

REPORT ON GITHUB’S ENTERPRISE CLOUD RELEVANT TO SECURITY (SOC 3 REPORT)

FOR THE PERIOD OCTOBER 1, 2019 TO SEPTEMBER 30, 2020

O 801.349.1360
F 866.326.6612

PO Box 711190

Salt Lake City, Utah 84171
www.thecadencegroup.com

 1

Section I – Report of Independent Service Auditors

To: GitHub, Inc.

Scope

We have examined GitHub’s accompanying assertion, titled “GitHub’s Assertion” (assertion), that the
controls within GitHub’s Enterprise Cloud were effective throughout the period October 1, 2019 to
September 30, 2020, to provide reasonable assurance that GitHub’s service commitments and system
requirements were achieved based on the trust services criteria relevant to security, availability, and
confidentiality (applicable trust services criteria) set forth in TSP section 100, 2017 Trust Services Criteria
for Security, Availability, Processing Integrity, Confidentiality, and Privacy (AICPA, Trust Services Criteria).

Service Organization’s Responsibilities

GitHub is responsible for its service commitments and system requirements and for designing,
implementing, and operating effective controls within the system to provide reasonable assurance
that GitHub’s service commitments and system requirements were achieved. GitHub has provided the
accompanying assertion about the effectiveness of controls within the system. When preparing its
assertion, GitHub is responsible for selecting, and identifying in its assertion, the applicable trust
services criteria, and for having a reasonable basis for its assertion by performing an assessment of the
controls within the system.

Service Auditor’s Responsibilities

Our responsibility is to express an opinion, based on our examination, on whether management’s
assertion that controls within the system were effective throughout the period to provide reasonable
assurance that the service organization’s service commitments and system requirements were
achieved based on the applicable trust services criteria. Our examination was conducted in
accordance with attestation standards established by the American Institute of Certified Public
Accountants. Those standards require that we plan and perform our examination to obtain reasonable
assurance about whether management’s assertion is fairly stated, in all material respects. We believe
that the evidence we obtained is sufficient and appropriate to provide a reasonable basis for our
opinion.

Our examination included:

• Obtaining an understanding of the system and the service organization’s service
commitments and system requirements

• Assessing the risks that controls were not effective to achieve GitHub’s service commitments
and system requirements based on the applicable trust services criteria

• Performing procedures to obtain evidence about whether controls within the system were
effective to achieve GitHub’s service commitments and system requirements based on the
applicable trust services criteria

O 801.349.1360
F 866.326.6612

PO Box 711190

Salt Lake City, Utah 84171
www.thecadencegroup.com

 2

Our examination also included performing such other procedures as we considered necessary in the
circumstances.

Service Auditor’s Independence and Quality Control

We have complied with the independence and other ethical requirements of the Code of Professional
Conduct established by the AICPA. We applied the Statements on Quality Control Standards
established by the AICPA and, accordingly, maintain a comprehensive system of quality control.

Inherent Limitations

There are inherent limitations in the effectiveness of any system of internal control, including the
possibility of human error and the circumvention of controls. Because of their nature, controls may not
always operate effectively to provide reasonable assurance that the service organization’s service
commitments and system requirements are achieved based on the applicable trust services criteria.
Also, the projection to the future of any conclusions about the effectiveness of controls is subject to
the risk that controls may become inadequate because of changes in conditions or that the degree of
compliance with policies or procedures may deteriorate.

Opinion

In our opinion, management’s assertion that the controls within GitHub’s system were effective
throughout the period October 1, 2019 to September 30, 2020, to provide reasonable assurance that
GitHub’s service commitments and system requirements were achieved based on the applicable trust
services criteria, is fairly stated, in all material respects.

November 13, 2020
Salt Lake City, Utah

 3

Section II – GitHub’s Assertion

We, are responsible for designing, implementing, operating, and maintaining effective controls within
GitHub’s Enterprise Cloud throughout the period October 1, 2019 to September 30, 2020, to provide
reasonable assurance that GitHub’s service commitments and system requirements relevant to
security, availability, and confidentiality were achieved. Our description of the boundaries of the
system is presented in Attachment A and identifies the aspects of the system covered by our assertion.

We have performed an evaluation of the effectiveness of the controls within the system throughout
the period October 1, 2019 to September 30, 2020, to provide reasonable assurance that GitHub’s
service commitments and system requirements were achieved based on the trust services criteria
relevant to security, availability, and confidentiality (applicable trust services criteria) set forth in TSP
section 100, 2017 Trust Services Criteria for Security, Availability, Processing Integrity, Confidentiality, and
Privacy (AICPA, Trust Services Criteria). GitHub’s objectives for the system, in applying the applicable
trust services criteria, are embodied in its service commitments and system requirements relevant to
the applicable trust services criteria. The principal service commitments and system requirements
related to the applicable trust services criteria are presented in Attachment B.

There are inherent limitations in any system of internal control, including the possibility of human
error and the circumvention of controls. Because of these inherent limitations, a service organization
may achieve reasonable, but not absolute, assurance that its service commitments and system
requirements are achieved.

We assert that the controls within the system were effective throughout the period October 1, 2019 to
September 30, 2020, to provide reasonable assurance that GitHub’s service commitments and system
requirements were achieved based on the applicable trust services criteria.

GitHub, Inc.
November 13, 2020

 4

Attachment A – GitHub’s Description of the Boundaries of Its Enterprise Cloud

Company Overview

GitHub, an independently operated Microsoft subsidiary, generated its first commit in 2007. It’s
headquartered in San Francisco, California, with additional offices in Boulder, Colorado; Tokyo, Japan;
and Amsterdam, Netherlands. GitHub currently employs around 1,000 employees, with approximately
65 percent of the workforce remote.

System Description

GitHub is a web-based software development platform built on the Git version control software.
Primarily used for software code, GitHub offers the distributed version control and source code
management functionality of Git with additional features and enhancements. Specifically, it provides
access control and several collaboration features including bug tracking, feature requests, task
management, and wikis.

GitHub’s Enterprise Cloud is GitHub’s SaaS solution for collaborative software development. Features
of the Enterprise Cloud service include:

Organizations

An organization is a collection of user accounts that owns repositories. Organizations have one or
more owners, who have administrative privileges for the organization. When a user creates an
organization, it does not have any repositories associated with it. At any time, members of the
organization with the Owner role can add new repositories or transfer existing repositories.

Code Hosting

GitHub is one of the largest code hosts in the world with millions of projects. Private, public, or open
source repositories are equipped with tools to host, version, and release code. Unlimited private
repositories allow keeping the code in one place, even when using Subversion (SVN) or working with
large files using Git Large File Storage (LFS).

Changes can be made to code in precise commits allowing for quick searches on commit messages in
the revision history to find a change. In addition, blame view enables users to trace changes and
discover how the file, and code base, has evolved.

With sharing, changes can be packaged from a recently closed milestone or finished project into a
new release. Users can draft and publish release notes, publish pre-release versions, attached files, and
link directly to the latest download.

Code Management

Code review is critical path to better code, and it’s fundamental to how GitHub works. Built-in review
tools make code review an essential part of team development workflows.

 5

A pull request (PR) is a living conversation where ideas can be shared, tasks assigned, details
discussed, and reviews conducted. Reviews happen faster when GitHub shows a user exactly what has
changed. Diffs compare versions of source code side by side, highlighting the parts that are new,
edited, or deleted.

PRs also enable clear feedback, review requests, and comments in context with comment threads
within the code. Comments may be bundled into one review or in reply to someone else’s comments
inline as a conversation.

Protected branches allow for better quality code management. Repositories can be configured to
require status checks, such as continuous integration tests, reducing both human error and
administrative overhead.

Project Management

Project boards allow users to reference every issue and PR in a card, providing a drag-and-droppable
snapshot of the work that teams do in a repository. This feature can also function as an agile idea
board to capture early ideas that come up as part of a standup or team sync, without polluting the
issues.

Issues enable team task tracking, with resources identified and assigned tasks within a team. Issues
may be used to track a bug, discuss an idea with an @mention, or start distributing work. Issue and PR
assignments to one or more teammates make it clear who is doing what work and what feedback and
approvals have been requested.

Milestones can be added to issues or PRs to organize and track progress on groups of issues or PRs in a
repository.

Team Management

Building software is as much about managing teams and communities as it is about code. Users set
roles and expectations without starting from scratch. Customized common codes of conduct can be
created for any project, with pre-written licenses available right from the repository.

GitHub Teams organizes people, provides level-up access with administrative roles, and tunes
permissions for nested teams. Discussion threads keep conversations on topic using moderation tools,
like issue and pull request locking, to help teams stay focused on code. For maintaining open source
projects, user blocking reduces noise and keeps conversations productive.

Documentation

GitHub allows for documentation to be created and maintained in any repository, and wikis are
available to create documentation with version control. Each wiki is its own repository, so every
change is versioned and comparable. With a text editor, users can add docs in the text formatting
language of choice, such as Textile or GitHub Flavored Markdown.

 6

System Boundaries

The scope of this report includes the GitHub Enterprise Cloud, and the supporting production
systems, infrastructure, software, people, procedures, and data. GitHub offers both hosted and
customer on-premise versions. However, the GitHub Enterprise On-premise, Jobs, and Pages services
are excluded from the scope of this report.

Subservice Organizations

GitHub uses multiple subservice organizations in conjunction with providing its Enterprise Cloud
product. GitHub uses Sabey, QTS, Coresite, and Equinix to provide colocation data center services, and
Amazon Web Services (AWS) to provide infrastructure hosting. These subservice organizations are
excluded from the scope of this report. The expected controls for which they are responsible are
included in Attachment D, titled Complementary Subservice Organization Controls.

 7

System Components

The components of the Enterprise Cloud product include infrastructure, software, people, procedures,
and data. These components include the applications and services housed within GitHub’s colocation
data centers or internally managed systems and services related to maintaining the Enterprise Cloud
product.

Infrastructure

Infrastructure consists of the colocation data centers, networks, systems, and other hardware
powering the Enterprise Cloud product. Critical components of Enterprise Cloud’s infrastructure
include:

• Border/edge routers, GitHub load balancers, application layer proxies, and firewalls are the
systems that connect to the internet. These routers, application proxies, and firewalls are the
first line of defense in protecting the system.

• Web front-end servers are the forward-facing HTTPS servers for Enterprise Cloud. These
servers provide the feature set for Enterprise Cloud.

• Application servers are used for processing asynchronous jobs or back-end processes required
to support the web front-end. This processing might include replication between physical
data centers, sending webhooks to repository integrations, sending emails, or performing
other back-end processing.

• Email servers send email notifications to users or receive email issue comments from users.
• Git proxy servers manage the Git interaction between the users and the GitHub file servers.
• API front-end servers are the interface to any client using the Advanced Programming

Interface (API) to interact with GitHub programmatically.
• VPN servers are used by GitHub employees to create a secure channel and an initial layer of

authorization for employees who are developing or maintaining Enterprise Cloud.
• Bastion hosts, also referred to as jump hosts, are used by GitHub employees to manage the

Enterprise Cloud environment.
• Database servers store the issues, milestones, and other project management information.
• Git Infrastructure File Servers are where the code is stored for Git code repositories.

Data Centers

Enterprise Cloud infrastructure is hosted in geographically distributed, third-party data centers,
specifically located in Virginia (Dulles and Ashburn) and Washington state (Seattle and Tukwila). Full
production Git data is replicated between the Northern Virginia and Washington data centers to help
ensure rapid recovery of the service in the event of failure or data loss.

Separately, backups from the Git file servers and database servers are maintained in geographically
distinct Amazon Web Services (AWS) Simple Storage Solution (S3) data center locations.

 8

Software

Software consists of the system software that supports application programs (operating systems,
middleware, and utilities) for the Enterprise Cloud product. GitHub’s software stack consists of Linux
servers running Nginx, Unicorn, and MySQL databases. Datastores such as Redis, Memcached,
Elasticsearch, and others are also utilized to support the primary environment.

Most user-visible product features on Enterprise Cloud, as well as the GitHub API, are maintained
under a single Ruby on Rails 5 application. Supporting services and applications are written primarily
in Golang, C, and NodeJS.

Linux servers run on Debian Stretch or Jessie, with server build configurations generated from data in
Puppet, GitHub’s configuration management tool. The hardware is managed by gPanel, an internally
developed hardware management platform. When a new device is detected, it is forced to PXE
network boot to receive the GitHub image. Then, depending on the function that hardware will
perform, it is bootstrapped with the latest version of the correct software.

People

The personnel primarily involved in the security, governance, operation, and management of GitHub
include the following:

• Senior Leadership
• Security
• Product & Application Engineering
• IT
• Infrastructure
• People Operations
• Legal
• GitHub Support

Procedures

GitHub maintains programmatic (automated) and manual procedures involved in the operation of the
Enterprise Cloud product. These procedures are developed and documented within the GitHub
repositories maintained by every team to provide end-user documentation and guidance on the
multitude of operational functions performed daily by GitHub Security and Product engineers,
developers, administrators, and support. These procedures are drafted in alignment with the overall
Information Security policies and are updated and approved as necessary for changes in the business,
at a minimum annually.

GitHub policies establish procedures and controls to enable security, efficiency, availability, and
quality of service. The GitHub Entity Security Policy and related policy statements define information
security practices, roles, and responsibilities. The Entity Security Policy outlines the security roles and

 9

responsibilities for the organization and expectations for employees, contractors, and third parties
utilizing GitHub systems or data.

This overarching Security policy is supported by a number of dependent security policies, standards,
and procedures applicable to the operation and management of Security across the organization,
referenced therein. Security-related policies, standards, and procedures are documented and made
available to individuals responsible for their implementation and compliance.

Data

GitHub uses repository data to connect users to relevant tools, people, projects, and information.
Repositories are categorized as either public or private. Public repositories can be viewed by anyone,
including people who are not GitHub users. Private repositories are only visible to the repository
owner and collaborators that the owner specified. GitHub aggregates metadata and parses content
patterns to deliver generalized insights within the product.

If a private repository is opted in for data use to take advantage of any of the capabilities of the
security and analysis features, then GitHub performs a read-only analysis of that specific private
repository's Git contents. If a private repository is not opted in for data use, its private data, source
code, or trade secrets are classified internally as restricted, and they are maintained as confidential and
private consistent with GitHub's Terms of Service. Private data exchanged with GitHub is transmitted
over SSL. Send and receipt of private data is done over SSH authenticated with keys, or over HTTPS,
using a GitHub username and password.

For more information about GitHub’s use of data, refer to https://docs.github.com/en/free-pro-
team@latest/github/understanding-how-github-uses-and-protects-your-data/about-githubs-use-of-
your-data.

https://docs.github.com/en/free-pro-team@latest/github/understanding-how-github-uses-and-protects-your-data/about-githubs-use-of-your-data
https://docs.github.com/en/free-pro-team@latest/github/understanding-how-github-uses-and-protects-your-data/about-githubs-use-of-your-data
https://docs.github.com/en/free-pro-team@latest/github/understanding-how-github-uses-and-protects-your-data/about-githubs-use-of-your-data

 10

Internal Control Framework

GitHub has adopted an internal control framework to meet its security commitments. This framework
includes the following aspects: control environment, risk assessment, control activities, information
and communication, and monitoring.

Additionally, complementary user entity controls that are suitably designed and operating effectively
are necessary, along with controls at GitHub, to achieve GitHub’s service commitments and system
requirements based on the applicable trust services criteria. See Attachment C for identified
complementary user entity controls.

Control Environment

The internal control environment reflects the overall attitude, awareness, and actions of executive
management and other stakeholders concerning the importance of controls and the emphasis given
to controls in the company’s policies, procedures, methods, and organizational structure.

Management is responsible for directing and controlling operations and for establishing,
communicating, and monitoring policies and procedures. Maintaining sound internal controls and
establishing the integrity and ethical values of personnel is a critical management function.

Risk Assessment

GitHub recognizes that risk management is a critical component of its operations and contributes to
ensuring customer data is properly protected. GitHub incorporates risk management throughout its
business processes and across the organization. The foundation of this process is management’s
knowledge of its operations, its close working relationship with its customers and vendors, and its
understanding of the space in which it operates.

Risk Identification

GitHub has defined risk management processes to identify and manage risks that may affect the
system’s security. At least annually, Security leadership performs a risk assessment to identify and
evaluate potential threats to the effectiveness of the control environment.

Risk Mitigation

A risk register is created as part of the annual risk assessment. The Security GRC team maintains the
risk register with updates from the broader Security team to help ensure security and technology-
related compliance risks are identified, tracked, and mitigated.

Vendor Management

To initiate a vendor relationship, the Legal and Procurement teams negotiate and manage the vendor
contract clauses and additional data protection agreements with vendors who process or store GitHub
data, customer data, or employee data, as well as systems that connect to GitHub systems.

 11

The Security GRC team manages the vendor security risk assessment process. GitHub maintains
operational processes to assess security risk considerations related to vendors. These vendors are
required to undergo an initial security risk assessment prior to contracting with GitHub. Those vendors
who do not meet GitHub’s baseline security requirements are not moved forward for procurement.

The Security GRC team reviews vendor security risk assessments every two years, or upon expansion
or changes to the contracted service offering. Vendors deemed high risk, such as data center providers
or other vendors storing or processing data in scope for GitHub’s regulatory or contractual
requirements, undergo reassessment annually.

Risk Reporting

Summary reporting on security risk areas is included in annual leadership reporting as part of the
annual security risk assessment. Leadership, including Security leadership and the Senior Vice
President of Technology, reviews and approves this annual risk report.

Control Activities

Controls have been implemented to address system and data risks. Controls have been designed and
implemented in the following areas:

• System Inventory
• User Authentication
• Network Security
• Encryption
• User Provisioning
• Antivirus
• Configuration Management
• Vulnerability Management
• Bug Bounty
• Penetration Testing
• System Monitoring
• Incident Response
• Change Management

Information and Communication

To help align GitHub business strategies and goals with operating performance, management is
committed to maintaining effective communication with employees and customers.

Internal Communications

GitHub has published policies and procedures, both included in the Hubber Handbook and published
separately, outlining the responsibility of employees to report security and operational failures,
incidents, system problems, and complaints. The document owner(s) and Security leadership review

 12

and approve security policies and procedures annually. Significant changes to policies result in
communication to personnel regarding policy updates.

Every Hubber, depending on their role, is responsible for designing and executing work and services
in a secure manner in alignment with company standards and policies, and for reporting issues and
findings that impact security up their management chain or directly to the Security team.

External Communications

GitHub communicates the description of Enterprise Cloud systems, features, responsibilities, customer
commitments, and instructions to report incidents and complaints using the external sites website
(https://blog.github.com). The blog maintains a changelog, which is a chronological list of information
on customer-facing feature changes, bug fixes, or security notifications made available to end users.
GitHub’s changelog is live on the blog site (https://blog.github.com/changelog) and available for RSS
feed subscription. It is also accessible via Atom feed and GitHub’s Changelog twitter account
(@GHChangelog).

Enterprise Cloud users have ready access to support resources at GitHub Help
(https://help.github.com) and GitHub Guides (https://guides.github.com), and they can access
customized feature tutorials through the GitHub Learning Labs (https://lab.github.com).

Customer commitments and responsibilities are communicated through GitHub’s Terms of Service
(https://help.GitHub.com/articles/GitHub-terms-of-service/) and in contracts. The Terms of Service
includes GitHub’s customer Acceptable Use Policy, which provides the basic rules customers are
required to follow as members of the community on the Enterprise Cloud product.

The user community can communicate directly with GitHub. GitHub Support receives reports of
security issues and many other end-user concerns and questions via email or through the ‘Contact Us’
web form. There is a defined process using the customer-facing ticketing system, Halp, for managing,
investigating, and resolving these types of issues in a timely manner.

Monitoring

The Security-GRC team at GitHub is responsible for monitoring the internal control environment for
each of the compliance frameworks adopted by GitHub.

Internal Control Reviews

The Security-GRC team conducts internal control assessments annually to assess the effectiveness of
the internal control environment. Control assessment results are documented in internal GitHub
repositories. Issues are identified and escalated to the relevant internal teams to resolve control
design or effectiveness issues, and the status of the operating effectiveness of controls, identified
gaps, and remediation efforts are reported up to the Senior Leadership team for awareness on a
quarterly basis.

https://blog.github.com/
https://blog.github.com/changelog
https://twitter.com/GHchangelog
https://help.github.com/
https://guides.github.com/
https://lab.github.com/
https://help.github.com/articles/github-terms-of-service/

 13

Attachment B – Principal Service Commitments and System Requirements

GitHub designs it processes and procedures to provide a secure environment for customer data.
GitHub’s security commitments are documented and communicated to customers in the Terms of
Service, and at other resources listed below:

• Security at GitHub (https://github.com/security)
• GitHub Privacy Statement (https://help.github.com/en/articles/github-privacy-statement)
• Terms of Service (https://help.github.com/en/articles/github-terms-of-service)

https://github.com/security
https://help.github.com/en/articles/github-privacy-statement
https://help.github.com/en/articles/github-terms-of-service

 14

Attachment C – Complementary User Entity Controls

GitHub’s control environment was designed under the assumption that certain controls would be
implemented by user organizations, the application of which is necessary to meet certain trust
services criteria identified in this report. This section highlights those internal control responsibilities
GitHub believes should be present at each customer and has considered in developing its controls
reported herein. GitHub customers should evaluate their own control environment to assess if the
following controls are implemented and operating effectively. These complementary user entity
controls do not represent a comprehensive list of controls that should be employed by GitHub
customers, but are rather a summary of controls necessary to meet the stated trust services criteria
presented in this report. These controls include the following:

• Customers are responsible for enabling SAML for their Enterprise Cloud accounts. (CC6.1)
• Customers are responsible for enabling two-factor authentication and ensuring members and

collaborators require two-factor authentication. (CC6.1, CC6.6)
• Customers are responsible for creating and managing their Organization and Teams, including

the proper configuration of access permissions to repositories. (CC6.2, CC6.3)
• Customers are responsible for inviting, removing, and managing users in their Organization

and Teams, including granting of permission levels and access to repositories, and periodic
review of Organization users and outside collaborators. (CC6.2, CC6.3)

• Customers are responsible for ensuring authorized users are appointed as Organization
owners for administration of the Organization. (CC6.2, CC6.3)

• Customers are responsible for maintaining an effective onboarding and offboarding process
for their own employees and contractors. (CC6.2, CC6.3)

• Customers are responsible for reviewing events in the security logs. (CC7.1)
• Customers are responsible for administering and configuring repositories, including

permissions, enabling required reviews for pull requests, and enabling required status checks
before merging. (CC8.1)

• Customers are responsible for reviewing and authorizing third-party applications, properly
configuring the GitHub Application Programming Interface (API), including connecting with
third-party applications, and managing third-party application access to their own repositories
and data, where applicable. (CC9.2)

 15

Attachment D – Complementary Subservice Organization Controls

GitHub contracts with Amazon Web Services (AWS), Coresite, Sabey, QTS, and Equinix to provide data
center hosting and infrastructure support. Controls managed by these third-party subservice
providers are not included in the scope of this report. Expected subservice provider controls that have
an effect on specific criteria are included below.

Criteria Expected Controls Relevant Subservice Providers

CC6.1 – The entity implements
logical access security
software, infrastructure, and
architectures over protected
information assets to protect
them from security events to
meet the entity's objectives.

Access to the in-scope systems
requires users to authenticate
using a valid, unique user ID
and password before being
granted access.

User content is segregated
and made viewable only to
authorized individuals.

AWS

CC6.2 – Prior to issuing system
credentials and granting
system access, the entity
registers and authorizes new
internal and external users
whose access is administered
by the entity. For those users
whose access is administered
by the entity, user system
credentials are removed when
user access is no longer
authorized.

New user accounts are
approved by appropriate
individuals prior to being
provisioned.

User accounts are removed
when access is no longer
needed.

User accounts are periodically
reviewed to verify the
accounts, and their
permissions, are current and
appropriate.

AWS

 16

Criteria Expected Controls Relevant Subservice Providers

CC6.3 – The entity authorizes,
modifies, or removes access to
data, software, functions, and
other protected information
assets based on roles,
responsibilities, or the system
design and changes, giving
consideration to the concepts
of least privilege and
segregation of duties, to meet
the entity’s objectives.

Access modifications are
approved by appropriate
individuals prior to being
provisioned.

User accounts are removed
when access is no longer
needed.

User accounts are periodically
reviewed to verify the
accounts, and their
permissions, are current and
appropriate.

AWS

CC6.4 – The entity restricts
physical access to facilities and
protected information assets
(for example, data center
facilities, back-up media
storage, and other sensitive
locations) to authorized
personnel to meet the entity’s
objectives.

Only authorized users have
access to the physical facilities
securing the system.

AWS
QTS
Sabey
Coresite
Equinix

CC6.5 – The entity
discontinues logical and
physical protections over
physical assets only after the
ability to read or recover data
and software from those
assets has been diminished
and is no longer required to
meet the entity’s objectives.

Production media is securely
decommissioned and
physically destroyed prior to
being removed from the data
center.

AWS

CC6.6 – The entity implements
logical access security
measures to protect against
threats from sources outside
its system boundaries.

Network security mechanisms
restrict external access to the
production environment.

AWS

 17

Criteria Expected Controls Relevant Subservice Providers

CC6.7 – The entity restricts the
transmission, movement, and
removal of information to
authorized internal and
external users and processes,
and protects it during
transmission, movement, or
removal to meet the entity’s
objectives.

Access to customer data is
restricted to appropriate users.

Customer data is protected
during transmission.

AWS
QTS
Sabey
Coresite
Equinix

CC6.8 – The entity implements
controls to prevent or detect
and act upon the introduction
of unauthorized or malicious
software to meet the entity’s
objectives.

Antivirus or antimalware
solutions are installed to
detect or prevent
unauthorized or malicious
software.

AWS

CC7.1 – To meet its objectives,
the entity uses detection and
monitoring procedures to
identify (1) changes to
configurations that result in
the introduction of new
vulnerabilities, and (2)
susceptibilities to newly
discovered vulnerabilities.

Vulnerabilities are logged and
tracked to resolution.

AWS

CC7.2 – The entity monitors
system components and the
operation of those
components for anomalies
that are indicative of malicious
acts, natural disasters, and
errors affecting the entity's
ability to meet its objectives;
anomalies are analyzed to
determine whether they
represent security events.

Security events on system
components are monitored
and evaluated to determine
potential impact per policy.

AWS
QTS
Sabey
Coresite
Equinix

 18

Criteria Expected Controls Relevant Subservice Providers

CC7.3 – The entity evaluates
security events to determine
whether they could or have
resulted in a failure of the
entity to meet its objectives
(security incidents) and, if so,
takes actions to prevent or
address such failures.

Security events are reviewed
to determine whether they
should be elevated to an
incident.

AWS
QTS
Sabey
Coresite
Equinix

CC7.4 – The entity responds to
identified security incidents by
executing a defined incident
response program to
understand, contain,
remediate, and communicate
security incidents, as
appropriate.

Security events deemed
incidents are remediated and
communicated.

AWS
QTS
Sabey
Coresite
Equinix

CC8.1 – The entity authorizes,
designs, develops or acquires,
configures, documents, tests,
approves, and implements
changes to infrastructure,
data, software, and
procedures to meet its
objectives.

System changes are
documented, tested, and
approved prior to migration to
production.

AWS
QTS
Sabey
Coresite
Equinix

	Section I – Report of Independent Service Auditors
	Scope
	Service Organization’s Responsibilities
	Service Auditor’s Responsibilities
	Service Auditor’s Independence and Quality Control
	Inherent Limitations
	Opinion

	Section II – GitHub’s Assertion
	Attachment A – GitHub’s Description of the Boundaries of Its Enterprise Cloud
	Company Overview
	System Description
	Organizations
	Code Hosting
	Code Management
	Project Management
	Team Management
	Documentation

	System Boundaries
	Subservice Organizations
	System Components
	Infrastructure
	Data Centers

	Software
	People
	Procedures
	Data

	Internal Control Framework
	Control Environment
	Risk Assessment
	Risk Identification
	Risk Mitigation
	Vendor Management
	Risk Reporting

	Control Activities
	 System Inventory
	 User Authentication
	 Network Security
	 Encryption
	 User Provisioning
	 Antivirus
	 Configuration Management
	 Vulnerability Management
	 Bug Bounty
	 Penetration Testing
	 System Monitoring
	 Incident Response
	 Change Management

	Information and Communication
	Internal Communications
	External Communications

	Monitoring
	Internal Control Reviews

	Attachment B – Principal Service Commitments and System Requirements
	Attachment C – Complementary User Entity Controls
	Attachment D – Complementary Subservice Organization Controls

