Distributed Programming
the Google Way

7 48 B

Gregor Hohpe
Software Engineer
www.EnterpriselntegrationPatterns.com

Scalable & Distributed

* Fault tolerant distributed
disk storage:
Google File System

* Distributed shared memory:
Bigtable

 Parallel programming
abstraction:
MapReduce

* Domain Specific
Languages:
Sawzall

Google

GFS: Google File System

*Data replicated 3 times. Upon failure, software re-
replicates.

* Master: Manages file metadata. Chunk size 64 MB.

Master

© 2009 Google, Inc. Al rights reserved

Bigtable: A sparse, distributed,
persistent, multidimensional, sorted Map

(RowKey, ColumnFamily:Column, Timestamp) - Value

Column Family Column Family

=V |

Column A Column A
;7
)
(car |

Column E Column F

[l /]
(o |

Latest Version of
Key 1/ Column C

Cell

Map-Reduce

*Express computation as Map / Group / Reduce

map(in_key, data)
-> list(key, value)

(group output by key)

reduce(key, list(values))
- list(out_data)

*Well suited for "embarrassingly parallel" problems

*Open source implementation: Hadoop

© 2009 Google, Inc. Al rights reserved

Simple Example: Word Count

*Chose the key so you get the most out of the
framework

map(in_key, data):
for word in data.split():
output(word, 1)
reduce(key, list(values)):
print key, len(values)

KeyValue Key Values
to |1 be [1]1]

not (1

Map ! Group y Reduce

or

to be or not to be| =P > : 1| >
o

© 2009 Google, Inc. All rights reserved

Log Processing: Sawzall

* Domain-specific language
*Process one record at a time

» Aggregation externalized into "tables"

count: table sum of int;
total: table sum of float;

number: float = string(input);

emit count <- 1;
emit total <- number;

© 2009 Google, Inc. Al rights reserved

Simple Example: Word Count

word_count: table sum[string] of int;
line = input;
words = split(line);
for each word in words:
emit word_count[words] <- 1;

input emit
|to be or not to be |—> | to |be|or|not| to | be | —

|that is the question | — |that| is |the| question | O

© 2009 Google, Inc. All rights reserved

Underlying Considerations

Sharding

Less is More
Autonomy

Expect Failure

Power to the Runtime
Favor Stateless

Separate Stateless from Stateful

© N o a0k~ w DN PE

Precision vs. Speed

Conscious trade-offs

Divide and Conquer

009 Google, Inc. All rights reserved,

Partition Data Across DB Instances

«Shard function, e.g. customer ID
*Hierarchies (one-way) work well

*Many-to-many relationships (two-way)
difficult

«"Special Shard" / All shard queries

Application Persistence —
Layer _— Layer

-
Physical
Entity

Less is More

Bigtable, Not Bigdatabase

*Less is More:
* No transactions
No schema
No foreign keys
No join
No relational algebra, Cartesian product, etc
No SQL
* Single row updates are atomic. Everything else is
not.

*Only basic data types: string, counter, protocol
buffer

Gooale

Autonomy

Keep Going without Supervision

© 2009 Google, Inc. Al rights reserved

GFS

*Direct communication between client and
Chunk server

sLarge Chunk size (64MB)

GFS [P .
Master

Not If, But When

© 2009 Google, Inc. All rights reserved

Expect Failure: GFS & MapReduce
GFS: (oo o] (T TT] (o[l]

cored 31
» Data replicated 3 times. 1 2 3

» Upon failure, software
re-replicates.

MapReduce:
» Restarts failed map / reduce workers

 Detects key/value pairs that cause
crashes, skips

» Tougher to deal with: laggards

[y Q'j;]f;-ﬁ © 2009 Google, Inc. Al rights reserved

Ry

Free Flow Instead of St

© 2009 Google, Inc. All rights reserved

MapReduce Execution

Reduce Shard

Sawzall Quantifiers

» Descriptive as opposed to Prescriptive

function(word: string): bool {

when(i: some int; word[i] "= word[$-1-i])
return false;

return true;

};

esome / all / each

10

Favor Stateless

L N

Don't Remember a Thing

© 2009 Google, Inc. Al rights reserved

MapReduce / Sawzall /Bigtable

*Map and Reduce step are stateless

map(in_key, data) reduce(key, list(values))
-> list(key, value) -> list(out_data)

e Sawzall views input data as set, not list

*Bigtable has set() operation vs. insert / update

11

Separate Stateless From Stateful
/$ l\‘ |

The Real World is Rarely Stateless

© 2009 Google, Inc. Al rights reserved

map: table sum[string] of int;

line = input;

words = split(line);

for each word in words:
emit map[words] <- 1;

12

Precision vs. Speed

Mobil (LI
-

@ THATWILLBUFFOUT.COM
Faster is Better (in Software)

Inc. All rig ved,

Trade precision for speed: Sawzall

*Top() function:
Statistical samplings that record the "top N' data
items.

// This type is for estimating the most common

// entries based on the CountSketch algorithm from
// "Finding Frequent Items in Data Streams™,

// Moses Charikar, Kevin Chen and Martin

// Farach-Colton.

© 2009 Google, Inc. All rights reserved

13

It's all about trade-offs!

*GFS
 Large chunk size (64MB)

» Optimized for sequential read, not random
access

*Bigtable
» Optimized for read-intensive applications
* Distributed, but not transactional

«Sawzall
» Cannot detect duplicate rows

14

