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Abstract
We present a protocol to enable privacy preserving adver-
tising reporting at scale. Unlike previous systems, our work
scales to millions of users and tens of thousands of distinct
ads. Our approach builds on the homomorphic encryption
approach proposed by Adnostic [42], but uses new crypto-
graphic proof techniques to efficiently report billions of ad
impressions a day using an additively homomorphic voting
schemes. Most importantly, our protocol scales without im-
posing high loads on trusted third parties. Finally, we inves-
tigate a cost effective method to privately deliver ads with
computational private information retrieval.

1. INTRODUCTION
Since the inception of the web, users have debated the

appropriate means for funding the creation of web content.
In recent years, however, the debate has become more con-
tentious. This due in part to an increase in the sophistication
of targeted advertising [16], and in part to a correspond-
ing increase in the use of client-side ad blocking and anti-
tracking software [7]. These trends may be related. Accord-
ing to a U.S. Department of Commerce study [23], nearly
23% of households identified data collection by online ser-
vices as a “major concern”, and 35% of these users report
that they have avoided online activity as a result.

A number of technical solutions have been offered to im-
prove user confidence in the privacy of the web. These in-
clude micropayment systems that provide alternatives to ad-
vertising [39, 32], as well as new advertising systems that
offer an improved balance of privacy and functionality [1].

In the latter category, a promising approach to solving
these problems is to deploy privacy preserving ad delivery
systems that limit advertisers’ ability to track users, while
simultaneously providing user-specific and meaningful ad-
vertising. In a privacy-preserving advertising system, a lo-
cal client (e.g., the browser) monitors the user’s web history
and selects display ads from a set of available advertisements
that have been either downloaded as part of the browser it-
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self or obtained through PIR [8]. The client then displays the
ads appropriately within a web page, without transmitting
user-identifiable information to the website or advertising
network. The technical challenge for privacy preserving ad-
vertising is ensuring that the client’s ad preferences are not
exposed to the ad provider or website, while at the same
time guaranteeing that the website receives compensation
for aggregate ad displays and “conversions” (clicks on a dis-
played ad).

A number of private ad network architectures have been
proposed in the research literature [27, 11, 42]. These gener-
ally take one of two approaches: either they anonymize the
user when she submits in clear an ad impression, or they ob-
scure which ad was viewed when an identifiable user submits
ad impressions. Systems in the former category, such as [27],
use mixnets, trusted hardware on the provider back-end [11],
or anonymity networks operated by non-collaborating par-
ties. Systems in the latter category, e.g. [42, 24], use cryp-
tographic voting protocols: each ad is viewed as a candidate
in an election and tabulated ballots reveal the total number
of impressions each ad received — without revealing what
each individual ballot “voted” for.

Advertising at scale. In this work we focus on an aspect
of the problem that has been largely ignored in the previous
work: the problem of deploying privacy-preserving advertis-
ing at scale. The previous work in this area considers only
small user sets, or relies on (not yet widely available) trusted
hardware at the datacenter in order to support large vol-
umes of advertising. By contrast, our goal is to use current
technology to construct a privacy-preserving ad system for
a platform that scales to a user base consisting of hundreds
of millions of users.

This is not a theoretical problem. Our work is motivated
by a collaboration with one of the major browser vendors,
which is investigating the possibility of deploying a privacy-
preserving advertising system for ads generated in the New
Tab screen of the browser. This considerably simplifies the
system, as we need only record which ads were viewed and
not attribute where the ad was displayed: all ad revenue for
successfully displaying an ad is paid to the browser vendor.

Despite this simplified setting, the problem is quite chal-
lenging: discussions with the vendor indicated that such a
system would need to support 100 million daily users and 2
to 4 billion individual ad impressions per day. More inter-
estingly, the computational costs of the scheme are required
to be less than 1% of the total revenue obtained, expressed
in the form of cost-per-thousand-impression (CPM). In ad-



Cost Per Thousand Impressions (CPM) Impression size Security Provided
Scheme 4,000 ads 32,000 ads 64,000 ads 4,000 ads 32,000 64,000 ads under count over count

Paillier [36] $0.01 $0.08 $0.17 1.3 MB 10 MB 20 MB Yes No
Adnostic [42] $0.09 $0.73 $1.46 8 MB 64 MB 128 MB Yes Yes
AdScale §5 $0.003 $0.01 $0.02 188 KB 1.3 MB 2 MB Yes Yes

Table 1: AdScale performance comparison. Note that numbers for Paillier are from an optimized version produced for this
paper. See §1.1

dition the allowable bandwidth consumption on each client
is relatively limited.

An analysis of the literature indicates that existing pri-
vate advertising techniques are unlikely to scale realistically
to this use case, either due to the need to construct an
enormous new anonymity network (which would exceed the
total user count of Tor by an order of magnitude [6]), or
because of the cost of reporting the expected advertising
volume. Moreover, scaling some of the existing advertising
systems requires large-scale deployment of trusted hardware
(e.g., [11]) or else the availability of trusted third parties
that can operate highly-available back end systems.1

Our contribution. To address these unique scaling re-
quirements, we introduce a new and efficient technique for
reporting ad impressions based on the cryptographic voting
paradigm. Unlike previous work, our solutions scale to meet
the necessary requirements, without the need for trusted
hardware or unrealistic effort from trusted parties. The key
advance in our system is a new and dramatically more ef-
ficient cryptographic technique that reduces the overhead
of reporting ad impressions by orders of magnitude when
compared to the existing literature [42, 36] (see Table 1),
while providing improved reporting functionality. Our sys-
tem improves on the cryptographic voting model previously
used in systems such as Adnostic [42], but reduces the band-
widtch of proving the correctness of each ad report from
O(N) to O(log N) when dealing with N possible advertise-
ments. While we concentrate on advertising in this work, we
note that our techniques may also have other applications.

To validate our techniques, we implement our scheme with
extensive optimizations, and show that — when consider-
ing large numbers of possible advertisements — it improves
computational performance by an order of magnitude when
compared to the state of the art in Paillier-based voting sys-
tems [36], and three orders of magnitude when compared to
previous Elgamal-based solutions [42]. More importantly,
we analyze the financial costs of our approach in terms of
computational and bandwidth overhead per impression, and
demonstrate that the computational costs of the scheme fall
below 1% of the estimated revenue obtained in current ad-
vertising systems. Finally, we argue that with appropriate
sharding of ad campaigns, our techniques can scale to even
larger campaigns.

While our work in this paper is largely concerned with re-
porting advertising impressions, we additionally investigate
the problem of delivering advertising content. Specifically,
we examine the costs of various delivery strategies, including

1While a reliance on trusted parties seems reasonable, our
goals require that parties have realistic capabilities and oper-
ational expenses. This is particularly important at the scale
we are concerned with, since the advertising network cannot
compensate the third party for large operational expenses
without potentially creating a conflict of interest.

pre-positioning and recent results in computational Private
Information Retrieval (PIR) [8]. Interestingly, these results
show that even computational PIR schemes [8] are cost effec-
tive if only server-side computational and bandwidth costs
are considered — costing less than 2% of CPM for delivering
1000 ads.

1.1 Existing techniques
Each of the anonymous advertising systems we examined

falls into one of three categories. Systems based on Mixnets,
such as the proposal of Juels [27], rely on mutually non-
colluding third parties to cryptographically anonymize re-
ports on ad statistics. Voting systems such as Adnostic [42]
transmit encrypted vectors that contain a 1 in each position
corresponding to a viewed advertisement, and a 0 in every
other position, allowing an honest-but-curious central party
to homomorphically sum the ciphertexts into a single aggre-
gate ciphertext that can be decrypted by a trusted party.
Finally, hardware-based approaches such as Obliviad [11]
use back-end servers with specialized co-processors to hide
user data from the ad network. We now briefly present some
comments on the scalability of these existing techniques:

Scalability of anonymity networks. Mixnets [27] and
onion routing networks (e.g., Tor) seem unlikely to
meet our requirements, due to the number of trusted
parties required: for these systems to be secure, at
least one party who mixes or routes each message must
be honest. This means identifying a collection of non-
collaborating and highly available nodes whose num-
ber scales appropriately to handle the bandwidth re-
quirements of the network. To illustrate the chal-
lenges, we analyze the potential load on the Tor net-
work in §A. Independent of advertising, a long line of
works have considered scalable anonymity networks.
These run the range from improvements to Tor [41],
to alternatives [31, 33, 35], to a line of works on scal-
able mixnets [20, 21], and dining cryptographer net-
works [17, 43, 18]. To the best of our knowledge none of
these proposals can operate at the scale we require —
either due to technical limitations, or simply because
a deployment would require an implausible number of
non-cooperating parties.

Limitations of hardware-based approaches. Hardware-
based systems such as [11] seem like a promising so-
lution. However, these do not currently seem feasible
without increasing the cost of ad delivery beyond the
point of profitability.2

2The commercial availability of platforms such as ARM
TrustZone [9] and Intel’s SGX [10] raises the possibility
that such deployments may be feasible in the future, but
widespread availability of these technologies in commodity
cloud computing platforms remains some years in the future.
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Figure 1: AdScale architecture. Clients select ads based on device only profiles, display ads, and then report impressions for
those ads. Only aggregated impressions are ever revealed. The ads an individual user views therefor the profile built of that
user, remain private except to the trusted third party (who’s key can be split of multiple independent parties if need be).

Costs of existing voting systems. Unfortunately, the
existing voting systems tend to scale poorly with the
number of ad campaigns (see Table 1). The challenge is
typically the need to prove (in zero knowledge) that the
vectors are correctly structured. Without such a proof,
an adversarial user can insert a large positive or neg-
ative integer into a ballot, thus substantially affecting
total ad count. These proofs substantially increase the
bandwidth cost of each vector, and induce costs on the
data center. Protocols such as Adnostic [42] induce an
O(N) bandwidth cost for this proof. Based on an ex-
perimental implementation, this proof and ciphertext
requires 8MB of data to report a modest 4,000 element
ballot, and a proof verification rate of two ciphertext
vectors per second per core on a high-end Intel proces-
sor (even after extensive software optimizations and
batch processing). Moreover, systems such as Adnos-
tic do not include auxiliary data such as conversions
(whether the ad was clicked), and if those conversions
or impressions were unique.3

Paillier-based systems [24] also fail to meet our re-
quirements, though for a different reason. In these
schemes the size of a Paillier public key size grows lin-
early with the number of ads. Since the computational
costs of encryption increase quadratically, even with
careful optimization we are forced to cap the size of
each vector and use multiple vectors to report a single
impression. But the proof of correctness only applies
per vector, and provides only partial guarantees about
the entire ballot. In particular, while this prevents un-
dercounting because it guarantees that ever value in
the set of vector is either 0 or 1 (and not, e.g. nega-
tive), an attack can overcount impressions by setting
1 bit high in each vector in an impression.

1.2 Improved correctness proofs for ballots
3Including this data results in a 4-fold cost increase.

The main contribution of this work is a new and asymp-
totically more efficient approach to proving the correctness
of an encrypted ballot. A vector of ciphertexts (a ballot)
contains the encryption of a bit vector that indicates which
ads the client has viewed. These ballots are submitted by
the client and homomorphically summed by the ad report-
ing network. The single summed ciphertext may then be
decrypted by a trusted third party who holds the decryp-
tion key. The results are returned to the ad network. This
ensures that despite knowing the client’s identity, the ad net-
work does not learn what ads the client viewed. In essence,
this construction is a simple cryptographic voting scheme:
candidates are ads, ballots are submitted by clients to report
which ad they review, and the results determine how much
the advertiser pays. As with cryptographic voting, we must
prove the ballot is correct. However, in this case, we must
do so for ballots containing thousands of “candidates” — far
beyond the scale seen in any real election.

Our approach to proving ballot correctness relies on an
efficient non-interactive proof of knowledge (NIZKPoK) for
the following informal statement:

Given a vector of Elgamal ciphertexts C1, . . . , CN ,
there exists an index j such that Cj encrypts
plaintext 1, while each of the remaining cipher-
texts encrypt 0.

Let g be a generator of a cyclic group G of prime order p.
The naive approach to proving the above statement is to en-
code each plaintext mi (for mi ∈ {0, 1}) as a group element
gmi . We then encrypt this group element using Elgamal en-
cryption in G, and prove that the product C∗ =

∏N
i=1 Ci

decrypts to g1. This is easily verified since the sum of the
plaintexts can be computed using the homomorphic prop-
erties of the encryption scheme. Of course, this proof is
insufficient by itself, as it is simple to construct an invalid
message vector such that the sum will overflow and wrap



around to 1. The standard defense against this attack (ex-
emplified by Cramer et al. [19]) explains the high cost of the
proof: the prover must also issue a separate NIZK proving
that each ciphertext encrypts either 0 or 1.

When implemented using standard techniques [19, 42] over
256-bit elliptic curve groups, this method results in a proof
size of approximately 200 bytes per encrypted bit. Even if
the proof verification is made amenable to batched verifica-
tion, this approach produces unacceptable performance at
scale. Moreover, in a practical system each advertisement
may require several bits of reporting information due to the
need to encode several different facts about the advertis-
ing interaction, and thus a relatively small number of ad-
vertisements quickly consumes megabytes of bandwidth per
impression. This inordinate bandwidth consumption makes
mobile advertising infeasible with this scheme.

To address this weakness, we propose a novel proof tech-
nique that reduces the size of the proof fromO(N) toO(log N)
while dramatically reducing verification time. Our approach
uses ideas from the recent work of Groth and Kohlweiss [25],
who propose an efficient proof of membership for a commit-
ted value in a list of values. We now describe the intuition
of our approach.

We first force the prover to commit to the ciphertext vec-
tor C1, . . . , CN where each ciphertext is the Elgamal en-
cryption of an encoded message in G. Following this com-
mitment, an honest verifier generates a vector of random
elements a1, . . . aN ∈ Zp, and causes the prover to homomor-

phically compute the sum
∑N

i=1 biai using the ciphertexts.4

If the prover is honest, then the resulting sum of is equal
to aj for some j ∈ [1, N ]. Indeed, thus far the technique
is reminiscent of a technique described by Henry et al. [26]
in CCS 2011. Critically, and unlike the proof of Henry et
al., which required a proof of complexity O(N), we are able
to prove that the sum is correct using an efficient log-sized
membership proof by Groth and Kohlweiss [25]. This avoids
the O(N) proof size from the previous approaches, and dra-
matically reduces the concrete cost of the protocol.

With this technique in hand, we are then able to make
considerable further optimizations to both to the protocol
and the implementation. First, we generalize the statement
to show that the vector of positive numbers sums to any
specified integer, at a modest additional cost. This exten-
sion enables multiple ad impressions to be reported in a sin-
gle vector of ciphertexts, thus reducing bandwidth demands
and computational costs. Second, we extend the basic ho-
momorphic encryption scheme to store multiple bits in a
single Elgamal ciphertext, resulting in a 4 fold decrease in
bandwidth. Finally, we reduce the ciphertext size to a sin-
gle group element by employing a distinct public key per
ciphertext. Finally, to improve verification and decryption
time, we apply a sequence of implementation optimizations.

1.3 Outline of this paper
The remainder of this paper proceeds as follows. In §2 we

provide some background on the reporting requirements of
online advertising systems. In §3 we describe AdScale, a de-
sign for an advertising scheme based on our new techniques.
In §4 we provide technical preliminaries, and in §5 we de-
scribe the cryptographic voting protocol that is the main

4Recall, while we can only add ciphertexts in partially ho-
momorphic encryption, we can multiply by public constants.

contribution of this work. In §6 we present experimental
results for our system.

2. BACKGROUND ON ADVERTISING
Many websites are funded through the display of adver-

tisements on their webpages. Advertisements online are in-
creasingly paid for by clicks, with 66% of revenues in 2015
deriving from non-display advertising [38]. Systems for pri-
vacy preserving advertising must support a wide range of
currently existing revenue models, from simple display ads
paid for by the number of users who see them, to complex
rewards for completed orders on linked e-commerce sites.
They must also permit demographic breakdowns of who is
responding to an advertisement and demographic targeting,
along with exact and relatively quick tabulation of how many
users saw an advertisement.

Advertisements are frequently targeted to users based on
user interests and behavior. Search history and website his-
tory can indicate intent: a user who searches for “new fords”
and then checks out the Blue Book for the value of a 1995
Mustang is considered more likely to click on an advertise-
ment for cheap Ford cars. The exact details of how ads are
targeted is not the primary consideration of this work, and
so we will not discuss it further, beyond noting that in our
model, ads are selected by a program local to the user’s ma-
chine that has access to a detailed profile of the user. Adver-
tisements may have various payout models. At the simplest
extreme, consider a simple display ad for a car dealership:
the site that presents this ad gets paid every time the ad is
shown. More complex is a clickthrough ad for the dealer-
ship, where the dealer pays for each click and ensuing visit
to their website. More complex still, the dealer might have
no interest in repeat visitors and thus wishes to pay only
for unique clicks. At the far end of the spectrum, the dealer
might specify rewards for clicks that lead to the user even-
tually conversing with a representative or even completing
a purchase. Although we are not concerned with user pri-
vacy after she interacts with the dealer’s website, all of these
details need to be recorded at the client in order to ensure
that the website is properly compensated for the resulting
conversions.

To address these complexities, a behavioral advertising
system must be capable of reporting on a number of out-
comes. These are expressed as a vector of counters for each
ad. These counters can measure impressions (how many
times the ad is displayed), conversions (how many times its
clicked), and unique impressions and conversions (how many
unique users viewed/interacted with the ad). Each report
may also record language and quantized GeoIP data, thus
permitting demographic analysis and confirmation that the
advertisement is targeting the right people: there is little
point in a California auto dealer displaying advertisements
in Little Rock. For complex conversions such as contacting
a representative we can provide the advertiser with HTML
tags that will trigger a report, thus enabling a count of these
conversions.

Currently most behavioral advertising relies on cookies
which are periodically destroyed, which produces high error
rates in advertising delivery. Because our counters cannot
function as user identifiers, they can persist for longer then
cookies without the same privacy concerns as cookies, and
so will be more accurate. We also can report on exactly
which elements of a profile triggered an ad display: was it



the user’s interest of cars as ascertained from sites frequently
visited, or was it a recent search? This information can help
advertisers determine what they should target their ads to.
As a result of needing to gather this data for each adver-
tisement, we have to multiply the costs of all schemes by
a factor of eight as each advertisement is likely to require
at least four and usually eight separate counters to obtain
enough information.

Advertising fraud. We now briefly consider the issue of
fraud. The first type, commonly called click fraud, involves
websites defrauding customers by submitting reports for im-
pressions that did not happen. We note that in AdScale,
users are not anonymous and as such, many of the standard
techniques for preventing click fraud, such as rate limiting,
can be applied.

A more serious issue is advertisers defrauding websites:
malicious advertisers could submit encryptions of negative
numbers to obtain free displays or conversions, or positive
numbers to use up the budgets of rivals and end campaigns
early. Because we include a proof limiting the encrypted
values, standard anti-fraud solutions such as rate limiting
and correlating GeoIP and language information are appli-
cable.5

3. DESCRIPTION OF OUR SYSTEM
We now describe AdScale, our architecture for a privacy-

preserving advertising platform.

Participants and operation. In AdScale there are three
types of party: a client which picks ads to display and re-
ports on them, an ad server which aggregates reports and
serves ads, and a separate trusted party who holds decryp-
tion keys and periodically decrypts summary reports.

To use the system, the client selects an ad to display
and downloads the creative (the picture or text shown to
the user) through either a cPIR scheme, a pre-positioned
database, or a Content Distibution Network (CDN) file con-
taining multiple creatives. These alternatives have various
costs and privacy implications that we discuss in §6. The
client uses now encrypts a report of this display using the ho-
momorphic encryption scheme. This includes multiple bits
of information, including: whether the ad was displayed,
whether the ad was clicked, and auxiliary information about
how it was chosen. This requires sending between 4-8 sepa-
rate bit vectors: in our measurements we assume the worst
case of 8. Each of these vectors includes one element for
every possible advertisement. The client also transmits de-
mographic information such as language and geoIP informa-
tion. This information is required for evaluating the impact
of campaigns and in some cases affects the pricing of im-
pressions. The report also includes an NIZK verifying that
the contents of the vectors of ciphertexts are an encoding of
a acceptable report: we discuss the details of the NIZK in
section 5.

The ad network’s servers verify each of the reports by
checking the NIZK, and sum together the vectors of cipher-
texts submitted by users in each GeoIP bucket. They also
implement any desired rate limiting to avoid click fraud.

5This is a second limitation of the Paillier-based implemen-
tation: because key sizes increase rapidly with number of
advertisements, the correctness proofs only extend over a
small number of advertisements, and do not limit the total
number of impressions adequately.

Ballots are only added together if they have the same demo-
graphic information, to permit statistics about demographic
information to be used for campaigns. Furthermore, due to
our optimizations described in §5.1, our system imposes a
limit on the number of vectors that can be safely added
together of around 216. So long as advertisements do not
target extremely small numbers of users, this provides suffi-
cient anonymity.

When the number of advertisements summed together be-
gins to exceed this threshold, the ad server sends the totals
to the trusted third party for decryption and resets the to-
tals.

Given a summed ad ballot, the trusted party decrypts
the aggregate ciphertext. This process consists of a sin-
gle exponentiation per ciphertext every time the ad server
transmits a vector. If the trusted third party is unreachable,
the data may be stored for future decryption — thus we do
not require the trusted third party to be as reliable as the
overall system. Given the low complexity of the decryption
operation, the trusted party can make use of a single core
on a modest computing system to handle even 2 billion im-
pressions per day. Note that although we assume a single
trusted third party in this explanation, it is possible to em-
ploy threshold encryption and break the trusted party’s role
across multiple parties, each of which stores a share of the
decryption key.

Following decryption, the ad server obtains gs where s is
the sum of the ballot entries at a given position. To recover
s, the server must compute a discrete logarithm to recover
the total number of advertisements. For small ad totals,
brute force is sufficient — however, as we will discuss later in
this paper, bandwidth optimizations suggest the use of pre-
computed tables as proposed by Bernstein and Lange in [13].
Through extensive use of pre-computation, the cost of this
step can be kept small, although other tradeoffs between
computation, table size, and client bandwidth are possible.

For additional privacy, this entire decoding process can be
performed by the trusted third party who then further ag-
gregates results before returning them. While this increases
the load on the trusted third party, we still benefit from the
216-fold reduction in work via the summing performed by
the network and the fact that the ad network has already
handled proof validation. Our main scalability concerns are
the size of the ciphertexts and zero knowledge proofs, the
time it takes to verify the proofs, the time to compute the
decryption, and the time to compute the discrete logarithm.
In the next sections we discuss optimizations to the proto-
col that reduce these costs, and then discuss the measured
performance we achieve on Amazon EC2 instances.

4. PRELIMINARIES
We review some of the standard constructions that will

be used in our scheme.

Elgamal homomorphic encryption. Let G be a cyclic
group of prime order p with generator g, and let Πenc =
(KeyGen,Encrypt,Decrypt) be a variant of the Elgamal en-
cryption scheme, defined as follows:

KeyGen(G). Select sk ∈R Zp and output pk = gsk , sk .
Encrypt(pk ,m; r). For m ∈ {0, 1}, r ∈R Zp, output C =

(c1, c2) = (gr, pkr · gm).
Decrypt(pk , sk , C). Compute h = c2/c

sk
1 and output logg(h).



Given a collection of ciphertexts C1, . . . , CN we denote C∗ =∏N
i=1 Ci as (

∏N
i=1 ci,1,

∏N
i=1 ci,2). Upon successful decryp-

tion of C∗ the output is equal to
∑N

i=1mi where m1, . . . ,mN

represent the decryption of each ciphertext in the collection.

Pedersen commitments. Le G be a group of prime order
p and let g, h ∈ G be two randomly-selected elements of G
(such that no party knows the discrete logarithm of h w.r.t.
g). Then to commit to a message m ∈ Zp, the committing
party selects a random r ∈ Zp and outputs B = gmhr. If
the discrete logarithm problem is hard in G, the Pedersen
commitment scheme is computationally binding and uncon-
ditionally hiding.

An efficient proof that one commitment of a set
opens to zero. Groth and Kohlweiss [25, §3] present an
efficient Σ-protocol proof of knowledge that, for some set
of (Pedersen) commitments B1, . . . , BN , one of the commit-
ments opens to 0. This proof has size of 4 log N commit-
ments and 3 log N+1 elements of Zp. In the case where the
protocol is being used to prove membership of a single com-
mitment in a set there are several optimizations that reduce
the work of a prover and verifier which we discuss later.

Private Information retrieval. Private information re-
trieval (PIR) allows a user to retrieve files from a server or
set of servers without revealing which file is accessed. Com-
putational PIR (cPIR), does so solely with cryptographic
assumptions and without assuming non-cooperating parties.
Critically, this means a cPIR scheme can be operated by one
untrusted party and requires no trusted third parties.

5. AN EFFICIENT CRYPTOGRAPHIC PRO-
TOCOL

The basic protocol used in Adnostic for ad reporting and
our starting point is a simple voting scheme relying on a
additively homomorphic encryption. A ballot for n “candi-
dates” (in our case, each candidate represents an attribute
related to an ad display) consists of a vector ~c of n ad-
ditively homomorphic ciphertexts c1, c2, . . . , cn encrypting
bits b1 . . . bn and a proof π that all but one of those cipher-
texts contains an encryption of 0. In other words, the proof
ensures that the Prover has only “voted” once.

Because ciphertexts are additively homomorphic, the ad
provider can compute the encrypted sum of the results ~s =∑
~ci without viewing the contents of any individual ballot.

They can then obtain the total number of impressions from
a trusted third party who decrypts ~s. While computing the
sums for 2 billion impressions a day requires some compu-
tational effort, that cost is borne by the ad network: the
trusted third party need only perform a single decryption.

The main bottleneck in this protocol is the proof of cor-
rectness π which the ad network must verify for each ballot.
As discussed above, the approach taken by Adnostic and
many voting schemes is to prove that each element ci in ~c
encrypts either 0 or 1, and then prove that

∑
ci encrypts

1. This proof has O(n) space complexity. We achieve a pro-
tocol with O(log(n)) space complexity and drastically im-
proved performance by avoiding the individual proofs that
each ci ∈ 0, 1, while still enforcing the same property.

To do this, we select random values a0 . . . an, and for each
ciphertext ci = gb+i · pkri

i , we compute di = cai
i . Note,

that if the ciphertexts are properly constructed, then the
resulting d =

∑
di is a valid encryption of a single ai as the

remaining products evaluate to 0. Thus it remains simply to
prove that the result is in fact an encryption of some ai. To
accomplish this, we leverage an efficient membership proof
due to Groth and Kohlweiss [25].

Our initial construction outperforms even a heavily opti-
mized and batched implementation of Elgamal with individ-
ual proofs per element. However, merely using the improved
proof in the simple construction of Adnostic produces a pro-
tocol that is still too computationally expensive relative to
the cost of each ad, and too bandwidth intensive to be prac-
tical for end-users. Obtaining the necessary performance re-
quires making protocol-level modifications as well as several
implementation-level optimizations. We now detail these.

5.1 Protocol Improvements
Reducing ciphertext size by using N public keys. The
main limitation of the simple protocol is the cost of using a
full Elgamal to encrypt a single bit. The naive Elgamal en-
cryption requires two elements of G per bit encrypted, which
(using elliptic curve groups with a 256-bit representation, at
the 128-bit security level) implies a ciphertext expansion fac-
tor of approximately 512. This cost may prove too high for
clients on low bandwidth connections.

To improve on the scheme, we first replace the single Elga-
mal public key pk with a vector of public keys (pk1, . . . , pkN ).
To encrypt a sequence of bits b1, . . . , bN , the encryptor se-
lects a random r ∈ Zp, outputs (c1, c1,2, . . . , cN,2) = (gr, pkr

1 ·
gb1 , . . . , pkrN ·gbN ). Because the public keys are known a pri-
ori to both the client and the ad-network, they need not be
sent and we halve our ciphertext expansion factor. This ap-
proach is well known to be secure under the assumption that
the Decisional Diffie-Hellman problem is hard in G [12, 28].

Reducing ciphertext size by encoding multiple bits
per ciphertext. To encode 4 bits per ciphertext, we com-
pute ei = D3b4i+3 + D2b4i+2 + Db4i+1 + b4i+0 for some D,
and then encrypt gei . This modification means that at most
D ciphertexts can be added together before decryption and
decoding must happen, and the discrete log takes place in an
interval of size D4, thus increasing the cost of both of these
steps. The benefit of this optimization is that it reduces the
number of elements that must be processed in verifying the
proof and reduces the bandwidth requirements of clients.

Include multiple impressions in the same ciphertext.
We can include multiple impressions in a single ciphertext by
modifying our proof statement to show that the sum is not
1, but rather sums to some number m. This modification
adds a small cost cost linear in m. However, it enables a
reduction in the amount of ciphertext bandwidth that each
individual impression consumes by a factor m. Because this
optimization is intricately interwound with the details our
NIZK, we defer discussion of the details to the presentation
of the final protocol.

5.2 Implementation Optimizations
Reducing computation using small exponents and
multi-exponentiation. A separate approach to reducing
the computational cost of proving and verification is to use
short (e.g., 128-bit) values for the elements (a1, . . . , aN ).
This reduces exponentiation cost, at the expense of an ex-
pected degree of security. The loss in security is proportional
to the degree of shortening, as our proof demonstrates. This



multi-exponentation is computed with Bos-Coster[22], and
so the cost is proportional to the length of the elements.

Groth-Kohlweiss proofs require several multi exponentiat-
ions. We make use of the fact that we are proving member-
ship of an exponent in a known set to replace one of the
exponentiations with a polynomial interpolation, and use
the Bos-Coster algorithm to compute the remaining multi-
exponentiation. While Pippenger’s algorithm [37] is also a
possibility, we did not use it due to the complexity of im-
plementing it, and the relatively low savings in the case of
a massive number of random exponents.

Since we are encrypting a large number of elements in each
impression we have adequate numbers of elements to get the
full benefit of batching and so do not need to batch across
separate impressions. Our Bos-Coster implementation uses
a simple binary heap and reduces the number of limbs it
iterates over whenever the maximum element no longer has
that limb set.

Optimized Ed25519 implementations. We built our
implementation on top of the Donna [34] implementation of
the Ed25519 twisted Edwards curve. This implementation
attains very high speed on 64-bit processors through careful
choices of prime, addition law, and low-level multiplication
strategies. We had to extend this implementation to include
operations such as general scalar-point multiplication, which
we did through a simple radix-16 add and multiply. We also
carefully reordered calculations so as to expose opportunities
for Strauss’s algorithm and the use of precomputed tables in
scalar multiplications. Our Bos-Coster implementation was
inherited from this one, but required modifications to ensure
that it would function with heaps that were not even in size
and to enable its general use.

Precomputation for discrete logs We use the methods
of Bernstein-Lange [13] to use a precomputed table to accel-
erate discrete log computations, taking a discrete log in an
interval of size 264 with 212 additions. While not an opti-
mization required for validating proofs, this step is necessary
to ensure sufficiently low costs for the trusted third party.

Our discrete log computation uses batched inversion tech-
niques to attain a high number of steps per second. The
table is of size 240, and would cost around $5, 000 USD to
compute on Amazon EC2. Alternatives that use smaller
tables with more computations are certainly possible as dis-
cussed in Bernstein-Lange.

Uncompressed points. Transmitting compressed points
requires the receiver to perform a square root calculation in
order to obtain the decompressed point value. These square
root calculations became a bottleneck, and so we used un-
compressed points instead to eliminate them. This roughly
doubles bandwidth, but as we will see the bandwidth re-
quirements of our scheme are low due to earlier savings. It
reduces the computation time of the ad server significantly.

5.3 Final protocol
We now discuss the NIZK for our optimized protocol.

This proof uses ideas from the Groth-Kohlweiss [25] proof of
membership as well as the classical Camenisch-Stadler [15]
proofs of linear relations between logarithms.

We wish to encrypt a vector b0, b1, . . . bN of bits, exactly
one of which is 1. Our public key, whose private key is
retained by the trusted third party, is pi = gki . We have
the ciphertexts ci = gbipi

r which are transmitted along with

the auxiliary value K = gr. The trusted third party can
decrypt these ciphertexts to obtain the value bi.

Conceptually our proof that the ci are well formed con-
sists of taking a random vector a0, a1, . . . aN , computing
C =

∏N
i=0 c

ai
i and P =

∏N pai
i , and demonstrating that

(K,C) is a valid encryption of one of the ai. This involves
using proofs linear relations of discrete logarithms to relate
C to a commitment to a single ai, and then using a Groth-
Kohlweiss proof to show that the commitment is indeed a
commitment to one of the ai.

As mentioned, our final protocol allows multiple bits to be
encoded in a single ciphertext and allows multiple “votes” to
be recorded in a single ballot. These modifications work
as follows: fix D and m. m is a limit on the number of
bits, while D will limit the number of ciphertexts that can
be added together before overflow. D will be 216 for our
application. We will pack 4 bitfields into each element of
the ciphertext.

Let b0, b1, . . . b4N be the sequence of bits we want to en-
crypt, where m of them are 1 and the rest 0. Then define
ei =

∑3
j=0 b4i+jD

j , and let ci = geipri . Then we trans-
mit the ci along with K. Our proof again takes a ran-
dom vector a0, a1, . . . aN , and computes C =

∏N
i=0 c

ai
i . The

client also transmits m Pedersen commitments E1, . . . Em

and F1, . . . Fm, and a proof of knowledge of an opening of
each Fj to an aj ∈ a, an opening of each Ej to aj · (1∨D1 ∨
D2 ∨ . . . dM ) and that (K,C) is an encryption of the same
value as the sum of the Ei. This proof is again a combi-
nation of a Groth-Kohlweiss proof and a Camenisch-Stadler
style proof of a set of equations.

As described the proof is interactive. We show honest ver-
ifier zero-knowledge and soundness of this interactive proof,
then apply the Fiat-Shamir transform to obtain an non-
interactive proof. The standard zero-knowledge proof that
the encryption satisfies certain properties is thus a black box
in our proof.

We fix g, h ∈ G a group of prime order where the decisional
Diffie-Hellman problem is hard, where h is an element with
unknown discrete logarithm with respect to g. Our protocol
starts with the transmission of K, c0, . . . , cN . The verifier
responds with a random sequence a0, . . . aN , and both com-
pute C =

∏
i c

ai
i . The prover now transmits E1, E2, . . . Em,

F1, . . . Fm and a zero-knowledge proof of knowledge for the
following statement: There exist r, s, zi, vi, yi and ti such
that

K = gr (1)

C = gsP r (2)

s =
∑

zi (3)

Ei = gzihvi (4)

Fi = gyihti (5)

zi = yi ∨ zi = Dyi ∨ zi = D2yi ∨ zi = D3yi (6)

yi ∈ {ai} (7)

Parts 1 - 6 are proven via standard techniques and 7 is per-
formed using the membership roof of Groth-Kohlweiss [25].

Security analysis. We now demonstrate soundness. We
can always write ci = pri g

e
i , and then we have s =

∑N
i=0 aiei.

The proved statement implies that s =
∑m

j=0D
bjawj for

some bi in 0, 1, 2, 3, and wi in 1, 2, . . . , N . There are (4N)m
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Figure 2: Performance of our scheme vs. others

such choices. We now have that
∑
ai(ei − qi) = 0 where qi

is a correctly formed vector of exponents. Suppose ei was
not correctly formed, then each of the (4N)m such vectors
is nonzero. But the probability of finding a qi that will
satisfy the equation has an upper bound of (4N)m/S if there
are S possibilities for each ai by the Schwartz lemma [40].
Therefore with probability 1−(4N)m/S cheating is detected.
S will be 2128, and for N = 216 and m = 3, the probability
of successful cheating is at most 2−80.

To prove honest-verifier zero-knowledge we note that the
commitments E1, E2, . . . Em, and F1, F2 . . . Fn are statisti-
cally indistinguishable from random group elements. Our
simulator picks random values for these, then executes the
simulator for the zero knowledge proof used later on. There-
fore the distribution of transcripts is independent of which
correctly formed ciphertext was sent, and thus reveals no
information about what was encrypted.

6. EXPERIMENTS

6.1 Ad Reporting via Homomorphic Encryp-
tion

To validate the performance of our scheme we compare it
to two other schemes. The first scheme encrypts each bit
of the vector with Elgamal and includes a separate proof of
correctness for each bit, along with a proof that the sum of
the ciphertexts is an encryption of 1. These proofs are de-
signed to be efficiently batch validated, following the general
model of Camenisch and Stadler [15]. The second scheme
uses a Paillier based approach due to Groth [24]. Unfortu-
nately this scheme is less secure then the alternatives, as it
does not prove that the number of ads selected is limited,
but only that at most one out of a hundred ads was selected.
These alternative schemes were extensively optimized before

this new scheme was devised after it became clear they could
not meet our demands.

Our measurements are in cost per mille as a function of
the number of advertisements with current EC2 pricing. We
show the graph of our results in figure 2. We measured the
time taken for verification over 100-1000 impressions at each
given number of advertisements. This measurement does
not include the time taken by the trusted third party, or
the time to add the vectors together, or the time for dis-
crete logarithm computations in any scheme. Each impres-
sion produces some amount of revenue, and therefore scal-
ing linearly with impressions is reasonable for any scheme.
However, each additional advertisement does not necessar-
ily produce additional revenue, and therefore the cost per
additional advertisement should be as low as possible.

The trusted third party needs to only compute a decryp-
tion of an Elgamal ciphertext, and furthermore handles 1/216

of the data that the verifier does as the ciphertexts have
been summed before decryption. A maximum of 216 ci-
phertexts can be summed before counter overflow threat-
ens the results, but this provides adequate security against
deanonymization. The trusted third party has an extremely
small cost even when handling 2 billion impressions a day.
The discrete log calculation is more intensive, but as our
precomputed table enables a single core to compute 153 dis-
crete logs per second, and the discrete log can be applied
only to 1/216 of the data, the cost is only one percent of the
cost of verification in our scheme, even for large numbers of
advertisements and impressions.

The bandwidth and verification time consumption are pre-
sented in Figure 3. Because of our use of logarithmic size
proofs, the scaling is slightly sublinear, but quickly approaches
linear scaling in the number of advertisements. As shown in
Table 1 (at the start of this paper) these costs are signifi-
cantly lower than for the alternatives. This is because we
are able to combine multiple impressions into a single bal-
lot, as well as packing multiple bits into a single ciphertext,
and our proof has logarithmic size in addition to the cipher-
texts, rather then linear. Even on constrained connections
and with large numbers of advertisements our bandwidth
consumption per impression is reasonable.

We conducted all our measurements on Amazon Web Ser-
vices, C4.xlarge instances, and used current per-hour pricing
to determine the cost figures. While computation costs vary
with provider and technology, as does the performance of
the underlying system, the ratios between our scheme’s per-
formance and the alternatives will remain largely the same.

6.2 Ad Retrieval via cPIR
As a complement to our ad reporting protocol, we addi-

tional measured a related aspect: the performance of ad de-
livery via computational information retrieval. We assume
ads are 40KB each. We use the cPIR scheme implemented
in [8]. The implementation consists of a server which serves
files from a directory—in our case a directory of ads—and a
client to retrieve them.

The XPIR client does an optimization pass to determine
the ideal parameters to use given available bandwidth and
processing power. The optimizer can minimize resources
spent, round trip time, or cost to operate in the cloud. We
modify the optimization pass to minimize bandwidth.

Our costs are computed on an Amazon EC2 C4.2xlarge
with an Intel Xeon E5-2666 v3 @ 2.9GHz and 32GB of ram,
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Figure 3: Performance of our scheme alone

Ads time (seconds) CPM up (MB) down(MB)

10,000 0.1504± 0.003 0.002 3.2 2.3
50,000 0.73± 0.020 0.008 2.62 7.34

100,000 1.43± 0.04 0.02 10.37 2.62

(a) cPIR performance

Total files size of files ads per file expansion factor

100 4mb 100 7x
1,000 .4mb 10 47x

10,000 40kb 1 137x

(b) cPIR bandwidth expansion for constant size db

giving us a cost of 4 cents per core per hour. The files
are stored in memory. Bandwidth is measured directly by
instrumenting the client. We run 10 iterations.

As can be seen in table 2a, the costs for cPIR are sur-
prisingly reasonable. We note there is a marked decrease
in efficiency between 50k and 100k ads. This appears to be
due to the optimizer selecting different parameters at that
scale, not a performance cliff, and that other trade offs are
possible.

The bandwidth costs of the cPIR scheme are relatively
high. PIR schemes in general simply do not operate very
efficiently over many small files. Combining multiple adver-
tisements into one file may enable a single download to cover
multiple impressions, and is already an optimization used in
the cPIR scheme profiled here. However, selecting advertise-
ments so that this happens is likely to require some careful
consideration, perhaps by putting ads together by category.
We do not further consider this question here due to the
uncertainties about how effective it will be.

CPIR Feasibility. Assuming no batching, for the client
to retrieve 20 ads per day at 2.62 + 7, 34 ≈ 10 MB per
ad would require the client to download 200 MB per day.
This would take approximately 200 seconds on a 1 MB/s
Internet connection. For reference, according to the Federal
Communication Commission’s National Broadband Map, in
2014 the median household Internet connection download
bandwidth was 6.7 MB/s, with 80% of home users having

access to greater than 2.4 MB/s connections (res. 1MP/s
and 0.5MP/s for upload) [2]. As ad data can be down-
loaded during idle periods through the preceding day, this
is surprisingly feasible for a home computer which is always
connected to the Internet.

The two larger limitations seem to be overall network ca-
pacity and the effect on users with bandwidth caps. In terms
of network impact, we note that Netflix streaming takes at
least 2 MB/s a second [30] and that this usage is concen-
trated in the evenings. In contrast, downloading ads can be
distributed over idle time. The larger limitation is that at
6GB a month, users might run afoul of bandwidth caps (e.g.
ad retrieval would constitute 4% of AT&T’s monthly 150GB
cap.[14]).

After 10 days the trivial solution of downloading all adver-
tisements becomes more efficient in bandwidth terms. Un-
fortunately for extremely large numbers of advertisements,
particularly images, disk consumption becomes an issue.

7. CONCLUSION
We have demonstrated a system with significantly better

bandwidth and security properties then existing approaches
to privacy preserving advertising. While advertisement dis-
tribution has several complexities still to be worked out, we
have solved the reporting problem without requiring trusted
third parties to scale, without unacceptable bandwidth con-
sumption, and without prohibitive computational costs. Our



scheme has overhead costs of less then 1 cent per thousand
impressions, even when tens of thousands of advertisements
are being displayed, requires only a single core for a third
party to use, and uses only 1 megabyte of bandwidth per
impression when handing 32, 000 advertisements, properties
that existing work in the area does not have.
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APPENDIX
A. LIMITATIONS OF TOR

Some recent proposals [1] have considered handling both
ad distribution and reporting over Tor. In this section we
discuss the viability of using the Tor network for this pur-
pose.

Tor handles 75Gb/s [5] per second today as measured by
methods discussed in [29], and the bandwidth consumed by
reporting advertisement impressions will be a small fraction
of that. Indeed, even distributing ads is feasible needing
only 7.4Gb/s. However, the number of connections required
is a significant barrier.

Between February 14 2015 and February 14, 2016, Tor
averaged no more than 2.3 Million[4] direct users and an
average of no more than 40,000 bridge users with a highly
abnormal peak of 140,000 in June[3]. Operating a privacy
preserving ad network at scale over Tor would thus result
in a 4, 000% increase in the number of users . Far more
significantly, it would result in a 40–fold to 80–fold increase
in the number of circuits. In order for ad impressions to be
unlinkable even from each other, each of the 20 impressions
per user per day must be submitted using a separate circuit.
In contrast, normal user circuits are relatively long lived. It
is unlikely Tor can scale to these levels without substantial
re-engineering e.g. as proposed in [33].

Furthermore, Tor is frequently blocked on corporate net-
works and in entire countries. This would result in ad im-
pressions being never reported, and thus lost revenue. The
latency incurred by downloads through Tor would make im-
mediate responses to search queries in the form of advertise-
ments impossible, and this is a particularly valuable source
of information about what users are looking for. Report-
ing ad impressions through Tor also makes rate-limiting of
malicious users difficult: solutions based on anonymous cre-
dentials are possible, but the issuance of these credentials
and reissuance in case of loss poses challenges.


