DIGGING INTO

WORDPRESS

by Chris Coyier & Jeff Starr

to set themes Keeping sites Making the
things up right and how they work and of

Acknowledgements

® Thank you to Thane Champie and James Starr for their help with proofreading.
® Thanks also to the many readers who have helped with further improvements.
e Thank you to everyone who allowed screenshots to be printed in this book.

e Thank you to the incredible WordPress community for making WordPress #1.

e And most of all, thanks to you, the reader, for sharing this adventure with us.

Chris would like to thank

e My mom for all the excellent printing advice (and for being a good mom).
e Jeff Penman for insisting the book was a good idea.

e Tim Chatman for giving me the time and assistance | needed to get it finished.

Jeff would like to thank

e My wife, Jennifer, for her loving support and encouragement.
e My two children, Josh and Lorelei, for being so awesome.

e Friends, family, and everyone who helps along the way.

Disclaimer: links and references to external or third-party websites and resources are provided solely for
the reader’s convenience. Following links to other sites is done at your own risk and the book’s authors,
publishers, and all related parties accept no liability for any linked sites, resources, or related content.

DIGGING INTO WORDPRESS

By Chris Coyier and Jeff Starr
Version 5.8 ¢ August 2021

© 2009-2021 Perishable Press Books
Visit us online @ DigWP.com

https://css-tricks.com/
https://perishablepress.com/
https://books.perishablepress.com/
https://digwp.com/

DIGGING INTDO

WORDPRESS

CHRIS COYIER & JEFF STARR

Short URLs

The URLs in this book are so called “short URLs.”
They look like this: https://digwp.com/u/1 — When you
click on one (PDF people) or enter one into a browser
(Book people), you will be instantly redirected to the
URL we are trying to get you to. What's up with that?
Are we trying to drive traffic to our own site? Nope,
we are trying to do two things:

1) Make it easier for you (you don’t need to type
in long awkward URLSs)

2) Make it easy for us (it is easier to
typeset and design around short
URLs than long ones)

e Subscribe to the DigWP Newsletter

Check out DigWP on Facebook

5.8

That is the current version of WordPress at
the time this book was published. So if we say
something like “...the current version of WordPress,”
we are talking about 5.8. If we need to mention an
older version, we'll be specific about that.

So what if you are reading this and 5.9 is already out?
Don’t worry about it! The information in here will still be
valid. WordPress does a good job about not breaking
existing stuff for new versions.

But there will be changes, and we intend to keep
this book updated with those new things.
All current owners of this book will get
free PDF updates as it is updated!

See that? That’s dog food. It’s a metaphor:

We, the authors of Digging Into WordPress, eat our own dog food. We aren’t just here to
stand on a pedestal and preach about how you should do things. We practice these things
in the sites we work on every day.

Mouch of what you will read in this book s put into practice on the WordPress blog that
accompanzes this book.

https://digwp.com/

https://digwp.com/
https://digwp.com/u/1
https://www.facebook.com/digwp/
http://eepurl.com/bBYM-T

Contents

1 Welcome to WordPress

1.1.1 Welcome 9
112 Why WordPress is Amazing 9
1.1.3. How to Set up and Configure WordPress ... 10
114 How to Implement Advanced Functionality 10
1.1.5 How to Optimize and Secure WordPress .~ 11
1.1.6 How to Maintain Your WordPress Site. 12
117 DontWorry 12

1.2.1 So, You've Never Heard of WordPress 12
1.2.2 One Template, Many Pages 14
1.2.3 Powerful, Flexible and Extensible 14

1.3.1 Key Components of a WordPress Site .~~~ 15
1.3.2 WordPress Core Files 15
1.3.3 The WordPress Database 15
134 The Back End. 17

135 The Front End . 17

1.4.1 Tools of the Trade

1.4.2 A Domain Name
1.4.3 Web Host / Server
1.4.4 Text / Code Editor
1.4.5 FTP Program

2 Setting Up WordPress

2.1.1 The Famous Five Minute Install

2.1.2 Where To Install?
2.1.3 Checking Default Performance and Proper Functionality

2.2.1 OK, I'm In. Now What?

2.2.2 Just Publish Something!
2.2.3 Go Look At It!
2.24 The Plan

2.3.1 Permalinks: Your URL Structure

2.3.2 HTAccess

2.3.3 Which Style of Permalinks?

2.3.4 Pick One and Stick With It

2.3.5 SEO Consideration: Mind Your Post “Slugs”

2.4.1 Categories and Tags

2.4.2 They are Basically the Same
2.4.3 Use Only One Category Per Post

17

17
18
19
19

23

23
24

25

25
25
26

26

27
28
29
29

30

32
32

244 Use Multiple Tags Per Post

2.4.5 Don't Go Overboard!

2.4.6 You Don't Need to Use Them At All
2.4.7 Custom Taxonomies

2.5.1 Users and Administrators
2.5.2 Add a New Account for Yourself

2.6.1 Choosing the Perfect Theme

2.6.2 Where to Find Awesome Themes
2.6.3 Previewing Themes
2.6.4 Key Things to Look For in a Theme

2.7.1 Getting Started with Plugins

2.7.2 Installing and Activating Plugins
2.7.3 Difference Between Disabling and Uninstalling
2.74 Recommended Plugins

3 Anatomy of a Theme

3.1.1 Understanding Theme Files

3.1.2 Every Theme is Different
3.1.3 Commonly Used Theme Files
3.1.4 How Theme Files Work Together

33
33
34
34

37
39

40

40
41
41

44

44
45
46

51

51
51
54

3.2.1 Understanding Different Page Views 54

3.2.2 Page Views are for Pages 55
3.2.3 Single Views are for Posts 55
3.2.4 The Many Faces of Archive Views 56

3.2.5 How WordPress Decides Which File to Use for Rendering the View 56

3.3.1 Kicking It Off with the Header 58
3.3.2 The DOCTYPE and HTML Attributes 58
3.3.3 META Elements 59
3.3.4 The Title 59
3.3.5 Link Elements 61
3.3.6 The wp_head() Function 64
3.3.7 Template Tags 64

3.4.1 The WordPress Loop 67
3.4.2 The Loop in Plain English 68
3.4.3 The Loop Just Knows... 69
3.4.4 Some Common “Loop Only” Functions 70
3.4.5 Some Common “Outside Loop” Functions 71

3.5.1 Comments 71
3.5.2 The comments.php File 71

3.5.3 Selective Inclusion for Different Views 72

3.6.1 The Sidebar 74

3.6.2 Purpose and Placement 74
3.6.3 Popular Sidebar Functions 75
3.6.4 Widgets, Widgets, Widgets 78
3.7.1 The Search Form 79
3.72 Why is This a Separate File? 79
3.7.3 Alternatives to WordPress Search 79
3.8.1 The Footer 81
3.8.2 The wp_footer() Hook 81
3.8.3 Mini Footers / Mega Footers 83
3.9.1 Theme Functions 83
3.9.2 Functions are for Specific Themes 83
3.9.3 Advantage Over Core Hacks 84

4 Theme Design & Development

4.1.1 Customizing the Loop 87
4.1.2 Customizing the Loop with query_posts 88
4.1.3 Customizing the Loop with WP_Query 90
4.1.4 Customizing the Loop with get_posts 92
4.1.5 The Loop Doesn't Care About Markup 93
4.1.6 The Power of WP_Query 94

4.1.7 Displaying Different Numbers of Posts 95

4.1.8 Excluding Specific Categories

4.1.9 Changing the Sort Order

4.1.10 Show Specific Pages, Embed a Page within a Page
4.1.11 Using Multiple Loops: An Example

4.2.1 Sidebars and Footers

4.3.1 Menus, Archive Lists & Tag Clouds

4.3.2 Page-Specific Menu Styles
4.3.3 Create the Perfect Archives Page
4.3.4 Impress Your Visitors with a Tag Cloud

4.4.1 Side Content & Useful Menu Items

442 Displaying Recent Comments

4.4 .3 Displaying Recent Posts

4.4 4 Listing Popular Posts

445 Listing Recently Modified Posts

4.4.6 Listing Random Posts

447 Import and Display Twitter

4.4.8 Import and Display Delicious

449 Import & Display Other Feed Content

4.5.1 Creating and Using Child Themes

4.6.1 Styling Your Theme

4 6.2 Different Inclusion Methods
4.6.3 To Reset or Not To Reset?

96
96
97
97

100

103

105
107
108

109

109
111
112
112
113
113
116
117

119

120

121
122

4.7.1 Using Multiple Themes

4.8.1 Widgetizing

5 Extending Functionality

5.1.1 Extensibility

5.1.2 Extending WordPress with Plugins
5.1.3 A Plugin for (Almost) Everything
5.1.4 Do You Need a Plugin?

5.1.5 Choosing the Perfect Plugin

5.2.1 Plugin Usage and Maintenance

5.2.2 Sequential Installation

5.2.3 Keep Plugins Up-To-Date

5.2.4 Subscribe to Plugin Comment Threads
5.2.5 Getting Help with Plugins

5.2.6 Diagnosing Plugin Conflicts

5.2.7 Disabling and Uninstalling Plugins

5.3.1 Extending WordPress with Custom Functions

5.3.2 Plugins vs. Theme Functions (functions.php)
5.3.3 Examples of Useful Theme Functions

5.3.4 Example #1: Easy Admin Buttons for Comments
5.3.5 Example #2: Sitewide Shortcode Functionality
5.3.6 Example #3: Moving Plugins to functions.php

125

127

131

131
131
133
135

136

137
137
138
138
139
139

142

143
143
144
145
146

5.3.7 Example #4: Creating Plugins from Functions 146

5.4.1 Other Ways to Extend & Customize 147
5.4.2 Functions Within Theme Files 149
5.4.3 Hacking the WordPress Core 150

5.5.1 WordPress as a CMS 151
5.5.2 Working With Custom Fields 152
5.5.3 Users, Roles and Permissions 155
5.5.4 Categorizing, Tagging, and Custom Taxonomies 156
5.5.5 Page Templates 158
5.5.6 Page, Category, and Tag Hierarchies 159
5.5.7 Dynamic Menus 160

5.6.1 Extending CMS Functionality 161
But wait, there's more... 161

6.1.1 Working with RSS Feeds 163
6.1.2 The Pros and Cons of Delivering Feeds 163

6.2.1 Different Types of WordPress Feeds 164
6.2.2 Posts Feed 164
6.2.3 Comments Feed 166

6.2.4 Individual Post Comments Feed 166

6.2.5 Category and Tag Feeds
6.2.6 Other Feed Types

6.3.1 Feed Configurations & Formats

6.3.2 Full Feeds

6.3.3 Partial Feeds

6.3.4 Number of Posts

6.3.5 WordPress Feed Formats

6.4.1 Using FeedBurner For Feed Delivery

6.4.2 Benefits of Using FeedBurner

6.4.3 Setting Up & Configuring a FeedBurner Account
6.4.4 Redirecting to FeedBurner via Plugin

6.4.5 Redirecting to FeedBurner via HTAccess

©.4.6 Redirecting to FeedBurner via PHP

6.5.1 Tracking & Displaying Feed Statistics

6.5.2 Types of Statistics Provided by FeedBurner
6.5.3 Displaying FeedBurner Statistics
6.5.4 Alternatives to FeedBurner

6.6.1 Customizing Feeds

6.6.2 Formatting Feed Images

6.6.3 Adding a Custom Feed Image
6.6.4 Include Comments in Feeds
6.6.5 Creating Custom Feeds

6.6.6 More Feed Customization Tricks

167
167

168

170
171
171
172

175

175
176
177
177
179

181

181
182
183

184

184
187
189
191
195

6.6.7 Styling Feeds

6.6.8 Removing the WordPress Version Number
6.6.9 Disable and Redirect Unwanted Feed Formats
6.6.10 Insert Custom Content into Feeds

6.6.11 Importing and Displaying External Feeds
6.6.12 Buffer Period After Posting

6.6.13 Protecting Feed Content

6.7.1 Validating Feeds

7 Working with Comments

7.1.1 Optimizing the WordPress Comments Area

7.1.2 Welcome to the WordPress Comments Area
7.1.3 About the WordPress Comment System
7.1.4 Comments, Pingbacks, and Trackbacks

7.1.5 Anatomy of the WordPress
Comment Area

7.2.1 Syndicating WordPress Comments

7.2.2 WordPress Main Comments Feed
7.2.3 Post-Specific Comment Feeds

7.3.1 Formatting the Comments Area

7.3.2 Using wp_list_comments() or a Custom Loop?
7.3.3 Implementing Paged Comments
7.3.4 Implementing Threaded Comments

196
196
197
198
200
200
202

203

207

207
208
208

209

213

213
214

215

217
223
225

7.3.5 Separating Comments, Pingbacks, and Trackbacks
7.3.6 Eliminating Pingbacks and Trackbacks
7.3.7 Control Comments, Pingbacks, and Trackbacks

7.4.1 Customizing Comment Display

74.2 Numbering Comments Globally and Locally

74.3 Alternating Comment Styles

74.4 Custom Styles for Authors & Members

74.5 Styling Comments with Gravatars

74.6 Add a "Your comment is awaiting moderation” Message
74.7 Moderation Links in the Theme Itself

74.8 Display Comment, Ping/Trackback Counts

7.5.1 Optimizing the Comment Form

7.5.2 Set up Comment Previews

7.5.3 Rich-Text Editors for Comments

7.5.4 Adding Comment Quicktags

7.5.5 Comment Management and Spam Prevention

7.6.1 Controlling Comment Spam

7.6.2 WordPress' Built-In Anti-Spam Functionality
7.6.3 Anti-Spam Plugins for WordPress

7.7.1 Other Considerations & Techniques

7.7.2 Enhancing and Encouraging Comments
7.7.3 Nofollow Links
774 Integrating Twitter

228
232
234

236

236
240
241
243
246
247
248

249

249
250
252
254

254

255
256

257

257
258
258

8 Search Engine Optimization
8.1.1 SEO Strengths and Weaknesses

8.1.2 Strong Focus on Content
8.1.3 Built-In "nofollow” Comment Links
8.1.4 Duplicate Content Issues

8.2.1 Controlling Duplicate Content

8.2.2 Meta noindex and nofollow Tags
8.2.3 Nofollow Attributes

8.2.4 Robots.txt Directives

8.2.5 Canonical Meta Tags

8.2.6 Use Excerpts for Posts

8.3.1 Optimizing Permalink Structure

8.3.2 Default URLs vs. “Pretty” Permalinks
8.3.3 Keep Permalinks Short
8.3.4 Maximize Permalink Keywords

8.4.1 Scoring with Google

8.4.2 Content, Content, Content
8.4.3 Detecting Duplicate Content
8.4.4 Optimizing Heading Elements
8.4.5 Optimizing Title Tags

8.4.6 The nofollow Wars

8.4.7 Fixing Broken Links

8.4.8 Using a Sitemap

261

261
262
262

263

264
267
269
273
275

276

276
277
280

281

281
282
283
284
286
287
288

8.4.9 SEO-Related plugins 289

8.5.1 Tracking the Success of Your Site 290
8.5.2 Statistical Plugins 290
8.5.3 Mint Stats 291
8.5.4 Google Analytics 292
8.5.5 Other Metrics 293
8.6.1 Closing Thoughts on SEO 294
Into the future... 295

9 Maintaining a Healthy Site

9.1.1 Keeping Your Site Healthy 297
9.1.2 Securing WordPress 297
9.1.3 Setting Secure File Permissions 298
9.1.4 Disabling Directory Views 300
9.1.5 Forbid Access to Sensitive Files 302
9.1.6 Remove the WordPress Version Number 313
9.1.7 Securing Your Database 313
9.1.8 Secure Multiple Installations 315
9.1.9 Prevent Hotlinking 315
9.1.10 More WordPress Security Help 317

9.2.1 Stopping Comment Spam 318
9.2.2 Configuring Your WordPress Admin Options 319
9.2.3 Using the Built-In Comment Moderation 320

9.2.4 Using the Built-In Comment Blacklist 320

9.2.5 Disabling Comments on Old Posts 321

9.2.6 Deny Access to No-Referrer Requests 321
9.3.1 Monitoring and Fixing Errors 322
9.3.2 Keep an eye on 404 Not Found Errors 323
9.3.3 Broken Link Checker Plugin 323
9.3.4 Other Error-Logging Techniques 324
9.3.5 Online Monitoring Services 324
9.4.1 Staying Current with WordPress 325
9.4.2 Updating WordPress 326
9.4.3 Logging Changes 327
9.4.4 Backing Up Your Database and Files 328
9.5.1 Optimizing WordPress 329
9.5.2 Content and File Caching 329
9.5.3 File Compression Methods 331
9.5.4 Optimizing CSS and JavaScript 332
9.5.5 Reducing the Number of HTTP Requests 333
9.5.6 Plugin Maintenance 337
9.5.7 Database Maintenance 338
9.5.8 Other Optimization Techniques 338
To Infinity, and Beyond 341
Thank you 342

Bonus Content

Log in to your account to download bonus content, exclusive themes, and more.

Life 1s conversational. Web design
should be the same way. On the web,
you're talking to someone you've
probably never met - so it's important
to be clear and precise. Thus, well
structured navigation and content
organization goes hand in hand with
having a good conversation.

— CHIKEZIE EJIASI

Anatomy of a WordPress Theme

3.1.1 Understanding Theme Files

It is time for us to start taking a close look at how themes are built and how they
work. If you have ever themed any kind of application before, you will appreciate
how straightforward and intuitive WordPress theming actually is (with plenty of
power when you need it). If you have never themed any application before, never
fear, it's easy.

3.1.2 Every Theme is Different

Of course, the look of all themes is different. But if you were to download five
different WordPress themes and open the folders side by side, you'll see a slightly
different sets of files as well. There are a couple of required files and a number

of files you will likely find in all themes, but beyond that the door is pretty wide
open. For example, some themes might come with a special archives page because
that theme is built to showcase archives in a unique way. Another theme might be
missing search.php, because its index.php is built to handle search the functionality.

3.1.3 Commonly Used Theme Files

In the chart on the next page, notice how we have labeled each of the theme files.
Two of them, index.php and style.css are labeled as “CORE". This means that
they are absolutely essential to your theme. In fact, WordPress will not recognize
any theme if these two files are not within the theme folder. Technically, you

STANDARD SPECIAL CORE JUNK

(used in most themes) (optional additions) (required) (legacy, don’t use)
404.php Error page, served up when someone goes to a URL on your site that doesn’t exist
archive.php Page that displays posts in one particular day, month, year, category, tag, or author
archives.php Page template that includes search form, category list, and monthly archives (requires page using it)
comments-popup.php If you enable popup comments (obscure function), the comments link will use this template
comments.php This file delivers all the comments, pingbacks, trackbacks, and the comment form when called
footer.php Included at the bottom of every page. Closes off all sections. (Copyright, analytics, etc)
front-page.php Displays content for the site’s front page, aka home page
functions.php File to include special behavior for your theme.
header.php Included at the top of every page. (DOCTYPE, head section, navigation, etc)
home.php Displays content for the site’s front page if front-page.php is not available
image.php If you wish to have unique pages for each of the images on your site (for credits, copyright...)
index.php This is typically the “homepage” of your blog, but also the default should any other views be missing
links.php Special page template for a home for your blogroll
loop.php Common in newer themes, an optional file to house your custom, multiple, or regular loops
page.php Template for Pages, the WordPress version of static-style/non-blog content
rtl.css A special CSS file for your optional inclusion to accommodate “right to left” languages
screenshot.png This is the image thumbnail of your theme, for help distinguishing it in the Appearance picker
search.php The search results page template
sidebar.php Included on pages where/when/if you want a sidebar
single.php This file is displays a single Post in full (the Posts permalink), typically with comments
style.css The styling information for your theme, required for your theme to work, even if you don’t use it

could build a theme with only these two files. And a simple theme it would be!
That might be just what you need for some special applications of WordPress,
but in general, you are probably using WordPress because you want a bit more
functionality than that would offer.

Most themes will include both the CORE and “STANDARD" files. The STANDARD
files cover everything both you and your visitors will expect from a blog. Things like
permalinked posts and pages, error catching, commenting, and organized archives.

Some of these files are marked as “SPECIAL", in that they offer something above
and beyond the basics. For example, the image.php file. If you choose to use the
WordPress default media library to manage the files you post to your site (images,
movies, etc.), you can insert them into your posts with a link to a special page on
your site controlled by the image.php file. This can be useful. You can include special
information on this page like copyright information, author information, usage
rights, etc. Not all sites would want or need this, hence its designation as SPECIAL.

One of the files listed, comments-popup.php, is marked as “JUNK"” because it's no

longer used but still found in many themes. The file is just weird; we could tell you
all about it, but it's not worth the ink (really).

Brand Your Theme

More to the list

The chart on the opposite page
wsn’t a complete list of every
template file, just the most
common ones (see page 57 for
more). You may create as many
of your own custom theme

templates as you like. Get more
details at the WP Codex:

https://digwp.com/u/634

Singular Template

You can use a singular.php
template to display both single
posts and pages. Kinda like
combining single.php with
page.php. singular.php

Adding a screenshot and description to your theme is a great way to give it an distinct identity. Here's how:

o Create a file named screenshot.png and put it in_your theme folder. e Put this description at the top of your style.css file

[e e e e e L e e e e e e il " /*
Theme Name: Theme Name

Version: 1 (WP2.8.4)
Author: Your Name

Ryt s J */

Theme URI: https://your-website.com/cool-theme/
Description: Totally awesome WordPress theme by
Yours Truly

Author URI: https://your-website.com/
Tags: super, awesome, cool, sweet, potato nuggets

https://digwp.com/u/634

3.1.4 How Theme Files Work Together

These files are not stand-alone templates. They interact and call upon each other
to get the job done. For example, index.php alone will call and insert header.php at
the top of it, sidebar.php in the middle of it, and footer.php at the bottom of it.
Then, the sidebar.php file might have a function to call in searchform.php. Likewise,
the header.php file, which includes the <head> section, will call upon the

style.css file.

It is this modular, dynamic approach that gives WordPress theme building a lot of
its power. For those folks coming from a background of building static sites, the
nature of using templates is probably already quite appealing. Imagine wanting

to add a navigational item to the site’s main menu bar, which likely lives in the
header.php file. One change, and the new navigational item is reflected on all
pages of the site. Going further, the menu bar itself is likely generated from a
built-in WordPress function. As soon as you publish a new page from the Admin
area of WordPress, the menu-bar function will recognize the new page and
automatically append it to the sitewide menu bar. This is powerful stuff that makes
site modifications, updates, and management very easy.

Home Sweet Home 3.2.1 Understanding Different Page Views
Confused about the difference

between home .php and
front-page.php? This post

There are really only a handful of different types of page views:

should help: e The Home Page - usually at the root URL of your domain
https://digwp.com/u/671 ¢ Single Posts - displays one post at a time, usually in its entirety
Simalarly confusing are the e Static Pages - pages that are outside the flow of normal posts

template tags, home_url() and _)

site_urlQ), as explained here: e Custom Pages - static pages that have been customized
https://digwp.com/u/672 e Search Results - displays a list or summary of posts matching a search

e Archive - shows series of posts for categories, tags, dates, and authors

https://digwp.com/u/671
https://digwp.com/u/672

3.2.2 Page Views are for Pages

We already learned about Pages and how they are most commonly used for
“static” style content. You cannot categorize or tag a Page, they exist outside the
chronological flow of posts, and they don’t appear in the RSS feed like Posts do.
As such, the theme template used to display Pages is generally different than that
used to display Posts. For example, it may lack the functionality to display things
such as dates, author names, and comments. Instead, it might include functionality
to display the breadcrumb trail of its hierarchy of parent pages (see chapter 5.5.6).

3.2.3 Single Views are for Posts

The single.php file is responsible for displaying a single Post. There may be parts
of the single.php template file for displaying categorization and other “meta”
information about the post, as well as the functionality required for displaying the
comments area and comment form. Perhaps you want your single posts to be a bit
wider and less cluttered? The single.php file is where you might omit calling the
sidebar and adjust your CSS accordingly.

PAGE POST

Viget

Regular Title Extra Blog Header

Blog posts have “blog”
No comments header in addition to title
This content isn't really and meta about this post.

The FourlLabs Blog ¢

My Vegetarian Car, Elevation Burger, My
ﬁ Sister, “Chuck,” and Some Awesome

meant for public discussion.

Comments
: : This content is meant for
Unique sidebars public discussion. (not visible

The sidebar needs on .
this page are different in screenshot, but there!)

than elsewhere on the . .
site. WordPress can Unique sidebars

accommodate. Blog area has blog-related
ancillary content, like
categories, subscription info,
and popular content.

Nav Highlighting
About page = About
highlighted in navigation

Nav Highlighting
Any blog page = Blog
highlighted in navigation

CONNECT WITH US:

800 Archives | Digging into WordPress

EE] http://digwp.com/archives/

3.2.4 The Many Faces of i
Archive Views RN ovcums conee

There are many types of archives, and this
one file, archive.php, is often in charge

of displaying them all. When viewing a fArchives by Monith: Archives by Tag:
particular category, tag, author, or date- | e e
based archive, WordPress will generate the " b 008 " e
markup and display the content according A'r::i:;bymegory:
to the code contained in the -
archive.php file. - ossn
Javascrip! o footer
Look at all the archive links at the : R :Mg
Digging Into WordPress site. Every " St e ey
one of those subsequent pages s ; E:;j e
handled by the archive..php file ¢ e o
Archives by Author: .

3.2.5 How WordPress Decides Which File
to Use for Rendering the View

All this talk about different page views is begging the question, “how does
WordPress figure out which template file to use?” You might assume that it is
hard-wired into WordPress, but as we’ve learned, most of the files in a theme

are optional. If your theme doesn’t have an archive.php file, does WordPress just
display a blank page? Absolutely not, it moves down its hierarchy of template files
to find the next most appropriate file to use. Ultimately, all paths in the WordPress
templating world end at the index.php file. No wonder this is such an important
and required file!

Just as we move down the hierarchy toward index.php, we can travel in the other
direction and create template files that are very specific. For example, if we wish
to have a unique template when viewing category #456 of our blog, we can create
a file called category-456.php, and WordPress will automatically use it. Let’s take a
look at the hierarchy flowchart.

WHICH TEMPLATE FILE WILL WORDPRESS USE?

T H Y

PAGE TYPE tiesfist > triesnext > trieslast
A04 s04php > indexphp
SEARCH searchohp > indexphp
TAXONONY taxonomy-{tax}-{termy.php > taxonomy-ftaxtphp > taxonomyphp > archivephp > index.php
HONE homephp > index.php
ATTACHMENT ~ fmime-tyneppho > attachmentphp > singlephp >~ index pho

S|NG|_E single-{post-typek.php > singlephp > index.php

PAGE fustom-templatelphp > page-fslugkphp > page-{idkphp > pagephp > indexphp
CATEGORY category-{slugt.pnp > category-{idk.php > category.php > archivephp > index.php
TAG tag-fslugiphp > tag-fidkphp > tagphp > archivephp > indexphp
AUTHOQ author-{author-nicename}.php > author-{author-idt.php > authorphp > archivephp > index.php
DATE
ARO‘”VE archivephp > index.php

date.php > archivephp > index.php

3.3.1 Kicking It Off with the Header

If you had never seen the files in a WordPress theme before, you could probably
guess which file is responsible for the top of pages. It's everybody’s favorite theme
file: header.php!

3.3.2 The DOCTYPE and HTML Attributes

In 99.999% of all themes, the header file is the first file that is called when
WordPress is rendering any type of web page. As such, its contents begin with the
same code that all web pages begin with, namely, the DOCTYPE. This isn‘t the time
or place to talk about why to choose one DOCTYPE over another (there are plenty
available to choose from). Just suffice it to say that HTML 5 is a very common
DOCTYPE choice these days. Here’s how it looks in the source code:

<!DOCTYPE html>

Directly after any site’s DOCTYPE element is the opening HTML tag, which may
include attributes that work with the DOCTYPE to prepare the browser for what
to expect from the source code. A commonly used attribute for the <html> tag is
lang, which specifies the page’s language. At this point, WordPress jumps in with a
template tag to help define the page’s language attributes:

<html <?php language_attributes(); 7>>

So putting those two lines together gives us something very simple and elegant:

<!DOCTYPE html>
<html <?php language_attributes(); 7>>

It just doesn’t get much better than that.

3.3.3 META Elements

After the opening <html> tag, we move into the <head>, which is also common to
all web pages and provides all sorts of information the browser needs to display
the page as intended. Within the <head> section, we begin with some choice <meta>
tags, which can be thought of as “information about information.” In this case, the
HTML is the information, and so meta tags describe that information. To let the
browser know the content type and language used, WordPress helps us with some

super-handy template tags:
P y P 9 Simplified HTML5

<meta http-equiv="Content-Type" content="<?php bloginfo('html_type'); 7>; Here are two similar ways
charset=<?php bloginfo('charset'); 7>"> of declaring the character set.
In HTMLS, these tags are
equivalent. So use the shorter
one to keep things sumple.

<meta charset="<?php bloginfo('charset'); ?>">

n

Other important meta tags include “description” (very important) and “keywords
(less important). But because the description and keywords for any given page

on your site depend on the actual content of that page, it is best to dynamically
generate these tags rather than include them directly here. See page 47 for
information about the All in One SEO plugin to handle meta tags automatically.

3.3.4 The Title

The <head> is also where the <title> for the page is declared, which is an incredibly
important line in any HTML code. It is literally what is shown at the top of the
browser window, what is saved as the default title of bookmarks (both saving
locally and socially), and is used for the title link in search-engine listings. Again,
we are in the tough position where this bit of code is written only once, right here,
and is used for every single page on the entire site. So how do you craft it so that
the title is optimal on every possible page? Glad you asked.

Here is an excellent function that enables top-notch, attractive-looking and
descriptive titles for every possible type of web page. Simply use this code as the
<title> element in your theme’s header.php file and you're good to go:

New Title Tag Technique <title>
<?php if (function_exists('is_tag') && is_tag()) {

WordPress has a new way to

implement title tags. Check out single_tag_title('Tag Archive for "'); echo '" - ';
the WP Codex to learn more: } elseif (is_archive()) {
https://digwp.com/u/676 wp_title(''); echo ' Archive - ';
} elseif (is_search()) {
echo 'Search for "'.wp_specialchars($s). '" - ';

} elseif (!1(is_4040)) && (is_single()) Il (is_page())) {
wp_title(''); echo ' - ';
} elseif (is_4040)) {

. echo 'Not Found - ';
Perfect Title Tags }
For the full scoop on creating if (is_home()) {
pqﬁdtukt@gjwqur bloginfo('name'); echo ' - '; bloginfo('description');
WordPress-powered site, check 1
out these two articles: }oelse {
bloginfo('name');
https://digwp.com/u/397 g C)
https://digwp.com/u/398 3
if ($paged > 1) {
echo ' - page '. $paged;
7>
</title>
eno Perishable Press :: Digital Design and Dialogue ~
TilO.S'B sure would bookmark <|» m + |¢X3 http://perishablepress.com/ ¢ | [Q~ Google
nicel A wauldn 't l‘}lb_’yp e 0o How to simplify your markup using IDs for anchors e Perishable Press
| > E + @hltp://perishablepress.com/press/2009/09/14/ids-are-anchors-loo/ ¢ | Q' Google
®eo0o Perishable Press Archives « Perishable Press
<> Q + |&X3http://perishablepress.com/press/archives/ ¢ J(Q~ Google
eno Category Archive for [Timeline] « Perishable Press
| > g o @http://perishablepress.com/press/category/pleasure/timeline/ (4 J ! Q~ Google
®no Search for [WordPress] » Perishable Press
| > g e @http://perishablepress.com/press/search/WordPress/ [| Q~ Google

® 0o Tag Archive for [Security] « Perishable Press

| » m =+ @hltp://perishablepress.com/press/tag/security/ C Q' Google

https://digwp.com/u/397
https://digwp.com/u/398
https://digwp.com/u/676

The All-In-One SEO Plugin that we mentioned earlier can also be put in charge of
handling page titles. The advantage is that it keeps this area of the theme cleaner
and does provide what is generally considered the best page title format for SEO.
The disadvantage being that it isn"t very customizable or nearly as configurable as
doing it yourself.

3.3.5 Link Elements

The <head> is also the place to link to external resources like CSS and JavaScript
files. Since your theme requires the presence of a style.css file in the root
directory of your theme, you might as well use it. Including it is as simple as this:

<link rel="'stylesheet' href='<?php bloginfo("stylesheet_url"); 7>'
type="text/css' media='screen'>

The parameterized function, bloginfo("stylesheet_url™), literally returns the Parameterized is a fun word,
exact URL of the stylesheet. No reason to hard-code anything here. And in fact, the — wnu’

bloginfo() function can return all sorts of useful information, which we’ll dig

into shortly.

On the other hand, including JavaScript files in your theme is slightly trickier,
especially if you want to do it the right way (you do). Let's say you want to include
the popular JavaScript library jQuery on your page, and also a custom script of your
own that makes use of jQuery. Because jQuery is such a popular library, it is used
fairly commonly by other plugins, and in fact by the WordPress Admin area itself.
As such, WordPress literally ships with a copy of jQuery you can link to. To do so,
simply call this function in your head area or functions.php file:

<?php wp_enqueue_script('jquery'); 7>
Doing it this way has a few distinct advantages.

1. It's easy. It creates a link to a file you know is there and you know works.

2. It lets WordPress know that the requested file is successfully loaded.

The One, the Only... If you go off and download your own copy of jQuery and link to that, WordPress

. has no idea that you’ve done this. Then if you start using a plugin that utilizes

JQuery jQuery, it will go off and load another copy, which will cause all sorts of havoc.

https://iquery.com/ Conversely, if you enqueue the file instead, the plugin will recognize the fact it
already exists and not load a duplicate copy. Hurrah!

On the other hand, when you load your own script, you don’t really need to
enqueue it because it is already totally unique and not included in WordPress. You
can load your own script on the page like this:

<script type="text/javascript"
src="<?php bloginfo('template_url'); ?>/js/myscript.js"></script>

As you can see, we are using another bloginfo function here, only this time it
outputs the URL path to the active theme directory, not to any particular file.

Now, let’s say on your archives pages that you have a whole bunch of special CSS
that isn't used anywhere else on the site and a custom script that is unique to your
archives pages. You can use some special WordPress logic to detect if the archives
pages are the ones being viewed, and load the files only in that situation:

<?php if (is_page_template('page-archives.php')) { 7>
<link rel="stylesheet" href="<?php bloginfo('template_url'); ?>/css/
archives.css" type="text/css" media="screen">

<script type="text/javascript" src="<?php bloginfo('template_url'); 7>/
js/archives. js"></script>

<?php } 7>

That will take effect if you are using a special page template for your archives that
is literally named “page-archives.php”. If instead you happen to know the ID of the
page (available in the Admin area, see note on next page), that could be written
like this:

https://jquery.com/

<?php if (is_page("5")) { 7>

<link rel="stylesheet" href="<?php bloginfo('template_url'); ?>/css/
archives.css" type="text/css" media="screen">

<script type="text/javascript" src="<?php bloginfo('template_url'); 7>/
js/archives. js"></script>

<?php } 7>

I n

...where “5" in the first line is the page ID. Feel free to use PHP’s “or"” operators
here to cover multiple pages.

Putting all of that together, our code looks something like this:

<?php wp_enqueue_script('jquery'); 7>
<?php wp_head(); 7>

<script type="text/javascript" src="<?php bloginfo('template_url'); ?>/js/
myscript.js"></script>

<?php if (is_page("5")) { 7>

<link rel="stylesheet" href="<?php bloginfo('template_url'); ?>/css/
archives.css" type="text/css" media="screen">

<script type="text/javascript" src="<?php bloginfo('template_url'); 7>/
js/archives. js"></script>

<?php } 7>

Hey! What's up with that wp_head() thing? Glad you asked...

What is My Page ID?

Determining the ID of your
posts and pages s not as easy
as it used to be. In previous
versions of WordPress, the 1D
was conveniently displayed
right next to the post or page in
the Adman area.

In newer versions of
WordPress, 1D information
has been removed, and s only
accessible by hovering over the
post/page link in the Admin’s
Edit Posts or Edit Pages
screens.

Thus, to get your ID, hover
over its link in the Admin and
look at your browser’s Status
Bar to see the information. It
will be appended to the URL

as the last parameter value.

3.3.6 The wp_head() Function

A must for any theme, the wp_head() function simply tells WordPress “Right here,
this is inside the <head>.” It is kind of a generic function that is used as a “hook” on
which the WordPress core, plugins, and custom functions may attach things.

For example, if you have the XML-RPC functionality of your blog enabled (Settings
> Writing), it requires a special <link> element to be added into the <head>. If it

is present within your theme, the wp_head function will be used by WordPress to
include the required XML-RPC element to the <head>.

Similarly, in the previous section, the code uses the wp_enqueue_script function. All
by itself, that function doesn’t have any effect. But when the wp_head tag is also
present, it serves as a hook that serves as the location at which the wp_enqueue_
script function will load the script.

Plugins also use the wp_head function to load their own scripts and CSS files.
Sometimes they even insert inline CSS and JavaScript, which is a bit annoying and
makes for a messy “View Source” experience.

3.3.7 Template Tags

Now is a good time to mention that there is a WordPress function for pulling out a
variety of information about your blog. This information is useful on a regular basis
when creating themes. Here is the function...

<?php bloginfo('template_url'); 7>

...and here is the different types of data that you can get from it:

admin_email = jeff@digwp.com
atom_url = https://digwp.com/home/feed/atom
charset = UTF-8

comments_atom_url = https://digwp.com/home/comments/feed/atom

comments_rss2_url = https://digwp.com/home/comments/feed

description = Take Your WordPress Skills to the Next Level!
url = https://digwp.com/home

html_type = text/html

language = en-US

name = Digging Into WordPress

pingback_url = https://example/home/wp/xmlrpc.php

rdf_url = https://digwp.com/home/feed/rdf

rss2_url = https://digwp.com/home/feed

rss_url = https://digwp.com/home/feed/rss

siteurl = https://digwp.com/home

stylesheet_directory = https://digwp.com/home/wp/wp-content/themes/largo
stylesheet_url = https://digwp.com/home/wp/wp-content/themes/largo/style.css
template_directory = https://digwp.com/home/wp/wp-content/themes/largo
template_url = https://digwp.com/home/wp/wp-content/themes/largo
text_direction = 1ltr

version = 2.8.5

wpurl = https://digwp.com/home/wp

If you were looking closely, you may have noticed we have already used this
function earlier in our example showing how to include a stylesheet:

<link rel="stylesheet" href="<?php bloginfo('template_url'); ?>/css/
archives.css" type="text/css" media="screen">

This is how you can generate a URL from inside your theme folder without

having to hard-code anything or worry about relative file paths. Hard-coding is
problematic (what if you change the name of the theme?). Relative file paths are
problematic too, because the URL structure of a site can change and go many levels
deep, the only reliable way to do it is to start with the root (“/”), which would
then require the theme’s folder name anyway.

Global Custom Fields

Another way to look at the bloginfo() function (see 3.3.7) is as a “Global Custom Field.” That is,

a value that you can access from anywhere that returns a value you can use. Posts and Pages can
have custom fields as well, but they are localized to that Post or Page and thus not very “Global.”
Creating your own global custom fields could potentially be very useful. For example, let’s say you
use the Amazon Affiliate Program to help your site earn money. This affiliate code is baked into all
sorts of data that you can get from Amazon, like URLs for linking to products and their widgets. As
with everything, you could hard-code this affiliate code everywhere it needs to be, but that isn’t

a very efficient technique. If this code were to change some day (you never know), you are stuck
updating a lot of code. Instead, let’s do it right by literally creating a custom settings area in the
Admin for creating our own global custom fields.

Add this to your functions.php file:
<?php add_action('admin_menu', 'add_gcf_interface');

function add_gcf_interface() {
add_options_page('Global Custom Fields', 'Global Custom Fields', '8', 'functions',
'editglobalcustomfields"');

}

function editglobalcustomfelds() { 7>
GCF @ DigWP.com <div class="wrap">

<h2>Global Custom Fields</h2>
A bit more about Global <form method="post" action="options.php">
Custom Fields at DigWWBcom: <?php wp_nonce_field('update-options') 7>
<p>Amazon ID:

https://digwp.com/u/586 <input type="text" name="amazonid" size="45"

. value="<?php echo get_option('amazonid'); ?>">
https://digwp.com/u/587

</p>
<p><input type="submit" name="Submit" value="Update Options"></p>
<input type="hidden" name="action" value="update">
<input type="hidden" name="page_options" value="amazonid">
</form>
</div>
<?php } 7>

You can now display this value anywhere in your theme with the get_option() template tag:

<?php echo get_option('amazonid'); 7>

https://digwp.com/u/586
https://digwp.com/u/587

3.4.1 The WordPress Loop

The loop is the one thing that is absolutely core to understanding how WordPress
works. In its most basic, generalized form, the loop looks like this:

Bad analogy!
Bad analogy!

<?php
// The Loop
if Chave_posts()) : while Chave_posts()) : the_post();

endwhile; else:

endif;

7>

As veteran developers know, a “while” loop is a standard concept in any
programming language, and its use here is just standard PHP. First the loop makes
sure that there are some posts to display (the “if” statement). If that is true, it
begins the loop. Then, the function “the_post()" sets the stage for WordPress to
use inner-loop functions, which we will explore soon. Once the_post() has been
iterated the specified number of times, “have_posts()” turns to false and the loop
stops.

Yikes! That is sounding pretty abstract. Perhaps we better break things down so we
don’t lose each other.

3.4.2 The Loop in Plain English

Are there any posts published? Sorry, just had to ask, the
rest of this code will go funky if there aren’t any.

Begin the loop. This will cycle through the number of Posts
you have set to display (under Settings > Reading).

A header tag with an anchor link inside it. The text will be
the title of the Post, and the link will be the permalink to
the single Post page.

A custom field that is attached to this Post is pulled out /

and displayed. In this case, the key of “PostThumb”, which
returns an “" tag symbolizing this Post.

“Meta” information about the Post is displayed: the Month
Day, Year the Post was published and the display name of
the Author who wrote it.

<?php if Chave_posts()) : 7>

’/////,// <?php while (have_posts()) : the_post(); ?>

<div class="post" id="post-<?php the_ID(); ?>">

,,,,,,,f—”’ <h2><a href="<?php the_permalink(); 7>"
rel="bookmark" title="Permanent Link to <?php the_

title_attribute(); 7?>"><?php the_title(); ?></h2>

<?php echo get_post_meta($post->ID, 'PostThumb',
true); ?>

<p class="meta">

Posted on <?php the_time('F jS,
Y'); ?> by <?php the_author(); 7>

</p>

___—_—__~___________________-——— <?php the_content('Read Full Article'); ?>
The full content of the Post is displayed.

<p><?php the_tags('Tags: ', ', ', '
'); ?>

. . - P in <?php th Y, ?
More meta information about the post is displayed: all the / P ted i <7pho the cotegony(. 43: 7

tags and categories given to this Post and the number of
comments, which is a link to the commenting area.

End of the loop

<?php comments_popup_link('No Comments;',
'l Comment', '% Comments'); ?></p>

</div>

If there are older or newer posts available, display links to
them.

No posts? (a failsafe)

Better tell the people.

<?php endwhile; 7>
<?php next_posts_link('Older Entries'); 7>
<?php previous_posts_link('Newer Entries'); 7>

<?php else : 7>

All done.

<h2>Nothing Found</h2>

<?php endif; 7>

3.4.3 The Loop Just Knows...

As mentioned, the loop is simply a dressed-up “while” loop. While there are posts
available in the database, display the posts. In theory, it's simple and utilitarian.
But what might remain confusing is just how this while loops knows exactly what
to loop. While... what? Well, without you having to tell it, the basic loop function
already knows what its query is going to be! To see for yourself what the query
string is, you can echo it to the web page by adding this little snippet directly
before the loop:

<?php global $query_string; echo $query_string; ?>

If we were to place this snippet above our single.php loop at the Digging Into
WordPress site, the following information would be displayed on any single page:

year=2011&monthnum=02&name=version-3-update

In plain English, that reads: “The date is February 2011 and the post name is
Version 3 Update.” Likewise, if we echo that $query_string variable from our
archive.php file, and then visit the “JavaScript” category archive, we see this:

posts_per_page=10&what_to_show=posts&orderby=date&order=DESC&category_
name=javascript loop.php

Many WP themes include a
Loop..php file, which helps
reduce repetitive code in other

theme files. Explore!

In plain English: “Show ten Posts from the Javascript category in descending
chronological order.”

Note that we did nothing manually to change this query string, but merely by
loading a different type of page (an archive view), WordPress provides the proper
query to make that loop do the right thing. Don’t worry if this sounds confusingly
technical. It doesn’t really matter. The point is that The Loop just knows what to
loop through for the type of page you are building and displaying.

https://digwp.com/book/

	3.1.1 Understanding Theme Files
	3.1.2 Every Theme is Different
	3.1.3 Commonly Used Theme Files
	3.1.4 How Theme Files Work Together

	3.2.1 Understanding Different Page Views
	3.2.2 Page Views are for Pages
	3.2.3 Single Views are for Posts
	3.2.4 The Many Faces of
Archive Views
	3.2.5 How WordPress Decides Which File
to Use for Rendering the View

	3.3.1 Kicking It Off with the Header
	3.3.2 The DOCTYPE and HTML Attributes
	3.3.3 META Elements
	3.3.4 The Title
	3.3.5 Link Elements
	3.3.6 The wp_head() Function
	3.3.7 Template Tags

	3.4.1 The WordPress Loop
	3.4.2 The Loop in Plain English
	3.4.3 The Loop Just Knows…

