MySQL Connector/C++ 8.0 Developer Guide

Abstract

This manual describes how to install and configure MySQL Connector/C++ 8.0, which provides C++ and plain
C interfaces for communicating with MySQL servers, and how to use Connector/C++ to develop database
applications.

Connector/C++ 8.0 is highly recommended for use with MySQL Server 8.0 and 5.7. Please upgrade to Connector/
C++ 8.0.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++ Release Notes.
For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Licensing information. This product may include third-party software, used under license. If you are using

a Commercial release of MySQL Connector/C++, see the MySQL Connector/C++ Commercial Release License
Information User Manual for licensing information, including licensing information relating to third-party software
that may be included in this Commercial release. If you are using a Community release of MySQL Connector/C+
+, see the MySQL Connector/C++ Community Release License Information User Manual for licensing information,
including licensing information relating to third-party software that may be included in this Community release.

Document generated on: 2021-08-10 (revision: 70585)

https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://forums.mysql.com
https://downloads.mysql.com/docs/licenses/connector-cpp-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-cpp-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/connector-cpp-8.0-gpl-en.pdf

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
1 INntroduction 10 CONNECIOICH .ouuiiiiiiit ettt ettt e ettt e e et e e e e et e e e eata e eeees 1
2 ODtaiNING CONNECIONCH ..outiiiiiii ettt ettt e et e et e e e et eaeaaa s 5
3 Installing Connector/C++ from a Binary DiStriDULIONcoouuiiiiiiiiiiii e 7
4 Installing ConNECLOr/CH+ frOM SOUICEuiiiiiiiii ettt e et e eeeaa e eeees 11
4.1 Source Installation System PrereqUISITESocivuueiiiiiiiieiiii e 11

4.2 Obtaining and Unpacking a Connector/C++ Source Distributioncccocoevviiiiiiiiiinnee. 12

4.3 Installing ConNector/C++ frOM SOUICEcccuuuiiiiiiiiieeiei ettt e et 12

4.4 Connector/C++ Source-Configuration OPLiONSooiiiiiiiiiiiii e 15

5 Building Connector/C++ APPIICALIONSceeueiiiiiii ettt e 19
5.1 Building Connector/C++ Applications: General Considerationscccccevveveiiinieeiiiinneeens 19

5.2 Building Connector/C++ Applications: Platform-Specific Considerationscc.c...ccoue... 25
5.2.1 WINAOWS NOES ...ooeiiiiiiiiii ettt ettt ettt e et e e e e e ananns 25

5.2.2 MACOS NOESiitiiiiiiiiiiie ittt ettt et et e e et e e e ene e 29

5.2.3 SOIAIMS NOTES ...ttt 30

6 CONNECIOI/CHt KNOWN ISSUES ...ttt ettt et e e et e e et eeeeba s 31
7 CONNECIONCHT SUPPOIT ..ottt ettt e e ettt e et et e e et b e e et b e e e et e e e ena s 33
a0 = TSP SPPPTT 35

Preface and Legal Notices

This manual describes how to install and configure MySQL Connector/C++ 8.0, and how to use it to
develop database applications.

Legal Notices

Copyright © 2008, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone
licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation” pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other
Oracle data, is subject to the rights and limitations specified in the license contained in the applicable
contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the
applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

Documentation Accessibility

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at

https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Vi

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Chapter 1 Introduction to Connector/C++

MySQL Connector/C++ 8.0 is a MySQL database connector for C++ applications that connect to
MySQL servers. Connector/C++ can be used to access MySQL servers that implement a document
store, or in a traditional way using SQL statements. The preferred development environment

for Connector/C++ 8.0 is to enable development of C++ applications using X DevAPI, or plain

C applications using X DevAPI for C, but Connector/C++ 8.0 also enables development of C++
applications that use the legacy JDBC-based API from Connector/C++ 1.1.

Connector/C++ applications that use X DevAPI or X DevAPI for C require a MySQL server that has X
Plugin enabled. Connector/C++ applications that use the legacy JDBC-based API neither require nor
support X Plugin.

For more detailed requirements about required MySQL versions for Connector/C++ applications, see
Platform Support and Prerequisites.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

» Connector/C++ Benefits
* X DevAPI and X DevAPI for C
* Legacy JDBC API and JDBC Compatibility

» Platform Support and Prerequisites

Connector/C++ Benefits

MySQL Connector/C++ offers the following benefits for C++ users compared to the MySQL C API
provided by the MySQL client library:

» Convenience of pure C++.
» Support for these application programming interfaces:
* X DevAPI
* X DevAPI for C
* Legacy JDBC 4.0-based API
» Support for the object-oriented programming paradigm.
* Reduced development time.
* Licensed under the GPL with the FLOSS License Exception.

 Available under a commercial license upon request.

X DevAPI and X DevAPI for C

Connector/C++ implements X DevAPI, which enables connecting to MySQL servers that implement a
document store with X Plugin. X DevAPI also enables applications to execute SQL statements.

Connector/C++ also implements a similar interface called X DevAPI for C for use by applications
written in plain C.

For general information about X DevAPI, see X DevAPI User Guide. For reference information specific
to the Connector/C++ implementation of X DevAPI and X DevAPI for C, see MySQL Connector/C++ X
DevAPI Reference in the X DevAPI section of MySQL Documentation.

https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/refman/8.0/en/document-store.html
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/

Legacy JDBC API and JDBC Compatibility

Legacy JDBC APl and JDBC Compatibility

Connector/C++ implements the JDBC 4.0 API, if built to include the legacy JDBC connector:
» Connector/C++ binary distributions include the JDBC connector.

« If you build Connector/C++ from source, the JDBC connector is not built by default, but can be
included by enabling the W TH_JDBC CVake option. See Chapter 4, Installing Connector/C++ from
Source.

The Connector/C++ JDBC API is compatible with the JDBC 4.0 API. Connector/C++ does

not implement the entire JDBC 4.0 API, but does feature these classes: Connect i on,

Dat abaseMet aDat a, Dri ver, Prepar edSt at enent , Resul t Set, Resul t Set Met aDat a,
Savepoi nt, St at enent .

The JDBC 4.0 API defines approximately 450 methods for the classes just mentioned. Connector/C++
implements approximately 80% of these.

Note

The legacy JDBC connector in Connector/C++ 8.0 is based on the connector
provided by Connector/C++ 1.1. For more information about using the JDBC
API in Connector/C++ 8.0, see MySQL Connector/C++ 1.1 Developer Guide.

Platform Support and Prerequisites

To see which platforms are supported, visit the Connector/C++ downloads page.

On Windows platforms, Commercial and Community Connector/C++ distributions require the Visual
C++ Redistributable for Visual Studio. The Redistributable is available at the Visual Studio Download
Center; install it before installing Connector/C++. The acceptable Redistributable versions depend on
your Connector/C++ version:

» Connector/C++ 8.0.19 and higher: VC++ Redistributable 2017 or higher.
» Connector/C++ 8.0.14 to 8.0.18: VC++ Redistributable 2015 or higher.

The following requirements apply to building and running Connector/C++ applications, and to building
Connector/C++ itself if you build it from source:

» To run Connector/C++ applications, the MySQL server requirements depend on the API the
application uses:

« Connector/C++ applications that use X DevAPI or X DevAPI for C require a server from MySQL
8.0 (8.0.11 or higher) or MySQL 5.7 (5.7.12 or higher), with X Plugin enabled. For MySQL 8.0,
X Plugin is enabled by default. For MySQL 5.7, X Plugin must be enabled explicitly. (Some X
Protocol features may not work with MySQL 5.7.)

« Applications that use the JDBC API can use a server from MySQL 5.6 or higher. X Plugin is
neither required nor supported.

* To build Connector/C++ applications:
e The MySQL version does not apply.

« On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version and the type of linking you use:

» Connector/C++ 8.0.20 and higher: Same as Connector/C++ 8.0.19, with the addition that binary
distributions are also compatible with MSVC 2017 using the static X DevAPI connector library.

https://dev.mysql.com/doc/connector-cpp/1.1/en/
https://dev.mysql.com/downloads/connector/cpp/
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/
https://dev.mysql.com/doc/refman/8.0/en/x-plugin.html

Platform Support and Prerequisites

This means that binary distributions are fully compatible with MSVC 2019, and fully compatible
with MSVC 2017 with the exception of the static legacy (JDBC) connector library.

» Connector/C++ 8.0.19: Connector/C++ binary distributions are compatible with projects built
using MSVC 2019 (using either dynamic or static connector libraries) or MSVC 2017 (using
dynamic connector libraries).

» Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.
« Connector/C++ prior to 8.0.14; MSVC 2015.
* To build Connector/C++ from source:
e The MySQL C API client library may be required:

« For Connector/C++ built without the JDBC connector (which is the default), the client library is
not needed.

e To build Connector/C++ with the JDBC connector, configure Connector/C++ with the
W TH_JDBC CMake option enabled. In this case, the JDBC connector requires a client library
from MySQL 8.0 (8.0.11 or higher) or MySQL 5.7 (5.7.9 or higher).

¢ On Windows, Microsoft Visual Studio is required. The acceptable MSVC versions depend on your
Connector/C++ version:

e Connector/C++ 8.0.19 and higher; MSVC 2019 or 2017.
« Connector/C++ 8.0.14 to 8.0.18: MSVC 2017 or 2015.

« Connector/C++ prior to 8.0.14: MSVC 2015.

Chapter 2 Obtaining Connector/C++

Connector/C++ binary and source distributions are available, in platform-specific packaging formats.
To obtain a distribution, visit the Connector/C++ downloads page. It is also possible to clone the
Connector/C++ Git source repository.

» Connector/C++ binary distributions are available for Microsoft Windows, and for Unix and Unix-like
platforms. See Chapter 3, Installing Connector/C++ from a Binary Distribution.

» Connector/C++ source distributions are available as compressed t ar files or Zip archives and can
be used on any supported platform. See Chapter 4, Installing Connector/C++ from Source.

» The Connector/C++ source code repository uses Git and is available at GitHub. See Chapter 4,
Installing Connector/C++ from Source.

https://dev.mysql.com/downloads/connector/cpp/

Chapter 3 Installing Connector/C++ from a Binary Distribution

To obtain a Connector/C++ binary distribution, visit the Connector/C++ downloads page.

For some platforms, Connector/C++ binary distributions are available in platform-specific packaging
formats. Binary distributions are also available in more generic format, in the form of compressed t ar
files or Zip archives.

For descriptions here that refer to documentation files, those files have names such as

CONTRI BUTI NG. nd, READVE. md, README. t xt , READMVE, LI CENSE. t xt , LI CENSE, | NFO_BI N,
and | NFO_SRC. (Prior to Connector/C++ 8.0.14, the information file is BUI LDI NFQO. t xt rather than
| NFO_BI Nand | NFO_SRC))

Installation on Windows
Installation on Linux
Installation on macOS
Installation on Solaris

Installation Using a tar or Zip Package

Installation on Windows

Important

On Windows platforms, Commercial and Community Connector/C++
distributions require the Visual C++ Redistributable for Visual Studio.
The Redistributable is available at the Visual Studio Download Center;
install it before installing Connector/C++. For information about which VC
++ Redistributable versions are acceptable, see Platform Support and
Prerequisites.

These methods of installing binary distributions are available on Windows:

MySQL Installer. The simplest and recommended method of installing Connector/C++ on
Windows platforms is to download MySQL Installer and let it install and configure all the MySQL
products on your system. For details, see MySQL Installer for Windows.

Windows MSl installer. As of Connector/C++ 8.0.12, an MSI Installer is available for Windows.
To use the MSI Installer (. nsi file), launch it and follow the prompts in the screens it presents. The
MSI Installer can install components for these connectors:

» The connector for X DevAPI (including X DevAPI for C).
< The connector for the legacy JDBC API.
For each connector, there are two components:

e The DLL component includes the connector DLLs and libraries to satisfy runtime dependencies.
The DLL component is required to run Connector/C++ application binaries that use the connector.

« The Developer component includes header files, static libraries, and import libraries for DLLs. The
Developer component is required to build from source Connector/C++ applications that use the
connector.

The MSI Installer requires administrative privileges. It begins by presenting a welcome screen that
enables you to continue the installation or cancel it. If you continue the installation, the MSI Installer
overview screen enables you to select the type of installation to perform:

« The Complete installation installs the DLL and Developer components for both connectors.

https://dev.mysql.com/downloads/connector/cpp/
https://visualstudio.microsoft.com/downloads/
https://dev.mysql.com/doc/refman/8.0/en/mysql-installer.html

Installation on Linux

« The Typical installation installs the DLL component for both connectors.

e The Custom installation enables you to specify the installation location and select which
components to install. The DLL and Developer components for the X DevAPI connector are
preselected, but you can override the selection. The Developer component for a connector cannot
be selected without also selecting the connector DLL component.

For all installation types, the MSI Installer performs these actions:

« It checks whether the required Visual C++ Redistributable for Visual Studio is present. If not,
the installer asks you to install it and exits with an error. For information about which VC++
Redistributable versions are acceptable, see Platform Support and Prerequisites.

« [tinstalls documentation files.
Important

Prior to Connector/C++ 8.0.13, because the Microsoft Visual C++

2017 Redistributable installer deletes the Microsoft Visual C++ 2015
Redistributable registry keys that identify its installation, standalone MySQL
MSIs may fail to detect the Microsoft Visual C++ 2015 Redistributable if

both it and the Microsoft Visual C++ 2017 Redistributable are installed. The
solution is to repair the Microsoft Visual C++ 2017 Redistributable via the
Windows Control Panel to recreate the registry keys needed for the runtime
detection. Unlike the standalone MSlIs, MySQL Installer for Windows contains
a workaround for the detection problem.

This workaround is unnecessary as of Connector/C++ 8.0.13.

» Zip archive package without installer. To install from a Zip archive package (. zi p file), see
Installation Using a tar or Zip Package.

In addition to the standard Zip archive packages, packages are available that were built in debug
mode. However, applications should use the same build mode as Connector/C++. If you install
Connector/C++ packages built in debug mode, build applications in debug mode. If you install
Connector/C++ packages built in release mode, build applications in release mode.

Installation on Linux

These methods of installing binary distributions are available on Linux:

» RPM package. RPM packages are available for Linux (as of Connector/C++ 8.0.12). The
packages are distinguished by their base names (the full names include the Connector/C++ version
and suffixes):

e mysgl - connect or - c++: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.

e mysqgl - connect or - c++-j dbc: This package provides the shared legacy connector library
implementing the JDBC API.

e nmysgl - connect or - c++- devel : This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot
be installed by itself without the other two packages.

» Debian package. Debian packages are available for Linux (as of Connector/C++ 8.0.14). The
packages are distinguished by their base names (the full names include the Connector/C++ version
and suffixes):

https://visualstudio.microsoft.com/downloads/

Installation on macOS

e |i bmysql cppconn8- 1: This package provides the shared connector library implementing X
DevAPI and X DevAPI for C.

e |ibmysql cppconn7: This package provides the shared legacy connector library implementing
the JDBC API.

e |'i bmysql cppconn- dev: This package installs development files required for building
applications that use Connector/C++ libraries provided by the other packages, and static connector
libraries. This package depends on the shared libraries provided by the other packages. It cannot
be installed by itself without the other two packages.

e Compressed tar file. To install from a compressed t ar file (. t ar. gz file), see Installation Using
a tar or Zip Package.

Installation on macOS

These methods of installing binary distributions are available on macOS:

« DMG package. DMG (disk image) packages for macOS are available as of Connector/C++
8.0.12. A DMG package provides shared and static connector libraries implementing X DevAPI and
X DeVvAPI for C, and the legacy connector library implementing the JDBC API. The package also
includes OpenSSL libraries, public header files, and documentation files.

» Compressed tar file. To install from a compressed t ar file (. t ar. gz file), see Installation Using
a tar or Zip Package.

Installation on Solaris

Important

The installation packages have a dependency on the Oracle Developer Studio
12.6 Runtime Libraries, which must be installed before you run the MySQL
installation package. See the download options for Oracle Developer Studio
here. The installation package enables you to install the runtime libraries only
instead of the full Oracle Developer Studio; see instructions in Installing Only
the Runtime Libraries on Oracle Solaris 11.

These methods of installing binary distributions are available on Solaris:

e Compressed tar file. Toinstall from a compressed t ar file (. t ar. gz file), see Installation Using
a tar or Zip Package.

Installation Using a tar or Zip Package

Connector/C++ binary distributions are available for several platforms, packaged in the form of
compressed t ar files or Zip archives, denoted here as PACKAGE. t ar . gz or PACKACE. zi p.

To unpack a compressed t ar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

To install from a Zip archive package (. zi p file), use W nZi p or another tool that can read . zi p files
to unpack the file into the location of your choosing.

http://www.oracle.com/technetwork/server-storage/developerstudio/downloads/index.html
https://docs.oracle.com/cd/E77782_01/html/E77785/gozsu.html
https://docs.oracle.com/cd/E77782_01/html/E77785/gozsu.html

10

Chapter 4 Installing Connector/C++ from Source

Table of Contents

4.1 Source Installation SyStemM Prer@qUISILESccvuuiiiiiiiiii e e e e e e e e e eaaeeas 11
4.2 Obtaining and Unpacking a Connector/C++ Source Distributioncccocoiiiiiiiiiiiinenes 12
4.3 Installing Connector/C++ frOM SOUICEciuuiiiiiiieiii e e e e e e e e e e e e aaaeees 12
4.4 Connector/C++ Source-Configuration OPLIONSccuuiiiiiiieiiii e e e eeaas 15

This chapter describes how to install Connector/C++ using a source distribution or a copy of the Git
source repository.

4.1 Source Installation System Prerequisites

To install Connector/C++ from source, the following system requirements must be satisfied:
 Build Tools

* MySQL Client Library

» Boost C++ Libraries

e SSL Support

Build Tools

You must have the cross-platform build tool CVeke (3.0 or higher).

You must have a C++ compiler that supports C++11.

MySQL Client Library

To build Connector/C++ from source, the MySQL C API client library may be required:

* Building the JDBC connector requires a client library from MySQL 8.0 (8.0.11 or higher) or MySQL
5.7 (5.7.9 or higher). This occurs when Connector/C++ is configured with the W TH_JDBC CVake
option enabled to include the JDBC connector.

» For Connector/C++ built without the JDBC connector, the client library is not needed.

Typically, the MySQL client library is installed when MySQL is installed. However, check your operating
system documentation for other installation options.

To specify where to find the client library, set the MYSQL_DI R CVake option appropriately at
configuration time as necessary (see Section 4.4, “Connector/C++ Source-Configuration Options”).

Boost C++ Libraries

To compile Connector/C++ the Boost C++ libraries are needed only if you build the legacy JDBC API
or if the version of the C++ standard library on your system does not implement the UTF8 converter
(codecvt _utf 8).

If the Boost C++ libraries are needed, Boost 1.59.0 or newer must be installed. To obtain Boost and its
installation instructions, visit the official Boost site.

After Boost is installed, use the W TH _BOOST ClVake option to indicate where the Boost files are
located (see Section 4.4, “Connector/C++ Source-Configuration Options”):

crmake [other_options] -DW TH BOOST=/usr/| ocal /boost_1_59_0

Adjust the path as necessary to match your installation.

11

http://www.boost.org

SSL Support

SSL Support

Use the W TH_SSL CMake option to specify which SSL library to use when compiling Connector/C+
+. OpenSSL 1.0.x or higher is required. As of Connector/C++ 8.0.18, it is possible to compile against
OpenSSL 1.1.

For more information about W TH_SSL and SSL libraries, see Section 4.4, “Connector/C++ Source-
Configuration Options”.

4.2 Obtaining and Unpacking a Connector/C++ Source
Distribution

To obtain a Connector/C++ source distribution, visit the Connector/C++ downloads page. Alternatively,
clone the Connector/C++ Git source repository.

A Connector/C++ source distribution is packaged as a compressed t ar file or Zip archive, denoted
here as PACKACE. t ar . gz or PACKAGE. zi p. A source distribution in t ar file or Zip archive format can
be used on any supported platform.

The distribution when unpacked includes an | NFO_SRC file that provides information about the product
version and the source repository from which the distribution was produced. The distribution also
includes other documentation files such as those listed in Chapter 3, Installing Connector/C++ from a
Binary Distribution.

To unpack a compressed t ar file, use this command in the intended installation directory:

tar zxvf PACKAGE.tar.gz

After unpacking the distribution, build it using the appropriate instructions for your platform later in this
chapter.

To install from a Zip archive package (. zi p file), use W nZi p or another tool that can read . zi p files
to unpack the file into the location of your choosing. After unpacking the distribution, build it using the
appropriate instructions for your platform later in this chapter.

To clone the Connector/C++ code from the source code repository located on GitHub at https://
github.com/mysql/mysgl-connector-cpp, use this command:

git clone https://github. com nysqgl/nysql -connector-cpp.git

That command should create a mysql - connect or - cpp directory containing a copy of the entire
Connector/C++ source tree.

The git cl one command sets the sources to the mast er branch, which is the branch that contains
the latest sources. Released code is in the 8. 0 branche (the 8. 0 branch contains the same sources
as the mast er branch). If necessary, use gi t checkout in the source directory to select the desired
branch. For example, to build Connector/C++ 8.0:

cd nysql - connect or - cpp
git checkout 8.0

After cloning the repository, build it using the appropriate instructions for your platform later in this
chapter.

After the initial checkout operation to get the source tree, run gi t pul | periodically to update your
source to the latest version.

4.3 Installing Connector/C++ from Source

To install Connector/C++ from source, verify that your system satisfies the requirements outlined in
Section 4.1, “Source Installation System Prerequisites”.

» Configuring Connector/C++

12

https://dev.mysql.com/downloads/connector/cpp/
https://github.com/mysql/mysql-connector-cpp
https://github.com/mysql/mysql-connector-cpp

Configuring Connector/C++

 Building Connector/C++
* Installing Connector/C++

 Verifying Connector/C++ Functionality

Configuring Connector/C++

Use CMake to configure and build Connector/C++. Only out-of-source-builds are supported, so create a
directory to use for the build and change location into it. Then configure the build using this command,
where concpp_sour ce is the directory containing the Connector/C++ source code:

crmake concpp_source
It may be necessary to specify other options on the configuration command. Some examples:
» By default, these installation locations are used:
e /usr/local /mysgl /connect or - c++- 8. 0 (Unix and Unix-like systems)
e User _hone/ WySQL/"MySQL Connector C++ 8.0" (Windows)
To specify the installation location explicitly, use the CVAKE | NSTALL_PREFI X option:
- DCVAKE_| NSTALL_PREFI X=pat h_nane
» On Windows, you can use the - Gand - A options to select a particular generator:
e -G "Visual Studio 16" -A x64 (64-bit builds)
e -G "Visual Studio 16" -A W n32 (32-bit builds)

Consult the Cvake manual or check crmaeke - - hel p to find out which generators are supported by
your CVake version. (However, it may be that your version of C\Vake supports more generators than
can actually be used to build Connector/C++.)

« If the Boost C++ libraries are needed, use the W TH_BOOST option to specify their location:
- DW TH_BOOST=pat h_nane

» By default, the build creates dynamic (shared) libraries. To build static libraries, enable the
BUI LD_STATI C option:

- DBUI LD_STATI C=ON

» By default, the legacy JDBC connector is not built. If you plan to build this connector, an additional
gi t command is needed to perform submodule initialization (do this in the top-level source
directory):

git subnodul e update --init
To include the JDBC connector in the build, enable the W TH_J DBC option:
- DW TH_JDBC=ON

Note

If you configure and build the test programs later, use the same CVake

options to configure them as the ones you use to configure Connector/C++
(- G W TH_BQOOST, BUI LD _STATI C, and so forth). Exceptions: Path name
arguments will differ, and you need not specify CVAKE | NSTALL PREFI X.

For information about C\Vake configuration options, see Section 4.4, “Connector/C++ Source-
Configuration Options”.

13

Building Connector/C++

Building Connector/C++
After configuring the Connector/C++ distribution, build it using this command:
cmake --build . --config build_type

The - - conf i g option is optional. It specifies the build configuration to use, such as Rel ease or
Debug. If you omit - - conf i g, the default is Debug.

Important

If you specify the - - conf i g option on the preceding command, specify the
same - - conf i g option for later steps, such as the steps that install Connector/
C++ or that build test programs.

If the build is successful, it creates the connector libraries in the build directory. (For Windows, look
for the libraries in a subdirectory with the same name as the bui | d_t ype value specified for the - -
confi g option.)

* If you build dynamic libraries, they have these names:
e |ibmysql cppconn8. so. 1 (Unix)
e |'ibmysqgl cppconn8. 1. dyl i b (macOS)
e nmysqgl cppconn8-1-vsl4.dl | (Windows)
« If you build static libraries, they have these names:
e |ibmmysqgl cppconn8-stati c. a (Unix, macOS)
e nmysgl cppconn8-static.|ib (Windows)

If you enabled the W TH_JDBC option to include the legacy JDBC connector in the build, the following
additional library files are created.

« If you build legacy dynamic libraries, they have these names:
e |ibmysql cppconn. so. 7 (Unix)
e i bmysql cppconn. 7. dyl i b (macOS)
e nmysgl cppconn-7-vsl4.dl | (Windows)
« If you build legacy static libraries, they have these names:
e i bmmysgl cppconn-stati c. a (Unix, macOS)

e nmysql cppconn-static.lib (Windows)

Installing Connector/C++

To install Connector/C++, use this command:

cmake --build . --target install --config build_type

Verifying Connector/C++ Functionality

To verify connector functionality, build and run one or more of the test programs included in the
t est app directory of the source distribution. Create a directory to use and change location into it. Then
issue the following commands:

crmake [ot her_options] -DW TH _CONCPP=concpp_i nstal |l concpp_source/testapp
cmake --build . --config=build type

14

Connector/C++ Source-Configuration Options

W TH_CONCPP is an option used only to configure the test application. ot her _opt i ons consists
of the options that you used to configure Connector/C++ itself (- G W TH_BOOST, BUI LD_STATI C,
and so forth). concpp_sour ce is the directory containing the Connector/C++ source code, and
concpp_i nstal | is the directory where Connector/C++ is installed:

The preceding commands should create the devapi _t est and xapi _t est programs in the r un
directory of the build location. If you enable W TH_JDBC when configuring the test programs, the build
also creates the j dbc_t est program.

Before running test programs, ensure that a MySQL server instance is running with X Plugin enabled.
The easiest way to arrange this is to use the nysql -t est - run. pl script from the MySQL distribution.
For MySQL 8.0, X Plugin is enabled by default, so invoke this command in the mysql - t est directory
of that distribution:

perl nysql-test-run.pl --start-and-exit
For MySQL 5.7, X Plugin must be enabled explicitly, so add an option to do that:
perl nysqgl-test-run.pl --start-and-exit --nysqgld=--plugin-Iload=nysql x

The command should start a test server instance with X Plugin enabled and listening on port 13009
instead of its standard port (33060).

Now you can run one of the test programs. They accept a connection-string argument, so if the server
was started as just described, you can run them like this:

run/ devapi _test nysql x://root @27.0.0.1: 13009
run/ xapi _test nysql x://root @27.0.0.1: 13009

The connection string assumes availability of a r oot user account without any password and the
programs assume that there is at est schema available (assumptions that hold for a server started
using mysql -test-run. pl).

Totestj dbc_t est, you need a MySQL server, but X Plugin is not required. Also, the connection
options must be in the form specified by the JDBC API. Pass the user name as the second argument.
For example:

run/jdbc_test tcp://127.0.0.1: 13009 root

4.4 Connector/C++ Source-Configuration Options

Connector/C++ recognizes the CVake options described in this section.
Table 4.1 Connector/C++ Source-Configuration Option Reference

Formats Description Default Introduced
BU LD_STATIC Whether to build a static |OFF
librarty
BUNDLE_DEPENDENCI E$Whether to bundle COFF
external dependency
libraries with the
connector
CVMAKE_BUI LD_TYPE | Type of build to produce |Debug
CVMAKE | NSTALL_DOCDI|Rocumentation 8.0.14
installation directory
CMAKE_I NSTALL_ I NCLUEEe@ader file installation 8.0.14
directory
CMAKE_| NSTALL_LI BDI|Ribrary installation 8.0.14
directory
CVAKE | NSTALL _PREFI| Kstallation base /usr/| ocal
directory

15

Connector/C++ Source-Configuration Options

Formats Description Default Introduced
MAI NTAI NER_MODE For internal use only OFF 8.0.12
MYSQLCLI ENT_STATI C|B/héthéiGo link to the ON 8.0.16
shared MySQL client
library
MYSQLCLI ENT_STATI C |WhéthéiGo statically ON 8.0.16
link to the MySQL client
library
MYSQL_CONFI G_EXECUT Ratttto the mysqgl_config|${ MYySQ._DI R}/ bi n/
program nmysqgl _config
MYSQL_DI R MySQL Server
installation directory
STATI C_NMBVCRT Use the static runtime
library
W TH_BOOST The Boost source
directory
W TH_DOC Whether to generate OFF
Doxygen documentation
W TH_JDBC Whether to build legacy |OFF 8.0.7
JDBC library
W TH_SSL Type of SSL support system 8.0.7

» -DBUI LD_STATI C=bool

By default, dynamic (shared) libraries are built. If this option is enabled, static libraries are built
instead.

» - DBUNDLE_DEPENDENCI ES=bool
This is an internal option used for creating Connector/C++ distribution packages.
« - DCMAKE_BUI LD _TYPE=t ype
The type of build to produce:
« Debug: Disable optimizations and generate debugging information. This is the default.
* Rel ease: Enable optimizations.
* Rel Wt hDebl nf o: Enable optimizations and generate debugging information.
« - DCMAKE_| NSTALL_DOCDI R=di r _nanme

The documentation installation directory, relative to CVAKE | NSTALL_PREFI X. If not specified, the
default is to install in CMAKE_| NSTALL_PREFI X.

This option requires that W TH_DOC be enabled.

This option was added in Connector/C++ 8.0.14.

« - DOVAKE_| NSTALL_| NCLUDEDI R=di r _name

The header file installation directory, relative to CMAKE | NSTALL _PREFI X. If not specified, the
defaultis i ncl ude.

This option was added in Connector/C++ 8.0.14.

Connector/C++ Source-Configuration Options

- DCMAKE_| NSTALL_LI BDI R=di r _name

The library installation directory, relative to CVAKE | NSTALL_PREFI X. If not specified, the default is
lib64orlib.

This option was added in Connector/C++ 8.0.14.

- DCMAKE_| NSTALL_PREFI X=di r _nane

The installation base directory (where to install Connector/C++).

- DVAI NTAI NER_MODE=bool

This is an internal option used for creating Connector/C++ distribution packages. It was added in
Connector/C++ 8.0.12.

- DMYSQLCLI ENT_STATI C_BI NDI NG=bool

Whether to link to the shared MySQL client library. This option is used only if

MYSQLCLI ENT_STATI C_LI NKI NGis disabled to enable dynamic linking of the MySQL client
library. In that case, if MYSQLCLI ENT_STATI C_BI NDI NGis enabled (the default), Connector/C++ is
linked to the shared MySQL client library. Otherwise, the shared MySQL client library is loaded and
mapped at runtime.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled). It was added in Connector/C++ 8.0.16.

- DMYSQLCLI ENT_STATI C_LI NKI NG=bool

Whether to link statically to the MySQL client library. The default is ON (use static linking to the client
library). Disabling this option enables dynamic linking to the client library.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled). It was added in Connector/C++ 8.0.16.

- DMYSQL_CONFI G_EXECUTABLE=fi | e_nan®e
The path to the nysqgl _confi g program.

On non-Windows systems, CVake checks to see whether MYSQL_CONFI G_EXECUTABLE is set. If
not, CMake tries to locate nysql _confi g in the default locations.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

- DMYSQL_DI R=di r _nane
The directory where MySQL is installed.

This option applies only if you are building the legacy JDBC connector (that is, only if W TH_JDBCis
enabled).

- DSTATI C_MBVCRT=bool

(Windows only) Use the static runtime library (the / MI'* compiler option). This option might be
necessary if code that uses Connector/C++ also uses the static runtime library.

- DW TH_BOOST=di r _nane

The directory where the Boost sources are installed.

17

Connector/C++ Source-Configuration Options

e - DW TH_DCOC=bool

Whether to enable generating the Doxygen documentation. As of Connector/C++ 8.0.16, enabling
this option also causes the Doxygen documentation to be built by the al | target.

- - DW TH_JDBC=bool

Whether to build the legacy JDBC connector. This option is disabled by default. If it is enabled,
Connector/C++ 8.0 applications can use the legacy JDBC API, just like Connector/C++ 1.1
applications.

o - DW TH_SSL={ssl| _t ype|pat h_name}

This option specifies which SSL library to use when compiling Connector/C++. The option value
indicates the type of SSL support to include or the path name to the SSL installation to use:

e ssl| _type can be one of the following values:
« syst en Use the system OpenSSL library.

When running an application that is linked to the connector dynamic library, the OpenSSL
libraries on which the connector depends should be correctly found if they are placed in the
file system next to the connector library. The application should also work when the OpenSSL
libraries are installed at the standard system-wide locations. This assumes that the version of
OpenSSL is as expected by Connector/C++.

Compressed t ar files or Zip archive distributions for for Windows, Linux, and macOS should
contain the required OpenSSL libraries in the same location as the connector library.

Except for Windows, it should be possible to run an application linked to the connector dynamic
library when the connector library and the OpenSSL libraries are placed in a nonstandard
location, provided that these locations were stored as runtime paths when building the
application (gcc - r pat h option).

For Windows, an application that is linked to the connector shared library can be run only if the
connector library and the OpenSSL libraries are stored either:

 In the Windows system folder
» In the same folder as the application
 In a folder listed in the PATH environment variable

If the application is linked to the connector static library, it remains true that the required
OpenSSL libraries must be found in one of the preceding locations.

e pat h_nane is the path name to the SSL installation to use. It should be the path to the installed
OpenSSL library, and must point to a directory containing a | i b subdirectory with OpenSSL
libraries that are already built.

Specifying a path name for the OpenSSL installation can be preferable to using the ssl _t ype
value of syst embecause it can prevent CVake from detecting and using an older or incorrect
OpenSSL version installed on the system.

18

Chapter 5 Building Connector/C++ Applications

Table of Contents

5.1 Building Connector/C++ Applications: General ConsSiderationsccoevuiiieiiieiiiieiiiieeeneeaiees 19
5.2 Building Connector/C++ Applications: Platform-Specific Considerationscc..ccoevvvvivevinnennnn. 25
5.2.1 WINAOWS NOTES ..ottt e et e et e e et e e et s e et e e e e eeanns 25
5.2.2 MACOS NOLES ...oeiiitiiii e et et e et et et et e et e et e et e eaaaennas 29
R IS Yo L= T ESJl N\ o) (=2 SR 30

This chapter provides guidance on building Connector/C++ applications:

» General considerations for building Connector/C++ applications successfully. See Section 5.1,
“Building Connector/C++ Applications: General Considerations”.

« Information about building Connector/C++ applications that applies to specific platforms such as
Windows, macOS, and Solaris. See Section 5.2, “Building Connector/C++ Applications: Platform-
Specific Considerations”.

For discussion of the programming interfaces available to Connector/C++ applications, see Chapter 1,
Introduction to Connector/C++.

5.1 Building Connector/C++ Applications: General Considerations

This section discusses general considerations to keep in mind when building Connector/C++
applications. For information that applies to particular platforms, see the section that applies to your
platform in Section 5.2, “Building Connector/C++ Applications: Platform-Specific Considerations”.

Commands shown here are as given from the command line (for example, as invoked from a
Makef i |). The commands apply to any platform that supports make and command-line build tools
such as g++, cc, or cl ang, but may need adjustment for your build environment.

 Build Tools and Configuration Settings

e C++11 Support

+ Connector/C++ Header Files

» Boost Header Files

 Link Libraries

* Runtime Libraries

» Using the Connector/C++ Dynamic Library

» Using the Connector/C++ Static Library

Build Tools and Configuration Settings

It is important that the tools you use to build your Connector/C++ applications are compatible with the
tools used to build Connector/C++ itself. Ideally, build your applications with the same tools that were
used to build the Connector/C++ binaries.

To avoid issues, ensure that these factors are the same for your applications and Connector/C++ itself:

e Compiler version.

19

C++11 Support

e Runtime library.
* Runtime linker configuration settings.

To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++ with
a debug build of the client application.

To use a different compiler version, release configuration, or runtime library, first build Connector/C++
from source using your desired settings (see Chapter 4, Installing Connector/C++ from Source), then
build your applications using those same settings.

Connector/C++ binary distributions include an | NFO_BI N file that describes the environment and
configuration options used to build the distribution. If you installed Connector/C++ from a binary
distribution and experience build-related issues on a platform, it may help to check the settings that
were used to build the distribution on that platform. Binary distributions also include an | NFO_SRC
file that provides information about the product version and the source repository from which the
distribution was produced. (Prior to Connector/C++ 8.0.14, look for BUI LDI NFO. t xt rather than

I NFO_BlI Nand | NFO_SRC))

C++11 Support

X DevAPI uses C++11 language features. To compile Connector/C++ applications that use X DevAPI,
enable C++11 support in the compiler using the - st d=c++11 option. This option is not needed for
applications that use X DevAPI for C (which is a plain C API) or the legacy JDBC API (which is based
on plain C++), unless the application code uses C++11.

Connector/C++ Header Files

The API an application uses determines which Connector/C++ header files it should include.

The following include directives work under the assumption that the include path contains
$MYSQL_CPPCONN_DI R/ i ncl ude, where $SMYSQL_CPPCONN_DI Ris the Connector/C++ installation
location. Pass an -1 $MYSQL_CPPCONN_DI R/ i ncl ude option on the compiler invocation command
to ensure this.

» For applications that use X DevAPI:
#i ncl ude <mysql x/ xdevapi . h>
» For applications that use X DevAPI for C:
#i ncl ude <mysql x/ xapi . h>
» For applications that use the legacy JDBC API, the header files are version dependent:
« As of Connector/C++ 8.0.16, a single #i ncl ude directive suffices:
#i ncl ude <mysql/j dbc. h>
» Prior to Connector/C++ 8.0.16, use this set of #i ncl ude directives:

#i ncl ude <j dbc/ nysql _driver. h>
#i ncl ude <j dbc/ nysql _connecti on. h>
#i ncl ude <j dbc/cppconn/*. h>

The notation <j dbc/ cppconn/ *. h> means that you should include all header files from the
j dbc/ cppconn directory that are needed by your application. The particular files needed depend
on the application.

« Legacy code that uses Connector/C++ 1.1 has #i ncl ude directives of this form:

#i ncl ude <nysql _driver. h>

20

Boost Header Files

#i ncl ude <nysql _connecti on. h>
#i ncl ude <cppconn/*. h>

To build such code with Connector/C++ 8.0 without modifying it, add $MYSQL._CPPCONN_DI R/
i ncl ude/ j dbc to the include path.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts
API declarations in the header files for usage with the static library. For details, see Using the
Connector/C++ Static Library.

Boost Header Files
The Boost header files are needed under these circumstances:

» Prior to Connector/C++ 8.0.16, on Unix and Unix-like platforms for applications that use X DevAPI
or X DevAPI for C, if you build using gcc and the version of the C++ standard library on your system
does not implement the UTF8 converter (codecvt _ut f 8).

 Prior to Connector/C++ 8.0.23, to compile Connector/C++ applications that use the legacy JDBC
API.

If the Boost header files are needed, Boost 1.59.0 or newer must be installed, and the location of the
headers must be added to the include path. To obtain Boost and its installation instructions, visit the
official Boost site.

Link Libraries

Building Connector/C++ using OpenSSL makes the connector library dependent on OpenSSL dynamic
libraries. In that case:

* When linking an application to Connector/C++ dynamically, this dependency is relevant only at
runtime.

* When linking an application to Connector/C++ statically, link to the OpenSSL libraries as well. On
Linux, this means adding - | ssl -1 crypt o explicitly to the compile/link command. On Windows,
this is handled automatically.

On Windows, link to the dynamic version of the C++ Runtime Library.

Runtime Libraries

X DeVvAPI for C applications need | i bst dc++ at runtime. Depending on your platform or build tools, a
different library may apply. For example, the library is | i bc++ on macOS; see Section 5.2.2, “macOS
Notes”.

If an application is built using dynamic link libraries, those libraries must be present not just on the build
host, but on target hosts where the application runs. The dynamic linker must be properly configured to
find those libraries and their runtime dependencies, as well as to find Connector/C++ libraries and their
runtime dependencies.

Connector/C++ libraries built by Oracle depend on the OpenSSL libraries. The latter must be installed
on the system in order to run code that links against Connector/C++ libraries. Another option is

to put the OpenSSL libraries in the same location as Connector/C++, in which case, the dynamic
linker should find them next to the connector library. See also Section 5.2.1, “Windows Notes”, and
Section 5.2.2, “macOS Notes”.

Note

The TLSv1 and TLSv1.1 connection protocols are deprecated as of Connector/
C++ 8.0.26 and support for them is subject to removal in a future version of
Connector/C++.

21

https://www.boost.org
https://www.boost.org

Using the Connector/C++ Dynamic Library

Using the Connector/C++ Dynamic Library

The Connector/C++ dynamic library name depends on the platform. These libraries implement X
DevAPI and X DevAPI for C, where A in the library name represents the ABI version:

e |ibmysgl cppconn8. so. A (Unix)
e |ibnmysqgl cppconn8. A. dyl i b (macOS)
* nysql cppconn8- A-vsNN. dI |, with import library vsNN/ nmysql cppconn8. | i b (Windows)

For the legacy JDBC API, the dynamic libraries are named as follows, where B in the library name
represents the ABI version:

e i brmysgl cppconn. so. B (Unix)
e libnysqgl cppconn. B. dyl i b (macOS)
* nysql cppconn- B-vsNN. dI |, with import library vsNN/ nysql cppconn-static. i b (Windows)

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build
the libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with
MSVC 2019 and 2017.) This convention enables using libraries built with different versions of MSVC on
the same system. See also Section 5.2.1, “Windows Notes”.

To build code that uses X DevAPI or X DevAPI for C, add - | mysqgl cppconn8 to the linker options. To
build code that uses the legacy JDBC API, add - | nysql cppconn.

You must also indicate whether to use the 64-bit or 32-bit libraries by specifying the appropriate
library directory. Use an - L linker option to specify $MyYSQL_CONCPP_DI R/ | i b64 (64-bit libraries) or
$MYSQL_CONCPP_DI R/ | i b (32-bit libraries), where $MyYSQL_CPPCONN_DI R is the Connector/C++
installation location. On FreeBSD, / | i b64 is not used. The library name always ends with / | i b.

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links
dynamically to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DI R)/include -L $(MYSQL_CONCPP_DI R)/|i b64
LDLI BS = -1 mysqgl cppconn8

CXXFLAGS = -std=c++11

app : app.cc

With that Makefi | e, the command nake app generates the following compiler invocation:

g++ -std=c++11 -| .../include -L .../lib64 app.cc -I|nysqgl cppconn8 -0 app

To build a plain C application that uses X DevAPI for C, has sources in app. ¢, and links dynamically to
the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation | ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DI R)/|i b64
LDLI BS = -1 nysql cppconn8
app @ app.c

With that Makefi | e, the command nake app generates the following compiler invocation:

cc -l .../include -L .../lib64 app.c -|nmysqgl cppconn8 -0 app
Note

The resulting code, even though it is compiled as plain C, depends on the C++
runtime (typically | i bst dc++, though this may differ depending on platform or
build tools; see Runtime Libraries).

22

Using the Connector/C++ Static Library

To build a plain C++ application that uses the legacy JDBC API, has sources in app. ¢, and links
dynamically to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DIR)/|i b64
LDLI BS = - nysql cppconn
app @ app.c

The library option in this case is - | nysql cppcon, rather than - | nysql cppcon8 as for an X DevAPI
or X DevAPI for C application.

With that Makefi | e, the command nake app generates the following compiler invocation:
cc -1 .../linclude -L .../lib64 app.c -Ilnmysqgl cppconn -0 app
Note

When running an application that uses the Connector/C++ dynamic library, the
library and its runtime dependencies must be found by the dynamic linker. See
Runtime Libraries.

Using the Connector/C++ Static Library

It is possible to link your application with the Connector/C++ static library. This way there is no runtime
dependency on the connector, and the resulting binary can run on systems where Connector/C++ is
not installed.

Note

Even when linking statically, the resulting code still depends on all runtime
dependencies of the Connector/C++ library. For example, if Connector/C++
is built using OpenSSL, the code has a runtime dependency on the OpenSSL
libraries. See Runtime Libraries.

The Connector/C++ static library name depends on the platform. These libraries implement X DevAPI
and X DevAPI for C:

e |ibnysgl cppconn8-stati c. a (Unix, macOS)

* VvsNN/ nysql cppconn8-static.|ib (Windows)

For the legacy JDBC API, the static libraries are named as follows:
e |ibnysqgl cppconn-stati c. a (Unix, macOS)

e vsNN/ nysql cppconn-static.|ib (Windows)

On Windows, the vsNN value in library names depends on the MSVC toolchain version used to build
the libraries. (Connector/C++ libraries provided by Oracle use vs14, and they are compatible with
MSVC 2019 and 2017.) This convention enables using libraries built with different versions of MSVC on
the same system. See also Section 5.2.1, “Windows Notes”.

To compile code that you intend to link statically against Connector/C++, define a macro that adjusts
API declarations in the header files for usage with the static library. One way to define the macro is by
passing a - D option on the compiler invocation command:

» For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATI C_CONCPP macro. All that matters is that you define it; the value does
not matter. For example: - DSTATI C_CONCPP

 Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define
the CPPCONN_PUBLI C_FUNC macro as an empty string. To ensure this, define the
macro as CPPCONN_PUBLI C_FUNC=, not as CPPCONN_PUBLI C_FUNC. For example: -
DCPPCONN_PUBLI C_FUNC=

23

Using the Connector/C++ Static Library

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links statically
to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation | ocation

CPPFLAGS = - DSTATI C_CONCPP -1 $(MySQL_CONCPP_DI R) /i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brrysql cppconn8-static.a -I1ssl -lcrypto -I pthread
CXXFLAGS = -std=c++11

app : app.cc
With that Makef i | e, the command nmaeke app generates the following compiler invocation:

g++ -std=c++11 - DSTATI C_CONCPP -| .../include app.cc
.../1ib64/1ibnysqgl cppconn8-static.a -lssl -lcrypto -Ipthread -o app

Note

To avoid having the linker report unresolved symbols, the compile line must
include the OpenSSL libraries and the pt hr ead library on which Connector/C+
+ code depends.

OpenSSL libraries are not needed if Connector/C++ is built without them, but
Connector/C++ distributions built by Oracle do depend on OpenSSL.

The exact list of libraries required by Connector/C++ library depends on the
platform. For example, on Solaris, the socket, rt, and nsl libraries might be
needed.

To build a plain C application that uses X DevAPI for C, has sources in app. c, and links statically to
the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation | ocation
CPPFLAGS = - DSTATI C_CONCPP -1 $(MySQL_CONCPP_DI R)/i ncl ude
LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brrysql cppconn8-static.a -I1ssl -lcrypto -I pthread

app : app.c
With that Makefi | e, the command nake app generates the following compiler invocation:

cc - DSTATIC_ CONCPP -1 .../include app.c
...11ib64/libnysql cppconn8-static.a -Issl -lcrypto -Ipthread -o app

To build a plain C application that uses the legacy JDBC API, has sources in app. ¢, and links statically
to the connector library, the Makef i | e might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = - DCPPCONN_PUBLI C_FUNC= -1 $(MYSQ._CONCPP_DI R)/i ncl ude

LDLI BS = $(MYSQ._CONCPP_DI R)/|i b64/1i bnysql cppconn-static.a -1ssl -lcrypto -I pthread
app : app.c

The library option in this case names | i bnysql cppcon-stati c. a, ratherthan | i bnysql cppcon8-
stati c. a as for an X DevAPI or X DevAPI for C application.

With that Makef i | e, the command nmeke app generates the following compiler invocation:

cc -std=c++11 --DCPPCONN_PUBLI C FUNC= -I .../include app.c
.../1ib64/1ibnysqgl cppconn-static.a -1ssl -lcrypto -l pthread -o app

When building plain C code, it is important to take care of connector's dependency on the C++ runtime,
which is introduced by the connector library even though the code that uses it is plain C:

» One approach is to ensure that a C++ linker is used to build the final code. This approach is taken by
the Makef i | e shown here:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = - DSTATI C_CONCPP -1 $(MySQL_CONCPP_DI R)/i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/ i brrysql cppconn8-static.a -Issl -lcrypto -I|pthread
LINK. o = $(LINK cc) # use C++ |inker

app : app.o

24

Building Connector/C++ Applications: Platform-Specific Considerations

With that Makef i | e, the build process has two steps: first compile the application source in app. ¢
using a plain C compiler to produce app. o, then link the final executable (app) using the C++ linker,
which takes care of the dependency on the C++ runtime. The commands look something like this:

cc -DSTATIC CONCPP -I .../include -c -0 app.o app.cC
g++ - DSTATI C_CONCPP -| .../include app.o
.../libnysqgl cppconn8-static.a -lssl -lcrypto -Ipthread -o app

» Another approach is to use a plain C compiler and linker, but add the | i bst dc++ C++ runtime
library as an explicit option to the linker. This approach is taken by the Makef i | e shown here:

MYSQL_CONCPP_DI R = Connector/ C++ installation |ocation

CPPFLAGS = - DSTATI C_CONCPP -1 $(MySQL_CONCPP_DI R)/i ncl ude

LDLI BS = $(MYSQL_CONCPP_DI R)/ | i b64/1i brysql cppconn8-static.a -Issl -lcrypto -l pthread -Istdc++
app @ app.c

With that Makef i | e, the compiler is invoked as follows:

cc -DSTATI C CONCPP -1 .../include app.c
.../1libnysql cppconn8-static.a -Issl -lcrypto -Ipthread -Istdc++ -0 app
Note

Even if the application that uses Connector/C++ is written in plain C, the final
executable depends on the C++ runtime which must be installed on the target
computer on which the application is to run.

5.2 Building Connector/C++ Applications: Platform-Specific
Considerations

This section discusses platform-specific considerations to keep in mind when building Connector/C++
applications. For general considerations that apply on a platform-independent basis, see Section 5.1,
“Building Connector/C++ Applications: General Considerations”.

5.2.1 Windows Notes

This section describes aspects of building Connector/C++ applications that are specific to Microsoft
Windows. For general application-building information, see Section 5.1, “Building Connector/C++
Applications: General Considerations”.

On Windows, applications can be built in different build configurations, which determine the type of the
C++ runtime library that is used by the final executable:

» An application can be built in 32-bit or 64-bit mode.
* An application can be built in release or debug mode.

* You can choose between the dynamic runtime library (/ VD linker option) or static runtime library (/
MT linker option). Different versions of the MSVC compiler also use different versions of the runtime
library.

To build Connector/C++ applications, developers using Windows must satisfy these conditions:
» An acceptable version of Microsoft Visual Studio is required.

» Applications should use the same build configuration as that used to build Connector/C++. Build
configuration includes the build mode (release mode or debug mode) and the linker option (for
example, / MD or / NDd).

» Target hosts running client applications must have an acceptable version of the Visual C++
Redistributable for Visual Studio installed.

25

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Windows Notes

For information about acceptable versions of Visual Studio and VC++ Redistributable, see Platform
Support and Prerequisites.

The following sections provide additional detail about several aspects of building Connector/C++
applications:

» Application Build Configuration Must Match Connector/C++
 Linking Connector/C++ to Applications

» Building Connector/C++ Applications with Microsoft Visual Studio

Application Build Configuration Must Match Connector/C++

It is important to use a compatible compiler version to build applications and Connector/C++. It is also
important to build applications using the same build configuration as that used to build Connector/C+
+. That is, applications should use the same build mode and linker option, to ensure that the connector
and the application use the same runtime library.

The following table shows the linker option appropriate for each combination of build mode and runtime
library. It also shows for each combination whether a Connector/C++ binary package is available from
Oracle. (If not, you must build Connector/C++ from source yourself.)

Table 5.1 Connector/C++ Linker Option Per Build Mode and Runtime Library

Build Mode Runtime Library Linker Option Binary Package
Available

Release Dynamic / ND Yes

Debug Dynamic / vDd Yes

Release Static / MI No (build from source)

Debug Static / Mrd No (build from source)

Standard Connector/C++ binary packages available from Oracle are built in release mode. If you
install such a package, build applications in release mode to match. Oracle packages built in debug
mode are available as well. To build applications in debug mode, you must either install an Oracle-built
Connector/C++ package that was built in debug mode, or build Connector/C++ from source yourself
using debug mode.

Connector/C++ binary packages available from Oracle, whether built in release or debug mode, are
intended for use with the dynamic version of the C++ runtime library. To build applications using the
static runtime library, you must build Connector/C++ yourself from source using the appropriate linker
option for the intended build mode.

Linking Connector/C++ to Applications

Connector/C++ binary distributions are available as 64-bit or 32-bit packages, which store libraries
under a directory named | i b64 or | i b, respectively. Package names and certain library file and
directory names also include vsNN. The vsNN value in these names depends on the MSVC toolchain
version used to build the libraries. This convention enables using libraries built with different versions of
MSVC on the same system.

Note

The vsNN value represents the major version of the MSVC toolchain used to
build the libraries. Currently it is vs 14, which is the toolchain used by MSVC
2015 through 2019.

Connector/C++ binary packages include libraries built using the dynamic runtime library in either
release mode (/ MD) or debug mode (/ MDd). The Connector/C++ libraries are compatible with MSVC

26

Windows Notes

2019 and 2017, and code that uses these libraries can be built with either MSVC 2019 or 2017 using
the appropriate linker option (that is, / MD for release mode or / MDd for debug mode). To build code
with a different linker option (/ MTI or / MTd), first build Connector/C++ from source with that option (see
Section 4.3, “Installing Connector/C++ from Source”), then build applications using the same option.

Note

One exception for compiler version compatibility is that to build applications
using the static JDBC legacy connector, MSVC 2019 is required; 2017 does not

work.

Connector/C++ is available as a dynamic or static library to use with your application. Which library
you choose determines the library files needed, and the location of those files within a Connector/C
++ package depends on whether the package was built in release or debug mode. Library files are
located under the library directory, which, as previously mentioned, is | i b64 for 64-bit packages or
I i b for 32-bit packages. Denote this directory as LI B. The following table shows the directory in which
to find library files for each type of library (including import libraries, which are used in conjunction with

dynamic libraries).

Table 5.2 Connector/C++ Library File Directories

Library Type

Library File Directory (Release
Build)

Library File Directory (Debug
Build)

Dynamic Library LI B LI B/ debug
Import Library LI B/vsl4 LI B/ vs14/ debug
Static Library LI B/vsl1l4 LI B/ vs14/ debug

For dynamic linking, the following table indicates which dynamic and import library files to use.

Table 5.3 Connector/C++ Dynamic and Import Library Files Per Connector

Connector Dynamic Library File Import Library File
X DevAPI, X DevAPI for C mysgl cppconn8-2-vsl14.dl | |mysqgl cppconn8.1ib
JDBC mysql cppconn-7-vs14. dl | nmysql cppconn. lib

For the X DevAPI or X DevAPI for C connector, use the dynamic library file named

nysql cppconn8- 2-vs14. dl | , together with with the import library file named

nysql cppconn8. | i b from the import library directory. The 2 in the dynamic library name is the major
ABI version number. (This helps when using compatibility libraries with an old ABI together with new
libraries having a different ABI.) The libraries installed on your system may have a different ABI version
in their file names.

For the legacy JDBC connector, use the dynamic library file named nmysql cppconn- 7-vs14.dl |,
together with the import library file named nysql cppconn. | i b from the import library directory.

For static linking, the following table indicates which static library file to use.

Table 5.4 Connector/C++ Static Library File Per Connector

Connector Static Library File
X DevAPI, X DevAPI for C nmysql cppconn8-static.lib
JDBC nysql cppconn-static.lib

For the X DevAPI or X DevAPI for C connector, use the static library file named nmysql cppconn8-
static.|ib from the static library directory.

For the legacy JDBC connector, use the static library file named nmysql cppconn-static.|ib from
the static library directory.

27

Windows Notes

When building code that uses Connector/C++ libraries, use these guidelines for setting build options in
the project configuration:

As an additional include directory, specify $MyYSQL_CPPCONN_DI R/ i ncl ude.

As an additional library directory, specify the directory containing the libraries the application must
link to, as indicated in Table 5.2, “Connector/C++ Library File Directories”. For example, to specify
the import or static library directory for building in release mode, use $SMYSQL_CONCPP_DI R/

| i b64/ vs14 (for 64-bit libraries) or SMYSQL_CONCPP_DI R/ | i b/ vs14 (for 32-bit libraries). For
building in debug mode, change vs14 to vs14/ debug.

To use a dynamic library file (. dI | extension), link your application with a . | i b import library:
nysql cppconn8. | i b to the linker options, or nysql cppconn. | i b for legacy code.

To use a static library file (. | i b extension), link your application with the library: mysql cppconn8-
static.lib,ornysql cppconn-static.|ib forlegacy code.

For static linking, the application must also be linked with import libraries for the required OpenSSL
libraries. If the connector was installed from a binary package provided by Oracle, these are

present in the vs14 subdirectory under the main library directory ($MYSQL_CONCPP_DI R/ | i b64 or
$MYSQL_CONCPP_DI R/ | i b), and the corresponding OpenSSL . dl | libraries are present in the main
library directory.

Note

A Windows application that uses the connector dynamic library must be able
to locate it at runtime, as well as its dependencies such as OpenSSL. The
common way of arranging this is to copy all the required DLLs to the same
location as the application executable.

Building Connector/C++ Applications with Microsoft Visual Studio

To build a Connector/C++ application with Microsoft Visual Studio, follow this procedure:

1. Start a new Visual C++ project in Visual Studio.

2. Set the required include paths.

From the main menu, select Project, Properties. This can also be accessed using the hot key
ALT + F7. Under Configuration Properties, open the tree view. Select C/C++, General in the tree
view.

In the Additional Include Directories text field:

e Add the i ncl ude/ directory of Connector/C++. This directory should be located within the
Connector/C++ installation directory.

 If Boost is required to build the application, also add the Boost library root directory. (See
Section 5.1, “Building Connector/C++ Applications: General Considerations”.)

Set the library locations.
In the tree view, open Linker, General, Additional Library Directories.

In the Additional Library Directories text field, add the Connector/C++ import or static library
directory as specified in Table 5.2, “Connector/C++ Library File Directories”. Set appropriate paths
for release and debug builds.

Note

For building in debug mode, the Connector/C++ debug package must be
installed.

28

macOS Notes

4. Set the connector library to use.
Open Linker, Input in the Property Pages dialog.

For building with the Connector/C++ dynamic library, enter the import library name:
nysql cppconn8. | i b, ornysql cppconn. | i b for legacy applications.

For building with the Connector/C++ static library, enter the static library name: nysql cppconn8-
static.lib,ornysqgl cppconn-static.|ib forlegacy applications.

5. Define macros for static linking.

To compile code that is linked statically with the connector library, you must define a macro that
adjusts API declarations in the header files for usage with the static library. By default, the macro is
undefined to declare functions to be compatible with an application that calls a DLL.

In the Project, Properties tree view, under C++, Preprocessor, enter the appropriate macro into
the Preprocessor Definitions text field:

» For applications that use X DevAPI, X DevAPI for C, or (as of Connector/C++ 8.0.16) the legacy
JDBC API, define the STATI C_CONCPP macro. All that matters is that you define it; the value
does not matter. For example: - DSTATI C_CONCPP

« Prior to Connector/C++ 8.0.16, for applications that use the legacy JDBC API, define the
CPPCONN_PUBLI C_FUNC macro as an empty string. To ensure this, define the macro as
CPPCONN_PUBLI C_FUNC=, not as CPPCONN_PUBLI C_FUNC.

Notes

e Target hosts running the client application must have the Visual C++
Redistributable for Visual Studio installed. For information about which
VC++ Redistributable versions are acceptable, see Platform Support and
Prerequisites.

« If your code uses the Connector/C++ dynamic library, it must be present on
the target host where the application is run. Copy the appropriate Connector/
C++ dynamic library to the same directory as the application executable
(see Linking Connector/C++ to Applications). Alternatively, extend the PATH
environment variable using SET PATH=%ATH% C: \ pat h\ t o\ cpp, or
copy the dynamic library to the Windows installation directory, typically C:

\'wi ndows.

« If your code uses the Connector/C++ static library, the required OpenSSL
libraries must be found on the target host where the application is run.
For Connector/C++ binary distributions, the OpenSSL . dl | libraries are
present in the main library directory ($MyYSQL_CONCPP_DI R/ | i b64 or
$MYSQL_CONCPP_DI R/ | i b). Copy them to the same location as the
application executable or to some directory listed in the system PATH.

5.2.2 macOS Notes

This section describes aspects of building Connector/C++ applications that are specific to macOS.
For general application-building information, see Section 5.1, “Building Connector/C++ Applications:
General Considerations”.

The binary distribution of Connector/C++ for macOS is compiled using the macOS native cl ang
compiler. For that reason, an application that uses Connector/C++ should be built with the same cl ang
compiler.

The cl ang compiler can use two different implementations of the C++ runtime library: either the native
| i bc++ orthe GNU | i bst dc++ library. It is important that an application uses the same runtime

29

https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/downloads/

Solaris Notes

implementation as Connector/C++ that is, the native | i bc++. To ensure that, the - st dl i b=l i bc++
option should be passed to the compiler and the linker invocations.

To build a Connector/C++ application that uses X DevAPI, has sources in app. cc, and links
dynamically to the connector library, the Makef i | e for building on macOS might look like this:

MYSQL_CONCPP_DI R = Connector/C++ installation |ocation

CPPFLAGS = -1 $(MYSQL_CONCPP_DIR)/include -L $(MYSQL_CONCPP_DI R)/|i b64
LDLI BS = -1 mysqgl cppconn8

CXX = cl ang++ -stdlib=libc++

CXXFLAGS = -std=c++11

app : app.cc

Binary packages for macOS include OpenSSL libraries that are required by code linked with the
connector. These libraries are installed in the same location as the connector libraries and should be
found there by the dynamic linker.

5.2.3 Solaris Notes

This section describes aspects of building Connector/C++ applications that are specific to Solaris.
For general application-building information, see Section 5.1, “Building Connector/C++ Applications:
General Considerations”.

As of Connector/C++ 8.0.13, it is possible to build Connector/C++ applications on Solaris. This requires
the SunPro 5.15 or higher compiler (from Developer Studio 12.6). Earlier versions and building with
GCC are not supported.

To use a Connector/C++ package provided by Oracle, application code must be built with SunPro 5.15
or higher under the following options: - n64 - st d=c++11. The C++ runtime libraries and atomics
library used should be the defaults (- | i br ary=st dcpp, -xatoni cs=studi o).

Important

The connector library and any code that uses it depends on the GCC runtime
libraries shipped with Oracle Developer Studio 12.6, which must be installed
before you run the application. See the download options for Oracle Developer
Studio. The installation package enables you to install the runtime libraries only
instead of the full Oracle Developer Studio; see instructions in Installing Only
the Runtime Libraries on Oracle Solaris 11.

Target hosts running client applications must have the runtime libraries from Developer Studio 12.6
installed.

30

https://www.oracle.com/technetwork/server-storage/developerstudio/downloads/index.html
https://docs.oracle.com/cd/E77782_01/html/E77785/gozsu.html
https://docs.oracle.com/cd/E77782_01/html/E77785/gozsu.html

Chapter 6 Connector/C++ Known Issues

To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

» Generally speaking, C++ library binaries are less portable than C library binaries. Issues can be
caused by name mangling, different Standard Template Library (STL) versions, and using different
compilers and linkers for linking against the libraries than were used for building the library itself.

Even a small change in the compiler version can cause problems. If you obtain error messages that
you suspect are related to binary incompatibilities, build Connector/C++ from source, using the same
compiler and linker that you use to build and link your application.

Due to variations between Linux distributions, compiler versions, linker versions, and STL versions, it
is not possible to provide binaries for every possible configuration. However, Connector/C++ binary
distributions include an | NFO_BI Nfile that describes the environment and configuration options used
to build the binary versions of the connector libraries. Binary distributions also include an | NFO_SRC
file that provides information about the product version and the source repository from which the
distribution was produced. (Prior to Connector/C++ 8.0.14, look for BUI LDl NFO. t xt rather than

| NFO_BI Nand | NFO_SRC.)

» To avoid potential crashes, the build configuration of Connector/C++ should match the build
configuration of the application using it. For example, do not use a release build of Connector/C++
with a debug build of the client application.

31

https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/

32

Chapter 7 Connector/C++ Support

For general discussion of Connector/C++, please use the C/C++ community forum.
To report bugs, use the MySQL Bug System. See How to Report Bugs or Problems.

For notes detailing the changes in each release of Connector/C++, see MySQL Connector/C++
Release Notes.

For Licensing questions, and to purchase MySQL Products and Services, please see http://
www.mysgl.com/buy-mysql/.

33

http://forums.mysql.com/list.php?167
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
https://dev.mysql.com/doc/relnotes/connector-cpp/en/
http://www.mysql.com/buy-mysql/
http://www.mysql.com/buy-mysql/

34

Index

B

BUILD_STATIC option
CMake, 16
BUNDLE_DEPENDENCIES option
CMake, 16

C

CMake
BUILD_STATIC option, 16
BUNDLE_DEPENDENCIES option, 16
CMAKE_BUILD_TYPE option, 16
CMAKE_INSTALL_DOCDIR option, 16
CMAKE_INSTALL_INCLUDEDIR option, 16
CMAKE_INSTALL_LIBDIR option, 17
CMAKE_INSTALL_PREFIX option, 17
MAINTAINER_MODE option, 17
MYSQLCLIENT_STATIC_BINDING option, 17
MYSQLCLIENT_STATIC_LINKING option, 17
MYSQL_CONFIG_EXECUTABLE option, 17
MYSQL_DIR option, 17
STATIC_MSVCRT option, 17
WITH_BOOST option, 17
WITH_DOC option, 18
WITH_JDBC option, 18
WITH_SSL option, 18

CMAKE_BUILD_TYPE option
CMake, 16

CMAKE_INSTALL_DOCDIR option
CMake, 16

CMAKE_INSTALL_INCLUDEDIR option
CMake, 16

CMAKE_INSTALL_LIBDIR option
CMake, 17

CMAKE_INSTALL_PREFIX option
CMake, 17

Connector/C++, 1

M

MAINTAINER_MODE option
CMake, 17
MYSQLCLIENT_STATIC_BINDING option
CMake, 17
MYSQLCLIENT_STATIC_LINKING option
CMake, 17
mysqlcppconn-static.lib, 25
mysqlcppconn.dll, 25
MYSQL_CONFIG_EXECUTABLE option
CMake, 17
MYSQL_DIR option
CMake, 17

S

STATIC_MSVCRT option
CMake, 17

W

WITH_BOOST option
CMake, 17
WITH_DOC option
CMake, 18
WITH_JDBC option
CMake, 18
WITH_SSL option
CMake, 18

35

36

	MySQL Connector/C++ 8.0 Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction to Connector/C++
	Chapter 2 Obtaining Connector/C++
	Chapter 3 Installing Connector/C++ from a Binary Distribution
	Chapter 4 Installing Connector/C++ from Source
	4.1 Source Installation System Prerequisites
	4.2 Obtaining and Unpacking a Connector/C++ Source Distribution
	4.3 Installing Connector/C++ from Source
	4.4 Connector/C++ Source-Configuration Options

	Chapter 5 Building Connector/C++ Applications
	5.1 Building Connector/C++ Applications: General Considerations
	5.2 Building Connector/C++ Applications: Platform-Specific Considerations
	5.2.1 Windows Notes
	5.2.2 macOS Notes
	5.2.3 Solaris Notes

	Chapter 6 Connector/C++ Known Issues
	Chapter 7 Connector/C++ Support
	Index

