Всем привет! Основным инструментом оркестрации задач для обработки данных в Леруа Мерлен является Apache Airflow, подробнее о нашем опыте работы с ним можно прочитать тут. А также мы находимся в постоянном поиске инструментов и фреймворков для упрощения работы наших дата сайентистов и дата инженеров. Один из таких инструментов – фреймворк Ray, который позволяет создавать ML пайплайны из DAGов Airflow. В статье от Astronomer подробно рассматривается, как начать его использовать и с его помощью быстро развернуть и обучить модель.
Big Data *
Большие данные и всё о них
- Новые
- Лучшие
- Все
- ≥0
- ≥10
- ≥25
- ≥50
- ≥100
Новости
Как собрать требования к дашборду у технолога, который всегда занят
Бывало ли у вас так, что, приготовив потрясающе аппетитное блюдо, на дегустации вы обнаруживали, что что-то напутали с ингредиентами, например, пересолили рыбу? У меня бывало…
Я старший консультант по внедрению бизнес-приложений ИТ-компании КРОК, и это моя задача, чтобы как у плиты, так на рабочем месте, в наших проектах по внедрению озер данных и разработке BI-инструментов для производственных компаний все ингредиенты были на месте. А для этого нужно знать, на какой кухне ты готовишь.
Озера данных, наверное, не были бы так ценны и востребованы, если бы не позволяли «сдруживать» разнообразные стандартные производственные системы и аналитические решения. Для меня озеро - это база, платформа, если хотите, к которой прирастают аналитические решения (в моем случае - BI-дашборды), с которыми непосредственно работает конечный потребитель.
При создании BI-дашбордов для производственных подразделений мне важно обеспечить их бизнес-ценность не только для заказчика в глобальном смысле – некоего металлургического или нефтегазового гиганта, но, прежде всего, для рядового пользователя: если пользователю есть толк от наших панелек, значит и Компания получит эффект.
Если кратенько описывать, то дашборды, которые мы разрабатываем, можно обобщенно отнести к направлению мониторинга отклонений.
Изменить сохранения Spark Часть вторая: реализация партишенера
Изменить сохранения Spark! Часть вторая: реализация партишенера!
Apache Airflow и будущее инжиниринга данных: вопрос и ответы
Иногда мне попадаются статьи о будущем технологий, в которых это будущее выглядит ясно и непротиворечиво.
Недавно это была статья восход дата инжиниринга от Maxime Beauchemin – инженера данных из Airbnb и создателя фреймворка Apache Airflow. В Astronomer Apache Airflow - основа технического стека: наши интеграционные потоки построены как пайплайны данных на направленных ациклических графов (DAG) в Airflow. Такие статьи как эта позволяют понять, почему именно сейчас лучшее время для компаний, таких как Astronomer.
После прочтения статьи я связался с Максом и попросил его об интервью, и к моей огромной радости, он согласился и дал полные ответы на вопросы про Apache Airflow и будущее дата инжиниринга.
Опыт извлечения обучающих данных из генеративных языковых моделей
Вдохновившись опытом зарубежных коллег по извлечению данных из больших языковых моделей из следующих источников:
A. Extracting Training Data from Large Language Models/Извлечение обучающих данных из больших языковых моделей (генеративных)/Authors: Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee1, Adam Roberts, Tom Brown, Dawn Song, Úlfar Erlingsson, Alina Oprea, Colin Raffel (https://arxiv.org/abs/2012.07805)
B. The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks/Открывающий секреты: оценка и тестирование непреднамеренного запоминания в нейронных сетях/ Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, Dawn Song. (https://arxiv.org/abs/1802.08232).
C. Membership Inference Attacks Against Machine Learning Models/Атаки на определение членства против моделей машинного обучения/ Reza Shokri, Marco Stronati, Congzheng Song, Vitaly Shmatikov (https://arxiv.org/abs/1610.05820).
D. An Attack on InstaHide: Is Private Learning Possible with Instance Encoding?/Атака на InstaHide: Возможно ли частное (приватное/не допускающее утечек) обучение с помощью кодировния экземпляра при обучении моделей / Nicholas Carlini, Samuel Deng, Sanjam Garg, Somesh Jha, Saeed Mahloujifar, Mohammad Mahmoody, Shuang Song, Abhradeep Thakurta, Florian Tramèr (https://arxiv.org/abs/2011.05315).
E. Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning/ Всесторонний анализ конфиденциальности глубокого обучения: Пассивные и активные атаки вывода обучающего набора данных на модель в белом ящике при централизованном и федеративном обучении/ Milad Nasr, Reza Shokri, Amir Houmansadr (https://arxiv.org/abs/1812.00910).
Хранилища признаков: Сторона данных в конвейерах машинного обучения
По мере того как все больше моделей развертывается в современных конвейерах, снова и снова возникате понимание, что данные и их фичаризация** (featurization) важнее всего остального. Последнее поколение систем больших данных масштабировало ML на реальные датасеты, теперь хранилища данных быстро становятся новым рубежом для подключения моделей к данным в реальном времени
Изменить сохранения Spark! Часть первая: разделяй и… сортируй
В этой статье вы узнаете о том, какими способами мы пытались обновлять таблицы в Hadoop, содержащие сотни терабайт данных.
И если в начале нашего пути процесс обновления длился несколько часов (до десяти-двенадцати часов), то теперь ему требуется всего тридцать-сорок минут, а использование вычислительных ресурсов уменьшено вдвое!
При этом была создана библиотека расширения Spark, которая предоставляет DataSource для преобразования данных в файлах в формат этого DataSource, изменения данных командой MERGE через DataFrame API или SQL, а в будущем ещё и UPDATE, DELETE и некоторые операции DDL.
Файлы при этом можно будет читать любым привычным способом, ведь они не модифицированы, а метаданные не обязательны для их чтения.
Вы увидите код этой библиотеки на языке Scala, который сможете использовать, а может быть даже доработать и поделиться своими успехами.
Я постараюсь пояснить, почему был сделан тот или иной выбор, но могу умолчать о чём-то, что кажется очевидным, или, наоборот, о чём я не имею представления. Вы сможете задать вопросы, а я постараюсь ответить на них.
Это первая статья из нескольких, и в ней будет рассказано только о немногих реализованных классах (они нужны для распределения данных определённым способом), поэтому наберитесь терпения, я расскажу всё по частям. Впрочем, пора перейти к повествованию.
Clickhouse. Расширение кластера
Всем привет! Я хотел бы поделиться своим опытом по расширению высоконагруженного кластера ClickHouse, немного о том как работает репликация и шардирование.
Мы опубликовали модель, расставляющую знаки препинания и заглавные буквы в тексте на четырех языках
При разработке систем распознавания речи мы сталкиваемся с заблуждениями среди потребителей и разработчиков, в первую очередь связанными с разделением формы и сути. Одним из таких заблуждений является то, что в устной речи якобы "можно услышать" грамматически верные знаки препинания и пробелы между словами, когда по факту реальная устная речь и грамотная письменная речь очень сильно отличаются (устная речь скорее похожа на "поток" слегка разделенный паузами и интонацией, поэтому люди так не любят монотонно бубнящих докладчиков).
Понятно, что можно просто начинать каждое высказывание с большой буквы и ставить точку в конце. Но хотелось бы иметь какое-то относительно простое и универсальное средство расстановки знаков препинания и заглавных букв в предложениях, которые генерирует наша система распознавания речи. Совсем хорошо бы было, если бы такая система в принципе работала с любыми текстами.
По этой причине мы бы хотели поделиться с сообществом системой, которая:
- Расставляет заглавные буквы и основные знаки препинания (точка, запятая, дефис, вопросительный знак, восклицательный знак, тире для русского языка);
- Работает на 4 языках (русский, английский, немецкий, испанский);
- По построению должна работать максимально абстрактно на любом тексте и не основана на каких-то фиксированных правилах;
- Имеет минимальные нетривиальные метрики и выполняет задачу улучшения читабельности текста;
На всякий случай явно повторюсь — цель такой системы — лишь улучшать читабельность текста. Она не добавляет в текст информации, которой в нем изначально не было.
Как дополнить данные в Amplitude информацией из CRM и других систем с помощью S2S событий
Межсерверные (server-to-server или S2S) события позволяют отслеживать кастомные события и параметры через HTTP запросы. Они часто используются в мобильной атрибуции, например, в Appsflyer или в Adjust. При этом S2S события можно использовать и в Amplitude. Рассказываем как это настроить.
Нам нужны не дата-саентисты, а дата-инженеры
Данные. Они повсюду и их становится только больше. За последние 5-10 лет data science привлекла множество новичков, пытающихся ощутить вкус этого запретного плода.
Но как сегодня выглядит ситуация с наймом в data science?
Вот краткое изложение статьи в двух предложениях.
TLDR: в компаниях на 70% больше вакансий на должности дата-инженеров, чем на должности дата-саентистов. Так как мы обучаем новое поколение практиков в сфере обработки данных и машинного обучения, давайте сделаем больший упор на инженерные навыки.
Так как моя работа заключается в разработке обучающей платформы для профессионалов в области данных, я много думаю о том, как эволюционирует рынок вакансий, связанных с данными (машинное обучение и data science).
Общаясь с десятками перспективных новичков в сфере данных, в том числе и со студентами лучших вузов мира, я увидел серьёзное недопонимание того, какие навыки являются наиболее важными, помогают выделиться из толпы и подготовиться к карьере.
Дата-саентист может работать в любом сегменте следующих сфер: моделирование машинного обучения, визуализация, очистка и обработка данных (например, преобразование данных для SQL), проектирование и развёртывание на производстве.
С чего вообще начинать рекомендации курса обучения для новичков?
Данные говорят громче слов. Поэтому я решил провести анализ должностей в сфере данных, на которые есть вакансии у компаний, выходивших из Y-Combinator с 2012 года. Вопросы, которыми я руководствовался в своих исследованиях:
Руководство по типам аннотирования изображений
Задаётесь вопросом, какой тип аннотирования изображений лучше всего подойдёт для вашего проекта?
Аннотирование изображений — одна из наших основных специальностей, и мы с радостью поделимся информацией о плюсах и минусах каждого типа: от простых ограничивающих прямоугольников до полномасштабной попиксельной семантической сегментации.
Учтите, что это руководство относится только к типу визуального аннотирования, но на уровне изображений или объектов можно создавать дополнительные метаданные. К ним относятся строки, числа, булевы значения, выбор одного или нескольких вариантов, и т.п. Например, ограничивающий прямоугольник для автомобилей в сцене может содержать такие метки, как цвет, производителя, регистрационный номер и т.д.
KotlinDL 0.3: поддержка ONNX, Object Detection API, 20+ новых моделей в ModelHub, и много новых слоев
Представляем версию 0.3 библиотеки глубокого обучения KotlinDL!
Вас ждет множество новых фич: новые модели в ModelHub (включая модели для обнаружения объектов и распознавания лиц), возможность дообучать модели распознавания изображений, экспортированные из Keras и PyTorch в ONNX, экспериментальный высокоуровневый API для распознавания изображений и множество новых слоев, добавленных контрибьюторами. Также KotlinDL теперь доступен в Maven Central.
В этой статье мы коснемся самых главных изменений релиза 0.3. Полный список изменений доступен по ссылке.
Распознаем медицинские тексты
Это третья публикация в рамках цикла статей по изучению московской базы ковидных больных. В настоящей работе были созданы векторные представления медицинских терминов, которые теперь доступны на Github.
Rule-based оптимизация SQL-запросов
Всем привет! В компании Querify Labs мы создаем компоненты СУБД, включая оптимизаторы SQL-запросов.
Любой SQL-запрос может быть выполнен множеством способов. Задача оптимизатора - найти эффективный план выполнения запроса.
В этой статье мы обсудим rule-based оптимизацию - популярную архитектуру оптимизатора, в котором планирование запроса разбито на последовательность атомарных трансформации. Мы рассмотрим особенности реализации данного подхода в Apache Calcite, Presto, и CockroachDB.
Lightbend Cloudflow. Разработка конвейеров потоковой обработки данных
Lightbend Cloudflow - open-source фреймворк для построения конвейеров потоковой обработки данных, объединивший в себе тройку популярных сред: Akka, Flink и Spark.
Под катом: demo-проект и обзор фреймворка с точки зрения общей концепции и разработки.
Airflow, подвинься
Написал многопользовательский менеджер задач с веб интерфейсом. Кому интересно, прошу.
Как мы развернули коммунальный Apache Airflow для 30+ команд и сотни разработчиков
О том как мы внедряли Apache Airflow для использования различными командами в нашей компании, какие задачи мы хотели решить этим сервисом. Внутри описание архитектуры деплоя и наш Infrastructure as Code (IaC).
Успеть за 12 минут: как мы научились прогнозировать время доставки товаров из Утконос ОНЛАЙН
Всем привет! Меня зовут Лера, и я Data Scientist компании Утконос ОНЛАЙН. Мы 20 лет доставляем продукты и товары для дома нашим клиентам. За последние два года требования к скорости доставки и качеству обслуживания сильно выросли. Время в нашем бизнесе — самый важный и критический фактор. Этот показатель, как и другие процессы, нужно постоянно улучшать, иначе сервис не выдержит конкуренции.
В этой статье я расскажу, как мы рассчитываем время обслуживания клиента, почему в этом нам больше помогают данные GPS-координат автомобилей, а не отметки о прибытии на точку, и какую математическую модель мы построили, чтобы оптимизировать работу курьеров.
Вклад авторов
-
moat 815.0 -
alexanderkuk 501.0 -
Syurmakov 498.4 -
3Dvideo 490.0 -
m31 482.9 -
i_shutov 472.0 -
shukshinivan 460.0 -
o6CuFl2Q 445.0 -
varagian 410.0 -
dmitrybugaychenko 358.0