
MySQL NDB Cluster 7.4 Release Notes

Abstract

This document contains release notes for the changes in each release of MySQL NDB Cluster that uses version 7.4
of the NDB (NDBCLUSTER) storage engine.

Each NDB Cluster 7.4 release is based on a mainline MySQL Server release and a particular version of the NDB
storage engine, as shown in the version string returned by executing SELECT VERSION() in the mysql client, or
by executing the ndb_mgm client SHOW or STATUS command; for more information, see MySQL NDB Cluster 7.3 and
NDB Cluster 7.4.

For general information about features added in NDB Cluster 7.4, see What is New in MySQL NDB Cluster. For a
complete list of all bug fixes and feature changes in MySQL Cluster, please refer to the changelog section for each
individual NDB Cluster release.

For additional MySQL 5.6 documentation, see the MySQL 5.6 Reference Manual, which includes an overview of
features added in MySQL 5.6 that are not specific to NDB Cluster (What Is New in MySQL 5.6), and discussion of
upgrade issues that you may encounter for upgrades from MySQL 5.5 to MySQL 5.6 (Changes in MySQL 5.6). For
a complete list of all bug fixes and feature changes made in MySQL 5.6 that are not specific to NDB, see MySQL 5.6
Release Notes.

Updates to these notes occur as new product features are added, so that everybody can follow the development
process. If a recent version is listed here that you cannot find on the download page (https://dev.mysql.com/
downloads/), the version has not yet been released.

The documentation included in source and binary distributions may not be fully up to date with respect to release note
entries because integration of the documentation occurs at release build time. For the most up-to-date release notes,
please refer to the online documentation instead.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2021-10-22 (revision: 23567)

Table of Contents
Preface and Legal Notices ... 3
Changes in MySQL NDB Cluster 7.4.34 (5.6.51-ndb-7.4.34) (2021-10-20, General Availability) 4
Changes in MySQL NDB Cluster 7.4.33 (5.6.51-ndb-7.4.33) (2021-07-21, General Availability) 5
Changes in MySQL NDB Cluster 7.4.32 (5.6.51-ndb-7.4.32) (2021-04-21, General Availability) 6
Changes in MySQL NDB Cluster 7.4.31 (5.6.51-ndb-7.4.31) (2021-01-19, General Availability) 6
Changes in MySQL NDB Cluster 7.4.30 (5.6.50-ndb-7.4.30) (2020-10-20, General Availability) 7
Changes in MySQL NDB Cluster 7.4.29 (5.6.49-ndb-7.4.29) (2020-07-14, General Availability) 8
Changes in MySQL NDB Cluster 7.4.28 (5.6.48-ndb-7.4.28) (2020-04-28, General Availability) 9
Changes in MySQL NDB Cluster 7.4.27 (5.6.47-ndb-7.4.27) (2020-01-14, General Availability) 9
Changes in MySQL NDB Cluster 7.4.26 (5.6.46-ndb-7.4.26) (2019-10-15, General Availability) 10
Changes in MySQL NDB Cluster 7.4.25 (5.6.45-ndb-7.4.25) (2019-07-23, General Availability) 11
Changes in MySQL NDB Cluster 7.4.24 (5.6.44-ndb-7.4.24) (2019-04-26, General Availability) 12

1

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new.html
https://dev.mysql.com/doc/refman/5.6/en/
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.6/en/upgrading-from-previous-series.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/
https://dev.mysql.com/downloads/
https://dev.mysql.com/downloads/
http://forums.mysql.com

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.23 (5.6.43-ndb-7.4.23) (2019-01-22, General Availability) 13
Changes in MySQL NDB Cluster 7.4.22 (5.6.42-ndb-7.4.22) (2018-10-23, General Availability) 14
Changes in MySQL NDB Cluster 7.4.21 (5.6.41-ndb-7.4.21) (2018-07-27, General Availability) 15
Changes in MySQL NDB Cluster 7.4.20 (5.6.40-ndb-7.4.20) (2018-04-20, General Availability) 16
Changes in MySQL NDB Cluster 7.4.19 (5.6.39-ndb-7.4.19) (2018-01-23, General Availability) 17
Changes in MySQL NDB Cluster 7.4.18 (5.6.39-ndb-7.4.18) (2018-01-17, General Availability) 18
Changes in MySQL NDB Cluster 7.4.17 (5.6.38-ndb-7.4.17) (2017-10-18, General Availability) 18
Changes in MySQL NDB Cluster 7.4.16 (5.6.37-ndb-7.4.16) (2017-07-18, General Availability) 19
Changes in MySQL NDB Cluster 7.4.15 (5.6.36-ndb-7.4.15) (2017-04-10, General Availability) 23
Changes in MySQL NDB Cluster 7.4.14 (5.6.35-ndb-7.4.14) (2017-01-17, General Availability) 24
Changes in MySQL NDB Cluster 7.4.13 (5.6.34-ndb-7.4.13) (2016-10-18, General Availability) 26
Changes in MySQL NDB Cluster 7.4.12 (5.6.31-ndb-7.4.12) (2016-07-18, General Availability) 29
Changes in MySQL NDB Cluster 7.4.11 (5.6.29-ndb-7.4.11) (2016-04-20, General Availability) 31
Changes in MySQL NDB Cluster 7.4.10 (5.6.28-ndb-7.4.10) (2016-01-29, General Availability) 34
Changes in MySQL NDB Cluster 7.4.9 (5.6.28-ndb-7.4.9) (2016-01-18, General Availability) 34
Changes in MySQL NDB Cluster 7.4.8 (5.6.27-ndb-7.4.8) (2015-10-16, General Availability) 38
Changes in MySQL NDB Cluster 7.4.7 (5.6.25-ndb-7.4.7) (2015-07-13, General Availability) 43
Changes in MySQL NDB Cluster 7.4.6 (5.6.24-ndb-7.4.6) (2015-04-14, General Availability) 47
Changes in MySQL NDB Cluster 7.4.5 (5.6.23-ndb-7.4.5) (2015-03-20, General Availability) 48
Changes in MySQL NDB Cluster 7.4.4 (5.6.23-ndb-7.4.4) (2015-02-26, General Availability) 50
Changes in MySQL NDB Cluster 7.4.3 (5.6.22-ndb-7.4.3) (2015-01-21, Release Candidate) 51
Changes in MySQL NDB Cluster 7.4.2 (5.6.21-ndb-7.4.2) (2014-11-05, Development Milestone) 55
Changes in MySQL NDB Cluster 7.4.1 (5.6.20-ndb-7.4.1) (2014-09-25, Development Milestone) 57
Release Series Changelogs: MySQL NDB Cluster 7.4 ... 60

Changes in MySQL NDB Cluster 7.4.33 (5.6.51-ndb-7.4.33) (2021-07-21, General Availability) 60
Changes in MySQL NDB Cluster 7.4.31 (5.6.51-ndb-7.4.31) (2021-01-19, General Availability) 60
Changes in MySQL NDB Cluster 7.4.30 (5.6.50-ndb-7.4.30) (2020-10-20, General Availability) 61
Changes in MySQL NDB Cluster 7.4.29 (5.6.49-ndb-7.4.29) (2020-07-14, General Availability) 61
Changes in MySQL NDB Cluster 7.4.28 (5.6.48-ndb-7.4.28) (2020-04-28, General Availability) 62
Changes in MySQL NDB Cluster 7.4.27 (5.6.47-ndb-7.4.27) (2020-01-14, General Availability) 62
Changes in MySQL NDB Cluster 7.4.26 (5.6.46-ndb-7.4.26) (2019-10-15, General Availability) 63
Changes in MySQL NDB Cluster 7.4.25 (5.6.45-ndb-7.4.25) (2019-07-23, General Availability) 63
Changes in MySQL NDB Cluster 7.4.24 (5.6.44-ndb-7.4.24) (2019-04-26, General Availability) 64
Changes in MySQL NDB Cluster 7.4.23 (5.6.43-ndb-7.4.23) (2019-01-22, General Availability) 65
Changes in MySQL NDB Cluster 7.4.22 (5.6.42-ndb-7.4.22) (2018-10-23, General Availability) 66
Changes in MySQL NDB Cluster 7.4.21 (5.6.41-ndb-7.4.21) (2018-07-27, General Availability) 66
Changes in MySQL NDB Cluster 7.4.20 (5.6.40-ndb-7.4.20) (2018-04-20, General Availability) 67
Changes in MySQL NDB Cluster 7.4.19 (5.6.39-ndb-7.4.19) (2018-01-23, General Availability) 67
Changes in MySQL NDB Cluster 7.4.18 (5.6.39-ndb-7.4.18) (2018-01-17, General Availability) 68
Changes in MySQL NDB Cluster 7.4.17 (5.6.38-ndb-7.4.17) (2017-10-18, General Availability) 69
Changes in MySQL NDB Cluster 7.4.16 (5.6.37-ndb-7.4.16) (2017-07-18, General Availability) 70
Changes in MySQL NDB Cluster 7.4.15 (5.6.36-ndb-7.4.15) (2017-04-10, General Availability) 73
Changes in MySQL NDB Cluster 7.4.14 (5.6.35-ndb-7.4.14) (2017-01-17, General Availability) 74
Changes in MySQL NDB Cluster 7.4.13 (5.6.34-ndb-7.4.13) (2016-10-18, General Availability) 75
Changes in MySQL NDB Cluster 7.4.12 (5.6.31-ndb-7.4.12) (2016-07-18, General Availability) 77
Changes in MySQL NDB Cluster 7.4.11 (5.6.29-ndb-7.4.11) (2016-04-20, General Availability) 79
Changes in MySQL NDB Cluster 7.4.10 (5.6.28-ndb-7.4.10) (2016-01-29, General Availability) 81
Changes in MySQL NDB Cluster 7.4.9 (5.6.28-ndb-7.4.9) (2016-01-18, General Availability) 82
Changes in MySQL NDB Cluster 7.4.8 (5.6.27-ndb-7.4.8) (2015-10-16, General Availability) 84
Changes in MySQL NDB Cluster 7.4.7 (5.6.25-ndb-7.4.7) (2015-07-13, General Availability) 88
Changes in MySQL NDB Cluster 7.4.6 (5.6.24-ndb-7.4.6) (2015-04-14, General Availability) 92
Changes in MySQL NDB Cluster 7.4.5 (5.6.23-ndb-7.4.5) (2015-03-20, General Availability) 93
Changes in MySQL NDB Cluster 7.4.4 (5.6.23-ndb-7.4.4) (2015-02-26, General Availability) 94
Changes in MySQL NDB Cluster 7.4.3 (5.6.22-ndb-7.4.3) (2015-01-21, Release Candidate) 96

2

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.2 (5.6.21-ndb-7.4.2) (2014-11-05, Development Milestone) ... 99
Changes in MySQL NDB Cluster 7.4.1 (5.6.20-ndb-7.4.1) (2014-09-25, Development Milestone) . 100

Index .. 102

Preface and Legal Notices

This document contains release notes for the changes in each release of MySQL NDB Cluster that uses
version 7.4 of the NDB storage engine.

Legal Notices

Copyright © 1997, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of
such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by
U.S. Government end users are "commercial computer software" or "commercial computer software
documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure,
modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

3

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.4 Release Notes

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
https://www.oracle.com/corporate/accessibility/.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab.

Changes in MySQL NDB Cluster 7.4.34 (5.6.51-ndb-7.4.34)
(2021-10-20, General Availability)

MySQL NDB Cluster 7.4.34 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases.

Bugs Fixed

• NDB Cluster could not be compiled using GCC 10 or 11. (Bug #33282549)

• A buffer used in the SUMA kernel block did not always accommodate multiple signals. (Bug #33246047)

4

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html

MySQL NDB Cluster 7.4 Release Notes

• It was possible in certain cases for an array index to exceed NO_OF_BUCKETS. (Bug #33019959)

• Added an ndbrequire() in QMGR to check whether the node ID received from the CM_REGREF signal is
less than MAX_NDB_NODES. (Bug #32983311)

• A check was reported missing from the code for handling GET_TABLEID_REQ signals. To fix this issue,
all code relating to all GET_TABLEID_* signals has been removed from the NDB sources, since these
signals are no longer used or supported in NDB Cluster. (Bug #32983249)

• It was possible in some cases to specify an invalid node type when working with the internal
management API. Now the API specifically disallows invalid node types, and defines an “unknown” node
type (NDB_MGM_NODE_TYPE_UNKNOWN) to cover such cases. (Bug #32957364)

• ndb_restore raised a warning to use --disable-indexes when restoring data after the metadata
had already been restored with --disable-indexes.

When --disable-indexes is used to restore metadata before restoring data, the tables in the target
schema have no indexes. We now check when restoring data with this option to ensure that there are no
indexes on the target table, and print the warning only if the table already has indexes. (Bug #28749799)

• When restoring of metadata was done using --disable-indexes, there was no attempt to create
indexes or foreign keys dependent on these indexes, but when ndb_restore was used without the
option, indexes and foreign keys were created. When --disable-indexes was used later while
restoring data, NDB attempted to drop any indexes created in the previous step, but ignored the failure of
a drop index operation due to a dependency on the index of a foreign key which had not been dropped.
This led subsequently to problems while rebuilding indexes, when there was an attempt to create foreign
keys which already existed.

We fix ndb_restore as follows:

• When --disable-indexes is used, ndb_restore now drops any foreign keys restored from the
backup.

• ndb_restore now checks for the existence of indexes before attempting to drop them.

(Bug #26974491)

Changes in MySQL NDB Cluster 7.4.33 (5.6.51-ndb-7.4.33)
(2021-07-21, General Availability)

MySQL NDB Cluster 7.4.33 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases.

Bugs Fixed

• Packaging: The ndb-common man page was removed, and the information it contained moved to other
man pages. (Bug #32799519)

5

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-qmgr.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html

MySQL NDB Cluster 7.4 Release Notes

• Ndb_rep_tab_key member variables were not null-terminated before being logged. (Bug #32841430)

References: See also: Bug #32393245.

Changes in MySQL NDB Cluster 7.4.32 (5.6.51-ndb-7.4.32)
(2021-04-21, General Availability)

MySQL NDB Cluster 7.4.32 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases.

Changes in MySQL NDB Cluster 7.4.31 (5.6.51-ndb-7.4.31)
(2021-01-19, General Availability)

MySQL NDB Cluster 7.4.31 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases.

• Deprecation and Removal Notes

• Bugs Fixed

Deprecation and Removal Notes

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been has been removed from the NDB Cluster binary and source distributions,
and is no longer supported. (Bug #32084831)

References: See also: Bug #31888835.

• ndbmemcache: ndbmemcache, which was deprecated in the previous release of NDB Cluster, has now
been removed from NDB Cluster, and is no longer supported. (Bug #32106576)

Bugs Fixed

• Using the maximum size of an index key supported by index statistics (3056 bytes) caused buffer issues
in data nodes. (Bug #32094904)

References: See also: Bug #25038373.

6

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html

MySQL NDB Cluster 7.4 Release Notes

• When a table creation schema transaction is prepared, the table is in TS_CREATING state, and is
changed to TS_ACTIVE state when the schema transaction commits on the DBDIH block. In the case
where the node acting as DBDIH coordinator fails while the schema transaction is committing, another
node starts taking over for the coordinator. The following actions are taken when handling this node
failure:

• DBDICT rolls the table creation schema transaction forward and commits, resulting in the table
involved changing to TS_ACTIVE state.

• DBDIH starts removing the failed node from tables by moving active table replicas on the failed node
from a list of stored fragment replicas to another list.

These actions are performed asynchronously many times, and when interleaving may cause a
race condition. As a result, the replica list in which the replica of a failed node resides becomes
nondeterministic and may differ between the recovering node (that is, the new coordinator) and other
DIH participant nodes. This difference violated a requirement for knowing which list the failed node's
replicas can be found during the recovery of the failed node recovery on the other participants.

To fix this, moving active table replicas now covers not only tables in TS_ACTIVE state, but those in
TS_CREATING (prepared) state as well, since the prepared schema transaction is always rolled forward.

In addition, the state of a table creation schema transaction which is being aborted is now changed from
TS_CREATING or TS_IDLE to TS_DROPPING, to avoid any race condition there. (Bug #30521812)

Changes in MySQL NDB Cluster 7.4.30 (5.6.50-ndb-7.4.30)
(2020-10-20, General Availability)

MySQL NDB Cluster 7.4.30 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.50 (see
Changes in MySQL 5.6.50 (2020-10-19, General Availability)).

• Deprecation and Removal Notes

• Bugs Fixed

Deprecation and Removal Notes

• NDB Cluster APIs: Support for Node.js has been removed in this release.

Node.js continues to be supported in NDB Cluster 8.0 only. (Bug #31781948)

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been deprecated and is subject to removal in a future version of NDB Cluster.
(Bug #31888835)

• ndbmemcache: ndbmemcache is deprecated in this release of NDB Cluster, and is scheduled for
removal in the next release. (Bug #31876970)

7

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-50.html

MySQL NDB Cluster 7.4 Release Notes

Bugs Fixed

• Packaging: The Dojo library included with NDB Cluster has been upgraded to version 1.15.4. (Bug
#31559518)

Changes in MySQL NDB Cluster 7.4.29 (5.6.49-ndb-7.4.29)
(2020-07-14, General Availability)

MySQL NDB Cluster 7.4.29 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.49 (see
Changes in MySQL 5.6.49 (2020-07-13, General Availability)).

Bugs Fixed

• During a node restart, the SUMA block of the node that is starting must get a copy of the subscriptions
(events with subscribers) and subscribers (NdbEventOperation instances which are executing) from
a node already running. Before the copy is complete, nodes which are still starting ignore any user-level
SUB_START or SUB_STOP requests; after the copy is done, they can participate in such requests. While
the copy operation is in progress, user-level SUB_START and SUB_STOP requests are blocked using a
DICT lock.

An issue was found whereby a starting node could participate in SUB_START and SUB_STOP requests
after the lock was requested, but before it is granted, which resulted in unsuccessful SUB_START and
SUB_STOP requests. This fix ensures that the nodes cannot participate in these requests until after the
DICT lock has actually been granted. (Bug #31302657)

• The Dojo toolkit included with NDB Cluster and used by the Auto-Installer was upgraded to version
1.15.3. (Bug #31029110)

• A packed version 1 configuration file returned by ndb_mgmd could contain duplicate entries following an
upgrade to NDB 8.0, which made the file incompatible with clients using version 1. This occurs due to
the fact that the code for handling backwards compatibility assumed that the entries in each section were
already sorted when merging it with the default section. To fix this, we now make sure that this sort is
performed prior to merging. (Bug #31020183)

• When executing any of the SHUTDOWN, ALL STOP, or ALL RESTART management commands, it is
possible for different nodes to attempt to stop on different global checkpoint index (CGI) boundaries. If
they succeed in doing so, then a subsequent system restart is slower than normal because any nodes
having an earlier stop GCI must undergo takeover as part of the process. When nodes failing on the
first GCI boundary cause surviving nodes to be nonviable, surviving nodes suffer an arbitration failure;
this has the positive effect of causing such nodes to halt at the correct GCI, but can give rise to spurious
errors or similar.

To avoid such issues, extra synchronization is now performed during a planned shutdown to reduce
the likelihood that different data nodes attempt to shut down at different GCIs as well as the use of
unnecessary node takeovers during system restarts. (Bug #31008713)

8

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-49.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-shutdown
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-restart

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.28 (5.6.48-ndb-7.4.28)
(2020-04-28, General Availability)

MySQL NDB Cluster 7.4.28 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.48 (see
Changes in MySQL 5.6.48 (2020-04-27, General Availability)) .

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Client Programs: Removed a dependency from the ndb_waiter and ndb_show_tables
utility programs on the NDBT library. This library, used in NDB development for testing, is not required
for normal use. The visible effect for users from this change is that these programs no longer print
NDBT_ProgramExit - status following completion of a run. Applications that depend upon this
behavior should be updated to reflect this change when upgrading to this release.

• Added the --ndb-log-fail-terminate option for mysqld. When used, this causes the SQL node to
terminate if it is unable to log all row events. (Bug #21911930)

References: See also: Bug #30383919.

Bugs Fixed

• When a node ID allocation request failed with NotMaster temporary errors, the node ID allocation was
always retried immediately, without regard to the cause of the error. This caused a very high rate of
retries, whose effects could be observed as an excessive number of Alloc node id for node nnn
failed log messages (on the order of 15,000 messages per second). (Bug #30293495)

• For NDB tables having no explicit primary key, NdbReceiverBuffer could be allocated with too small a
size. This was due to the fact that the attribute bitmap sent to NDB from the data nodes always includes
the primary key. The extra space required for hidden primary keys is now taken into consideration in
such cases. (Bug #30183466)

Changes in MySQL NDB Cluster 7.4.27 (5.6.47-ndb-7.4.27)
(2020-01-14, General Availability)

MySQL NDB Cluster 7.4.27 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

9

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-48.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-fail-terminate
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html

MySQL NDB Cluster 7.4 Release Notes

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.47 (see
Changes in MySQL 5.6.47 (2020-01-13, General Availability)) .

Bugs Fixed

• If a transaction was aborted while getting a page from the disk page buffer and the disk system was
overloaded, the transaction hung indefinitely. This could also cause restarts to hang and node failure
handling to fail. (Bug #30397083, Bug #30360681)

References: See also: Bug #30152258.

• The maximum global checkpoint (GCP) commit lag and GCP save timeout are recalculated whenever
a node shuts down, to take into account the change in number of data nodes. This could lead to the
unintentional shutdown of a viable node when the threshold decreased below the previous value. (Bug
#27664092)

References: See also: Bug #26364729.

• Concurrent SELECT and ALTER TABLE statements on the same SQL node could sometimes block one
another while waiting for locks to be released. (Bug #17812505, Bug #30383887)

Changes in MySQL NDB Cluster 7.4.26 (5.6.46-ndb-7.4.26)
(2019-10-15, General Availability)

MySQL NDB Cluster 7.4.26 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.46 (see
Changes in MySQL 5.6.46 (2019-10-14, General Availability)).

Bugs Fixed

• During a restart when the data nodes had started but not yet elected a president, the management
server received a node ID already in use error, which resulted in excessive retries and logging.
This is fixed by introducing a new error 1705 Not ready for connection allocation yet for
this case.

During a restart when the data nodes had not yet completed node failure handling, a spurious Failed
to allocate nodeID error was returned. This is fixed by adding a check to detect an incomplete
node start and to return error 1703 Node failure handling not completed instead.

As part of this fix, the frequency of retries has been reduced for not ready to alloc nodeID errors,
an error insert has been added to simulate a slow restart for testing purposes, and log messages have
been reworded to indicate that the relevant node ID allocation errors are minor and only temporary. (Bug
#27484514)

10

https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-47.html
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-46.html

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.25 (5.6.45-ndb-7.4.25)
(2019-07-23, General Availability)

MySQL NDB Cluster 7.4.25 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.45 (see
Changes in MySQL 5.6.45 (2019-07-22, General Availability)).

Bugs Fixed

• The requestInfo fields for the long and short forms of the LQHKEYREQ signal had different definitions;
bits used for the key length in the short version were reused for flags in the long version, since the
key length is implicit in the section length of the long version of the signal but it was possible for long
LQHKEYREQ signals to contain a keylength in these same bits, which could be misinterpreted by the
receiving local query handler, potentially leading to errors. Checks have now been implemented to make
sure that this no longer happens. (Bug #29820838)

• When restoring TINYBLOB columns, ndb_restore now treats them as having the BINARY character
set. (Bug #29486538)

• Restoration of epochs by ndb_restore failed due to temporary redo errors. Now ndb_restore retries
epoch updates when such errors occur. (Bug #29466089)

• ndb_restore --restore-epoch incorrectly reported the stop GCP as 1 less than the actual position.
(Bug #29343655)

• Added support which was missing in ndb_restore for conversions between the following sets of types:

• BLOB and BINARY or VARBINARY columns

• TEXT and BLOB columns

• BLOB columns with unequal lengths

• BINARY and VARBINARY columns with unequal lengths

(Bug #28074988)

• Restore points in backups created with the SNAPSHOTSTART option (see Using The NDB Cluster
Management Client to Create a Backup) were not always consistent with epoch boundaries. (Bug
#27566346)

References: See also: Bug #27497461.

11

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-45.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-backup-using-management-client.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-backup-using-management-client.html

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.24 (5.6.44-ndb-7.4.24)
(2019-04-26, General Availability)

MySQL NDB Cluster 7.4.24 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.44 (see
Changes in MySQL 5.6.44 (2019-04-25, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Building with CMake3 is now supported by the compile-cluster script included in the NDB source
distribution.

Bugs Fixed

• Important Change: The dependency of ndb_restore on the NDBT library, which is used
for internal testing only, has been removed. This means that the program no longer prints
NDBT_ProgramExit: ... when terminating. Applications that depend upon this behavior should be
updated to reflect this change when upgrading to this release.

• When a pushed join executing in the DBSPJ block had to store correlation IDs during query execution,
memory for these was allocated for the lifetime of the entire query execution, even though these specific
correlation IDs are required only when producing the most recent batch in the result set. Subsequent
batches require additional correlation IDs to be stored and allocated; thus, if the query took sufficiently
long to complete, this led to exhaustion of query memory (error 20008). Now in such cases, memory
is allocated only for the lifetime of the current result batch, and is freed and made available for re-use
following completion of the batch. (Bug #29336777)

References: See also: Bug #26995027.

• In some cases, one and sometimes more data nodes underwent an unplanned shutdown while running
ndb_restore. This occurred most often, but was not always restircted to, when restoring to a cluster
having a different number of data nodes from the cluster on which the original backup had been taken.

The root cause of this issue was exhaustion of the pool of SafeCounter objects, used by the DBDICT
kernel block as part of executing schema transactions, and taken from a per-block-instance pool
shared with protocols used for NDB event setup and subscription processing. The concurrency of event
setup and subscription processing is such that the SafeCounter pool can be exhausted; event and
subscription processing can handle pool exhaustion, but schema transaction processing could not, which
could result in the node shutdown experienced during restoration.

This problem is solved by giving DBDICT schema transactions an isolated pool of reserved
SafeCounters which cannot be exhausted by concurrent NDB event activity. (Bug #28595915)

12

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-44.html

MySQL NDB Cluster 7.4 Release Notes

• ndb_restore did not restore autoincrement values correctly when one or more staging tables were
in use. As part of this fix, we also in such cases block applying of the SYSTAB_0 backup log, whose
content continued to be applied directly based on the table ID, which could ovewrite the autoincrement
values stored in SYSTAB_0 for unrelated tables. (Bug #27917769, Bug #27831990)

References: See also: Bug #27832033.

• ndb_restore employed a mechanism for restoring autoincrement values which was not atomic, and
thus could yield incorrect autoincrement values being restored when multiple instances of ndb_restore
were used in parallel. (Bug #27832033)

References: See also: Bug #27917769, Bug #27831990.

• When executing the redo log in debug mode it was possible for a data node to fail when deallocating a
row. (Bug #93273, Bug #28955797)

• An NDB table having both a foreign key on another NDB table using ON DELETE CASCADE and one or
more TEXT or BLOB columns leaked memory.

As part of this fix, ON DELETE CASCADE is no longer supported for foreign keys on NDB tables when the
child table contains a column that uses any of the BLOB or TEXT types. (Bug #89511, Bug #27484882)

Changes in MySQL NDB Cluster 7.4.23 (5.6.43-ndb-7.4.23)
(2019-01-22, General Availability)

MySQL NDB Cluster 7.4.23 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.43 (see
Changes in MySQL 5.6.43 (2019-01-21, General Availability)).

Bugs Fixed

• NDB Disk Data: When a log file group had more than 18 undo logs, it was not possible to restart the
cluster. (Bug #251155785)

References: See also: Bug #28922609.

• NDB Replication: When writes on the master—done in such a way that multiple changes affecting
BLOB column values belonging to the same primary key were part of the same epoch—were replicated
to the slave, Error 1022 occurred due to constraint violations in the NDB$BLOB_id_part table. (Bug
#28746560)

• When a local checkpoint (LCP) was complete on all data nodes except one, and this node failed, NDB did
not continue with the steps required to finish the LCP. This led to the following issues:

No new LCPs could be started.

13

https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-43.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

MySQL NDB Cluster 7.4 Release Notes

Redo and Undo logs were not trimmed and so grew excessively large, causing an increase in times for
recovery from disk. This led to write service failure, which eventually led to cluster shutdown when the
head of the redo log met the tail. This placed a limit on cluster uptime.

Node restarts were no longer possible, due to the fact that a data node restart requires that the node's
state be made durable on disk before it can provide redundancy when joining the cluster. For a cluster
with two data nodes and two fragment replicas, this meant that a restart of the entire cluster (system
restart) was required to fix the issue (this was not necessary for a cluster with two fragment replicas and
four or more data nodes). (Bug #28728485, Bug #28698831)

References: See also: Bug #11757421.

• It was possible in certain cases for nodes to hang during an initial restart. (Bug #28698831)

References: See also: Bug #27622643.

• When tables with BLOB columns were dropped and then re-created with a different number of BLOB
columns the event definitions for monitoring table changes could become inconsistent in certain error
situations involving communication errors when the expected cleanup of the corresponding events was
not performed. In particular, when the new versions of the tables had more BLOB columns than the
original tables, some events could be missing. (Bug #27072756)

• When running a cluster with 4 or more data nodes under very high loads, data nodes could sometimes
fail with Error 899 Rowid already allocated. (Bug #25960230)

• When starting, a data node copies metadata, while a local checkpoint updates metadata. To avoid any
conflict, any ongoing LCP activity is paused while metadata is being copied. An issue arose when a
local checkpoint was paused on a given node, and another node that was also restarting checked for
a complete LCP on this node; the check actually caused the LCP to be completed before copying of
metadata was complete and so ended the pause prematurely. Now in such cases, the LCP completion
check waits to complete a paused LCP until copying of metadata is finished and the pause ends as
expected, within the LCP in which it began. (Bug #24827685)

• Asynchronous disconnection of mysqld from the cluster caused any subsequent attempt to start
an NDB API transaction to fail. If this occurred during a bulk delete operation, the SQL layer called
HA::end_bulk_delete(), whose implementation by ha_ndbcluster assumed that a transaction
had been started, and could fail if this was not the case. This problem is fixed by checking that the
transaction pointer used by this method is set before referencing it. (Bug #20116393)

Changes in MySQL NDB Cluster 7.4.22 (5.6.42-ndb-7.4.22)
(2018-10-23, General Availability)

MySQL NDB Cluster 7.4.22 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.42 (see
Changes in MySQL 5.6.42 (2018-10-22, General Availability)).

14

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-42.html

MySQL NDB Cluster 7.4 Release Notes

Bugs Fixed

• MySQL NDB ClusterJ: When a table containing a BLOB or a TEXT field was being queried with ClusterJ
for a record that did not exist, an exception (“The method is not valid in current blob
state”) was thrown. (Bug #28536926)

• MySQL NDB ClusterJ: A NullPointerException was thrown when a full table scan was performed
with ClusterJ on tables containing either a BLOB or a TEXT field. It was because the proper object
initializations were omitted, and they have now been added by this fix. (Bug #28199372, Bug #91242)

• When the SUMA kernel block receives a SUB_STOP_REQ signal, it executes the signal then replies
with SUB_STOP_CONF. (After this response is relayed back to the API, the API is open to send more
SUB_STOP_REQ signals.) After sending the SUB_STOP_CONF, SUMA drops the subscription if no
subscribers are present, which involves sending multiple DROP_TRIG_IMPL_REQ messages to DBTUP.
LocalProxy can handle up to 21 of these requests in parallel; any more than this are queued in the Short
Time Queue. When execution of a DROP_TRIG_IMPL_REQ was delayed, there was a chance for the
queue to become overloaded, leading to a data node shutdown with Error in short time queue.

This issue is fixed by delaying the execution of the SUB_STOP_REQ signal if DBTUP is already handling
DROP_TRIG_IMPL_REQ signals at full capacity, rather than queueing up the DROP_TRIG_IMPL_REQ
signals. (Bug #26574003)

• Having a large number of deferred triggers could sometimes lead to job buffer exhaustion. This could
occur due to the fact that a single trigger can execute many operations—for example, a foreign key
parent trigger may perform operations on multiple matching child table rows—and that a row operation
on a base table can execute multiple triggers. In such cases, row operations are executed in batches.
When execution of many triggers was deferred—meaning that all deferred triggers are executed at pre-
commit—the resulting concurrent execution of a great many trigger operations could cause the data
node job buffer or send buffer to be exhausted, leading to failure of the node.

This issue is fixed by limiting the number of concurrent trigger operations as well as the number of trigger
fire requests outstanding per transaction.

For immediate triggers, limiting of concurrent trigger operations may increase the number of triggers
waiting to be executed, exhausting the trigger record pool and resulting in the error Too many
concurrently fired triggers (increase MaxNoOfFiredTriggers. This can be avoided
by increasing MaxNoOfFiredTriggers, reducing the user transaction batch size, or both. (Bug
#22529864)

References: See also: Bug #18229003, Bug #27310330.

Changes in MySQL NDB Cluster 7.4.21 (5.6.41-ndb-7.4.21)
(2018-07-27, General Availability)

MySQL NDB Cluster 7.4.21 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.41 (see
Changes in MySQL 5.6.41 (2018-07-27, General Availability)).

15

https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-41.html

MySQL NDB Cluster 7.4 Release Notes

Bugs Fixed

• NDB Cluster APIs: When Ndb::dropEventOperation() tried to clean up a pending event, it failed
to clear a pointer to the list of GCI operations being deleted and discarded (Gci_ops object), so that this
pointer referred to a deleted object. GCI operations arriving after this could then be inserted as part of
the next such list belonging to the now-deleted object, leading to memory corruption and other issues.
(Bug #90011, Bug #27675005)

• An internal buffer being reused immediately after it had been freed could lead to an unplanned data node
shutdown. (Bug #27622643)

References: See also: Bug #28698831.

• An NDB online backup consists of data, which is fuzzy, and a redo and undo log. To restore to a
consistent state it is necessary to ensure that the log contains all of the changes spanning the capture of
the fuzzy data portion and beyond to a consistent snapshot point. This is achieved by waiting for a GCI
boundary to be passed after the capture of data is complete, but before stopping change logging and
recording the stop GCI in the backup's metadata.

At restore time, the log is replayed up to the stop GCI, restoring the system to the state it had at the
consistent stop GCI. A problem arose when, under load, it was possible to select a GCI boundary which
occurred too early and did not span all the data captured. This could lead to inconsistencies when
restoring the backup; these could be be noticed as broken constraints or corrupted BLOB entries.

Now the stop GCI is chosen is so that it spans the entire duration of the fuzzy data capture process, so
that the backup log always contains all data within a given stop GCI. (Bug #27497461)

References: See also: Bug #27566346.

Changes in MySQL NDB Cluster 7.4.20 (5.6.40-ndb-7.4.20)
(2018-04-20, General Availability)

MySQL NDB Cluster 7.4.20 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.40 (see
Changes in MySQL 5.6.40 (2018-04-19, General Availability)).

Bugs Fixed

• NDB Cluster APIs: The maximum time to wait which can be specified when calling either of the NDB
API methods Ndb::pollEvents() or pollEvents2() was miscalculated such that the method could
wait up to 9 ms too long before returning to the client. (Bug #88924, Bug #27266086)

• Under certain conditions, data nodes restarted unnecessarily during execution of ALTER TABLE...
REORGANIZE PARTITION. (Bug #25675481)

16

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-dropeventoperation
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-40.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html

MySQL NDB Cluster 7.4 Release Notes

References: See also: Bug #26735618, Bug #27191468.

• Race conditions sometimes occurred during asynchronous disconnection and reconnection of the
transporter while other threads concurrently inserted signal data into the send buffers, leading to an
unplanned shutdown of the cluster.

As part of the work fixing this issue, the internal templating function used by the Transporter Registry
when it prepares a send is refactored to use likely-or-unlikely logic to speed up execution, and to remove
a number of duplicate checks for NULL. (Bug #24444908, Bug #25128512)

References: See also: Bug #20112700.

Changes in MySQL NDB Cluster 7.4.19 (5.6.39-ndb-7.4.19)
(2018-01-23, General Availability)

MySQL NDB Cluster 7.4.19 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

NDB 7.4.19 replaces the NDB 7.4.18 release, and is the successor to NDB 7.4.17. Users of NDB 7.4.17
and previous NDB 7.4 releases should upgrade directly to MySQL NDB Cluster 7.4.19 or newer.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases (including
the NDB 7.4.18 release which this release replaces), as well as all bug fixes and feature changes which
were added in mainline MySQL 5.6 through MySQL 5.6.39 (see Changes in MySQL 5.6.39 (2018-01-15,
General Availability)).

Bugs Fixed

• NDB Replication: On an SQL node not being used for a replication channel with sql_log_bin=0 it
was possible after creating and populating an NDB table for a table map event to be written to the binary
log for the created table with no corresponding row events. This led to problems when this log was later
used by a slave cluster replicating from the mysqld where this table was created.

Fixed this by adding support for maintaining a cumulative any_value bitmap for global checkpoint
event operations that represents bits set consistently for all rows of a specific table in a given epoch,
and by adding a check to determine whether all operations (rows) for a specific table are all marked as
NOLOGGING, to prevent the addition of this table to the Table_map held by the binlog injector.

As part of this fix, the NDB API adds a new getNextEventOpInEpoch3() method which provides
information about any AnyValue received by making it possible to retrieve the cumulative any_value
bitmap. (Bug #26333981)

• A query against the INFORMATION_SCHEMA.FILES table returned no results when it included an
ORDER BY clause. (Bug #26877788)

• During a restart, DBLQH loads redo log part metadata for each redo log part it manages, from one
or more redo log files. Since each file has a limited capacity for metadata, the number of files which

17

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-39.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-39.html
https://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html#sysvar_sql_log_bin
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getnexteventopinepoch3
https://dev.mysql.com/doc/refman/5.6/en/information-schema-files-table.html

MySQL NDB Cluster 7.4 Release Notes

must be consulted depends on the size of the redo log part. These files are opened, read, and closed
sequentially, but the closing of one file occurs concurrently with the opening of the next.

In cases where closing of the file was slow, it was possible for more than 4 files per redo log part to be
open concurrently; since these files were opened using the OM_WRITE_BUFFER option, more than 4
chunks of write buffer were allocated per part in such cases. The write buffer pool is not unlimited; if all
redo log parts were in a similar state, the pool was exhausted, causing the data node to shut down.

This issue is resolved by avoiding the use of OM_WRITE_BUFFER during metadata reload, so that any
transient opening of more than 4 redo log files per log file part no longer leads to failure of the data node.
(Bug #25965370)

• Following TRUNCATE TABLE on an NDB table, its AUTO_INCREMENT ID was not reset on an SQL node
not performing binary logging. (Bug #14845851)

• When the duplicate weedout algorithm was used for evaluating a semijoin, the result had missing rows.
(Bug #88117, Bug #26984919)

References: See also: Bug #87992, Bug #26926666.

• When representing a materialized semijoin in the query plan, the MySQL Optimizer inserted extra
QEP_TAB and JOIN_TAB objects to represent access to the materialized subquery result. The
join pushdown analyzer did not properly set up its internal data structures for these, leaving them
uninitialized instead. This meant that later usage of any item objects referencing the materialized
semijoin accessed an initialized tableno column when accessing a 64-bit tableno bitmask, possibly
referring to a point beyond its end, leading to an unplanned shutdown of the SQL node. (Bug #87971,
Bug #26919289)

• The NDBFS block's OM_SYNC flag is intended to make sure that all FSWRITEREQ signals used for a
given file are synchronized, but was ignored by platforms that do not support O_SYNC, meaning that
this feature did not behave properly on those platforms. Now the synchronization flag is used on those
platforms that do not support O_SYNC. (Bug #76975, Bug #21049554)

Changes in MySQL NDB Cluster 7.4.18 (5.6.39-ndb-7.4.18)
(2018-01-17, General Availability)

MySQL NDB Cluster 7.4.18 was replaced following release by NDB 7.4.19. Users of NDB 7.4.17 and
previous NDB 7.4 releases should upgrade directly to MySQL NDB Cluster 7.4.19 or later.

For changes that originally appeared in NDB 7.4.18, see Changes in MySQL NDB Cluster 7.4.19 (5.6.39-
ndb-7.4.19) (2018-01-23, General Availability).

Changes in MySQL NDB Cluster 7.4.17 (5.6.38-ndb-7.4.17)
(2017-10-18, General Availability)

MySQL NDB Cluster 7.4.17 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

18

https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html

MySQL NDB Cluster 7.4 Release Notes

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.38 (see
Changes in MySQL 5.6.38 (2017-10-16, General Availability)).

Bugs Fixed

• Added DUMP code 7027 to facilitate testing of issues relating to local checkpoints. For more information,
see DUMP 7027. (Bug #26661468)

• A previous fix intended to improve logging of node failure handling in the transaction coordinator
included logging of transactions that could occur in normal operation, which made the resulting logs
needlessly verbose. Such normal transactions are no longer written to the log in such cases. (Bug
#26568782)

References: This issue is a regression of: Bug #26364729.

• Some DUMP codes used for the LGMAN kernel block were incorrectly assigned numbers in the range
used for codes belonging to DBTUX. These have now been assigned symbolic constants and numbers in
the proper range (10001, 10002, and 10003). (Bug #26365433)

• Node failure handling in the DBTC kernel block consists of a number of tasks which execute concurrently,
and all of which must complete before TC node failure handling is complete. This fix extends logging
coverage to record when each task completes, and which tasks remain, includes the following
improvements:

• Handling interactions between GCP and node failure handling interactions, in which TC takeover
causes GCP participant stall at the master TC to allow it to extend the current GCI with any
transactions that were taken over; the stall can begin and end in different GCP protocol states.
Logging coverage is extended to cover all scenarios. Debug logging is now more consistent and
understandable to users.

• Logging done by the QMGR block as it monitors duration of node failure handling duration is done more
frequently. A warning log is now generated every 30 seconds (instead of 1 minute), and this now
includes DBDIH block debug information (formerly this was written separately, and less often).

• To reduce space used, DBTC instance number: is shortened to DBTC number:.

• A new error code is added to assist testing.

(Bug #26364729)

• A potential hundredfold signal fan-out when sending a START_FRAG_REQ signal could lead to a node
failure due to a job buffer full error in start phase 5 while trying to perform a local checkpoint
during a restart. (Bug #86675, Bug #26263397)

References: See also: Bug #26288247, Bug #26279522.

Changes in MySQL NDB Cluster 7.4.16 (5.6.37-ndb-7.4.16)
(2017-07-18, General Availability)

MySQL NDB Cluster 7.4.16 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

19

https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-38.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-7027.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/

MySQL NDB Cluster 7.4 Release Notes

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.37 (see
Changes in MySQL 5.6.37 (2017-07-17, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change; MySQL NDB ClusterJ: The ClusterJPA plugin for OpenJPA is no longer supported
by NDB Cluster, and has been removed from the distribution. (Bug #23563810)

• NDB Replication: Added the --ndb-log-update-minimal option for logging by mysqld. This option
causes only primary key values to be written in the before image, and only changed columns in the after
image. (Bug #24438868)

• Added the --diff-default option for ndb_config. This option causes the program to print only
those parameters having values that differ from their defaults. (Bug #85831, Bug #25844166)

• Added the --query-all option to ndb_config. This option acts much like the --query option except
that --query-all (short form: -a) dumps configuration information for all attributes at one time. (Bug
#60095, Bug #11766869)

Bugs Fixed

• NDB Replication: Added a check to stop an NDB replication slave when configuration as a
multithreaded slave is detected (for example, if slave_parallel_workers is set to a nonzero value).
(Bug #21074209)

• NDB Cluster APIs: The implementation method NdbDictionary::NdbTableImpl::getColumn(),
used from many places in the NDB API where a column is referenced by name, has been made more
efficient. This method used a linear search of an array of columns to find the correct column object,
which could be inefficient for tables with many columns, and was detected as a significant use of CPU
in customer applications. (Ideally, users should perform name-to-column object mapping, and then use
column IDs or objects in method calls, but in practice this is not always done.) A less costly hash index
implementation, used previously for the name lookup, is reinstated for tables having relatively many
columns. (A linear search continues to be used for tables having fewer columns, where the difference in
performance is neglible.) (Bug #24829435)

• MySQL NDB ClusterJ: The JTie and NDB JTie tests were skipped when the unit tests for ClusterJ were
being run. (Bug #26088583)

• MySQL NDB ClusterJ: Compilation for the tests for NDB JTie failed. It was due to how null references
were handled, which has been corrected by this fix. (Bug #26080804)

• Backup .log files contained log entries for one or more extra fragments, due to an issue with filtering
out changes logged by other nodes in the same node group. This resulted in a larger .log file and thus
use of more resources than necessary; it could also cause problems when restoring, since backups from
different nodes could interfere with one another while the log was being applied. (Bug #25891014)

• When making the final write to a redo log file, it is expected that the next log file is already opened for
writes, but this was not always the case with a slow disk, leading to node failure. Now in such cases NDB
waits for the next file to be opened properly before attempting to write to it. (Bug #25806659)

20

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-37.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-update-minimal
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_diff-default
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_query-all
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_query
https://dev.mysql.com/doc/refman/5.6/en/replication-options-replica.html#sysvar_slave_parallel_workers

MySQL NDB Cluster 7.4 Release Notes

• Data node threads can be bound to a single CPU or a set of CPUs, a set of CPUs being
represented internally by NDB as a SparseBitmask. When attempting to lock to a set of
CPUs, CPU usage was excessive due to the fact that the routine performing the locks used
the mt_thr_config.cpp::do_bind() method, which looks for bits that are set over the
entire theoretical range of the SparseBitmask (232-2, or 4294967294). This is fixed by using
SparseBitmask::getBitNo(), which can be used to iterate over only those bits that are actually set,
instead. (Bug #25799506)

• A bulk update is executed by reading records and executing a transaction on the set of records, which
is started while reading them. When transaction initialization failed, the transaction executor function
was subsequently unaware that this had occurred, leading to SQL node failures. This issue is fixed by
providing appropriate error handling when attempting to initialize the transaction. (Bug #25476474)

References: See also: Bug #20092754.

• Setting NoOfFragmentLogParts such that there were more than 4 redo log parts per local data
manager led to resource exhaustion and subsequent multiple data node failures. Since this is an invalid
configuration, a check has been added to detect a configuration with more than 4 redo log parts per
LDM, and reject it as invalid. (Bug #25333414)

• Execution of an online ALTER TABLE ... REORGANIZE PARTITION statement on an NDB table
having a primary key whose length was greater than 80 bytes led to restarting of data nodes, causing the
reorganization to fail. (Bug #25152165)

• Error 240 is raised when there is a mismatch between foreign key trigger columns and the values
supplied to them during trigger execution, but had no error message indicating the source of the
problem. (Bug #23141739)

References: See also: Bug #23068914, Bug #85857.

• If the number of LDM blocks was not evenly divisible by the number of TC/SPJ blocks, SPJ requests
were not equally distributed over the available SPJ instances. Now a round-robin distribution is used to
distribute SPJ requests across all available SPJ instances more effectively.

As part of this work, a number of unused member variables have been removed from the class Dbtc.
(Bug #22627519)

• ALTER TABLE .. MAX_ROWS=0 can now be performed only by using a copying ALTER TABLE
statement. Resetting MAX_ROWS to 0 can no longer be performed using ALGORITHM=INPLACE or the
ONLINE keyword. (Bug #21960004)

• During a system restart, when a node failed due to having missed sending heartbeats, all other nodes
reported only that another node had failed without any additional information. Now in such cases, the
fact that heartbeats were missed and the ID of the node that failed to send heartbeats is reported in both
the error log and the data node log. (Bug #21576576)

• The planned shutdown of an NDB Cluster having more than 10 data nodes was not always performed
gracefully. (Bug #20607730)

• Due to a previous issue with unclear separation between the optimize and execute phases when a query
involved a GROUP BY, the join-pushable evaluator was not sure whether its optimized query execution
plan was in fact pushable. For this reason, such grouped joins were always considered not pushable. It
has been determined that the separation issue has been resolved by work already done in MySQL 5.6,
and so we now remove this limitation. (Bug #86623, Bug #26239591)

• When deleting all rows from a table immediately followed by DROP TABLE, it was possible that the
shrinking of the DBACC hash index was not ready prior to the drop. This shrinking is a per-fragment

21

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-online-operations.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/drop-table.html

MySQL NDB Cluster 7.4 Release Notes

operation that does not check the state of the table. When a table is dropped, DBACC releases
resources, during which the description of the fragment size and page directory is not consistent; this
could lead to reads of stale pages, and undefined behavior.

Inserting a great many rows followed by dropping the table should also have had such effects due to
expansion of the hash index.

To fix this problem we make sure, when a fragment is about to be released, that there are no pending
expansion or shrinkage operations on this fragment. (Bug #86449, Bug #26138592)

• The internal function execute_signals() in mt.cpp read three section pointers from the signal even
when none was passed to it. This was mostly harmless, although unneeded. When the signal read
was the last one on the last page in the job buffer, and the next page in memory was not mapped or
otherwise accessible, ndbmtd failed with an error. To keep this from occurring, this function now only
reads section pointers that are actually passed to it. (Bug #86354, Bug #26092639)

• The ndb_show_tables program --unqualified option did not work correctly when set to 0 (false);
this should disable the option and so cause fully qualified table and index names to be printed in the
output. (Bug #86017, Bug #25923164)

• When an NDB table with foreign key constraints is created, its indexes are created first, and then, during
foreign key creation, these indexes are loaded into the NDB dictionary cache. When a CREATE TABLE
statement failed due to an issue relating to foreign keys, the indexes already in the cache were not
invalidated. This meant that any subsequent CREATE TABLE with any indexes having the same names
as those in the failed statement produced inconsistent results. Now, in such cases, any indexes named
in the failed CREATE TABLE are immediately invalidated from the cache. (Bug #85917, Bug #25882950)

• Attempting to execute ALTER TABLE ... ADD FOREIGN KEY when the key to be added had the
name of an existing foreign key on the same table failed with the wrong error message. (Bug #85857,
Bug #23068914)

• The node internal scheduler (in mt.cpp) collects statistics about its own progress and any outstanding
work it is performing. One such statistic is the number of outstanding send bytes, collected in
send_buffer::m_node_total_send_buffer_size. This information may later be used by the
send thread scheduler, which uses it as a metric to tune its own send performance versus latency.

In order to reduce lock contention on the internal send buffers, they are split into two
thr_send_buffer parts, m_buffer and m_sending, each protected by its own mutex, and their
combined size repesented by m_node_total_send_buffer_size.

Investigation of the code revealed that there was no consistency as to which mutex was used to update
m_node_total_send_buffer_size, with the result that there was no consurrency protection
for this value. To avoid this, m_node_total_send_buffer_size is replaced with two values,
m_buffered_size and m_sending_size, which keep separate track of the sizes of the two buffers.
These counters are updated under the protection of two different mutexes protecting each buffer
individually, and are now added together to obtain the total size.

With concurrency control established, updates of the partial counts should now be correct, so that their
combined value no longer accumulates errors over time. (Bug #85687, Bug #25800933)

• Dropped TRANS_AI signals that used the long signal format were not handled by the DBTC kernel block.
(Bug #85606, Bug #25777337)

References: See also: Bug #85519, Bug #27540805.

• To prevent a scan from returning more rows, bytes, or both than the client has reserved buffers for, the
DBTUP kernel block reports the size of the TRANSID_AI it has sent to the client in the TUPKEYCONF

22

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-show-tables.html#option_ndb_show_tables_unqualified
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.4 Release Notes

signal it sends to the requesting DBLQH block. DBLQH is aware of the maximum batch size available for
the result set, and terminates the scan batch if this has been exceeded.

The DBSPJ block's FLUSH_AI attribute allows DBTUP to produce two TRANSID_AI results from the
same row, one for the client, and one for DBSPJ, which is needed for key lookups on the joined tables.
The size of both of these were added to the read length reported by the DBTUP block, which caused the
controlling DBLQH block to believe that it had consumed more of the available maximum batch size than
was actually the case, leading to premature termination of the scan batch which could have a negative
impact on performance of SPJ scans. To correct this, only the actual read length part of an API request
is now reported in such cases. (Bug #85408, Bug #25702850)

• When compiling the NDB kernel with gcc version 6.0.0 or later, it is now built using -flifetime-
dse=1. (Bug #85381, Bug #25690926)

Changes in MySQL NDB Cluster 7.4.15 (5.6.36-ndb-7.4.15)
(2017-04-10, General Availability)

MySQL NDB Cluster 7.4.15 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.36 (see
Changes in MySQL 5.6.36 (2017-04-10, General Availability)).

Bugs Fixed

• Partitioning: The output of EXPLAIN PARTITIONS displayed incorrect values in the partitions
column when run on an explicitly partitioned NDB table having a large number of partitions.

This was due to the fact that, when processing an EXPLAIN statement, mysqld calculates the partition
ID for a hash value as (hash_value % number_of_partitions), which is correct only when the
table is partitioned by HASH, since other partitioning types use different methods of mapping hash values
to partition IDs. This fix replaces the partition ID calculation performed by mysqld with an internal
NDB function which calculates the partition ID correctly, based on the table's partitioning type. (Bug
#21068548)

References: See also: Bug #25501895, Bug #14672885.

• NDB Disk Data: Stale data from NDB Disk Data tables that had been dropped could potentially be
included in backups due to the fact that disk scans were enabled for these. To prevent this possibility,
disk scans are now disabled—as are other types of scans—when taking a backup. (Bug #84422, Bug
#25353234)

• NDB Disk Data: In some cases, setting dynamic in-memory columns of an NDB Disk Data table to NULL
was not handled correctly. (Bug #79253, Bug #22195588)

• CPU usage of the data node's main thread by the DBDIH master block as the end of a local checkpoint
could approach 100% in certain cases where the database had a very large number of fragment

23

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-36.html
https://dev.mysql.com/doc/refman/5.6/en/explain.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.4 Release Notes

replicas. This is fixed by reducing the frequency and range of fragment queue checking during an LCP.
(Bug #25443080)

• The ndb_print_backup_file utility failed when attempting to read from a backup file when the
backup included a table having more than 500 columns. (Bug #25302901)

References: See also: Bug #25182956.

• Multiple data node failures during a partial restart of the cluster could cause API nodes to fail. This was
due to expansion of an internal object ID map by one thread, thus changing its location in memory, while
another thread was still accessing the old location, leading to a segmentation fault in the latter thread.

The internal map() and unmap() functions in which this issue arose have now been made thread-safe.
(Bug #25092498)

References: See also: Bug #25306089.

• There existed the possibility of a race condition between schema operations on the same database
object originating from different SQL nodes; this could occur when one of the SQL nodes was late in
releasing its metadata lock on the affected schema object or objects in such a fashion as to appear
to the schema distribution coordinator that the lock release was acknowledged for the wrong schema
change. This could result in incorrect application of the schema changes on some or all of the SQL
nodes or a timeout with repeated waiting max ### sec for distributing... messages in the
node logs due to failure of the distribution protocol. (Bug #85010, Bug #25557263)

References: See also: Bug #24926009.

• When a foreign key was added to or dropped from an NDB table using an ALTER TABLE statement, the
parent table's metadata was not updated, which made it possible to execute invalid alter operations on
the parent afterwards.

Until you can upgrade to this release, you can work around this problem by running SHOW CREATE
TABLE on the parent immediately after adding or dropping the foreign key; this statement causes the
table's metadata to be reloaded. (Bug #82989, Bug #24666177)

• Transactions on NDB tables with cascading foreign keys returned inconsistent results when the query
cache was also enabled, due to the fact that mysqld was not aware of child table updates. This meant
that results for a later SELECT from the child table were fetched from the query cache, which at that point
contained stale data.

This is fixed in such cases by adding all children of the parent table to an internal list to be checked
by NDB for updates whenever the parent is updated, so that mysqld is now properly informed of any
updated child tables that should be invalidated from the query cache. (Bug #81776, Bug #23553507)

Changes in MySQL NDB Cluster 7.4.14 (5.6.35-ndb-7.4.14)
(2017-01-17, General Availability)

MySQL NDB Cluster 7.4.14 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

24

https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html

MySQL NDB Cluster 7.4 Release Notes

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.35 (see
Changes in MySQL 5.6.35 (2016-12-12, General Availability)).

Bugs Fixed

• ndb_restore did not restore tables having more than 341 columns correctly. This was due to the fact
that the buffer used to hold table metadata read from .ctl files was of insufficient size, so that only part
of the table descriptor could be read from it in such cases. This issue is fixed by increasing the size of
the buffer used by ndb_restore for file reads. (Bug #25182956)

References: See also: Bug #25302901.

• Queries against the ndbinfo.memory_per_fragment table when running with a large number of data
nodes could produce unexpected results for the highest-numbered nodes. (Bug #25176404)

• The rand() function was used to produce a unique table ID and table version needed to identify a
schema operation distributed between multiple SQL nodes, relying on the assumption that rand()
would never produce the same numbers on two different instances of mysqld. It was later determined
that this is not the case, and that in fact it is very likely for the same random numbers to be produced on
all SQL nodes.

This fix removes the usage of rand() for producing a unique table ID or version, and instead uses
a sequence in combination with the node ID of the coordinator. This guarantees uniqueness until the
counter for the sequence wraps, which should be sufficient for this purpose.

The effects of this duplication could be observed as timeouts in the log (for example NDB create
db: waiting max 119 sec for distributing) when restarting multiple mysqld processes
simultaneously or nearly so, or when issuing the same CREATE DATABASE or DROP DATABASE
statement on multiple SQL nodes. (Bug #24926009)

• The ndb_show_tables utility did not display type information for hash maps or fully replicated triggers.
(Bug #24383742)

• Long message buffer exhaustion when firing immediate triggers could result in row ID leaks; this could
later result in persistent RowId already allocated errors (NDB Error 899). (Bug #23723110)

References: See also: Bug #19506859, Bug #13927679.

• when a parent NDB table in a foreign key relationship was updated, the update cascaded to a child
table as expected, but the change was not cascaded to a child table of this child table (that is, to a
grandchild of the original parent). This can be illustrated using the tables generated by the following
CREATE TABLE statements:

CREATE TABLE parent(
 id INT PRIMARY KEY AUTO_INCREMENT,
 col1 INT UNIQUE,
 col2 INT
) ENGINE NDB;

CREATE TABLE child(
 ref1 INT UNIQUE,
 FOREIGN KEY fk1(ref1)
 REFERENCES parent(col1) ON UPDATE CASCADE
) ENGINE NDB;

CREATE TABLE grandchild(
 ref2 INT,
 FOREIGN KEY fk2(ref2)

25

https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-35.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memory-per-fragment.html
https://dev.mysql.com/doc/refman/5.6/en/create-database.html
https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html

MySQL NDB Cluster 7.4 Release Notes

 REFERENCES child(ref1) ON UPDATE CASCADE
) ENGINE NDB;

Table child is a child of table parent; table grandchild is a child of table child, and a grandchild
of parent. In this scenario, a change to column col1 of parent cascaded to ref1 in table child, but
it was not always propagated in turn to ref2 in table grandchild. (Bug #83743, Bug #25063506)

• When a data node running with StopOnError set to 0 underwent an unplanned shutdown, the
automatic restart performed the same type of start as the previous one. In the case where the data
node had previously been started with the --initial option, this meant that an initial start was
performed, which in cases of multiple data node failures could lead to loss of data. This issue also
occurred whenever a data node shutdown led to generation of a core dump. A check is now performed
to catch all such cases, and to perform a normal restart instead.

In addition, in cases where a failed data node was unable prior to shutting down to send start phase
information to the angel process, the shutdown was always treated as a startup failure, also leading to
an initial restart. This issue is fixed by adding a check to execute startup failure handling only if a valid
start phase was received from the client. (Bug #83510, Bug #24945638)

Changes in MySQL NDB Cluster 7.4.13 (5.6.34-ndb-7.4.13)
(2016-10-18, General Availability)

MySQL NDB Cluster 7.4.13 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.34 (see
Changes in MySQL 5.6.34 (2016-10-12, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• MySQL NDB ClusterJ: To help applications handle database errors better, a number of new features
have been added to the ClusterJDatastoreException class:

• A new method, getCode(), returns code from the NdbError object.

• A new method, getMysqlCode(), returns mysql_code from the NdbError object.

• A new subclass, ClusterJDatastoreException.Classification, gives users the ability to
decode the result from getClassification(). The method Classification.toString()
gives the name of the error classification as listed in NDB Error Classifications.

(Bug #22353594)

26

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stoponerror
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-34.html
https://dev.mysql.com/doc/ndbapi/en/ndb-error-classifications.html

MySQL NDB Cluster 7.4 Release Notes

Bugs Fixed

• NDB Cluster APIs: Reuse of transaction IDs could occur when Ndb objects were created and
deleted concurrently. As part of this fix, the NDB API methods lock_ndb_objects() and
unlock_ndb_objects are now declared as const. (Bug #23709232)

• NDB Cluster APIs: When the management server was restarted while running an MGM API application
that continuously monitored events, subsequent events were not reported to the application, with
timeouts being returned indefinitely instead of an error.

This occurred because sockets for event listeners were not closed when restarting mgmd. This is fixed
by ensuring that event listener sockets are closed when the management server shuts down, causing
applications using functions such as ndb_logevent_get_next() to receive a read error following the
restart. (Bug #19474782)

• Passing a nonexistent node ID to CREATE NODEGROUP led to random data node failures. (Bug
#23748958)

• DROP TABLE followed by a node shutdown and subesequent master takeover—and with the containing
local checkpoint not yet complete prior to the takeover—caused the LCP to be ignored, and in some
cases, the data node to fail. (Bug #23735996)

References: See also: Bug #23288252.

• Removed an invalid assertion to the effect that all cascading child scans are closed at the time API
connection records are released following an abort of the main transaction. The assertion was invalid
because closing of scans in such cases is by design asynchronous with respect to the main transaction,
which means that subscans may well take some time to close after the main transaction is closed. (Bug
#23709284)

• A number of potential buffer overflow issues were found and fixed in the NDB codebase. (Bug
#23152979)

• A SIGNAL_DROPPED_REP handler invoked in response to long message buffer exhaustion was
defined in the SPJ kernel block, but not actually used. This meant that the default handler from
SimulatedBlock was used instead in such cases, which shut down the data node. (Bug #23048816)

References: See also: Bug #23251145, Bug #23251423.

• When a data node has insufficient redo buffer during a system restart, it does not participate in the
restart until after the other nodes have started. After this, it performs a takeover of its fragments from
the nodes in its node group that have already started; during this time, the cluster is already running and
user activity is possible, including DML and DDL operations.

During a system restart, table creation is handled differently in the DIH kernel block than normally, as
this creation actually consists of reloading table definition data from disk on the master node. Thus, DIH
assumed that any table creation that occurred before all nodes had restarted must be related to the
restart and thus always on the master node. However, during the takeover, table creation can occur on
non-master nodes due to user activity; when this happened, the cluster underwent a forced shutdown.

Now an extra check is made during system restarts to detect in such cases whether the executing node
is the master node, and use that information to determine whether the table creation is part of the restart
proper, or is taking place during a subsequent takeover. (Bug #23028418)

• ndb_restore set the MAX_ROWS attribute for a table for which it had not been set prior to taking the
backup. (Bug #22904640)

27

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-lock-ndb-objects
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-unlock-ndb-objects
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-create-nodegroup
https://dev.mysql.com/doc/refman/5.6/en/drop-table.html

MySQL NDB Cluster 7.4 Release Notes

• Whenever data nodes are added to or dropped from the cluster, the NDB kernel's Event API is notified
of this using a SUB_GCP_COMPLETE_REP signal with either the ADD (add) flag or SUB (drop) flag
set, as well as the number of nodes to add or drop; this allows NDB to maintain a correct count of
SUB_GCP_COMPLETE_REP signals pending for every incomplete bucket. In addition to handling the
bucket for the epoch associated with the addition or removal, it must also compensate for any later
incomplete buckets associated with later epochs. Although it was possible to complete such buckets out
of order, there was no handling of these, leading a stall in to event reception.

This fix adds detection and handling of such out of order bucket completion. (Bug #20402364)

References: See also: Bug #82424, Bug #24399450.

• When restoring a backup taken from a database containing tables that had foreign keys, ndb_restore
disabled the foreign keys for data, but not for the logs. (Bug #83155, Bug #24736950)

• The count displayed by the c_exec column in the ndbinfo.threadstat table was incomplete. (Bug
#82635, Bug #24482218)

• The internal function ndbcluster_binlog_wait(), which provides a way to make sure that all events
originating from a given thread arrive in the binary log, is used by SHOW BINLOG EVENTS as well as
when resetting the binary log. This function waits on an injector condition while the latest global epoch
handled by NDB is more recent than the epoch last committed in this session, which implies that this
condition must be signalled whenever the binary log thread completes and updates a new latest global
epoch. Inspection of the code revealed that this condition signalling was missing, and that, instead of
being awakened whenever a new latest global epoch completes (~100ms), client threads waited for the
maximum timeout (1 second).

This fix adds the missing injector condition signalling, while also changing it to a condition broadcast to
make sure that all client threads are alerted. (Bug #82630, Bug #24481551)

• During a node restart, a fragment can be restored using information obtained from local checkpoints
(LCPs); up to 2 restorable LCPs are retained at any given time. When an LCP is reported to the DIH
kernel block as completed, but the node fails before the last global checkpoint index written into this LCP
has actually completed, the latest LCP is not restorable. Although it should be possible to use the older
LCP, it was instead assumed that no LCP existed for the fragment, which slowed the restart process.
Now in such cases, the older, restorable LCP is used, which should help decrease long node restart
times. (Bug #81894, Bug #23602217)

• While a mysqld was waiting to connect to the management server during initialization of the NDB
handler, it was not possible to shut down the mysqld. If the mysqld was not able to make the
connection, it could become stuck at this point. This was due to an internal wait condition in the utility
and index statistics threads that could go unmet indefinitely. This condition has been augmented with
a maximum timeout of 1 second, which makes it more likely that these threads terminate themselves
properly in such cases.

In addition, the connection thread waiting for the management server connection performed 2 sleeps in
the case just described, instead of 1 sleep, as intended. (Bug #81585, Bug #23343673)

• The list of deferred tree node lookup requests created when preparing to abort a DBSPJ request were
not cleared when this was complete, which could lead to deferred operations being started even after the
DBSPJ request aborted. (Bug #81355, Bug #23251423)

References: See also: Bug #23048816.

• Error and abort handling in Dbspj::execTRANSID_AI() was implemented such that its abort()
method was called before processing of the incoming signal was complete. Since this method sends

28

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-threadstat.html
https://dev.mysql.com/doc/refman/5.6/en/show-binlog-events.html

MySQL NDB Cluster 7.4 Release Notes

signals to the LDM, this partly overwrote the contents of the signal which was later required by
execTRANSID_AI(). This could result in aborted DBSPJ requests cleaning up their allocated resources
too early, or not at all. (Bug #81353, Bug #23251145)

References: See also: Bug #23048816.

• Several object constructors and similar functions in the NDB codebase did not always perform sanity
checks when creating new instances. These checks are now performed under such circumstances. (Bug
#77408, Bug #21286722)

• An internal call to malloc() was not checked for NULL. The function call was replaced with a direct
write. (Bug #77375, Bug #21271194)

Changes in MySQL NDB Cluster 7.4.12 (5.6.31-ndb-7.4.12)
(2016-07-18, General Availability)

MySQL NDB Cluster 7.4.12 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.31 (see
Changes in MySQL 5.6.31 (2016-06-02, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• MySQL NDB ClusterJ: To make it easier for ClusterJ to handle fatal errors that require the
SessionFactory to be closed, a new public method in the SessionFactory interface,
getConnectionPoolSessionCounts(), has been created. When it returns zeros for all pooled connections,
it means all sessions have been closed, at which point the SessionFactory can be closed and
reopened. See Error Handling and Reconnection for more detail. (Bug #22353594)

Bugs Fixed

• Incompatible Change: When the data nodes are only partially connected to the API nodes, a node
used for a pushdown join may get its request from a transaction coordinator on a different node, without
(yet) being connected to the API node itself. In such cases, the NodeInfo object for the requesting API
node contained no valid info about the software version of the API node, which caused the DBSPJ block
to assume (incorrectly) when aborting to assume that the API node used NDB version 7.2.4 or earlier,
requiring the use of a backward compatability mode to be used during query abort which sent a node
failure error instead of the real error causing the abort.

Now, whenever this situation occurs, it is assumed that, if the NDB software version is not yet available,
the API node version is greater than 7.2.4. (Bug #23049170)

• NDB Cluster APIs: Deletion of Ndb objects used a dispoportionately high amount of CPU. (Bug
#22986823)

29

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-31.html
https://dev.mysql.com/doc/ndbapi/en/mccj-clusterj-sessionfactory.html#mccj-clusterj-sessionfactory-getconnectionpoolsessioncounts
https://dev.mysql.com/doc/ndbapi/en/mccj-using-clusterj-start.html#mccj-using-clusterj-reconnect

MySQL NDB Cluster 7.4 Release Notes

• MySQL NDB ClusterJ: Time value of a java.sql.Timestamp object became incorrect when Clusterj
stored it into a TIMESTAMP column with fractional seconds in a database table. (Bug #23155061)

• Although arguments to the DUMP command are 32-bit integers, ndb_mgmd used a buffer of only 10 bytes
when processing them. (Bug #23708039)

• During shutdown, the mysqld process could sometimes hang after logging NDB Util: Stop ... NDB
Util: Wakeup. (Bug #23343739)

References: See also: Bug #21098142.

• During an online upgrade from a MySQL NDB Cluster 7.3 release to an NDB 7.4 (or later) release,
the failures of several data nodes running the lower version during local checkpoints (LCPs), and just
prior to upgrading these nodes, led to additional node failures following the upgrade. This was due to
lingering elements of the EMPTY_LCP protocol initiated by the older nodes as part of an LCP-plus-restart
sequence, and which is no longer used in NDB 7.4 and later due to LCP optimizations implemented in
those versions. (Bug #23129433)

• Reserved send buffer for the loopback transporter, introduced in MySQL NDB Cluster 7.4.8 and used by
API and management nodes for administrative signals, was calculated incorrectly. (Bug #23093656, Bug
#22016081)

References: This issue is a regression of: Bug #21664515.

• During a node restart, re-creation of internal triggers used for verifying the referential integrity of foreign
keys was not reliable, because it was possible that not all distributed TC and LDM instances agreed
on all trigger identities. To fix this problem, an extra step is added to the node restart sequence, during
which the trigger identities are determined by querying the current master node. (Bug #23068914)

References: See also: Bug #23221573.

• Following the forced shutdown of one of the 2 data nodes in a cluster where NoOfReplicas=2, the
other data node shut down as well, due to arbitration failure. (Bug #23006431)

• The ndbinfo.tc_time_track_stats table uses histogram buckets to give a sense of the distribution
of latencies. The sizes of these buckets were also reported as HISTOGRAM BOUNDARY INFO messages
during data node startup; this printout was redundant and so has been removed. (Bug #22819868)

• A failure occurred in DBTUP in debug builds when variable-sized pages for a fragment totalled more than
4 GB. (Bug #21313546)

• mysqld did not shut down cleanly when executing ndb_index_stat. (Bug #21098142)

References: See also: Bug #23343739.

• DBDICT and GETTABINFOREQ queue debugging were enhanced as follows:

• Monitoring by a data node of the progress of GETTABINFOREQ signals can be enabled by setting
DictTrace >= 2.

• Added the ApiVerbose configuration parameter, which enables NDB API debug logging for an API
node where it is set greater than or equal to 2.

• Added DUMP code 1229 which shows the current state of the GETTABINFOREQ queue. (See DUMP
1229.)

See also The DBDICT Block. (Bug #20368450)

30

https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-tc-time-track-stats.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-dicttrace
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-apiverbose
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1229.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1229.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

MySQL NDB Cluster 7.4 Release Notes

References: See also: Bug #20368354.

Changes in MySQL NDB Cluster 7.4.11 (5.6.29-ndb-7.4.11)
(2016-04-20, General Availability)

MySQL NDB Cluster 7.4.11 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.29 (see
Changes in MySQL 5.6.29 (2016-02-05, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: Added the Ndb::setEventBufferQueueEmptyEpoch() method, which makes it
possible to enable queuing of empty events (event type TE_EMPTY). (Bug #22157845)

Bugs Fixed

• Important Change: The minimum value for the BackupDataBufferSize data node configuration
parameter has been lowered from 2 MB to 512 KB. The default and maximum values for this parameter
remain unchanged. (Bug #22749509)

• OS X: Processing of local checkpoints was not handled correctly on Mac OS X, due to an uninitialized
variable. (Bug #80236, Bug #22647462)

• Microsoft Windows: Compilation of MySQL with Visual Studio 2015 failed in ConfigInfo.cpp, due to
a change in Visual Studio's handling of spaces and concatenation. (Bug #22558836, Bug #80024)

• Microsoft Windows: When setting up event logging for ndb_mgmd on Windows, MySQL NDB Cluster
tries to add a registry key to HKEY_LOCAL_MACHINE, which fails if the user does not have access to the
registry. In such cases ndb_mgmd logged the error Could neither create or open key, which is
not accurate and which can cause confusion for users who may not realize that file logging is available
and being used. Now in such cases, ndb_mgmd logs a warning Could not create or access the
registry key needed for the application to log to the Windows EventLog. Run
the application with sufficient privileges once to create the key, or add the
key manually, or turn off logging for that application. An error (as opposed to a
warning) is now reported in such cases only if there is no available output at all for ndb_mgmd event
logging. (Bug #20960839)

• Microsoft Windows: MySQL NDB Cluster did not compile correctly with Microsoft Visual Studio 2015,
due to a change from previous versions in the VS implementation of the _vsnprintf() function. (Bug
#80276, Bug #22670525)

31

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-29.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-seteventbufferqueueemptyepoch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatabuffersize

MySQL NDB Cluster 7.4 Release Notes

• Microsoft Windows: Performing ANALYZE TABLE on a table having one or more indexes caused
ndbmtd to fail with an InvalidAttrInfo error due to signal corruption. This issue occurred
consistently on Windows, but could also be encountered on other platforms. (Bug #77716, Bug
#21441297)

• Solaris: The ndb_print_file utility failed consistently on Solaris 9 for SPARC. (Bug #80096, Bug
#22579581)

• NDB Cluster APIs: Executing a transaction with an NdbIndexOperation based on an obsolete
unique index caused the data node process to fail. Now the index is checked in such cases, and if it
cannot be used the transaction fails with an appropriate error. (Bug #79494, Bug #22299443)

• Integer overflow could occur during client handshake processing, leading to a server exit. (Bug
#22722946)

• During node failure handling, the request structure used to drive the cleanup operation was not
maintained correctly when the request was executed. This led to inconsistencies that were harmless
during normal operation, but these could lead to assertion failures during node failure handling, with
subsequent failure of additional nodes. (Bug #22643129)

• The previous fix for a lack of mutex protection for the internal
TransporterFacade::deliver_signal() function was found to be incomplete in some cases.
(Bug #22615274)

References: This issue is a regression of: Bug #77225, Bug #21185585.

• When setup of the binary log as an atomic operation on one SQL node failed, this could trigger a state
in other SQL nodes in which they appeared to detect the SQL node participating in schema change
distribution, whereas it had not yet completed binary log setup. This could in turn cause a deadlock
on the global metadata lock when the SQL node still retrying binary log setup needed this lock, while
another mysqld had taken the lock for itself as part of a schema change operation. In such cases, the
second SQL node waited for the first one to act on its schema distribution changes, which it was not yet
able to do. (Bug #22494024)

• For busy servers, client connection or communication failure could occur if an I/O-related system call
was interrupted. The mysql_options() C API function now has a MYSQL_OPT_RETRY_COUNT option
to control the number of retries for interrupted system calls. (Bug #22336527)

References: See also: Bug #22389653.

• Duplicate key errors could occur when ndb_restore was run on a backup containing a unique index.
This was due to the fact that, during restoration of data, the database can pass through one or more
inconsistent states prior to completion, such an inconsistent state possibly having duplicate values for
a column which has a unique index. (If the restoration of data is preceded by a run with --disable-
indexes and followed by one with --rebuild-indexes, these errors are avoided.)

Added a check for unique indexes in the backup which is performed only when restoring data, and which
does not process tables that have explicitly been excluded. For each unique index found, a warning is
now printed. (Bug #22329365)

• Restoration of metadata with ndb_restore -m occasionally failed with the error message Failed to
create index... when creating a unique index. While disgnosing this problem, it was found that the
internal error PREPARE_SEIZE_ERROR (a temporary error) was reported as an unknown error. Now in
such cases, ndb_restore retries the creation of the unique index, and PREPARE_SEIZE_ERROR is
reported as NDB Error 748 Busy during read of event table. (Bug #21178339)

References: See also: Bug #22989944.

32

https://dev.mysql.com/doc/refman/5.6/en/analyze-table.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbindexoperation.html
https://dev.mysql.com/doc/c-api/5.6/en/mysql-options.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta

MySQL NDB Cluster 7.4 Release Notes

• NdbDictionary metadata operations had a hard-coded 7-day timeout, which proved to be excessive
for short-lived operations such as retrieval of table definitions. This could lead to unnecessary hangs in
user applications which were difficult to detect and handle correctly. To help address this issue, timeout
behaviour is modified so that read-only or short-duration dictionary interactions have a 2-minute timeout,
while schema transactions of potentially long duration retain the existing 7-day timeout.

Such timeouts are intended as a safety net: In the event of problems, these return control to users,
who can then take corrective action. Any reproducible issue with NdbDictionary timeouts should be
reported as a bug. (Bug #20368354)

• Optimization of signal sending by buffering and sending them periodically, or when the buffer became
full, could cause SUB_GCP_COMPLETE_ACK signals to be excessively delayed. Such signals are sent
for each node and epoch, with a minimum interval of TimeBetweenEpochs; if they are not received
in time, the SUMA buffers can overflow as a result. The overflow caused API nodes to be disconnected,
leading to current transactions being aborted due to node failure. This condition made it difficult for long
transactions (such as altering a very large table), to be completed. Now in such cases, the ACK signal is
sent without being delayed. (Bug #18753341)

• An internal function used to validate connections failed to update the connection count when creating
a new Ndb object. This had the potential to create a new Ndb object for every operation validating
the connection, which could have an impact on performance, particularly when performing schema
operations. (Bug #80750, Bug #22932982)

• When an SQL node was started, and joined the schema distribution protocol, another SQL node, already
waiting for a schema change to be distributed, timed out during that wait. This was because the code
incorrectly assumed that the new SQL node would also acknowledge the schema distribution even
though the new node joined too late to be a participant in it.

As part of this fix, printouts of schema distribution progress now always print the more significant part of
a bitmask before the less significant; formatting of bitmasks in such printouts has also been improved.
(Bug #80554, Bug #22842538)

• Settings for the SchedulerResponsiveness data node configuration parameter (introduced in MySQL
NDB Cluster 7.4.9) were ignored. (Bug #80341, Bug #22712481)

• When setting CPU spin time, the value was needlessly cast to a boolean internally, so that setting it to
any nonzero value yielded an effective value of 1. This issue, as well as the fix for it, apply both to setting
the SchedulerSpinTimer parameter and to setting spintime as part of a ThreadConfig parameter
value. (Bug #80237, Bug #22647476)

• A logic error in an if statement in storage/ndb/src/kernel/blocks/dbacc/DbaccMain.cpp
rendered useless a check for determining whether ZREAD_ERROR should be returned when comparing
operations. This was detected when compiling with gcc using -Werror=logical-op. (Bug #80155,
Bug #22601798)

References: This issue is a regression of: Bug #21285604.

• Builds with the -Werror and -Wextra flags (as for release builds) failed on SLES 11. (Bug #79950,
Bug #22539531)

• When using CREATE INDEX to add an index on either of two NDB tables sharing circular foreign keys,
the query succeeded but a temporary table was left on disk, breaking the foreign key constraints. This
issue was also observed when attempting to create an index on a table in the middle of a chain of
foreign keys—that is, a table having both parent and child keys, but on different tables. The problem did
not occur when using ALTER TABLE to perform the same index creation operation; and subsequent
analysis revealed unintended differences in the way such operations were performed by CREATE
INDEX.

33

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenepochs
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerresponsiveness
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerspintimer
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/5.6/en/create-index.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.4 Release Notes

To fix this problem, we now make sure that operations performed by a CREATE INDEX statement are
always handled internally in the same way and at the same time that the same operations are handled
when performed by ALTER TABLE or DROP INDEX. (Bug #79156, Bug #22173891)

• NDB failed to ignore index prefixes on primary and unique keys, causing CREATE TABLE and ALTER
TABLE statements using them to be rejected. (Bug #78441, Bug #21839248)

Changes in MySQL NDB Cluster 7.4.10 (5.6.28-ndb-7.4.10)
(2016-01-29, General Availability)

MySQL NDB Cluster 7.4.10 is a new release of MySQL NDB Cluster 7.4 fixing a major regression in
performance during restarts found in MySQL NDB Cluster 7.4.8 which also affected MySQL NDB Cluster
7.4.9. Users of previous releases of NDB Cluster can and should bypass the 7.4.8 and 7.4.9 releases
when performing an upgrade, and upgrade directly to MySQL NDB Cluster 7.4.10 or later.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in MySQL NDB Cluster 7.4.9 and previous
NDB Cluster releases, as well as all bug fixes and feature changes which were added in mainline MySQL
5.6 through MySQL 5.6.28 (see Changes in MySQL 5.6.28 (2015-12-07, General Availability)).

Bugs Fixed

• A serious regression was inadvertently introduced in MySQL NDB Cluster 7.4.8 whereby local
checkpoints and thus restarts often took much longer than expected. This occurred due to the fact
that the setting for MaxDiskWriteSpeedOwnRestart was ignored during restarts and the value
of MaxDiskWriteSpeedOtherNodeRestart, which is much lower by default than the default
for MaxDiskWriteSpeedOwnRestart, was used instead. This issue affected restart times and
performance only and did not have any impact on normal operations. (Bug #22582233)

Changes in MySQL NDB Cluster 7.4.9 (5.6.28-ndb-7.4.9) (2016-01-18,
General Availability)

Note

MySQL NDB Cluster 7.4.9 included a serious regression in performance during
restarts, discovered shortly after release, and is replaced by MySQL NDB Cluster
7.4.10. Users of previous MySQL NDB Cluster 7.4 releases are advised to upgrade
to MySQL NDB Cluster 7.4.10 or later, by passing NDB 7.4.9.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.28 (see
Changes in MySQL 5.6.28 (2015-12-07, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

34

https://dev.mysql.com/doc/refman/5.6/en/drop-index.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-28.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedownrestart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedothernoderestart
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-28.html

MySQL NDB Cluster 7.4 Release Notes

Functionality Added or Changed

• Important Change: Previously, the NDB scheduler always optimized for speed against throughput
in a predetermined manner (this was hard coded); this balance can now be set using the
SchedulerResponsiveness data node configuration parameter. This parameter accepts an integer
in the range of 0-10 inclusive, with 5 as the default. Higher values provide better response times relative
to throughput. Lower values provide increased throughput, but impose longer response times. (Bug
#78531, Bug #21889312)

• NDB Replication: Normally, RESET SLAVE causes all entries to be deleted from the
mysql.ndb_apply_status table. This release adds the ndb_clear_apply_status system
variable, which makes it possible to override this behavior. This variable is ON by default; setting it to OFF
keeps RESET SLAVE from purging the ndb_apply_status table. (Bug #12630403)

• Added the tc_time_track_stats table to the ndbinfo information database. This table provides
time-tracking information relating to transactions, key operations, and scan operations performed by
NDB. (Bug #78533, Bug #21889652)

Bugs Fixed

• Important Change: A fix made in MySQL NDB Cluster 7.3.11 and MySQL NDB Cluster 7.4.8 caused
ndb_restore to perform unique key checks even when operating in modes which do not restore data,
such as when using the program's --restore-epoch or --print-data option.

That change in behavior caused existing valid backup routines to fail; to keep this issue from affecting
this and future releases, the previous fix has been reverted. This means that the requirement added in
those versions that ndb_restore be run --disable-indexes or --rebuild-indexes when used on
tables containing unique indexes is also lifted. (Bug #22345748)

References: See also: Bug #22329365. Reverted patches: Bug #57782, Bug #11764893.

• Important Change: Users can now set the number and length of connection timeouts allowed by most
NDB programs with the --connect-retries and --connect-retry-delay command line options
introduced for the programs in this release. For ndb_mgm, --connect-retries supersedes the
existing --try-reconnect option. (Bug #57576, Bug #11764714)

• NDB Disk Data: A unique index on a column of an NDB table is implemented with an associated
internal ordered index, used for scanning. While dropping an index, this ordered index was dropped
first, followed by the drop of the unique index itself. This meant that, when the drop was rejected due
to (for example) a constraint violation, the statement was rejected but the associated ordered index
remained deleted, so that any subsequent operation using a scan on this table failed. We fix this problem
by causing the unique index to be removed first, before removing the ordered index; removal of the
related ordered index is no longer performed when removal of a unique index fails. (Bug #78306, Bug
#21777589)

• NDB Replication: While the binary log injector thread was handling failure events, it was possible for all
NDB tables to be left indefinitely in read-only mode. This was due to a race condition between the binary
log injector thread and the utility thread handling events on the ndb_schema table, and to the fact that,
when handling failure events, the binary log injector thread places all NDB tables in read-only mode until
all such events are handled and the thread restarts itself.

When the binary log inject thread receives a group of one or more failure events, it drops all other
existing event operations and expects no more events from the utility thread until it has handled all of
the failure events and then restarted itself. However, it was possible for the utility thread to continue
attempting binary log setup while the injector thread was handling failures and thus attempting to create

35

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerresponsiveness
https://dev.mysql.com/doc/refman/5.6/en/reset-slave.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_clear_apply_status
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-tc-time-track-stats.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_connect-retries
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_try-reconnect
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.4 Release Notes

the schema distribution tables as well as event subscriptions on these tables. If the creation of these
tables and event subscriptions occurred during this time, the binary log injector thread's expectation that
there were no further event operations was never met; thus, the injector thread never restarted, and NDB
tables remained in read-only as described previously.

To fix this problem, the Ndb object that handles schema events is now definitely dropped once the
ndb_schema table drop event is handled, so that the utility thread cannot create any new events until
after the injector thread has restarted, at which time, a new Ndb object for handling schema events is
created. (Bug #17674771, Bug #19537961, Bug #22204186, Bug #22361695)

• NDB Cluster APIs: The binary log injector did not work correctly with TE_INCONSISTENT event type
handling by Ndb::nextEvent(). (Bug #22135541)

References: See also: Bug #20646496.

• NDB Cluster APIs: Ndb::pollEvents() and pollEvents2() were slow to receive events, being
dependent on other client threads or blocks to perform polling of transporters on their behalf. This
fix allows a client thread to perform its own transporter polling when it has to wait in either of these
methods.

Introduction of transporter polling also revealed a problem with missing mutex protection in the
ndbcluster_binlog handler, which has been added as part of this fix. (Bug #79311, Bug #20957068,
Bug #22224571)

• NDB Cluster APIs: Garbage collection is performed on several objects in the implementation of
NdbEventOperation, based on which GCIs have been consumed by clients, including those that have
been dropped by Ndb::dropEventOperation(). In this implementation, the assumption was made
that the global checkpoint index (GCI) is always monotonically increasing, although this is not the case
during an initial restart, when the GCI is reset. This could lead to event objects in the NDB API being
released prematurely or not at all, in the latter case causing a resource leak.

To prevent this from happening, the NDB event object's implementation now tracks, internally, both
the GCI and the generation of the GCI; the generation is incremented whenever the node process is
restarted, and this value is now used to provide a monotonically increasing sequence. (Bug #73781, Bug
#21809959)

• In debug builds, a WAIT_EVENT while polling caused excessive logging to stdout. (Bug #22203672)

• When executing a schema operation such as CREATE TABLE on a MySQL NDB Cluster with multiple
SQL nodes, it was possible for the SQL node on which the operation was performed to time out while
waiting for an acknowledgement from the others. This could occur when different SQL nodes had
different settings for --ndb-log-updated-only, --ndb-log-update-as-write, or other mysqld
options effecting binary logging by NDB.

This happened due to the fact that, in order to distribute schema changes between them, all SQL nodes
subscribe to changes in the ndb_schema system table, and that all SQL nodes are made aware of
each others subscriptions by subscribing to TE_SUBSCRIBE and TE_UNSUBSCRIBE events. The names
of events to subscribe to are constructed from the table names, adding REPL$ or REPLF$ as a prefix.
REPLF$ is used when full binary logging is specified for the table. The issue described previously arose
because different values for the options mentioned could lead to different events being subscribed to by
different SQL nodes, meaning that all SQL nodes were not necessarily aware of each other, so that the
code that handled waiting for schema distribution to complete did not work as designed.

To fix this issue, MySQL NDB Cluster now treats the ndb_schema table as a special case and enforces
full binary logging at all times for this table, independent of any settings for mysqld binary logging
options. (Bug #22174287, Bug #79188)

36

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-dropeventoperation
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-updated-only
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-update-as-write
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.4 Release Notes

• Attempting to create an NDB table having greater than the maximum supported combined width for all
BIT columns (4096) caused data node failure when these columns were defined with COLUMN_FORMAT
DYNAMIC. (Bug #21889267)

• Creating a table with the maxmimum supported number of columns (512) all using COLUMN_FORMAT
DYNAMIC led to data node failures. (Bug #21863798)

• In certain cases, a cluster failure (error 4009) was reported as Unknown error code. (Bug
#21837074)

• For a timeout in GET_TABINFOREQ while executing a CREATE INDEX statement, mysqld returned Error
4243 (Index not found) instead of the expected Error 4008 (Receive from NDB failed).

The fix for this bug also fixes similar timeout issues for a number of other signals that are sent the
DBDICT kernel block as part of DDL operations, including ALTER_TAB_REQ, CREATE_INDX_REQ,
DROP_FK_REQ, DROP_INDX_REQ, INDEX_STAT_REQ, DROP_FILE_REQ, CREATE_FILEGROUP_REQ,
DROP_FILEGROUP_REQ, CREATE_EVENT, WAIT_GCP_REQ, DROP_TAB_REQ, and LIST_TABLES_REQ,
as well as several internal functions used in handling NDB schema operations. (Bug #21277472)

References: See also: Bug #20617891, Bug #20368354, Bug #19821115.

• Using ndb_mgm STOP -f to force a node shutdown even when it triggered a complete shutdown of
the cluster, it was possible to lose data when a sufficient number of nodes were shut down, triggering a
cluster shutodwn, and the timing was such that SUMA handovers had been made to nodes already in the
process of shutting down. (Bug #17772138)

• The internal NdbEventBuffer::set_total_buckets() method calculated the number of remaining
buckets incorrectly. This caused any incomplete epoch to be prematurely completed when the
SUB_START_CONF signal arrived out of order. Any events belonging to this epoch arriving later were
then ignored, and so effectively lost, which resulted in schema changes not being distributed correctly
among SQL nodes. (Bug #79635, Bug #22363510)

• Compilation of MySQL NDB Cluster failed on SUSE Linux Enterprise Server 12. (Bug #79429, Bug
#22292329)

• Schema events were appended to the binary log out of order relative to non-schema events. This was
caused by the fact that the binary log injector did not properly handle the case where schema events and
non-schema events were from different epochs.

This fix modifies the handling of events from the two schema and non-schema event streams such
that events are now always handled one epoch at a time, starting with events from the oldest available
epoch, without regard to the event stream in which they occur. (Bug #79077, Bug #22135584, Bug
#20456664)

• When executed on an NDB table, ALTER TABLE ... DROP INDEX made changes to an internal array
referencing the indexes before the index was actually dropped, and did not revert these changes in the
event that the drop was not completed. One effect of this was that, after attempting to drop an index
on which there was a foreign key dependency, the expected error referred to the wrong index, and
subsequent attempts using SQL to modify indexes of this table failed. (Bug #78980, Bug #22104597)

• NDB failed during a node restart due to the status of the current local checkpoint being set but not as
active, even though it could have other states under such conditions. (Bug #78780, Bug #21973758)

• ndbmtd checked for signals being sent only after a full cycle in run_job_buffers, which is performed
for all job buffer inputs. Now this is done as part of run_job_buffers itself, which avoids executing
for extended periods of time without sending to other nodes or flushing signals to other threads. (Bug
#78530, Bug #21889088)

37

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/bit-type.html
https://dev.mysql.com/doc/refman/5.6/en/create-index.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.4 Release Notes

• The value set for spintime by the ThreadConfig parameter was not calculated correctly, causing the
spin to continue for longer than actually specified. (Bug #78525, Bug #21886476)

• When NDBFS completed file operations, the method it employed for waking up the main thread worked
effectively on Linux/x86 platforms, but not on some others, including OS X, which could lead to
unnecessary slowdowns on those platforms. (Bug #78524, Bug #21886157)

Changes in MySQL NDB Cluster 7.4.8 (5.6.27-ndb-7.4.8) (2015-10-16,
General Availability)

MySQL NDB Cluster 7.4.8 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.27 (see
Changes in MySQL 5.6.27 (2015-09-30, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Incompatible Change: The changes listed here follow up and build further on work done in MySQL
NDB Cluster 7.4.7 to improve handling of local checkpoints (LCPs) under conditions of insert overload:

• Changes have been made in the minimum values for a number of parameters applying to data buffers
for backups and LCPs. These parameters, listed here, can no longer be set so as to make the system
impossible to run:

• BackupDataBufferSize: minimum increased from 0 to 2M.

• BackupLogBufferSize: minimum increased from 0 to 2M.

• BackupWriteSize: minimum increased from 2K to 32K.

• BackupMaxWriteSize: minimum increased from 2K to 256K.

In addition, the BackupMemory data node parameter is now deprecated and subject to removal in a
future MySQL NDB Cluster version. Use BackupDataBufferSize and BackupLogBufferSize
instead.

• When a backup was unsuccessful due to insufficient resources, a subsequent retry worked only for
those parts of the backup that worked in the same thread, since delayed signals are only supported in
the same thread. Delayed signals are no longer sent to other threads in such cases.

• An instance of an internal list object used in searching for queued scans was not actually destroyed
before calls to functions that could manipulate the base object used to create it.

38

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-27.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatabuffersize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backuplogbuffersize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupwritesize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupmaxwritesize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupmemory

MySQL NDB Cluster 7.4 Release Notes

• ACC scans were queued in the category of range scans, which could lead to starting an ACC scan
when DBACC had no free slots for scans. We fix this by implementing a separate queue for ACC
scans.

(Bug #76890, Bug #20981491, Bug #77597, Bug #21362758, Bug #77612, Bug #21370839)

References: See also: Bug #76742, Bug #20904721.

• Important Change; NDB Replication: Added the create_old_temporals server system variable
to complement the system variables avoid_temporal_upgrade and show_old_temporals
introduced in MySQL 5.6.24 and available in MySQL NDB Cluster beginning with NDB 7.3.9 and NDB
7.4.6. Enabling create_old_temporals causes mysqld to use the storage format employed prior
to MySQL 5.6.4 when creating any DATE, DATETIME, or TIMESTAMP column—that is, the column is
created without any support for fractional seconds. create_old_temporals is disabled by default.
The system variable is read-only; to enable the use of pre-5.6.4 temporal types, set the equivalent option
(--create-old-temporals) on the command line, or in an option file read by the MySQL server.

create_old_temporals is available only in MySQL NDB Cluster; it is not supported in the standard
MySQL 5.6 server. It is intended to facilitate upgrades from MySQL NDB Cluster 7.2 to MySQL NDB
Cluster 7.3 and 7.4, after which table columns of the affected types can be upgraded to the new storage
format. create_old_temporals is deprecated and scheduled for removal in a future MySQL NDB
Cluster version.

avoid_temporal_upgrade must also be enabled for this feature to work properly. You should
also enable show_old_temporals as well. For more information, see the descriptions of these
variables. For more about the changes in MySQL's temporal types, see Date and Time Type Storage
Requirements. (Bug #20701918)

References: See also: Bug #21492598, Bug #72997, Bug #18985760.

• When the --database option has not been specified for ndb_show_tables, and no tables are
found in the TEST_DB database, an appropriate warning message is now issued. (Bug #50633, Bug
#11758430)

Bugs Fixed

• Important Change; NDB Cluster APIs: The MGM API error-handling functions
ndb_mgm_get_latest_error(), ndb_mgm_get_latest_error_msg(), and
ndb_mgm_get_latest_error_desc() each failed when used with a NULL handle. You should
note that, although these functions are now null-safe, values returned in this case are arbitrary and not
meaningful. (Bug #78130, Bug #21651706)

• Important Change: When ndb_restore was run without --disable-indexes or --rebuild-
indexes on a table having a unique index, it was possible for rows to be restored in an order that
resulted in duplicate values, causing it to fail with duplicate key errors. Running ndb_restore on such
a table now requires using at least one of these options; failing to do so now results in an error. (Bug
#57782, Bug #11764893)

References: See also: Bug #22329365, Bug #22345748.

• NDB Replication: When using conflict detection and resolution with NDB$EPOCH2_TRANS(), delete-
delete conflicts were not handled in a transactional manner. (Bug #20713499)

• NDB Cluster APIs: While executing dropEvent(), if the coordinator DBDICT failed after the
subscription manager (SUMA block) had removed all subscriptions but before the coordinator had deleted
the event from the system table, the dropped event remained in the table, causing any subsequent drop

39

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_create_old_temporals
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_avoid_temporal_upgrade
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_show_old_temporals
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/datetime.html
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_avoid_temporal_upgrade
https://dev.mysql.com/doc/refman/5.6/en/server-system-variables.html#sysvar_show_old_temporals
https://dev.mysql.com/doc/refman/5.6/en/storage-requirements.html#data-types-storage-reqs-date-time
https://dev.mysql.com/doc/refman/5.6/en/storage-requirements.html#data-types-storage-reqs-date-time
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-show-tables.html#option_ndb_show_tables_database
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-error-handling.html#mgm-ndb-mgm-get-latest-error
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-error-handling.html#mgm-ndb-mgm-get-latest-error-msg
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-error-handling.html#mgm-ndb-mgm-get-latest-error-desc
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-conflict-resolution.html#mysql-cluster-replication-ndb-epoch2-trans
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-dropevent

MySQL NDB Cluster 7.4 Release Notes

or create event with the same name to fail with NDB error 1419 Subscription already dropped
or error 746 Event name already exists. This occurred even when calling dropEvent() with a
nonzero force argument.

Now in such cases, error 1419 is ignored, and DBDICT deletes the event from the table. (Bug
#21554676)

• NDB Cluster APIs: If the total amount of memory allocated for the event buffer exceeded approximately
40 MB, the calculation of memory usage percentages could overflow during computation. This was due
to the fact that the associated routine used 32-bit arithmetic; this has now been changed to use Uint64
values instead. (Bug #78454, Bug #21847552)

• NDB Cluster APIs: The nextEvent2() method continued to return exceptional events such as
TE_EMPTY, TE_INCONSISTENT, and TE_OUT_OF_MEMORY for event operations which already had
been dropped. (Bug #78167, Bug #21673318)

• NDB Cluster APIs: After the initial restart of a node following a cluster failure, the cluster failure event
added as part of the restart process was deleted when an event that existed prior to the restart was later
deleted. This meant that, in such cases, an Event API client had no way of knowing that failure handling
was needed. In addition, the GCI used for the final cleanup of deleted event operations, performed by
pollEvents() and nextEvent() when these methods have consumed all available events, was lost.
(Bug #78143, Bug #21660947)

• NDB Cluster APIs: The internal value representing the latest global checkpoint was not always updated
when a completed epoch of event buffers was inserted into the event queue. This caused subsequent
calls to Ndb::pollEvents() and pollEvents2() to fail when trying to obtain the correct GCI
for the events available in the event buffers. This could also result in later calls to nextEvent() or
nextEvent2() seeing events that had not yet been discovered. (Bug #78129, Bug #21651536)

• mysql_upgrade failed when performing an upgrade from MySQL NDB Cluster 7.2 to
MySQL NDB Cluster 7.4. The root cause of this issue was an accidental duplication of code in
mysql_fix_privilege_tables.sql that caused ndbinfo_offline mode to be turned off too
early, which in turn led a subsequent CREATE VIEW statement to fail. (Bug #21841821)

• ClusterMgr is a internal component of NDB API and ndb_mgmd processes, part of
TransporterFacade—which in turn is a wrapper around the transporter registry—and shared
with data nodes. This component is responsible for a number of tasks including connection setup
requests; sending and monitoring of heartbeats; provision of node state information; handling
of cluster disconnects and reconnects; and forwarding of cluster state indicators. ClusterMgr
maintains a count of live nodes which is incremented on receiving a report of a node having connected
(reportConnected() method call), and decremented on receiving a report that a node has
disconnected (reportDisconnected()) from TransporterRegistry. This count is checked within
reportDisconnected() to verify that is it greater than zero.

The issue addressed here arose when node connections were very brief due to send buffer
exhaustion (among other potential causes) and the check just described failed. This occurred
because, when a node did not fully connect, it was still possible for the connection attempt to trigger
a reportDisconnected() call in spite of the fact that the connection had not yet been reported to
ClusterMgr; thus, the pairing of reportConnected() and reportDisconnected() calls was
not guaranteed, which could cause the count of connected nodes to be set to zero even though there
remained nodes that were still in fact connected, causing node crashes with debug builds of MySQL
NDB Cluster, and potential errors or other adverse effects with release builds.

To fix this issue, ClusterMgr::reportDisconnected() now verifies that a disconnected node had
actually finished connecting completely before checking and decrementing the number of connected
nodes. (Bug #21683144, Bug #22016081)

40

https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-dropevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndbinfo_offline
https://dev.mysql.com/doc/refman/5.6/en/create-view.html

MySQL NDB Cluster 7.4 Release Notes

References: See also: Bug #21664515, Bug #21651400.

• To reduce the possibility that a node's loopback transporter becomes disconnected from the transporter
registry by reportError() due to send buffer exhaustion (implemented by the fix for Bug #21651400),
a portion of the send buffer is now reserved for the use of this transporter. (Bug #21664515, Bug
#22016081)

References: See also: Bug #21651400, Bug #21683144.

• The loopback transporter is similar to the TCP transporter, but is used by a node to send signals to itself
as part of many internal operations. Like the TCP transporter, it could be disconnected due to certain
conditions including send buffer exhaustion, but this could result in blocking of TransporterFacade
and so cause multiple issues within an ndb_mgmd or API node process. To prevent this, a node whose
loopback transporter becomes disconnected is now simply shut down, rather than allowing the node
process to hang. (Bug #21651400, Bug #22016081)

References: See also: Bug #21683144, Bug #21664515.

• The internal NdbEventBuffer object's active subscriptions count (m_active_op_count) could be
decremented more than once when stopping a subscription when this action failed, for example, due to
a busy server and was retried. Decrementing of this count could also fail when communication with the
data node failed, such as when a timeout occurred. (Bug #21616263)

References: This issue is a regression of: Bug #20575424, Bug #20561446.

• In some cases, the management server daemon failed on startup without reporting the reason. Now
when ndb_mgmd fails to start due to an error, the error message is printed to stderr. (Bug #21571055)

• In a MySQL NDB Cluster with multiple LDM instances, all instances wrote to the node log, even inactive
instances on other nodes. During restarts, this caused the log to be filled with messages from other
nodes, such as the messages shown here:

2015-06-24 00:20:16 [ndbd] INFO -- We are adjusting Max Disk Write Speed,
a restart is ongoing now
...
2015-06-24 01:08:02 [ndbd] INFO -- We are adjusting Max Disk Write Speed,
no restarts ongoing anymore

Now this logging is performed only by the active LDM instance. (Bug #21362380)

• Backup block states were reported incorrectly during backups. (Bug #21360188)

References: See also: Bug #20204854, Bug #21372136.

• Added the BackupDiskWriteSpeedPct data node parameter. Setting this parameter
causes the data node to reserve a percentage of its maximum write speed (as determined by
the value of MaxDiskWriteSpeed) for use in local checkpoints while performing a backup.
BackupDiskWriteSpeedPct is interpreted as a percentage which can be set between 0 and 90
inclusive, with a default value of 50. (Bug #20204854)

References: See also: Bug #21372136.

• When a data node is known to have been alive by other nodes in the cluster at a given global
checkpoint, but its sysfile reports a lower GCI, the higher GCI is used to determine which global

41

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdiskwritespeedpct
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeed

MySQL NDB Cluster 7.4 Release Notes

checkpoint the data node can recreate. This caused problems when the data node being started had a
clean file system (GCI = 0), or when it was more than more global checkpoint behind the other nodes.

Now in such cases a higher GCI known by other nodes is used only when it is at most one GCI ahead.
(Bug #19633824)

References: See also: Bug #20334650, Bug #21899993. This issue is a regression of: Bug #29167.

• When restoring a specific database or databases with the --include-databases or --exclude-
databases option, ndb_restore attempted to apply foreign keys on tables in databases which were
not among those being restored. (Bug #18560951)

• After restoring the database schema from backup using ndb_restore, auto-discovery of restored
tables in transactions having multiple statements did not work correctly, resulting in Deadlock found
when trying to get lock; try restarting transaction errors.

This issue was encountered both in the mysql client, as well as when such transactions were executed
by application programs using Connector/J and possibly other MySQL APIs.

Prior to upgrading, this issue can be worked around by executing SELECT TABLE_NAME,
TABLE_SCHEMA FROM INFORMATION_SCHEMA.TABLES WHERE ENGINE = 'NDBCLUSTER' on all
SQL nodes following the restore operation, before executing any other statements. (Bug #18075170)

• The inet_ntoa() function used internally in several mgmd threads was not POSIX thread-safe, which
meant that the result it returned could sometimes be undefined. To avoid this problem, a thread-safe
and platform-independent wrapper for inet_ntop() is used to take the place of this function. (Bug
#17766129)

• ndb_desc used with the --extra-partition-info and --blob-info options failed when run
against a table containing one or more TINYBLOB. columns. (Bug #14695968)

• Operations relating to global checkpoints in the internal event data buffer could sometimes leak memory.
(Bug #78205, Bug #21689380)

References: See also: Bug #76165, Bug #20651661.

• Trying to create an NDB table with a composite foreign key referencing a composite primary key of the
parent table failed when one of the columns in the composite foreign key was the table's primary key and
in addition this column also had a unique key. (Bug #78150, Bug #21664899)

• When attempting to enable index statistics, creation of the required system tables, events and event
subscriptions often fails when multiple mysqld processes using index statistics are started concurrently
in conjunction with starting, restarting, or stopping the cluster, or with node failure handling. This
is normally recoverable, since the affected mysqld process or processes can (and do) retry these
operations shortly thereafter. For this reason, such failures are no longer logged as warnings, but merely
as informational events. (Bug #77760, Bug #21462846)

• Adding a unique key to an NDB table failed when the table already had a foreign key. Prior to upgrading,
you can work around this issue by creating the unique key first, then adding the foreign key afterwards,
using a separate ALTER TABLE statement. (Bug #77457, Bug #20309828)

42

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_include-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_extra-partition-info
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_blob-info
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.7 (5.6.25-ndb-7.4.7) (2015-07-13,
General Availability)

MySQL NDB Cluster 7.4.7 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.25 (see
Changes in MySQL 5.6.25 (2015-05-29, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• MySQL NDB ClusterJ: Under high workload, it was possible to overload the direct memory used to
back domain objects, because direct memory is not garbage collected in the same manner as objects
allocated on the heap. Two strategies have been added to the ClusterJ implementation: first, direct
memory is now pooled, so that when the domain object is garbage collected, the direct memory can
be reused by another domain object. Additionally, a new user-level method, release(instance),
has been added to the Session interface, which allows users to release the direct memory before
the corresponding domain object is garbage collected. See the description for release(T) for more
information. (Bug #20504741)

• Deprecated MySQL NDB Cluster node configuration parameters are now indicated as such by
ndb_config --configinfo --xml. For each parameter currently deprecated, the corresponding
<param/> tag in the XML output now includes the attribute deprecated="true". (Bug #21127135)

• A number of improvements, listed here, have been made with regard to handling issues that could arise
when an overload arose due to a great number of inserts being performed during a local checkpoint
(LCP):

• Failures sometimes occurred during restart processing when trying to execute the undo log, due to a
problem with finding the end of the log. This happened when there remained unwritten pages at the
end of the first undo file when writing to the second undo file, which caused the execution of undo logs
in reverse order and so execute old or even nonexistent log records.

This is fixed by ensuring that execution of the undo log begins with the proper end of the log, and, if
started earlier, that any unwritten or faulty pages are ignored.

• It was possible to fail during an LCP, or when performing a COPY_FRAGREQ, due to running out of
operation records. We fix this by making sure that LCPs and COPY_FRAG use resources reserved
for operation records, as was already the case with scan records. In addition, old code for ACC
operations that was no longer required but that could lead to failures was removed.

• When an LCP was performed while loading a table, it was possible to hit a livelock during LCP scans,
due to the fact that each record that was inserted into new pages after the LCP had started had its
LCP_SKIP flag set. Such records were discarded as intended by the LCP scan, but when inserts
occurred faster than the LCP scan could discard records, the scan appeared to hang. As part of this

43

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-25.html
https://dev.mysql.com/doc/ndbapi/en/mccj-clusterj-session.html#mccj-clusterj-session-release-t
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_configinfo
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_xml

MySQL NDB Cluster 7.4 Release Notes

issue, the scan failed to report any progress to the LCP watchdog, which after 70 seconds of livelock
killed the process. This issue was observed when performing on the order of 250000 inserts per
second over an extended period of time (120 seconds or more), using a single LDM.

This part of the fix makes a number of changes, listed here:

• We now ensure that pages created after the LCP has started are not included in LCP scans; we
also ensure that no records inserted into those pages have their LCP_SKIP flag set.

• Handling of the scan protocol is changed such that a certain amount of progress is made by the
LCP regardless of load; we now report progress to the LCP watchdog so that we avoid failure in the
event that an LCP is making progress but not writing any records.

• We now take steps to guarantee that LCP scans proceed more quickly than inserts can occur, by
ensuring that scans are prioritized this scanning activity, and thus, that the LCP is in fact (eventually)
completed.

• In addition, scanning is made more efficient, by prefetching tuples; this helps avoid stalls while
fetching memory in the CPU.

• Row checksums for preventing data corruption now include the tuple header bits.

(Bug #76373, Bug #20727343, Bug #76741, Bug #69994, Bug #20903880, Bug #76742, Bug
#20904721, Bug #76883, Bug #20980229)

Bugs Fixed

• Incompatible Change; NDB Cluster APIs: The pollEvents2() method now returns -1, indicating an
error, whenever a negative value is used for the time argument. (Bug #20762291)

• Important Change; NDB Cluster APIs: The Ndb::getHighestQueuedEpoch() method returned the
greatest epoch in the event queue instead of the greatest epoch found after calling pollEvents2().
(Bug #20700220)

• Important Change; NDB Cluster APIs: Ndb::pollEvents() is now compatible with the TE_EMPTY,
TE_INCONSISTENT, and TE_OUT_OF_MEMORY event types introduced in MySQL NDB Cluster 7.4.3.
For detailed information about this change, see the description of this method in the MySQL NDB Cluster
API Developer Guide. (Bug #20646496)

• Important Change; NDB Cluster APIs: Added the method
Ndb::isExpectingHigherQueuedEpochs() to the NDB API to detect when additional, newer event
epochs were detected by pollEvents2().

The behavior of Ndb::pollEvents() has also been modified such that it now returns
NDB_FAILURE_GCI (equal to ~(Uint64) 0) when a cluster failure has been detected. (Bug
#18753887)

• NDB Cluster APIs: Added the Column::getSizeInBytesForRecord() method, which returns the
size required for a column by an NdbRecord, depending on the column's type (text/blob, or other). (Bug
#21067283)

• NDB Cluster APIs: NdbEventOperation::isErrorEpoch() incorrectly returned false for the
TE_INCONSISTENT table event type (see Event::TableEvent). This caused a subsequent call to
getEventType() to fail. (Bug #20729091)

• NDB Cluster APIs: Creation and destruction of Ndb_cluster_connection objects by multiple
threads could make use of the same application lock, which in some cases led to failures in the global

44

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-gethighestqueuedepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isexpectinghigherqueuedepochs
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-getsizeinbytesforrecord
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-iserrorepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html

MySQL NDB Cluster 7.4 Release Notes

dictionary cache. To alleviate this problem, the creation and destruction of several internal NDB API
objects have been serialized. (Bug #20636124)

• NDB Cluster APIs: A number of timeouts were not handled correctly in the NDB API. (Bug #20617891)

• NDB Cluster APIs: When an Ndb object created prior to a failure of the cluster was reused, the event
queue of this object could still contain data node events originating from before the failure. These
events could reference “old” epochs (from before the failure occurred), which in turn could violate the
assumption made by the nextEvent() method that epoch numbers always increase. This issue is
addressed by explicitly clearing the event queue in such cases. (Bug #18411034)

References: See also: Bug #20888668.

• MySQL NDB ClusterJ: When used with Java 1.7 or higher, ClusterJ might cause the Java VM to
crash when querying tables with BLOB columns, because NdbDictionary::createRecord
calculates the wrong size needed for the record. Subsequently, when ClusterJ called
NdbScanOperation::nextRecordCopyOut, the data overran the allocated buffer space. With this
fix, ClusterJ checks the size calculated by NdbDictionary::createRecord and uses the value for
the buffer size, if it is larger than the value ClusterJ itself calculates. (Bug #20695155)

• After restoring the database metadata (but not any data) by running ndb_restore --restore-
meta (or -m), SQL nodes would hang while trying to SELECT from a table in the database to which
the metadata was restored. In such cases the attempt to query the table now fails as expected, since
the table does not actually exist until ndb_restore is executed with --restore-data (-r). (Bug
#21184102)

References: See also: Bug #16890703.

• When a great many threads opened and closed blocks in the NDB API in rapid succession, the internal
close_clnt() function synchronizing the closing of the blocks waited an insufficiently long time for a
self-signal indicating potential additional signals needing to be processed. This led to excessive CPU
usage by ndb_mgmd, and prevented other threads from opening or closing other blocks. This issue is
fixed by changing the function polling call to wait on a specific condition to be woken up (that is, when a
signal has in fact been executed). (Bug #21141495)

• Previously, multiple send threads could be invoked for handling sends to the same node; these threads
then competed for the same send lock. While the send lock blocked the additional send threads, work
threads could be passed to other nodes.

This issue is fixed by ensuring that new send threads are not activated while there is already an active
send thread assigned to the same node. In addition, a node already having an active send thread
assigned to it is no longer visible to other, already active, send threads; that is, such a node is longer
added to the node list when a send thread is currently assigned to it. (Bug #20954804, Bug #76821)

• Queueing of pending operations when the redo log was overloaded
(DefaultOperationRedoProblemAction API node configuration parameter) could lead to timeouts
when data nodes ran out of redo log space (P_TAIL_PROBLEM errors). Now when the redo log is full,
the node aborts requests instead of queuing them. (Bug #20782580)

References: See also: Bug #20481140.

• An NDB event buffer can be used with an Ndb object to subscribe to table-level row change event
streams. Users subscribe to an existing event; this causes the data nodes to start sending event
data signals (SUB_TABLE_DATA) and epoch completion signals (SUB_GCP_COMPLETE) to the Ndb
object. SUB_GCP_COMPLETE_REP signals can arrive for execution in concurrent receiver thread before
completion of the internal method call used to start a subscription.

45

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaultoperationredoproblemaction
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html

MySQL NDB Cluster 7.4 Release Notes

Execution of SUB_GCP_COMPLETE_REP signals depends on the total number of SUMA buckets (sub
data streams), but this may not yet have been set, leading to the present issue, when the counter used
for tracking the SUB_GCP_COMPLETE_REP signals (TOTAL_BUCKETS_INIT) was found to be set to
erroneous values. Now TOTAL_BUCKETS_INIT is tested to be sure it has been set correctly before it is
used. (Bug #20575424, Bug #76255)

References: See also: Bug #20561446, Bug #21616263.

• NDB statistics queries could be delayed by the error delay set for ndb_index_stat_option (default
60 seconds) when the index that was queried had been marked with internal error. The same underlying
issue could also cause ANALYZE TABLE to hang when executed against an NDB table having multiple
indexes where an internal error occurred on one or more but not all indexes.

Now in such cases, any existing statistics are returned immediately, without waiting for any additonal
statistics to be discovered. (Bug #20553313, Bug #20707694, Bug #76325)

• The multithreaded scheduler sends to remote nodes either directly from each worker thread or from
dedicated send threadsL, depending on the cluster's configuration. This send might transmit all, part,
or none of the available data from the send buffers. While there remained pending send data, the
worker or send threads continued trying to send in a loop. The actual size of the data sent in the most
recent attempt to perform a send is now tracked, and used to detect lack of send progress by the send
or worker threads. When no progress has been made, and there is no other work outstanding, the
scheduler takes a 1 millisecond pause to free up the CPU for use by other threads. (Bug #18390321)

References: See also: Bug #20929176, Bug #20954804.

• In some cases, attempting to restore a table that was previously backed up failed with a File Not
Found error due to a missing table fragment file. This occurred as a result of the NDB kernel BACKUP
block receiving a Busy error while trying to obtain the table description, due to other traffic from external
clients, and not retrying the operation.

The fix for this issue creates two separate queues for such requests—one for internal clients such as the
BACKUP block or ndb_restore, and one for external clients such as API nodes—and prioritizing the
internal queue.

Note that it has always been the case that external client applications using the NDB API (including
MySQL applications running against an SQL node) are expected to handle Busy errors by retrying
transactions at a later time; this expectation is not changed by the fix for this issue. (Bug #17878183)

References: See also: Bug #17916243.

• On startup, API nodes (including mysqld processes running as SQL nodes) waited to connect with data
nodes that had not yet joined the cluster. Now they wait only for data nodes that have actually already
joined the cluster.

In the case of a new data node joining an existing cluster, API nodes still try to connect with the new data
node within HeartbeatIntervalDbApi milliseconds. (Bug #17312761)

• In some cases, the DBDICT block failed to handle repeated GET_TABINFOREQ signals after the first one,
leading to possible node failures and restarts. This could be observed after setting a sufficiently high
value for MaxNoOfExecutionThreads and low value for LcpScanProgressTimeout. (Bug #77433,
Bug #21297221)

• Client lookup for delivery of API signals to the correct client by the internal
TransporterFacade::deliver_signal() function had no mutex protection, which could cause

46

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_index_stat_option
https://dev.mysql.com/doc/refman/5.6/en/analyze-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-heartbeatintervaldbapi
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads

MySQL NDB Cluster 7.4 Release Notes

issues such as timeouts encountered during testing, when other clients connected to the same
TransporterFacade. (Bug #77225, Bug #21185585)

• It was possible to end up with a lock on the send buffer mutex when send buffers became a limiting
resource, due either to insufficient send buffer resource configuration, problems with slow or failing
communications such that all send buffers became exhausted, or slow receivers failing to consume
what was sent. In this situation worker threads failed to allocate send buffer memory for signals, and
attempted to force a send in order to free up space, while at the same time the send thread was busy
trying to send to the same node or nodes. All of these threads competed for taking the send buffer
mutex, which resulted in the lock already described, reported by the watchdog as Stuck in Send. This
fix is made in two parts, listed here:

1. The send thread no longer holds the global send thread mutex while getting the send buffer mutex; it
now releases the global mutex prior to locking the send buffer mutex. This keeps worker threads from
getting stuck in send in such cases.

2. Locking of the send buffer mutex done by the send threads now uses a try-lock. If the try-lock fails,
the node to make the send to is reinserted at the end of the list of send nodes in order to be retried
later. This removes the Stuck in Send condition for the send threads.

(Bug #77081, Bug #21109605)

Changes in MySQL NDB Cluster 7.4.6 (5.6.24-ndb-7.4.6) (2015-04-14,
General Availability)

MySQL NDB Cluster 7.4.6 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.24 (see
Changes in MySQL 5.6.24 (2015-04-06, General Availability)).

Bugs Fixed

• During backup, loading data from one SQL node followed by repeated DELETE statements on the tables
just loaded from a different SQL node could lead to data node failures. (Bug #18949230)

• When an instance of NdbEventBuffer was destroyed, any references to GCI operations that remained
in the event buffer data list were not freed. Now these are freed, and items from the event bufer data list
are returned to the free list when purging GCI containers. (Bug #76165, Bug #20651661)

• When a bulk delete operation was committed early to avoid an additional round trip, while also returning
the number of affected rows, but failed with a timeout error, an SQL node performed no verification that
the transaction was in the Committed state. (Bug #74494, Bug #20092754)

References: See also: Bug #19873609.

47

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-24.html
https://dev.mysql.com/doc/refman/5.6/en/delete.html

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.5 (5.6.23-ndb-7.4.5) (2015-03-20,
General Availability)

MySQL NDB Cluster 7.4.5 is a new release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6 and
including features in version 7.4 of the NDB storage engine, as well as fixing recently discovered bugs in
previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.23 (see
Changes in MySQL 5.6.23 (2015-02-02, General Availability)).

Bugs Fixed

• Important Change: The maximum failure time calculation used to ensure that normal node failure
handling mechanisms are given time to handle survivable cluster failures (before global checkpoint
watchdog mechanisms start to kill nodes due to GCP delays) was excessively conservative, and
neglected to consider that there can be at most number_of_data_nodes / NoOfReplicas node
failures before the cluster can no longer survive. Now the value of NoOfReplicas is properly taken into
account when performing this calculation.

This fix adds the TimeBetweenGlobalCheckpointsTimeout data node configuration parameter,
which makes the minimum timeout between global checkpoints settable by the user. This timeout was
previously fixed internally at 120000 milliseconds, which is now the default value for this parameter. (Bug
#20069617, Bug #20069624)

References: See also: Bug #19858151, Bug #20128256, Bug #20135976.

• NDB Cluster APIs: A scan operation, whether it is a single table scan or a query scan used by a pushed
join, stores the result set in a buffer. This maximum size of this buffer is calculated and preallocated
before the scan operation is started. This buffer may consume a considerable amount of memory; in
some cases we observed a 2 GB buffer footprint in tests that executed 100 parallel scans with 2 single-
threaded (ndbd) data nodes. This memory consumption was found to scale linearly with additional
fragments.

A number of root causes, listed here, were discovered that led to this problem:

• Result rows were unpacked to full NdbRecord format before they were stored in the buffer. If only
some but not all columns of a table were selected, the buffer contained empty space (essentially
wasted).

• Due to the buffer format being unpacked, VARCHAR and VARBINARY columns always had to be
allocated for the maximum size defined for such columns.

• BatchByteSize and MaxScanBatchSize values were not taken into consideration as a limiting
factor when calculating the maximum buffer size.

These issues became more evident in NDB 7.2 and later MySQL NDB Cluster release series. This was
due to the fact buffer size is scaled by BatchSize, and that the default value for this parameter was
increased fourfold (from 64 to 256) beginning with MySQL NDB Cluster 7.2.1.

48

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-23.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenglobalcheckpointstimeout
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchbytesize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-maxscanbatchsize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchsize

MySQL NDB Cluster 7.4 Release Notes

This fix causes result rows to be buffered using the packed format instead of the unpacked format;
a buffered scan result row is now not unpacked until it becomes the current row. In addition,
BatchByteSize and MaxScanBatchSize are now used as limiting factors when calculating the
required buffer size.

Also as part of this fix, refactoring has been done to separate handling of buffered (packed) from
handling of unbuffered result sets, and to remove code that had been unused since NDB 7.0 or earlier.
The NdbRecord class declaration has also been cleaned up by removing a number of unused or
redundant member variables. (Bug #73781, Bug #75599, Bug #19631350, Bug #20408733)

• In the event of a node failure during an initial node restart followed by another node start, the restart
of the affected node could hang with a START_INFOREQ that occurred while invalidation of local
checkpoints was still ongoing. (Bug #20546157, Bug #75916)

References: See also: Bug #34702.

• It was found during testing that problems could arise when the node registered as the arbitrator
disconnected or failed during the arbitration process.

In this situation, the node requesting arbitration could never receive a positive acknowledgement from
the registered arbitrator; this node also lacked a stable set of members and could not initiate selection of
a new arbitrator.

Now in such cases, when the arbitrator fails or loses contact during arbitration, the requesting node
immediately fails rather than waiting to time out. (Bug #20538179)

• DROP DATABASE failed to remove the database when the database directory contained a .ndb file
which had no corresponding table in NDB. Now, when executing DROP DATABASE, NDB performs an
check specifically for leftover .ndb files, and deletes any that it finds. (Bug #20480035)

References: See also: Bug #44529.

• When performing a restart, it was sometimes possible to find a log end marker which had been written
by a previous restart, and that should have been invalidated. Now when searching for the last page to
invalidate, the same search algorithm is used as when searching for the last page of the log to read.
(Bug #76207, Bug #20665205)

• During a node restart, if there was no global checkpoint completed between the START_LCP_REQ for
a local checkpoint and its LCP_COMPLETE_REP it was possible for a comparison of the LCP ID sent in
the LCP_COMPLETE_REP signal with the internal value SYSFILE->latestLCP_ID to fail. (Bug #76113,
Bug #20631645)

• When sending LCP_FRAG_ORD signals as part of master takeover, it is possible that the master not is
not synchronized with complete accuracy in real time, so that some signals must be dropped. During this
time, the master can send a LCP_FRAG_ORD signal with its lastFragmentFlag set even after the local
checkpoint has been completed. This enhancement causes this flag to persist until the statrt of the next
local checkpoint, which causes these signals to be dropped as well.

This change affects ndbd only; the issue described did not occur with ndbmtd. (Bug #75964, Bug
#20567730)

• When reading and copying transporter short signal data, it was possible for the data to be copied back to
the same signal with overlapping memory. (Bug #75930, Bug #20553247)

• NDB node takeover code made the assumption that there would be only one takeover record when
starting a takeover, based on the further assumption that the master node could never perform copying

49

https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.4 Release Notes

of fragments. However, this is not the case in a system restart, where a master node can have stale data
and so need to perform such copying to bring itself up to date. (Bug #75919, Bug #20546899)

Changes in MySQL NDB Cluster 7.4.4 (5.6.23-ndb-7.4.4) (2015-02-26,
General Availability)

MySQL NDB Cluster 7.4.4 is the first GA release of MySQL NDB Cluster 7.4, based on MySQL Server 5.6
and including new features in version 7.4 of the NDB storage engine, as well as fixing recently discovered
bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.23 (see
Changes in MySQL 5.6.23 (2015-02-02, General Availability)).

Bugs Fixed

• NDB Cluster APIs: When a transaction is started from a cluster connection, Table and Index schema
objects may be passed to this transaction for use. If these schema objects have been acquired from
a different connection (Ndb_cluster_connection object), they can be deleted at any point by the
deletion or disconnection of the owning connection. This can leave a connection with invalid schema
objects, which causes an NDB API application to fail when these are dereferenced.

To avoid this problem, if your application uses multiple connections, you can now set a check to detect
sharing of schema objects between connections when passing a schema object to a transaction, using
the NdbTransaction::setSchemaObjectOwnerChecks() method added in this release. When this
check is enabled, the schema objects having the same names are acquired from the connection and
compared to the schema objects passed to the transaction. Failure to match causes the application to
fail with an error. (Bug #19785977)

• NDB Cluster APIs: The increase in the default number of hashmap buckets (DefaultHashMapSize
API node configuration parameter) from 240 to 3480 in MySQL NDB Cluster 7.2.11 increased the size of
the internal DictHashMapInfo::HashMap type considerably. This type was allocated on the stack in
some getTable() calls which could lead to stack overflow issues for NDB API users.

To avoid this problem, the hashmap is now dynamically allocated from the heap. (Bug #19306793)

• When upgrading a MySQL NDB Cluster from NDB 7.3 to NDB 7.4, the first data node started with the
NDB 7.4 data node binary caused the master node (still running NDB 7.3) to fail with Error 2301, then
itself failed during Start Phase 5. (Bug #20608889)

• A memory leak in NDB event buffer allocation caused an event to be leaked for each epoch. (Due to the
fact that an SQL node uses 3 event buffers, each SQL node leaked 3 events per epoch.) This meant that
a MySQL NDB Cluster mysqld leaked an amount of memory that was inversely proportional to the size
of TimeBetweenEpochs—that is, the smaller the value for this parameter, the greater the amount of
memory leaked per unit of time. (Bug #20539452)

• The values of the Ndb_last_commit_epoch_server and Ndb_last_commit_epoch_session
status variables were incorrectly reported on some platforms. To correct this problem, these values are
now stored internally as long long, rather than long. (Bug #20372169)

50

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-23.html
https://dev.mysql.com/doc/ndbapi/en/ndb-table.html
https://dev.mysql.com/doc/ndbapi/en/ndb-index.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setschemaobjectownerchecks
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaulthashmapsize
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-gettable
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenepochs
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_server
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_session

MySQL NDB Cluster 7.4 Release Notes

• When restoring a MySQL NDB Cluster from backup, nodes that failed and were restarted during
restoration of another node became unresponsive, which subsequently caused ndb_restore to fail and
exit. (Bug #20069066)

• When a data node fails or is being restarted, the remaining nodes in the same nodegroup resend to
subscribers any data which they determine has not already been sent by the failed node. Normally,
when a data node (actually, the SUMA kernel block) has sent all data belonging to an epoch for which it is
responsible, it sends a SUB_GCP_COMPLETE_REP signal, together with a count, to all subscribers, each
of which responds with a SUB_GCP_COMPLETE_ACK. When SUMA receives this acknowledgment from
all subscribers, it reports this to the other nodes in the same nodegroup so that they know that there is
no need to resend this data in case of a subsequent node failure. If a node failed before all subscribers
sent this acknowledgement but before all the other nodes in the same nodegroup received it from the
failing node, data for some epochs could be sent (and reported as complete) twice, which could lead to
an unplanned shutdown.

The fix for this issue adds to the count reported by SUB_GCP_COMPLETE_ACK a list of identifiers which
the receiver can use to keep track of which buckets are completed and to ignore any duplicate reported
for an already completed bucket. (Bug #17579998)

• The ndbinfo.restart_info table did not contain a new row as expected following a node restart.
(Bug #75825, Bug #20504971)

• The output format of SHOW CREATE TABLE for an NDB table containing foreign key constraints did
not match that for the equivalent InnoDB table, which could lead to issues with some third-party
applications. (Bug #75515, Bug #20364309)

• An ALTER TABLE statement containing comments and a partitioning option against an NDB table caused
the SQL node on which it was executed to fail. (Bug #74022, Bug #19667566)

Changes in MySQL NDB Cluster 7.4.3 (5.6.22-ndb-7.4.3) (2015-01-21,
Release Candidate)

MySQL NDB Cluster 7.4.3 is a new release of NDB Cluster, based on MySQL Server 5.6 and including
features under development for version 7.4 of the NDB storage engine, as well as fixing a number of
recently discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.22 (see
Changes in MySQL 5.6.22 (2014-12-01, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change; NDB Cluster APIs: This release introduces an epoch-driven Event API for the
NDB API that supercedes the earlier GCI-based model. The new version of this API also simplifies error
detection and handling, and monitoring of event buffer memory usage has been improved.

New event handling methods for Ndb and NdbEventOperation added by this change
include NdbEventOperation::getEventType2(), pollEvents2(), nextEvent2(),

51

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-restart-info.html
https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-22.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2

MySQL NDB Cluster 7.4 Release Notes

getHighestQueuedEpoch(), getNextEventOpInEpoch2(), getEpoch(),
isEmptyEpoch(), and isErrorEpoch. The pollEvents(), nextEvent(), getLatestGCI(),
getGCIEventOperations(), isConsistent(), isConsistentGCI(), getEventType(),
getGCI(), getLatestGCI(), isOverrun(), hasError(), and clearError() methods are
deprecated beginning with the same release.

Some (but not all) of the new methods act as replacements for deprecated methods; not all of the
deprecated methods map to new ones. The Event Class, provides information as to which old methods
correspond to new ones.

Error handling using the new API is no longer handled using dedicated hasError() and
clearError() methods, which are now deprecated as previously noted. To support this change,
TableEvent now supports the values TE_EMPTY (empty epoch), TE_INCONSISTENT (inconsistent
epoch), and TE_OUT_OF_MEMORY (insufficient event buffer memory).

Event buffer memory management has also been improved with the introduction of the
get_eventbuffer_free_percent(), set_eventbuffer_free_percent(), and
get_event_buffer_memory_usage() methods, as well as a new NDB API error Free percent
out of range (error code 4123). Memory buffer usage can now be represented in applications using
the EventBufferMemoryUsage data structure, and checked from MySQL client applications by
reading the ndb_eventbuffer_free_percent system variable.

For more information, see the detailed descriptions for the Ndb and NdbEventOperation methods
listed. See also Event::TableEvent.

• NDB Cluster APIs: Two new example programs, demonstrating reads and writes of CHAR, VARCHAR,
and VARBINARY column values, have been added to storage/ndb/ndbapi-examples in the MySQL
NDB Cluster source tree. For more information about these programs, including source code listings,
see NDB API Simple Array Example, and NDB API Simple Array Example Using Adapter.

• Additional logging is now performed of internal states occurring during system restarts such as
waiting for node ID allocation and master takeover of global and local checkpoints. (Bug #74316, Bug
#19795029)

• Added the operations_per_fragment table to the ndbinfo information database. Using this table,
you can now obtain counts of operations performed on a given fragment (or fragment replica). Such
operations include reads, writes, updates, and deletes, scan and index operations performed while
executing them, and operations refused, as well as information relating to rows scanned on and returned
from a given fragment replica. This table also provides information about interpreted programs used as
attribute values, and values returned by them.

• Added the MaxParallelCopyInstances data node configuration parameter. In cases where the
parallelism used during restart copy phase (normally the number of LDMs up to a maximum of 16) is
excessive and leads to system overload, this parameter can be used to override the default behavior by
reducing the degree of parallelism employed.

Bugs Fixed

• NDB Disk Data: An update on many rows of a large Disk Data table could in some rare cases lead to
node failure. In the event that such problems are observed with very large transactions on Disk Data
tables you can now increase the number of page entries allocated for disk page buffer memory by
raising the value of the DiskPageBufferEntries data node configuration parameter added in this
release. (Bug #19958804)

• NDB Disk Data: In some cases, during DICT master takeover, the new master could crash while
attempting to roll forward an ongoing schema transaction. (Bug #19875663, Bug #74510)

52

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-gethighestqueuedepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getnexteventopinepoch2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-isemptyepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-iserrorepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getlatestgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getgcieventoperations
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isconsistent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isconsistentgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getlatestgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-isoverrun
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-haserror
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-clearerror
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-haserror
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-clearerror
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-get-eventbuffer-free-percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-set-eventbuffer-free-percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-get-event-buffer-memory-usage
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_free_percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-simple.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-adapter.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-operations-per-fragment.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxparallelcopyinstances
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskpagebufferentries

MySQL NDB Cluster 7.4 Release Notes

• NDB Cluster APIs: It was possible to delete an Ndb_cluster_connection object while there
remained instances of Ndb using references to it. Now the Ndb_cluster_connection destructor
waits for all related Ndb objects to be released before completing. (Bug #19999242)

References: See also: Bug #19846392.

• MySQL NDB ClusterJ: ClusterJ reported a segmentation violation when an application closed a
session factory while some sessions were still active. This was because MySQL NDB Cluster allowed
an Ndb_cluster_connection object be to deleted while some Ndb instances were still active,
which might result in the usage of null pointers by ClusterJ. This fix stops that happening by preventing
ClusterJ from closing a session factory when any of its sessions are still active. (Bug #19846392)

References: See also: Bug #19999242.

• The global checkpoint commit and save protocols can be delayed by various causes, including slow
disk I/O. The DIH master node monitors the progress of both of these protocols, and can enforce a
maximum lag time during which the protocols are stalled by killing the node responsible for the lag when
it reaches this maximum. This DIH master GCP monitor mechanism did not perform its task more than
once per master node; that is, it failed to continue monitoring after detecting and handling a GCP stop.
(Bug #20128256)

References: See also: Bug #19858151, Bug #20069617, Bug #20062754.

• When running mysql_upgrade on a MySQL NDB Cluster SQL node, the expected drop of the
performance_schema database on this node was instead performed on all SQL nodes connected to
the cluster. (Bug #20032861)

• The warning shown when an ALTER TABLE ALGORITHM=INPLACE ... ADD COLUMN statement
automatically changes a column's COLUMN_FORMAT from FIXED to DYNAMIC now includes the name of
the column whose format was changed. (Bug #20009152, Bug #74795)

• The local checkpoint scan fragment watchdog and the global checkpoint monitor can each exclude a
node when it is too slow when participating in their respective protocols. This exclusion was implemented
by simply asking the failing node to shut down, which in case this was delayed (for whatever reason)
could prolong the duration of the GCP or LCP stall for other, unaffected nodes.

To minimize this time, an isolation mechanism has been added to both protocols whereby any other live
nodes forcibly disconnect the failing node after a predetermined amount of time. This allows the failing
node the opportunity to shut down gracefully (after logging debugging and other information) if possible,
but limits the time that other nodes must wait for this to occur. Now, once the remaining live nodes have
processed the disconnection of any failing nodes, they can commence failure handling and restart the
related protocol or protocol, even if the failed node takes an excessively long time to shut down. (Bug
#19858151)

References: See also: Bug #20128256, Bug #20069617, Bug #20062754.

• The matrix of values used for thread configuration when applying the setting of the
MaxNoOfExecutionThreads configuration parameter has been improved to align with support for
greater numbers of LDM threads. See Multi-Threading Configuration Parameters (ndbmtd), for more
information about the changes. (Bug #75220, Bug #20215689)

• When a new node failed after connecting to the president but not to any other live node, then
reconnected and started again, a live node that did not see the original connection retained old state
information. This caused the live node to send redundant signals to the president, causing it to fail. (Bug
#75218, Bug #20215395)

53

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-online-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-ndbmtd-parameters

MySQL NDB Cluster 7.4 Release Notes

• In the NDB kernel, it was possible for a TransporterFacade object to reset a buffer while the data
contained by the buffer was being sent, which could lead to a race condition. (Bug #75041, Bug
#20112981)

• mysql_upgrade failed to drop and recreate the ndbinfo database and its tables as expected. (Bug
#74863, Bug #20031425)

• Due to a lack of memory barriers, MySQL NDB Cluster programs such as ndbmtd did not compile on
POWER platforms. (Bug #74782, Bug #20007248)

• In spite of the presence of a number of protection mechanisms against overloading signal buffers,
it was still in some cases possible to do so. This fix adds block-level support in the NDB kernel (in
SimulatedBlock) to make signal buffer overload protection more reliable than when implementing
such protection on a case-by-case basis. (Bug #74639, Bug #19928269)

• Copying of metadata during local checkpoints caused node restart times to be highly variable which
could make it difficult to diagnose problems with restarts. The fix for this issue introduces signals
(including PAUSE_LCP_IDLE, PAUSE_LCP_REQUESTED, and PAUSE_NOT_IN_LCP_COPY_META_DATA)
to pause LCP execution and flush LCP reports, making it possible to block LCP reporting at times when
LCPs during restarts become stalled in this fashion. (Bug #74594, Bug #19898269)

• When a data node was restarted from its angel process (that is, following a node failure), it could be
allocated a new node ID before failure handling was actually completed for the failed node. (Bug #74564,
Bug #19891507)

• In NDB version 7.4, node failure handling can require completing checkpoints on up to 64 fragments.
(This checkpointing is performed by the DBLQH kernel block.) The requirement for master takeover to
wait for completion of all such checkpoints led in such cases to excessive length of time for completion.

To address these issues, the DBLQH kernel block can now report that it is ready for master takeover
before it has completed any ongoing fragment checkpoints, and can continue processing these while the
system completes the master takeover. (Bug #74320, Bug #19795217)

• Local checkpoints were sometimes started earlier than necessary during node restarts, while the node
was still waiting for copying of the data distribution and data dictionary to complete. (Bug #74319, Bug
#19795152)

• The check to determine when a node was restarting and so know when to accelerate local checkpoints
sometimes reported a false positive. (Bug #74318, Bug #19795108)

• Values in different columns of the ndbinfo tables disk_write_speed_aggregate and
disk_write_speed_aggregate_node were reported using differing multiples of bytes. Now all of
these columns display values in bytes.

In addition, this fix corrects an error made when calculating the standard deviations used in
the std_dev_backup_lcp_speed_last_10sec, std_dev_redo_speed_last_10sec,
std_dev_backup_lcp_speed_last_60sec, and std_dev_redo_speed_last_60sec columns of
the ndbinfo.disk_write_speed_aggregate table. (Bug #74317, Bug #19795072)

• Recursion in the internal method Dblqh::finishScanrec() led to an attempt to create two list
iterators with the same head. This regression was introduced during work done to optimize scans for
version 7.4 of the NDB storage engine. (Bug #73667, Bug #19480197)

• Transporter send buffers were not updated properly following a failed send. (Bug #45043, Bug
#20113145)

54

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-aggregate.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-aggregate-node.html

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.2 (5.6.21-ndb-7.4.2) (2014-11-05,
Development Milestone)

MySQL NDB Cluster 7.4.2 is a new release of NDB Cluster, based on MySQL Server 5.6 and including
features under development for version 7.4 of the NDB storage engine, as well as fixing a number of
recently discovered bugs in previous NDB Cluster releases.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.21 (see
Changes in MySQL 5.6.21 (2014-09-23, General Availability)).

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Added the restart_info table to the ndbinfo information database to provide current status and
timing information relating to node and system restarts. By querying this table, you can observe the
progress of restarts in real time. (Bug #19795152)

• After adding new data nodes to the configuration file of a MySQL NDB Cluster having many API
nodes, but prior to starting any of the data node processes, API nodes tried to connect to these
“missing” data nodes several times per second, placing extra loads on management nodes and the
network. To reduce unnecessary traffic caused in this way, it is now possible to control the amount of
time that an API node waits between attempts to connect to data nodes which fail to respond; this is
implemented in two new API node configuration parameters StartConnectBackoffMaxTime and
ConnectBackoffMaxTime.

Time elapsed during node connection attempts is not taken into account when applying these
parameters, both of which are given in milliseconds with approximately 100 ms resolution. As
long as the API node is not connected to any data nodes as described previously, the value of the
StartConnectBackoffMaxTime parameter is applied; otherwise, ConnectBackoffMaxTime is
used.

In a MySQL NDB Cluster with many unstarted data nodes, the values of these parameters can be raised
to circumvent connection attempts to data nodes which have not yet begun to function in the cluster, as
well as moderate high traffic to management nodes.

For more information about the behavior of these parameters, see Defining SQL and Other API Nodes in
an NDB Cluster. (Bug #17257842)

Bugs Fixed

• NDB Replication: The fix for Bug #18770469 in the MySQL Server made changes in the transactional
behavior of the temporary conversion tables used when replicating between tables with different
schemas. These changes as implemented are not compatible with NDB, and thus the fix for this bug has
been reverted in MySQL NDB Cluster. (Bug #19692387)

References: See also: Bug #19704825. Reverted patches: Bug #18770469.

55

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-21.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-restart-info.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-startconnectbackoffmaxtime
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-connectbackoffmaxtime
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html

MySQL NDB Cluster 7.4 Release Notes

• When performing a batched update, where one or more successful write operations from the start of the
batch were followed by write operations which failed without being aborted (due to the AbortOption
being set to AO_IgnoreError), the failure handling for these by the transaction coordinator leaked
CommitAckMarker resources. (Bug #19875710)

References: This issue is a regression of: Bug #19451060, Bug #73339.

• Online downgrades to MySQL NDB Cluster 7.3 failed when a MySQL NDB Cluster 7.4 master attempted
to request a local checkpoint with 32 fragments from a data node already running NDB 7.3, which
supports only 2 fragments for LCPs. Now in such cases, the NDB 7.4 master determines how many
fragments the data node can handle before making the request. (Bug #19600834)

• The fix for a previous issue with the handling of multiple node failures required determining the number
of TC instances the failed node was running, then taking them over. The mechanism to determine
this number sometimes provided an invalid result which caused the number of TC instances in the
failed node to be set to an excessively high value. This in turn caused redundant takeover attempts,
which wasted time and had a negative impact on the processing of other node failures and of global
checkpoints. (Bug #19193927)

References: This issue is a regression of: Bug #18069334.

• The server side of an NDB transporter disconnected an incoming client connection very quickly during
the handshake phase if the node at the server end was not yet ready to receive connections from the
other node. This led to problems when the client immediately attempted once again to connect to the
server socket, only to be disconnected again, and so on in a repeating loop, until it suceeded. Since
each client connection attempt left behind a socket in TIME_WAIT, the number of sockets in TIME_WAIT
increased rapidly, leading in turn to problems with the node on the server side of the transporter.

Further analysis of the problem and code showed that the root of the problem lay in the handshake
portion of the transporter connection protocol. To keep the issue described previously from occurring,
the node at the server end now sends back a WAIT message instead of disconnecting the socket when
the node is not yet ready to accept a handshake. This means that the client end should no longer need
to create a new socket for the next retry, but can instead begin immediately with a new handshake hello
message. (Bug #17257842)

• Corrupted messages to data nodes sometimes went undetected, causing a bad signal to be delivered to
a block which aborted the data node. This failure in combination with disconnecting nodes could in turn
cause the entire cluster to shut down.

To keep this from happening, additional checks are now made when unpacking signals received over
TCP, including checks for byte order, compression flag (which must not be used), and the length of the
next message in the receive buffer (if there is one).

Whenever two consecutive unpacked messages fail the checks just described, the current message
is assumed to be corrupted. In this case, the transporter is marked as having bad data and no more
unpacking of messages occurs until the transporter is reconnected. In addition, an entry is written to
the cluster log containing the error as well as a hex dump of the corrupted message. (Bug #73843, Bug
#19582925)

• During restore operations, an attribute's maximum length was used when reading variable-length
attributes from the receive buffer instead of the attribute's actual length. (Bug #73312, Bug #19236945)

56

https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-abortoption

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.1 (5.6.20-ndb-7.4.1) (2014-09-25,
Development Milestone)

MySQL NDB Cluster 7.4.1 is a new Developer Milestone release of NDB Cluster, based on MySQL Server
5.6 and previewing new features under development for version 7.4 of the NDB storage engine.

Obtaining MySQL NDB Cluster 7.4. MySQL NDB Cluster 7.4 source code and binaries can be
obtained from https://dev.mysql.com/downloads/cluster/.

For an overview of changes made in MySQL NDB Cluster 7.4, see What is New in NDB Cluster 7.4.

This release also incorporates all bug fixes and changes made in previous NDB Cluster releases, as well
as all bug fixes and feature changes which were added in mainline MySQL 5.6 through MySQL 5.6.20 (see
Changes in MySQL 5.6.20 (2014-07-31, General Availability)).

• Conflict Resolution Exceptions Table Extensions

• Node Restart Performance and Reporting Enhancements

• Dynamic Primary/Secondary Role Determination

• Improved Scan and SQL Processing

• Per-Fragment Memory Reporting

• Bugs Fixed

Conflict Resolution Exceptions Table Extensions

• NDB Replication: A number of changes and improvements have been made to exceptions tables for
MySQL NDB Cluster Replication conflict detection and resolution. A reserved column name namespace
is now employed for metacolumns, which allows the recording of an arbitrary subset of main table
columns that are not part of the table's primary key. The names of all metacolumns in the exception table
should now be prefixed with NDB$.

It is no longer necessary to record the complete primary key. Matching of main table columns to
exceptions table columns is now performed solely on the basis of name and type. In addition, you can
now record in the exceptions table the values of columns which not part of the main table's primary key.

Predefined optional columns can now be employed in conflict exceptions tables to obtain information
about a conflict's type, cause, and originating transaction.

Read tracking—that is, detecting conflicts between reads of a given row in one cluster and updates
or deletes of the same row in another cluster—is now supported. This requires exclusive read locks
obtained by setting ndb_log_exclusive_reads equal to 1 on the slave cluster. All rows read by
a conflicting read are logged in the exceptions table. For more information and examples, see Read
conflict detection and resolution.

Existing exceptions tables continue to be supported. For additional information, see Conflict Resolution
Exceptions Table.

Node Restart Performance and Reporting Enhancements

• Performance: A number of performance and other improvements have been made with regard to node
starts and restarts. The following list contains a brief description of each of these changes:

57

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/downloads/cluster/
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/news-5-6-20.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_log_exclusive_reads
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-conflict-resolution.html#conflict-resolution-read-conflicts
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-conflict-resolution.html#conflict-resolution-read-conflicts
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-conflict-resolution.html#conflict-resolution-exceptions-table
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-conflict-resolution.html#conflict-resolution-exceptions-table

MySQL NDB Cluster 7.4 Release Notes

• Before memory allocated on startup can be used, it must be touched, causing the operating system
to allocate the actual physical memory needed. The process of touching each page of memory that
was allocated has now been multithreaded, with touch times on the order of 3 times shorter than with
a single thread when performed by 16 threads.

• When performing a node or system restart, it is necessary to restore local checkpoints for the
fragments. This process previously used delayed signals at a point which was found to be critical to
performance; these have now been replaced with normal (undelayed) signals, which should shorten
significantly the time required to back up a MySQL NDB Cluster or to restore it from backup.

• Previously, there could be at most 2 LDM instances active with local checkpoints at any given time.
Now, up to 16 LDMs can be used for performing this task, which increases utilization of available CPU
power, and can speed up LCPs by a factor of 10, which in turn can greatly improve restart times.

Better reporting of disk writes and increased control over these also make up a large part of this
work. New ndbinfo tables disk_write_speed_base, disk_write_speed_aggregate, and
disk_write_speed_aggregate_node provide information about the speed of disk writes for each
LDM thread that is in use. The DiskCheckpointSpeed and DiskCheckpointSpeedInRestart
configuration parameters have been deprecated, and are subject to removal in a future
MySQL NDB Cluster version. This release adds the data node configuration parameters
MinDiskWriteSpeed, MaxDiskWriteSpeed, MaxDiskWriteSpeedOtherNodeRestart, and
MaxDiskWriteSpeedOwnRestart to control write speeds for LCPs and backups when the present
node, another node, or no node is currently restarting.

For more information, see the descriptions of the ndbinfo tables and MySQL NDB Cluster
configuration parameters named previously.

• Reporting of MySQL NDB Cluster start phases has been improved, with more frequent printouts. New
and better information about the start phases and their implementation has also been provided in the
sources and documentation. See Summary of NDB Cluster Start Phases.

Dynamic Primary/Secondary Role Determination

• NDB Replication: When using conflict detection and resolution with a circular or “active-active”
MySQL NDB Cluster Replication setup, it is now possible to set the roles of primary and secondary
cluster explicitly and dynamically by setting the ndb_slave_conflict_role server system variable
introduced in this release. This variable can take any one of the values PRIMARY, SECONDARY, PASS,
or NULL (the default). (PASS enables a passthrough state in which the effects of any conflict resolution
function are ignored.) This can be useful when it is necessary to fail over from the MySQL NDB Cluster
acting as the primary.

The slave SQL thread must be stopped when the value of this variable is changed. In addition, it is not
possible to change it directly between PASS and either of PRIMARY or SECONDARY.

For more information, see the description of ndb_slave_conflict_role as well as NDB Cluster
Replication Conflict Resolution.

Improved Scan and SQL Processing

• Performance: Several internal methods relating to the NDB receive thread have been optimized to
make mysqld more efficient in processing SQL applications with the NDB storage engine. In particular,
this work improves the performance of the NdbReceiver::execTRANSID_AI() method, which is
commonly used to receive a record from the data nodes as part of a scan operation. (Since the receiver
thread sometimes has to process millions of received records per second, it is critical that this method

58

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-base.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-aggregate.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-aggregate-node.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskcheckpointspeed
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskcheckpointspeedinrestart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-mindiskwritespeed
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeed
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedothernoderestart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedownrestart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-start-phases.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_slave_conflict_role
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-conflict-resolution.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-replication-conflict-resolution.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.4 Release Notes

does not perform unnecessary work, or tie up resources that are not strictly needed.) The associated
internal functions receive_ndb_packed_record() and handleReceivedSignal() methods have
also been improved, and made more efficient.

Per-Fragment Memory Reporting

• Information about memory usage by individual fragments can now be obtained from the
memory_per_fragment view added in this release to the ndbinfo information database. This
information includes pages having fixed, and variable element size, rows, fixed element free slots,
variable element free bytes, and hash index memory usage. For information, see The ndbinfo
memory_per_fragment Table.

Bugs Fixed

• NDB Cluster APIs: When an NDB API client application received a signal with an invalid block or signal
number, NDB provided only a very brief error message that did not accurately convey the nature of
the problem. Now in such cases, appropriate printouts are provided when a bad signal or message is
detected. In addition, the message length is now checked to make certain that it matches the size of the
embedded signal. (Bug #18426180)

• In some cases, transporter receive buffers were reset by one thread while being read by another.
This happened when a race condition occurred between a thread receiving data and another thread
initiating disconnect of the transporter (disconnection clears this buffer). Concurrency logic has now been
implemented to keep this race from taking place. (Bug #19552283, Bug #73790)

• When a new data node started, API nodes were allowed to attempt to register themselves with the data
node for executing transactions before the data node was ready. This forced the API node to wait an
extra heartbeat interval before trying again.

To address this issue, a number of HA_ERR_NO_CONNECTION errors (Error 4009) that could be issued
during this time have been changed to Cluster temporarily unavailable errors (Error 4035),
which should allow API nodes to use new data nodes more quickly than before. As part of this fix, some
errors which were incorrectly categorised have been moved into the correct categories, and some errors
which are no longer used have been removed. (Bug #19524096, Bug #73758)

• Executing ALTER TABLE ... REORGANIZE PARTITION after increasing the number of data nodes
in the cluster from 4 to 16 led to a crash of the data nodes. This issue was shown to be a regression
caused by previous fix which added a new dump handler using a dump code that was already in use
(7019), which caused the command to execute two different handlers with different semantics. The new
handler was assigned a new DUMP code (7024). (Bug #18550318)

References: This issue is a regression of: Bug #14220269.

• When certain queries generated signals having more than 18 data words prior to a node failure, such
signals were not written correctly in the trace file. (Bug #18419554)

• Failure of multiple nodes while using ndbmtd with multiple TC threads was not handled gracefully under
a moderate amount of traffic, which could in some cases lead to an unplanned shutdown of the cluster.
(Bug #18069334)

• For multithreaded data nodes, some threads do communicate often, with the result that very old signals
can remain at the top of the signal buffers. When performing a thread trace, the signal dumper calculated
the latest signal ID from what it found in the signal buffers, which meant that these old signals could be
erroneously counted as the newest ones. Now the signal ID counter is kept as part of the thread state,
and it is this value that is used when dumping signals for trace files. (Bug #73842, Bug #19582807)

59

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memory-per-fragment.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memory-per-fragment.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memory-per-fragment.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html

MySQL NDB Cluster 7.4 Release Notes

Release Series Changelogs: MySQL NDB Cluster 7.4
This section contains unified changelog information for the MySQL NDB Cluster 7.4 release series.

For changelogs covering individual MySQL NDB Cluster 7.4 releases, see NDB Cluster Release Notes.

For general information about features added in MySQL NDB Cluster 7.4, see What is New in NDB Cluster
7.4.

For an overview of features added in MySQL 5.6 that are not specific to NDB Cluster, see What Is New
in MySQL 5.6. For a complete list of all bug fixes and feature changes made in MySQL 5.6 that are not
specific to NDB Cluster, see the MySQL 5.6 Release Notes.

Changes in MySQL NDB Cluster 7.4.33 (5.6.51-ndb-7.4.33) (2021-07-21,
General Availability)

Bugs Fixed

• Packaging: The ndb-common man page was removed, and the information it contained moved to other
man pages. (Bug #32799519)

• Ndb_rep_tab_key member variables were not null-terminated before being logged. (Bug #32841430)

References: See also: Bug #32393245.

Changes in MySQL NDB Cluster 7.4.31 (5.6.51-ndb-7.4.31) (2021-01-19,
General Availability)

• Deprecation and Removal Notes

• Bugs Fixed

Deprecation and Removal Notes

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been has been removed from the NDB Cluster binary and source distributions,
and is no longer supported. (Bug #32084831)

References: See also: Bug #31888835.

Bugs Fixed

• Using the maximum size of an index key supported by index statistics (3056 bytes) caused buffer issues
in data nodes. (Bug #32094904)

References: See also: Bug #25038373.

• When a table creation schema transaction is prepared, the table is in TS_CREATING state, and is
changed to TS_ACTIVE state when the schema transaction commits on the DBDIH block. In the case
where the node acting as DBDIH coordinator fails while the schema transaction is committing, another
node starts taking over for the coordinator. The following actions are taken when handling this node
failure:

• DBDICT rolls the table creation schema transaction forward and commits, resulting in the table
involved changing to TS_ACTIVE state.

60

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-news.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
https://dev.mysql.com/doc/relnotes/mysql/5.6/en/
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdih.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

MySQL NDB Cluster 7.4 Release Notes

• DBDIH starts removing the failed node from tables by moving active table replicas on the failed node
from a list of stored fragment replicas to another list.

These actions are performed asynchronously many times, and when interleaving may cause a
race condition. As a result, the replica list in which the replica of a failed node resides becomes
nondeterministic and may differ between the recovering node (that is, the new coordinator) and other
DIH participant nodes. This difference violated a requirement for knowing which list the failed node's
replicas can be found during the recovery of the failed node recovery on the other participants.

To fix this, moving active table replicas now covers not only tables in TS_ACTIVE state, but those in
TS_CREATING (prepared) state as well, since the prepared schema transaction is always rolled forward.

In addition, the state of a table creation schema transaction which is being aborted is now changed from
TS_CREATING or TS_IDLE to TS_DROPPING, to avoid any race condition there. (Bug #30521812)

Changes in MySQL NDB Cluster 7.4.30 (5.6.50-ndb-7.4.30) (2020-10-20,
General Availability)

• Deprecation and Removal Notes

• Bugs Fixed

Deprecation and Removal Notes

• NDB Cluster APIs: Support for Node.js has been removed in this release.

Node.js continues to be supported in NDB Cluster 8.0 only. (Bug #31781948)

• NDB Client Programs: Effective with this release, the MySQL NDB Cluster Auto-Installer
(ndb_setup.py) has been deprecated and is subject to removal in a future version of NDB Cluster.
(Bug #31888835)

Bugs Fixed

• Packaging: The Dojo library included with NDB Cluster has been upgraded to version 1.15.4. (Bug
#31559518)

Changes in MySQL NDB Cluster 7.4.29 (5.6.49-ndb-7.4.29) (2020-07-14,
General Availability)

Bugs Fixed

• During a node restart, the SUMA block of the node that is starting must get a copy of the subscriptions
(events with subscribers) and subscribers (NdbEventOperation instances which are executing) from
a node already running. Before the copy is complete, nodes which are still starting ignore any user-level
SUB_START or SUB_STOP requests; after the copy is done, they can participate in such requests. While
the copy operation is in progress, user-level SUB_START and SUB_STOP requests are blocked using a
DICT lock.

An issue was found whereby a starting node could participate in SUB_START and SUB_STOP requests
after the lock was requested, but before it is granted, which resulted in unsuccessful SUB_START and
SUB_STOP requests. This fix ensures that the nodes cannot participate in these requests until after the
DICT lock has actually been granted. (Bug #31302657)

61

https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-suma.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html

MySQL NDB Cluster 7.4 Release Notes

• The Dojo toolkit included with NDB Cluster and used by the Auto-Installer was upgraded to version
1.15.3. (Bug #31029110)

• A packed version 1 configuration file returned by ndb_mgmd could contain duplicate entries following an
upgrade to NDB 8.0, which made the file incompatible with clients using version 1. This occurs due to
the fact that the code for handling backwards compatibility assumed that the entries in each section were
already sorted when merging it with the default section. To fix this, we now make sure that this sort is
performed prior to merging. (Bug #31020183)

• When executing any of the SHUTDOWN, ALL STOP, or ALL RESTART management commands, it is
possible for different nodes to attempt to stop on different global checkpoint index (CGI) boundaries. If
they succeed in doing so, then a subsequent system restart is slower than normal because any nodes
having an earlier stop GCI must undergo takeover as part of the process. When nodes failing on the
first GCI boundary cause surviving nodes to be nonviable, surviving nodes suffer an arbitration failure;
this has the positive effect of causing such nodes to halt at the correct GCI, but can give rise to spurious
errors or similar.

To avoid such issues, extra synchronization is now performed during a planned shutdown to reduce
the likelihood that different data nodes attempt to shut down at different GCIs as well as the use of
unnecessary node takeovers during system restarts. (Bug #31008713)

Changes in MySQL NDB Cluster 7.4.28 (5.6.48-ndb-7.4.28) (2020-04-28,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Added the --ndb-log-fail-terminate option for mysqld. When used, this causes the SQL node to
terminate if it is unable to log all row events. (Bug #21911930)

References: See also: Bug #30383919.

Bugs Fixed

• When a node ID allocation request failed with NotMaster temporary errors, the node ID allocation was
always retried immediately, without regard to the cause of the error. This caused a very high rate of
retries, whose effects could be observed as an excessive number of Alloc node id for node nnn
failed log messages (on the order of 15,000 messages per second). (Bug #30293495)

• For NDB tables having no explicit primary key, NdbReceiverBuffer could be allocated with too small a
size. This was due to the fact that the attribute bitmap sent to NDB from the data nodes always includes
the primary key. The extra space required for hidden primary keys is now taken into consideration in
such cases. (Bug #30183466)

Changes in MySQL NDB Cluster 7.4.27 (5.6.47-ndb-7.4.27) (2020-01-14,
General Availability)

Bugs Fixed

• If a transaction was aborted while getting a page from the disk page buffer and the disk system was
overloaded, the transaction hung indefinitely. This could also cause restarts to hang and node failure
handling to fail. (Bug #30397083, Bug #30360681)

62

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-shutdown
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-stop
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-restart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-fail-terminate

MySQL NDB Cluster 7.4 Release Notes

References: See also: Bug #30152258.

• The maximum global checkpoint (GCP) commit lag and GCP save timeout are recalculated whenever
a node shuts down, to take into account the change in number of data nodes. This could lead to the
unintentional shutdown of a viable node when the threshold decreased below the previous value. (Bug
#27664092)

References: See also: Bug #26364729.

• Concurrent SELECT and ALTER TABLE statements on the same SQL node could sometimes block one
another while waiting for locks to be released. (Bug #17812505, Bug #30383887)

Changes in MySQL NDB Cluster 7.4.26 (5.6.46-ndb-7.4.26) (2019-10-15,
General Availability)

Bugs Fixed

• During a restart when the data nodes had started but not yet elected a president, the management
server received a node ID already in use error, which resulted in excessive retries and logging.
This is fixed by introducing a new error 1705 Not ready for connection allocation yet for
this case.

During a restart when the data nodes had not yet completed node failure handling, a spurious Failed
to allocate nodeID error was returned. This is fixed by adding a check to detect an incomplete
node start and to return error 1703 Node failure handling not completed instead.

As part of this fix, the frequency of retries has been reduced for not ready to alloc nodeID errors,
an error insert has been added to simulate a slow restart for testing purposes, and log messages have
been reworded to indicate that the relevant node ID allocation errors are minor and only temporary. (Bug
#27484514)

Changes in MySQL NDB Cluster 7.4.25 (5.6.45-ndb-7.4.25) (2019-07-23,
General Availability)

Bugs Fixed

• The requestInfo fields for the long and short forms of the LQHKEYREQ signal had different definitions;
bits used for the key length in the short version were reused for flags in the long version, since the
key length is implicit in the section length of the long version of the signal but it was possible for long
LQHKEYREQ signals to contain a keylength in these same bits, which could be misinterpreted by the
receiving local query handler, potentially leading to errors. Checks have now been implemented to make
sure that this no longer happens. (Bug #29820838)

• When restoring TINYBLOB columns, ndb_restore now treats them as having the BINARY character
set. (Bug #29486538)

• Restoration of epochs by ndb_restore failed due to temporary redo errors. Now ndb_restore retries
epoch updates when such errors occur. (Bug #29466089)

• ndb_restore --restore-epoch incorrectly reported the stop GCP as 1 less than the actual position.
(Bug #29343655)

• Added support which was missing in ndb_restore for conversions between the following sets of types:

63

https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch

MySQL NDB Cluster 7.4 Release Notes

• BLOB and BINARY or VARBINARY columns

• TEXT and BLOB columns

• BLOB columns with unequal lengths

• BINARY and VARBINARY columns with unequal lengths

(Bug #28074988)

Changes in MySQL NDB Cluster 7.4.24 (5.6.44-ndb-7.4.24) (2019-04-26,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Building with CMake3 is now supported by the compile-cluster script included in the NDB source
distribution.

Bugs Fixed

• Important Change: The dependency of ndb_restore on the NDBT library, which is used
for internal testing only, has been removed. This means that the program no longer prints
NDBT_ProgramExit: ... when terminating. Applications that depend upon this behavior should be
updated to reflect this change when upgrading to this release.

• When a pushed join executing in the DBSPJ block had to store correlation IDs during query execution,
memory for these was allocated for the lifetime of the entire query execution, even though these specific
correlation IDs are required only when producing the most recent batch in the result set. Subsequent
batches require additional correlation IDs to be stored and allocated; thus, if the query took sufficiently
long to complete, this led to exhaustion of query memory (error 20008). Now in such cases, memory
is allocated only for the lifetime of the current result batch, and is freed and made available for re-use
following completion of the batch. (Bug #29336777)

References: See also: Bug #26995027.

• In some cases, one and sometimes more data nodes underwent an unplanned shutdown while running
ndb_restore. This occurred most often, but was not always restircted to, when restoring to a cluster
having a different number of data nodes from the cluster on which the original backup had been taken.

The root cause of this issue was exhaustion of the pool of SafeCounter objects, used by the DBDICT
kernel block as part of executing schema transactions, and taken from a per-block-instance pool
shared with protocols used for NDB event setup and subscription processing. The concurrency of event
setup and subscription processing is such that the SafeCounter pool can be exhausted; event and
subscription processing can handle pool exhaustion, but schema transaction processing could not, which
could result in the node shutdown experienced during restoration.

This problem is solved by giving DBDICT schema transactions an isolated pool of reserved
SafeCounters which cannot be exhausted by concurrent NDB event activity. (Bug #28595915)

• ndb_restore did not restore autoincrement values correctly when one or more staging tables were
in use. As part of this fix, we also in such cases block applying of the SYSTAB_0 backup log, whose

64

https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

MySQL NDB Cluster 7.4 Release Notes

content continued to be applied directly based on the table ID, which could ovewrite the autoincrement
values stored in SYSTAB_0 for unrelated tables. (Bug #27917769, Bug #27831990)

References: See also: Bug #27832033.

• ndb_restore employed a mechanism for restoring autoincrement values which was not atomic, and
thus could yield incorrect autoincrement values being restored when multiple instances of ndb_restore
were used in parallel. (Bug #27832033)

References: See also: Bug #27917769, Bug #27831990.

• When executing the redo log in debug mode it was possible for a data node to fail when deallocating a
row. (Bug #93273, Bug #28955797)

• An NDB table having both a foreign key on another NDB table using ON DELETE CASCADE and one or
more TEXT or BLOB columns leaked memory.

As part of this fix, ON DELETE CASCADE is no longer supported for foreign keys on NDB tables when the
child table contains a column that uses any of the BLOB or TEXT types. (Bug #89511, Bug #27484882)

Changes in MySQL NDB Cluster 7.4.23 (5.6.43-ndb-7.4.23) (2019-01-22,
General Availability)

Bugs Fixed

• NDB Disk Data: When a log file group had more than 18 undo logs, it was not possible to restart the
cluster. (Bug #251155785)

References: See also: Bug #28922609.

• When a local checkpoint (LCP) was complete on all data nodes except one, and this node failed, NDB did
not continue with the steps required to finish the LCP. This led to the following issues:

No new LCPs could be started.

Redo and Undo logs were not trimmed and so grew excessively large, causing an increase in times for
recovery from disk. This led to write service failure, which eventually led to cluster shutdown when the
head of the redo log met the tail. This placed a limit on cluster uptime.

Node restarts were no longer possible, due to the fact that a data node restart requires that the node's
state be made durable on disk before it can provide redundancy when joining the cluster. For a cluster
with two data nodes and two fragment replicas, this meant that a restart of the entire cluster (system
restart) was required to fix the issue (this was not necessary for a cluster with two fragment replicas and
four or more data nodes). (Bug #28728485, Bug #28698831)

References: See also: Bug #11757421.

• It was possible in certain cases for nodes to hang during an initial restart. (Bug #28698831)

References: See also: Bug #27622643.

• When tables with BLOB columns were dropped and then re-created with a different number of BLOB
columns the event definitions for monitoring table changes could become inconsistent in certain error
situations involving communication errors when the expected cleanup of the corresponding events was
not performed. In particular, when the new versions of the tables had more BLOB columns than the
original tables, some events could be missing. (Bug #27072756)

65

https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html

MySQL NDB Cluster 7.4 Release Notes

• When running a cluster with 4 or more data nodes under very high loads, data nodes could sometimes
fail with Error 899 Rowid already allocated. (Bug #25960230)

• When starting, a data node copies metadata, while a local checkpoint updates metadata. To avoid any
conflict, any ongoing LCP activity is paused while metadata is being copied. An issue arose when a
local checkpoint was paused on a given node, and another node that was also restarting checked for
a complete LCP on this node; the check actually caused the LCP to be completed before copying of
metadata was complete and so ended the pause prematurely. Now in such cases, the LCP completion
check waits to complete a paused LCP until copying of metadata is finished and the pause ends as
expected, within the LCP in which it began. (Bug #24827685)

• Asynchronous disconnection of mysqld from the cluster caused any subsequent attempt to start
an NDB API transaction to fail. If this occurred during a bulk delete operation, the SQL layer called
HA::end_bulk_delete(), whose implementation by ha_ndbcluster assumed that a transaction
had been started, and could fail if this was not the case. This problem is fixed by checking that the
transaction pointer used by this method is set before referencing it. (Bug #20116393)

Changes in MySQL NDB Cluster 7.4.22 (5.6.42-ndb-7.4.22) (2018-10-23,
General Availability)

Bugs Fixed

• When the SUMA kernel block receives a SUB_STOP_REQ signal, it executes the signal then replies
with SUB_STOP_CONF. (After this response is relayed back to the API, the API is open to send more
SUB_STOP_REQ signals.) After sending the SUB_STOP_CONF, SUMA drops the subscription if no
subscribers are present, which involves sending multiple DROP_TRIG_IMPL_REQ messages to DBTUP.
LocalProxy can handle up to 21 of these requests in parallel; any more than this are queued in the Short
Time Queue. When execution of a DROP_TRIG_IMPL_REQ was delayed, there was a chance for the
queue to become overloaded, leading to a data node shutdown with Error in short time queue.

This issue is fixed by delaying the execution of the SUB_STOP_REQ signal if DBTUP is already handling
DROP_TRIG_IMPL_REQ signals at full capacity, rather than queueing up the DROP_TRIG_IMPL_REQ
signals. (Bug #26574003)

• Having a large number of deferred triggers could sometimes lead to job buffer exhaustion. This could
occur due to the fact that a single trigger can execute many operations—for example, a foreign key
parent trigger may perform operations on multiple matching child table rows—and that a row operation
on a base table can execute multiple triggers. In such cases, row operations are executed in batches.
When execution of many triggers was deferred—meaning that all deferred triggers are executed at pre-
commit—the resulting concurrent execution of a great many trigger operations could cause the data
node job buffer or send buffer to be exhausted, leading to failure of the node.

This issue is fixed by limiting the number of concurrent trigger operations as well as the number of trigger
fire requests outstanding per transaction.

For immediate triggers, limiting of concurrent trigger operations may increase the number of triggers
waiting to be executed, exhausting the trigger record pool and resulting in the error Too many
concurrently fired triggers (increase MaxNoOfFiredTriggers. This can be avoided
by increasing MaxNoOfFiredTriggers, reducing the user transaction batch size, or both. (Bug
#22529864)

References: See also: Bug #18229003, Bug #27310330.

Changes in MySQL NDB Cluster 7.4.21 (5.6.41-ndb-7.4.21) (2018-07-27,
General Availability)

66

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxnooffiredtriggers

MySQL NDB Cluster 7.4 Release Notes

Bugs Fixed

• NDB Cluster APIs: When Ndb::dropEventOperation() tried to clean up a pending event, it failed
to clear a pointer to the list of GCI operations being deleted and discarded (Gci_ops object), so that this
pointer referred to a deleted object. GCI operations arriving after this could then be inserted as part of
the next such list belonging to the now-deleted object, leading to memory corruption and other issues.
(Bug #90011, Bug #27675005)

• An internal buffer being reused immediately after it had been freed could lead to an unplanned data node
shutdown. (Bug #27622643)

References: See also: Bug #28698831.

• An NDB online backup consists of data, which is fuzzy, and a redo and undo log. To restore to a
consistent state it is necessary to ensure that the log contains all of the changes spanning the capture of
the fuzzy data portion and beyond to a consistent snapshot point. This is achieved by waiting for a GCI
boundary to be passed after the capture of data is complete, but before stopping change logging and
recording the stop GCI in the backup's metadata.

At restore time, the log is replayed up to the stop GCI, restoring the system to the state it had at the
consistent stop GCI. A problem arose when, under load, it was possible to select a GCI boundary which
occurred too early and did not span all the data captured. This could lead to inconsistencies when
restoring the backup; these could be be noticed as broken constraints or corrupted BLOB entries.

Now the stop GCI is chosen is so that it spans the entire duration of the fuzzy data capture process, so
that the backup log always contains all data within a given stop GCI. (Bug #27497461)

References: See also: Bug #27566346.

Changes in MySQL NDB Cluster 7.4.20 (5.6.40-ndb-7.4.20) (2018-04-20,
General Availability)

Bugs Fixed

• NDB Cluster APIs: The maximum time to wait which can be specified when calling either of the NDB
API methods Ndb::pollEvents() or pollEvents2() was miscalculated such that the method could
wait up to 9 ms too long before returning to the client. (Bug #88924, Bug #27266086)

• Under certain conditions, data nodes restarted unnecessarily during execution of ALTER TABLE...
REORGANIZE PARTITION. (Bug #25675481)

References: See also: Bug #26735618, Bug #27191468.

• Race conditions sometimes occurred during asynchronous disconnection and reconnection of the
transporter while other threads concurrently inserted signal data into the send buffers, leading to an
unplanned shutdown of the cluster.

As part of the work fixing this issue, the internal templating function used by the Transporter Registry
when it prepares a send is refactored to use likely-or-unlikely logic to speed up execution, and to remove
a number of duplicate checks for NULL. (Bug #24444908, Bug #25128512)

References: See also: Bug #20112700.

Changes in MySQL NDB Cluster 7.4.19 (5.6.39-ndb-7.4.19) (2018-01-23,
General Availability)

67

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-dropeventoperation
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html

MySQL NDB Cluster 7.4 Release Notes

Bugs Fixed

• NDB Cluster APIs: A previous fix for an issue, in which the failure of multiple data nodes during a partial
restart could cause API nodes to fail, did not properly check the validity of the associated NdbReceiver
object before proceeding. Now in such cases an invalid object triggers handling for invalid signals, rather
than a node failure. (Bug #25902137)

References: This issue is a regression of: Bug #25092498.

• NDB Cluster APIs: Incorrect results, usually an empty result set, were returned when setBound()
was used to specify a NULL bound. This issue appears to have been caused by a problem in gcc, limited
to cases using the old version of this method (which does not employ NdbRecord), and is fixed by
rewriting the problematic internal logic in the old implementation. (Bug #89468, Bug #27461752)

• Queries using very large lists with IN were not handled correctly, which could lead to data node failures.
(Bug #27397802)

References: See also: Bug #28728603.

• ndb_restore sometimes logged data file and log file progress values much greater than 100%. (Bug
#20989106)

• When sending priority A signals, we now ensure that the number of pending signals is explicitly
initialized. (Bug #88986, Bug #27294856)

• ndb_restore --print-data --hex did not print trailing 0s of LONGVARBINARY values. (Bug #65560,
Bug #14198580)

Changes in MySQL NDB Cluster 7.4.18 (5.6.39-ndb-7.4.18) (2018-01-17,
General Availability)

Bugs Fixed

• A query against the INFORMATION_SCHEMA.FILES table returned no results when it included an
ORDER BY clause. (Bug #26877788)

• During a restart, DBLQH loads redo log part metadata for each redo log part it manages, from one
or more redo log files. Since each file has a limited capacity for metadata, the number of files which
must be consulted depends on the size of the redo log part. These files are opened, read, and closed
sequentially, but the closing of one file occurs concurrently with the opening of the next.

In cases where closing of the file was slow, it was possible for more than 4 files per redo log part to be
open concurrently; since these files were opened using the OM_WRITE_BUFFER option, more than 4
chunks of write buffer were allocated per part in such cases. The write buffer pool is not unlimited; if all
redo log parts were in a similar state, the pool was exhausted, causing the data node to shut down.

This issue is resolved by avoiding the use of OM_WRITE_BUFFER during metadata reload, so that any
transient opening of more than 4 redo log files per log file part no longer leads to failure of the data node.
(Bug #25965370)

• Following TRUNCATE TABLE on an NDB table, its AUTO_INCREMENT ID was not reset on an SQL node
not performing binary logging. (Bug #14845851)

• When the duplicate weedout algorithm was used for evaluating a semijoin, the result had missing rows.
(Bug #88117, Bug #26984919)

References: See also: Bug #87992, Bug #26926666.

68

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbindexscanoperation.html#ndb-ndbindexscanoperation-setbound
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_hex
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/information-schema-files-table.html
https://dev.mysql.com/doc/refman/5.6/en/truncate-table.html

MySQL NDB Cluster 7.4 Release Notes

• When representing a materialized semijoin in the query plan, the MySQL Optimizer inserted extra
QEP_TAB and JOIN_TAB objects to represent access to the materialized subquery result. The
join pushdown analyzer did not properly set up its internal data structures for these, leaving them
uninitialized instead. This meant that later usage of any item objects referencing the materialized
semijoin accessed an initialized tableno column when accessing a 64-bit tableno bitmask, possibly
referring to a point beyond its end, leading to an unplanned shutdown of the SQL node. (Bug #87971,
Bug #26919289)

• The NDBFS block's OM_SYNC flag is intended to make sure that all FSWRITEREQ signals used for a
given file are synchronized, but was ignored by platforms that do not support O_SYNC, meaning that
this feature did not behave properly on those platforms. Now the synchronization flag is used on those
platforms that do not support O_SYNC. (Bug #76975, Bug #21049554)

Changes in MySQL NDB Cluster 7.4.17 (5.6.38-ndb-7.4.17) (2017-10-18,
General Availability)

Bugs Fixed

• Added DUMP code 7027 to facilitate testing of issues relating to local checkpoints. For more information,
see DUMP 7027. (Bug #26661468)

• A previous fix intended to improve logging of node failure handling in the transaction coordinator
included logging of transactions that could occur in normal operation, which made the resulting logs
needlessly verbose. Such normal transactions are no longer written to the log in such cases. (Bug
#26568782)

References: This issue is a regression of: Bug #26364729.

• Some DUMP codes used for the LGMAN kernel block were incorrectly assigned numbers in the range
used for codes belonging to DBTUX. These have now been assigned symbolic constants and numbers in
the proper range (10001, 10002, and 10003). (Bug #26365433)

• Node failure handling in the DBTC kernel block consists of a number of tasks which execute concurrently,
and all of which must complete before TC node failure handling is complete. This fix extends logging
coverage to record when each task completes, and which tasks remain, includes the following
improvements:

• Handling interactions between GCP and node failure handling interactions, in which TC takeover
causes GCP participant stall at the master TC to allow it to extend the current GCI with any
transactions that were taken over; the stall can begin and end in different GCP protocol states.
Logging coverage is extended to cover all scenarios. Debug logging is now more consistent and
understandable to users.

• Logging done by the QMGR block as it monitors duration of node failure handling duration is done more
frequently. A warning log is now generated every 30 seconds (instead of 1 minute), and this now
includes DBDIH block debug information (formerly this was written separately, and less often).

• To reduce space used, DBTC instance number: is shortened to DBTC number:.

• A new error code is added to assist testing.

(Bug #26364729)

• A potential hundredfold signal fan-out when sending a START_FRAG_REQ signal could lead to a node
failure due to a job buffer full error in start phase 5 while trying to perform a local checkpoint
during a restart. (Bug #86675, Bug #26263397)

69

https://dev.mysql.com/doc/ndb-internals/en/dump-command-7027.html

MySQL NDB Cluster 7.4 Release Notes

References: See also: Bug #26288247, Bug #26279522.

Changes in MySQL NDB Cluster 7.4.16 (5.6.37-ndb-7.4.16) (2017-07-18,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Added the --diff-default option for ndb_config. This option causes the program to print only
those parameters having values that differ from their defaults. (Bug #85831, Bug #25844166)

• Added the --query-all option to ndb_config. This option acts much like the --query option except
that --query-all (short form: -a) dumps configuration information for all attributes at one time. (Bug
#60095, Bug #11766869)

Bugs Fixed

• NDB Cluster APIs: The implementation method NdbDictionary::NdbTableImpl::getColumn(),
used from many places in the NDB API where a column is referenced by name, has been made more
efficient. This method used a linear search of an array of columns to find the correct column object,
which could be inefficient for tables with many columns, and was detected as a significant use of CPU
in customer applications. (Ideally, users should perform name-to-column object mapping, and then use
column IDs or objects in method calls, but in practice this is not always done.) A less costly hash index
implementation, used previously for the name lookup, is reinstated for tables having relatively many
columns. (A linear search continues to be used for tables having fewer columns, where the difference in
performance is neglible.) (Bug #24829435)

• Backup .log files contained log entries for one or more extra fragments, due to an issue with filtering
out changes logged by other nodes in the same node group. This resulted in a larger .log file and thus
use of more resources than necessary; it could also cause problems when restoring, since backups from
different nodes could interfere with one another while the log was being applied. (Bug #25891014)

• When making the final write to a redo log file, it is expected that the next log file is already opened for
writes, but this was not always the case with a slow disk, leading to node failure. Now in such cases NDB
waits for the next file to be opened properly before attempting to write to it. (Bug #25806659)

• Data node threads can be bound to a single CPU or a set of CPUs, a set of CPUs being
represented internally by NDB as a SparseBitmask. When attempting to lock to a set of
CPUs, CPU usage was excessive due to the fact that the routine performing the locks used
the mt_thr_config.cpp::do_bind() method, which looks for bits that are set over the
entire theoretical range of the SparseBitmask (232-2, or 4294967294). This is fixed by using
SparseBitmask::getBitNo(), which can be used to iterate over only those bits that are actually set,
instead. (Bug #25799506)

• A bulk update is executed by reading records and executing a transaction on the set of records, which
is started while reading them. When transaction initialization failed, the transaction executor function
was subsequently unaware that this had occurred, leading to SQL node failures. This issue is fixed by
providing appropriate error handling when attempting to initialize the transaction. (Bug #25476474)

References: See also: Bug #20092754.

• Setting NoOfFragmentLogParts such that there were more than 4 redo log parts per local data
manager led to resource exhaustion and subsequent multiple data node failures. Since this is an invalid

70

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_diff-default
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_query-all
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_query

MySQL NDB Cluster 7.4 Release Notes

configuration, a check has been added to detect a configuration with more than 4 redo log parts per
LDM, and reject it as invalid. (Bug #25333414)

• Execution of an online ALTER TABLE ... REORGANIZE PARTITION statement on an NDB table
having a primary key whose length was greater than 80 bytes led to restarting of data nodes, causing the
reorganization to fail. (Bug #25152165)

• Error 240 is raised when there is a mismatch between foreign key trigger columns and the values
supplied to them during trigger execution, but had no error message indicating the source of the
problem. (Bug #23141739)

References: See also: Bug #23068914, Bug #85857.

• If the number of LDM blocks was not evenly divisible by the number of TC/SPJ blocks, SPJ requests
were not equally distributed over the available SPJ instances. Now a round-robin distribution is used to
distribute SPJ requests across all available SPJ instances more effectively.

As part of this work, a number of unused member variables have been removed from the class Dbtc.
(Bug #22627519)

• ALTER TABLE .. MAX_ROWS=0 can now be performed only by using a copying ALTER TABLE
statement. Resetting MAX_ROWS to 0 can no longer be performed using ALGORITHM=INPLACE or the
ONLINE keyword. (Bug #21960004)

• During a system restart, when a node failed due to having missed sending heartbeats, all other nodes
reported only that another node had failed without any additional information. Now in such cases, the
fact that heartbeats were missed and the ID of the node that failed to send heartbeats is reported in both
the error log and the data node log. (Bug #21576576)

• The planned shutdown of an NDB Cluster having more than 10 data nodes was not always performed
gracefully. (Bug #20607730)

• Due to a previous issue with unclear separation between the optimize and execute phases when a query
involved a GROUP BY, the join-pushable evaluator was not sure whether its optimized query execution
plan was in fact pushable. For this reason, such grouped joins were always considered not pushable. It
has been determined that the separation issue has been resolved by work already done in MySQL 5.6,
and so we now remove this limitation. (Bug #86623, Bug #26239591)

• When deleting all rows from a table immediately followed by DROP TABLE, it was possible that the
shrinking of the DBACC hash index was not ready prior to the drop. This shrinking is a per-fragment
operation that does not check the state of the table. When a table is dropped, DBACC releases
resources, during which the description of the fragment size and page directory is not consistent; this
could lead to reads of stale pages, and undefined behavior.

Inserting a great many rows followed by dropping the table should also have had such effects due to
expansion of the hash index.

To fix this problem we make sure, when a fragment is about to be released, that there are no pending
expansion or shrinkage operations on this fragment. (Bug #86449, Bug #26138592)

• The internal function execute_signals() in mt.cpp read three section pointers from the signal even
when none was passed to it. This was mostly harmless, although unneeded. When the signal read
was the last one on the last page in the job buffer, and the next page in memory was not mapped or
otherwise accessible, ndbmtd failed with an error. To keep this from occurring, this function now only
reads section pointers that are actually passed to it. (Bug #86354, Bug #26092639)

71

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-online-operations.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/drop-table.html

MySQL NDB Cluster 7.4 Release Notes

• The ndb_show_tables program --unqualified option did not work correctly when set to 0 (false);
this should disable the option and so cause fully qualified table and index names to be printed in the
output. (Bug #86017, Bug #25923164)

• When an NDB table with foreign key constraints is created, its indexes are created first, and then, during
foreign key creation, these indexes are loaded into the NDB dictionary cache. When a CREATE TABLE
statement failed due to an issue relating to foreign keys, the indexes already in the cache were not
invalidated. This meant that any subsequent CREATE TABLE with any indexes having the same names
as those in the failed statement produced inconsistent results. Now, in such cases, any indexes named
in the failed CREATE TABLE are immediately invalidated from the cache. (Bug #85917, Bug #25882950)

• Attempting to execute ALTER TABLE ... ADD FOREIGN KEY when the key to be added had the
name of an existing foreign key on the same table failed with the wrong error message. (Bug #85857,
Bug #23068914)

• The node internal scheduler (in mt.cpp) collects statistics about its own progress and any outstanding
work it is performing. One such statistic is the number of outstanding send bytes, collected in
send_buffer::m_node_total_send_buffer_size. This information may later be used by the
send thread scheduler, which uses it as a metric to tune its own send performance versus latency.

In order to reduce lock contention on the internal send buffers, they are split into two
thr_send_buffer parts, m_buffer and m_sending, each protected by its own mutex, and their
combined size repesented by m_node_total_send_buffer_size.

Investigation of the code revealed that there was no consistency as to which mutex was used to update
m_node_total_send_buffer_size, with the result that there was no consurrency protection
for this value. To avoid this, m_node_total_send_buffer_size is replaced with two values,
m_buffered_size and m_sending_size, which keep separate track of the sizes of the two buffers.
These counters are updated under the protection of two different mutexes protecting each buffer
individually, and are now added together to obtain the total size.

With concurrency control established, updates of the partial counts should now be correct, so that their
combined value no longer accumulates errors over time. (Bug #85687, Bug #25800933)

• Dropped TRANS_AI signals that used the long signal format were not handled by the DBTC kernel block.
(Bug #85606, Bug #25777337)

References: See also: Bug #85519, Bug #27540805.

• To prevent a scan from returning more rows, bytes, or both than the client has reserved buffers for, the
DBTUP kernel block reports the size of the TRANSID_AI it has sent to the client in the TUPKEYCONF
signal it sends to the requesting DBLQH block. DBLQH is aware of the maximum batch size available for
the result set, and terminates the scan batch if this has been exceeded.

The DBSPJ block's FLUSH_AI attribute allows DBTUP to produce two TRANSID_AI results from the
same row, one for the client, and one for DBSPJ, which is needed for key lookups on the joined tables.
The size of both of these were added to the read length reported by the DBTUP block, which caused the
controlling DBLQH block to believe that it had consumed more of the available maximum batch size than
was actually the case, leading to premature termination of the scan batch which could have a negative
impact on performance of SPJ scans. To correct this, only the actual read length part of an API request
is now reported in such cases. (Bug #85408, Bug #25702850)

• When compiling the NDB kernel with gcc version 6.0.0 or later, it is now built using -flifetime-
dse=1. (Bug #85381, Bug #25690926)

72

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-show-tables.html#option_ndb_show_tables_unqualified
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.4 Release Notes

Changes in MySQL NDB Cluster 7.4.15 (5.6.36-ndb-7.4.15) (2017-04-10,
General Availability)

Bugs Fixed

• Partitioning: The output of EXPLAIN PARTITIONS displayed incorrect values in the partitions
column when run on an explicitly partitioned NDB table having a large number of partitions.

This was due to the fact that, when processing an EXPLAIN statement, mysqld calculates the partition
ID for a hash value as (hash_value % number_of_partitions), which is correct only when the
table is partitioned by HASH, since other partitioning types use different methods of mapping hash values
to partition IDs. This fix replaces the partition ID calculation performed by mysqld with an internal
NDB function which calculates the partition ID correctly, based on the table's partitioning type. (Bug
#21068548)

References: See also: Bug #25501895, Bug #14672885.

• NDB Disk Data: Stale data from NDB Disk Data tables that had been dropped could potentially be
included in backups due to the fact that disk scans were enabled for these. To prevent this possibility,
disk scans are now disabled—as are other types of scans—when taking a backup. (Bug #84422, Bug
#25353234)

• NDB Disk Data: In some cases, setting dynamic in-memory columns of an NDB Disk Data table to NULL
was not handled correctly. (Bug #79253, Bug #22195588)

• CPU usage of the data node's main thread by the DBDIH master block as the end of a local checkpoint
could approach 100% in certain cases where the database had a very large number of fragment
replicas. This is fixed by reducing the frequency and range of fragment queue checking during an LCP.
(Bug #25443080)

• The ndb_print_backup_file utility failed when attempting to read from a backup file when the
backup included a table having more than 500 columns. (Bug #25302901)

References: See also: Bug #25182956.

• Multiple data node failures during a partial restart of the cluster could cause API nodes to fail. This was
due to expansion of an internal object ID map by one thread, thus changing its location in memory, while
another thread was still accessing the old location, leading to a segmentation fault in the latter thread.

The internal map() and unmap() functions in which this issue arose have now been made thread-safe.
(Bug #25092498)

References: See also: Bug #25306089.

• There existed the possibility of a race condition between schema operations on the same database
object originating from different SQL nodes; this could occur when one of the SQL nodes was late in
releasing its metadata lock on the affected schema object or objects in such a fashion as to appear
to the schema distribution coordinator that the lock release was acknowledged for the wrong schema
change. This could result in incorrect application of the schema changes on some or all of the SQL
nodes or a timeout with repeated waiting max ### sec for distributing... messages in the
node logs due to failure of the distribution protocol. (Bug #85010, Bug #25557263)

References: See also: Bug #24926009.

• When a foreign key was added to or dropped from an NDB table using an ALTER TABLE statement, the
parent table's metadata was not updated, which made it possible to execute invalid alter operations on
the parent afterwards.

73

https://dev.mysql.com/doc/refman/5.6/en/explain.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.4 Release Notes

Until you can upgrade to this release, you can work around this problem by running SHOW CREATE
TABLE on the parent immediately after adding or dropping the foreign key; this statement causes the
table's metadata to be reloaded. (Bug #82989, Bug #24666177)

• Transactions on NDB tables with cascading foreign keys returned inconsistent results when the query
cache was also enabled, due to the fact that mysqld was not aware of child table updates. This meant
that results for a later SELECT from the child table were fetched from the query cache, which at that point
contained stale data.

This is fixed in such cases by adding all children of the parent table to an internal list to be checked
by NDB for updates whenever the parent is updated, so that mysqld is now properly informed of any
updated child tables that should be invalidated from the query cache. (Bug #81776, Bug #23553507)

Changes in MySQL NDB Cluster 7.4.14 (5.6.35-ndb-7.4.14) (2017-01-17,
General Availability)

Bugs Fixed

• ndb_restore did not restore tables having more than 341 columns correctly. This was due to the fact
that the buffer used to hold table metadata read from .ctl files was of insufficient size, so that only part
of the table descriptor could be read from it in such cases. This issue is fixed by increasing the size of
the buffer used by ndb_restore for file reads. (Bug #25182956)

References: See also: Bug #25302901.

• Queries against the ndbinfo.memory_per_fragment table when running with a large number of data
nodes could produce unexpected results for the highest-numbered nodes. (Bug #25176404)

• The rand() function was used to produce a unique table ID and table version needed to identify a
schema operation distributed between multiple SQL nodes, relying on the assumption that rand()
would never produce the same numbers on two different instances of mysqld. It was later determined
that this is not the case, and that in fact it is very likely for the same random numbers to be produced on
all SQL nodes.

This fix removes the usage of rand() for producing a unique table ID or version, and instead uses
a sequence in combination with the node ID of the coordinator. This guarantees uniqueness until the
counter for the sequence wraps, which should be sufficient for this purpose.

The effects of this duplication could be observed as timeouts in the log (for example NDB create
db: waiting max 119 sec for distributing) when restarting multiple mysqld processes
simultaneously or nearly so, or when issuing the same CREATE DATABASE or DROP DATABASE
statement on multiple SQL nodes. (Bug #24926009)

• The ndb_show_tables utility did not display type information for hash maps or fully replicated triggers.
(Bug #24383742)

• Long message buffer exhaustion when firing immediate triggers could result in row ID leaks; this could
later result in persistent RowId already allocated errors (NDB Error 899). (Bug #23723110)

References: See also: Bug #19506859, Bug #13927679.

• when a parent NDB table in a foreign key relationship was updated, the update cascaded to a child
table as expected, but the change was not cascaded to a child table of this child table (that is, to a
grandchild of the original parent). This can be illustrated using the tables generated by the following
CREATE TABLE statements:

74

https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memory-per-fragment.html
https://dev.mysql.com/doc/refman/5.6/en/create-database.html
https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html

MySQL NDB Cluster 7.4 Release Notes

CREATE TABLE parent(
 id INT PRIMARY KEY AUTO_INCREMENT,
 col1 INT UNIQUE,
 col2 INT
) ENGINE NDB;

CREATE TABLE child(
 ref1 INT UNIQUE,
 FOREIGN KEY fk1(ref1)
 REFERENCES parent(col1) ON UPDATE CASCADE
) ENGINE NDB;

CREATE TABLE grandchild(
 ref2 INT,
 FOREIGN KEY fk2(ref2)
 REFERENCES child(ref1) ON UPDATE CASCADE
) ENGINE NDB;

Table child is a child of table parent; table grandchild is a child of table child, and a grandchild
of parent. In this scenario, a change to column col1 of parent cascaded to ref1 in table child, but
it was not always propagated in turn to ref2 in table grandchild. (Bug #83743, Bug #25063506)

• When a data node running with StopOnError set to 0 underwent an unplanned shutdown, the
automatic restart performed the same type of start as the previous one. In the case where the data
node had previously been started with the --initial option, this meant that an initial start was
performed, which in cases of multiple data node failures could lead to loss of data. This issue also
occurred whenever a data node shutdown led to generation of a core dump. A check is now performed
to catch all such cases, and to perform a normal restart instead.

In addition, in cases where a failed data node was unable prior to shutting down to send start phase
information to the angel process, the shutdown was always treated as a startup failure, also leading to
an initial restart. This issue is fixed by adding a check to execute startup failure handling only if a valid
start phase was received from the client. (Bug #83510, Bug #24945638)

Changes in MySQL NDB Cluster 7.4.13 (5.6.34-ndb-7.4.13) (2016-10-18,
General Availability)

Bugs Fixed

• NDB Cluster APIs: Reuse of transaction IDs could occur when Ndb objects were created and
deleted concurrently. As part of this fix, the NDB API methods lock_ndb_objects() and
unlock_ndb_objects are now declared as const. (Bug #23709232)

• NDB Cluster APIs: When the management server was restarted while running an MGM API application
that continuously monitored events, subsequent events were not reported to the application, with
timeouts being returned indefinitely instead of an error.

This occurred because sockets for event listeners were not closed when restarting mgmd. This is fixed
by ensuring that event listener sockets are closed when the management server shuts down, causing
applications using functions such as ndb_logevent_get_next() to receive a read error following the
restart. (Bug #19474782)

• Passing a nonexistent node ID to CREATE NODEGROUP led to random data node failures. (Bug
#23748958)

• DROP TABLE followed by a node shutdown and subesequent master takeover—and with the containing
local checkpoint not yet complete prior to the takeover—caused the LCP to be ignored, and in some
cases, the data node to fail. (Bug #23735996)

75

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-stoponerror
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndbd.html#option_ndbd_initial
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-lock-ndb-objects
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html#ndb-ndb-cluster-connection-unlock-ndb-objects
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-log-events.html#mgm-ndb-logevent-get-next
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-mgm-client-commands.html#ndbclient-create-nodegroup
https://dev.mysql.com/doc/refman/5.6/en/drop-table.html

MySQL NDB Cluster 7.4 Release Notes

References: See also: Bug #23288252.

• Removed an invalid assertion to the effect that all cascading child scans are closed at the time API
connection records are released following an abort of the main transaction. The assertion was invalid
because closing of scans in such cases is by design asynchronous with respect to the main transaction,
which means that subscans may well take some time to close after the main transaction is closed. (Bug
#23709284)

• A number of potential buffer overflow issues were found and fixed in the NDB codebase. (Bug
#23152979)

• A SIGNAL_DROPPED_REP handler invoked in response to long message buffer exhaustion was
defined in the SPJ kernel block, but not actually used. This meant that the default handler from
SimulatedBlock was used instead in such cases, which shut down the data node. (Bug #23048816)

References: See also: Bug #23251145, Bug #23251423.

• When a data node has insufficient redo buffer during a system restart, it does not participate in the
restart until after the other nodes have started. After this, it performs a takeover of its fragments from
the nodes in its node group that have already started; during this time, the cluster is already running and
user activity is possible, including DML and DDL operations.

During a system restart, table creation is handled differently in the DIH kernel block than normally, as
this creation actually consists of reloading table definition data from disk on the master node. Thus, DIH
assumed that any table creation that occurred before all nodes had restarted must be related to the
restart and thus always on the master node. However, during the takeover, table creation can occur on
non-master nodes due to user activity; when this happened, the cluster underwent a forced shutdown.

Now an extra check is made during system restarts to detect in such cases whether the executing node
is the master node, and use that information to determine whether the table creation is part of the restart
proper, or is taking place during a subsequent takeover. (Bug #23028418)

• ndb_restore set the MAX_ROWS attribute for a table for which it had not been set prior to taking the
backup. (Bug #22904640)

• Whenever data nodes are added to or dropped from the cluster, the NDB kernel's Event API is notified
of this using a SUB_GCP_COMPLETE_REP signal with either the ADD (add) flag or SUB (drop) flag
set, as well as the number of nodes to add or drop; this allows NDB to maintain a correct count of
SUB_GCP_COMPLETE_REP signals pending for every incomplete bucket. In addition to handling the
bucket for the epoch associated with the addition or removal, it must also compensate for any later
incomplete buckets associated with later epochs. Although it was possible to complete such buckets out
of order, there was no handling of these, leading a stall in to event reception.

This fix adds detection and handling of such out of order bucket completion. (Bug #20402364)

References: See also: Bug #82424, Bug #24399450.

• When restoring a backup taken from a database containing tables that had foreign keys, ndb_restore
disabled the foreign keys for data, but not for the logs. (Bug #83155, Bug #24736950)

• The count displayed by the c_exec column in the ndbinfo.threadstat table was incomplete. (Bug
#82635, Bug #24482218)

• The internal function ndbcluster_binlog_wait(), which provides a way to make sure that all events
originating from a given thread arrive in the binary log, is used by SHOW BINLOG EVENTS as well as
when resetting the binary log. This function waits on an injector condition while the latest global epoch

76

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-threadstat.html
https://dev.mysql.com/doc/refman/5.6/en/show-binlog-events.html

MySQL NDB Cluster 7.4 Release Notes

handled by NDB is more recent than the epoch last committed in this session, which implies that this
condition must be signalled whenever the binary log thread completes and updates a new latest global
epoch. Inspection of the code revealed that this condition signalling was missing, and that, instead of
being awakened whenever a new latest global epoch completes (~100ms), client threads waited for the
maximum timeout (1 second).

This fix adds the missing injector condition signalling, while also changing it to a condition broadcast to
make sure that all client threads are alerted. (Bug #82630, Bug #24481551)

• During a node restart, a fragment can be restored using information obtained from local checkpoints
(LCPs); up to 2 restorable LCPs are retained at any given time. When an LCP is reported to the DIH
kernel block as completed, but the node fails before the last global checkpoint index written into this LCP
has actually completed, the latest LCP is not restorable. Although it should be possible to use the older
LCP, it was instead assumed that no LCP existed for the fragment, which slowed the restart process.
Now in such cases, the older, restorable LCP is used, which should help decrease long node restart
times. (Bug #81894, Bug #23602217)

• While a mysqld was waiting to connect to the management server during initialization of the NDB
handler, it was not possible to shut down the mysqld. If the mysqld was not able to make the
connection, it could become stuck at this point. This was due to an internal wait condition in the utility
and index statistics threads that could go unmet indefinitely. This condition has been augmented with
a maximum timeout of 1 second, which makes it more likely that these threads terminate themselves
properly in such cases.

In addition, the connection thread waiting for the management server connection performed 2 sleeps in
the case just described, instead of 1 sleep, as intended. (Bug #81585, Bug #23343673)

• The list of deferred tree node lookup requests created when preparing to abort a DBSPJ request were
not cleared when this was complete, which could lead to deferred operations being started even after the
DBSPJ request aborted. (Bug #81355, Bug #23251423)

References: See also: Bug #23048816.

• Error and abort handling in Dbspj::execTRANSID_AI() was implemented such that its abort()
method was called before processing of the incoming signal was complete. Since this method sends
signals to the LDM, this partly overwrote the contents of the signal which was later required by
execTRANSID_AI(). This could result in aborted DBSPJ requests cleaning up their allocated resources
too early, or not at all. (Bug #81353, Bug #23251145)

References: See also: Bug #23048816.

• Several object constructors and similar functions in the NDB codebase did not always perform sanity
checks when creating new instances. These checks are now performed under such circumstances. (Bug
#77408, Bug #21286722)

• An internal call to malloc() was not checked for NULL. The function call was replaced with a direct
write. (Bug #77375, Bug #21271194)

Changes in MySQL NDB Cluster 7.4.12 (5.6.31-ndb-7.4.12) (2016-07-18,
General Availability)

Bugs Fixed

• Incompatible Change: When the data nodes are only partially connected to the API nodes, a node
used for a pushdown join may get its request from a transaction coordinator on a different node, without
(yet) being connected to the API node itself. In such cases, the NodeInfo object for the requesting API

77

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.4 Release Notes

node contained no valid info about the software version of the API node, which caused the DBSPJ block
to assume (incorrectly) when aborting to assume that the API node used NDB version 7.2.4 or earlier,
requiring the use of a backward compatability mode to be used during query abort which sent a node
failure error instead of the real error causing the abort.

Now, whenever this situation occurs, it is assumed that, if the NDB software version is not yet available,
the API node version is greater than 7.2.4. (Bug #23049170)

• NDB Cluster APIs: Deletion of Ndb objects used a dispoportionately high amount of CPU. (Bug
#22986823)

• Although arguments to the DUMP command are 32-bit integers, ndb_mgmd used a buffer of only 10 bytes
when processing them. (Bug #23708039)

• During shutdown, the mysqld process could sometimes hang after logging NDB Util: Stop ... NDB
Util: Wakeup. (Bug #23343739)

References: See also: Bug #21098142.

• During an online upgrade from a MySQL NDB Cluster 7.3 release to an NDB 7.4 (or later) release,
the failures of several data nodes running the lower version during local checkpoints (LCPs), and just
prior to upgrading these nodes, led to additional node failures following the upgrade. This was due to
lingering elements of the EMPTY_LCP protocol initiated by the older nodes as part of an LCP-plus-restart
sequence, and which is no longer used in NDB 7.4 and later due to LCP optimizations implemented in
those versions. (Bug #23129433)

• Reserved send buffer for the loopback transporter, introduced in MySQL NDB Cluster 7.4.8 and used by
API and management nodes for administrative signals, was calculated incorrectly. (Bug #23093656, Bug
#22016081)

References: This issue is a regression of: Bug #21664515.

• During a node restart, re-creation of internal triggers used for verifying the referential integrity of foreign
keys was not reliable, because it was possible that not all distributed TC and LDM instances agreed
on all trigger identities. To fix this problem, an extra step is added to the node restart sequence, during
which the trigger identities are determined by querying the current master node. (Bug #23068914)

References: See also: Bug #23221573.

• Following the forced shutdown of one of the 2 data nodes in a cluster where NoOfReplicas=2, the
other data node shut down as well, due to arbitration failure. (Bug #23006431)

• The ndbinfo.tc_time_track_stats table uses histogram buckets to give a sense of the distribution
of latencies. The sizes of these buckets were also reported as HISTOGRAM BOUNDARY INFO messages
during data node startup; this printout was redundant and so has been removed. (Bug #22819868)

• A failure occurred in DBTUP in debug builds when variable-sized pages for a fragment totalled more than
4 GB. (Bug #21313546)

• mysqld did not shut down cleanly when executing ndb_index_stat. (Bug #21098142)

References: See also: Bug #23343739.

• DBDICT and GETTABINFOREQ queue debugging were enhanced as follows:

• Monitoring by a data node of the progress of GETTABINFOREQ signals can be enabled by setting
DictTrace >= 2.

78

https://dev.mysql.com/doc/ndb-internals/en/dump-commands.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-tc-time-track-stats.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-dicttrace

MySQL NDB Cluster 7.4 Release Notes

• Added the ApiVerbose configuration parameter, which enables NDB API debug logging for an API
node where it is set greater than or equal to 2.

• Added DUMP code 1229 which shows the current state of the GETTABINFOREQ queue. (See DUMP
1229.)

See also The DBDICT Block. (Bug #20368450)

References: See also: Bug #20368354.

Changes in MySQL NDB Cluster 7.4.11 (5.6.29-ndb-7.4.11) (2016-04-20,
General Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• NDB Cluster APIs: Added the Ndb::setEventBufferQueueEmptyEpoch() method, which makes it
possible to enable queuing of empty events (event type TE_EMPTY). (Bug #22157845)

Bugs Fixed

• Important Change: The minimum value for the BackupDataBufferSize data node configuration
parameter has been lowered from 2 MB to 512 KB. The default and maximum values for this parameter
remain unchanged. (Bug #22749509)

• OS X: Processing of local checkpoints was not handled correctly on Mac OS X, due to an uninitialized
variable. (Bug #80236, Bug #22647462)

• Microsoft Windows: Compilation of MySQL with Visual Studio 2015 failed in ConfigInfo.cpp, due to
a change in Visual Studio's handling of spaces and concatenation. (Bug #22558836, Bug #80024)

• Microsoft Windows: When setting up event logging for ndb_mgmd on Windows, MySQL NDB Cluster
tries to add a registry key to HKEY_LOCAL_MACHINE, which fails if the user does not have access to the
registry. In such cases ndb_mgmd logged the error Could neither create or open key, which is
not accurate and which can cause confusion for users who may not realize that file logging is available
and being used. Now in such cases, ndb_mgmd logs a warning Could not create or access the
registry key needed for the application to log to the Windows EventLog. Run
the application with sufficient privileges once to create the key, or add the
key manually, or turn off logging for that application. An error (as opposed to a
warning) is now reported in such cases only if there is no available output at all for ndb_mgmd event
logging. (Bug #20960839)

• Microsoft Windows: MySQL NDB Cluster did not compile correctly with Microsoft Visual Studio 2015,
due to a change from previous versions in the VS implementation of the _vsnprintf() function. (Bug
#80276, Bug #22670525)

• Microsoft Windows: Performing ANALYZE TABLE on a table having one or more indexes caused
ndbmtd to fail with an InvalidAttrInfo error due to signal corruption. This issue occurred
consistently on Windows, but could also be encountered on other platforms. (Bug #77716, Bug
#21441297)

• Solaris: The ndb_print_file utility failed consistently on Solaris 9 for SPARC. (Bug #80096, Bug
#22579581)

79

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-apiverbose
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1229.html
https://dev.mysql.com/doc/ndb-internals/en/dump-command-1229.html
https://dev.mysql.com/doc/ndb-internals/en/ndb-internals-kernel-blocks-dbdict.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-seteventbufferqueueemptyepoch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatabuffersize
https://dev.mysql.com/doc/refman/5.6/en/analyze-table.html

MySQL NDB Cluster 7.4 Release Notes

• NDB Cluster APIs: Executing a transaction with an NdbIndexOperation based on an obsolete
unique index caused the data node process to fail. Now the index is checked in such cases, and if it
cannot be used the transaction fails with an appropriate error. (Bug #79494, Bug #22299443)

• During node failure handling, the request structure used to drive the cleanup operation was not
maintained correctly when the request was executed. This led to inconsistencies that were harmless
during normal operation, but these could lead to assertion failures during node failure handling, with
subsequent failure of additional nodes. (Bug #22643129)

• The previous fix for a lack of mutex protection for the internal
TransporterFacade::deliver_signal() function was found to be incomplete in some cases.
(Bug #22615274)

References: This issue is a regression of: Bug #77225, Bug #21185585.

• When setup of the binary log as an atomic operation on one SQL node failed, this could trigger a state
in other SQL nodes in which they appeared to detect the SQL node participating in schema change
distribution, whereas it had not yet completed binary log setup. This could in turn cause a deadlock
on the global metadata lock when the SQL node still retrying binary log setup needed this lock, while
another mysqld had taken the lock for itself as part of a schema change operation. In such cases, the
second SQL node waited for the first one to act on its schema distribution changes, which it was not yet
able to do. (Bug #22494024)

• Duplicate key errors could occur when ndb_restore was run on a backup containing a unique index.
This was due to the fact that, during restoration of data, the database can pass through one or more
inconsistent states prior to completion, such an inconsistent state possibly having duplicate values for
a column which has a unique index. (If the restoration of data is preceded by a run with --disable-
indexes and followed by one with --rebuild-indexes, these errors are avoided.)

Added a check for unique indexes in the backup which is performed only when restoring data, and which
does not process tables that have explicitly been excluded. For each unique index found, a warning is
now printed. (Bug #22329365)

• Restoration of metadata with ndb_restore -m occasionally failed with the error message Failed to
create index... when creating a unique index. While disgnosing this problem, it was found that the
internal error PREPARE_SEIZE_ERROR (a temporary error) was reported as an unknown error. Now in
such cases, ndb_restore retries the creation of the unique index, and PREPARE_SEIZE_ERROR is
reported as NDB Error 748 Busy during read of event table. (Bug #21178339)

References: See also: Bug #22989944.

• NdbDictionary metadata operations had a hard-coded 7-day timeout, which proved to be excessive
for short-lived operations such as retrieval of table definitions. This could lead to unnecessary hangs in
user applications which were difficult to detect and handle correctly. To help address this issue, timeout
behaviour is modified so that read-only or short-duration dictionary interactions have a 2-minute timeout,
while schema transactions of potentially long duration retain the existing 7-day timeout.

Such timeouts are intended as a safety net: In the event of problems, these return control to users,
who can then take corrective action. Any reproducible issue with NdbDictionary timeouts should be
reported as a bug. (Bug #20368354)

• Optimization of signal sending by buffering and sending them periodically, or when the buffer became
full, could cause SUB_GCP_COMPLETE_ACK signals to be excessively delayed. Such signals are sent
for each node and epoch, with a minimum interval of TimeBetweenEpochs; if they are not received
in time, the SUMA buffers can overflow as a result. The overflow caused API nodes to be disconnected,
leading to current transactions being aborted due to node failure. This condition made it difficult for long

80

https://dev.mysql.com/doc/ndbapi/en/ndb-ndbindexoperation.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbdictionary.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenepochs

MySQL NDB Cluster 7.4 Release Notes

transactions (such as altering a very large table), to be completed. Now in such cases, the ACK signal is
sent without being delayed. (Bug #18753341)

• An internal function used to validate connections failed to update the connection count when creating
a new Ndb object. This had the potential to create a new Ndb object for every operation validating
the connection, which could have an impact on performance, particularly when performing schema
operations. (Bug #80750, Bug #22932982)

• When an SQL node was started, and joined the schema distribution protocol, another SQL node, already
waiting for a schema change to be distributed, timed out during that wait. This was because the code
incorrectly assumed that the new SQL node would also acknowledge the schema distribution even
though the new node joined too late to be a participant in it.

As part of this fix, printouts of schema distribution progress now always print the more significant part of
a bitmask before the less significant; formatting of bitmasks in such printouts has also been improved.
(Bug #80554, Bug #22842538)

• Settings for the SchedulerResponsiveness data node configuration parameter (introduced in MySQL
NDB Cluster 7.4.9) were ignored. (Bug #80341, Bug #22712481)

• When setting CPU spin time, the value was needlessly cast to a boolean internally, so that setting it to
any nonzero value yielded an effective value of 1. This issue, as well as the fix for it, apply both to setting
the SchedulerSpinTimer parameter and to setting spintime as part of a ThreadConfig parameter
value. (Bug #80237, Bug #22647476)

• A logic error in an if statement in storage/ndb/src/kernel/blocks/dbacc/DbaccMain.cpp
rendered useless a check for determining whether ZREAD_ERROR should be returned when comparing
operations. This was detected when compiling with gcc using -Werror=logical-op. (Bug #80155,
Bug #22601798)

References: This issue is a regression of: Bug #21285604.

• Builds with the -Werror and -Wextra flags (as for release builds) failed on SLES 11. (Bug #79950,
Bug #22539531)

• When using CREATE INDEX to add an index on either of two NDB tables sharing circular foreign keys,
the query succeeded but a temporary table was left on disk, breaking the foreign key constraints. This
issue was also observed when attempting to create an index on a table in the middle of a chain of
foreign keys—that is, a table having both parent and child keys, but on different tables. The problem did
not occur when using ALTER TABLE to perform the same index creation operation; and subsequent
analysis revealed unintended differences in the way such operations were performed by CREATE
INDEX.

To fix this problem, we now make sure that operations performed by a CREATE INDEX statement are
always handled internally in the same way and at the same time that the same operations are handled
when performed by ALTER TABLE or DROP INDEX. (Bug #79156, Bug #22173891)

• NDB failed to ignore index prefixes on primary and unique keys, causing CREATE TABLE and ALTER
TABLE statements using them to be rejected. (Bug #78441, Bug #21839248)

Changes in MySQL NDB Cluster 7.4.10 (5.6.28-ndb-7.4.10) (2016-01-29,
General Availability)

Bugs Fixed

• A serious regression was inadvertently introduced in MySQL NDB Cluster 7.4.8 whereby local
checkpoints and thus restarts often took much longer than expected. This occurred due to the fact

81

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerresponsiveness
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerspintimer
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig
https://dev.mysql.com/doc/refman/5.6/en/create-index.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/drop-index.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.4 Release Notes

that the setting for MaxDiskWriteSpeedOwnRestart was ignored during restarts and the value
of MaxDiskWriteSpeedOtherNodeRestart, which is much lower by default than the default
for MaxDiskWriteSpeedOwnRestart, was used instead. This issue affected restart times and
performance only and did not have any impact on normal operations. (Bug #22582233)

Changes in MySQL NDB Cluster 7.4.9 (5.6.28-ndb-7.4.9) (2016-01-18, General
Availability)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change: Previously, the NDB scheduler always optimized for speed against throughput
in a predetermined manner (this was hard coded); this balance can now be set using the
SchedulerResponsiveness data node configuration parameter. This parameter accepts an integer
in the range of 0-10 inclusive, with 5 as the default. Higher values provide better response times relative
to throughput. Lower values provide increased throughput, but impose longer response times. (Bug
#78531, Bug #21889312)

• Added the tc_time_track_stats table to the ndbinfo information database. This table provides
time-tracking information relating to transactions, key operations, and scan operations performed by
NDB. (Bug #78533, Bug #21889652)

Bugs Fixed

• Important Change: A fix made in MySQL NDB Cluster 7.3.11 and MySQL NDB Cluster 7.4.8 caused
ndb_restore to perform unique key checks even when operating in modes which do not restore data,
such as when using the program's --restore-epoch or --print-data option.

That change in behavior caused existing valid backup routines to fail; to keep this issue from affecting
this and future releases, the previous fix has been reverted. This means that the requirement added in
those versions that ndb_restore be run --disable-indexes or --rebuild-indexes when used on
tables containing unique indexes is also lifted. (Bug #22345748)

References: See also: Bug #22329365. Reverted patches: Bug #57782, Bug #11764893.

• Important Change: Users can now set the number and length of connection timeouts allowed by most
NDB programs with the --connect-retries and --connect-retry-delay command line options
introduced for the programs in this release. For ndb_mgm, --connect-retries supersedes the
existing --try-reconnect option. (Bug #57576, Bug #11764714)

• NDB Disk Data: A unique index on a column of an NDB table is implemented with an associated
internal ordered index, used for scanning. While dropping an index, this ordered index was dropped
first, followed by the drop of the unique index itself. This meant that, when the drop was rejected due
to (for example) a constraint violation, the statement was rejected but the associated ordered index
remained deleted, so that any subsequent operation using a scan on this table failed. We fix this problem
by causing the unique index to be removed first, before removing the ordered index; removal of the
related ordered index is no longer performed when removal of a unique index fails. (Bug #78306, Bug
#21777589)

• NDB Cluster APIs: The binary log injector did not work correctly with TE_INCONSISTENT event type
handling by Ndb::nextEvent(). (Bug #22135541)

References: See also: Bug #20646496.

82

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedownrestart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedothernoderestart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-schedulerresponsiveness
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-tc-time-track-stats.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-epoch
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_print-data
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_connect-retries
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-mgm.html#option_ndb_mgm_try-reconnect
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent

MySQL NDB Cluster 7.4 Release Notes

• NDB Cluster APIs: Ndb::pollEvents() and pollEvents2() were slow to receive events, being
dependent on other client threads or blocks to perform polling of transporters on their behalf. This
fix allows a client thread to perform its own transporter polling when it has to wait in either of these
methods.

Introduction of transporter polling also revealed a problem with missing mutex protection in the
ndbcluster_binlog handler, which has been added as part of this fix. (Bug #79311, Bug #20957068,
Bug #22224571)

• NDB Cluster APIs: Garbage collection is performed on several objects in the implementation of
NdbEventOperation, based on which GCIs have been consumed by clients, including those that have
been dropped by Ndb::dropEventOperation(). In this implementation, the assumption was made
that the global checkpoint index (GCI) is always monotonically increasing, although this is not the case
during an initial restart, when the GCI is reset. This could lead to event objects in the NDB API being
released prematurely or not at all, in the latter case causing a resource leak.

To prevent this from happening, the NDB event object's implementation now tracks, internally, both
the GCI and the generation of the GCI; the generation is incremented whenever the node process is
restarted, and this value is now used to provide a monotonically increasing sequence. (Bug #73781, Bug
#21809959)

• In debug builds, a WAIT_EVENT while polling caused excessive logging to stdout. (Bug #22203672)

• When executing a schema operation such as CREATE TABLE on a MySQL NDB Cluster with multiple
SQL nodes, it was possible for the SQL node on which the operation was performed to time out while
waiting for an acknowledgement from the others. This could occur when different SQL nodes had
different settings for --ndb-log-updated-only, --ndb-log-update-as-write, or other mysqld
options effecting binary logging by NDB.

This happened due to the fact that, in order to distribute schema changes between them, all SQL nodes
subscribe to changes in the ndb_schema system table, and that all SQL nodes are made aware of
each others subscriptions by subscribing to TE_SUBSCRIBE and TE_UNSUBSCRIBE events. The names
of events to subscribe to are constructed from the table names, adding REPL$ or REPLF$ as a prefix.
REPLF$ is used when full binary logging is specified for the table. The issue described previously arose
because different values for the options mentioned could lead to different events being subscribed to by
different SQL nodes, meaning that all SQL nodes were not necessarily aware of each other, so that the
code that handled waiting for schema distribution to complete did not work as designed.

To fix this issue, MySQL NDB Cluster now treats the ndb_schema table as a special case and enforces
full binary logging at all times for this table, independent of any settings for mysqld binary logging
options. (Bug #22174287, Bug #79188)

• Attempting to create an NDB table having greater than the maximum supported combined width for all
BIT columns (4096) caused data node failure when these columns were defined with COLUMN_FORMAT
DYNAMIC. (Bug #21889267)

• Creating a table with the maxmimum supported number of columns (512) all using COLUMN_FORMAT
DYNAMIC led to data node failures. (Bug #21863798)

• In certain cases, a cluster failure (error 4009) was reported as Unknown error code. (Bug
#21837074)

• For a timeout in GET_TABINFOREQ while executing a CREATE INDEX statement, mysqld returned Error
4243 (Index not found) instead of the expected Error 4008 (Receive from NDB failed).

The fix for this bug also fixes similar timeout issues for a number of other signals that are sent the
DBDICT kernel block as part of DDL operations, including ALTER_TAB_REQ, CREATE_INDX_REQ,

83

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-dropeventoperation
https://dev.mysql.com/doc/refman/5.6/en/create-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-updated-only
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#option_mysqld_ndb-log-update-as-write
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/bit-type.html
https://dev.mysql.com/doc/refman/5.6/en/create-index.html

MySQL NDB Cluster 7.4 Release Notes

DROP_FK_REQ, DROP_INDX_REQ, INDEX_STAT_REQ, DROP_FILE_REQ, CREATE_FILEGROUP_REQ,
DROP_FILEGROUP_REQ, CREATE_EVENT, WAIT_GCP_REQ, DROP_TAB_REQ, and LIST_TABLES_REQ,
as well as several internal functions used in handling NDB schema operations. (Bug #21277472)

References: See also: Bug #20617891, Bug #20368354, Bug #19821115.

• Using ndb_mgm STOP -f to force a node shutdown even when it triggered a complete shutdown of
the cluster, it was possible to lose data when a sufficient number of nodes were shut down, triggering a
cluster shutodwn, and the timing was such that SUMA handovers had been made to nodes already in the
process of shutting down. (Bug #17772138)

• The internal NdbEventBuffer::set_total_buckets() method calculated the number of remaining
buckets incorrectly. This caused any incomplete epoch to be prematurely completed when the
SUB_START_CONF signal arrived out of order. Any events belonging to this epoch arriving later were
then ignored, and so effectively lost, which resulted in schema changes not being distributed correctly
among SQL nodes. (Bug #79635, Bug #22363510)

• Compilation of MySQL NDB Cluster failed on SUSE Linux Enterprise Server 12. (Bug #79429, Bug
#22292329)

• Schema events were appended to the binary log out of order relative to non-schema events. This was
caused by the fact that the binary log injector did not properly handle the case where schema events and
non-schema events were from different epochs.

This fix modifies the handling of events from the two schema and non-schema event streams such
that events are now always handled one epoch at a time, starting with events from the oldest available
epoch, without regard to the event stream in which they occur. (Bug #79077, Bug #22135584, Bug
#20456664)

• When executed on an NDB table, ALTER TABLE ... DROP INDEX made changes to an internal array
referencing the indexes before the index was actually dropped, and did not revert these changes in the
event that the drop was not completed. One effect of this was that, after attempting to drop an index
on which there was a foreign key dependency, the expected error referred to the wrong index, and
subsequent attempts using SQL to modify indexes of this table failed. (Bug #78980, Bug #22104597)

• NDB failed during a node restart due to the status of the current local checkpoint being set but not as
active, even though it could have other states under such conditions. (Bug #78780, Bug #21973758)

• ndbmtd checked for signals being sent only after a full cycle in run_job_buffers, which is performed
for all job buffer inputs. Now this is done as part of run_job_buffers itself, which avoids executing
for extended periods of time without sending to other nodes or flushing signals to other threads. (Bug
#78530, Bug #21889088)

• The value set for spintime by the ThreadConfig parameter was not calculated correctly, causing the
spin to continue for longer than actually specified. (Bug #78525, Bug #21886476)

• When NDBFS completed file operations, the method it employed for waking up the main thread worked
effectively on Linux/x86 platforms, but not on some others, including OS X, which could lead to
unnecessary slowdowns on those platforms. (Bug #78524, Bug #21886157)

Changes in MySQL NDB Cluster 7.4.8 (5.6.27-ndb-7.4.8) (2015-10-16, General
Availability)

• Functionality Added or Changed

• Bugs Fixed

84

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-threadconfig

MySQL NDB Cluster 7.4 Release Notes

Functionality Added or Changed

• Incompatible Change: The changes listed here follow up and build further on work done in MySQL
NDB Cluster 7.4.7 to improve handling of local checkpoints (LCPs) under conditions of insert overload:

• Changes have been made in the minimum values for a number of parameters applying to data buffers
for backups and LCPs. These parameters, listed here, can no longer be set so as to make the system
impossible to run:

• BackupDataBufferSize: minimum increased from 0 to 2M.

• BackupLogBufferSize: minimum increased from 0 to 2M.

• BackupWriteSize: minimum increased from 2K to 32K.

• BackupMaxWriteSize: minimum increased from 2K to 256K.

In addition, the BackupMemory data node parameter is now deprecated and subject to removal in a
future MySQL NDB Cluster version. Use BackupDataBufferSize and BackupLogBufferSize
instead.

• When a backup was unsuccessful due to insufficient resources, a subsequent retry worked only for
those parts of the backup that worked in the same thread, since delayed signals are only supported in
the same thread. Delayed signals are no longer sent to other threads in such cases.

• An instance of an internal list object used in searching for queued scans was not actually destroyed
before calls to functions that could manipulate the base object used to create it.

• ACC scans were queued in the category of range scans, which could lead to starting an ACC scan
when DBACC had no free slots for scans. We fix this by implementing a separate queue for ACC
scans.

(Bug #76890, Bug #20981491, Bug #77597, Bug #21362758, Bug #77612, Bug #21370839)

References: See also: Bug #76742, Bug #20904721.

• When the --database option has not been specified for ndb_show_tables, and no tables are
found in the TEST_DB database, an appropriate warning message is now issued. (Bug #50633, Bug
#11758430)

Bugs Fixed

• Important Change; NDB Cluster APIs: The MGM API error-handling functions
ndb_mgm_get_latest_error(), ndb_mgm_get_latest_error_msg(), and
ndb_mgm_get_latest_error_desc() each failed when used with a NULL handle. You should
note that, although these functions are now null-safe, values returned in this case are arbitrary and not
meaningful. (Bug #78130, Bug #21651706)

• Important Change: When ndb_restore was run without --disable-indexes or --rebuild-
indexes on a table having a unique index, it was possible for rows to be restored in an order that
resulted in duplicate values, causing it to fail with duplicate key errors. Running ndb_restore on such
a table now requires using at least one of these options; failing to do so now results in an error. (Bug
#57782, Bug #11764893)

References: See also: Bug #22329365, Bug #22345748.

85

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdatabuffersize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backuplogbuffersize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupwritesize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupmaxwritesize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupmemory
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-show-tables.html#option_ndb_show_tables_database
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-error-handling.html#mgm-ndb-mgm-get-latest-error
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-error-handling.html#mgm-ndb-mgm-get-latest-error-msg
https://dev.mysql.com/doc/ndbapi/en/mgm-functions-error-handling.html#mgm-ndb-mgm-get-latest-error-desc
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_disable-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_rebuild-indexes

MySQL NDB Cluster 7.4 Release Notes

• NDB Cluster APIs: While executing dropEvent(), if the coordinator DBDICT failed after the
subscription manager (SUMA block) had removed all subscriptions but before the coordinator had deleted
the event from the system table, the dropped event remained in the table, causing any subsequent drop
or create event with the same name to fail with NDB error 1419 Subscription already dropped
or error 746 Event name already exists. This occurred even when calling dropEvent() with a
nonzero force argument.

Now in such cases, error 1419 is ignored, and DBDICT deletes the event from the table. (Bug
#21554676)

• NDB Cluster APIs: If the total amount of memory allocated for the event buffer exceeded approximately
40 MB, the calculation of memory usage percentages could overflow during computation. This was due
to the fact that the associated routine used 32-bit arithmetic; this has now been changed to use Uint64
values instead. (Bug #78454, Bug #21847552)

• NDB Cluster APIs: The nextEvent2() method continued to return exceptional events such as
TE_EMPTY, TE_INCONSISTENT, and TE_OUT_OF_MEMORY for event operations which already had
been dropped. (Bug #78167, Bug #21673318)

• NDB Cluster APIs: After the initial restart of a node following a cluster failure, the cluster failure event
added as part of the restart process was deleted when an event that existed prior to the restart was later
deleted. This meant that, in such cases, an Event API client had no way of knowing that failure handling
was needed. In addition, the GCI used for the final cleanup of deleted event operations, performed by
pollEvents() and nextEvent() when these methods have consumed all available events, was lost.
(Bug #78143, Bug #21660947)

• NDB Cluster APIs: The internal value representing the latest global checkpoint was not always updated
when a completed epoch of event buffers was inserted into the event queue. This caused subsequent
calls to Ndb::pollEvents() and pollEvents2() to fail when trying to obtain the correct GCI
for the events available in the event buffers. This could also result in later calls to nextEvent() or
nextEvent2() seeing events that had not yet been discovered. (Bug #78129, Bug #21651536)

• mysql_upgrade failed when performing an upgrade from MySQL NDB Cluster 7.2 to
MySQL NDB Cluster 7.4. The root cause of this issue was an accidental duplication of code in
mysql_fix_privilege_tables.sql that caused ndbinfo_offline mode to be turned off too
early, which in turn led a subsequent CREATE VIEW statement to fail. (Bug #21841821)

• ClusterMgr is a internal component of NDB API and ndb_mgmd processes, part of
TransporterFacade—which in turn is a wrapper around the transporter registry—and shared
with data nodes. This component is responsible for a number of tasks including connection setup
requests; sending and monitoring of heartbeats; provision of node state information; handling
of cluster disconnects and reconnects; and forwarding of cluster state indicators. ClusterMgr
maintains a count of live nodes which is incremented on receiving a report of a node having connected
(reportConnected() method call), and decremented on receiving a report that a node has
disconnected (reportDisconnected()) from TransporterRegistry. This count is checked within
reportDisconnected() to verify that is it greater than zero.

The issue addressed here arose when node connections were very brief due to send buffer
exhaustion (among other potential causes) and the check just described failed. This occurred
because, when a node did not fully connect, it was still possible for the connection attempt to trigger
a reportDisconnected() call in spite of the fact that the connection had not yet been reported to
ClusterMgr; thus, the pairing of reportConnected() and reportDisconnected() calls was
not guaranteed, which could cause the count of connected nodes to be set to zero even though there

86

https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-dropevent
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-dropevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndbinfo_offline
https://dev.mysql.com/doc/refman/5.6/en/create-view.html

MySQL NDB Cluster 7.4 Release Notes

remained nodes that were still in fact connected, causing node crashes with debug builds of MySQL
NDB Cluster, and potential errors or other adverse effects with release builds.

To fix this issue, ClusterMgr::reportDisconnected() now verifies that a disconnected node had
actually finished connecting completely before checking and decrementing the number of connected
nodes. (Bug #21683144, Bug #22016081)

References: See also: Bug #21664515, Bug #21651400.

• To reduce the possibility that a node's loopback transporter becomes disconnected from the transporter
registry by reportError() due to send buffer exhaustion (implemented by the fix for Bug #21651400),
a portion of the send buffer is now reserved for the use of this transporter. (Bug #21664515, Bug
#22016081)

References: See also: Bug #21651400, Bug #21683144.

• The loopback transporter is similar to the TCP transporter, but is used by a node to send signals to itself
as part of many internal operations. Like the TCP transporter, it could be disconnected due to certain
conditions including send buffer exhaustion, but this could result in blocking of TransporterFacade
and so cause multiple issues within an ndb_mgmd or API node process. To prevent this, a node whose
loopback transporter becomes disconnected is now simply shut down, rather than allowing the node
process to hang. (Bug #21651400, Bug #22016081)

References: See also: Bug #21683144, Bug #21664515.

• The internal NdbEventBuffer object's active subscriptions count (m_active_op_count) could be
decremented more than once when stopping a subscription when this action failed, for example, due to
a busy server and was retried. Decrementing of this count could also fail when communication with the
data node failed, such as when a timeout occurred. (Bug #21616263)

References: This issue is a regression of: Bug #20575424, Bug #20561446.

• In some cases, the management server daemon failed on startup without reporting the reason. Now
when ndb_mgmd fails to start due to an error, the error message is printed to stderr. (Bug #21571055)

• In a MySQL NDB Cluster with multiple LDM instances, all instances wrote to the node log, even inactive
instances on other nodes. During restarts, this caused the log to be filled with messages from other
nodes, such as the messages shown here:

2015-06-24 00:20:16 [ndbd] INFO -- We are adjusting Max Disk Write Speed,
a restart is ongoing now
...
2015-06-24 01:08:02 [ndbd] INFO -- We are adjusting Max Disk Write Speed,
no restarts ongoing anymore

Now this logging is performed only by the active LDM instance. (Bug #21362380)

• Backup block states were reported incorrectly during backups. (Bug #21360188)

References: See also: Bug #20204854, Bug #21372136.

• Added the BackupDiskWriteSpeedPct data node parameter. Setting this parameter
causes the data node to reserve a percentage of its maximum write speed (as determined by
the value of MaxDiskWriteSpeed) for use in local checkpoints while performing a backup.
BackupDiskWriteSpeedPct is interpreted as a percentage which can be set between 0 and 90
inclusive, with a default value of 50. (Bug #20204854)

References: See also: Bug #21372136.

87

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-backupdiskwritespeedpct
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeed

MySQL NDB Cluster 7.4 Release Notes

• When a data node is known to have been alive by other nodes in the cluster at a given global
checkpoint, but its sysfile reports a lower GCI, the higher GCI is used to determine which global
checkpoint the data node can recreate. This caused problems when the data node being started had a
clean file system (GCI = 0), or when it was more than more global checkpoint behind the other nodes.

Now in such cases a higher GCI known by other nodes is used only when it is at most one GCI ahead.
(Bug #19633824)

References: See also: Bug #20334650, Bug #21899993. This issue is a regression of: Bug #29167.

• When restoring a specific database or databases with the --include-databases or --exclude-
databases option, ndb_restore attempted to apply foreign keys on tables in databases which were
not among those being restored. (Bug #18560951)

• After restoring the database schema from backup using ndb_restore, auto-discovery of restored
tables in transactions having multiple statements did not work correctly, resulting in Deadlock found
when trying to get lock; try restarting transaction errors.

This issue was encountered both in the mysql client, as well as when such transactions were executed
by application programs using Connector/J and possibly other MySQL APIs.

Prior to upgrading, this issue can be worked around by executing SELECT TABLE_NAME,
TABLE_SCHEMA FROM INFORMATION_SCHEMA.TABLES WHERE ENGINE = 'NDBCLUSTER' on all
SQL nodes following the restore operation, before executing any other statements. (Bug #18075170)

• The inet_ntoa() function used internally in several mgmd threads was not POSIX thread-safe, which
meant that the result it returned could sometimes be undefined. To avoid this problem, a thread-safe
and platform-independent wrapper for inet_ntop() is used to take the place of this function. (Bug
#17766129)

• ndb_desc used with the --extra-partition-info and --blob-info options failed when run
against a table containing one or more TINYBLOB. columns. (Bug #14695968)

• Operations relating to global checkpoints in the internal event data buffer could sometimes leak memory.
(Bug #78205, Bug #21689380)

References: See also: Bug #76165, Bug #20651661.

• Trying to create an NDB table with a composite foreign key referencing a composite primary key of the
parent table failed when one of the columns in the composite foreign key was the table's primary key and
in addition this column also had a unique key. (Bug #78150, Bug #21664899)

• When attempting to enable index statistics, creation of the required system tables, events and event
subscriptions often fails when multiple mysqld processes using index statistics are started concurrently
in conjunction with starting, restarting, or stopping the cluster, or with node failure handling. This
is normally recoverable, since the affected mysqld process or processes can (and do) retry these
operations shortly thereafter. For this reason, such failures are no longer logged as warnings, but merely
as informational events. (Bug #77760, Bug #21462846)

• Adding a unique key to an NDB table failed when the table already had a foreign key. Prior to upgrading,
you can work around this issue by creating the unique key first, then adding the foreign key afterwards,
using a separate ALTER TABLE statement. (Bug #77457, Bug #20309828)

Changes in MySQL NDB Cluster 7.4.7 (5.6.25-ndb-7.4.7) (2015-07-13, General
Availability)

• Functionality Added or Changed

88

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_include-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_exclude-databases
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_extra-partition-info
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-desc.html#option_ndb_desc_blob-info
https://dev.mysql.com/doc/refman/5.6/en/blob.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table.html

MySQL NDB Cluster 7.4 Release Notes

• Bugs Fixed

Functionality Added or Changed

• Deprecated MySQL NDB Cluster node configuration parameters are now indicated as such by
ndb_config --configinfo --xml. For each parameter currently deprecated, the corresponding
<param/> tag in the XML output now includes the attribute deprecated="true". (Bug #21127135)

• A number of improvements, listed here, have been made with regard to handling issues that could arise
when an overload arose due to a great number of inserts being performed during a local checkpoint
(LCP):

• Failures sometimes occurred during restart processing when trying to execute the undo log, due to a
problem with finding the end of the log. This happened when there remained unwritten pages at the
end of the first undo file when writing to the second undo file, which caused the execution of undo logs
in reverse order and so execute old or even nonexistent log records.

This is fixed by ensuring that execution of the undo log begins with the proper end of the log, and, if
started earlier, that any unwritten or faulty pages are ignored.

• It was possible to fail during an LCP, or when performing a COPY_FRAGREQ, due to running out of
operation records. We fix this by making sure that LCPs and COPY_FRAG use resources reserved
for operation records, as was already the case with scan records. In addition, old code for ACC
operations that was no longer required but that could lead to failures was removed.

• When an LCP was performed while loading a table, it was possible to hit a livelock during LCP scans,
due to the fact that each record that was inserted into new pages after the LCP had started had its
LCP_SKIP flag set. Such records were discarded as intended by the LCP scan, but when inserts
occurred faster than the LCP scan could discard records, the scan appeared to hang. As part of this
issue, the scan failed to report any progress to the LCP watchdog, which after 70 seconds of livelock
killed the process. This issue was observed when performing on the order of 250000 inserts per
second over an extended period of time (120 seconds or more), using a single LDM.

This part of the fix makes a number of changes, listed here:

• We now ensure that pages created after the LCP has started are not included in LCP scans; we
also ensure that no records inserted into those pages have their LCP_SKIP flag set.

• Handling of the scan protocol is changed such that a certain amount of progress is made by the
LCP regardless of load; we now report progress to the LCP watchdog so that we avoid failure in the
event that an LCP is making progress but not writing any records.

• We now take steps to guarantee that LCP scans proceed more quickly than inserts can occur, by
ensuring that scans are prioritized this scanning activity, and thus, that the LCP is in fact (eventually)
completed.

• In addition, scanning is made more efficient, by prefetching tuples; this helps avoid stalls while
fetching memory in the CPU.

• Row checksums for preventing data corruption now include the tuple header bits.

(Bug #76373, Bug #20727343, Bug #76741, Bug #69994, Bug #20903880, Bug #76742, Bug
#20904721, Bug #76883, Bug #20980229)

89

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_configinfo
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-config.html#option_ndb_config_xml

MySQL NDB Cluster 7.4 Release Notes

Bugs Fixed

• Incompatible Change; NDB Cluster APIs: The pollEvents2() method now returns -1, indicating an
error, whenever a negative value is used for the time argument. (Bug #20762291)

• Important Change; NDB Cluster APIs: The Ndb::getHighestQueuedEpoch() method returned the
greatest epoch in the event queue instead of the greatest epoch found after calling pollEvents2().
(Bug #20700220)

• Important Change; NDB Cluster APIs: Ndb::pollEvents() is now compatible with the TE_EMPTY,
TE_INCONSISTENT, and TE_OUT_OF_MEMORY event types introduced in MySQL NDB Cluster 7.4.3.
For detailed information about this change, see the description of this method in the MySQL NDB Cluster
API Developer Guide. (Bug #20646496)

• Important Change; NDB Cluster APIs: Added the method
Ndb::isExpectingHigherQueuedEpochs() to the NDB API to detect when additional, newer event
epochs were detected by pollEvents2().

The behavior of Ndb::pollEvents() has also been modified such that it now returns
NDB_FAILURE_GCI (equal to ~(Uint64) 0) when a cluster failure has been detected. (Bug
#18753887)

• NDB Cluster APIs: Added the Column::getSizeInBytesForRecord() method, which returns the
size required for a column by an NdbRecord, depending on the column's type (text/blob, or other). (Bug
#21067283)

• NDB Cluster APIs: NdbEventOperation::isErrorEpoch() incorrectly returned false for the
TE_INCONSISTENT table event type (see Event::TableEvent). This caused a subsequent call to
getEventType() to fail. (Bug #20729091)

• NDB Cluster APIs: Creation and destruction of Ndb_cluster_connection objects by multiple
threads could make use of the same application lock, which in some cases led to failures in the global
dictionary cache. To alleviate this problem, the creation and destruction of several internal NDB API
objects have been serialized. (Bug #20636124)

• NDB Cluster APIs: A number of timeouts were not handled correctly in the NDB API. (Bug #20617891)

• NDB Cluster APIs: When an Ndb object created prior to a failure of the cluster was reused, the event
queue of this object could still contain data node events originating from before the failure. These
events could reference “old” epochs (from before the failure occurred), which in turn could violate the
assumption made by the nextEvent() method that epoch numbers always increase. This issue is
addressed by explicitly clearing the event queue in such cases. (Bug #18411034)

References: See also: Bug #20888668.

• After restoring the database metadata (but not any data) by running ndb_restore --restore-
meta (or -m), SQL nodes would hang while trying to SELECT from a table in the database to which
the metadata was restored. In such cases the attempt to query the table now fails as expected, since
the table does not actually exist until ndb_restore is executed with --restore-data (-r). (Bug
#21184102)

References: See also: Bug #16890703.

• When a great many threads opened and closed blocks in the NDB API in rapid succession, the internal
close_clnt() function synchronizing the closing of the blocks waited an insufficiently long time for a
self-signal indicating potential additional signals needing to be processed. This led to excessive CPU
usage by ndb_mgmd, and prevented other threads from opening or closing other blocks. This issue is

90

https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-gethighestqueuedepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isexpectinghigherqueuedepochs
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-column.html#ndb-column-getsizeinbytesforrecord
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-iserrorepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-meta
https://dev.mysql.com/doc/refman/5.6/en/select.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-programs-ndb-restore.html#option_ndb_restore_restore-data

MySQL NDB Cluster 7.4 Release Notes

fixed by changing the function polling call to wait on a specific condition to be woken up (that is, when a
signal has in fact been executed). (Bug #21141495)

• Previously, multiple send threads could be invoked for handling sends to the same node; these threads
then competed for the same send lock. While the send lock blocked the additional send threads, work
threads could be passed to other nodes.

This issue is fixed by ensuring that new send threads are not activated while there is already an active
send thread assigned to the same node. In addition, a node already having an active send thread
assigned to it is no longer visible to other, already active, send threads; that is, such a node is longer
added to the node list when a send thread is currently assigned to it. (Bug #20954804, Bug #76821)

• Queueing of pending operations when the redo log was overloaded
(DefaultOperationRedoProblemAction API node configuration parameter) could lead to timeouts
when data nodes ran out of redo log space (P_TAIL_PROBLEM errors). Now when the redo log is full,
the node aborts requests instead of queuing them. (Bug #20782580)

References: See also: Bug #20481140.

• An NDB event buffer can be used with an Ndb object to subscribe to table-level row change event
streams. Users subscribe to an existing event; this causes the data nodes to start sending event
data signals (SUB_TABLE_DATA) and epoch completion signals (SUB_GCP_COMPLETE) to the Ndb
object. SUB_GCP_COMPLETE_REP signals can arrive for execution in concurrent receiver thread before
completion of the internal method call used to start a subscription.

Execution of SUB_GCP_COMPLETE_REP signals depends on the total number of SUMA buckets (sub
data streams), but this may not yet have been set, leading to the present issue, when the counter used
for tracking the SUB_GCP_COMPLETE_REP signals (TOTAL_BUCKETS_INIT) was found to be set to
erroneous values. Now TOTAL_BUCKETS_INIT is tested to be sure it has been set correctly before it is
used. (Bug #20575424, Bug #76255)

References: See also: Bug #20561446, Bug #21616263.

• NDB statistics queries could be delayed by the error delay set for ndb_index_stat_option (default
60 seconds) when the index that was queried had been marked with internal error. The same underlying
issue could also cause ANALYZE TABLE to hang when executed against an NDB table having multiple
indexes where an internal error occurred on one or more but not all indexes.

Now in such cases, any existing statistics are returned immediately, without waiting for any additonal
statistics to be discovered. (Bug #20553313, Bug #20707694, Bug #76325)

• The multithreaded scheduler sends to remote nodes either directly from each worker thread or from
dedicated send threadsL, depending on the cluster's configuration. This send might transmit all, part,
or none of the available data from the send buffers. While there remained pending send data, the
worker or send threads continued trying to send in a loop. The actual size of the data sent in the most
recent attempt to perform a send is now tracked, and used to detect lack of send progress by the send
or worker threads. When no progress has been made, and there is no other work outstanding, the
scheduler takes a 1 millisecond pause to free up the CPU for use by other threads. (Bug #18390321)

References: See also: Bug #20929176, Bug #20954804.

• In some cases, attempting to restore a table that was previously backed up failed with a File Not
Found error due to a missing table fragment file. This occurred as a result of the NDB kernel BACKUP

91

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaultoperationredoproblemaction
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_index_stat_option
https://dev.mysql.com/doc/refman/5.6/en/analyze-table.html

MySQL NDB Cluster 7.4 Release Notes

block receiving a Busy error while trying to obtain the table description, due to other traffic from external
clients, and not retrying the operation.

The fix for this issue creates two separate queues for such requests—one for internal clients such as the
BACKUP block or ndb_restore, and one for external clients such as API nodes—and prioritizing the
internal queue.

Note that it has always been the case that external client applications using the NDB API (including
MySQL applications running against an SQL node) are expected to handle Busy errors by retrying
transactions at a later time; this expectation is not changed by the fix for this issue. (Bug #17878183)

References: See also: Bug #17916243.

• On startup, API nodes (including mysqld processes running as SQL nodes) waited to connect with data
nodes that had not yet joined the cluster. Now they wait only for data nodes that have actually already
joined the cluster.

In the case of a new data node joining an existing cluster, API nodes still try to connect with the new data
node within HeartbeatIntervalDbApi milliseconds. (Bug #17312761)

• In some cases, the DBDICT block failed to handle repeated GET_TABINFOREQ signals after the first one,
leading to possible node failures and restarts. This could be observed after setting a sufficiently high
value for MaxNoOfExecutionThreads and low value for LcpScanProgressTimeout. (Bug #77433,
Bug #21297221)

• Client lookup for delivery of API signals to the correct client by the internal
TransporterFacade::deliver_signal() function had no mutex protection, which could cause
issues such as timeouts encountered during testing, when other clients connected to the same
TransporterFacade. (Bug #77225, Bug #21185585)

• It was possible to end up with a lock on the send buffer mutex when send buffers became a limiting
resource, due either to insufficient send buffer resource configuration, problems with slow or failing
communications such that all send buffers became exhausted, or slow receivers failing to consume
what was sent. In this situation worker threads failed to allocate send buffer memory for signals, and
attempted to force a send in order to free up space, while at the same time the send thread was busy
trying to send to the same node or nodes. All of these threads competed for taking the send buffer
mutex, which resulted in the lock already described, reported by the watchdog as Stuck in Send. This
fix is made in two parts, listed here:

1. The send thread no longer holds the global send thread mutex while getting the send buffer mutex; it
now releases the global mutex prior to locking the send buffer mutex. This keeps worker threads from
getting stuck in send in such cases.

2. Locking of the send buffer mutex done by the send threads now uses a try-lock. If the try-lock fails,
the node to make the send to is reinserted at the end of the list of send nodes in order to be retried
later. This removes the Stuck in Send condition for the send threads.

(Bug #77081, Bug #21109605)

Changes in MySQL NDB Cluster 7.4.6 (5.6.24-ndb-7.4.6) (2015-04-14, General
Availability)

Bugs Fixed

• During backup, loading data from one SQL node followed by repeated DELETE statements on the tables
just loaded from a different SQL node could lead to data node failures. (Bug #18949230)

92

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-heartbeatintervaldbapi
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://dev.mysql.com/doc/refman/5.6/en/delete.html

MySQL NDB Cluster 7.4 Release Notes

• When an instance of NdbEventBuffer was destroyed, any references to GCI operations that remained
in the event buffer data list were not freed. Now these are freed, and items from the event bufer data list
are returned to the free list when purging GCI containers. (Bug #76165, Bug #20651661)

• When a bulk delete operation was committed early to avoid an additional round trip, while also returning
the number of affected rows, but failed with a timeout error, an SQL node performed no verification that
the transaction was in the Committed state. (Bug #74494, Bug #20092754)

References: See also: Bug #19873609.

Changes in MySQL NDB Cluster 7.4.5 (5.6.23-ndb-7.4.5) (2015-03-20, General
Availability)

Bugs Fixed

• Important Change: The maximum failure time calculation used to ensure that normal node failure
handling mechanisms are given time to handle survivable cluster failures (before global checkpoint
watchdog mechanisms start to kill nodes due to GCP delays) was excessively conservative, and
neglected to consider that there can be at most number_of_data_nodes / NoOfReplicas node
failures before the cluster can no longer survive. Now the value of NoOfReplicas is properly taken into
account when performing this calculation.

This fix adds the TimeBetweenGlobalCheckpointsTimeout data node configuration parameter,
which makes the minimum timeout between global checkpoints settable by the user. This timeout was
previously fixed internally at 120000 milliseconds, which is now the default value for this parameter. (Bug
#20069617, Bug #20069624)

References: See also: Bug #19858151, Bug #20128256, Bug #20135976.

• NDB Cluster APIs: A scan operation, whether it is a single table scan or a query scan used by a pushed
join, stores the result set in a buffer. This maximum size of this buffer is calculated and preallocated
before the scan operation is started. This buffer may consume a considerable amount of memory; in
some cases we observed a 2 GB buffer footprint in tests that executed 100 parallel scans with 2 single-
threaded (ndbd) data nodes. This memory consumption was found to scale linearly with additional
fragments.

A number of root causes, listed here, were discovered that led to this problem:

• Result rows were unpacked to full NdbRecord format before they were stored in the buffer. If only
some but not all columns of a table were selected, the buffer contained empty space (essentially
wasted).

• Due to the buffer format being unpacked, VARCHAR and VARBINARY columns always had to be
allocated for the maximum size defined for such columns.

• BatchByteSize and MaxScanBatchSize values were not taken into consideration as a limiting
factor when calculating the maximum buffer size.

These issues became more evident in NDB 7.2 and later MySQL NDB Cluster release series. This was
due to the fact buffer size is scaled by BatchSize, and that the default value for this parameter was
increased fourfold (from 64 to 256) beginning with MySQL NDB Cluster 7.2.1.

This fix causes result rows to be buffered using the packed format instead of the unpacked format;
a buffered scan result row is now not unpacked until it becomes the current row. In addition,
BatchByteSize and MaxScanBatchSize are now used as limiting factors when calculating the
required buffer size.

93

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-noofreplicas
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenglobalcheckpointstimeout
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbrecord.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchbytesize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-maxscanbatchsize
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-batchsize

MySQL NDB Cluster 7.4 Release Notes

Also as part of this fix, refactoring has been done to separate handling of buffered (packed) from
handling of unbuffered result sets, and to remove code that had been unused since NDB 7.0 or earlier.
The NdbRecord class declaration has also been cleaned up by removing a number of unused or
redundant member variables. (Bug #73781, Bug #75599, Bug #19631350, Bug #20408733)

• In the event of a node failure during an initial node restart followed by another node start, the restart
of the affected node could hang with a START_INFOREQ that occurred while invalidation of local
checkpoints was still ongoing. (Bug #20546157, Bug #75916)

References: See also: Bug #34702.

• It was found during testing that problems could arise when the node registered as the arbitrator
disconnected or failed during the arbitration process.

In this situation, the node requesting arbitration could never receive a positive acknowledgement from
the registered arbitrator; this node also lacked a stable set of members and could not initiate selection of
a new arbitrator.

Now in such cases, when the arbitrator fails or loses contact during arbitration, the requesting node
immediately fails rather than waiting to time out. (Bug #20538179)

• DROP DATABASE failed to remove the database when the database directory contained a .ndb file
which had no corresponding table in NDB. Now, when executing DROP DATABASE, NDB performs an
check specifically for leftover .ndb files, and deletes any that it finds. (Bug #20480035)

References: See also: Bug #44529.

• When performing a restart, it was sometimes possible to find a log end marker which had been written
by a previous restart, and that should have been invalidated. Now when searching for the last page to
invalidate, the same search algorithm is used as when searching for the last page of the log to read.
(Bug #76207, Bug #20665205)

• During a node restart, if there was no global checkpoint completed between the START_LCP_REQ for
a local checkpoint and its LCP_COMPLETE_REP it was possible for a comparison of the LCP ID sent in
the LCP_COMPLETE_REP signal with the internal value SYSFILE->latestLCP_ID to fail. (Bug #76113,
Bug #20631645)

• When sending LCP_FRAG_ORD signals as part of master takeover, it is possible that the master not is
not synchronized with complete accuracy in real time, so that some signals must be dropped. During this
time, the master can send a LCP_FRAG_ORD signal with its lastFragmentFlag set even after the local
checkpoint has been completed. This enhancement causes this flag to persist until the statrt of the next
local checkpoint, which causes these signals to be dropped as well.

This change affects ndbd only; the issue described did not occur with ndbmtd. (Bug #75964, Bug
#20567730)

• When reading and copying transporter short signal data, it was possible for the data to be copied back to
the same signal with overlapping memory. (Bug #75930, Bug #20553247)

• NDB node takeover code made the assumption that there would be only one takeover record when
starting a takeover, based on the further assumption that the master node could never perform copying
of fragments. However, this is not the case in a system restart, where a master node can have stale data
and so need to perform such copying to bring itself up to date. (Bug #75919, Bug #20546899)

Changes in MySQL NDB Cluster 7.4.4 (5.6.23-ndb-7.4.4) (2015-02-26, General
Availability)

94

https://dev.mysql.com/doc/refman/5.6/en/drop-database.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html

MySQL NDB Cluster 7.4 Release Notes

Bugs Fixed

• NDB Cluster APIs: When a transaction is started from a cluster connection, Table and Index schema
objects may be passed to this transaction for use. If these schema objects have been acquired from
a different connection (Ndb_cluster_connection object), they can be deleted at any point by the
deletion or disconnection of the owning connection. This can leave a connection with invalid schema
objects, which causes an NDB API application to fail when these are dereferenced.

To avoid this problem, if your application uses multiple connections, you can now set a check to detect
sharing of schema objects between connections when passing a schema object to a transaction, using
the NdbTransaction::setSchemaObjectOwnerChecks() method added in this release. When this
check is enabled, the schema objects having the same names are acquired from the connection and
compared to the schema objects passed to the transaction. Failure to match causes the application to
fail with an error. (Bug #19785977)

• NDB Cluster APIs: The increase in the default number of hashmap buckets (DefaultHashMapSize
API node configuration parameter) from 240 to 3480 in MySQL NDB Cluster 7.2.11 increased the size of
the internal DictHashMapInfo::HashMap type considerably. This type was allocated on the stack in
some getTable() calls which could lead to stack overflow issues for NDB API users.

To avoid this problem, the hashmap is now dynamically allocated from the heap. (Bug #19306793)

• When upgrading a MySQL NDB Cluster from NDB 7.3 to NDB 7.4, the first data node started with the
NDB 7.4 data node binary caused the master node (still running NDB 7.3) to fail with Error 2301, then
itself failed during Start Phase 5. (Bug #20608889)

• A memory leak in NDB event buffer allocation caused an event to be leaked for each epoch. (Due to the
fact that an SQL node uses 3 event buffers, each SQL node leaked 3 events per epoch.) This meant that
a MySQL NDB Cluster mysqld leaked an amount of memory that was inversely proportional to the size
of TimeBetweenEpochs—that is, the smaller the value for this parameter, the greater the amount of
memory leaked per unit of time. (Bug #20539452)

• The values of the Ndb_last_commit_epoch_server and Ndb_last_commit_epoch_session
status variables were incorrectly reported on some platforms. To correct this problem, these values are
now stored internally as long long, rather than long. (Bug #20372169)

• When restoring a MySQL NDB Cluster from backup, nodes that failed and were restarted during
restoration of another node became unresponsive, which subsequently caused ndb_restore to fail and
exit. (Bug #20069066)

• When a data node fails or is being restarted, the remaining nodes in the same nodegroup resend to
subscribers any data which they determine has not already been sent by the failed node. Normally,
when a data node (actually, the SUMA kernel block) has sent all data belonging to an epoch for which it is
responsible, it sends a SUB_GCP_COMPLETE_REP signal, together with a count, to all subscribers, each
of which responds with a SUB_GCP_COMPLETE_ACK. When SUMA receives this acknowledgment from
all subscribers, it reports this to the other nodes in the same nodegroup so that they know that there is
no need to resend this data in case of a subsequent node failure. If a node failed before all subscribers
sent this acknowledgement but before all the other nodes in the same nodegroup received it from the
failing node, data for some epochs could be sent (and reported as complete) twice, which could lead to
an unplanned shutdown.

The fix for this issue adds to the count reported by SUB_GCP_COMPLETE_ACK a list of identifiers which
the receiver can use to keep track of which buckets are completed and to ignore any duplicate reported
for an already completed bucket. (Bug #17579998)

95

https://dev.mysql.com/doc/ndbapi/en/ndb-table.html
https://dev.mysql.com/doc/ndbapi/en/ndb-index.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbtransaction.html#ndb-ndbtransaction-setschemaobjectownerchecks
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-defaulthashmapsize
https://dev.mysql.com/doc/ndbapi/en/ndb-dictionary.html#ndb-dictionary-gettable
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-timebetweenepochs
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_server
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#statvar_Ndb_last_commit_epoch_session

MySQL NDB Cluster 7.4 Release Notes

• The ndbinfo.restart_info table did not contain a new row as expected following a node restart.
(Bug #75825, Bug #20504971)

• The output format of SHOW CREATE TABLE for an NDB table containing foreign key constraints did
not match that for the equivalent InnoDB table, which could lead to issues with some third-party
applications. (Bug #75515, Bug #20364309)

• An ALTER TABLE statement containing comments and a partitioning option against an NDB table caused
the SQL node on which it was executed to fail. (Bug #74022, Bug #19667566)

Changes in MySQL NDB Cluster 7.4.3 (5.6.22-ndb-7.4.3) (2015-01-21, Release
Candidate)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Important Change; NDB Cluster APIs: This release introduces an epoch-driven Event API for the
NDB API that supercedes the earlier GCI-based model. The new version of this API also simplifies error
detection and handling, and monitoring of event buffer memory usage has been improved.

New event handling methods for Ndb and NdbEventOperation added by this change
include NdbEventOperation::getEventType2(), pollEvents2(), nextEvent2(),
getHighestQueuedEpoch(), getNextEventOpInEpoch2(), getEpoch(),
isEmptyEpoch(), and isErrorEpoch. The pollEvents(), nextEvent(), getLatestGCI(),
getGCIEventOperations(), isConsistent(), isConsistentGCI(), getEventType(),
getGCI(), getLatestGCI(), isOverrun(), hasError(), and clearError() methods are
deprecated beginning with the same release.

Some (but not all) of the new methods act as replacements for deprecated methods; not all of the
deprecated methods map to new ones. The Event Class, provides information as to which old methods
correspond to new ones.

Error handling using the new API is no longer handled using dedicated hasError() and
clearError() methods, which are now deprecated as previously noted. To support this change,
TableEvent now supports the values TE_EMPTY (empty epoch), TE_INCONSISTENT (inconsistent
epoch), and TE_OUT_OF_MEMORY (insufficient event buffer memory).

Event buffer memory management has also been improved with the introduction of the
get_eventbuffer_free_percent(), set_eventbuffer_free_percent(), and
get_event_buffer_memory_usage() methods, as well as a new NDB API error Free percent
out of range (error code 4123). Memory buffer usage can now be represented in applications using
the EventBufferMemoryUsage data structure, and checked from MySQL client applications by
reading the ndb_eventbuffer_free_percent system variable.

For more information, see the detailed descriptions for the Ndb and NdbEventOperation methods
listed. See also Event::TableEvent.

• NDB Cluster APIs: Two new example programs, demonstrating reads and writes of CHAR, VARCHAR,
and VARBINARY column values, have been added to storage/ndb/ndbapi-examples in the MySQL
NDB Cluster source tree. For more information about these programs, including source code listings,
see NDB API Simple Array Example, and NDB API Simple Array Example Using Adapter.

96

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-restart-info.html
https://dev.mysql.com/doc/refman/5.6/en/show-create-table.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-gethighestqueuedepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getnexteventopinepoch2
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-isemptyepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-iserrorepoch
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-pollevents
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-nextevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getlatestgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-getgcieventoperations
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isconsistent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-isconsistentgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-geteventtype
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-getlatestgci
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-isoverrun
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-haserror
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-clearerror
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-haserror
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html#ndb-ndbeventoperation-clearerror
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-get-eventbuffer-free-percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-set-eventbuffer-free-percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html#ndb-ndb-get-event-buffer-memory-usage
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-options-variables.html#sysvar_ndb_eventbuffer_free_percent
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndbeventoperation.html
https://dev.mysql.com/doc/ndbapi/en/ndb-event.html#ndb-event-tableevent
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/char.html
https://dev.mysql.com/doc/refman/5.6/en/binary-varbinary.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-simple.html
https://dev.mysql.com/doc/ndbapi/en/ndbapi-examples-array-adapter.html

MySQL NDB Cluster 7.4 Release Notes

• Additional logging is now performed of internal states occurring during system restarts such as
waiting for node ID allocation and master takeover of global and local checkpoints. (Bug #74316, Bug
#19795029)

• Added the operations_per_fragment table to the ndbinfo information database. Using this table,
you can now obtain counts of operations performed on a given fragment (or fragment replica). Such
operations include reads, writes, updates, and deletes, scan and index operations performed while
executing them, and operations refused, as well as information relating to rows scanned on and returned
from a given fragment replica. This table also provides information about interpreted programs used as
attribute values, and values returned by them.

• Added the MaxParallelCopyInstances data node configuration parameter. In cases where the
parallelism used during restart copy phase (normally the number of LDMs up to a maximum of 16) is
excessive and leads to system overload, this parameter can be used to override the default behavior by
reducing the degree of parallelism employed.

Bugs Fixed

• NDB Disk Data: An update on many rows of a large Disk Data table could in some rare cases lead to
node failure. In the event that such problems are observed with very large transactions on Disk Data
tables you can now increase the number of page entries allocated for disk page buffer memory by
raising the value of the DiskPageBufferEntries data node configuration parameter added in this
release. (Bug #19958804)

• NDB Disk Data: In some cases, during DICT master takeover, the new master could crash while
attempting to roll forward an ongoing schema transaction. (Bug #19875663, Bug #74510)

• NDB Cluster APIs: It was possible to delete an Ndb_cluster_connection object while there
remained instances of Ndb using references to it. Now the Ndb_cluster_connection destructor
waits for all related Ndb objects to be released before completing. (Bug #19999242)

References: See also: Bug #19846392.

• The global checkpoint commit and save protocols can be delayed by various causes, including slow
disk I/O. The DIH master node monitors the progress of both of these protocols, and can enforce a
maximum lag time during which the protocols are stalled by killing the node responsible for the lag when
it reaches this maximum. This DIH master GCP monitor mechanism did not perform its task more than
once per master node; that is, it failed to continue monitoring after detecting and handling a GCP stop.
(Bug #20128256)

References: See also: Bug #19858151, Bug #20069617, Bug #20062754.

• When running mysql_upgrade on a MySQL NDB Cluster SQL node, the expected drop of the
performance_schema database on this node was instead performed on all SQL nodes connected to
the cluster. (Bug #20032861)

• The warning shown when an ALTER TABLE ALGORITHM=INPLACE ... ADD COLUMN statement
automatically changes a column's COLUMN_FORMAT from FIXED to DYNAMIC now includes the name of
the column whose format was changed. (Bug #20009152, Bug #74795)

• The local checkpoint scan fragment watchdog and the global checkpoint monitor can each exclude a
node when it is too slow when participating in their respective protocols. This exclusion was implemented
by simply asking the failing node to shut down, which in case this was delayed (for whatever reason)
could prolong the duration of the GCP or LCP stall for other, unaffected nodes.

To minimize this time, an isolation mechanism has been added to both protocols whereby any other live
nodes forcibly disconnect the failing node after a predetermined amount of time. This allows the failing

97

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-operations-per-fragment.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxparallelcopyinstances
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskpagebufferentries
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb-cluster-connection.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndb.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-online-operations.html

MySQL NDB Cluster 7.4 Release Notes

node the opportunity to shut down gracefully (after logging debugging and other information) if possible,
but limits the time that other nodes must wait for this to occur. Now, once the remaining live nodes have
processed the disconnection of any failing nodes, they can commence failure handling and restart the
related protocol or protocol, even if the failed node takes an excessively long time to shut down. (Bug
#19858151)

References: See also: Bug #20128256, Bug #20069617, Bug #20062754.

• The matrix of values used for thread configuration when applying the setting of the
MaxNoOfExecutionThreads configuration parameter has been improved to align with support for
greater numbers of LDM threads. See Multi-Threading Configuration Parameters (ndbmtd), for more
information about the changes. (Bug #75220, Bug #20215689)

• When a new node failed after connecting to the president but not to any other live node, then
reconnected and started again, a live node that did not see the original connection retained old state
information. This caused the live node to send redundant signals to the president, causing it to fail. (Bug
#75218, Bug #20215395)

• In the NDB kernel, it was possible for a TransporterFacade object to reset a buffer while the data
contained by the buffer was being sent, which could lead to a race condition. (Bug #75041, Bug
#20112981)

• mysql_upgrade failed to drop and recreate the ndbinfo database and its tables as expected. (Bug
#74863, Bug #20031425)

• Due to a lack of memory barriers, MySQL NDB Cluster programs such as ndbmtd did not compile on
POWER platforms. (Bug #74782, Bug #20007248)

• In spite of the presence of a number of protection mechanisms against overloading signal buffers,
it was still in some cases possible to do so. This fix adds block-level support in the NDB kernel (in
SimulatedBlock) to make signal buffer overload protection more reliable than when implementing
such protection on a case-by-case basis. (Bug #74639, Bug #19928269)

• Copying of metadata during local checkpoints caused node restart times to be highly variable which
could make it difficult to diagnose problems with restarts. The fix for this issue introduces signals
(including PAUSE_LCP_IDLE, PAUSE_LCP_REQUESTED, and PAUSE_NOT_IN_LCP_COPY_META_DATA)
to pause LCP execution and flush LCP reports, making it possible to block LCP reporting at times when
LCPs during restarts become stalled in this fashion. (Bug #74594, Bug #19898269)

• When a data node was restarted from its angel process (that is, following a node failure), it could be
allocated a new node ID before failure handling was actually completed for the failed node. (Bug #74564,
Bug #19891507)

• In NDB version 7.4, node failure handling can require completing checkpoints on up to 64 fragments.
(This checkpointing is performed by the DBLQH kernel block.) The requirement for master takeover to
wait for completion of all such checkpoints led in such cases to excessive length of time for completion.

To address these issues, the DBLQH kernel block can now report that it is ready for master takeover
before it has completed any ongoing fragment checkpoints, and can continue processing these while the
system completes the master takeover. (Bug #74320, Bug #19795217)

• Local checkpoints were sometimes started earlier than necessary during node restarts, while the node
was still waiting for copying of the data distribution and data dictionary to complete. (Bug #74319, Bug
#19795152)

• The check to determine when a node was restarting and so know when to accelerate local checkpoints
sometimes reported a false positive. (Bug #74318, Bug #19795108)

98

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbmtd-maxnoofexecutionthreads
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#mysql-cluster-ndbd-definition-ndbmtd-parameters
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html

MySQL NDB Cluster 7.4 Release Notes

• Values in different columns of the ndbinfo tables disk_write_speed_aggregate and
disk_write_speed_aggregate_node were reported using differing multiples of bytes. Now all of
these columns display values in bytes.

In addition, this fix corrects an error made when calculating the standard deviations used in
the std_dev_backup_lcp_speed_last_10sec, std_dev_redo_speed_last_10sec,
std_dev_backup_lcp_speed_last_60sec, and std_dev_redo_speed_last_60sec columns of
the ndbinfo.disk_write_speed_aggregate table. (Bug #74317, Bug #19795072)

• Recursion in the internal method Dblqh::finishScanrec() led to an attempt to create two list
iterators with the same head. This regression was introduced during work done to optimize scans for
version 7.4 of the NDB storage engine. (Bug #73667, Bug #19480197)

• Transporter send buffers were not updated properly following a failed send. (Bug #45043, Bug
#20113145)

Changes in MySQL NDB Cluster 7.4.2 (5.6.21-ndb-7.4.2) (2014-11-05,
Development Milestone)

• Functionality Added or Changed

• Bugs Fixed

Functionality Added or Changed

• Added the restart_info table to the ndbinfo information database to provide current status and
timing information relating to node and system restarts. By querying this table, you can observe the
progress of restarts in real time. (Bug #19795152)

• After adding new data nodes to the configuration file of a MySQL NDB Cluster having many API
nodes, but prior to starting any of the data node processes, API nodes tried to connect to these
“missing” data nodes several times per second, placing extra loads on management nodes and the
network. To reduce unnecessary traffic caused in this way, it is now possible to control the amount of
time that an API node waits between attempts to connect to data nodes which fail to respond; this is
implemented in two new API node configuration parameters StartConnectBackoffMaxTime and
ConnectBackoffMaxTime.

Time elapsed during node connection attempts is not taken into account when applying these
parameters, both of which are given in milliseconds with approximately 100 ms resolution. As
long as the API node is not connected to any data nodes as described previously, the value of the
StartConnectBackoffMaxTime parameter is applied; otherwise, ConnectBackoffMaxTime is
used.

In a MySQL NDB Cluster with many unstarted data nodes, the values of these parameters can be raised
to circumvent connection attempts to data nodes which have not yet begun to function in the cluster, as
well as moderate high traffic to management nodes.

For more information about the behavior of these parameters, see Defining SQL and Other API Nodes in
an NDB Cluster. (Bug #17257842)

Bugs Fixed

• When performing a batched update, where one or more successful write operations from the start of the
batch were followed by write operations which failed without being aborted (due to the AbortOption
being set to AO_IgnoreError), the failure handling for these by the transaction coordinator leaked
CommitAckMarker resources. (Bug #19875710)

99

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-aggregate.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-aggregate-node.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-restart-info.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-startconnectbackoffmaxtime
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html#ndbparam-api-connectbackoffmaxtime
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-api-definition.html
https://dev.mysql.com/doc/ndbapi/en/ndb-ndboperation.html#ndb-ndboperation-abortoption

MySQL NDB Cluster 7.4 Release Notes

References: This issue is a regression of: Bug #19451060, Bug #73339.

• Online downgrades to MySQL NDB Cluster 7.3 failed when a MySQL NDB Cluster 7.4 master attempted
to request a local checkpoint with 32 fragments from a data node already running NDB 7.3, which
supports only 2 fragments for LCPs. Now in such cases, the NDB 7.4 master determines how many
fragments the data node can handle before making the request. (Bug #19600834)

• The fix for a previous issue with the handling of multiple node failures required determining the number
of TC instances the failed node was running, then taking them over. The mechanism to determine
this number sometimes provided an invalid result which caused the number of TC instances in the
failed node to be set to an excessively high value. This in turn caused redundant takeover attempts,
which wasted time and had a negative impact on the processing of other node failures and of global
checkpoints. (Bug #19193927)

References: This issue is a regression of: Bug #18069334.

• The server side of an NDB transporter disconnected an incoming client connection very quickly during
the handshake phase if the node at the server end was not yet ready to receive connections from the
other node. This led to problems when the client immediately attempted once again to connect to the
server socket, only to be disconnected again, and so on in a repeating loop, until it suceeded. Since
each client connection attempt left behind a socket in TIME_WAIT, the number of sockets in TIME_WAIT
increased rapidly, leading in turn to problems with the node on the server side of the transporter.

Further analysis of the problem and code showed that the root of the problem lay in the handshake
portion of the transporter connection protocol. To keep the issue described previously from occurring,
the node at the server end now sends back a WAIT message instead of disconnecting the socket when
the node is not yet ready to accept a handshake. This means that the client end should no longer need
to create a new socket for the next retry, but can instead begin immediately with a new handshake hello
message. (Bug #17257842)

• Corrupted messages to data nodes sometimes went undetected, causing a bad signal to be delivered to
a block which aborted the data node. This failure in combination with disconnecting nodes could in turn
cause the entire cluster to shut down.

To keep this from happening, additional checks are now made when unpacking signals received over
TCP, including checks for byte order, compression flag (which must not be used), and the length of the
next message in the receive buffer (if there is one).

Whenever two consecutive unpacked messages fail the checks just described, the current message
is assumed to be corrupted. In this case, the transporter is marked as having bad data and no more
unpacking of messages occurs until the transporter is reconnected. In addition, an entry is written to
the cluster log containing the error as well as a hex dump of the corrupted message. (Bug #73843, Bug
#19582925)

• During restore operations, an attribute's maximum length was used when reading variable-length
attributes from the receive buffer instead of the attribute's actual length. (Bug #73312, Bug #19236945)

Changes in MySQL NDB Cluster 7.4.1 (5.6.20-ndb-7.4.1) (2014-09-25,
Development Milestone)

• Node Restart Performance and Reporting Enhancements

• Improved Scan and SQL Processing

• Per-Fragment Memory Reporting

100

MySQL NDB Cluster 7.4 Release Notes

• Bugs Fixed

Node Restart Performance and Reporting Enhancements

• Performance: A number of performance and other improvements have been made with regard to node
starts and restarts. The following list contains a brief description of each of these changes:

• Before memory allocated on startup can be used, it must be touched, causing the operating system
to allocate the actual physical memory needed. The process of touching each page of memory that
was allocated has now been multithreaded, with touch times on the order of 3 times shorter than with
a single thread when performed by 16 threads.

• When performing a node or system restart, it is necessary to restore local checkpoints for the
fragments. This process previously used delayed signals at a point which was found to be critical to
performance; these have now been replaced with normal (undelayed) signals, which should shorten
significantly the time required to back up a MySQL NDB Cluster or to restore it from backup.

• Previously, there could be at most 2 LDM instances active with local checkpoints at any given time.
Now, up to 16 LDMs can be used for performing this task, which increases utilization of available CPU
power, and can speed up LCPs by a factor of 10, which in turn can greatly improve restart times.

Better reporting of disk writes and increased control over these also make up a large part of this
work. New ndbinfo tables disk_write_speed_base, disk_write_speed_aggregate, and
disk_write_speed_aggregate_node provide information about the speed of disk writes for each
LDM thread that is in use. The DiskCheckpointSpeed and DiskCheckpointSpeedInRestart
configuration parameters have been deprecated, and are subject to removal in a future
MySQL NDB Cluster version. This release adds the data node configuration parameters
MinDiskWriteSpeed, MaxDiskWriteSpeed, MaxDiskWriteSpeedOtherNodeRestart, and
MaxDiskWriteSpeedOwnRestart to control write speeds for LCPs and backups when the present
node, another node, or no node is currently restarting.

For more information, see the descriptions of the ndbinfo tables and MySQL NDB Cluster
configuration parameters named previously.

• Reporting of MySQL NDB Cluster start phases has been improved, with more frequent printouts. New
and better information about the start phases and their implementation has also been provided in the
sources and documentation. See Summary of NDB Cluster Start Phases.

Improved Scan and SQL Processing

• Performance: Several internal methods relating to the NDB receive thread have been optimized to
make mysqld more efficient in processing SQL applications with the NDB storage engine. In particular,
this work improves the performance of the NdbReceiver::execTRANSID_AI() method, which is
commonly used to receive a record from the data nodes as part of a scan operation. (Since the receiver
thread sometimes has to process millions of received records per second, it is critical that this method
does not perform unnecessary work, or tie up resources that are not strictly needed.) The associated
internal functions receive_ndb_packed_record() and handleReceivedSignal() methods have
also been improved, and made more efficient.

Per-Fragment Memory Reporting

• Information about memory usage by individual fragments can now be obtained from the
memory_per_fragment view added in this release to the ndbinfo information database. This
information includes pages having fixed, and variable element size, rows, fixed element free slots,
variable element free bytes, and hash index memory usage. For information, see The ndbinfo
memory_per_fragment Table.

101

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-base.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-aggregate.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-disk-write-speed-aggregate-node.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskcheckpointspeed
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-diskcheckpointspeedinrestart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-mindiskwritespeed
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeed
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedothernoderestart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-maxdiskwritespeedownrestart
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-start-phases.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memory-per-fragment.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memory-per-fragment.html
https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-ndbinfo-memory-per-fragment.html

MySQL NDB Cluster 7.4 Release Notes

Bugs Fixed

• NDB Cluster APIs: When an NDB API client application received a signal with an invalid block or signal
number, NDB provided only a very brief error message that did not accurately convey the nature of
the problem. Now in such cases, appropriate printouts are provided when a bad signal or message is
detected. In addition, the message length is now checked to make certain that it matches the size of the
embedded signal. (Bug #18426180)

• In some cases, transporter receive buffers were reset by one thread while being read by another.
This happened when a race condition occurred between a thread receiving data and another thread
initiating disconnect of the transporter (disconnection clears this buffer). Concurrency logic has now been
implemented to keep this race from taking place. (Bug #19552283, Bug #73790)

• When a new data node started, API nodes were allowed to attempt to register themselves with the data
node for executing transactions before the data node was ready. This forced the API node to wait an
extra heartbeat interval before trying again.

To address this issue, a number of HA_ERR_NO_CONNECTION errors (Error 4009) that could be issued
during this time have been changed to Cluster temporarily unavailable errors (Error 4035),
which should allow API nodes to use new data nodes more quickly than before. As part of this fix, some
errors which were incorrectly categorised have been moved into the correct categories, and some errors
which are no longer used have been removed. (Bug #19524096, Bug #73758)

• Executing ALTER TABLE ... REORGANIZE PARTITION after increasing the number of data nodes
in the cluster from 4 to 16 led to a crash of the data nodes. This issue was shown to be a regression
caused by previous fix which added a new dump handler using a dump code that was already in use
(7019), which caused the command to execute two different handlers with different semantics. The new
handler was assigned a new DUMP code (7024). (Bug #18550318)

References: This issue is a regression of: Bug #14220269.

• When certain queries generated signals having more than 18 data words prior to a node failure, such
signals were not written correctly in the trace file. (Bug #18419554)

• Failure of multiple nodes while using ndbmtd with multiple TC threads was not handled gracefully under
a moderate amount of traffic, which could in some cases lead to an unplanned shutdown of the cluster.
(Bug #18069334)

• For multithreaded data nodes, some threads do communicate often, with the result that very old signals
can remain at the top of the signal buffers. When performing a thread trace, the signal dumper calculated
the latest signal ID from what it found in the signal buffers, which meant that these old signals could be
erroneously counted as the newest ones. Now the signal ID counter is kept as part of the thread state,
and it is this value that is used when dumping signals for trace files. (Bug #73842, Bug #19582807)

Index

Symbols
--connect-retries, 34, 82
--connect-retry-delay, 34, 82
--database, 38, 84
--diff-default, 20, 70
--disable-indexes, 4, 38, 84
--exclude-databases, 38, 84
--include-databases, 38, 84
--initial, 13, 25, 65, 74

102

https://dev.mysql.com/doc/refman/5.6/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/5.6/en/alter-table-partition-operations.html

MySQL NDB Cluster 7.4 Release Notes

--ndb-log-fail-terminate, 9, 62
--ndb-log-update-as-write, 34, 82
--ndb-log-updated-only, 34, 82
--ndb-wait-connected, 43, 88
--query-all, 20, 70
--rebuild-indexes, 38, 84
--restore-data, 43, 88
--restore-epoch, 11, 63
--restore-meta, 43, 88
-a, 20, 70
-flifetime-dse, 20, 70
-Werror=logical-op, 31, 79
.ctl files, 25, 74
.ndb files, 48, 93
_vsnprintf(), 31, 79
~Ndb, 29, 77

A
ADD COLUMN, 51, 96
add node, 57, 100
add nodes, 26, 55, 75, 99
ALTER, 10, 62
ALTER TABLE, 23, 31, 38, 73, 79, 84
ANALYZE TABLE, 31, 43, 79, 88
angel process, 51, 96
AnyValue, 17
AO_IgnoreError, 55, 99
API nodes, 23, 31, 55, 73, 79, 99
ApiVerbose, 29, 77
API_REGREQ, 57, 100
arbitration, 29, 77
autoincrement, 12, 64
AUTO_INCREMENT, 17, 68

B
backup, 11, 20, 26, 38, 43, 47, 70, 75, 84, 88, 92
backup and restore, 38
BackupDataBufferSize, 31, 38, 79, 84
BackupDiskWriteSpeedPct, 38, 84
BackupLogBufferSize, 38, 84
BackupMaxWriteSize, 38, 84
backups, 23, 73
BackupWriteSize, 38, 84
backward compatibility, 43, 88
BatchByteSize, 48, 93
BatchSize, 48, 93
binary log, 20
binary log injector, 34, 82
binlog injector, 34, 82
BLOB, 12, 13, 14, 43, 64, 65
blocks, 43, 88
bulk deletes, 47, 92
bulk updates, 20, 70

103

MySQL NDB Cluster 7.4 Release Notes

Busy error, 43, 88

C
C API, 31
cascading_scans_count, 26, 75
changes

NDB Cluster, 60
CHAR, 51, 96
close_clnt(), 43, 88
cluster failure and recovery, 43, 88
Cluster temporary unavailable, 57, 100
ClusterJDatastoreException, 26
ClusterJPA, 20
ClusterMgr, 38, 84
CMake3, 12, 64
CM_ACKADD, 51, 96
CM_REGREF, 4
Column::getSizeInBytesForRecord(), 43, 88
COLUMN_FORMAT, 51, 96
COLUMN_FORMAT DYNAMIC, 34, 82
COMMENT, 50, 94
CommitAckMarker, 55, 99
compatibility, 43, 50, 88, 94
compiling, 12, 20, 31, 34, 51, 64, 70, 79, 82, 96
composite keys, 38, 84
concurrency, 20, 70
concurrent trigger operations, 14, 66
ConfigInfo.cpp, 31, 79
configuration, 20
configuration parameters, 34, 82
conflict detection, 38
conflict resolution, 38, 57
ConnectBackoffMaxTime, 55, 99
connection protocol, 55, 99
connections, 26, 75
CONSTRAINT, 50, 94
copy fragment, 48, 93
COPY_FRAGREQ, 43, 88
correlation IDs, 12, 64
CREATE INDEX, 31, 79
CREATE NODEGROUP, 26, 75
CREATE TABLE, 26, 31, 75, 79
CREATE VIEW, 38, 84
createEvent(), 38, 84
create_old_temporals, 38
cross-version replication, 38
c_exec, 26, 75

D
data node failure, 20, 70
data node failures, 23, 73
data node halts, 51
data node restarts, 29, 77

104

MySQL NDB Cluster 7.4 Release Notes

data node shutdown, 16, 66
data nodes, 16, 20, 50, 67, 70, 94
DBACC, 20, 31, 70, 79
DBDICT, 29, 38, 43, 77, 84, 88
DBDIH, 6, 23, 26, 57, 60, 73, 75, 100
DBLQH, 20, 51, 55, 70, 96, 99
Dblqh::finishScanrec(), 51, 96
DBSPJ, 12, 20, 26, 29, 64, 70, 75, 77
Dbspj::execSIGNAL_DROPPED_REP(), 26, 75
Dbspj::execTRANSID_AI(), 26, 75
DBTC, 19, 20, 29, 55, 69, 70, 77, 99
Dbtc::execSIGNAL_DROPPED_REP(), 20, 70
DBTUP, 20, 70
DbtupVarAlloc, 29, 77
DBTUX, 19, 69
DDL statements, 34, 82
deadlocks, 38, 43, 84, 88
debug, 34, 82
DefaultHashMapSize, 50, 94
DefaultOperationRedoProblemAction, 43, 88
DELETE, 20, 47, 70, 92
deprecation, 43, 88
DICT master, 51, 96
DictHashMapInfo::HashMap, 50, 94
Dictionary, 38, 84
dictionary cache, 20, 70
Dictionary::getTable(), 50, 94
DictTrace, 29, 77
DIH master, 51, 96
disconnection, 13, 65
DISCONNECT_REP, 48, 93
DiskBufferPageEntries, 51, 96
disk_write_speed_aggregate, 51, 96
disk_write_speed_aggregate_node, 51, 96
dojo, 7, 8, 61, 61
downgrades, 55, 99
DROP DATABASE, 48, 51, 93, 96
drop events, 34
DROP INDEX, 34, 82
drop index, 34, 82
DROP TABLE, 13, 20, 65, 70
dropEvent(), 38, 84
DROP_TAB_REQ, 26, 75
DROP_TRIG_IMPL_REQ, 14, 66
DUMP, 29, 77
DUMP 7019, 57, 100
DUMP 7024, 57, 100
DUMP 7027, 19, 69
DUMP 9991, 48, 93
DUMP codes, 19, 69
duplicate key, 38, 84
duplicate keys, 31, 79
duplicate weedout, 17, 68
DYNAMIC, 23, 73

105

MySQL NDB Cluster 7.4 Release Notes

E
EMPTY_LCP, 29, 77
epoch, 51, 96
epochs, 11, 63
error 1419, 38, 84
ERROR 1553, 34, 82
error 2301, 50, 94
error 240, 20, 70
error 746, 38, 84
Error 899, 25, 74
error handling, 34, 51, 57, 82, 96, 100
error messages, 10, 63
errors, 20, 26, 31, 38, 70, 75, 79, 84
Event API, 51, 96
event buffer, 38, 43, 84, 88
event logging, 31, 79
event queue, 43, 88
Event::TableEvent, 43, 88
EventOperation, 51, 96
examples, 51, 96
exceptional event types, 43, 88
exceptions table, 57
execSUB_GCP_COMPLETE_REP(), 38, 84
execute_signals(), 20, 70
EXPLAIN, 23, 73

F
failover, 57
failure handling, 34
FAIL_REP, 48, 93
File not found error, 43, 88
FILES, 17, 68
FLUSH_AI, 20, 70
forced shutdown, 29, 77
foreign keys, 20, 23, 25, 26, 29, 31, 34, 38, 50, 70, 73, 74, 75, 77, 79,
82, 84, 94
fractional seconds, 29
fragment replicas, 51, 96
fragments, 55, 99
FULLY_REPLICATED, 25, 74

G
garbage collection, 34, 43, 82
gcc, 4, 20, 70
GCI, 8, 26, 34, 38, 51, 61, 75, 82, 84, 96
GCI boundary, 16, 66
GCI operations, 47, 92
Gci_ops, 16, 66
GCP, 10, 50, 62, 94
GCP monitor, 51, 96
GCP stop, 51, 96
getColumn(), 20, 70
getConnectionPoolSessionCounts(), 29

106

MySQL NDB Cluster 7.4 Release Notes

GETTABINFOREQ, 29, 77
GET_TABINFOREQ, 43, 88
GET_TABLEID_REQ, 4
GET_TABLINFOREF, 43, 88
GET_TABLINFOREQ, 43, 88
GOUP BY, 20, 70
grandchild, 25, 74
GSIReader, 48, 93

H
handleReceivedSignal(), 57, 100
handshake, 55, 99
HashMap, 25, 74
HA_ERR_NO_CONNECTION, 57, 100
ha_ndbcluster::exec_bulk_update(), 20, 70
heartbeat failure handling, 20, 70
HeartbeatIntervalDbApi, 43, 88

I
IBM POWER, 51, 96
ID allocation, 51, 96
Important Change, 12, 20, 31, 34, 38, 43, 48, 51, 64, 79, 82, 84, 88, 93,
96
IN, 67
Incompatible Change, 29, 38, 43, 77, 84, 88
index invalidation, 20, 70
index operations, 51, 96
index statistics, 38, 43, 84, 88
inet_ntoa(), 38, 84
inet_ntop(), 38, 84
INFORMATION_SCHEMA, 17, 68
initial restart, 38, 84
INPLACE, 51, 96
INSERT, 43, 88
invalid configuration, 20, 70
invalidateLcpInfoAfterSr(), 34, 82
InvalidAttrInfo, 31, 79
isConsistent(), 34, 82

J
job buffer, 19, 20, 69, 70
job buffer full, 14, 66
JOIN_TAB, 17, 68

K
key operations, 51, 96

L
last page of log, 48, 93
lastFragmentFlag, 48, 93
latestLCP_ID, 48, 93
LCP, 13, 19, 26, 29, 31, 34, 48, 51, 55, 65, 69, 75, 77, 79, 82, 93,
96, 99

107

MySQL NDB Cluster 7.4 Release Notes

LCP pause, 13, 65
LCP scans, 43, 88
LCPs, 34, 81
LcpScanProgressTimeout, 43, 88
LCP_COMPLETE_REP, 48, 93
LCP_FRAG_ORD, 48, 93
LCP_FRAG_REP, 23, 26, 73, 75
LCP_SKIP, 43, 88
LDM, 20, 29, 70, 77
LDM threads, 51, 96
leak, 50, 94
LGMAN, 19, 69
limitations (removal), 20, 70
livelocks, 43, 88
locks, 10, 62
lock_ndb_objects(), 26, 75
log files, 20, 70
logging, 9, 10, 19, 29, 34, 38, 51, 62, 62, 69, 77, 82, 84, 96
long long, 50, 94
LongMessageBuffer, 25, 74
LONGVARBINARY, 67
lookups, 20, 70
lookup_resume, 26, 75
Loopback transporter, 38, 84
lost connection, 29
LQHKEYCONF, 55, 99
LQHKEYREQ, 11, 63

M
malloc(), 26, 75
master takeover, 26, 51, 75, 96
materialized semijoin, 17, 68
MaxBufferedEpochs, 31, 79
MaxDiskWriteSpeedOtherNodeRestart, 34, 81
MaxDiskWriteSpeedOwnRestart, 34, 81
MaxNoOfExecutionThreads, 20, 43, 51, 70, 88, 96
MaxParallelCopyInstances, 51, 96
MaxScanBatchSize, 48, 93
maxTimeToWait, 16, 67
max_failure_time, 48, 93
MAX_NULL_BITS, 34, 82
MAX_ROWS, 26, 75
memory leak, 47, 92
memory usage percent, 38, 84
memory_per_fragment, 25, 57, 74, 100
message corruption, 55, 99
metadata, 31, 79
metadata lock, 23, 73
metadata operations, 31, 79
mgmd, 38, 84
Microsoft Windows, 31, 79
MT scheduler, 43, 88
mt-scheduler, 43, 88

108

MySQL NDB Cluster 7.4 Release Notes

mt.cpp, 20, 70
mt_thr_config.cpp::do_bind(), 20, 70
multiple connections, 50, 94
multiple LDMs, 38, 84
multiple mysqlds, 38, 84
multiple-statement transactions, 38, 84
multithreaded, 43, 88
MySQL NDB ClusterJ, 14, 20, 26, 29, 43, 51
mysql.ndb_apply_status, 34
mysqld, 13, 20, 23, 29, 31, 34, 38, 43, 47, 48, 50, 51, 57, 65, 70,
73, 77, 79, 82, 84, 88, 92, 93, 94, 96, 100
mysql_fix_privilege_tables.sql, 38, 84
mysql_options(), 31
mysql_upgrade, 38, 51, 84, 96
m_abort(), 26, 75
m_active_op_count, 38, 84
m_buffer, 20, 70
m_buffered_size, 20, 70
m_deferred, 26, 75
m_failure_detected, 38, 84
m_latestGCI, 38, 84
m_max_batch_size_bytes, 20, 70
m_sending, 20, 70
m_sending_size, 20, 70

N
Ndb, 51, 96
NDB Client Programs, 6, 7, 9, 60, 61
NDB Cluster, 4, 5, 6, 7, 8, 9, 10, 10, 11, 12, 13, 14, 16, 16, 17,
19, 20, 23, 25, 26, 29, 31, 34, 34, 38, 43, 47, 48, 50, 51, 55, 57,
60, 60, 61, 61, 62, 62, 63, 63, 64, 65, 66, 66, 67, 67, 68, 69, 70,
73, 74, 75, 77, 79, 81, 82, 84, 88, 92, 93, 94, 96, 99, 100
NDB Cluster APIs, 7, 16, 16, 20, 26, 29, 31, 34, 38, 43, 48, 50, 51, 57,
61, 66, 67, 67, 70, 75, 77, 79, 82, 84, 88, 93, 94, 96, 100
NDB Disk Data, 13, 23, 34, 51, 65, 73, 82, 96
NDB distributed triggers, 29, 77
ndb programs, 34, 82
NDB Replication, 13, 17, 20, 34, 38, 55, 57
NDB schema operations, 34, 82
NDB Util, 29, 77
NDB$BLOB, 13
NDB$EPOCH2_TRANS(), 38
ndb-common, 5, 60
ndb-update-minimal, 20
Ndb::dropEventOperation(), 16, 34, 66, 82
Ndb::getHighestQueuedEpoch(), 43, 88
Ndb::getNextEventOpInEpoch3(), 17
Ndb::isExpectingHigherQueuedEpochs(), 43, 88
Ndb::nextEvent(), 43, 88
Ndb::nextEvent2(), 38, 84
Ndb::pollEvents(), 43, 88
Ndb::pollEvents2(), 43, 88
Ndb::setEventBufferQueueEmptyEpoch(), 31, 79

109

MySQL NDB Cluster 7.4 Release Notes

ndbcluster_binlog_wait(), 26, 75
ndbd, 25, 29, 34, 48, 55, 74, 77, 82, 93, 99
NdbDictionary, 31, 79
NdbEvent::TableEvent, 43, 88
NdbEventBuffer, 38, 47, 84, 92
NdbEventBuffer::alloc_mem(), 50, 94
NdbEventBuffer::m_latestGCI, 38, 84
NdbEventOperation, 34, 43, 82, 88
NDBFS, 17, 34, 68, 82
NdbIndexOperation, 31, 79
NdbIndexScanOperation::setBound(), 67
ndbinfo, 25, 34, 50, 51, 55, 57, 74, 82, 94, 96, 99, 100
ndbinfo.tc_time_track_stats, 29, 77
ndbinfo.threadstat, 26, 75
ndbinfo_offline, 38, 84
NDBJTie, 20
ndbmemcache, 6, 7
ndbmtd, 20, 23, 25, 26, 31, 34, 51, 57, 70, 73, 74, 75, 79, 82, 96,
100
NdbObjectIdMap, 23, 73
NdbOperation::AbortOption, 55, 99
NdbRecAttr::receive_data(), 55, 99
NdbReceiver, 48, 67, 93
NdbReceiver::execTRANSID_AI(), 57, 100
NdbReceiverBuffer, 9, 62
NdbRecord, 48, 93
ndbrequire, 48, 93
NDBT, 12, 64
NdbTable, 20, 70
NdbTransaction::setSchemObjectOwnerChecks(), 50, 94
ndb_binlog_setup(), 31, 79
ndb_clear_apply_status, 34
Ndb_cluster_connection, 26, 43, 51, 75, 88, 96
ndb_config, 20, 43, 70, 88
ndb_desc, 38, 84
ndb_index_stat_option, 43, 88
Ndb_last_commit_epoch_server, 50, 94
Ndb_last_commit_epoch_session, 50, 94
ndb_logevent_get_next(), 26, 75
NDB_MAX_TUPLE_SIZE, 34, 82
ndb_mgm, 26, 75
ndb_mgmd, 29, 31, 38, 55, 77, 79, 84, 99
ndb_mgm_get_latest_error(), 38, 84
ndb_mgm_get_latest_error_desc(), 38, 84
ndb_mgm_get_latest_error_msg(), 38, 84
NDB_MGM_NODE_TYPE_UNKNOWN, 4
ndb_print_backup_file, 23, 73
ndb_print_file, 31, 79
Ndb_rep_tab_key, 5, 60
ndb_restore, 4, 11, 12, 16, 25, 26, 31, 34, 38, 43, 50, 63, 64, 66, 67,
74, 75, 79, 82, 84, 88, 94
ndb_schema, 34, 82
ndb_setup.py, 6, 7, 60, 61
ndb_show_tables, 9, 20, 25, 38, 70, 74, 84

110

MySQL NDB Cluster 7.4 Release Notes

ndb_slave_conflict_role, 57
ndb_waiter, 9
nextEvent(), 34, 38, 82, 84
nextEvent2(), 38, 84
node failure, 38, 84
node failure handling, 6, 19, 20, 31, 50, 51, 55, 57, 60, 69, 70, 79, 94,
96, 99, 100
node failures, 20, 70
node ID allocation, 10, 63
node restart, 19, 29, 34, 48, 69, 77, 82, 93
node restarts, 8, 26, 50, 51, 61, 75, 94, 96
node start, 31, 79
node starts, 38, 84
node takeover, 48, 55, 93, 99
Node.js, 7, 61
nodeFailure error, 29, 77
NodeInfo, 29, 77
noOfConnectedNodes, 38, 84
NoOfFragmentLogParts, 20, 70
NoOfReplicas, 48, 93
NO_OF_BUCKETS, 4
NULL, 23, 38, 67, 73, 84
null, 26, 75

O
object creation, 43, 88
object destruction, 43, 88
OM_WRITE_BUFFER, 17, 68
ON DELETE CASCADE, 12, 64
ON UPDATE CASCADE, 25, 74
online operations, 20, 70
operations_per_fragment, 51, 96
ORDER BY, 17, 68
OS X, 31, 79
overloads, 51, 96
O_SYNC, 17, 68

P
Packaging, 5, 7, 60, 61
parallel schema operations, 25, 74
PARTITION, 50, 94
partition info, 38, 84
Partitioning, 23, 73
PAUSE_LCP_IDLE, 51, 96
PAUSE_LCP_REQUESTED, 51, 96
PAUSE_NOT_IN_LCP_COPY_META_DATA, 51, 96
Performance, 57, 100
Performance Schema, 51, 96
pluggable authentication, 31
pollEvent(), 34, 82
pollEvents(), 16, 34, 38, 67, 82, 84
pollEvents2(), 16, 34, 38, 67, 82, 84
POSIX, 38, 84

111

MySQL NDB Cluster 7.4 Release Notes

prefixes, 31, 79
PREPARE_SEIZE_ERROR, 31, 79
PRIMARY KEY, 20, 70
primary keys, 38, 84
pushdown joins, 20, 70
P_TAIL_PROBLEM, 43, 88

Q
QEP_TAB, 17, 68
QMGR, 19, 69
query cache, 23, 73

R
race, 16, 67
rand(), 25, 74
read-only, 34
read_length, 20, 70
receive buffers, 57, 100
receive threads, 43, 88
receive_ndb_packed_record(), 57, 100
redo, 43, 88
redo log, 12, 64
redo log file rotation, 20, 70
redo log part metadata, 17, 68
REORGANIZE PARTITION, 16, 20, 57, 67, 70, 100
reportConnected(), 38, 84
reportDisconnected(), 38, 84
request distribution, 20, 70
RESET SLAVE, 34
RESTART, 13, 65
restarts, 10, 17, 23, 34, 38, 43, 48, 50, 51, 57, 63, 68, 73, 81, 84,
88, 93, 94, 96, 100
restart_info, 50, 55, 94, 99
restore, 26, 38, 55, 75, 84, 99
result buffers, 48, 93
row ID, 13, 65
run_job_buffers, 34, 82

S
SafeCounter, 12, 64
ScanFrag watchdog, 51, 96
scans, 23, 51, 57, 73, 96, 100
SchedulerResponsiveness, 31, 34, 79, 82
schema distribution, 31, 48, 79, 93
schema distribution coordinator, 23, 73
schema events, 34, 82
schema operations, 23, 34, 73, 82
schema ops, 31, 79
schemaTrans, 51, 96
SELECT, 10, 43, 62, 88
semijoin, 17, 68
send buffer, 16, 29, 43, 67, 77, 88
send buffers, 51, 96

112

MySQL NDB Cluster 7.4 Release Notes

send threads, 43, 88
SendBuffer, 38, 84
sending signals, 34, 82
send_buffer::m_node_total_send_buffer_size, 20, 70
SHOW CREATE TABLE, 23, 50, 73, 94
SHUTDOWN, 20, 70
shutdown, 29, 77
signal buffer overload, 51, 96
signal corruption, 55, 99
signal dump, 57, 100
signal handling, 48, 93
signal ID, 57, 100
signals, 67
SimulatedBlock, 51, 96
slave_parallel_workers, 20
SNAPSHOTSTART, 11
Solaris, 31, 79
SparseBitmask::getBitNo(), 20, 70
spintime, 31, 79
spintimer, 34, 82
SPJ, 20, 70
SQL node, 31, 79
SQL nodes, 31, 79
stack overflow, 50, 94
standard deviation, 51, 96
start phase 5, 50, 94
start, stop, restart, 38, 84
StartConnectBackoffMaxTime, 55, 99
starting, 38, 84
START_INFOREQ, 48, 93
START_LCP_REQ, 48, 93
std_dev_backup_lcp_speed_last_60sec, 51, 96
std_dev_redo_speed_last_60sec, 51, 96
STOP -f, 34, 82
stop GCI, 16, 66
StopOnError, 25, 74
Stuck in Send, 43, 88
subscription events, 34, 82
subscriptions, 38, 84
SUB_GCP_COMPLETE_ACK, 31, 50, 79, 94
SUB_GCP_COMPLETE_REP, 26, 34, 43, 50, 75, 82, 88, 94
SUB_START_CONF, 34, 82
SUB_STOP_REQ, 14, 66
SUMA, 4, 14, 31, 34, 38, 66, 79, 82, 84
sysfile, 38, 84
SYSTAB_0, 12, 64
system restart, 20, 26, 70, 75

T
TableEvent, 51, 96
tableno, 17, 68
Table_Map, 17
TC, 55, 57, 99, 100

113

MySQL NDB Cluster 7.4 Release Notes

TCP transporter, 38, 55, 84, 99
tc_time_track_stats, 34, 82
TEXT, 12, 14, 64
TE_EMPTY, 31, 38, 79, 84
TE_INCONSISTENT, 38, 84
TE_OUT_OF_MEMORY, 38, 84
TE_SUBSCRIBE, 34, 82
Thd_ndb::m_connect_count, 31, 79
thread contention, 43, 88
thread synchronization, 43, 88
ThreadConfig, 31, 34, 79, 82
TimeBetweenEpochs, 31, 50, 79, 94
TimeBetweenGlobalCheckpointsTimeout, 48, 93
timeout, 23, 73
timeouts, 26, 31, 34, 43, 75, 79, 82, 88
Timestamp, 29
TIME_WAIT, 55, 99
TINYBLOB, 11, 38, 63, 84
TOTAL_BUCKETS_INIT, 34, 43, 82, 88
trace, 57, 100
trace files, 57, 100
transaction ID, 26, 75
transactions, 51, 96
TRANSID_AI, 20, 70
Transporter::doDisconnect(), 57, 100
Transporter::doSend(), 51, 96
TransporterFacade, 38, 84
TransporterFacade::deliver_signal(), 43, 88
TransporterFacade::reset_send_buffer(), 51, 96
TransporterRegistry, 38, 84
TransporterRegistry::performReceive(), 57, 100
TransporterRegistry::prepareSendTemplate(), 16, 67
TransporterRegistry::reportError(), 38, 84
transporters, 55, 57, 99, 100
TRANS_AI, 20, 70
troubleshooting, 29, 77
TRUNCATE, 17, 68
type conversion, 11, 63

U
undo files, 13, 65
undo log, 43, 88
unique index, 31, 34, 79, 82
unique indexes, 31, 79
unique key, 38, 84
unique key checks, 34, 82
unique keys, 31, 38, 79, 84
unit tests, 20
units, 51, 96
unlock_ndb_objects(), 26, 75
unplanned shutdown, 25, 74
unqualified option, 20, 70
UPDATE CASCADE, 23, 73

114

MySQL NDB Cluster 7.4 Release Notes

upgrades, 8, 29, 38, 50, 61, 77, 95

V
VARBINARY, 48, 51, 93, 96
VARCHAR, 48, 51, 93, 96
verifyVarSpace(), 29, 77
VS 2015, 31, 79

W
wait locks, 14, 66
WAIT_EVENT, 34, 82
work threads, 43, 88

X
XML, 43, 88

Z
ZFAIL_CLOSING, 48, 93

115

116

	MySQL NDB Cluster 7.4 Release Notes
	Table of Contents
	Preface and Legal Notices
	Changes in MySQL NDB Cluster 7.4.34 (5.6.51-ndb-7.4.34) (2021-10-20, General Availability)
	Changes in MySQL NDB Cluster 7.4.33 (5.6.51-ndb-7.4.33) (2021-07-21, General Availability)
	Changes in MySQL NDB Cluster 7.4.32 (5.6.51-ndb-7.4.32) (2021-04-21, General Availability)
	Changes in MySQL NDB Cluster 7.4.31 (5.6.51-ndb-7.4.31) (2021-01-19, General Availability)
	Changes in MySQL NDB Cluster 7.4.30 (5.6.50-ndb-7.4.30) (2020-10-20, General Availability)
	Changes in MySQL NDB Cluster 7.4.29 (5.6.49-ndb-7.4.29) (2020-07-14, General Availability)
	Changes in MySQL NDB Cluster 7.4.28 (5.6.48-ndb-7.4.28) (2020-04-28, General Availability)
	Changes in MySQL NDB Cluster 7.4.27 (5.6.47-ndb-7.4.27) (2020-01-14, General Availability)
	Changes in MySQL NDB Cluster 7.4.26 (5.6.46-ndb-7.4.26) (2019-10-15, General Availability)
	Changes in MySQL NDB Cluster 7.4.25 (5.6.45-ndb-7.4.25) (2019-07-23, General Availability)
	Changes in MySQL NDB Cluster 7.4.24 (5.6.44-ndb-7.4.24) (2019-04-26, General Availability)
	Changes in MySQL NDB Cluster 7.4.23 (5.6.43-ndb-7.4.23) (2019-01-22, General Availability)
	Changes in MySQL NDB Cluster 7.4.22 (5.6.42-ndb-7.4.22) (2018-10-23, General Availability)
	Changes in MySQL NDB Cluster 7.4.21 (5.6.41-ndb-7.4.21) (2018-07-27, General Availability)
	Changes in MySQL NDB Cluster 7.4.20 (5.6.40-ndb-7.4.20) (2018-04-20, General Availability)
	Changes in MySQL NDB Cluster 7.4.19 (5.6.39-ndb-7.4.19) (2018-01-23, General Availability)
	Changes in MySQL NDB Cluster 7.4.18 (5.6.39-ndb-7.4.18) (2018-01-17, General Availability)
	Changes in MySQL NDB Cluster 7.4.17 (5.6.38-ndb-7.4.17) (2017-10-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.16 (5.6.37-ndb-7.4.16) (2017-07-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.15 (5.6.36-ndb-7.4.15) (2017-04-10, General Availability)
	Changes in MySQL NDB Cluster 7.4.14 (5.6.35-ndb-7.4.14) (2017-01-17, General Availability)
	Changes in MySQL NDB Cluster 7.4.13 (5.6.34-ndb-7.4.13) (2016-10-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.12 (5.6.31-ndb-7.4.12) (2016-07-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.11 (5.6.29-ndb-7.4.11) (2016-04-20, General Availability)
	Changes in MySQL NDB Cluster 7.4.10 (5.6.28-ndb-7.4.10) (2016-01-29, General Availability)
	Changes in MySQL NDB Cluster 7.4.9 (5.6.28-ndb-7.4.9) (2016-01-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.8 (5.6.27-ndb-7.4.8) (2015-10-16, General Availability)
	Changes in MySQL NDB Cluster 7.4.7 (5.6.25-ndb-7.4.7) (2015-07-13, General Availability)
	Changes in MySQL NDB Cluster 7.4.6 (5.6.24-ndb-7.4.6) (2015-04-14, General Availability)
	Changes in MySQL NDB Cluster 7.4.5 (5.6.23-ndb-7.4.5) (2015-03-20, General Availability)
	Changes in MySQL NDB Cluster 7.4.4 (5.6.23-ndb-7.4.4) (2015-02-26, General Availability)
	Changes in MySQL NDB Cluster 7.4.3 (5.6.22-ndb-7.4.3) (2015-01-21, Release Candidate)
	Changes in MySQL NDB Cluster 7.4.2 (5.6.21-ndb-7.4.2) (2014-11-05, Development Milestone)
	Changes in MySQL NDB Cluster 7.4.1 (5.6.20-ndb-7.4.1) (2014-09-25, Development Milestone)
	Release Series Changelogs: MySQL NDB Cluster 7.4
	Changes in MySQL NDB Cluster 7.4.33 (5.6.51-ndb-7.4.33) (2021-07-21, General Availability)
	Changes in MySQL NDB Cluster 7.4.31 (5.6.51-ndb-7.4.31) (2021-01-19, General Availability)
	Changes in MySQL NDB Cluster 7.4.30 (5.6.50-ndb-7.4.30) (2020-10-20, General Availability)
	Changes in MySQL NDB Cluster 7.4.29 (5.6.49-ndb-7.4.29) (2020-07-14, General Availability)
	Changes in MySQL NDB Cluster 7.4.28 (5.6.48-ndb-7.4.28) (2020-04-28, General Availability)
	Changes in MySQL NDB Cluster 7.4.27 (5.6.47-ndb-7.4.27) (2020-01-14, General Availability)
	Changes in MySQL NDB Cluster 7.4.26 (5.6.46-ndb-7.4.26) (2019-10-15, General Availability)
	Changes in MySQL NDB Cluster 7.4.25 (5.6.45-ndb-7.4.25) (2019-07-23, General Availability)
	Changes in MySQL NDB Cluster 7.4.24 (5.6.44-ndb-7.4.24) (2019-04-26, General Availability)
	Changes in MySQL NDB Cluster 7.4.23 (5.6.43-ndb-7.4.23) (2019-01-22, General Availability)
	Changes in MySQL NDB Cluster 7.4.22 (5.6.42-ndb-7.4.22) (2018-10-23, General Availability)
	Changes in MySQL NDB Cluster 7.4.21 (5.6.41-ndb-7.4.21) (2018-07-27, General Availability)
	Changes in MySQL NDB Cluster 7.4.20 (5.6.40-ndb-7.4.20) (2018-04-20, General Availability)
	Changes in MySQL NDB Cluster 7.4.19 (5.6.39-ndb-7.4.19) (2018-01-23, General Availability)
	Changes in MySQL NDB Cluster 7.4.18 (5.6.39-ndb-7.4.18) (2018-01-17, General Availability)
	Changes in MySQL NDB Cluster 7.4.17 (5.6.38-ndb-7.4.17) (2017-10-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.16 (5.6.37-ndb-7.4.16) (2017-07-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.15 (5.6.36-ndb-7.4.15) (2017-04-10, General Availability)
	Changes in MySQL NDB Cluster 7.4.14 (5.6.35-ndb-7.4.14) (2017-01-17, General Availability)
	Changes in MySQL NDB Cluster 7.4.13 (5.6.34-ndb-7.4.13) (2016-10-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.12 (5.6.31-ndb-7.4.12) (2016-07-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.11 (5.6.29-ndb-7.4.11) (2016-04-20, General Availability)
	Changes in MySQL NDB Cluster 7.4.10 (5.6.28-ndb-7.4.10) (2016-01-29, General Availability)
	Changes in MySQL NDB Cluster 7.4.9 (5.6.28-ndb-7.4.9) (2016-01-18, General Availability)
	Changes in MySQL NDB Cluster 7.4.8 (5.6.27-ndb-7.4.8) (2015-10-16, General Availability)
	Changes in MySQL NDB Cluster 7.4.7 (5.6.25-ndb-7.4.7) (2015-07-13, General Availability)
	Changes in MySQL NDB Cluster 7.4.6 (5.6.24-ndb-7.4.6) (2015-04-14, General Availability)
	Changes in MySQL NDB Cluster 7.4.5 (5.6.23-ndb-7.4.5) (2015-03-20, General Availability)
	Changes in MySQL NDB Cluster 7.4.4 (5.6.23-ndb-7.4.4) (2015-02-26, General Availability)
	Changes in MySQL NDB Cluster 7.4.3 (5.6.22-ndb-7.4.3) (2015-01-21, Release Candidate)
	Changes in MySQL NDB Cluster 7.4.2 (5.6.21-ndb-7.4.2) (2014-11-05, Development Milestone)
	Changes in MySQL NDB Cluster 7.4.1 (5.6.20-ndb-7.4.1) (2014-09-25, Development Milestone)

	Index

