as required by Oracle Cloud Infrastructure when creating a

PAR. The format is YYYY- MMt DDTHH Mt SS immediately
followed by either the letter Z (for UTC time), or the UTC offset
for the local time expressed as [+| -] hh: nm for example

2020- 10-01T00: 09: 51. 000+02: 00. MySQL Shell does not
validate the expiry time, but any formatting error causes the PAR
creation to fail for the first file in the dump, which stops the dump.

248

https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm

Dump Loading Utility

11.6 Dump Loading Utility

MySQL Shell's dump loading utility uti | . | oadDunp() , introduced in MySQL Shell 8.0.21, supports
the import into a MySQL Database Service DB System (a MySQL DB System, for short) or a MySQL
Server instance of schemas or tables dumped using MySQL Shell's Section 11.5, “Instance Dump
Utility, Schema Dump Utility, and Table Dump Utility”. The dump loading utility provides data streaming
from remote storage, parallel loading of tables or table chunks, progress state tracking, resume and
reset capability, and the option of concurrent loading while the dump is still taking place. To get the
best functionality, always use the most recent version available of MySQL Shell's dump and dump
loading utilities.

For import into a MySQL DB System, MySQL Shell must be installed on an Oracle Cloud Infrastructure
Compute instance that has access to the MySQL DB System. If the dump files are in an Oracle Cloud
Infrastructure Object Storage bucket, you can access the Object Storage bucket from the Compute
instance. If the dump files are on your local system, you need to transfer them to the Oracle Cloud
Infrastructure Compute instance using the copy utility of your choice, depending on the operating
system you chose for your Compute instance. Ensure the dump was created with the oci nds option
setto t r ue in MySQL Shell's instance dump utility or schema dump utility, for compatibility with
MySQL Database Service. MySQL Shell's table dump utility does not use this option.

Note
@ 1. MySQL 5.7 or later is required for the destination MySQL instance.

2. The dump loading utility uses the LOAD DATA LOCAL | NFI LE statement,
so the global setting of the | ocal _i nfi | e system variable on the target
MySQL instance must be ON for the duration of the import. By default, this
system variable is set to ONin a standard MySQL DB System configuration.

3. The LOAD DATA LOCAL | NFI LE statement uses nonrestrictive data
interpretation, which turns errors into warnings and continues with the load
operation. This process can include assigning default values and implicit
default values to fields, and converting invalid values to the closest valid
value for the column data type. For details of the statement's behavior, see
LOAD DATA.

4. On the target MySQL instance, the dump loading utility checks whether
thesql _require primary_ key system variable is set to ON, and if it is,
returns an error if there is a table in the dump files with no primary key. By
default, this system variable is set to OFF in a standard MySQL DB System
configuration.

5. The dump loading utility does not automatically apply the gt i d_execut ed
GTID set from the source MySQL instance on the target MySQL instance.
The GTID set is included in the dump metadata from MySQL Shell's
instance dump utility, schema dump utility, or table dump utility, as the
gti dExecut ed field in the @ j son dump file. To apply these GTIDs on the
target MySQL instance for use with replication, use the updat eG i dSet
option or import them manually, depending on the release of the target
MySQL instance and the MySQL Shell release. From MySQL Shell 8.0.23,
this is supported on MySQL DB System instances. See the description of
the updat eG i dSet option for details.

For output produced by the instance dump utility or schema dump utility, MySQL Shell's dump loading
utility uses the DDL files and tab-separated . t sv data files to set up the server instance or schema in
the target MySQL instance, then loads the data. Dumps containing only the DDL files or only the data
files can be used to perform these tasks separately. The dump loading utility also lets you separately
apply the DDL files and data files from a regular dump that contains both sorts of files.

249

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_local_infile
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_require_primary_key
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

Dump Loading Utility

For output produced by MySQL Shell's table dump utility, from MySQL Shell 8.0.23, the dump contains
the information required to set up the schema that originally contained the table. By default, from that
release, the schema is recreated in the target MySQL instance if it does not already exist. Alternatively,
you can specify the schena option in the dump loading utility to load the table into an alternative
schema in the target MySQL instance, which must exist there. In MySQL Shell 8.0.22, the table dump
utility's files do not contain the schema information, so the target schema must exist in the target
MySQL instance. In that release, by default, the current schema of the global MySQL Shell session is
used as the target schema, or the schena option can be used to name the schema.

You can customize the import with further options in the dump loading utility:
* You can select individual tables or schemas to import or to exclude from the import.
» Users and their roles and grants are excluded by default, but you can choose to import them.

» You can specify a different character set for the data in the target MySQL instance to that used in the
dump files.

* You can update the ANALYZE TABLE histograms, even after the data has already been loaded.

* You can choose to skip binary logging on the target MySQL instance during the course of the import
using a SET sql _| og_bi n=0 statement.

You can carry out a dry run with your chosen set of dump loading options to show what actions would
be performed when you run the utility for real with those options.

The wai t DunpTi neout option lets you apply a dump that is still in the process of being created.
Tables are loaded as they become available, and the utility waits for the specified number of seconds
after new data stops arriving in the dump location. When the timeout elapses, the utility assumes the
dump is complete and stops importing.

Progress state for an import is stored in a persistent progress state file, which records steps
successfully completed and steps that were interrupted or failed. By default, the progress state file

is named | oad- progress. server _uui d. j son and created in the dump directory, but you can
choose a different name and location. The dump loading utility references the progress state file when
you resume or retry the import for a dump, and skips completed steps. De-duplication is automatically
managed for tables that were partially loaded. If you interrupt a dump in progress by using Ctrl + C, on
the first use of that key combination, no new tasks are started by the utility but existing tasks continue.
Pressing Ctrl + C again stops existing tasks, resulting in error messages. In either case, the utility can
still resume the import from where it stopped.

You can choose to reset the progress state and start the import for a dump again from the beginning,
but in this case the utility does not skip objects that were already created and does not manage de-
duplication. If you do this, to ensure a correct import, you must manually remove from the target
MySQL instance all previously loaded objects from that dump, including schemas, tables, users,
views, triggers, routines, and events. Otherwise, the import stops with an error if an object in the
dump files already exists in the target MySQL instance. With appropriate caution, you may use the

i gnor eExi st i ngOhj ect s option to make the utility report duplicate objects but skip them and
continue with the import. Note that the utility does not check whether the contents of the object in the
target MySQL instance and in the dump files are different, so it is possible for the resulting import to
contain incorrect or invalid data.

Important

A Do not change the data in the dump files between a dump stopping and a dump
resuming. Resuming a dump after changing the data has undefined behavior
and can lead to data inconsistency and data loss. If you need to change the
data after partially loading a dump, manually drop all objects that were created
during the partial import (as listed in the progress state file), then run the dump
loading utility with the r eset Pr ogr ess option to start again from the beginning.

250

Dump Loading Utility

If you need to modify any data in the dump’s data files before importing it to the target MySQL instance,
you can do this by combining MySQL Shell’s parallel table import utility ut i | . i nport Tabl e()

with the dump loading utility. To do this, first use the dump loading utility to load only the DDL for the
selected table, to create the table on the target server. Then use the parallel table import utility to
capture and transform data from the output files for the table, and import it to the target table. Repeat
that process as necessary for any other tables where you want to modify the data. Finally, use the
dump loading utility to load the DDL and data for any remaining tables that you do not want to modify,
excluding the tables that you did modify. For a description of the procedure, see Modifying Dumped
Data.

MySQL Shell supports loading dump files from an Object Storage bucket using a pre-authenticated
request (PAR). PARs provide a way to let users access a bucket or an object without having their own
credentials.

Important

security ramifications of pre-authenticated access to a bucket or objects in a
bucket. A PAR gives anyone who has the PAR access to the targets identified

A Before using this access method, assess the business requirement for and the
in the request. Carefully manage the distribution of PARs.

* From MySQL Shell 8.0.27, MySQL Shell supports using a read access PAR (an Object Read PAR)
for all objects in a bucket or objects in a bucket with a specific prefix. For information about creating
bucket PARs and prefix PARs, see Using Pre-Authenticated Requests. When using a bucket PAR
or prefix PAR, the dump loading utility requires a local progress state file. The content of the file is in
JSON format, so a text file with a . j son extension is appropriate (for example, pr ogr ess. j son).
The following example shows the syntax for loading dump files using a PAR created for all objects in
a bucket:

shel |l -js> util.| oadDunp("Bucket PARURL", progressFile: "progress.json"})

The same syntax is used to load objects in a bucket with a specific prefix, but in this case, the PAR
URL includes the prefix:

shel | -js> util.|oadDunmp("Prefi xPARURL", progressFile: "progress.json"})

e From MySQL Shell 8.0.22, MySQL Shell supports using a read access PAR (an Object Read PAR)
created for a MySQL Shell dump manifest file (@ mani f est . j son) to load data from an Object
Storage bucket. For information about creating a PAR for a specific object such as a manifest file,
see Using Pre-Authenticated Requests. When the oci Par Mani f est option is enabled, the MySQL
Shell dump loading utility creates a manifest file when exporting data to an Object Storage bucket.
The manifest file contains a PAR for each item in the dump. Prior to MySQL 8.0.27, if the oci nds
option is enabled and a bucket name is provided by the osBucket Nane option, oci Par Mani f est
is enabled automatically. From MySQL Shell 8.0.27, with the introduction of support for PARs for all
objects in a bucket or objects in a bucket with a specific prefix, the oci Par Mani f est option is set to
f al se by default and is only enabled if set to t r ue explicitly.

When using a PAR created for a manifest file, a progress state file is required. The content of

the file is in JSON format, so a text file with a . j son extension is appropriate (for example,
progress. j son). The progress state file can be created in the same prefixed location as the dump
files in the Object Storage bucket, or it can be created locally. If the progress state file is created in
the Object Storage bucket, you must create a read-write access PAR (an Object Read Write PAR)
for the progress state file. For information about creating a PAR for a specific object, see Using Pre-
Authenticated Requests. You can use any user account with the required permissions to create a
PAR for the progress state file. A local progress state file does not require a PAR. Consider using

a local progress state file if you do not have the permissions required to create a PAR. Note that

a local progress file does not permit resuming progress from a different location in the event of a
failure.

251

https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm
https://docs.oracle.com/en-us/iaas/Content/Object/Tasks/usingpreauthenticatedrequests.htm

Dump Loading Utility

Note

@ Creating a dump with the oci Par Mani f est option enabled generates
a manifest file containing a PAR for each item in the dump. Generating
PARs for each item in a dump is time consuming for large datasets, and
an additional PAR must be created for the manifest file and possibly for a
progress state file. Also, when PARs expire, the dump must be recreated
to regenerate PARs for the items in the dump. For these reasons, using
a bucket or prefix PAR (supported from MySQL Shell 8.0.27) is the
recommended method for loading MySQL Shell dump files from an Object
Storage bucket. When using a bucket or prefix PAR, there is only a single
PAR to create and manage, and PARs are not required for each item in the
dump.

The following example shows the syntax for loading dump files using PARs created for the manifest
file and a progress state file. If using a local progress state file, the pr ogr essFi | e option specifies
the path to the local progress state file instead of a PAR URL.

shell -js> util.|oadDunp(" PARURLof Mani fest", {osBucketNane: "nds-bucket",
osNanmespace: "Nanespacel D', progressFile: "RWARU | Of JsonProgressFile"})

While the dump is still in progress, the dump loading utility monitors and waits for new additions to
the manifest file, rather than to the Object Storage bucket.

The tables in a dump are loaded in parallel by the number of threads you specify using the t hr eads
option, which defaults to 4. If table data was chunked when the dump was created, multiple threads
can be used for a table, otherwise each thread loads one table at a time. The dump loading utility
schedules data imports across threads to maximize parallelism. From MySQL Shell 8.0.27, a pool of
background threads is used to fetch the contents of files. If the dump files were compressed by MySQL
Shell's dump utilities, the dump loading utility handles decompression for them.

By default, fulltext indexes for a table are created only after the table is completely loaded, which
speeds up the import. You can choose to defer all index creation (except the primary index) until each
table is completely loaded. You can also opt to create all indexes during the table import. You can also
choose to disable index creation during the import, and create the indexes afterwards, for example if
you want to make changes to the table structure after loading.

For an additional improvement to data loading performance, you can disable the | nnoDB redo log on
the target MySQL instance during the import. Note that this should only be done on a new MySQL
Server instance (not a production system), and this feature is not available on MySQL DB System. For
more information, see Disabling Redo Logging.

The dump loading utility uses the MySQL Shell global session to obtain the connection details of the
target MySQL instance to which the dump is to be imported. You must open the global session (which
can have an X Protocol connection or a classic MySQL protocol connection) before running the utility.
The utility opens its own sessions for each thread, copying options such as connection compression
and SSL options from the global session, and does not make any further use of the global session.

In the MySQL Shell API, the dump loading utility is a function of the ut i | global object, and has the
following signature:

util .l oadDunp(url[, options])

If you are importing a dump that is located in the Oracle Cloud Infrastructure Compute instance's
filesystem where you are running the utility, ur | is a string specifying the path to a local directory
containing the dump files. You can prefix a local directory path withthe fi | e: // schema. In this
example in MySQL Shell's JavaScript mode, a dry run is carried out to check that there will be no
issues when the dump files are loaded from a local directory into the connected MySQL instance:

shell -js> util.|oadDunp("/mt/data/worl ddunp", {dryRun: true})

252

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-redo-log.html#innodb-disable-redo-logging

Dump Loading Utility

If you are importing a dump from an Oracle Cloud Infrastructure Object Storage bucket, ur | is

the path prefix that the dump files have in the bucket, which was assigned using the out put Ur |
parameter when the dump was created. Use the osBucket Nane option to provide the name of the
Object Storage bucket, and the osNanespace option to identify the namespace for the bucket. In this
example in MySQL Shell's JavaScript mode, the dump prefixed wor | ddunp is loaded from an Object
Storage bucket into the connected MySQL DB System using 8 threads:

shel |l -j s> util.| oadDunp("wor ! ddunmp", {
threads: 8, osBucket Nane: "hanna-bucket", osNanespace: "idx28wlckztq"})

The namespace for an Object Storage bucket is displayed in the Bucket Information tab of the bucket
details page in the Oracle Cloud Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface. A connection is established to the Object Storage bucket using
the default profile in the default Oracle Cloud Infrastructure CLI configuration file, or alternative details
that you specify using the oci Confi gFi | e and oci Prof i | e options. For instructions to set up a CLI
configuration file, see SDK and CLI Configuration File

util .l oadDunp() from releases of MySQL Shell previous to 8.0.27 cannot load dumps made by
versions of the MySQL Shell dump utilities from later releases.

opt i ons is a dictionary of options that can be omitted if it is empty. The following options are available:

dryRun: [true | false] Displayinformation about what actions would be performed given
the specified options and dump files, including any errors that would
be returned based on the dump contents, but do not proceed with
the import. The defaultis f al se.

osBucket Nanme: "string" The name of the Oracle Cloud Infrastructure Object Storage bucket
where the dump files are located. By default, the [DEFAULT]
profile in the Oracle Cloud Infrastructure CLI configuration file
located at ~/ . oci / confi g is used to establish a connection to the
bucket. You can substitute an alternative profile to be used for the
connection with the oci Conf i gFi | e and oci Profi | e options.
For instructions to set up a CLI configuration file, see SDK and CLI
Configuration File.

osNanespace: "string" The Oracle Cloud Infrastructure namespace where the Object
Storage bucket named by osBucket Nane is located. The
namespace for an Object Storage bucket is displayed in the Bucket
Information tab of the bucket details page in the Oracle Cloud
Infrastructure console, or can be obtained using the Oracle Cloud
Infrastructure command line interface.

oci ConfigFile: "string" An Oracle Cloud Infrastructure CLI configuration file that contains
the profile to use for the connection, instead of the one in the default
location ~/ . oci / confi g.

oci Profile: "string" The profile name of the Oracle Cloud Infrastructure profile to use
for the connection, instead of the [DEFAULT] profile in the Oracle
Cloud Infrastructure CLI configuration file used for the connection.

t hreads: nunber The number of parallel threads to use to upload chunks of data to
the target MySQL instance. Each thread has its own connection to
the MySQL instance. The default is 4. if the dump was created with
chunking enabled (which is the default), the utility can use multiple
threads to load data for a table; otherwise a thread is only used for

one table.
backgroundThr eads: The number of threads in the pool of background threads used to
nunber fetch the contents of files. This option, and the thread pool, are

available from MySQL Shell 8.0.27. The default is the value of the
t hr eads option for a dump loaded from the local server, or four

253

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm

Dump Loading Utility

progressFile: "string"

showProgress: [true |

fal se]

reset Progress: |
fal se]

wai t DunpTi meout :

true |

nunber

times the value of the t hr eads option for a dump loaded from a
non-local server.

Specifies the path to a local progress state file for tracking load
progress. Other values are permitted depending on the type of load
operation:

When loading a dump from local storage:

e The progressFi | e option may be omitted. In this case,
a progress state file named | oad- pr ogr ess- server -
uui d. j son is automatically created in the dump directory.

e The progressFi | e option can be set to an empty string to
disable progress state tracking, which means that the dump
loading utility cannot resume a partially completed import.

When loading a dump from OCI Object Storage using a pre-
authenticated request (PAR), the pr ogr essFi | e option is
mandatory.

« If the load operation is performed using a bucket or prefix PAR,
set the pr ogr essFi | e option to the path of a local progress
state file.

« If the load operation is performed using a manifest file PAR, set
the pr ogr essFi | e option to the path of a local progress state
file or specify a write PAR for a progress state file residing in the
same location as the manifest file.

Display (t r ue) or hide (f al se) progress information for the import.
The defaultis t r ue if st dout is a terminal (t t y), such as when
MySQL Shell is in interactive mode, and f al se otherwise. The
progress information includes the number of active threads and their
actions, the amount of data loaded so far, the percentage complete
and the rate of throughput. When the progress information is not
displayed, progress state is still recorded in the dump loading utility's
progress state file.

Setting this option to t r ue resets the progress state and starts the
import again from the beginning. The default is f al se. Note that
with this option, the dump loading utility does not skip objects that
were already created and does not manage de-duplication. If you
want to use this option, to ensure a correct import, you must first
manually remove from the target MySQL instance all previously
loaded objects, including schemas, tables, users, views, triggers,
routines, and events from that dump. Otherwise, the import stops
with an error if an object in the dump files already exists in the
target MySQL instance. With appropriate caution, you may use
the i gnor eExi sti ngQObj ect s option to make the utility report
duplicate objects but skip them and continue with the import.

Setting this option to a value greater than 0 activates concurrent
loading of the dump while it is still being produced. The value is

a timeout (in seconds) for which the utility waits for further data
after all uploaded data chunks in the dump location have been
processed. This allows the utility to import the dump while it is still
in the process of being created. Data is processed as it becomes
available, and the import stops when the timeout is exceeded with
no further data appearing in the dump location. The default setting,

254

Dump Loading Utility

i gnor eExi sti ngQhj ect s:
[true | false]

i gnor eVer si on:
fal se]

showet adat a:
fal se]

[

[

true |

true |

0, means that the utility marks the dump as complete when all
uploaded data chunks have been processed and does not wait for
more data. With the default setting, concurrent loading is disabled.

Import the dump even if it contains objects that already exist in

the target schema in the MySQL instance. The default is f al se,
meaning that an error is issued and the import stops when a
duplicate object is found, unless the import is being resumed from
a previous attempt using a progress state file, in which case the
check is skipped. When this option is set to t r ue, duplicate objects
are reported but no error is generated and the import proceeds.
This option should be used with caution, because the utility does
not check whether the contents of the object in the target MySQL
instance and in the dump files are different, so it is possible for the
resulting import to contain incorrect or invalid data. An alternative
strategy is to use the excl udeTabl es option to exclude tables that
you have already loaded where you have verified the object in the
dump files is identical with the imported object in the target MySQL
instance. The safest choice is to remove duplicate objects from the
target MySQL instance before restarting the dump.

Import the dump even if the major version number of the MySQL
instance from which the data was dumped is different to the major
version number of the MySQL instance to which the data will be
uploaded. The default is f al se, meaning that an error is issued and
the import does not proceed if the major version number is different.
When this option is setto t r ue, a warning is issued and the import
proceeds. Note that the import will only be successful if the schemas
in the dump files have no compatibility issues with the new major
version.

From MySQL Shell 8.0.23, this option also permits the import of a
dump created without the use of the oci nds option into a MySQL
Database Service instance.

Before attempting an import using the i gnor eVer si on

option, use MySQL Shell's upgrade checker utility

checkFor Server Upgr ade() to check the schemas on the source
MySQL instance. Fix any compatibility issues identified by the utility
before dumping the schemas and importing them to the target
MySQL instance.

Prints the gt i d_execut ed GTID set and the binary log file

name and position from the source instance, taken from the

dump metadata included with dumps produced by MySQL Shell's
instance dump utility, schema dump utility, or table dump utility. The
metadata is printed in YAML format. This option is available from
MySQL Shell 8.0.24.

The gti d_execut ed GTID set is always included in the dump

as the gt i dExecut ed field in the @ j son dump file. The dump
loading utility does not automatically apply the gt i d_execut ed
GTID set from the source MySQL instance on the target MySQL
instance. To apply these GTIDs on the target MySQL instance for
use with replication, use the updat eG i dSet option or import them
manually, depending on the release of the target MySQL instance.
From MySQL Shell 8.0.23, this is supported on MySQL DB System

255

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

Dump Loading Utility

update&@idSet: [off

append |

repl ace |

instances. See the description of the updat eG i dSet option for
details.

The binary log file name and position are included provided

that the user account used to run the dump utility had the

REPLI CATI ON CLI ENT privilege. The binary log file name and
position can be used to set up replication from a source server

that does not have GTIDs enabled and does not use GTID-

based replication, to a replica that has GTIDs enabled, using the
ASSI GN_GTI DS_TO_ANONYMOUS_TRANSACTI ONS option of the
CHANGE REPLI CATI ON SOURCE TOstatement (which is available
from MySQL Server 8.0.23).

Apply the gt i d_execut ed GTID set from the source MySQL
instance, as recorded in the dump metadata, to the gt i d_pur ged
GTID set on the target MySQL instance. The gti d_pur ged GTID
set holds the GTIDs of all transactions that have been applied on
the server, but do not exist on any binary log file on the server. This
option is available from MySQL Shell 8.0.22, but in that release

it is not supported on MySQL DB System due to a permissions
restriction. From MySQL 8.0.23, the option can also be used for a
MySQL DB System instance. The default is of f , meaning that the
GTID set is not applied.

Do not use this option for a dump produced by MySQL Shell's table
dump utility, only for dumps produced by MySQL Shell's instance
dump utility or schema dump utility. Also, do not use this option
when Group Replication is running on the target MySQL instance.

For MySQL instances that are not MySQL DB System instances,
when you set append or r epl ace to update the GTID set, also set
the ski pBi nl og option to t r ue. This ensures the GTIDs on the
source server match the GTIDs on the target server. For MySQL DB
System instances, this option is not used.

For a target MySQL instance from MySQL 8.0, you can set the
option to append, which appends the gt i d_execut ed GTID set
from the source MySQL instance to the gt i d_pur ged GTID set on
the target MySQL instance. The gti d_execut ed GTID set to be
applied, which is shown in the gt i dExecut ed field in the @] son
dump file, must not intersect with the gt i d_execut ed set already
on the target MySQL instance. For example, you can use this option
when importing a schema from a different source MySQL instance
to a target MySQL instance that already has schemas from other
source servers.

You can also use r epl ace for a target MySQL instance from
MySQL 8.0, to replace the gt i d_pur ged GTID set on the target
MySQL instance with the gt i d_execut ed GTID set from the
source MySQL instance. To do this, the gt i d_execut ed GTID
set from the source MySQL instance must be a superset of the
gtid_purged GTID set on the target MySQL instance, and

must not intersect with the set of transactions in the target's

gti d_execut ed GTID set that are notinits gt i d_pur ged GTID
set.

For a target MySQL instance at MySQL 5.7, set the option to
repl ace, which replaces the gt i d_pur ged GTID set on the
target MySQL instance with the gt i d_execut ed GTID set

256

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_replication-client
https://dev.mysql.com/doc/refman/8.0/en/change-replication-source-to.html
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

Dump Loading Utility

ski pBinlog: [true |
fal se]

| oadl ndexes:

fal se]

def er Tabl el ndexes:

| fulltext | all

anal yzeTabl es: |

on |

hi st ogram]

[true |

]

of f

[off

from the source MySQL instance. In MySQL 5.7, to do this the
gtid executedandgtid purged GTID sets on the target
MySQL instance must be empty, so the instance must be unused
with no previously imported GTID sets.

In MySQL Shell 8.0.21, where this option is not available, you can
apply the GTID set manually on a MySQL Server instance (except
where Group Replication is in use). For MySQL DB System, this
method is not supported. To apply the GTID set, after the import,
use MySQL Shell's\ sql command (or enter SQL mode) to issue
the following statement on the connected MySQL instance, copying
the gt i d_execut ed GTID set from the gt i dExecut ed field in the
@ j son dump file in the dump metadata:

shell -js> \sql SET @BLOBAL. gtid_purged= "+gti dExecuted_set";

This statement, which works from MySQL 8.0, adds the source
MySQL Server instance's gt i d_execut ed GTID set to the target
MySQL instance's gt i d_pur ged GTID set. For MySQL 5.7,

the plus sign (+) must be omitted, and the gt i d_execut ed and
gti d_purged GTID sets on the target MySQL instance must be
empty. For more details, see the description of the gt i d_pur ged
system variable in the release of the target MySQL instance.

Skips binary logging on the target MySQL instance for the sessions
used by the utility during the course of the import, by issuing a

SET sqgl _| og_bi n=0 statement. The default is f al se, so binary
logging is active by default. For MySQL DB System, this option is
not used, and the import stops with an error if you attempt to set it
to t r ue. For other MySQL instances, always set ski pBi nl og to

t r ue if you are applying the gt i d_execut ed GTID set from the
source MySQL instance on the target MySQL instance, either using
the updat eG i dSet option or manually. When GTIDs are in use
on the target MySQL instance (gt i d_node=0ON), setting this option
to t r ue prevents new GTIDs from being generated and assigned
as the import is being carried out, so that the original GTID set from
the source server can be used. The user account must have the
required permissions to set the sql _| og_bi n system variable.

Create (t r ue) or do not create (f al se) secondary indexes for
tables. The default is t r ue. When this option is set to f al se,
secondary indexes are not created during the import, and you
must create them afterwards. This can be useful if you are
loading the DDL files and data files separately, and if you want to
make changes to the table structure after loading the DDL files.
Afterwards, you can create the secondary indexes by running the
dump loading utility again with | oadl ndexes settot rue and
def er Tabl el ndexes setto al | .

Defer the creation of secondary indexes until after the table data

is loaded. This can reduce loading times. of f means all indexes
are created during the table load. The default setting f ul | t ext
defers full-text indexes only. al | defers all secondary indexes and
only creates primary indexes during the table load, and also (from
MySQL Shell 8.0.22) indexes defined on columns containing auto-
increment values. In MySQL Shell 8.0.21, do not set al | if you have
any unique key columns containing auto-increment values.

Execute ANALYZE TABLE for tables when they have been loaded.
on analyzes all tables, and hi st ogr amanalyzes only tables that

257

https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_purged
https://dev.mysql.com/doc/refman/8.0/en/replication-options-gtids.html#sysvar_gtid_executed

Dump Loading Utility

characterSet: "string"

schema: "string"

excl udeSchenas: array of
strings

i ncl udeSchemas: array of
strings

excl udeTabl es: array of
strings

i ncl udeTabl es: array of
strings

have histogram information stored in the dump. The default is of f .
You can run the dump loading utility with this option to analyze the
tables even if the data has already been loaded.

The character set to be used for the import to the target MySQL
instance, for example in the CHARACTER SET option of the LOAD
DATA statement. The default is the character set given in the dump
metadata that was used when the dump was created by MySQL
Shell's instance dump utility, schema dump utility, or table dump
utility, which default to using ut f 8nb4. The character set must be
permitted by the char act er _set _cl i ent system variable and
supported by the MySQL instance.

The existing target schema into which a dump produced by MySQL
Shell's table dump utility must be loaded.

From MySQL Shell 8.0.23, this option is not required, because
the dump files from the table dump utility contain the information
required to set up the schema that originally contained the table.
By default, from that release, the schema is recreated in the target
MySQL instance if it does not already exist. Alternatively, you can
specify the schena option to load the table into an alternative
schema in the target MySQL instance, which must exist there.

In MySQL Shell 8.0.22, the dump files from the table dump utility do

not contain the schema information, so the target schema must exist
in the target MySQL instance. In that release, by default, the current
schema of the global shell session is used as the target schema, or

the schena option can be used to name the target schema.

Exclude the named schemas from the import. Note

that the i nf or mat i on_schenmg, nysql , ndbi nf o,

per f or mance_schenm, and sys schemas are always excluded
from a dump that is created by MySQL Shell's instance dump
utility. If a named schema does not exist in the dump files, the utility
ignores the item.

Load only the named schemas from the dump files. You can specify
both options, in which case a schema name matched by both

an i ncl udeSchenas string and an excl udeSchemas string is
excluded.

Exclude the named tables from the import. Table names

must be qualified with a valid schema name, and quoted with

the backtick character if needed. Note that the data for the

nmysql . appl y_st at us, nysql . general | og, nysql . schems,
and nmysqgl . sl ow_| og t abl es is always excluded from a dump
created by MySQL Shell's schema dump utility, although their DDL
statements are included. Tables named by the excl udeTabl es
option are not uploaded to the target MySQL instance. If a named
table does not exist in the schema or the schema does not exist in
the dump files, the dump loading utility ignores the item.

Load only the named tables from the dump files. Table names must
be qualified with a valid schema name, and quoted with the backtick
character if needed. You can specify both options, in which case

a table name matched by both an i ncl udeTabl es string and an
excl udeTabl es string is excluded.

258

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Dump Loading Utility

| oadDdl : [true |

fal se]

| oadData: [true |

fal se]

| oadUsers: |
fal se]

excl udeUser s:
strings

i ncl udeUsers:
strings

true

array of

array of

Setting this option to f al se excludes the DDL files in the dump
from the load. The default is t r ue, meaning that the DDL files are
loaded.

Setting this option to f al se excludes the data files in the dump
from the load. The default is t r ue, meaning that the data files are
loaded.

Import (t r ue) or do not import (f al se) users and their roles and
grants into the target MySQL instance. The default is f al se, so
users are not imported by default. Statements for the current user
are skipped. From MySQL Shell 8.0.22, if a user already exists

in the target MySQL instance, an error is returned and the user's
grants from the dump files are not applied. From MySQL Shell
8.0.22, you can use the excl udeUser s ori ncl udeUser s option
in the dump loading utility to specify user accounts to be excluded or
included in the import.

Note

@ In MySQL Shell 8.0.21, attempting to import
users to a MySQL DB System causes the
import to falil if the r oot user account or
another restricted user account name is
present in the dump files, so the import
of users to a MySQL DB System is not
supported in that release.

MySQL Shell's schema dump utility and table dump utility do not
include users, roles, and grants in a dump, but the instance dump
utility can, and does by default. From MySQL Shell 8.0.22, the

excl udeUser s and i ncl udeUser s options can also be used in
the instance dump utility to exclude or include named user accounts
from the dump files.

If you specify t r ue but the supplied dump files do not contain user
accounts, before MySQL Shell 8.0.23, the utility returns an error
and stops the import. From MySQL Shell 8.0.23, the utility instead
returns a warning and continues.

Exclude the named user accounts from the import. This option is
available from MySQL Shell 8.0.22, and you can use it to exclude
user accounts that are not accepted for import to a MySQL DB
System, or that already exist or are not wanted on the target
MySQL instance. Specify each user account string in the format
"'user_nane' @host _nane'" for an account that is defined with
a user name and host name, or "' user _nane' " for an account
that is defined with a user name only. If you do not supply a host
name, all accounts with that user name are excluded. If a named
user account does not exist in the dump files, the utility ignores the
item.

Include only the named user accounts in the import. Specify
each user account string as for the excl udeUser s option. This
option is available from MySQL Shell 8.0.22, and you can use it
as an alternative to excl udeUser s if only a few user accounts
are required in the target MySQL instance. You can also specify
both options, in which case a user account matched by both an

i ncl udeUser s string and an excl udeUser s string is excluded.

259

Dump Loading Utility

creat el nvi si bl ePKs:
[true | false]

maxByt esPer Tr ansact i on:
nunber

Add primary keys in invisible columns for each table in

the dump that does not contain a primary key. The t r ue

setting is applied automatically if the dump was created with

the creat e_i nvi si bl e_pks option by MySQL Shell’'s

instance dump utility ut i | . dunpl nst ance(), schema

dump utility uti | . dunpSchemas(), or table dump utility
util.dunpTabl es() . The primary keys are only added if the DDL
for the dump is loaded (| oadDdl : true). The invisible columns
(which are named "my_r ow _i d") have no impact on applications
that use the uploaded tables.

creat el nvi si bl ePKs is present from MySQL Shell 8.0.24, and
when the t r ue setting is in effect, the target MySQL instance must
be MySQL Server 8.0.24 or later, or the load fails. Invisible columns
are available from MySQL Server 8.0.23, but a limitation on them

in that release prevents the use of this function. The dump loading
utility in versions of MySQL Shell before MySQL Shell 8.0.24 silently
ignores the dump metadata flag and does not add the primary keys,
so ensure that you use the latest version of the utility.

Adding primary keys in this way does not yet enable inbound
replication of the modified tables to a High Availability instance,

as that feature currently requires the primary keys to exist in both
the source server and the replica server. If possible, instead of
using this option, consider creating primary keys in the tables

on the source server, before dumping them again. From MySQL
8.0.23, you can do this with no impact to applications by using
invisible columns to hold the primary keys. This is a best practice for
performance and usability, and helps the dumped database to work
seamlessly with MySQL Database Service.

The maximum number of bytes that can be loaded from a data

file in a single LOAD DATA statement. If a data file exceeds

the maxByt esPer Tr ansact i on value, multiple LOAD DATA
statements load data from the file in chunks less than or equal to the
maxByt esPer Tr ansact i on value. This option is available from
MySQL Shell 8.0.27.

The unit suffixes k for kilobytes, Mfor megabytes, and Gfor
gigabytes can be used. The minimum value is 4069 bytes. If

a lesser value is specified, the 4096 byte minimum is used
implicitly. If the maxByt esPer Tr ansact i on option is unset, the
byt esPer Chunk value used to dump the data is used as the
default setting for files larger than 1.5 * the byt esPer Chunk value.
If the maxByt esPer Tr ansact i on option is unset and the data file
is less than 1.5 * the byt esPer Chunk value, the data is requested
in a single LOAD DATA statement.

If a data file contains a row that is larger than the

maxByt esPer Tr ansact i on setting, the row's data is requested in
a single LOAD DATA statement. A warning is emitted for the first row
encountered that exceeds the maxByt esPer Tr ansact i on setting.

If a load operation with a configured mexByt esPer Tr ansacti on
setting is interrupted and resumes execution, chunks that were
already loaded are skipped. The resumed load operation uses the
current maxByt esPer Tr ansact i on setting. The setting used

260

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

Modifying Dumped Data

before the operation was interrupted is not saved to the progress
state file.

An intended use for this option is to load data in smaller

chunks when a data file is too large for the target

server's limits, such as the limits defined by the server's
group_replication_transaction _size limt or

max_bi nl og_cache_si ze settings. For example, If you

receive the error " MySQL Error 1197 (HYO00): Multi-
statenment transaction required nore than
"max_binl og cache size' bytes of storage" when
loading data, set maxByt esPer Tr ansact i on to a value less
than or equal to the server instance’s max_bi nl og_cache_si ze

setting.
Modifying Dumped Data
MySQL Shell’s parallel table import utility uti | . i nport Tabl e() can be used in combination with the
dump loading utility uti | . | cadDunp() to modify data in the chunked output files before uploading it

to the target MySQL instance. You can modify the data for one table at a time by this method. Follow
this procedure, which works from MySQL Shell 8.0.23:

1. Use the dump loading utility with the | oadDdl : true and | oadDat a: fal se options, to load the
DDL file only, and create the selected table on the target MySQL instance with no data.

shell -js> util.|oadDunp("/ mt/data/proddunp", {
> includeTabl es: ["product.pricing"],
> | oadDdl : true,
> | oadDat a: fal se});

2. Use the parallel table import utility to capture and transform the data for the table, and import it to
the empty table on the target MySQL instance. In this example, the data for the pri ci ng table is in
multiple compressed files, which are specified using wildcard pattern matching. The values from the
i d and pr odnane columns in the dump files are assigned unchanged to the same columns in the
target table. The values from the pri ce column in the dump files are captured and assigned to the
variable @.. The decodeCol urms option is then used to reduce the prices by a standard amount,
and the reduced prices are placed in the pri ce column of the target table.

shell-js> util.inportTable ("/mmt/data/proddunp/ product @ricing@.zst", {
> schema: "product”,
> table: "pricing",
> colums: ["id", "prodnanme", 1],
> decodeCol ums: { "price": "0.8 * @"}});

3. Repeat Steps 1 and 2 as needed for any other tables in the dump files where you need to modify
the data.

4. When you have finished uploading all the tables and data that needed to be modified, use the dump
loading utility to load both the DDL and the data for any remaining tables that you do not need to
modify. Be sure to exclude the tables that you did modify in the previous steps.

shell -js> util.|oadDunp("/ mt/data/proddunp", {excludeTables: ["product.pricing"]});

261

https://dev.mysql.com/doc/refman/8.0/en/group-replication-options.html#sysvar_group_replication_transaction_size_limit
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_max_binlog_cache_size
https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_max_binlog_cache_size

262

Chapter 12 MySQL Shell Logging and Debug

Table of Contents

D2 Y o] o] o= 1 Te] o N I To RO UPR 264
12.2 VEIrDOSE OULPUL ...ttt ettt et ettt e et et et et e e et e e et e e et e e tna e e et e eeanaeenns 265
12.3 System Logging for SQL STAtEMENTSuiitiiiiiiei e e 266
12.4 Logging AdMINAPT OPEIALIONSuuiieiiiiiieiii ettt e e et e e et e e et e e e eaa e eaees 267

You can use MySQL Shell's logging feature to verify the state of MySQL Shell while it is running and to
troubleshoot any issues.

By default, MySQL Shell sends logging information at logging level 5 (error, warning, and informational
messages) to an application log file. You can also configure MySQL Shell to send the information to an
optional additional viewable location, and (from MySQL 8.0.17) to the console as verbose output.

You can control the level of detail to be sent to each destination. For the application log and additional
viewable location, you can specify any of the available levels as the maximum level of detail. For
verbose output, you can specify a setting that maps to a maximum level of detail. The following levels
of detail are available:

Table 12.1 Logging levels in MySQL Shell

Logging Level - Logging Level - Text |Meaning Verbose Setting
Numeric

1 none No logging 0

2 i nternal Internal Error 1

3 error Error 1

4 war ni ng Warning 1

5 info Informational 1

6 debug Debug 2

7 debug2 Debug?2 3

8 debug3 Debug3 4

From MySQL Shell 8.0.24, you can choose to send SQL statements that you issue interactively in
MySQL Shell's SQL mode to the operating system’s system logging facility (sys| og on Unix, or the
Windows Event Log). SQL statements that would be excluded from the MySQL Shell code history are
not sent to the system logging facility.

By default, MySQL Shell does not log or output SQL statements that are executed by MySQL Shell
itself in the course of AdminAPI operations. From MySQL Shell 8.0.18, you can activate logging for
these statements if you want to observe the progress of these operations in terms of SQL execution,
in addition to the messages returned during the operations. The statements are written to the MySQL
Shell application log file as informational messages provided that the logging level is set to 5 or above.
They are also sent to the console as verbose output provided that the verbose setting is 1 or above.

By default, MySQL Shell sends all logging for a program to the same application log file,

and all output for a program to the same destination. From MySQL Shell 8.0.26, the function

shel | . creat eCont ext can be used in MySQL Shell's Python mode to support multithreading by
Python programs. The function is used inside a hew Python thread to create a scope which isolates
logging, interrupts, and delegates. The context wrapper handles and isolates output printed to st dout
and st der r and diagnostic output, and also user input, with separate handling for passwords. You can
also create an individual application log file specific to the thread.

263

Application Log

For instructions to configure the application log and the optional additional destination, which is
st derr on Unix-based systems or the Qut put DebugSt ri ng() function on Windows systems, see
Section 12.1, “Application Log".

For instructions to send logging information to the console as verbose output, see Section 12.2,
“Verbose Output”.

For instructions to send interactive SQL statements to the system logging facility, see Section 12.3,
“System Logging for SQL Statements”.

For instructions to activate logging for SQL statements that are executed by AdminAPI operations, see
Section 12.4, “Logging AdminAPI Operations”.

12.1 Application Log

The location of the MySQL Shell application log file is the user configuration path and the file is named
nysgl sh. | og. By default, MySQL Shell sends logging information at logging level 5 (error, warning,
and informational messages) to this file. To change the level of logging information that is sent, or to
disable logging to the application log file, choose one of these options:

* Usethe - -1 o0g-I evel command-line option when starting MySQL Shell.

* Use the MySQL Shell \ opt i on command to set the | ogLevel MySQL Shell configuration option.
For instructions to use this command, see Section 13.4, “Configuring MySQL Shell Options”.

e Use the shel | . opti ons object to set the | ogLevel MySQL Shell configuration option. For
instructions to use this configuration interface, see Section 13.4, “Configuring MySQL Shell Options”.

The available logging levels are as listed in Table 12.1, “Logging levels in MySQL Shell”. If you specify
a logging level of 1 or none for the option, logging to the application log file is disabled. All other values
leave logging enabled and set the level of detail in the log file. The option requires a value.

With the - - | og- | evel command-line option, you can specify the logging level using its text name or
the numeric equivalent, so the following examples have the same effect:

$> nysql sh --1o0g-1evel =4
$> nysql sh --1o0g-Ievel =war ni ng

With the | ogLevel MySQL Shell configuration option, you can only specify a numeric logging level.

If you prepend the logging level with @ (at sign), log entries are output to an additional viewable
location as well as being written to the MySQL Shell log file. The following examples have the same
effect:

$> nysql sh --1o0g-Il evel =@
$> nysql sh --1o0g-I evel =@ebug3

On Unix-based systems, the log entries are output to st der r in the output format that is currently set
for MySQL Shell. This is the value of the r esul t For mat MySQL Shell configuration option, unless
JSON wrapping has been activated by starting MySQL Shell with the - -] son command line option.

On Windows systems, the log entries are printed using the Qut put DebugSt ri ng() function, whose
output can be viewed in an application debugger, the system debugger, or a capture tool for debug
output.

The MySQL Shell log file format is plain text and entries contain a timestamp and description of the
problem, along with the logging level from the above list. For example:

2016- 04-05 22:23:01: Error: Default Domamin: (shell):1:8: MySQ.Error: You have an error
in your SQ syntax; check the manual that corresponds to your MySQ. server version for
the right syntax to use near '' at line 1 (1064) in session.sql("select * fromt
limt").execute().all();

264

Log File Location on Windows

Log File Location on Windows

On Windows, the default path to the application log file is “%APPDATA% My SQL\ nysql sh
\ nmysqgl sh. | og. To find the location of %APPDATA%o0nN your system, echo it from the command line.
For example:

C. >echo Y%APPDATA%

C: \ User s\ exanpl euser\ AppDat a\ Roani ng

On Windows, the path is the %APPDATA%folder specific to the user, with My SQL\ nysql sh added.
Using the above example the path would be C: \ User s\ exanpl euser\ AppDat a\ Roam ng\ MySQL

\ nysqgl sh\ nysqgl sh.log .

If you want the application log file to be stored in a different location, you can override the default user
configuration path by defining the environment variable M\YSQLSH USER CONFI G_HOVE. The value of
this variable replaces %AppDat a% MySQL\ nysql sh\ on Windows.

From MySQL Shell 8.0.27, you can also use the - - | og-fi | e option to override the user configuration
path when you run nysql sh from the command line. The - -1 og- f i | e option applies to the individual
MySQL Shell instance, meaning that different instances can write to different locations.

Log File Location on Unix-based Systems

For a machine running Unix, the default path to the application log file is ~/ . nysql sh/ nysql sh. | og
where “~" represents the user's home directory. The environment variable HOVE also represents the
user's home directory. Appending . mysql sh to the user's home directory determines the default path
to the log.

If you want the application log file to be stored in a different location, you can override the default user
configuration path by defining the environment variable MYSQLSH USER CONFI G_HOVE. The value of
this variable replaces ~/ . mysql sh/ on Unix.

From MySQL Shell 8.0.27, you can also use the - - | og-fi | e option to override the user configuration
path when you run nysql sh from the command line. The - -1 og- f i | e option applies to the individual
MySQL Shell instance, meaning that different instances can write to different locations.

12.2 Verbose Output

From MySQL 8.0.17, you can send MySQL Shell logging information to the console to help with
debugging. Logging messages sent to the console are given the ver bose: prefix. When you send
logging information to the console, it is still sent to the application log file.

To send logging information to the console as verbose output, choose one of these options:
» Use the - - ver bose command-line option when starting MySQL Shell.

» Use the MySQL Shell\ opt i on command to set the ver bose MySQL Shell configuration option.
For instructions to use this command, see Section 13.4, “Configuring MySQL Shell Options”.

* Usethe shel | . opti ons object to set the ver bose MySQL Shell configuration option. For
instructions to use this configuration interface, see Section 13.4, “Configuring MySQL Shell Options”.

The available settings are as listed in Table 12.1, “Logging levels in MySQL Shell”. The settings for the
ver bose option display messages at the following levels of detail:

0 No messages. Equivalent to a logging level of 1 for the application log.

1 Internal error, error, warning, and informational messages. Equivalent to
a logging level of 5 for the application log.

265

System Logging for SQL Statements

2 Adds debug messages. Equivalent to a logging level of 6 for the
application log.

3 Adds debug2 messages. Equivalent to a logging level of 7 for the
application log.

4 Adds debug3 messages, the highest level of detail. Equivalent to a
logging level of 8 for the application log.

If the ver bose option is not set on the command line or in the configuration file, or if you specify a
setting of O for the option, verbose output to the console is disabled. All other values enable verbose
output and set the level of detail for the messages sent to the console. If you specify the option without
a value, which is permitted as a command-line option when starting MySQL Shell (- - ver bose) but
not with other methods of setting the option, setting 1 (internal error, error, warning, and informational
messages) is used.

12.3 System Logging for SQL Statements

From MySQL 8.0.24, SQL statements that you issue in MySQL Shell’'s SQL mode can be sent to the
operating system’s system logging facility. On Unix, this is sysl| og; on Windows, it is the Windows
Event Log. The destination where logged messages appear is system dependent. On Linux, the
destination is often the / var /| og/ nessages file.

When you activate system logging for SQL statements, the following items are written to the system
logging facility:

» SQL statements that you issue interactively in MySQL Shell's SQL mode.

» Single SQL statements that you execute by entering them immediately after the \ sgql command
while in MySQL Shell’'s JavaScript or Python mode.

« Instances of the \ sour ce command that you issue interactively in MySQL Shell's SQL mode.
The following items are excluded and are not written to the system logging facility:

» The contents of a script file that you execute using the \ sour ce command. Only the \ sour ce
command itself is written to the system logging facility.

» SQL statements that MySQL Shell executes itself in the course of AdminAPI operations. You can
log these to the MySQL Shell application log file, as explained in Section 12.4, “Logging AdminAPI
Operations”.

» SQL statements that would be excluded from the MySQL Shell code history, as specified by the
hi story. sql.ignorePattern MySQL Shell configuration option, or the - - hi sti gnore
command-line option (which sets the value of hi st ory. sql . i gnor ePat t er n for the current
session only).

To send SQL statements that you issue in MySQL Shell’'s SQL mode to the operating system’s system
logging facility, choose one of these options:

e Use the - - sysl og command-line option when starting MySQL Shell.

* Use the MySQL Shell \ opt i on command to set the hi st ory. sqgl . sysl og MySQL Shell
configuration option. For instructions to use this command, see Section 13.4, “Configuring MySQL
Shell Options”.

* Usethe shel | . opti ons object to set the hi st ory. sql . sysl og MySQL Shell configuration
option. For instructions to use this configuration interface, see Section 13.4, “Configuring MySQL
Shell Options”.

System logging for SQL statements only takes place when MySQL Shell is started in interactive mode,
so either a normal start or a start with the - - i nt er act i ve option. It does not take place if the - -

266

Log message format

executeor--fil e options are used at startup to run nysql sh in batch mode to process a command
or file.

Log message format

The log message for an SQL statement is formatted as a series of key-value pairs separated by a
space character. The key-value pairs are as follows:

SYSTEM_USER = The login name of the operating system user, or - - if this user name
is unknown.

MYSQL_USER = The name of the MySQL user, or - - if this user name is unknown.

CONNECTION_ID = The identifier for the MySQL Shell connection.

DB_SERVER = The server’s host name, or - - if the host name is unknown.

DB = The default database, or - - if no database has been selected.

QUERY = The text of the logged SQL statement.

The log message is truncated to 1024 bytes if it exceeds that length.

Here is a sample of output generated on Linux by using - - sysl og. This output is formatted for
readability; each logged message actually takes a single line.

Mar 1 17:35: 33 nyhost nysql sh[33060] :

SYSTEM USER=hanna_j MYSQ._USER=hanna

CONNECT!I ON_| D=14 DB_SERVER=I| ocal host DB='--'

QUERY='create table test.test (c int, my_row.id Bl G NI AUTO | NCREMENT | NVl SI BLE PRI MARY KEY) ;'

12.4 Logging AdminAPI Operations

From MySQL Shell 8.0.18, you can include SQL statements that are executed in the course of
AdminAPI operations as part of the MySQL Shell logging information. By default, MySQL Shell does
not log these statements, and just logs the messages returned during the operations. Activating logging
for these statements lets you observe the progress of the operations in terms of SQL execution, which
can help with problem diagnosis for any errors.

When you activate logging for SQL statements from AdminAPI operations, the statements are written
to the MySQL Shell application log file as informational messages, provided that the logging level is set
to 5 (which is the default for MySQL Shell's logging level) or above. If an additional viewable location
was specified with the logging level, the statements are sent there too. The statements are also sent to
the console as verbose output if the verbose option is set to 1 or above. Any passwords included in the
SQL statements are masked for logging and display and are not recorded or shown.

SQL statements executed by AdminAPI sandbox operations (dba. depl oySandbox| nst ance(),
dba. st art Sandbox| nst ance(), dba. st opSandboxI nst ance(),

dba. ki | I Sandbox| nst ance(), and dba. del et eSandbox| nst ance()) are always excluded from
logging and verbose output, even if you have activated logging for regular AdminAPI operations.

To log SQL statements executed by AdminAPI operations, choose one of these options:
* Use the - - dba- | og- sql command-line option when starting MySQL Shell.

» Use the MySQL Shell\ opt i on command to set the dba. | ogSql MySQL Shell configuration
option. For instructions to use this command, see Section 13.4, “Configuring MySQL Shell Options”.

e Usethe shel | . opti ons object to set the dba. | ogSgl MySQL Shell configuration option. For
instructions to use this configuration interface, see Section 13.4, “Configuring MySQL Shell Options”.

The available settings for the option are follows:

267

Logging AdminAPI Operations

0 Do not log SQL statements executed by AdminAPI operations. This
setting is the default behavior if the option is not set on the command
line or in the configuration file, and can be set to deactivate this type of
logging after use if you only needed it temporarily.

1 Log SQL statements that are executed by AdminAPI operations, with
the exceptions of SELECT statements, SHOWstatements, and statements
executed by sandbox operations.

2 Log SQL statements that are executed by regular AdminAPI operations
in full, including SELECT and SHOWSstatements, but do not log
statements executed by sandbox operations.

If you specify the option without a value, which is permitted for a command-line option when starting
MySQL Shell (- - dba- | og- sql) but not with other methods of setting the option, setting 1 is used.

268

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html

Chapter 13 Customizing MySQL Shell

Table of Contents

13.1 Working With STArtup SCHPLSceunieiieiie ettt e e e e eanas 269
13.2 Adding Module Search Paths ... e 270
13.2.1 Module Search Path Environment Variablesc.ooooiiiiiiii 271
13.2.2 Module Search Path Variable in Startup SCrPLScooeviiiiiiiiii e 271
13.3 CuStomIziNg the PrOMPL ...t e e e ean s 272
13.4 Configuring MySQL Shell OPLIONSiiiiiiiiie e e e 272

MySQL Shell offers these customization options for you to change its behavior and code execution
environment to suit your preferences:

» Create startup scripts that are executed when MySQL Shell is started in JavaScript or Python mode.
See Section 13.1, “Working With Startup Scripts”.

« Add non-standard module search paths for JavaScript or Python mode. See Section 13.2, “Adding
Module Search Paths”.

» Customize the MySQL Shell prompt. See Section 13.3, “Customizing the Prompt”.

» Set configuration options to change MySQL Shell's behavior for the current session or permanently.
See Section 13.4, “Configuring MySQL Shell Options”.

13.1 Working With Startup Scripts

When MySQL Shell is started in JavaScript or Python mode, and also when you switch to JavaScript
or Python mode for the first time, MySQL Shell searches for startup scripts to be executed. The startup
scripts are JavaScript or Python specific scripts containing the instructions to be executed when
MySQL Shell first enters the corresponding language mode. Startup scripts let you customize the
JavaScript or Python code execution environment in any of these ways:

» Adding additional search paths for Python or JavaScript modules.
 Defining global functions or variables.
» Carrying out any other possible initialization through JavaScript or Python.

The relevant startup script is loaded when you start or restart MySQL Shell in either JavaScript or
Python mode, and also the first time you change to the other one of those modes while MySQL Shell is
running. After this, MySQL Shell does not search for startup scripts again, so implementing updates to
a startup script requires a restart of MySQL Shell if you have already entered the relevant mode. When
MySQL Shell is started in SQL mode or you switch to that mode, no startup script is loaded.

The startup scripts are optional, and you can create them if you want to use them for customization.
The startup scripts must be named as follows:

e For JavaScript mode: nysqgl shrc. | s
» For Python mode: nysql shrc. py

You can place your startup scripts in any of the locations listed below. MySQL Shell searches all of
the stated paths, in the order stated, for startup scripts with the file name nmysql shr ¢ and the file
extension that matches the scripting mode that is being initialized (. j s by default if MySQL Shell is
started with no language mode specified). Note that MySQL Shell executes all appropriate startup
scripts found for the scripting mode, in the order they are found. If something is defined in two different
startup scripts, the script executed later takes precedence.

1. Inthe platform's standard global configuration path.

269

Adding Module Search Paths

e On Windows: %°ROGRAMDATAY% My SQL\ nysqgl sh\ mysqgl shrc. [] s]| py]
¢ On Unix: / etc/ nmysql / nysql sh/ nysql shrc. [] s| py]

2. Inthe shar e/ mysql sh subdirectory of the MySQL Shell home folder, which can be defined by
the environment variable MYSQLSH HOVE, or identified by MySQL Shell. If MYSQLSH HOVE is not
defined, MySQL Shell identifies its own home folder as the parent folder of the folder named bi n
that contains the nysql sh binary, if such a folder exists. (For many standard installations it is
therefore not necessary to define MYSQLSH HOVE.)

¢ On Windows: %8WWSQLSH HOVE% shar e\ nysql sh\ nysql shrc. [] s| py]
e On Unix: SMYSQLSH HOVE/ shar e/ mysql sh/ mysql shrc. [] s]| py]

3. In the folder containing the mysqlsh binary, but only if the MySQL Shell home folder described in
option 2 is neither specified nor identified by MySQL Shell in the expected standard location.

¢ On Windows: <nysql sh bi nary path>\nysql shrc.[]s| py]
e On Unix: <nysqgl sh bi nary path>/nysql shrc.[]s| py]

4. In the MySQL Shell user configuration path, as defined by the environment variable
MYSQLSH _USER_CONFI G_HOME.

e On Windows: %WSQLSH USER CONFI G HOVE% nysql shrc. [] s| py]
e On Unix: $MYSQLSH_USER_CONFI G_HOVE/ nysql shrc. [j s| py]

5. In the platform's standard user configuration path, but only if the MySQL Shell user configuration
path described in option 4 is not specified.

¢ On Windows: %APPDATA% MySQL\ nysql sh\ nysql shrc. [] s| py]

¢ On Unix: $HOVE/ . nysql sh/ nysql shrc. [] s| py]

13.2 Adding Module Search Paths

When you use the r equi r e() function in JavaScript or the i mport function in Python, the well-known
module search paths listed for the sys. pat h variable are used to search for the specified module.
MySQL Shell initializes the sys. pat h variable to contain the following module search paths:

» The folders specified by the module search path environment variable (M\YSQLSH JS MODULE PATH
in JavaScript mode, or PYTHONPATH in Python mode).

» For JavaScript, the subfolder shar e/ mysql sh/ nodul es/ j s of the MySQL Shell home folder, or
the subfolder / nodul es/ j s of the folder containing the nmysql sh binary, if the home folder is not
present.

» For Python, installation-dependent default paths, as for Python's standard import machinery.

MySQL Shell can also load the built-in modules nysql and nmysql x using the r equi re() ori nport
function, and these modules do not need to be specified using the sys. pat h variable.

For JavaScript mode, MySQL Shell loads the first module found in the specified location that is (in
order of preference) a file with the specified name, or a file with the specified name plus the file
extension . j s,oraninit.j s file contained in a folder with the specified name. For Python mode,
Python's standard import machinery is used to load all modules for MySQL Shell.

For JavaScript mode, from MySQL Shell 8.0.19, MySQL Shell also provides support for loading of
local modules by the r equi r e() function. If you specify the module name or path prefixed with . /
or ../, in batch mode, MySQL Shell searches for the specified module in the folder that contains the

270

Module Search Path Environment Variables

JavaScript file or module currently being executed. In interactive mode, given one of those prefixes,
MySQL Shell searches in the current working directory. If the module is not found in that folder, MySQL
Shell proceeds to check the well-known module search paths specified by the sys. pat h variable.

You can add further well-known module search paths to the sys. pat h variable either by appending
them to the module search path environment variable for JavaScript mode or Python mode (see
Section 13.2.1, “Module Search Path Environment Variables”), or by appending them directly to the
sys. pat h variable using the MySQL Shell startup script for JavaScript mode or Python mode (see
Section 13.2.2, “Module Search Path Variable in Startup Scripts”). You can also modify the sys. pat h
variable at runtime, which changes the behavior of the r equi r e() ori nport function immediately.

13.2.1 Module Search Path Environment Variables

You can add folders to the module search path by adding them to the appropriate language-specific
module search path environment variable. MySQL Shell includes these folders in the well-known
module search paths when you start or restart MySQL Shell. If you want to add to the search path
immediately, modify the sys. pat h variable directly.

For JavaScript, add folders to the MYSQLSH JS MODULE PATH environment variable. The value of this
variable is a list of paths separated by a semicolon character.

For Python, add folders to the PYTHONPATH environment variable. The value of this variable is a list
of paths separated by a semicolon character on Windows platforms, or by a colon character on Unix
platforms.

For JavaScript, folders added to the environment variable are placed at the end of the sys. pat h
variable value, and for Python, they are placed at the start.

Note that Python's behavior for loading modules is not controlled by MySQL Shell; the normal import
behaviors for Python apply.

13.2.2 Module Search Path Variable in Startup Scripts

The sys. pat h variable can be customized using the MySQL Shell startup script nysql shrc.j s

for JavaScript mode or nysql shr c. py for Python mode. For more information on the startup scripts
and their locations, see Section 13.1, “Working With Startup Scripts”. Using the startup script, you can
append module paths directly to the sys. pat h variable.

Note that each startup script is only used in the relevant language mode, so the module search paths
specified in nysql shrc. j s for JavaScript mode are only available in Python mode if they are also
listed in mysql shrc. py.

For Python modify the nysql shr c. py file to append the required paths into the sys. pat h array:

Inport the sys nodul e
i mport sys

Append the additional nodul e paths
sys. pat h. append(' ~/ cust oni pyt hon')
sys. pat h. append(' ~/ ot her/ cust onf nodul es')

For JavaScript modify the nysql shrc. j s file to append the required paths into the sys. pat h array:

/'l Append the additional nodul e paths
sys.path = [...sys.path, '~/customjs'];
sys.path = [...sys.path, '~/other/custom nodul es'];

A relative path that you append to the sys. pat h array is resolved relative to the current working
directory.

The startup scripts are loaded when you start or restart MySQL Shell in either JavaScript or Python
mode, and also the first time you change to the other one of those modes while MySQL Shell is

running. After this, MySQL Shell does not search for startup scripts again, so implementing updates
to a startup script requires a restart of MySQL Shell if you have already entered the relevant mode.

271

Customizing the Prompt

Alternatively, you can modify the sys. pat h variable at runtime, in which case the r equi re() or
i mport function uses the new search paths immediately.

13.3 Customizing the Prompt

The prompt of MySQL Shell can be customized using prompt theme files. To customize the prompt
theme file, either set the M\YSQLSH PROVMPT _THENME environment variable to a prompt theme file name,
or copy a theme file to the ~/ . nysql sh/ pr onpt . j son directory on Linux and Mac, or the ¥AppDat a
% MySQL\ mysql sh\ pronpt . j son directory on Windows.

The user configuration path for the directory can be overridden on all platforms by defining the
environment variable M\YSQLSH USER CONFI G_HOVE. The value of this variable replaces %AppDat a%
\ MySQL\ nysql sh\ on Windows or ~/ . nysqgl sh/ on Unix.

The format of the prompt theme file is described in the READVE. pr onpt file, and some sample prompt
theme files are included. On startup, if an error is found in the prompt theme file, an error message

is printed and a default prompt theme is used. Some of the sample prompt theme files require a
special font (for example Sour ceCodePr o+Power | i ne+Awesone+Regul ar . tt f). If you set the
MYSQLSH PROVPT_THENME environment variable to an empty value, MySQL Shell uses a minimal
prompt with no color.

Color display depends on the support available from the terminal. Most terminals support 256 colors
in Linux and Mac. In Windows, color support requires either a 3rd party terminal program with support
for ANSI/VT100 escapes, or Windows 10. By default, MySQL Shell attempts to detect the terminal
type and handle colors appropriately. If auto-detection does not work for your terminal type, or if you
want to modify the color mode due to accessibility requirements or for other purposes, you can define
the environment variable M\YSQLSH TERM COLOR_MODE to force MySQL Shell to use a specific color
mode. The possible values for this environment variable are r gb, 256, 16, and nocol or.

13.4 Configuring MySQL Shell Options

You can configure MySQL Shell to match your preferences, for example to start up to a certain
programming language or to provide output in a particular format. Configuration options can be set for
the current session only, or options can be set permanently by persisting changes to the MySQL Shell
configuration file. Online help for all options is provided. You can configure options using the MySQL
Shell\ opt i on command, which is available in all MySQL Shell modes for querying and changing
configuration options. Alternatively in JavaScript and Python modes, use the shel | . opt i ons object.

Valid Configuration Options

The following configuration options can be set using either the \ opt i on command or
shel | . opt i ons scripting interface:

optionName DefaultValue Type Effect

aut oconpl et e. nameCatrbe boolean Enable database
name caching for
autocompletion.

bat chCont i nueOnEr r afalse boolean (READ ONLY) |In SQL batch mode,
force processing to
continue if an error is
found.

credenti al Store. exgeogtyilters array An array of URLs

for which automatic
password storage is
disabled, supports glob
characters * and ?.

credenti al St or e. hel|pepends on platform string Name of the credential
helper used to fetch

272

Valid Configuration Options

optionName

DefaultValue

Type

Effect

or store passwords. A
special value def aul t
is supported to use the
platform's default helper.
The special value

di sabl ed disables the
credential store.

credenti al Store. say

fPses swor ds

string

Controls automatic
password storage,
supported values:

al ways, pronpt or
never.

dba. gti dWai t Ti neout

60

integer greater than 0

The time in seconds

to wait for GTID
transactions to be
applied, when required
by AdminAPI operations
(see Section 7.5,
“Working with InnoDB
Cluster”).

dba. | ogSql

integer ranging from 0 to
2

Log SQL statements
that are executed by
AdminAPI operations
(see Chapter 12,
MySQL Shell Logging
and Debug).

dba. restart Wi t Ti nH

60t

integer greater than 0

The time in seconds

to wait for transactions
to be applied during a
recovery operation. Use
to configure a longer
timeout when a joining
instance has to recover
a large amount of data.
See Section 7.2.2,
“Using MySQL Clone
with InnoDB Cluster”).

def aul t Conpr ess

false

boolean

Request compression
for information sent
between the client

and the server in

every global session.
Affects classic MySQL
protocol connections
only (see Section 4.3.5,
“Using Compressed
Connections”).

def aul t Mbde

None

string (sql, js or py)

The mode to use when
MySQL Shell is started
(SQL, JavaScript or
Python).

devapi . dbQoj ect Hand

trae

boolean

Enable table and
collection name handles

273

Valid Configuration Options

optionName

DefaultValue

Type

Effect

for the X DevAPI db
object.

hi story. aut oSave

false

boolean

Save (true) or clear
(false) entries in the
MySQL Shell code
history when you exit
the application (see
Section 5.5, “Code
History”).

hi story. maxSi ze

1000

integer

The maximum number
of entries to store in
the MySQL Shell code
history.

hi story. sql . i gnoreH

PAIDENRIFIED™ :
PASSWORD

string

Strings that match these
patterns are not added
to the MySQL Shell
code history.

hi story. sql . sysl og

false

boolean

Send interactive SQL
statements to the
operating system’s
system logging facility
(see Section 12.3,
“System Logging for
SQL Statements”).

interactive

true

boolean (READ ONLY)

Enable interactive
mode.

| ogLevel

Requires a value

integer ranging from 1 to
8

Set a logging level for
the application log (see
Chapter 12, MySQL
Shell Logging and
Debug).

mysql Pl ugi nDi r

None

string

Set a persistent path

to the MySQL server's
plugin directory. The
path is specified when
client-side plugins that
ship with the server are
used for authentication.

pager

None

string

Use the specified
external pager tool

to display text and
results. Command-
line arguments for the
tool can be added (see
Section 4.6, “Using a
Pager”).

passwor dsFrontt di n

false

boolean

Read passwords from
st di n instead of
terminal.

resul t For mat

table

string (table, tabbed,
vertical, json | json/

The default output
format for printing result

274

Using the \ opt i on Command

optionName DefaultValue Type Effect
pretty, ndjson | json/raw, |sets (see Section 5.7,
json/array) “Output Formats”).
sandboxDi r Depends on platform string The sandbox directory.

On Windows, the
defaultis C:. \ User s

\ MyUser\ MySQL

\ nysql - sandboxes,
and on Unix systems,
the default is SHOVE/
mysql - sandboxes.

showCol utmTypel nf o |false boolean In SQL mode, display
column metadata for
result sets.

showWar ni ngs true boolean In SQL mode,

automatically display
SQL warnings if any.

useW zar ds true boolean Enable wizard mode.
ver bose 1 integer ranging from O to | Enable verbose output
4 to the console and set

a level of detail (see
Chapter 12, MySQL
Shell Logging and
Debug).

Options listed as “READ ONLY” cannot be modified.

Note
@ String values are case-sensitive.

The out put For mat option is now deprecated. Use r esul t For nat instead.

Using the \ opt i on Command

The MySQL Shell\ opt i on command enables you to query and change configuration options in all
modes, enabling configuration from SQL mode in addition to JavaScript and Python modes.

The command is used as follows:

e \option -h, --help [filter] - print help for options matching fil ter.

e \option -1, --list [--showorigin] -listall the options. - - show or i gi n augments the
list with information about how the value was last changed, possible values are:

Command | i ne

Conpi | ed defaul t
Configuration file
Envi ronment vari abl e

User defined

e \option option_nane - print the current value of the option.

e \option [--persist] option_nanme val ue or nane=val ue - set the value of the option
and if - - per si st is specified save it to the configuration file.

275

Using the shel | . opt i ons Configuration Interface

e \option --unset [--persist] <option_nane> -resetoption's value to default and if - -
per si st is specified, removes the option from the MySQL Shell configuration file.

Note
@ The value of opti on_nane andfi | t er are case-sensitive.

See Valid Configuration Options for a list of possible values for opt i on_nane.

Using the shel | . opt i ons Configuration Interface

The shel | . opt i ons object is available in JavaScript and Python mode to change MySQL Shell
option values. You can use specific methods to configure the options, or key-value pairs as follows:

MySQL JS > shel | . options['history.autoSave']=1
In addition to the key-value pair interface, the following methods are available:

» shell.options. set(optionNane, val ue) - setsthe opti onNane to val ue for this session,
the change is not saved to the configuration file.

» shell.options. setPersist(optionNane, val ue) - setsthe opti onNane to val ue
for this session, and saves the change to the configuration file. In Python mode, the method is
shel | . options. set _persi st.

e shel | . options. unset (opti onNane) - resets the opt i onNane to the default value for this
session, the change is not saved to the configuration file.

* shel | .options.unsetPersist(optionNane) - resets the opt i onNane to the default value
for this session, and saves the change to the configuration file. In Python mode, the method is
shel | . opti ons. unset _persi st.

Option names are treated as strings, and as such should be surrounded by ' characters. See Valid
Configuration Options for a list of possible values for opt i onNane.

Use the commands to configure MySQL Shell options as follows:
MySQL JS > shel | . options. set (' history. maxSi ze', 5000)

MySQL JS > shel | . options. set Persi st (' useW zards', 'true')
MySQL JS > shel | . options. set Persi st (' history. autoSave', 1)

Return options to their default values as follows:

MySQL JS > shel | . options. unset (' history. naxSi ze')
MySQL JS > shel | . options. unset Persi st (' useW zards')

Configuration File

The MySQL Shell configuration file stores the values of the option to ensure they are persisted across
sessions. Values are read at startup and when you use the persist feature, settings are saved to the
configuration file.

The location of the configuration file is the user configuration path and the file is named
options. j son. Assuming that the default user configuration path has not been overridden by defining
the environment variable M\YSQLSH USER CONFI G_HOVE, the path to the configuration file is:

« on Windows Y%APPDATA% My SQL\ nysql sh
* on Unix ~/ . mysqgl sh where ~ represents the user's home directory.

The configuration file is created the first time you customize a configuration option. This file is internally
maintained by MySQL Shell and should not be edited manually. If an unrecognized option or an option
with an incorrect value is found in the configuration file on startup, MySQL Shell exits with an error.

276

Appendix A MySQL Shell Command Reference

Table of Contents
A.1 mysqlsh — The MySQL Shelloiiiiii e e 277

This appendix describes the nysql sh command.

A.1 mysqglsh — The MySQL Shell

MySQL Shell is an advanced command-line client and code editor for MySQL. In addition to SQL,
MySQL Shell also offers scripting capabilities for JavaScript and Python. For information about using
MySQL Shell, see MySQL Shell 8.0. When MySQL Shell is connected to the MySQL Server through
the X Protocol, the X DevAPI can be used to work with both relational and document data, see Using
MySQL as a Document Store. MySQL Shell includes the AdminAPI that enables you to work with
InnoDB Cluster, InnoDB ClusterSet, and InnoDB ReplicaSet deployments; see Chapter 6, MySQL
AdminAPI.

Many of the options described here are related to connections between MySQL Shell and a MySQL
Server instance. See Section 4.3, “MySQL Shell Connections” for more information.

nysql sh supports the following command-line options.

Table A.1 mysqlsh Options

Option Name Description Introduced

-- Start of APl command line
integration

--auth-method Authentication method to use

--cluster Connect to an InnoDB cluster 8.0.4

--column-type-info Print metadata for columns in 8.0.14
result sets

--compress Compress all information sent 8.0.14
between client and server

--connect-timeout Connection timeout for global 8.0.13
session

--credential-store-helper The Secret Store helper for 8.0.12
passwords

--database The schema to use (alias for --
schema)

--dba Enable X Protocol on connection
with MySQL 5.7 server

--dba-log-sql Log SQL statements that 8.0.18
are executed by AdminAPI
operations

--dbpassword Password to use when
connecting to server

--dbuser MySQL user name to use when
connecting to server

--execute Execute the command and quit

--file File to process in batch mode

277

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html

mysqlsh — The MySQL Shell

Option Name Description Introduced

--force Continue in SQL and batch
modes even if errors occur

--get-server-public-key Request RSA public key from
server

--help Display help message and exit

--histignore Strings that are not added to the 8.0.3
history

--host Host on which MySQL server
instance is located

--import Import JSON documents froma |8.0.13
file or standard input

--interactive Emulate Interactive mode in
batch mode

--js, --javascript Start in JavaScript mode

--json Print output in JSON format

--log-file Log file location for this instance |8.0.27

--log-level Specify logging level

-ma Detect transport protocol for 8.0.3
session automatically

--mysql, -mc Create a session using classic 8.0.3
MySQL protocol

--mysql-plugin-dir Directory where the client-side |8.0.27
plugins are installed

--mysqlx, -mx Create a session using X 8.0.3
Protocol

--name-cache Enable automatic loading of 8.0.4
table names based on the active
default schema

--no-name-cache Disable autocompletion 8.0.4

--no-password No password is provided for this
connection

--no-wizard, --nw Disable the interactive wizards

--pager The external pager tool used to {8.0.13
display output

--password Password to use when
connecting to server (alias for --
dbpassword)

--passwords-from-stdin Read the password from stdin

--port TCP/IP port number for
connection

--py, --python Start in Python mode

--quiet-start Start without printing introductory
information

--recreate-schema Drop and recreate schema

--redirect-primary Ensure connection to an InnoDB [8.0.4

cluster's primary

278

mysqlsh — The MySQL Shell

Option Name Description Introduced
--redirect-secondary Ensure connection to an InnoDB
cluster's secondary
--result-format Set the output format for this 8.0.14
session
--save-passwords How passwords are stored in the |8.0.12
Secret Store
--schema The schema to use
--server-public-key-path Path name to file containing RSA
public key
--show-warnings Show warnings after each
statement if there are any (in
SQL mode)
--socket Unix socket file or Windows
named pipe to use (classic
MySQL protocol only)
--sql Start in SQL mode, auto-
detecting protocol to use for
connection
--sglc Start in SQL mode using
a classic MySQL protocol
connection
--sqlx Start in SQL mode using an X 8.0.3
Protocol connection
--ssl-ca File that contains list of trusted
SSL Certificate Authorities
--ssl-capath Directory that contains trusted
SSL Certificate Authority
certificate files
--ssl-cert File that contains X.509
certificate
--ssl-cipher Name of the SSL cipher to use
--ssl-crl File that contains certificate
revocation lists
--ssl-crlpath Directory that contains certificate
revocation list files
--ssl-key File that contains X.509 key
--ssl-mode Desired security state of
connection to server
--syslog Log interactive SQL statements |8.0.24
to the system logging facility
--tabbed Display output in tab separated
format
--table Display output in table format
--tls-version Permissible TLS protocol for
encrypted connections
--uri Session information in URI

format

279

mysqlsh — The MySQL Shell

Option Name Description Introduced
--user MySQL user name to use when
connecting to server (alias for --
dbuser)
--verbose Activate verbose output to the 8.0.17
console
--version Display version information and
exit
--vertical Display all SQL results vertically

--help,-?

Display a help message and exit.

Marks the end of the list of mysqlsh options and the start of a command and its arguments for
MySQL Shell's APl command line integration. You can execute methods of the MySQL Shell global
objects from the command line using this syntax:

nysql sh [options] -- object nmethod [argunents]
See Section 5.8, “API Command Line Integration” for more information.
- - aut h- net hod=net hod

Authentication method to use for the account. Depends on the authentication plugin used for the
account's password. For MySQL Shell connections using classic MySQL protocol, specify the name
of the authentication plugin, for example cachi ng_sha2_passwor d. For MySQL Shell connections
using X Protocol, specify one of the following options:

AUTO Let the library select the authentication method.

FALLBACK Let the library select the authentication method, but do not use
any authentication method that is not compatible with MySQL 5.7.

FROM_CAPABILITIES Let the library select the authentication method, using the
capabilities announced by the server instance.

MYSQL41 Use the challenge-response authentication protocol supported
by MySQL 4.1 and later, which does not send a plaintext
password. This option is compatible with accounts that use the
mysqgl _native_passwor d authentication plugin.

PLAIN Send a plaintext password for authentication. Use this option
only wih encrypted connections. This option can be used to
authenticate with cached credentials for an account that uses
the cachi ng_sha2_ passwor d authentication plugin, provided
there is an SSL connection. See Using X Plugin with the Caching
SHA-2 Authentication Plugin.

SHA256_MEMORY Authenticate using a hashed password stored in memory. This
option can be used to authenticate with cached credentials for an
account that uses the cachi ng_sha2_ passwor d authentication
plugin, where there is a non-SSL connection. See Using X Plugin
with the Caching SHA-2 Authentication Plugin.

For MySQL Shell connections using classic MySQL protocol, specify the name of the authentication
plugin used by the user account, for example cachi ng_sha2_passwor d (which is the default

280

https://dev.mysql.com/doc/refman/8.0/en/x-plugin-sha2-cache-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-sha2-cache-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-sha2-cache-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin-sha2-cache-plugin.html

mysqlsh — The MySQL Shell

for user accounts created in MySQL 8.0). MySQL Shell uses the MySQL client library for client-
side authentication for these connections. The following authentication methods require additional
configuration:

clear_text password The nysql _cl ear passwor d client-side plugin is required
for simple LDAP authentication. It is built in to the MySQL client
library, but for security it is not enabled by default. From MySQL
Shell 8.0.27, MySQL Shell enables and uses the plugin when you
specify it with the - - aut h- net hod=cl ear t ext password
connection option. This authentication type is only suitable for
a secure connection that uses SSL or sockets, so you must
configure the secure connection before using it. Note that with
the option ssl - node=pr ef err ed, the SSL connection is not
guaranteed, so a connection with this option set is not considered
to be an SSL connection. For more information, see Section 4.3.3,
“Using Encrypted Connections”.

authentication_ldap_sasl_client The aut henti cati on_| dap_sasl _cl i ent client-side plugin is
for SASL-based LDAP authentication, including GSSAPI/Kerberos
authentication. It is not built in to the MySQL client library, but it
is shipped in the MySQL Server packages. To load it, you must
use the - - nysql - pl ugi n-di r option (available from MySQL
Shell 8.0.27) to specify a path to the plugin in the MySQL Server
packages.

authentication_kerberos_client ~ The aut henti cati on_kerberos_cl i ent client-side plugin is
for Kerberos authentication. It is not built in to the MySQL client
library, but it is shipped in the MySQL Server packages. To load it,
you must use the - - mysql - pl ugi n-di r option (available from
MySQL Shell 8.0.27) to specify a path to the plugin in the MySQL
Server packages.

Cached ticket-granting tickets (TGTs) for Kerberos authentication are supported from MySQL 8.0.27
when the - - aut h- met hod option is used to specify the aut henti cati on_| dap_sasl| _client
oraut hentication_kerberos_client plugin, and the - - nysql - pl ugi n-di r option is used
to provide a path to the plugin. To use cached TGTs, do not specify a user and password in the
connection options. When you specify one of these plugins and do not specify a user and password,
MySQL Shell does not supply the system user name, does not prompt for a password, and does not
attempt to use the Secret Store helper to retrieve or store credentials.

For more information, see Section 4.3.4, “Using LDAP and Kerberos Authentication”.

--cluster

Ensures that the target server is part of an InnoDB Cluster and if so, sets the cl ust er global
variable to the cluster object.

--colum-type-info

In SQL mode, before printing the returned result set for a query, print metadata for each column in
the result set, such as the column type and collation.

The column type is returned as both the type used by MySQL Shell (Type), and the type used by the
original database (DBType). For MySQL Shell connections using classic MySQL protocol, DBType

is as returned by the protocol, and for X Protocol connections, DBType is inferred from the available
information. The column length (Lengt h) is returned in bytes.

281

mysqlsh — The MySQL Shell

--conpress[={required|preferred|disabled}],-C [{required]|preferred|
di sabl ed}]

Controls compression of information sent between the client and the server using this connection. In
MySQL Shell 8.0.14 through 8.0.19 this option is available for classic MySQL protocol connections
only, and does not use the options r equi r ed, pref err ed, and di sabl ed. In those releases,
when you specify - - conpr ess, compression is activated if possible. From MySQL Shell 8.0.20 it is
also available for X Protocol connections, and you can optionally specify r equi r ed, pr ef err ed,
or di sabl ed. When just - - conpr ess is specified from MySQL Shell 8.0.20, the meaning is - -
conpr ess=requi r ed. See Section 4.3.5, “Using Compressed Connections” for information on
using MySQL Shell's compression control in all releases.

--connect -ti neout =ns

Configures how long MySQL Shell waits (in milliseconds) to establish a global session specified
through command-line arguments.

--credenti al - st ore-hel per=hel per

The Secret Store Helper that is to be used to store and retrieve passwords. See Section 4.4,
“Pluggable Password Store”.

- - dat abase=nane, - D nane
The default schema to use. This is an alias for - - schena.
- - dba=enabl eXPr ot ocol

Enable X Plugin on connection with a MySQL 5.7 server, so that you can use X Protocol connections
for subsequent connections. Requires a connection using classic MySQL protocol. Not relevant for
MySQL 8.0 servers, which have X Plugin enabled by default.

--dba-10g-sql [=0] 1] 2]

Log SQL statements that are executed by AdminAPI operations (excluding sandbox operations).
By default, this category of statement is not written to the MySQL Shell application log file or sent
to the console as verbose output, even when the - -1 og- | evel and - - ver bose options are set.
The value of the option is an integer in the range from 0 to 2. 0 does not log or display this category
of statement, which is the default behavior if you do not specify the option. 1 logs SQL statements
that are executed by AdminAPI operations, with the exceptions of SELECT statements and SHOW
statements (this is the default setting if you specify the option on the command line without a value).
2 logs SQL statements that are executed by regular AdminAPI operations in full, including SELECT
and SHOWSstatements. See Chapter 12, MySQL Shell Logging and Debug for more information.

- - dbpasswor d[=passwor d]

Deprecated in version 8.0.13 of MySQL Shell. Use - - passwor d[=passwor d] instead.
- -dbuser =user nane

Deprecated in version 8.0.13 of MySQL Shell. Use - - user =user _nane instead.
- - execut e=command, - e conmand

Execute the command using the currently active language and quit. This option is mutually exclusive
withthe --fil e=fil| e_nane option.

--file=file_nane,-f file_nane

Specify a file to process in Batch mode. Any options specified after this are used as arguments of the
processed file.

--force

282

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html

mysqlsh — The MySQL Shell

Continue processing in SQL and Batch modes even if errors occur.
--histignore=strings

Specify strings that are not added to the MySQL Shell history. Strings are separated by a colon.
Matching is case insensitive, and the wildcards * and ? can be used. The default ignored strings are
specified as “* | DENTI FI ED* : * PASSWORD* ”. See Section 5.5, “Code History”.

--host =host _nane, - h host _nane

Connect to the MySQL server on the given host. On Windows, if you specify - - host =. or-h .
(giving the host name as a period), MySQL Shell connects using the default named pipe (which has
the name MySQL), or an alternative named pipe that you specify using the - - socket option.

--get-server-public-key
MySQL Shell equivalent of - - get - ser ver - publ i c- key.

If - -server-public-key-pat h=fil e_nane is given and specifies a valid public key file, it takes
precedence over - - get - server - publ i c- key.

Important
A Only supported with classic MySQL protocol connections.

See Caching SHA-2 Pluggable Authentication.

--inport

Import JSON documents from a file or standard input to a MySQL Server collection or relational
table, using the JSON import utility. For instructions, see Section 11.2, “JSON Import Utility”.

--interactive[=full],-i

Emulate Interactive mode in Batch mode.
--js,--javascript

Start in JavaScript mode.
--json[={off|pretty|raw}]

Controls JSON wrapping for MySQL Shell output from this session. This option is intended for
interfacing MySQL Shell with other programs, for example as part of testing. For changing query
results output to use the JSON format, see - -resul t - f or mat .

When the - - | son option has no value or a value of pr et t y, the output is generated as pretty-
printed JSON. With a value of r aw, the output is generated in raw JSON format. In any of these
cases, the - -resul t - f or mat option and its aliases and the value of the r esul t For nat MySQL
Shell configuration option are ignored. With a value of of f , JSON wrapping does not take place,
and result sets are output as normal in the format specified by the - - r esul t - f or mat option or the
resul t For mat configuration option.

--log-file=path

Change the location of the MySQL Shell application log file nysql sh. | og for this MySQL Shell
instance. The default location for the application log file is the user configuration path, which defaults
to %APPDATA% My SQL\ nmysqgl sh\ on Windows or ~/ . nysql sh/ on Unix. You can override

the user configuration path for all MySQL Shell instances by defining the environment variable
MYSQLSH _USER_CONFI G_HOVE. The - - | og- f i | e option applies to the individual MySQL Shell
instance, meaning that different instances can write to different locations.

283

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_get-server-public-key
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html

mysqlsh — The MySQL Shell

--10g-1evel =N

Change the logging level for the MySQL Shell application log file mysqgl sh. | og, or disable logging
to the file. The option requires a value, which can be either an integer in the range from 1 to 8, or one
of none, i nternal,error,warning,info, debug, debug2, or debug3. Specifying 1 or none
disables logging to the application log file. Level 5 (i nf 0) is the default if you do not specify this
option. See Chapter 12, MySQL Shell Logging and Debug.

-ma

Deprecated in version 8.0.13 of MySQL Shell. Automatically attempts to use X Protocol to create the
session's connection, and falls back to classic MySQL protocol if X Protocol is unavailable.

--nysql,--nc

Sets the global session created at start up to to use a classic MySQL protocol connection. The - - nt
option with two hyphens replaces the previous single hyphen - nt option from MySQL Shell 8.0.13.

--nysql - pl ugi n-di r=path

Sets a non-persistent path to the client-side authentication plugins by overriding the value of the
shel | . options. nysql Pl ugi nDi r setting. Client-side plugins are shipped in the MySQL Server
packages and can be located relative to the MySQL base directory (the value of the basedi r
system variable). For example:

e C\program files\nysql\nysqgl Server 8.0\IliDb\pluginonWindows host types
e fusr/local/nmysqgl/lib/pluginon Linux host types

For a list of the client authentication plugins that ship with the server, see Available Authentication
Plugins.

--nysql x, - - nx

Sets the global session created at start up to use an X Protocol connection. The - - nx option with
two hyphens replaces the previous single hyphen - nx option from MySQL Shell 8.0.13.

- - name- cache
Enable automatic loading of table names based on the active default schema.
--no- nane-cache, - A

Disable loading of table names for autocompletion based on the active default schema and the
DevAPI db object. Use \ r ehash to reload the name information manually.

- -no- passwor d

When connecting to the server, if the user has a passwordless account, which is insecure and not
recommended, or if socket peer-credential authentication is in use (for Unix socket connections),
you must use - - no- passwor d to explicitly specify that no password is provided and the password
prompt is not required.

--no-w zard, - nw

Disables the interactive wizards provided by operations such as creating connections,

dba. confi gurel nstance(), C uster.reboot C ust er FronConpl et eCut age() and so on.
Use this option when you want to script MySQL Shell and not have the interactive prompts displayed.
For more information see Section 5.6, “Batch Code Execution” and Section 5.8, “API Command Line
Integration”.

- - pager =name

284

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_basedir
https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html#pluggable-authentication-available-plugins
https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html#pluggable-authentication-available-plugins

mysqlsh — The MySQL Shell

The external pager tool used by MySQL Shell to display text output for statements executed in
SQL mode and other selected commands such as online help. If you do not set a pager, the pager
specified by the PAGER environment variable is used. See Section 4.6, “Using a Pager”.

- - passwords-fromstdin

Read the password from standard input, rather than from the terminal. This option does not affect
any other password behaviors, such as the password prompt.

- - passwor d[=passwor d] , - ppassword

The password to use when connecting to the server. The maximum password length that is accepted
for connecting to MySQL Shell is 128 characters.

e --passwor d=passwor d (- ppasswor d) with a value supplies a password to be used for the
connection. With the long form - - passwor d=, you must use an equals sign and not a space
between the option and its value. With the short form - p, there must be no space between the
option and its value. If a space is used in either case, the value is not interpreted as a password
and might be interpreted as another connection parameter.

Specifying a password on the command line should be considered insecure. See End-User
Guidelines for Password Security. You can use an option file to avoid giving the password on the
command line.

e --passwor d with no value and no equal sign, or - p without a value, requests the password
prompt.

e - - passwor d= with an empty value has the same effect as - - no- passwor d, which specifies
that the user is connecting without a password. When connecting to the server, if the user has
a passwordless account, which is insecure and not recommended, or if socket peer-credential
authentication is in use (for Unix socket connections), you must use one of these methods to
explicitly specify that no password is provided and the password prompt is not required.

--port=port_num-P port_num
The TCP/IP port number to use for the connection. The default is port 33060.

--py, - - python

Start in Python mode.
--pym

Execute the specified Python module as a script in MySQL Shell's Python mode. - - pymworks in the
same way as Python's - mcommand line option. This option is available from MySQL Shell 8.0.22.

--quiet-start[=1] 2]

Start without printing introductory information. MySQL Shell normally prints information about the
product, information about the session (such as the default schema and connection ID), warning
messages, and any errors that are returned during startup and connection. When you specify - -
qui et - st art with no value or a value of 1, information about the MySQL Shell product is not
printed, but session information, warnings, and errors are printed. With a value of 2, only errors are
printed.

--recreate-schemn

Drop and recreate the schema that was specified in the connection options, either as part of a URI-
like connection string or using the - - schenm, - - dat abase, or - D option. The schema is deleted if it
exists.

285

https://dev.mysql.com/doc/refman/8.0/en/password-security-user.html
https://dev.mysql.com/doc/refman/8.0/en/password-security-user.html

mysqlsh — The MySQL Shell

--redirect-primary

Ensures that the target server is part of an InnoDB Cluster or InnoDB ReplicaSet and if it is not the
primary, finds the primary and connects to it. MySQL Shell exits with an error if any of the following is
true when using this option:

< No instance is specified

* On an InnoDB Cluster, Group Replication is not active
* InnoDB Cluster metadata does not exist

e There is no quorum

--replicaset

Ensures that the target server belongs to an InnoDB ReplicaSet, and if so, populates the r s global
variable with the InnoDB ReplicaSet. You can then administer the InnoDB ReplicaSet using the r s
global variable, for example by issuing r s. st at us() .

--redirect-secondary

Ensures that the target server is part of a single-primary InnoDB Cluster or InnoDB ReplicaSet and if
it is not a secondary, finds a secondary and connects to it. MySQL Shell exits with an error if any of
the following is true when using this option:

¢ On an InnoDB Cluster, Group Replication is not active

InnoDB Cluster metadata does not exist

e There is no quorum

The cluster is not single-primary and is running in multi-primary mode
« There is no secondary available, for example because there is just one server instance

--result-format={tabl e| tabbed| vertical|json|json/pretty|ndjson|json/raw
j son/ array}

Set the value of the r esul t For mat MySQL Shell configuration option for this session. Formats are
as follows:

table The default for interactive mode, unless another value has been
set persistently for the r esul t For mat configuration option in the
configuration file, in which case that default applies. The - -t abl e
alias can also be used.

tabbed The default for batch mode, unless another value has been set
persistently for the r esul t For mat configuration option in the

286

mysqlsh — The MySQL Shell

configuration file, in which case that default applies. The - -
t abbed alias can also be used.

vertical Produces output equivalent to the \ Gterminator for an SQL query.
The --vertical or-Ealiases can also be used.

json or json/pretty Produces pretty-printed JSON.
ndjson or json/raw Produces raw JSON delimited by newlines.
json/array Produces raw JSON wrapped in a JSON array.

If the - -] son command line option is used to activate JSON wrapping for output for the session, the
--resul t-fornmat option and its aliases and the value of the r esul t For mat configuration option
are ignored.

- - save- passwor ds={ al ways| pr onpt | never}

Controls whether passwords are automatically stored in the secret store. al ways means passwords
are always stored unless they are already in the store or the server URL is excluded by a filter.
never means passwords are never stored. pr onpt , which is the default, means users are asked
whether to store the password or not. See Section 4.4, “Pluggable Password Store”.

- -schema=nane, - D nane

The default schema to use.
--server-public-key-path=file_name

MySQL Shell equivalent of - - ser ver - publ i c- key- pat h.

If - -server-public-key-pat h=fil e_nane is given and specifies a valid public key file, it takes
precedence over - - get - server - publ i c- key.

Important
A Only supported with classic MySQL protocol connections.

See cachi ng_sha2_passwor d plugin Caching SHA-2 Pluggable Authentication.
--show war ni ngs={true| fal se}

When true is specified, which is the default, in SQL mode, MySQL Shell displays warnings after each
SQL statement if there are any. If false is specified, warning are not displayed.

--socket [=path],-S [path]

On Unix, when a path is specified, the path is the name of the Unix socket file to use for the
connection. If you specify - - socket with no value and no equal sign, or - S without a value, the
default Unix socket file for the appropriate protocol is used.

On Windows, the path is the name of the named pipe to use for the connection. The pipe name is
not case-sensitive. On Windows, you must specify a path, and the - - socket option is available for
classic MySQL protocol sessions only.

You cannot specify a socket if you specify a port or a host name other than | ocal host on Unix or a
period (.) on Windows.

--sql

Start in SQL mode, auto-detecting the protocol to use if it is not specified as part of the connection
information. When the protocol to use is not specified, defaults to an X Protocol connection, falling

287

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_server-public-key-path
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html

mysqlsh — The MySQL Shell

back to a classic MySQL protocol connection. To force a connection to use a specific protocol
see the - - sqgl x or - - sgl c options. Alternatively, specify a protocol to use as part of a URI-like
connection string or use the - - port option. See Section 4.3, “MySQL Shell Connections” and
MySQL Shell Ports for more information.

--sqglc

Start in SQL mode forcing the connection to use classic MySQL protocol, for example to use MySQL
Shell with a server that does not support X Protocol. If you do not specify the port as part of the
connection, when you provide this option MySQL Shell uses the default classic MySQL protocol

port which is usually 3306. The port you are connecting to must support classic MySQL protocol,

so for example if the connection you specify uses the X Protocol default port 33060, the connection
fails with an error. See Section 4.3, “MySQL Shell Connections” and MySQL Shell Ports for more
information.

--sql x

Start in SQL mode forcing the connection to use X Protocol. If you do not specify the port as part of
the connection, when you provide this option MySQL Shell uses the default X Protocol port which

is usually 33060. The port you are connecting to must support X Protocol, so for example if the
connection you specify uses the classic MySQL protocol default port 3306, the connection fails with
an error. See Section 4.3, “MySQL Shell Connections” and MySQL Shell Ports for more information.

--ssl|*

Options that begin with - - ss| specify whether to connect to the server using SSL and indicate
where to find SSL keys and certificates. The mysql sh SSL options function in the same way as
the SSL options for MySQL Server, see Command Options for Encrypted Connections for more
information.

nysql sh accepts these SSL options: - - ssl - node, - -ssl -ca, - -ssl -capat h, --ssl -cert, --
ssl -ci pher,--ssl-crl,--ssl-crlpath,--ssl-key,--tls-version.

--sysl og

Send SQL statements that you issue in MySQL Shell's SQL mode to the operating system’s system
logging facility (sys| og on Unix, or the Windows Event Log). System logging for SQL statements
only takes place when MySQL Shell is started in interactive mode, so either a normal start or a
start with the - - i nt er act i ve option. It does not take place if the - - execut e or - - fi | e options
are used at startup to run mysql sh in batch mode. See Section 12.3, “System Logging for SQL
Statements” for more information.

- -t abbed

Display results in tab separated format in interactive mode. The default for that mode is table format.
This option is an alias of the - - r esul t - f or mat =t abbed option.

--table

Display results in table format in batch mode. The default for that mode is tab separated format. This
option is an alias of the - - resul t - f or nat =t abl e option.

--uri=str

Create a connection upon startup, specifying the connection options in a URI-like string as described
at Connecting to the Server Using URI-Like Strings or Key-Value Pairs.

--user=user_nane,-u user_nane
The MySQL user name to use when connecting to the server.

--verbose[=0| 1| 2| 3] 4]

288

https://dev.mysql.com/doc/mysql-port-reference/en/mysql-ports-reference-tables.html#mysql-shell-ports
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-ports-reference-tables.html#mysql-shell-ports
https://dev.mysql.com/doc/mysql-port-reference/en/mysql-ports-reference-tables.html#mysql-shell-ports
https://dev.mysql.com/doc/refman/5.7/en/connection-options.html#option_general_ssl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-ca
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-capath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cert
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-cipher
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crl
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-crlpath
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-key
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_tls-version
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

mysqlsh — The MySQL Shell

Activate verbose output to the console and specify the level of detail. The value is an integer in the
range from 0 to 4. 0 displays no messages, which is the default verbosity setting when you do not
specify the option. 1 displays error, warning and informational messages (this is the default setting if
you specify the option on the command line without a value). 2, 3, and 4 add higher levels of debug
messages. See Chapter 12, MySQL Shell Logging and Debug for more information.

--version,-V
Display the version of MySQL Shell and exit.

--vertical,-E

Display results vertically, as when the \ Gterminator is used for an SQL query. This option is an alias
ofthe--result-format=vertical option.

289

290

	MySQL Shell 8.0
	Table of Contents
	Chapter 1 MySQL Shell Features
	Chapter 2 Installing MySQL Shell
	2.1 Installing MySQL Shell on Microsoft Windows
	2.2 Installing MySQL Shell on Linux
	2.3 Installing MySQL Shell on macOS

	Chapter 3 Using MySQL Shell Commands
	3.1 MySQL Shell Commands

	Chapter 4 Getting Started with MySQL Shell
	4.1 Starting MySQL Shell
	4.2 MySQL Shell Sessions
	4.2.1 Creating the Session Global Object While Starting MySQL Shell
	4.2.2 Creating the Session Global Object After Starting MySQL Shell
	4.2.3 Scripting Sessions in JavaScript and Python Mode

	4.3 MySQL Shell Connections
	4.3.1 Connecting using Individual Parameters
	4.3.2 Connecting using Unix Sockets and Windows Named Pipes
	4.3.3 Using Encrypted Connections
	4.3.4 Using LDAP and Kerberos Authentication
	4.3.5 Using Compressed Connections
	4.3.5.1 Compression Control For MySQL Shell 8.0.20 And Later
	4.3.5.2 Compression Control For MySQL Shell 8.0.14 Through 8.0.19

	4.4 Pluggable Password Store
	4.4.1 Pluggable Password Configuration Options
	4.4.2 Working with Credentials

	4.5 MySQL Shell Global Objects
	4.6 Using a Pager

	Chapter 5 MySQL Shell Code Execution
	5.1 Active Language
	5.2 Interactive Code Execution
	5.3 Code Autocompletion
	5.4 Editing Code
	5.5 Code History
	5.6 Batch Code Execution
	5.7 Output Formats
	5.7.1 Table Format
	5.7.2 Tab Separated Format
	5.7.3 Vertical Format
	5.7.4 JSON Format Output
	5.7.5 JSON Wrapping
	5.7.6 Result Metadata

	5.8 API Command Line Integration
	5.8.1 Command Line Integration Overview
	5.8.2 Command Line Integration Details
	5.8.2.1 Command Line Integration for MySQL Shell API Functions
	5.8.2.2 Defining Arguments
	5.8.2.3 Data Type Handling
	User Data Types
	Data Type Resolution

	5.8.2.4 Command Line Help
	5.8.2.5 Support for MySQL Shell Plugins

	5.9 JSON Integration

	Chapter 6 MySQL AdminAPI
	6.1 Using MySQL AdminAPI
	6.1.1 Installing AdminAPI Software Components
	6.1.2 Using Instances Running MySQL 5.7
	6.1.3 Configuring the Host Name
	6.1.4 Connecting to Server Instances
	6.1.5 Persisting Settings
	6.1.6 Retrieving a Handler Object
	6.1.7 Creating User Accounts for Administration
	6.1.8 Verbose Logging
	6.1.9 Finding the Primary
	6.1.10 Scripting AdminAPI

	6.2 AdminAPI MySQL Sandboxes
	6.2.1 Deploying Sandbox Instances
	6.2.2 Managing Sandbox Instances

	6.3 Tagging Metadata
	6.4 Using MySQL Router with AdminAPI, InnoDB Cluster, and InnoDB ReplicaSet
	6.4.1 Bootstrapping MySQL Router
	6.4.2 Configuring the MySQL Router User
	6.4.3 Deploying MySQL Router
	6.4.4 Using ReplicaSets with MySQL Router
	6.4.5 Testing InnoDB Cluster High Availability
	6.4.6 Working with a Cluster's Routers

	Chapter 7 MySQL InnoDB Cluster
	7.1 MySQL InnoDB Cluster Requirements
	7.2 Deploying a Production InnoDB Cluster
	7.2.1 Deploying a New Production InnoDB Cluster
	7.2.2 Using MySQL Clone with InnoDB Cluster
	7.2.2.1 Working with a Cluster that uses MySQL Clone

	7.2.3 Adopting a Group Replication Deployment

	7.3 Monitoring InnoDB Cluster
	7.4 Working with Instances
	7.5 Working with InnoDB Cluster
	7.6 Configuring InnoDB Cluster
	7.7 Troubleshooting InnoDB Cluster
	7.8 Upgrading an InnoDB Cluster
	7.8.1 Rolling Upgrades
	7.8.2 Upgrading InnoDB Cluster Metadata
	7.8.3 Troubleshooting InnoDB Cluster Upgrades

	7.9 InnoDB Cluster Tips
	7.10 InnoDB Cluster Limitations

	Chapter 8 MySQL InnoDB ClusterSet
	8.1 InnoDB ClusterSet Requirements
	8.2 InnoDB ClusterSet Limitations
	8.3 User Accounts for InnoDB ClusterSet
	8.4 Deploying InnoDB ClusterSet
	8.5 Integrating MySQL Router With InnoDB ClusterSet
	8.6 InnoDB ClusterSet Status and Topology
	8.7 InnoDB ClusterSet Controlled Switchover
	8.8 InnoDB ClusterSet Emergency Failover
	8.9 InnoDB ClusterSet Repair and Rejoin
	8.9.1 Inconsistent Transaction Sets (GTID Sets) in InnoDB ClusterSet Clusters
	8.9.2 Repairing Member Servers and Clusters in an InnoDB ClusterSet
	8.9.3 Removing a Cluster from an InnoDB ClusterSet
	8.9.4 Rejoining a Cluster to an InnoDB ClusterSet

	Chapter 9 MySQL InnoDB ReplicaSet
	9.1 Deploying InnoDB ReplicaSet
	9.2 Adding Instances to a ReplicaSet
	9.3 Adopting an Existing Replication Set Up
	9.4 Working with InnoDB ReplicaSet

	Chapter 10 Extending MySQL Shell
	10.1 Reporting with MySQL Shell
	10.1.1 Creating MySQL Shell Reports
	10.1.2 Registering MySQL Shell Reports
	10.1.3 Persisting MySQL Shell Reports
	10.1.4 Example MySQL Shell Report
	10.1.5 Running MySQL Shell Reports
	10.1.6 Built-in MySQL Shell Reports
	10.1.6.1 Built-in MySQL Shell Report: Query
	10.1.6.2 Built-in MySQL Shell Report: Threads
	10.1.6.3 Built-in MySQL Shell Report: Thread

	10.2 Adding Extension Objects to MySQL Shell
	10.2.1 Creating User-Defined MySQL Shell Global Objects
	10.2.2 Creating Extension Objects
	10.2.3 Persisting Extension Objects
	10.2.4 Example MySQL Shell Extension Objects

	10.3 MySQL Shell Plugins
	10.3.1 Creating MySQL Shell Plugins
	10.3.1.1 Common Code and Packages

	10.3.2 Creating Plugin Groups
	10.3.3 Example MySQL Shell Plugins

	Chapter 11 MySQL Shell Utilities
	11.1 Upgrade Checker Utility
	11.2 JSON Import Utility
	11.2.1 Importing JSON documents with the mysqlsh command interface
	11.2.2 Importing JSON documents with the --import command
	11.2.3 Conversions for representations of BSON data types

	11.3 Table Export Utility
	11.4 Parallel Table Import Utility
	11.5 Instance Dump Utility, Schema Dump Utility, and Table Dump Utility
	11.6 Dump Loading Utility

	Chapter 12 MySQL Shell Logging and Debug
	12.1 Application Log
	12.2 Verbose Output
	12.3 System Logging for SQL Statements
	12.4 Logging AdminAPI Operations

	Chapter 13 Customizing MySQL Shell
	13.1 Working With Startup Scripts
	13.2 Adding Module Search Paths
	13.2.1 Module Search Path Environment Variables
	13.2.2 Module Search Path Variable in Startup Scripts

	13.3 Customizing the Prompt
	13.4 Configuring MySQL Shell Options

	Appendix A MySQL Shell Command Reference
	A.1 mysqlsh — The MySQL Shell

