
YUI 3 Cookbook

Evan Goer

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

YUI 3 Cookbook
by Evan Goer

Copyright © 2012 Yahoo! Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Mary Treseler
Production Editor: Kristen Borg
Copyeditor: Rachel Monaghan
Proofreader: Kiel Van Horn

Indexer: BIM Indexing
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

May 2012: First Edition.

Revision History for the First Edition:
2012-05-29 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449304195 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. YUI 3 Cookbook, the image of a spotted cuscus, and related trade dress are trade-
marks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-30419-5

[LSI]

1337019481

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449304195

Table of Contents

Preface . ix

1. Loading Modules . 1
1.1 Loading Rollups and Modules 4
1.2 Loading SimpleYUI 6
1.3 Identifying and Loading Individual Modules 8
1.4 Loading a Different Default Skin 10
1.5 Loading Gallery Modules 11
1.6 Loading a YUI 2 Widget 13
1.7 Loading Locally Hosted Builds 14
1.8 Creating Your Own Modules 17
1.9 Creating a Module with Dependencies 19

1.10 Creating Truly Reusable Modules 22
1.11 Defining Groups of Custom Modules 24
1.12 Reusing a YUI Configuration 27
1.13 Defining Your Own Rollups 30
1.14 Loading jQuery as a YUI Module 31
1.15 Loading Modules Based on Browser Capabilities 34
1.16 Monkeypatching YUI 38
1.17 Loading Modules on Demand 40
1.18 Enabling Predictive Module Loading on User Interaction 42
1.19 Binding a YUI Instance to an iframe 46
1.20 Implementing Static Loading 48

2. DOM Manipulation . 51
2.1 Getting Element References 52
2.2 Manipulating CSS Classes 55
2.3 Getting and Setting DOM Properties 57
2.4 Changing an Element’s Inner Content 59
2.5 Working with Element Collections 60
2.6 Creating New Elements 62

iii

2.7 Adding Custom Methods to Nodes 64
2.8 Adding Custom Properties to Nodes 66

3. UI Effects and Interactions . 69
3.1 Hiding an Element 70
3.2 Fading an Element 71
3.3 Moving an Element 74
3.4 Creating a Series of Transitions 76
3.5 Defining Your Own Canned Transitions 77
3.6 Creating an Infinite Scroll Effect 80
3.7 Dragging an Element 81
3.8 Creating a Resizable Node 84
3.9 Implementing a Reorderable Drag-and-Drop Table 86

4. Events . 91
4.1 Responding to Mouseovers, Clicks, and Other User Actions 93
4.2 Responding to Element and Page Lifecycle Events 95
4.3 Controlling Event Propagation and Bubbling 97
4.4 Preventing Default Behavior 99
4.5 Delegating Events 100
4.6 Firing and Capturing Custom Events 102
4.7 Driving Applications with Custom Events 104
4.8 Using Object Methods as Event Handlers 109
4.9 Detaching Event Subscriptions 112

4.10 Controlling the Order of Event Handler Execution 113
4.11 Creating Synthetic DOM Events 116
4.12 Responding to a Method Call with Another Method 118

5. Ajax . 121
5.1 Fetching and Displaying XHR Data 122
5.2 Handling Errors During Data Transport 126
5.3 Loading Content Directly into a Node 129
5.4 Submitting Form Data with XHR 132
5.5 Uploading a File with XHR 134
5.6 Getting JSON Data Using Script Nodes (JSONP) 135
5.7 Fetching and Displaying Data with YQL 138
5.8 Scraping HTML with YQL 140
5.9 Querying Data Using DataSource 142

5.10 Normalizing DataSource Responses with a DataSchema 146

6. CSS . 149
6.1 Normalizing Browser Style Inconsistencies 150
6.2 Rebuilding Uniform Base Styles 151

iv | Table of Contents

6.3 Applying Consistent Fonts 152
6.4 Laying Out Content with Grids 154
6.5 Using Grids for Responsive Design 157
6.6 Creating Consistent Buttons 159

7. Infrastructure . 161
7.1 Managing State with Attributes 163
7.2 Creating Base Components with Y.extend() 167
7.3 Creating Base Components with Y.Base.create() 170
7.4 Creating a Basic Widget 173
7.5 Creating a Widget That Uses Progressive Enhancement 178
7.6 Rendering Remote Data with a Widget 182
7.7 Creating a Simple Plugin 185
7.8 Creating a Plugin That Alters Host Behavior 187
7.9 Bundling CSS with a Widget as a CSS Module 189

7.10 Bundling CSS with a Widget as a Skin 191
7.11 Representing Data with a Model 194
7.12 Persisting Model Data with a Sync Layer 196
7.13 Managing Models with a Syncing ModelList 201
7.14 Rendering HTML with a View 204
7.15 Rendering a Model with a View 207
7.16 Rendering a ModelList with a View 210
7.17 Saving State Changes in the URL 214
7.18 Defining and Executing Routes 217

8. Using Widgets . 223
8.1 Instantiating, Rendering, and Configuring Widgets 225
8.2 Creating an Overlay 227
8.3 Aligning and Centering an Overlay 231
8.4 Making an Overlay Draggable 233
8.5 Creating a Simple, Styled Information Panel 234
8.6 Creating a Modal Dialog or Form 236
8.7 Creating a Tooltip from an Overlay 238
8.8 Creating a Lightbox from an Overlay 241
8.9 Creating a Slider 246

8.10 Creating a Tabview 249
8.11 Creating a Basic DataTable 252
8.12 Formatting a DataTable’s Appearance 253
8.13 Displaying a Remote JSON DataSource in a DataTable 256
8.14 Plotting Data in a Chart 257
8.15 Choosing Dates with a Calendar 259
8.16 Defining Calendar Rules 263
8.17 Creating a Basic AutoComplete 265

Table of Contents | v

8.18 Highlighting and Filtering AutoComplete Results 267
8.19 Using AutoComplete with Remote Data 272
8.20 Customizing the AutoComplete Result List 275

9. Utilities . 279
9.1 Determining a Variable’s Type 280
9.2 Iterating Over Arrays and Objects 282
9.3 Filtering an Array 285
9.4 Merging Objects 286
9.5 Composing and Inheriting from Other Objects 287
9.6 Automatically Caching Function Call Results 290
9.7 Templating with Simple String Substitution 291
9.8 Formatting Numbers 293
9.9 Formatting Dates 294

9.10 Parsing Arbitrary XML 295
9.11 Converting Color Values 296
9.12 Managing History and the Back Button 297
9.13 Escaping User Input 301
9.14 Assigning Special Behavior to a Checkbox Group 302
9.15 Implementing Easy Keyboard Actions and Navigation 305
9.16 Reliably Detecting Input Field Changes 306
9.17 Managing and Validating Forms 307

10. Server-Side YUI . 311
10.1 Installing and Running YUI on the Server 312
10.2 Loading Modules Synchronously on the Server 314
10.3 Using YUI on the Command Line 315
10.4 Calling YQL on the Server 318
10.5 Using the YUI REPL 319
10.6 Constructing and Serving a Page with YUI, YQL, and Handlebars 322

11. Universal Access . 325
11.1 Preventing the Flash of Unstyled Content 326
11.2 Adding ARIA to Form Error Messages 329
11.3 Building a Widget with ARIA 331
11.4 Retrofitting a Widget with an ARIA Plugin 334
11.5 Defining Translated Strings 337
11.6 Internationalizing a Widget 339

12. Professional Tools . 345
12.1 Enabling Debug Logging 347
12.2 Rendering Debug Log Output in the Page 350
12.3 Writing Unit Tests 354

vi | Table of Contents

12.4 Organizing Unit Tests into Suites 358
12.5 Testing Event Handlers by Simulating Events 361
12.6 Mocking Objects 364
12.7 Testing Asynchronously Using wait() 368
12.8 Collecting and Posting Test Results 372
12.9 Precommit Testing in Multiple Browsers 376

12.10 Testing on Mobile Devices 379
12.11 Testing Server-Side JavaScript 381
12.12 Minifying Your Code 383
12.13 Documenting Your Code 388

Index . 393

Table of Contents | vii

CHAPTER 1

Loading Modules

Consider the humble <script> element. Introduced in 1995, it is still the gateway for
injecting JavaScript into the browser. Unfortunately, if you want to build sophisticated
applications, <script> shows its age:

• <script> conflates the concepts of loading code and executing code. Programmers
need fine-grained control over both phases.

• <script> is synchronous, blocking the browser’s flow/paint cycle until the entire
script downloads. This is why performance guides currently recommend moving
<script> to the bottom of the page. The good news is that HTML now provides
the async and defer attributes, so this issue might improve over time.

• <script> has a shared global context with no formal namespacing or security built
in. This is bad enough when you’re simply trying to protect your own code from
your own mistakes, but becomes disastrous when your code must run alongside
an unknown number of third-party scripts.

• <script> has no information about its relationships with other <script> elements.
A script might require another script as a dependency, but there is no way to express
this. If <script> elements are on the page in the wrong order, the application fails.

The root of the problem is that unlike nearly every programming environment on the
planet, JavaScript in the browser has no built-in concept of modules (defined in
Recipe 1.1). For small scripts, this is not necessarily a big deal. But small scripts have
a way of growing into full-fledged applications.

To protect code from interference, many JavaScript libraries use a global object to
contain all the library’s methods. For example, the hypothetical “Code Ninja” library
might instantiate a global object named NINJA that supplies methods such as
NINJA.throwShuriken(). Here, NINJA serves as a kind of namespace. This is a reasonable
first line of defense.

1

YUI 3 takes things one step further. There is a global YUI object, but you work with this
object “inside out.” Instead of using YUI just as a namespace, you call YUI().use() and
then write all of your code inside a callback function nested inside use() itself. Within
this scope is a private instance of the library named Y, which provides access to YUI
methods such as Y.one() and objects such as Y.AutoComplete.

The disadvantage of YUI 3’s approach is that at first glance, it looks profoundly weird.

The advantages of YUI 3’s approach are:

• YUI can decouple loading into registration and execution phases. YUI.add() reg-
isters code as modules with the YUI global object, to be loaded on demand.
YUI().use() provides access to those modules in a safe sandbox.

• YUI can load modules synchronously or asynchronously, since registration is now
a separate phase from execution.

• Other than a few static methods, YUI avoids using the shared global context. The
Y instance that carries the API is private, impossible to overwrite from outside the
sandbox.

• YUI supports real dependency logic. When you register modules with YUI.add(),
you can include metadata about other modules, CSS resources, and more.
YUI().use() uses this information to build a dependency tree, fetching modules
that are needed to complete the tree and skipping modules that are already present.
YUI can even load modules conditionally based on browser capabilities. This
frees you up to write code optimized for different environments, enabling you to
support older, less capable browsers without serving unnecessary code to modern
browsers.

Work on YUI’s module and loader system began in the middle of 2007, and the system
was revamped for the release of YUI 3 in 2009. In the years since, JavaScript modules
have quite rightfully become a hot topic. Server-side JavaScript environments now
provide native support for the CommonJS module format. The Dojo toolkit has adop-
ted AMD modules as its native format. Future versions of the ECMAScript standard
are likely to bake support for modules into JavaScript’s core.

As mentioned in the Preface, there are many great JavaScript libraries available, each
bringing its own philosophy and strengths. If you are looking for a single feature that
captures YUI’s design goals, the module system is an excellent place to start. The mod-
ule system prioritizes code safety and encapsulation. It has intelligent defaults, but it
also grants you a tremendous amount of fine-grained control. It works well for small
page effects, but it really shines when you’re assembling larger applications. You will
see these principles expressed time and time again throughout the library.

Because the module and loader system is one of YUI’s signature features, this chapter
is extensive. If you are just starting out with YUI, you can get away with reading just
the first or second recipe, but be sure to return later to learn how to load modules
optimally and how to package your own code into modules for later reuse.

2 | Chapter 1: Loading Modules

Most of the examples in this chapter make some visible change to the
page in order to prove that the code works. The typical example uses
Y.one("#demo") to grab the <div> with an id of demo, followed by
setHTML() to change the <div>’s contents. If you haven’t seen YUI’s
DOM manipulation API in action yet, please peek ahead at Recipes
2.1 and 2.3.

Recipe 1.1 defines the canonical way to load YUI onto the page. This is the most im-
portant recipe in the entire book.

Recipe 1.2 describes SimpleYUI, a convenient bundle of DOM manipulation, event
façades, UI effects, and Ajax. Using SimpleYUI makes loading YUI more like loading
other, more monolithic JavaScript libraries. This is a good alternative place to start if
Recipe 1.1 is making your head spin.

Recipe 1.3 explains the concept of loading individual YUI modules, rather than larger
rollups. For production-quality code, you can improve performance by identifying and
loading only the modules you really need.

Recipe 1.4 introduces the YUI configuration object, which is important for defining
your own modules and for gaining fine-grained control over the YUI Loader.

Recipes 1.5 and 1.6 describe loading different categories of modules. Recipe 1.5 ex-
plains how to load third-party modules from the YUI gallery, and Recipe 1.6 explains
how to incorporate legacy YUI 2 widgets as YUI 3 modules.

Recipe 1.7 explains how to load the YUI core modules from your own servers rather
than Yahoo! edge servers. You should strongly consider doing this if you are dealing
with private user data over SSL, as loading third-party JavaScript from servers outside
your control breaks the SSL security model.

Recipes 1.8, 1.9, 1.10, and 1.11 take you step-by-step through the process of creating
your own modules. After Recipe 1.1, these four recipes are the ones that every serious
YUI developer should know by heart. Understanding how to create modules is vital for
being able to reuse your code effectively.

Recipe 1.12 introduces the YUI_config object, which makes it easier to share complex
YUI configurations between pages and sites.

Recipe 1.13 demonstrates how to create your own custom rollups, similar to core roll-
ups such as node and io.

Recipe 1.14 explains how to load jQuery and other third-party libraries into the YUI
sandbox as if they were YUI modules. The YUI Loader and module system are flexible
enough to wrap and asynchronously load just about anything you might want to use
alongside YUI.

The next six recipes discuss more advanced loading scenarios. Recipe 1.15 covers the
concept of conditional loading, where YUI fetches a module only if a browser capability

Loading Modules | 3

test passes. The YUI core libraries use this powerful technique to patch up old browsers
without penalizing modern ones. Recipe 1.16 is a variation of Recipe 1.15 where instead
of using conditional loading to patch old browsers, you use it to patch YUI itself.

Recipes 1.17 and 1.18 explain how to load modules in response to user actions, or even
in anticipation of user actions. The ability to fetch additional modules after the initial
page load provides you with great control over the perceived performance of your
application.

Recipe 1.19 explains how to load YUI into an iframe while still maintaining control via
the YUI instance in the parent document.

Finally, Recipe 1.20 discusses static loading. By default, YUI modules load asynchro-
nously. Static loading is an advanced technique that trades flexibility and developer
convenience for extra performance.

1.1 Loading Rollups and Modules
Problem
You want to load YUI on the page and run some code.

Solution
Load the YUI seed file, yui-min.js. Then call YUI().use(), passing in the name of a
module or rollup you want to load, followed by an anonymous callback function that
contains some code that exercises those modules.

Within the callback function, the Y object provides the tailored YUI API you just re-
quested. Technically, you can name this object anything you like, but you should stick
with the Y convention except for rare circumstances, such as Recipe 1.19.

Example 1-1 loads the YUI Node API, then uses that API to get a reference to the
<div> with an id of demo and set its content. For more information about how to select
and modify node instances, refer to Chapter 2.

Example 1-1. Loading the YUI Node API

<!DOCTYPE html>
<title>Loading the YUI Node API</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.one('#demo').setHTML('Whoa.');
});
</script>

4 | Chapter 1: Loading Modules

In YUI, you do not need to litter your pages with dozens of <script>
elements. The Loader is specifically designed to kill this antipattern. As
a corollary, you should never fetch the YUI seed file more than once.

Discussion
YUI().use() supports loading both modules and rollups.

A module in YUI is a named collection of reusable code. To learn how to create your
own modules, start with Recipe 1.8 and related recipes.

A rollup is a kind of “supermodule” that represents multiple smaller modules. For
example, node is a rollup that pulls in node-base, node-style, and several other modules
for manipulating the DOM. Rollups exist for convenience, although sometimes it pays
to be more selective and load individual modules, as described in Recipe 1.3.

But how does this even work? The line:

YUI().use('foo', function (Y) {...});

is pretty mystifying. To break this down step-by-step:

The first <script> element in Example 1-1 loads the YUI seed file, which defines the
YUI global object. YUI is not just a namespace object; it is a module registry system. It
contains just enough code to bootstrap your way to the rest of the library: some critical
YUI utility functions, the Loader code that loads scripts onto the page, and Loader
metadata that describes the core YUI modules and their dependencies.

The second <script> element calls YUI().use(). This call has two stages:

1. Calling YUI() creates a new YUI instance. A YUI instance is a host object for as-
sembling a customized YUI API. The instance starts out fairly bare bones—it does
not yet provide APIs for doing things like DOM manipulation or Ajax calls.

2. Calling use() then augments that instance with additional methods. use() takes
one or more string parameters representing the names of modules and rollups to
load, followed by a callback function (more on that a little later). Somewhat sim-
plified, the use() method works in the following manner:

a. The use() method determines which modules it actually needs to fetch. It
calculates dependencies and builds a list of modules to load, excluding any
modules already loaded and registered with the global YUI object.

b. After resolving dependencies, use() constructs a “combo load” URL, and the
Loader retrieves all the missing modules from Yahoo’s fast edge servers with
a single HTTP request. This happens asynchronously so as not to block the
UI thread of the browser.

c. When use() finishes loading modules, it decorates the YUI instance with the
complete API you requested.

1.1 Loading Rollups and Modules | 5

d. Finally, use() executes the callback function, passing in the YUI instance as
the Y argument. Within the callback function, the Y object is a private handle
to your own customized instance of the YUI library.

In other words, a YUI instance starts out small and relies on use() to carefully build up
the API you requested. YUI().use() automatically handles dependencies and tailors its
downloads for the browser you’re running in. This is already a huge advantage over
downloading libraries as giant monolithic blocks of code.

The use() callback function is referred to as the “YUI sandbox.” It encapsulates all your
code into a private scope, making it impossible for other scripts on the page to acci-
dentally clobber one of your variables or functions. In fact, if you want to run multiple
applications on the same page, you can even create multiple independent sandboxes.
Once any sandbox loads a module, other sandboxes can use that module without in-
terference and without having to fetch the code again.

Keep in mind that any code you write directly in a use() callback function is not actually
a module itself, and is therefore not reusable. A use() callback should contain only the
code required to wire modules into that particular page. Any code that might be reus-
able, you should bundle into a custom module using YUI.add(). For more information,
refer to Recipe 1.8.

To improve performance, by default YUI loads the minified version of each module.
The minified version has been run through YUI Compressor, a utility that shrinks the
file size of each module by stripping out whitespace and comments, shortening variable
names, and performing various other optimizations described in Recipe 12.12.

As shown in the next section, Recipe 1.2, it is possible to load YUI with the simpler
pattern that other libraries use. SimpleYUI is great for learning purposes, but less ap-
propriate for production code.

In addition to the Y instance, YUI passes an obscure second parameter
to your use() callback. This object represents the response from the
Loader, and includes a Boolean success field, a string msg field that holds
a success or error message, and a data array that lists all modules that
successfully loaded. Unfortunately, this reporting mechanism is not
100% reliable in all browsers.

1.2 Loading SimpleYUI
Problem
You want to load YUI onto the page like people loaded JavaScript libraries in the good
old days, without all this newfangled module loading and sandboxing nonsense.

6 | Chapter 1: Loading Modules

Solution
Instead of pointing <script> to yui-min.js, point it to simpleyui-min.js. SimpleYUI in-
cludes all modules in YUI’s node, event, io, and transition rollups, flattened out into
a single JavaScript file. These modules are more than enough to create interesting page
effects and simple applications.

As shown in Example 1-2, loading SimpleYUI on the page automatically instantiates a
global Y instance that provides access to the YUI API.

Example 1-2. Loading SimpleYUI

<!DOCTYPE html>
<title>Loading SimpleYUI</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/simpleyui/simpleyui-min.js"></script>
<script>
Y.one('#demo').setHTML('This message brought to you by SimpleYUI.');
</script>

Discussion
SimpleYUI provides the same functionality you would have received by loading these
modules individually, as described in Recipe 1.1. So why use SimpleYUI at all? If you
are new to YUI, SimpleYUI acts like jQuery and other popular JavaScript libraries: you
simply load a script onto the page and start calling methods from a global object. Sim-
pleYUI is a great way to try out YUI, particularly for people who are still getting used
to YUI’s idioms.

SimpleYUI is a starter kit that contains DOM, event, and Ajax functionality. However,
SimpleYUI is in no way crippled or limited to just these modules; it also includes the
Loader, so you are free to call Y.use() at any time to pull in additional modules such
as autocomplete or model. For an example of calling Y.use() from within YUI().use(),
refer to Example 1-22.

The disadvantages of using SimpleYUI are that it pulls in code that you might not need,
and that it lacks a sandbox. You can address the latter issue by wrapping your code in
an anonymous function and then immediately executing that function, as shown in
Example 1-3.

Example 1-3. Loading SimpleYUI in a generic sandbox

<!DOCTYPE html>
<title>Loading SimpleYUI in a generic sandbox</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/simpleyui/simpleyui-min.js"></script>

1.2 Loading SimpleYUI | 7

<script>
var message = 'BOGUS MESSAGE';

(function () {
 var message = 'This message brought to you by sandboxed SimpleYUI.';
 Y.one('#demo').setHTML(message);
}());
</script>

JavaScript’s scoping rules ensure that variables outside the function can be referenced
from within the function. However, any variables redeclared inside the function will
trump any values declared outside. Or, looking at this the other way around, code
outside the sandbox cannot overwrite private variables inside the sandbox.

Experienced JavaScript developers often use this kind of generic sandbox with other
libraries. It is a fine defensive pattern in general, but less common in YUI simply because
the standard loading pattern shown in Example 1-1 provides a sandbox already.

If you search the Web, you’ll find a popular alternative pattern that
works just as well, but is a little less aesthetically pleasing:

(function(){})()

Yahoo! JavaScript architect Douglas Crockford refers to this as the
“dogballs” pattern.

Strictly speaking, you don’t need to resort to SimpleYUI to get a global Y object.
YUI().use() returns a Y instance, so you can always do:

var Y = YUI().use(...);

In any case, these caveats about performance and sandboxing might not be important
to you, depending on your situation. Some engineering groups use SimpleYUI as a way
to segment different projects: critical pages and core pieces of infrastructure use the
YUI sandbox, while prototypes and temporary marketing pages use SimpleYUI to make
life easier for designers and prototypers. SimpleYUI is also a good tool for developers
who are starting to transition code into the YUI “inside-out” sandbox pattern. Projects
in transition can load SimpleYUI and leverage those APIs in existing legacy code, rather
than having to immediately migrate large amounts of legacy JavaScript into YUI
modules.

1.3 Identifying and Loading Individual Modules
Problem
You want to load the smallest possible amount of code necessary to accomplish a given
task.

8 | Chapter 1: Loading Modules

Solution
The YUI API documentation indicates which modules supply which individual meth-
ods and properties. As you write your code, consult the documentation and include
only the specific modules you need in your YUI().use() call, in order to avoid loading
code that contains unnecessary functionality.

Example 1-4 illustrates loading smaller, focused modules instead of larger rollups. As
mentioned in Recipe 1.1, YUI passes a second parameter to the use() callback that
represents the response from the Loader. Example 1-4 converts this object into a string
with Y.JSON.stringify(), using stringify()’s extended signature to pretty-print the
output, and then displays the string by inserting it into a <pre> element. You could do
all of this by loading the node and json rollups, but it turns out that the script only really
requires the smaller modules node-base and json-stringify.

Example 1-4. Using individual modules

<!DOCTYPE html>
<title>Using individual modules</title>

<pre id="demo"></pre>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('json-stringify', 'node-base', function (Y, loaderResponse) {
 var pre = Y.one('#demo');
 pre.set('text', Y.JSON.stringify(loaderResponse, null, 4));
});
</script>

The example uses set('text') rather than setHTML(). Methods like
setHTML() and set('innerHTML') are insecure when used for non-HTML
strings or strings whose actual content or origin is unknown.

Discussion
YUI is broken into small modules that enable you to define very tight sets of depen-
dencies. For convenience, YUI users often load rollups, which represent a group of
related modules. For example, the node rollup is an alias for loading a list of modules
that includes node-base, node-style, node-event-delegate, and nodelist.

Likewise, the json rollup includes json-parse and json-stringify, on the assumption
that most applications that work with JSON need to convert JSON in both directions.
However, if your application only needs to convert objects into strings, you can load
json-stringify and avoid loading deadweight code from json-parse.

If you understand exactly which modules your implementation needs, you can save
bytes by loading just those modules instead of loading rollups. However, this does

1.3 Identifying and Loading Individual Modules | 9

require checking the YUI API documentation carefully for which methods and prop-
erties come from which modules, so that you’re not caught off-guard by “missing”
features.

One option is to use rollups when prototyping and developing, then replace them with
a narrower list of modules when you are getting ready to release to production. The
YUI Configurator is a handy tool for determining an exact list of dependencies. If you
take this approach, be sure to have a test suite in place to verify that your application
still works after narrowing down your requirements. For more information about test-
ing YUI, refer to Chapter 12.

See Also
Recipe 1.13; the YUI Configurator (http://yuilibrary.com/yui/configurator/); the YUI
JSON User Guide (http://yuilibrary.com/yui/docs/json/).

1.4 Loading a Different Default Skin
Problem
You want the Loader to load the "night" skin for all YUI widgets—a darker CSS skin
that is designed to match themes that are popular on mobile devices.

Solution
Pass in a YUI configuration object that includes a skin property with an alternative
defaultSkin name. Some modules provide one or more named CSS skins. By default,
when the Loader loads a module with a skin, the Loader attempts to fetch the module’s
"sam" skin file. However, if you are loading modules that happen to have multiple skins,
you can instruct the Loader to fetch a different skin across the board.

Example 1-5 loads and instantiates a Calendar widget with its alternative, darker
"night" skin. By convention, all YUI skin styles are scoped within a class name of yui3-
skin-skinname. This means that to actually apply the night skin once it has loaded on
the page, you must add the class yui3-skin-night to the <body> or to a containing <div>.

Example 1-5. Changing YUI’s default skin

<!DOCTYPE html>
<title>Changing YUI's default skin</title>

<div id="demo" class="yui3-skin-night"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 skin: { defaultSkin: 'night' }

10 | Chapter 1: Loading Modules

http://yuilibrary.com/yui/configurator/
http://yuilibrary.com/yui/configurator/
http://yuilibrary.com/yui/docs/json/
http://yuilibrary.com/yui/docs/json/
http://yuilibrary.com/yui/docs/json/

}).use('calendar', function (Y) {
 new Y.Calendar({ width: 300 }).render('#demo');
});
</script>

Discussion
YUI offers a great variety of configuration options that control the behavior of the
Loader and certain properties of the YUI sandbox. For example, to prevent the Loader
from dynamically loading any CSS, you can pass in a fetchCSS: false. This setting is
useful if you plan to manually add all YUI CSS resources as static <link> elements, and
you don’t want the Loader to fetch the same CSS resources twice.

One of the most important use cases is configuring metadata for custom modules. The
Loader already has metadata for core YUI modules included in the seed file, but to
properly load any modules you have created, you must provide the Loader with your
module names, dependencies, and more. For recipes that demonstrate how to do this,
refer to Recipes 1.10 and 1.11.

See Also
More information about skins and loading CSS in Recipes 7.9 and 7.10; a variety of
Slider skins shown side by side (http://yuilibrary.com/yui/docs/slider/slider-skin.html);
the YUI Global Object User Guide (http://yuilibrary.com/yui/docs/yui/); YUI config API
documentation (http://yuilibrary.com/yui/docs/api/classes/config.html); YUI Loader API
documentation (http://yuilibrary.com/yui/docs/api/classes/Loader.html).

1.5 Loading Gallery Modules
Problem
You want to load a useful third-party module from the YUI gallery and use it alongside
core YUI modules.

Solution
Load the gallery module from the Yahoo! content delivery network (CDN) with
YUI().use() as you would with any other YUI module. Gallery module names all start
with the prefix gallery-. Once loaded, gallery modules attach to the Y just like core
YUI modules.

Example 1-6 loads the To Relative Time gallery module, which adds a toRelative
Time() method. This method converts Date objects to English strings that express a
relative time value, such as "3 hours ago".

To ensure that the example loads a specific snapshot of the gallery, the YUI configu-
ration specifies a gallery build tag. For more information, refer to the Discussion.

1.5 Loading Gallery Modules | 11

http://yuilibrary.com/yui/docs/slider/slider-skin.html
http://yuilibrary.com/yui/docs/slider/slider-skin.html
http://yuilibrary.com/yui/docs/yui/
http://yuilibrary.com/yui/docs/yui/
http://yuilibrary.com/yui/docs/api/classes/config.html
http://yuilibrary.com/yui/docs/api/classes/config.html
http://yuilibrary.com/yui/docs/api/classes/config.html
http://yuilibrary.com/yui/docs/api/classes/Loader.html
http://yuilibrary.com/yui/docs/api/classes/Loader.html
http://yuilibrary.com/yui/docs/api/classes/Loader.html

Example 1-6. Using the To Relative Time gallery module with YUI Node

<!DOCTYPE html>
<title>Using the "To Relative Time" gallery module with YUI Node</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 gallery: 'gallery-2010.08.25-19-45'
}).use('gallery-torelativetime', 'node', function (Y) {
 var entryTime = new Date(2011,10,1);
 Y.one('#demo').setHTML(Y.toRelativeTime(entryTime));
});
</script>

Discussion
The YUI gallery is a repository for sharing third-party modules. Modules in the gallery
range from tiny standalone utilities to large families of related components.

YUI contributors can choose to serve their gallery modules from the Yahoo! CDN.
Developers who want to take advantage of this feature must:

• Sign and submit a YUI Contributor License Agreement (CLA)

• Release their code under the open source BSD license, the same license YUI uses

• Host their source code on GitHub, the same repository where YUI is hosted

Some gallery modules have not gone through these steps and so are not served from
the Yahoo! CDN. You can use non-CDN gallery modules by downloading and instal-
ling them on your own server. For more information about hosting modules locally,
refer to Recipe 1.7.

The main difference between gallery modules and the core modules is that for the core
modules, the YUI engineering team is fully responsible for fixing bugs, reviewing code,
and testing changes. Gallery modules have whatever level of support the module’s
owner is willing to provide.

Updates to gallery modules get picked up on the CDN when the YUI team pushes out
the gallery build, which occurs roughly every week. Each gallery build has a build tag,
such as gallery-2011.05.04-20-03. If you omit the gallery configuration option, YUI
falls back to loading a default gallery build tag associated with the particular version of
core YUI you are using. Thus, the following code works:

YUI().use('gallery-torelativetime', 'node', function (Y) {
 var entryTime = new Date(2011,10,1);
 Y.one('#demo').setHTML(Y.toRelativeTime(entryTime));
});

12 | Chapter 1: Loading Modules

However, it is better to declare an explicit, tested gallery build tag. Otherwise, upgrad-
ing your YUI version later on will silently change the gallery tag, which might not be
what you want.

For gallery modules served from the Yahoo! CDN, the YUI engineering team lightly
examines code changes for serious security issues (such as blatant malware) and glaring
bugs. Beyond that, there is no guarantee of code quality. Non-CDN gallery modules
are completely unreviewed. Before using any gallery module, be sure to carefully eval-
uate the module’s functionality, source code, and license for yourself.

See Also
The YUI gallery (http://yuilibrary.com/gallery/); Luke Smith’s To Relative Time gallery
module (http://yuilibrary.com/gallery/show/torelativetime); the tutorial “Contribute
Code to the YUI Gallery” (http://yuilibrary.com/yui/docs/tutorials/gallery/).

1.6 Loading a YUI 2 Widget
Problem
You want to use one of your favorite widgets from YUI 2, but it hasn’t been ported over
to YUI 3 yet.

Solution
Load the widget as a YUI 3 module using its YUI 2in3 wrappers, as shown in Exam-
ple 1-7.

Example 1-7. Loading a YUI 2 TreeView in YUI 3

<!DOCTYPE html>
<title>Loading a YUI 2 TreeView in YUI 3</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('yui2-treeview', function (Y) {
 var YAHOO = Y.YUI2,
 tree = new YAHOO.widget.TreeView('demo', [
 {
 label: 'hats',
 children: [
 { label: 'bowler' },
 { label: 'fedora' }
]
 },
 {
 label: 'gloves'
 }

1.6 Loading a YUI 2 Widget | 13

http://yuilibrary.com/gallery/
http://yuilibrary.com/gallery/
http://yuilibrary.com/gallery/show/torelativetime
http://yuilibrary.com/gallery/show/torelativetime
http://yuilibrary.com/gallery/show/torelativetime
http://yuilibrary.com/yui/docs/tutorials/gallery/
http://yuilibrary.com/yui/docs/tutorials/gallery/
http://yuilibrary.com/yui/docs/tutorials/gallery/

]);
 tree.render();
});
</script>

Discussion
With YUI 2in3, core YUI 2 widgets such as ImageCropper, ColorPicker, and Progress
Bar are represented as first-class YUI 3 modules. Any YUI 2 widget you load this way
attaches to the Y object as Y.YUI2. To make this look more like classic YUI 2–style code,
you can rename Y.YUI2 to YAHOO, as shown in Example 1-7.

Although you may freely intermix YUI 3 code with YUI 2 wrapped modules, keep in
mind that just because it loads like YUI 3 doesn’t mean it behaves like YUI 3. For
example, new YUI 2 widgets take their container <div>’s id as a string, as in 'demo'.
For YUI 3 widgets, you pass in the CSS selector for the <div>, as in '#demo'.

By default, the version of YUI 2 you get is version 2.8.2. However, you can retrieve any
previous version by setting the yui2 field in the YUI object config:

YUI({ yui2: '2.7.0' }).use('yui2-treeview', function (Y) {
...
});

To load the absolute latest and greatest (and final!) version of YUI 2, use:

YUI({
 'yui2': '2.9.0',
 '2in3': '4'
}).use('yui2-treeview', function (Y) {
...
});

The 2in3 property configures the version of the YUI 2in3 wrapper to use, which must
be at version 4 to load version 2.9.0.

See Also
YUI 2in3 project source (https://github.com/yui/2in3/tree/master/dist/2.9.0/build); YUI
2 TreeView documentation (http://developer.yahoo.com/yui/treeview/).

1.7 Loading Locally Hosted Builds
Problem
You want to load YUI from your own servers instead of from Yahoo! servers.

14 | Chapter 1: Loading Modules

https://github.com/yui/2in3/tree/master/dist/2.9.0/build
https://github.com/yui/2in3/tree/master/dist/2.9.0/build
http://developer.yahoo.com/yui/treeview/
http://developer.yahoo.com/yui/treeview/
http://developer.yahoo.com/yui/treeview/

Solution
By default, the YUI object is configured to fetch from Yahoo! servers. You can change
this by:

1. Downloading the latest stable YUI SDK zip file from yuilibrary.com.

2. Unzipping the zip file in some directory under your web server’s web root.

3. Creating a <script> element that points to the yui-min.js file.

For example, if you unzipped the SDK under the top level directory /js and pointed the
first <script> element’s src at the local seed file (as shown in Example 1-8), this auto-
matically configures YUI to load all YUI core modules locally. This also disables combo
loading (discussed shortly).

Example 1-8. Loading a local copy of YUI

<!DOCTYPE html>
<title>Loading a local copy of YUI</title>

<div id="demo"></div>

<script src="/js/yui/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.one('#demo').setHTML('All politics is local.');
});
</script>

To verify that YUI is loading from your own site rather than yui.yahooapis.com, use
your browser’s component inspector (such as Firefox’s Web Inspector pane or
Chrome’s Developer Tools pane).

Discussion
Yahoo! maintains a distributed collection of servers known as a content delivery net-
work (CDN). A CDN is designed to serve files from systems that are physically close
to the user who made the request. By default, YUI uses the Yahoo! CDN, which grants
all YUI users free access to the same network that runs Yahoo’s own high-traffic sites.
This saves your own bandwidth, reduces your own server load, and greatly improves
performance thanks to browser caching and improved geographical distribution.

However, there are plenty of reasons to go it alone. Perhaps your organization forbids
loading resources from remote servers as a matter of policy. Or perhaps your pages use
SSL, in which case loading remote resources is a bad idea, as it exposes your users’
secure information to the remote site. In these cases, you can serve YUI from your own
server.

1.7 Loading Locally Hosted Builds | 15

Each release of YUI provides a full developer kit for download under http://yuilibrary
.com/downloads/. The zip file contains the library, API documentation, and example
files.

If you want the latest-and-greatest version of YUI’s source, you can
check it out by running:

git clone https://github.com/yui/yui3.git

For more information about how to send code to the upstream YUI
project, refer to the tutorial “Contribute Code to YUI” (http://yuilibrary
.com/yui/docs/tutorials/contribute/).

Download the zip file, unzip it into your preferred location under your web server’s
root, and then reference the local YUI seed file in your web page:

<script src="path/yui/yui-min.js"></script>

where path is the path under the web root in which the YUI module directories reside,
such as /js/yui/build. In addition to the core YUI 3 SDK, you can also download and
serve up the latest build of the YUI gallery and the YUI 2in3 project from your own
server.

Loading a local YUI seed file automatically reconfigures the Loader to work with local
files. Under the covers, this is like instantiating a sandbox with a configuration of:

YUI({
 base: '/js/yui/build/',
 combine: false
}).use('node', function (Y) {
 Y.one('#demo').setHTML('All politics is local.');
});

The base field defines the server name and base filepath on the server for finding YUI
modules. By default, this is http://yui.yahooapis.com/version/build. For alternative
seed files, YUI inspects your seed file URL and resets base appropriately. This means
you rarely have to set base yourself, at least at the top level. Sometimes you might need
to override base within a module group, as described in Recipe 1.11.

The combine field selects whether YUI attempts to fetch all modules in one “combo
load” HTTP request. A combo loader is a server-side script designed to accept a single
HTTP request that represents a list of modules, decompose the request, and concate-
nate all the requested JavaScript into a single response.

Loading a seed file from yui.yahooapis.com sets the combine field to true. For seed files
loaded from unknown domains, YUI changes combine to false, on the assumption that
a random server does not have a combo loader installed. Setting combine to false is a
safety measure that ensures that local installations of YUI “just work,” at the cost of
generating lots of HTTP requests. To set up a production-quality local YUI installation,

16 | Chapter 1: Loading Modules

http://yuilibrary.com/downloads/
http://yuilibrary.com/downloads/
http://yuilibrary.com/yui/docs/tutorials/contribute/
http://yuilibrary.com/yui/docs/tutorials/contribute/
http://yuilibrary.com/yui/docs/tutorials/contribute/

you should install your own local combo loader and set combine back to true. Imple-
mentations are available for a variety of server environments:

• PHP Combo Loader (http://yuilibrary.com/projects/phploader/), the reference im-
plementation, written by the YUI team. Old and stable, but not under active
development.

• Node.js Combo Loader (https://github.com/rgrove/combohandler), written and
maintained by Ryan Grove.

• Perl Combo Loader (https://github.com/brianjmiller/cgi-combo), written and main-
tained by Brian Miller.

• ASP.NET Combo Loader (https://github.com/gmoothart/NCombo), written and
maintained by Gabe Moothart.

• Python/WSGI Combo Loader (https://github.com/chrisgeo/comboloader), written
and maintained by Chris George.

• Ruby on Rails Combo Loader (https://github.com/sjungling/rails-yui_loader/), writ-
ten and maintained by Scott Jungling.

To install and operate a particular combo loader, refer to that combo loader’s
documentation.

See Also
YUI 3 SDK downloads (http://yuilibrary.com/downloads/#yui3); Brian Miller’s article
on locally served YUI3 (http://blog.endpoint.com/2011/02/locally-served-yui3.html),
which includes a configuration for serving up local copies of the gallery and YUI 2in3.

1.8 Creating Your Own Modules
Problem
You want to bundle and reuse your own code as a YUI module.

Solution
Use YUI.add() to register your code as a module with the YUI global object. At minimum,
YUI.add() takes:

• A name for your module. By convention, YUI module names are lowercase and
use hyphens to separate words.

• A callback function that defines your actual module code. To expose a property or
function in the module’s public interface, you attach the component to the Y object.

Once YUI.add() executes, you can use your code like any other YUI module. In Exam-
ple 1-9, YUI().use() immediately follows the module definition, loading the modules
it needs and then executing module methods in a callback function.

1.8 Creating Your Own Modules | 17

http://yuilibrary.com/projects/phploader/
http://yuilibrary.com/projects/phploader/
https://github.com/rgrove/combohandler
https://github.com/rgrove/combohandler
https://github.com/brianjmiller/cgi-combo
https://github.com/brianjmiller/cgi-combo
https://github.com/gmoothart/NCombo
https://github.com/gmoothart/NCombo
https://github.com/chrisgeo/comboloader
https://github.com/chrisgeo/comboloader
https://github.com/sjungling/rails-yui_loader/
https://github.com/sjungling/rails-yui_loader/
http://yuilibrary.com/downloads/#yui3
http://yuilibrary.com/downloads/#yui3
http://blog.endpoint.com/2011/02/locally-served-yui3.html
http://blog.endpoint.com/2011/02/locally-served-yui3.html

Example 1-9. Creating and using a Hello World module

<!DOCTYPE html>
<title>Creating and using a Hello World module</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('hello', function (Y) {
 Y.namespace('Hello');

 Y.Hello.sayHello = function () {
 return 'GREETINGS PROGRAMS';
 };
});

YUI().use('node-base', 'hello', function (Y) {
 Y.one('#demo').setHTML(Y.Hello.sayHello());
});
</script>

To help avoid naming collisions, you can use Y.namespace() to manufacture a Hello
namespace for the sayHello() method. Y.namespace() is a handy utility, though in this
simple example, the call is essentially equivalent to:

Y.Hello = {};

Example 1-9 represents only the most basic building block for creating
modules. This example is not enough to create truly reusable code. Real-
world modules declare dependencies and other metadata, and are de-
fined in a separate file from where they are used. For more information,
refer to Recipes 1.9 and 1.10.

Discussion
As mentioned in the introduction and in Recipe 1.1, YUI separates module registra-
tion from module execution. YUI.add() registers modules with the YUI global object,
while YUI().use() attaches modules to a Y instance so that you can execute the module’s
functions. YUI.add() and YUI().use() are designed to work together; first you register
some code, and then later you retrieve and execute it.

When designing your applications, always think about how to move as much code as
possible out of use() and into add(). Code in an add() callback is reusable, while code
in the use() callback is unreusable “glue” code designed to wire an application into a
particular page.

If you compare YUI().use() and YUI.add() closely, you might notice the lack of paren-
theses on the YUI for YUI.add(). This is a key distinction:

18 | Chapter 1: Loading Modules

• YUI.add() is a static method that registers module code with the YUI global object.

• YUI().use() is a factory method that creates YUI instances with the given
configuration.

The YUI global object stores a common pool of available code. The Y object holds the
particular subset of code that you want to actually register in a YUI.add() or use in a
YUI().use(). Again, the name Y is just a strong convention. Within a sandbox, you can
name the instance anything you like, but you should do this only if you are creating
nested use() sandboxes, or if you need to inform other developers that this instance is
“weird” in some way. For an example, refer to Recipe 1.19.

The heart of YUI.add() is the callback function that defines your module code. Any
functions or objects that you attach to the Y in the add() callback function become
available later on in the use() callback function. Anything you do not attach to the
Y remains private. For an example of a private function in a module, refer to
Example 1-10.

When attaching functions and objects, consider using a namespace rather than attach-
ing directly to the Y, as this space is reserved for a small number of core YUI methods.
You can either add namespaces manually by creating empty objects, or call the Y.name
space() utility method. Y.namespace() takes one or more strings and creates corre-
sponding namespaces on the Y object. Any namespaces that already exist do not get
overwritten. Y.namespace() is convenient for creating multiple namespaces at once and
for creating nested namespaces such as Y.Example.Hello. Y.namespace() also returns
the last namespace specified, so you can use it inline:

Y.namespace('Hello').sayHello = function () { ...

You might be wondering about the YUI core modules—do they use YUI.add()? In fact,
YUI core modules all get wrapped in a YUI.add() at build time, thanks to the YUI Builder
tool. If you download and unzip the YUI SDK, you will find the raw, unwrapped source
files under the /src directory, and the wrapped module files under the /build directory.
In other words, there’s no magic here—the core YUI modules all register themselves
with the same interface as your own modules.

See Also
Instructions for using YUI Builder (http://yuilibrary.com/projects/builder).

1.9 Creating a Module with Dependencies
Problem
You want to create a custom YUI module and ensure that it pulls in another YUI module
as a dependency.

1.9 Creating a Module with Dependencies | 19

http://yuilibrary.com/projects/builder
http://yuilibrary.com/projects/builder

Solution
Use YUI.add() to register your code as a module with the YUI global object, and pass in
a configuration object that includes your module’s dependencies. After the module
name and definition, YUI.add() takes two optional parameters:

• A string version number for your module. This is the version of your module, not
the version of YUI your module is compatible with.

• A configuration object containing metadata about the module. By far the most
common field in this configuration object is the requires array, which lists your
module’s dependencies. For each module name in the requires array, YUI pulls in
the requirement wherever it is needed, loading it remotely if necessary.

Example 1-10 is a variation on Example 1-9. Instead of returning a string value,
Y.Hello.sayHello() now changes the contents of a single Y.Node. The hello module
now declares a dependency on node-base to ensure that node.setHTML() is always avail-
able wherever hello runs.

To make things a little more interesting, sayHello() uses a private helper function
named setNodeMessage(). Users cannot call setNodeMessage() directly because it is not
attached to Y. setNodeMessage() uses Y.one() to normalize the input to a YUI node,
then sets the message text.

Example 1-10. Creating a module that depends on a YUI node

<!DOCTYPE html>
<title>Creating a module that depends on a YUI node</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI.add('hello', function (Y) {

 function setNodeMessage(node, html) {
 node = Y.one(node);
 if (node) {
 node.setHTML(html);
 }
 }

 Y.namespace('Hello').sayHello = function (node) {
 setNodeMessage(node, 'GREETINGS PROGRAMS');
 };

}, '0.0.1', {requires: ['node-base']});

YUI().use('hello', function (Y) {
 Y.Hello.sayHello(Y.one('#demo'));
});
</script>

20 | Chapter 1: Loading Modules

Unlike Example 1-9, the use() call in Example 1-10 does not need to explicitly request
node-base. The new, improved hello module now pulls in this requirement
automatically.

Discussion
Example 1-10 lists the module node-base in the requires array for the hello module.
This guarantees that YUI().use() loads and attaches hello to the Y after attaching node-
base (or any other modules you add to that array).

When providing requirements, take care to avoid circular dependencies. For example,
if hello declares that the goodbye module must be loaded before hello, but the good
bye module declares that hello must be loaded before goodbye, you have a problem.
The Loader does have some logic to defend against metadata with circular dependen-
cies, but you shouldn’t count on your code running correctly.

For performance reasons, you should also provide your module’s requirements in the
Loader metadata, as described in Recipe 1.10.

As mentioned earlier, requires is the most important field. Some of the other fields for
YUI.add() include:

optional
An array of module names to automatically include with your module, but only if
the YUI configuration value loadOptional is set to true. For example, autocom
plete-base declares an optional dependency on autocomplete-sources, which con-
tains extra functionality for populating an AutoComplete widget from YQL and
other remote sources. loadOptional is false by default.

Even if loadOptional is false, an optional dependency still causes a module to
activate if the module’s code happens to already be loaded on the page. Modules
can be present on the page due to an earlier YUI().use() call, or by loading module
code statically, as shown in Recipe 1.20.

skinnable
A Boolean indicating whether your module has a CSS skin. If this field is true, YUI
automatically creates a <link> element in the document and attempts to load a CSS
file using a URL of:

base/module-name/assets/skins/skin-name/module-name.css

where base is the value of the base field (discussed in Recipe 1.11) and skin-name
is the name of the skin, which defaults to the value sam. For more information about
creating skins, refer to Recipe 7.10.

use
Deprecated. An array of module names used to define “physical rollups,” an older
deprecated type of rollup. To create modern rollups, refer to Recipe 1.13.

1.9 Creating a Module with Dependencies | 21

In addition to module dependencies, Example 1-10 also illustrates a private function
within a module. Since JavaScript lacks an explicit private keyword, many JavaScript
developers signify private data with an underscore prefix, which warns other developers
that the function or variable “should” be private. In many cases, this form of privacy
is good enough.

However, the setNodeMessage() function in the example is truly private. Once YUI
executes the add() callback, module users can call sayHello(), but they can never call
setNodeMessage() directly, even though sayHello() maintains its internal reference to
setNodeMessage(). In JavaScript, an inner function continues to have access to all the
members of its outer function, even after the outer function executes. This important
property of the language is called closure.

See Also
Recipe 7.10; Douglas Crockford on “Private Members in JavaScript” (http://www.crock
ford.com/javascript/private.html).

1.10 Creating Truly Reusable Modules
Problem
You want to create a custom YUI module by defining the module’s code in a separate
file, then reuse the module in multiple HTML pages.

Solution
Examples 1-9 and 1-10 each define a custom module, but then proceed to use() the
module in the same <script> block on the same HTML page. Truly reusable modules
are defined in a file separate from where they are used.

This creates a problem. For modules not yet on the page, Loader needs metadata about
a module before attempting to load that module, such as where the module resides and
what its dependencies are. Fortunately, you can provide this information by configuring
the YUI object, as shown in Example 1-11.

Example 1-11. Creating a reusable module

add_reusable.html: Creates a YUI instance and passes in a configuration object that
defines the hello module’s full path and dependencies.

<!DOCTYPE html>
<title>Creating a reusable module</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({

22 | Chapter 1: Loading Modules

http://www.crockford.com/javascript/private.html
http://www.crockford.com/javascript/private.html
http://www.crockford.com/javascript/private.html

 modules: {
 'hello': {
 fullpath: 'hello.js',
 requires: ['node-base']
 }
 }
}).use('hello', function (Y) {
 Y.Hello.sayHello(Y.one('#demo'));
});
</script>

With this metadata, you do not need to manually add an extra <script> element to
load the hello.js file. The fullpath, which can point to a local file or remote URL, is
enough information for the YUI Loader to fetch the code. Declaring node-base as a
dependency instructs the Loader to fetch node-base before fetching hello.

Since YUI module names often contain dashes, it is a YUI convention to always quote
module names in configuration metadata, even if those quotes are not strictly necessary.

hello.js: Contains only the JavaScript for the hello module, identical to the version in
Example 1-10. This file resides in the same directory as add_reusable.html.

YUI.add('hello', function (Y) {

 function setNodeMessage(node, html) {
 node = Y.one(node);
 if (node) {
 node.setHTML(html);
 }
 }

 Y.namespace('Hello').sayHello = function (node) {
 setNodeMessage(node, 'GREETINGS PROGRAMS');
 };

}, '0.0.1', {requires: ['node-base']});

Discussion
Example 1-11 is a minimal example of a single, simple module. The configuration
object gets more complex as you add more modules and more dependencies, as shown
shortly in Example 1-12.

So why doesn’t YUI need a giant configuration object to load the core YUI modules?
The answer is that YUI cheats—this information is included in the YUI seed. The de-
fault seed file includes both the Loader code and metadata for all the core YUI modules,
but you can load more minimal seeds if need be. For more information about alternate
seed files, refer to “YUI and Loader changes for 3.4.0” (http://www.yuiblog.com/blog/
2011/07/01/yui-and-loader-changes-for-3-4-0/).

You might have noticed that the metadata requires: ['node-base'] is provided twice:
once in the YUI configuration that gets passed to the Loader, and again in the

1.10 Creating Truly Reusable Modules | 23

http://www.yuiblog.com/blog/2011/07/01/yui-and-loader-changes-for-3-4-0/
http://www.yuiblog.com/blog/2011/07/01/yui-and-loader-changes-for-3-4-0/
http://www.yuiblog.com/blog/2011/07/01/yui-and-loader-changes-for-3-4-0/

YUI.add() that defines the module. If the Loader has this metadata, why bother re-
peating this information in YUI.add()?

The answer has to do with certain advanced use cases where the Loader is not present.
For example, if you build your own combo load URL, load a minimal seed that lacks
the Loader code, and then call YUI().use('*') as described in Recipe 1.20, the metadata
in YUI.add() serves as a fallback for determining dependencies.

1.11 Defining Groups of Custom Modules
Problem
You want to define a group of related modules that all reside under the same path on
the server.

Solution
In your YUI configuration, use the groups field to create a group of related modules
that share the same base path and other characteristics.

Example 1-12 is configured to run from a real web server. If you prefer
to open add_group.html as a local file, change the base configuration
field to be a relative filepath such as ./js/local-modules/.

Example 1-12. Defining a module group

add_group.html: Defines the local-modules module group, which contains four mod-
ules that reside under /js/local-modules, plus a CSS skin file. The main module, rep
tiles-core, pulls in the node rollup for DOM manipulation and two more local modules
for additional giant reptile-related functionality.

<!DOCTYPE html>
<title>Defining a module group</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 groups: {
 'local-modules': {
 base: '/js/local-modules/',
 modules: {
 'reptiles-core': {
 path: 'reptiles-core/reptiles-core.js',
 requires: ['node', 'reptiles-stomp', 'reptiles-fiery-breath'],
 skinnable: true
 },

24 | Chapter 1: Loading Modules

 'reptiles-stomp': {
 path: 'reptiles-stomp/reptiles-stomp.js'
 },
 'reptiles-fiery-breath': {
 path: 'reptiles-fiery-breath/reptiles-fiery-breath.js'
 },
 'samurai': {
 path: 'samurai/samurai.js'
 }
 }
 }
 }
}).use('reptiles-core', function (Y) {
 Y.Reptiles.info(Y.one('#demo'));
});
</script>

/js/reptiles/giant-reptiles.js: Defines the reptiles-core module, which pulls in three
other modules and provides an info() method that appends a into the DOM.

YUI.add('reptiles-core', function (Y) {
 var reptiles = Y.namespace('Reptiles');

 reptiles.traits = [
 'dark eyes',
 'shiny teeth'
];

 reptiles.info = function (node) {
 var out = '', i;
 for (i = 0; i < reptiles.traits.length; i += 1) {
 out += '' + reptiles.traits[i] + '';
 };
 out += '' + reptiles.breathe() + '';
 out += '' + reptiles.stomp() + '';
 node.append('<ul class="reptile">' + out + '');
 };
}, '0.0.1', {requires: ['node', 'reptiles-stomp', 'reptiles-fiery-breath']});

/js/reptiles/stomp.js: Defines the Y.Reptiles.stomp() method.

YUI.add('reptiles-stomp', function (Y) {
 Y.namespace('Reptiles').stomp = function () {
 return 'STOMP!!';
 };
}, '0.0.1');

/js/reptiles/fiery-breath.js: Defines the Y.Reptiles.breathe() method.

YUI.add('reptiles-fiery-breath', function (Y) {
 Y.namespace('Reptiles').breathe = function () {
 return 'WHOOOSH!';
 };
}, '0.0.1');

1.11 Defining Groups of Custom Modules | 25

/js/local-modules/reptiles-core/assets/skins/sam/reptiles-core.css: Defines the CSS skin
for the reptiles-core module. YUI attempts to load this file because the skinnable field
for reptiles-core is set to true. For more information about how this works, refer to
the Discussion.

.reptile li { color: #060; }

The samurai module definition is empty. Feel free to make up your own definition.

Discussion
For multiple custom modules, consider using this convention for your module
structure:

base/
 module-foo/
 module-foo.js
 assets/
 skins/
 sam/
 module-foo.css
 sprite.png
 module-bar/
 ...

that is, a base path with one directory per module. Each module directory contains at
least one JavaScript file, possibly more if you include the *-min.js or *-debug.js versions
of your modules. If the module has a skin, it should also contain an assets/ directory,
as shown in Recipe 7.10. If it has localized language resources, it should contain a
lang/ directory, as shown in Recipe 11.6.

Module groups create a configuration context where you can load modules from some-
where other than the Yahoo! CDN. You do not need to use module groups for logical
groupings of your own modules (“all my widgets,” “all my utility objects,” and so on).
For those kinds of logical groupings, it is more appropriate to create custom rollups,
as described in Recipe 1.13. Module groups are for providing the Loader with a different
set of metadata for loading modules from a particular server and set of paths: your own
custom modules, third-party modules on some remote server, your own local copy of
the core YUI library or YUI gallery, and so on.

In many cases, a module group is a necessity. Consider loading a local CSS skin. As
described in Recipe 1.9, setting skinnable to true causes YUI to attempt to fetch a skin
from:

base/module-name/assets/skins/skin-name/module-name.css

base defaults to the same prefix that you loaded the YUI seed file from, typically some-
thing like http://yui.yahooapis.com/3.5.0/build. So what happens if you try to load
skin CSS from your own local server without using a module group?

26 | Chapter 1: Loading Modules

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 modules: {
 'reptiles-core': {
 fullpath: '/js/local-modules/reptiles-core/reptiles-core.js',
 skinnable: true
 },
 ...
 }
}).use('reptiles-core', ...);

This configuration fails because YUI attempts to load your skin from http://yui.ya-
hooapis.com/3.5.0/build/reptiles-core/assets/skins/sam/reptiles-core.css, instead of your
local server.

What if you set base to act locally? For example:

YUI({
 base: '/js/local-modules/',
 modules: {
 'reptiles-core': {
 path: 'reptiles-core/reptiles-core.js',
 skinnable: true
 },
 ...
 }
}).use('reptiles-core', ...);

This is also undesirable because now YUI is configured to fetch all modules, including
the YUI core and gallery modules, from this local path. Using a module group enables
you to set the base path for all of your local modules without messing up the loader
configuration for the core modules.

See Also
Recipe 1.13; Recipe 7.9; Recipe 7.10; Recipe 11.6; the YUI Loader section of the YUI
Global Object User Guide (http://yuilibrary.com/yui/docs/yui/#loader).

1.12 Reusing a YUI Configuration
Problem
You want to reuse a complex configuration across multiple pages.

Solution
Before creating any YUI instances, load a separate script file containing a YUI_config
object that stores all custom module configuration and other metadata you need. If the
page contains a YUI_config object, YUI automatically applies this configuration to any
YUI instances on the page.

1.12 Reusing a YUI Configuration | 27

http://yuilibrary.com/yui/docs/yui/#loader
http://yuilibrary.com/yui/docs/yui/#loader
http://yuilibrary.com/yui/docs/yui/#loader

Example 1-13 is a variation of Example 1-12, but with the module metadata broken
out into its own reusable file.

Example 1-13 is configured to run from a real web server. If you prefer
to open add_yui_config.html as a local file, change all /js filepaths to
relative filepaths such as ./js/.

Example 1-13. Reusing a YUI configuration

add_yui_config.html: Loads and exercises the reptiles-core module using an implicit
YUI configuration supplied by /js/yui_config.js. The key word is “implicit”—you do
not need to explicitly pass YUI_config into the YUI() constructor.

<!DOCTYPE html>
<title>Reusing a YUI configuration</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script src="/js/yui_config.js"></script>
<script>
YUI().use('reptiles-core', function (Y) {
 Y.Reptiles.info(Y.one('#demo'));
});
</script>

/js/yui_config.js: Provides the configuration data for loading a set of custom modules.

var YUI_config = {
 groups: {
 'local-modules': {
 base: '/js/local-modules/',
 modules: {
 'reptiles-core': {
 path: 'reptiles-core/reptiles-core.js',
 requires: ['node', 'reptiles-stomp', 'reptiles-fiery-breath'],
 skinnable: true
 },
 'reptiles-stomp': {
 path: 'reptiles-stomp/reptiles-stomp.js'
 },
 'reptiles-fiery-breath': {
 path: 'reptiles-fiery-breath/reptiles-fiery-breath.js'
 },
 'samurai': {
 path: 'samurai/samurai.js'
 }
 }
 }
 }
};

The other JavaScript files in this example are identical to the ones in Example 1-12.

28 | Chapter 1: Loading Modules

Discussion
At construction time, each YUI instance attempts to merge the common YUI_config
object into the configuration object you passed into the YUI() constructor. Thus, some-
thing like:

<script src="/js/yui_config.js"></script>
<script>
YUI({ lang: 'jp' }).use('reptiles-core', function (Y) {
 Y.Reptiles.info(Y.one('#demo'));
});
</script>

would safely add the lang property without clobbering the module metadata. Properties
you supply to the constructor override properties in YUI_config.

If you’re careful about how you merge configuration data, you can add new module
groups or even new modules within an existing module group, as shown in
Example 1-14.

Example 1-14. Merging common and page-specific YUI configuration

add_yui_config_merged.html: Loads and exercises the reptiles-core module using an
implicit YUI configuration supplied by /js/yui_config_incomplete.js, and merges some
extra configuration information into the YUI() constructor.

<!DOCTYPE html>
<title>Merging common and page-specific YUI configuration</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script src="/js/yui_config_incomplete.js"></script>
<script>
YUI({
 groups: {
 'local-modules': {
 base: '/js/local-modules/',
 modules: {
 'reptiles-stomp': {
 path: 'reptiles-stomp/reptiles-stomp.js'
 }
 }
 }
 }
}).use('reptiles-core', function (Y) {
 Y.Reptiles.info(Y.one('#demo'));
});
</script>

/js/yui_config.js: Provides some (intentionally incomplete) configuration data for load-
ing a set of custom modules. The configuration is broken in two places: first, the
reptiles-stomp module definition is missing, and second, the base path is incorrect.
However, the configuration object provided in the HTML file fixes both problems.

1.12 Reusing a YUI Configuration | 29

// WARNING: Config intentionally incomplete/broken
var YUI_config = {
 groups: {
 'local-modules': {
 base: '/js/BOGUS_PATH',
 modules: {
 'reptiles-core': {
 path: 'reptiles-core/reptiles-core.js',
 requires: ['node', 'reptiles-stomp', 'reptiles-fiery-breath'],
 skinnable: true
 },
 'reptiles-fiery-breath': {
 path: 'reptiles-fiery-breath/reptiles-fiery-breath.js'
 },
 'samurai': {
 path: 'samurai/samurai.js'
 }
 }
 }
 }
};

Example 1-14 supplies an incomplete YUI_config object in order to demonstrate that
the merging actually works. More generally, you would use YUI_config to provide a
complete, working configuration for everything that is common across your site, and
then supply additional page-specific information either in the YUI instance constructor,
or by modifying YUI_config (which would affect all instances on the page).

Once you’re within a YUI instance, you can call Y.applyConfig() at any time to merge
in additional configuration. You can even call Y.applyConfig() to load more module
metadata, perhaps along with on-demand loading techniques such as those shown in
Recipes 1.17 and 1.18.

1.13 Defining Your Own Rollups
Problem
You would like to define a particular stack of modules under a friendly alias for con-
venient reuse.

Solution
Define an empty module and provide it with a use field containing an array of other
module or rollup names. Then load and use it as you would any other module.

Example 1-15 represents a simple rollup that serves as an alias for node-base and json
(which is itself a rollup of json-parse and json-stringify). The custom my-stack rollup
behaves like any of the other popular core YUI rollups, such as node, io, json, or
transition.

30 | Chapter 1: Loading Modules

Example 1-15. Defining your own rollups

<!DOCTYPE html>
<title>Defining your own rollups</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 modules: {
 'my-stack': {
 use: ['node-base', 'json']
 }
 }
}).use('my-stack', function (Y) {
 var dataStr = '{ "rollups": "are neat" }',
 data = Y.JSON.parse(dataStr);

 Y.one('#demo').setHTML(data.rollups);
});
</script>

Discussion
As Example 1-15 demonstrates, a rollup is just an alias for a list of other rollups and
modules. The example uses core YUI modules, but you can also include gallery mod-
ules, your own custom modules, or anything else.

Rollups are great for logically grouping modules that represent major components of
your application stack, or for grouping modules that are closely related, but don’t
strictly depend on each other. For example, json-parse and json-stringify are com-
pletely independent modules, but applications often end up using both anyway.

Another benefit of rollups is that they free you up to encapsulate your code into even
smaller chunks than you otherwise might have. You can use rollups to bundle very tiny
modules into larger units, making it easier for others to use your code without having
to worry about the fiddly details of what to include.

See Also
Recipe 1.1; Recipe 1.10.

1.14 Loading jQuery as a YUI Module
Problem
You want to load jQuery and some jQuery plugins into the sandbox alongside YUI,
just like any YUI module.

1.14 Loading jQuery as a YUI Module | 31

Solution
Create a module group that defines module metadata for the main jQuery library and
any other jQuery-related code that you want to load as well. Use base and path (or
fullpath) to point to the remote files.

If you need to load multiple jQuery files in a particular order, use requires to specify
the dependency tree, and set async: false for the overall module group. Setting async:
false is necessary for loading any code that is not wrapped in a YUI.add()—it ensures
that third-party code loads synchronously, in the correct file order.

After defining jQuery files as YUI modules, you can then use() them alongside any
ordinary YUI modules you like. Example 1-16 pulls in the YUI calendar module along
with jQuery and jQuery UI, which includes the jQuery Datepicker plugin. Unlike YUI
core widgets, the jQuery Datepicker’s CSS does not get loaded automatically, so you
must load it as a separate CSS module. For more information about loading arbitrary
CSS as a YUI module, refer to Recipe 7.9.

Experienced jQuery developers might have noticed that the example
simply renders the Datepicker without bothering to wrap it in a $(docu
ment).ready(). The standard YUI loading pattern with JavaScript at the
bottom of the page usually makes DOM readiness a nonissue. However,
if you modify elements that occur after your <script> element or load
YUI in an unusual way, you might need to wait for DOM readiness. For
YUI’s equivalent of jQuery’s ready(), refer to Recipe 4.2.

Example 1-16. Loading jQuery as a YUI module

<!DOCTYPE html>
<title>Loading jQuery as a YUI module</title>
<style>
h4 { margin: 25px 0px 10px 0px; }
div.container { width: 300px; }
</style>

<body class="yui3-skin-sam">

<h4>YUI 3 Calendar Widget</h4>
<div class="container" id="ycalendar"></div>

<h4>jQuery UI Calendar Plugin</h4>
<div class="container" id="datepicker"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 groups: {
 'jquery': {
 base: 'http://ajax.googleapis.com/ajax/libs/',
 async: false,

32 | Chapter 1: Loading Modules

 modules: {
 'jquery': {
 path: 'jquery/1.7/jquery.min.js'
 },
 'jquery-ui': {
 path: 'jqueryui/1.8/jquery-ui.min.js',
 requires: ['jquery', 'jquery-ui-css']
 },
 'jquery-ui-css': {
 path: 'jqueryui/1.8/themes/base/jquery-ui.css',
 type: 'css'
 }
 }
 }
 }
}).use('calendar', 'jquery-ui', function (Y) {
 new Y.Calendar().render('#ycalendar');
 $('#datepicker').datepicker();
 Y.one('body').append('<p>YUI and jQuery, living together, mass hysteria!</p>');
});
</script>
</body>

As with any module, it’s critical to define your dependencies correctly. Here, the
jquery-ui module declares a dependency on jquery and jquery-ui-css, which ensures
that YUI adds jQuery’s code to the page above jQuery UI’s code. If you somehow got
the dependencies backward and declared that jquery depended on jquery-ui, then YUI
would add jQuery below jQuery UI, which would break the Datepicker plugin.

Of course, you’re not restricted to just core jQuery and jQuery UI. As long as you
declare your paths and dependencies correctly, you can load any third-party jQuery
plugin (or any other library code, for that matter).

Discussion
Loading jQuery, Dojo, Scriptaculous, or any other major framework into a YUI sand-
box is not exactly a recipe for great efficiency. If you’ve loaded the code necessary to
do both Y.one('#demo') and $('#demo') in the same page, you’ve loaded an awful lot
of duplicate code for rummaging around the DOM.

That said, the YUI Loader is an excellent standalone script and CSS loader. It can load
any third-party JS or CSS file you like, in any order you like, as long as you provide the
correct metadata. Some reasons you might want to do this include:

• Easy code reuse. You have found some critical feature or component that is avail-
able only in some other library.

• Better collaboration. You are working primarily in YUI, but you have teammates
or contractors who have written non-YUI code that you need to quickly integrate,
or vice versa.

1.14 Loading jQuery as a YUI Module | 33

• Improving perceived performance. Your non-YUI pages are currently littered with
blocking <script> and <link> elements at the top of the document. You’re looking
for a quick way to migrate over to a more advanced loading pattern, and perhaps
even take advantage of some advanced YUI Loader tricks such as those covered in
Recipes 1.15 and 1.17.

In fact, if you want to use the Loader to load non-YUI scripts only, and you are sure
that you don’t need to load any core YUI modules, consider loading the yui-base-
min.js seed rather than the yui-min.js seed:

<script src="http://yui.yahooapis.com/3.5.0/build/yui-base/yui-base-min.js"></script>

The yui-base-min.js seed includes the YUI module registry and the YUI Loader, but
leaves out all the metadata for the core YUI modules. This makes it a little more efficient
to load the YUI seed solely for loading and managing third-party scripts.

YUI is designed to be compatible with most major libraries, although you might run
into strange conflicts here and there. The most common reason for bugs is when the
other library modifies the prototype of a native JavaScript or native DOM object. YUI
provides solid abstraction layers around native objects, but these abstractions can break
if the other library changes object behavior at a deep level.

The other thing to watch out for is forgetting that different libraries use different ab-
stractions. For example, you can’t pass a YUI Node instance directly into some other
library for further DOM manipulation. If you are building some kind of Frankenstein’s
Monster application that does some DOM manipulation with YUI and some in Dojo,
keep a close eye on each point where the two libraries communicate.

See Also
jQuery (http://docs.jquery.com); jQuery UI.Datepicker (http://docs.jquery.com/UI/Date
picker); jCarousel (http://sorgalla.com/projects/jcarousel/); the jQuery–YUI 3 Rosetta
Stone (http://www.jsrosettastone.com/); an explanation of the different seed files in YUI
and Loader changes for 3.4.0 (http://www.yuiblog.com/blog/2011/07/01/yui-and-loader
-changes-for-3-4-0/).

1.15 Loading Modules Based on Browser Capabilities
Problem
You want YUI to supply additional fallback code to support users who have legacy
browsers, but without penalizing users who have modern browsers. (This is called
capability-based loading.)

34 | Chapter 1: Loading Modules

http://docs.jquery.com
http://docs.jquery.com
http://docs.jquery.com/UI/Datepicker
http://docs.jquery.com/UI/Datepicker
http://docs.jquery.com/UI/Datepicker
http://sorgalla.com/projects/jcarousel/
http://sorgalla.com/projects/jcarousel/
http://www.jsrosettastone.com/
http://www.jsrosettastone.com/
http://www.jsrosettastone.com/
http://www.yuiblog.com/blog/2011/07/01/yui-and-loader-changes-for-3-4-0/
http://www.yuiblog.com/blog/2011/07/01/yui-and-loader-changes-for-3-4-0/
http://www.yuiblog.com/blog/2011/07/01/yui-and-loader-changes-for-3-4-0/
http://www.yuiblog.com/blog/2011/07/01/yui-and-loader-changes-for-3-4-0/

Solution
In your YUI configuration, use the condition field to flag a module as conditional. A
conditional module loads only if some other module specified by trigger is present,
and then only if the test function returns true.

Example 1-17 demonstrates a simple suitcase module that can store data on the client.
By default, the module tries to use localStorage, but if the browser is too old to support
this feature natively, YUI loads an extra module that stores data using cookies instead.

Example 1-17. Loading modules based on browser capabilities

add_capability.html: Creates a YUI instance and passes in a configuration object that
defines metadata for the suitcase module and for the suitcase-legacy conditional
module.

<!DOCTYPE html>
<title>Loading modules based on browser capabilities</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 modules: {
 'suitcase': {
 fullpath: 'suitcase.js'
 },
 'suitcase-legacy': {
 fullpath: 'suitcase-legacy.js',
 condition: {
 trigger: 'suitcase',
 test: function () {
 try {
 return window.localStorage ? false : true;
 } catch(ex) {
 return true;
 }
 }
 },
 requires: ['suitcase', 'cookie']
 }
 }
}).use('node', 'suitcase', function (Y) {
 var type = Y.Cookie ? 'battered, legacy' : 'sleek, ultra-modern';
 Y.Suitcase.set('foo', 'bar');
 Y.one('#demo').setHTML('In your ' + type + ' suitcase: ' + Y.Suitcase.get('foo'));
});
</script>

1.15 Loading Modules Based on Browser Capabilities | 35

The suitcase-legacy module has a trigger condition. If the suitcase module is passed
into use(), YUI executes suitcase-legacy’s test function. If the browser does not sup-
port localStorage, the function returns true, which causes YUI to also fetch suitcase-
legacy and all its dependencies. If the function does support localStorage, YUI skips
fetching suitcase-legacy.

Within the use() callback, the presence of Y.Cookie is a quick way to check whether
suitcase-legacy was successfully triggered.

suitcase.js: Defines a simple get/set API for storing data on the client using localStor
age. Note that the suitcase module is written without any “knowledge” of the suit
case-legacy API. Capability-based loading is designed to help you avoid having to
include extra conditionals or other unnecessary code in your main modules.

YUI.add('suitcase', function (Y) {
 Y.Suitcase = {
 get: function (name) {
 return localStorage.getItem(name);
 },
 set: function (name, value) {
 localStorage.setItem(name, value);
 }
 };
}, '0.0.1');

suitcase-legacy.js: Defines the legacy cookie-based get/set API. Because of dependency
ordering, YUI must load suitcase-legacy after suitcase, which means that the get()
and set() methods from suitcase-legacy always overwrite the get() and set() meth-
ods from suitcase. In other words, if both modules are loaded on the page, calling
Y.Suitcase.get() will use cookies, not localStorage.

YUI.add('suitcase-legacy', function (Y) {
 Y.Suitcase = {
 get: function (name) {
 return Y.Cookie.get(name);
 },
 set: function (name, value) {
 Y.Cookie.set(name, value);
 }
 };
}, '0.0.1', { requires: ['suitcase', 'cookie'] });

Fortunately for users (but unfortunately for demonstration purposes), localStorage is
widely available in most browsers. If you don’t have a really old browser available that
can show the legacy module in action, feel free to hack the example and change the test
function to just return true.

The Suitcase object is a toy example. YUI already provides more pro-
fessional storage APIs called Cache and CacheOffline. Like Suitcase,
CacheOffline is able to use localStorage when that feature is available.

36 | Chapter 1: Loading Modules

Discussion
Supporting older, less capable browsers often requires supplying extra JavaScript to
correct for bugs and to emulate more advanced native features. After writing and testing
code to correct older browsers, the last thing you want to do is penalize cutting-edge
users by forcing them to download extra code.

YUI’s capability-based loading solves this problem by enabling you to break legacy
code out into separate modules. Older browsers can load and execute the extra code
they need, while newer browsers suffer only the small performance hit of evaluating a
few conditionals.

The core YUI library uses capability-based loading to do things like:

• Avoid loading support for physical keyboard events on iPhones

• Make DOM-ready events safer on old versions of Internet Explorer, without pe-
nalizing other browsers

• Seamlessly use the best graphics feature available for the given browser: SVG,
Canvas, or VML

While capability-based loading was originally designed for patching up legacy brows-
ers, you can also flip this idea around and serve up extra code that unlocks features in
a more capable browser. For example, let’s say your application must perform an ex-
pensive calculation. Older browsers run the calculation directly and suffer an annoying
UI freeze. However, if the browser supports the Web Worker API, YUI could trigger a
conditional module that uses workers to run the calculation in the background. Usually
you want to avoid “penalizing” newer browsers with an extra download, but if the
benefits are high enough, it might be worth doing.

Most conditional modules should be abstracted behind another API. In Exam-
ple 1-17, the modules are designed so that developers can call Y.Suitcase.get() and
Y.Suitcase.set() without knowing whether the legacy implementation was in effect.
Of course, this abstraction can be slower than the native implementation, or break
down at the edges in some other way. For example, anyone who tries to store a 3 MB
object in Y.Suitcase using a legacy browser will be sorely disappointed.

For obvious reasons, capability test functions should execute quickly. A typical capa-
bility test either checks for the existence of an object property, or creates a new DOM
element and runs some subsequent operation on that element. Unfortunately, touching
the DOM is expensive, and even more unfortunately, sometimes capability tests need
to do substantial work, since just because a browser exposes a certain property or
method doesn’t mean that the feature works properly. As an example, the test function
in Example 1-17 needs a try/catch statement in order to work around an edge-case bug
in older versions of Firefox.

Capability testing can be a surprisingly deep rabbit hole. In extreme cases where ca-
pability testing has become hopelessly complex or slow, you might consider using the

1.15 Loading Modules Based on Browser Capabilities | 37

Y.UA object. Y.UA performs user-agent sniffing, which many web developers regard as
evil. Still, Y.UA is there, just in case you really do need to use the Dark Side of the Force.
Y.UA can also be useful when capability testing isn’t helpful for answering the question,
such as when you need to detect certain CSS or rendering quirks.

See Also
The W3C standard for web storage (http://www.w3.org/TR/webstorage/); the YUI
Cookie API (http://yuilibrary.com/yui/docs/cookie/).

1.16 Monkeypatching YUI
Problem
You want to conditionally load extra code at runtime to patch a YUI bug or hack new
behavior into YUI.

Solution
In your YUI configuration, define one or more patch modules, using the condition field
to flag those modules as conditional. Set the trigger field to the name of the module
to patch, and create a test function that simply returns true.

Example 1-18 loads a module that patches node-base, changing the behavior of
setHTML(). Ordinarily, setHTML() is a safer version of setting innerHTML; before blowing
away the node’s internal contents, setHTML() walks the DOM and cleanly detaches any
event listeners. For whatever reason, you’ve decided this safer behavior is undesirable.
The “patch” clobbers setHTML(), turning it into a simple alias for setting innerHTML.

Example 1-18 is configured to run from a real web server. If you prefer
to open add_monkeypatching.html as a local file, change the base con-
figuration field to be a relative filepath such as ./js/patches/.

Example 1-18. Monkeypatching YUI

add_monkeypatching.html: Creates a YUI instance and passes in a configuration object
that defines metadata for the node-patches conditional module.

<!DOCTYPE html>
<title>Monkeypatching YUI</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI({
 groups: {

38 | Chapter 1: Loading Modules

http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/
http://yuilibrary.com/yui/docs/cookie/
http://yuilibrary.com/yui/docs/cookie/
http://yuilibrary.com/yui/docs/cookie/

 patches: {
 base: '/js/patches/',
 modules: {
 'node-patches' : {
 path: 'node-patches/node-patches.js',
 condition: {
 name: 'node-patches',
 trigger : 'node-base',
 test : function () { return true; }
 }
 }
 }
 }
 }
}).use('node-base', function (Y) {
 Y.one('#demo').setHTML("Hmmm, setHTML() is unusually fast these days.");
});
</script>

/js/patches/node-patches/node-patches.js: Provides additional code that overrides Node’s
setHTML() method. The patch module loads only if node-base is loaded.

YUI.add('node-patches', function (Y) {
 Y.Node.prototype.setHTML = function (content) {
 this.set('innerHTML', content);
 }
});

Discussion
Monkeypatching refers to modifying the behavior of a program at runtime without
altering the upstream source. Monkeypatching can be useful for implementing quick
fixes, but as the name implies, it isn’t necessarily the best approach for long-term
stability.

Example 1-18 represents a somewhat contrived behavior change. More generally, you
could use monkeypatching to temporarily address a serious bug in the YUI library, or
to inject behavior that you need in a development or staging environment, but not in
production.

When patching someone else’s code, you can use Y.Do.before() and
Y.Do.after() to cleanly inject behavior into a program without clob-
bering an existing method. For more information, refer to Recipe 4.12.

See Also
Recipe 1.15; YUI Tutorial: “Report a Bug” (http://yuilibrary.com/yui/docs/tutorials/re
port-bugs/).

1.16 Monkeypatching YUI | 39

http://yuilibrary.com/yui/docs/tutorials/report-bugs/
http://yuilibrary.com/yui/docs/tutorials/report-bugs/
http://yuilibrary.com/yui/docs/tutorials/report-bugs/

1.17 Loading Modules on Demand
Problem
You have a feature that your application needs only some of the time. You want to load
this code only for users who need it, without affecting the initial page load.

Solution
Instead of loading the optional code up front, call Y.use() within the top-level
YUI().use() sandbox to load the optional code on demand.

For example, suppose you need to display a confirmation pane when the user clicks
a button. The straightforward approach is to load the overlay module with
YUI().use(), create a new Overlay instance, and then bind a click event to the button
that will show() the overlay. For examples of using overlays, refer to Recipe 8.2.

Although there’s nothing wrong with that approach, users still have to load the over
lay module and its dependencies even if they never click the button. You can improve
the performance of the initial page view by deferring loading and executing code until
the moment the user needs it, as shown in Example 1-19:

1. Create a top-level showOverlay() function.

2. Within showOverlay(), call Y.use() to load the overlay module.

3. Within the Y.use() callback function:

a. Create a new Overlay instance, initially set to be invisible.

b. Redefine the showOverlay() function to do something else. The next time show
Overlay() is called, it will simply show the hidden overlay instance.

c. Call the newly redefined showOverlay() from within showOverlay() to make
the overlay instance visible.

4. Bind “hide” and “show” callback functions as click events for the two respective
buttons:

• The “hide” callback first checks whether the overlay has been created.

• The “show” callback calls showOverlay(). The first button click invokes the
“heavy” version of showOverlay(), the version that loads the overlay module,
instantiates an overlay, and then redefines itself. Subsequent clicks invoke the
“light” version of showOverlay(), which flips the overlay into the visible state.

Example 1-19. Loading the overlay module on demand

<!DOCTYPE html>
<title>Loading the overlay module on demand</title>
<style>
.yui3-overlay-content {
 padding: 2px;
 border: 1px solid #000;

40 | Chapter 1: Loading Modules

 border-radius: 6px;
 background-color: #afa;
}
</style>

<button id="show">Show Overlay</button>
<button id="hide">Hide Overlay</button>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 var overlay;

 var showOverlay = function () {
 Y.use('overlay', function () {
 overlay = new Y.Overlay({
 bodyContent: 'Hello!',
 centered: true,
 height: 100,
 render: true,
 visible: false,
 width: 200,
 zIndex: 2
 });

 showOverlay = function () {
 overlay.show();
 };

 showOverlay();
 });
 };

 Y.one('#hide').on('click', function () {
 if (overlay) {
 overlay.hide();
 }
 });

 Y.one('#show').on('click', function () {
 showOverlay();
 });
});
</script>

Discussion
Example 1-19 illustrates two concepts. The first is the ability of functions in JavaScript
to redefine themselves. A function calling itself (recursion) is common enough, but a
function that redefines and then calls itself is less common. This pattern is useful if you
have a function that needs to do one thing the first time it is called, and something else
on subsequent calls. Use this technique sparingly, as there’s a good chance you’ll con-
fuse people who read your code later on—including, possibly, yourself.

1.17 Loading Modules on Demand | 41

The second concept is the difference between the exterior YUI().use(), which creates
a new YUI sandbox, and the interior Y.use(), which loads modules into the existing
sandbox that’s referenced by the Y variable. Y.use() enables you to load and attach
additional modules at any time, for any reason. This is sometimes called lazy loading.

Lazy-loading modules can greatly improve your application’s perceived performance.
Native applications have a great advantage in that they start out with most or all of
their code preloaded, while web applications have to bootstrap themselves over the
network.

To compensate for this, you can divide your application into two pieces: a minimal
interactivity core that provides just enough functionality to render the application, and
additional components that you can lazy-load in the background as the user starts
poking around. Example 1-19 attempts to be “smart” by loading extra code only if it
is needed, but your application doesn’t have to be this fancy. You could wait for your
interactivity core to finish loading and then start loading all secondary components in
the background, in order of priority.

Loading modules in response to user actions can cause a delay at the moment when
the user triggers the loading. If this becomes a problem, you can just lazy-load all mod-
ules in the background regardless of whether they are needed, or alternatively, you can
try to improve performance with predictive loading, as described in Recipe 1.18.

See Also
Eric Ferraiuolo’s gallery-base-componentmgr module (http://yuilibrary.com/gallery/
show/base-componentmgr), which makes it easy to lazy-load Y.Base-derived objects and
their dependencies.

1.18 Enabling Predictive Module Loading on User Interaction
Problem
You have a feature that your application needs only some of the time, but that requires
a lot of extra code to run. You want to load this code only for users who need it, without
impacting the initial page load. You want to minimize any delay that occurs if a user
does invoke the feature.

Solution
Use predictive loading to load the necessary code after the initial page load, but just
before the user tries to invoke the feature.

In Example 1-19, the application defers loading the overlay module until the user clicks
the button, which improves the inital page load time. However, this could cause an
annoying delay when the user makes the first click.

42 | Chapter 1: Loading Modules

http://yuilibrary.com/gallery/show/base-componentmgr
http://yuilibrary.com/gallery/show/base-componentmgr
http://yuilibrary.com/gallery/show/base-componentmgr

Example 1-20 adds a refinement to the previous example. It calls Y.use() to load the
overlay module in the background, but only if the user’s mouse hovers over the Show
Overlay button or if the button acquires focus. If the user then clicks on the button and
the module has not yet loaded, the click event gets queued up until the Overlay widget
is ready. To do this, the example separates loading from execution by creating a loadO
verlay() function and a showOverlay() function.

1. The loadOverlay() function has different behavior depending on whether the over-
lay has already been instantiated, the overlay module is currently loading, or the
overlay module needs to start loading.

a. loadOverlay() takes a callback function, which turns out to be showOver
lay(). If the overlay has already been instantiated, loadOverlay() executes the
callback and returns immediately.

b. If the overlay module is currently loading, this means the overlay is not yet
ready to show. loadOverlay() queues the callback up in the callbacks array
and returns immediately.

c. If both of these conditions fail, this means the loadOverlay() function has been
invoked for the first time. It is therefore time to start loading the overlay mod-
ule. loadOverlay() calls Y.use() to load the overlay module on the fly.

d. The Y.use() callback instantiates the overlay, sets overlayLoading to false
(indicating that it is permissible to show the overlay), and finally executes any
showOverlay() callbacks that have queued up while the code was loading.

2. The showOverlay() function is considerably simpler. If the overlay is already in-
stantiated, the function shows the overlay. Otherwise, showOverlay() calls loadO
verlay() with itself as the callback, which guarantees that loadOverlay() has at
least one instance of showOverlay() queued up and ready to fire as soon as the
overlay is instantiated.

3. The hideOverlay() function is simpler still. If the overlay is already instantiated,
the function shows the overlay.

4. Finally, the script attaches event handlers to the Show Button and Hide Button.
The on() method attaches an event handler, while the once() method attaches an
event listener that automatically detaches itself the first time it is called.

Example 1-20. Loading the overlay module predictively

<!DOCTYPE html>
<title>Loading the overlay module predictively</title>
<style>
.yui3-overlay-content {
 padding: 2px;
 border: 1px solid #000;
 border-radius: 6px;
 background-color: #afa;
}
</style>

1.18 Enabling Predictive Module Loading on User Interaction | 43

<button id="show">Show Overlay</button>
<button id="hide">Hide Overlay</button>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node-base', function (Y) {
 var callbacks = [],
 overlay,
 overlayLoading,
 showButton = Y.one('#show'),
 hideButton = Y.one('#hide');

 var loadOverlay = function (callback) {
 if (overlay) {
 if (callback) {
 callback();
 }
 return;
 }

 if (callback) {
 callbacks.push(callback);
 }

 if (overlayLoading) {
 return;
 }

 overlayLoading = true;

 Y.use('overlay', function () {
 var callback;

 overlay = new Y.Overlay({
 bodyContent: 'Hello!',
 centered: true,
 visible: false,
 height: 100,
 width: 200,
 zIndex: 2
 }).render();

 overlayLoading = false;

 while (callback = callbacks.shift()) {
 if (Y.Lang.isFunction(callback)) {
 callback();
 }
 }
 });
 };

44 | Chapter 1: Loading Modules

 var showOverlay = function () {
 if (overlay) {
 overlay.show();
 } else {
 loadOverlay(showOverlay);
 }
 };

 var hideOverlay = function () {
 if (overlay) {
 overlay.hide();
 callbacks = [];
 }
 };

 showButton.once('focus', loadOverlay);
 showButton.once('mouseover', loadOverlay);
 showButton.on('click', showOverlay);
 hideButton.on('click', hideOverlay);
});
</script>

For more information about the Overlay widget, refer to Recipe 8.2.

Discussion
While on-demand loading modules can help reduce initial load times, it can cause a
delay when the user triggers the main event that requires the extra code. The goal of
predictive loading is to start the loading a little earlier by using some other, related
browser event that signals the user’s possible intent to use the feature.

A reasonable way to predict that the user is likely to click a button is to listen for
mouseover or focus events on the button or its container. You must listen for both events,
since some users may use the mouse while others may use the keyboard. To get an even
earlier indication of the user’s intent, you could attach the focus and mouseover listeners
to the button’s container. For more information about using on() and once() to attach
event handlers, refer to Chapter 4.

Thanks to these event handlers, the loadOverlay() function is called when the user is
about to click the Show Overlay button. Since dynamic script loading is an asynchro-
nous operation, loadOverlay() accepts an optional callback function as an argument,
and calls that function once the overlay is ready to use.

To ensure that user clicks don’t get lost while the overlay module is loading, multiple
calls to loadOverlay() just add more callbacks to the queue, and all queued callbacks
will be executed in order as soon as the overlay is ready. By the time the user actually
clicks, the overlay should be ready to go, but if the user does manage to click while the
code is loading, the overlay still appears as expected.

1.18 Enabling Predictive Module Loading on User Interaction | 45

1.19 Binding a YUI Instance to an iframe
Problem
You want to manipulate an iframe using JavaScript in the parent document, without
actually having to directly load YUI into the iframe.

Solution
Create a child YUI instance within your main YUI instance and bind the child instance
to the iframe, as shown in Example 1-21. Every YUI instance has a win and a doc con-
figuration value. By default, these values point to the native DOM window and docu-
ment that are hosting YUI, but you can change them to point to the window and
document of a different frame.

To set win and doc, use document.getElementById() to get a DOM reference to the
iframe, then set win to the frame’s contentWindow and doc to the frame’s content
Window.document. Note that win and doc are core configuration values and cannot be set
to be YUI Node objects, as this would presuppose that every YUI instance has the
node rollup loaded and available.

Example 1-21. Binding a YUI instance to an iframe

<!DOCTYPE html>
<title>Binding a YUI instance to an iframe</title>

<iframe src="iframe.html" id="frame"></iframe>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var frame = document.getElementById('frame'),
 win = frame.contentWindow,
 doc = frame.contentWindow.document;

 YUI({ win: win, doc: doc }).use('node', function (innerY) {
 var innerBody = innerY.one('body');
 innerBody.addClass('foo');
 innerBody.append('<p>YUI3 was loaded!</p>');
 });
});
</script>

Nested instances are one of the few reasons to name the callback something other than
Y. innerY is a fully functional YUI instance bound to the iframe’s window and docu-
ment. It has all the capabilities of a conventional Y instance, but scoped to the iframe.
For example, calling innerY.one('body') gets the iframe’s body, not the parent’s body.

46 | Chapter 1: Loading Modules

For security reasons, modern browsers prevent a parent document from
manipulating a framed document with JavaScript unless the URLs of
both documents have the same domain, protocol, and port. For this
reason, be sure to host your iframes on the same server as the parent
document.

If you try out Example 1-21 on your local filesystem using Chrome, the
example fails due to Chrome’s strict security policies around local files
and JavaScript. In this case, just copy the example files to a real web
server.

Discussion
If win and doc are not configured properly, iframes can be tricky to work with. For
instance, the following code fails:

var frame = Y.one('#foo');
var h1 = frame.one('h1');

The first line is just fine: it retrieves a Y.Node instance for the iframe with an id of foo.
But a naive call to frame.one() or frame.all() fails because YUI is scoped to work on
the parent document.

One approach would be to add <script> markup and JavaScript code directly in the
iframe, but this is clunky. The better strategy is to bind the iframe’s window and docu-
ment objects to a nested YUI instance. Within that instance, the YUI Node API works
as expected on the iframe’s content. Driving the iframe from the parent keeps all your
code in one place and avoids having to fetch all your JavaScript code a second time
from within the iframe. The iframe also has access to the Y instance for easy commu-
nication with the parent document.

If the iframe needs additional modules, you can first load them into the parent instance
with a Y.use(), and then in the Y.use() callback, call innerY.use() to attach the module
to the inner YUI instance. Example 1-22 is identical to Example 1-21, except that it
also pulls in the event rollup in order to set a click event on the body of the iframe.

Example 1-22. Loading additional modules into an iframe

<!DOCTYPE html>
<title>Loading additional modules into an iframe</title>

<iframe src="iframe.html" id="frame"></iframe>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var frame = document.getElementById('frame'),
 win = frame.contentWindow,
 doc = frame.contentWindow.document;

 YUI({ win: win, doc: doc }).use('node', function (innerY) {

1.19 Binding a YUI Instance to an iframe | 47

 var innerBody = innerY.one('body');
 innerBody.addClass('foo');
 innerBody.append('<p>YUI3 was loaded!</p>');

 Y.use('event', function () {
 innerY.use('event', function () {
 innerBody.on('click', function () {
 innerBody.replaceClass('foo', 'bar');
 });
 });
 });
 });
});
</script>

If your application makes heavy use of iframes, consider using Y.Frame, a utility included
in the YUI Rich Text Editor widget.

See Also
“Security in Depth: Local Web Pages” (http://blog.chromium.org/2008/12/security-in
-depth-local-web-pages.html) and Chromium Issue 47416 (http://code.google.com/p/
chromium/issues/detail?id=47416), which describe the Chrome team’s security con-
cerns around local files, JavaScript, and frames; Andrew Wooldridge’s “Hidden YUI
Gem—Frame” (http://andrewwooldridge.com/blog/2011/04/14/hidden-yui-gem-frame/),
which discusses a handy utility for working with iframes.

1.20 Implementing Static Loading
Problem
You want to improve YUI’s initial load time by first loading all the modules you need
in a single HTTP request, then attaching all modules to the Y instance at once.

Solution
Use the YUI Configurator (http://yuilibrary.com/yui/configurator/) to handcraft a com-
bo load URL for the YUI seed file and the exact list of modules you need. Then use this
URL to fetch all YUI code in a single HTTP request. Once the code has downloaded,
call use('*') to attach all YUI modules in the registry.

Ordinarily, the callback function passed into use() executes asynchronously after YUI
calculates dependencies and fetches any missing resources. However, if you know that
you have already loaded all modules you need onto the page, you can provide the special
value '*' to use(), as shown in Example 1-23. This special value means that all neces-
sary modules have already been loaded statically, and instructs YUI to simply attach
every module in the registry to the Y. Even conditional modules, described in
Recipe 1.15, get attached right away—regardless of the results of their test function.

48 | Chapter 1: Loading Modules

http://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html
http://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html
http://blog.chromium.org/2008/12/security-in-depth-local-web-pages.html
http://code.google.com/p/chromium/issues/detail?id=47416
http://code.google.com/p/chromium/issues/detail?id=47416
http://code.google.com/p/chromium/issues/detail?id=47416
http://andrewwooldridge.com/blog/2011/04/14/hidden-yui-gem-frame/
http://yuilibrary.com/yui/configurator/
http://yuilibrary.com/yui/configurator/

Example 1-23. Loading node-base and dependencies statically

<!DOCTYPE html>
<title>Loading node-base and dependencies statically</title>

<div id="demo"></div>

<script type="text/javascript" src="http://yui.yahooapis.com/combo?
3.5.0/build/yui-base/yui-base-min.js&3.5.0/build/oop/oop-min.js&
3.5.0/build/event-custom-base/event-custom-base-min.js&
3.5.0/build/features/features-min.js&3.5.0/build/dom-core/dom-core-min.js&
3.5.0/build/dom-base/dom-base-min.js&3.5.0/build/selector-native/selector-native-min.js&
3.5.0/build/selector/selector-min.js&3.5.0/build/node-core/node-core-min.js&
3.5.0/build/node-base/node-base-min.js&3.5.0/build/event-base/event-base-min.js"></script>
<script>
YUI({
 bootstrap: false,
}).use('*', function (Y) {
 Y.one('#demo').setHTML('Real Programmers manage their dependencies manually.');
});
</script>

For good measure, the example sets bootstrap to false, which prevents the Loader
from filling in any missing dependencies.

This technique can improve performance, but not without tradeoffs.
For more information, refer to this recipe’s Discussion.

Discussion
Static loading is yet another tool in your toolbox for managing application performance.

The YUI module system is designed to break large frameworks into tiny, digestible
chunks that can be loaded asynchronously. This flexibility provides a huge performance
advantage over monolithic libraries that force you to download the entire API whether
you need it or not.

However, while dynamically constructing a custom library improves performance tre-
mendously, it brings its own performance cost. First, calculating dependencies does
not come for free. It is reasonably fast when done on the client side and very fast when
done on the server side, but the cost is not zero. Second, loading YUI requires a mini-
mum of two HTTP requests: one call to load the YUI seed file and one call to fetch the
combo-loaded YUI modules.

If you are willing to throw the flexibility of the module system away, it is possible to
squeeze a little extra performance from YUI. By listing all modules in the combo load
URL, you can fetch everything in a single HTTP request and eliminate the need to
calculate dependencies.

1.20 Implementing Static Loading | 49

The disadvantage of this technique is that you are now responsible for managing your
own dependencies across your entire application. If you want to upgrade to a new YUI
minor version, add a YUI module to support a new feature, or remove a module that
is no longer needed, you must recalculate your dependencies and update all your combo
URLs yourself. If different pages might have different module requirements, you will
have to maintain multiple distinct combo URLs. Static loading also makes it harder to
take advantage of capability-based loading and other advanced techniques. If you are
considering static loading, be sure to measure the real-world performance difference
and weigh it against these increased maintenance costs.

50 | Chapter 1: Loading Modules

CHAPTER 2

DOM Manipulation

The document object model (DOM) is not a particularly pleasant API to program against.

The main reason for this is that historically, browser DOM implementations have been
incredibly buggy and inconsistent. Although JavaScript itself has its share of design
flaws, many common complaints about JavaScript are actually complaints about the
DOM.

A perhaps less appreciated reason is that the DOM is a low-level API that exposes only
basic capabilities. By design, low-level APIs avoid making too many assumptions about
how developers might want to use the underlying objects. Certain popular DOM ex-
tensions such as innerHTML and querySelector could be considered more mid-level, as
they evolved based on what developers were actually doing.

JavaScript libraries have the advantage of being free to provide higher-level APIs that
are more intuitive and terse than the lower-level DOM. However, each library comes
with a strong mental model for how to work with the DOM. It would be a mistake to
bake those models deeply into the DOM itself. (Imagine how unhappy jQuery devel-
opers would be if the only way to work with the DOM was the YUI way, or vice versa.)

In any case, the rise of JavaScript libraries has made it far easier to manipulate the DOM.
A good DOM abstraction layer can:

• Correct for bugs and implementation differences in specific browsers. YUI accom-
plishes this using feature detection (testing for the existence of a feature) and ca-
pability detection (verifying whether the feature works properly). If a behavior is
missing or incorrect, YUI corrects the problem. YUI’s sophisticated Loader can
fetch extra code to correct bugs, if and only if that code is needed.

• Enable you to use advanced features from newer specifications, even if the browser
doesn’t implement those features natively. If the feature is present, YUI uses the
fast native implementation. If not, YUI implements the feature in JavaScript, pro-
viding you with a uniform interface.

51

• Provide a much more pleasant and capable API. Although stock DOM methods
can get the job done, YUI and other frameworks offer friendly façades and helper
methods that provide powerful capabilities with only a small amount of code.

Before JavaScript libraries, most web developers would learn about browser bugs the
hard way, slowly building up their own personal bag of tricks. Individual browser bugs
are not always difficult to work around, but some bugs are nastier than others, and it
takes a special kind of thick-headedness to want to spend your time solving the cross-
browser problem in general. Fortunately, YUI and its cousins all bake in years of hard-
won experience around writing portable code, freeing up your time for the fun stuff—
actually writing your application.

Recipe 2.1 describes how to retrieve a single element reference using CSS selector syn-
tax. This recipe introduces the Node object, a façade that provides a consistent, easy-to-
use API for working with the DOM. Whenever this book refers to a Node object, it is
referring to a YUI node as opposed to a native DOM node (unless explicitly stated
otherwise).

Recipe 2.2 explains how to manipulate CSS classes. For this common operation, YUI
supplies sugar methods that properly handle elements with multiple classes.

Recipe 2.3 demonstrates how to exercise the Node API to get and set element attributes.

Recipe 2.4 explains how to use the browser’s internal HTML parser to serialize and
deserialize string content in and out of the DOM.

Recipe 2.5 covers CSS selectors that return multiple nodes as a NodeList object. You
can iterate through a NodeList and operate on individual Node objects, or you can use
the NodeList to perform bulk operations on every member.

Recipe 2.6 describes how to create new elements in the DOM. This is one of the fun-
damental operations that enable you to construct and display complex widgets and
views.

Finally, Recipes 2.7 and 2.8 describe how to augment the Node API itself. This is some-
thing of a power-user feature, but it is straightforward enough to consider using in your
own applications.

2.1 Getting Element References
Problem
You want to retrieve a reference to an element so that you can manipulate the element
further.

Solution
Use a CSS selector with the Y.one() method to retrieve a single Node reference.

52 | Chapter 2: DOM Manipulation

Loading Example 2-1 in a browser displays an unimpressive blank page. The code
retrieves a Node reference to the demo <div> element, but doesn’t actually do any work
with that reference. Don’t worry—in Recipe 2.2, the example actually starts calling
Node methods, and things will get a little more interesting.

Example 2-1. Getting an element by ID

<!DOCTYPE html>
<title>Getting an element by ID</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var demo = Y.one('#demo');
});
</script>

Discussion
Y.one() is your standard entry point for manipulating the DOM with YUI. Exam-
ple 2-1 illustrates one of the most common patterns, retrieving a single node by its
unique ID. This is like the workhorse DOM method document.getElementById(), with
two key differences:

• Y.one() is shorter.

• Y.one() returns a YUI Node façade object that wraps the underlying native DOM
Element object.

However, Y.one() doesn’t just mimic document.getElementsById(). As shown in Ex-
ample 2-2, Y.one() takes any CSS selector, returning the first node that matches. If the
selector fails to match any elements, Y.one() returns null. This enables you to sift
through the DOM using familiar CSS selector syntax. This technique wasn’t conceived
of when the DOM was originally designed, but it has proven to be so useful that most
browsers now offer native support.

There is a counterpart to Y.one() named Y.all(), which returns all nodes that match
the selector. For more information, refer to Recipe 2.5.

Example 2-2. Getting an element with various selectors

<!DOCTYPE html>
<title>Getting an element with various selectors</title>

<div id="demo" dir="rtl"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var aDiv1 = Y.one('#demo'); // the demo <div>
 var aDiv2 = Y.one('div'); // the demo <div> (the first and only <div>)

2.1 Getting Element References | 53

 var aDiv3 = Y.one('body div.bar'); // null; there's no <div class="bar">
 var aScript = Y.one('body script'); // the first <script> in the <body>
 var aDiv4 = Y.one('html > div'); // null; there's no <div> direct child of <html>
 var aDiv5 = Y.one('body > div'); // the demo <div> again
 var aDiv6 = Y.one('div[dir=rtl]'); // the demo <div> one last time
});
</script>

If you pass in a CSS selector that matches multiple elements, Y.one() returns the first
match. By default, YUI keeps its selector engine light by using CSS 2.1 as its baseline.
If you need the extra power of CSS3 selectors, load the optional selector-css3 module.

Y.one() returns a YUI Node instance, which smooths over browser inconsistencies and
offers a more capable interface than the native DOM Node and DOM Element. Once
you have a YUI Node reference, you can:

• Add classes to the node by calling addClass(), as described in Recipe 2.2

• Hide the node by calling hide(), as described in Recipe 3.1

• Remove the node from its parent entirely by calling remove()

• Destroy the node, all its children, and remove all its plugins and event listeners by
calling destroy(true)

• Change the node’s properties by calling set(), as described in Recipe 2.3

• Move the node on the page by calling setXY(), which normalizes element positions
to use YUI’s unified, cross-browser coordinate system

and perform many other operations, as described in the Node API.

You can often chain methods when working with Node. For example, instead of doing:

var demo = Y.one('#demo');
demo.remove();

to retrieve the Node reference and then remove the node from the document, you can
chain these operations:

Y.one('#demo').remove();

From any given node, you can walk down the DOM tree by calling one() or all() on
the node itself. This returns the first child node (or a list of multiple child nodes) that
matches the selector. To walk up the tree, call ancestor() or ancestors() on the node;
this returns the first ancestor node (or a list of multiple ancestor nodes) that matches
the selector. To walk sideways, call next() or previous(). The next() and previous()
methods are like native DOM nextSibling() and previousSibling(), but they always
return a sibling element as a YUI node, and they ignore adjacent text nodes in all
browsers.

Alternatively, you can walk the DOM by successively calling get("parentNode") or
get("children"). For more information about get(), refer to Recipe 2.3.

54 | Chapter 2: DOM Manipulation

The input for Y.one() can take a CSS selector string or a native HTMLElement. You can
use this to create methods that accept flexible input by filtering arguments through
Y.one():

function foo(node, bar) {
 node = Y.one(node);
 if (node) { ...

In addition to the Node API methods, a Node is also a YUI EventTarget. Among other
things, this means you can attach event listeners to the element by calling the on()
method. Chapters 3 and 4 discuss events in detail.

Every YUI node wraps a native DOM object, which you can retrieve by calling getDOM
Node(), as shown in Recipe 3.6. YUI uses this pattern of wrapping native objects in
façade objects throughout the library, in Recipe 2.5, in Chapter 4, and elsewhere.

Use caution when mixing the YUI Node API with native DOM opera-
tions, particularly destructive native DOM operations. For example, if
an event handler holds a YUI Node reference, and you destroy the un-
derlying native DOM node with a native innerHTML assignment or similar
operation, this can lead to memory leaks.

See Also
The Node User Guide (http://yuilibrary.com/yui/docs/node/).

2.2 Manipulating CSS Classes
Problem
You want to dynamically change one or more classes on an element.

Solution
Call Node’s addClass() and removeClass() methods to add and remove classes without
affecting other classes on the element.

Example 2-3 correctly adds and removes classes without clobbering the original gar
ish class. Note that you do not need to wrap addClass() or removeClass() in a
hasClass() check, as these methods perform this check for you internally.

Example 2-3. Manipulating CSS classes

<!DOCTYPE html>
<title>Manipulating CSS classes</title>
<style>
.garish { color: #f00; }
.moregarish { background: #0f0; }

2.2 Manipulating CSS Classes | 55

http://yuilibrary.com/yui/docs/node/
http://yuilibrary.com/yui/docs/node/

.ohpleasegodno { text-decoration: blink; overflow-x: -webkit-marquee; }
</style>

<div id="demo" class="garish ohpleasegodno">Things could always be worse...</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var div = Y.one('#demo');

 div.addClass('moregarish');
 if (div.hasClass('moregarish')) {
 Y.log('Lime green FTW!');
 }
 div.removeClass('ohpleasegodno');
});
</script>

Discussion
The native DOM attribute className enables you to easily set an element’s class to
whatever value you like. However, since elements may have multiple classes in any
order, blindly getting and setting className is usually a bad idea. hasClass(), add
Class(), and removeClass() all correctly handle multiple class names on an element.

In addition to those methods, Node provides replaceClass() for swapping one class for
another, and toggleClass() for alternately adding and removing a class. All five meth-
ods are also available on the NodeList API, enabling you to manipulate classes in bulk.
For more information, refer to Recipe 2.5.

Alternatively, you can change an element’s appearance by calling setStyle() to set an
individual CSS declaration, or do a mass string assignment of all CSS declarations by
calling setStyles(). However, addClass() is a more powerful technique because it
avoids hardcoding presentation information in JavaScript. setStyle() is arguably use-
ful as a quick way to toggle an element between display:block and display:none, but
YUI provides sugar methods for hiding elements, as described in Recipe 3.1.

For most widgets and views, you will want to make a distinction between “core” styles
and “skin” styles. For example, in a floating overlay or lightbox, position:absolute is
a core style, and background-color:silver is a skin style. Both types of styles should be
encapsulated in classes. setStyle() is not ideal for manipulating skin styles. In some
cases you can use setStyle() with core styles, but often it is better to use higher-level
methods such as hide(), show(), and setXY().

56 | Chapter 2: DOM Manipulation

When it comes to controlling presentation, you can get even more ab-
stract than calling addClass(). For example, all YUI widgets have a
visible attribute that, when set to false, adds the class yui3-widget
name-hidden to the bounding box. However, this class doesn’t include
any CSS rules by default; it simply flags the widget as “hidden” and
enables you, the designer of the widget, to choose what that means. It
could mean display:none, an animated fade, minimizing the widget into
an icon, or anything else. For more information about widgets, refer to
Chapter 8.

2.3 Getting and Setting DOM Properties
Problem
You want to change a link on the fly to point to a new location.

Solution
Use Node’s set() method to set the link’s href property, as shown in Example 2-4.

Example 2-4. Setting DOM properties

<!DOCTYPE html>
<title>Setting DOM properties</title>

Quo vadimus?

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.one('#demo').set('href', 'http://yuilibrary.com');
});
</script>

Node has an equivalent get() method that retrieves the value of a DOM property as a
string.

Discussion
The get() and set() methods are generic YUI methods for viewing and modifying
DOM properties. A DOM property is a JavaScript concept that is related to, but not
quite the same thing as, an HTML attribute. For example, the native DOM property
src:

someImg.src = 'http://example.com/foo.gif';

is related to the HTML attribute src:

2.3 Getting and Setting DOM Properties | 57

However, in general the relationship is not one-to-one. An image’s DOM properties
include (but are definitely not limited to): align, alt, border, className, height, hspace,
id, innerHTML, isMap, parentNode, src, tagName, useMap, vspace, and width. From this list,
you can see that:

• Many properties, such as src and border, correspond directly to an HTML attribute
name

• Some properties, such as className, map to an HTML attribute but under a dif-
ferent name

• Other properties, such as parentNode and innerHTML, have no corresponding HTML
attribute

• Some HTML attributes, such data-* attributes, currently have no corresponding
DOM property

To make matters more confusing, although most JavaScript developers
refer to img.src and img.innerHTML as DOM “properties,” the official
W3C terminology for img.src and img.innerHTML is in fact DOM “at-
tributes” (http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID
-642250288) .This book refers to them as “properties.”

If a property represents a Node or a NodeList, get() retrieves the YUI wrapper object
(Node or NodeList) rather than a native DOM object. Unless you explicitly call getDOM
Node() to get the underlying native object, YUI always maintains the Node façade.

Unfortunately, the exact property list varies from element to element and from browser
to browser. Most browsers support a large set of properties defined by the W3C, plus
a few useful nonstandard ones. Recent W3C specifications have folded in some popular
extensions, such as innerHTML.

In addition to get() and set() for manipulating DOM properties, Node also provides
getAttribute(), setAttribute(), and removeAttribute() for manipulating HTML at-
tributes. These YUI methods are thin wrappers around the native methods of the same
name, but have slightly different semantics:

• Calling get() on a DOM property that does not exist returns undefined. Calling
set() on a made-up property has no effect. get() and set() also support several
useful properties that cannot be accessed via getAttribute() and setAttribute(),
such as text, children, and options.

• Calling getAttribute() on an HTML attribute that does not exist returns an empty
string. This adheres to the W3C DOM specification, correcting for the fact that
native browser implementations of getAttribute() actually return null in this case.
Calling setAttribute() on a made-up attribute works just fine. This means you
can use getAttribute() and setAttribute() to store string metadata on nodes.
However, a better approach would be to use getData() and setData(), which stores

58 | Chapter 2: DOM Manipulation

http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-642250288
http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-642250288
http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-642250288
http://www.w3.org/TR/DOM-Level-2-HTML/html.html#ID-642250288

data on the YUI façade object and avoids disturbing the DOM. You can also use
getAttribute() and setAttribute() (but not get() and set()) to access the new
data-* HTML5 attributes.

See Also
Recipes 8.7 and 8.8 for working with data-* attributes; Recipe 11.4 to see the
setAttrs() sugar method and the removeAttribute() method setting up and tearing
down multiple attributes at once; Marko Dugonjić’s blog post, “The Difference Be-
tween href and getAttribute(‘href’) in JavaScript” (http://www.maratz.com/blog/ar
chives/2005/08/29/the-difference-between-href-and-getattributehref-in-javascript/).

2.4 Changing an Element’s Inner Content
Problem
You want to retrieve an element’s content and conditionally replace that content with
something else.

Solution
Use Y.one() to get a node reference. Then call the getHTML() method to inspect the
element’s inner content as a string, followed by setHTML() to change the element’s
contents. If the demo <div> is empty, the script immediately replaces the contents with
a different string. See Example 2-5.

Example 2-5. Changing an element’s inner content

<!DOCTYPE html>
<title>Changing an element’s inner content</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var demo = Y.one('#demo'),
 hi = 'HELLO from the ' + demo.get('tagName')
 + ' with id=' + demo.get('id');

 if (demo.getHTML() === '') {
 demo.setHTML(hi);
 }
});
</script>

The and tags in the string get parsed and written into the DOM as an
element. As an alternative to calling setHTML(), you can get and set the innerHTML DOM
property:

2.4 Changing an Element’s Inner Content | 59

http://www.maratz.com/blog/archives/2005/08/29/the-difference-between-href-and-getattributehref-in-javascript/
http://www.maratz.com/blog/archives/2005/08/29/the-difference-between-href-and-getattributehref-in-javascript/
http://www.maratz.com/blog/archives/2005/08/29/the-difference-between-href-and-getattributehref-in-javascript/
http://www.maratz.com/blog/archives/2005/08/29/the-difference-between-href-and-getattributehref-in-javascript/

if (demo.get('innerHTML') === '') {
 demo.set('innerHTML', hi);
}

Methods like setHTML() and set('innerHTML') are insecure when used
for non-HTML strings or strings whose actual content or origin is un-
known. When you need to guard against unknown content, you can use
set('text'). See also Y.Escape, discussed in Recipe 9.13.

Discussion
First introduced by Internet Explorer, innerHTML has long been standard equipment in
browsers, and has recently been codified as a standard. innerHTML is a powerful feature
that grants you direct access to the browser’s fast HTML parser, serializing and de-
serializing strings in and out of the DOM.

Some browsers have buggy implementations of innerHTML that behave strangely in cases
where HTML has implicit “wrapper” elements. For example, some browsers might fail
if you use innerHTML to insert a <tr> string directly into a <table> without a <tbody>
wrapper. YUI uses feature detection to make innerHTML safer to use, adding wrapper
elements for browsers that require it.

The setHTML() method is a YUI sugar method. It has the same semantics as
innerHTML, but it first walks old child nodes and cleanly detaches them from the parent.
The more aggressive innerHTML simply destroys and replaces the old elements. Using
setHTML() is a bit slower, but it avoids breaking references to the old nodes and prevents
memory leaks in old versions of Internet Explorer.

An alternative approach for creating elements is to use Y.Node.create() to create indi-
vidual Node objects. For a comparison of setHTML(), Y.Node.create(), and other meth-
ods for modifying the DOM, refer to Recipe 2.6.

2.5 Working with Element Collections
Problem
You want to add the class highlight to all list elements within the demo <div>.

Solution
Use Y.all() to retrieve a NodeList containing all list elements that match the criteria.
Then call addClass() on the NodeList to add the class to each member Node, as shown
in Example 2-6.

Example 2-6. Operating on a collection of elements

<!DOCTYPE html>
<title>Operating on a collection of elements</title>

60 | Chapter 2: DOM Manipulation

<style>
.highlight { background: #c66; }
</style>

<div id="demo">

 Apples
 Bananas
 Cherries

 Strawberries
 Tomatoes

</div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var listItems = Y.all('#demo li');
 listItems.addClass('highlight');
});
</script>

If you didn’t need to reuse the reference to the NodeList later on, an even more compact
solution would be to replace the two lines of JavaScript with simply:

Y.all('#demo li').addClass('highlight');

Discussion
In Example 2-1, Y.one() retrieved a Node instance representing the one element matched
by the "#demo" CSS selector:

var demo = Y.one('#demo');

Similarly, Example 2-6 uses Y.all() to retrieve a NodeList instance representing all the
elements matched by the "#demo li" CSS selector:

var listItems = Y.all('#demo li');

If the selector fails to match any elements, Y.all() returns an empty NodeList. This
enables you to safely do things like Y.all('script').remove() to remove all <script>
elements—if there are no <script> elements on the page, nothing happens.

This is deliberately different behavior from Y.one(), which returns null if no match is
found. Y.one() is designed to make it easy to perform node existence tests, while
Y.all() is designed to make it easy to do bulk operations. YUI is interesting in that it
has two abstractions for fetching DOM nodes. Some libraries rely on a single abstrac-
tion (reaching into the DOM always returns a collection), but the choice of Y.one() and
Y.all() enables you to write cleaner code—you know ahead of time whether you will
receive a single node or a collection.

2.5 Working with Element Collections | 61

As the suffix “List” implies, NodeList is an arraylike collection, providing methods such
as pop(), shift(), push(), indexOf(), and slice(). NodeList also includes a subset of
the more popular Node methods, such as addClass(), on(), and remove(). This enables
you to perform bulk operations on every member node in only a few lines of code,
without having to manually loop over the NodeList’s contents. For example:

• Y.all(selector).on(type, fn) attaches an event listener to every element matched
by the selector. However, it is often better to use event delegation, described in
Recipe 4.5.

• Y.all(selector).transition(config) runs a CSS Transitions-based animation on
every element matched by the selector. For more information about the YUI Tran
sition API, refer to Chapter 3.

• Y.all(selector).each(fn) executes an arbitrary function on each element matched
by the selector.

The one() and all() methods are also available on each Node object. The difference is
that calling Y.all(selector) queries the entire document for matches, while calling
node.all(selector) restricts the query to search only through that node’s descendants.
For an example of this in action, refer to Example 2-8.

See Also
Recipe 9.2, which describes some useful static Y.Array methods that also work with
NodeLists.

2.6 Creating New Elements
Problem
You want to create a new element and add it to the document.

Solution
Retrieve a Node instance and call append(child) to add the new node to the document
as a child of the selected node, as shown in Example 2-7.

Example 2-7. Creating a new element and adding it to the DOM

<!DOCTYPE html>
<title>Creating a new element and adding it to the DOM</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.one('#demo').append("<h1>Don't Forget the Heading!</h1>");

62 | Chapter 2: DOM Manipulation

});
</script>

Alternatively, create the node and then call appendTo(selector) on the new node:

var heading = Y.Node.create("<h1>Don't Forget the Heading!</h1>");
heading.appendTo('#demo');

Discussion
Creating new elements is a key operation in any web application. For example, if you
inject a visible widget onto a page, the widget is responsible for bootstrapping itself
into existence by creating, modifying, and appending elements into the document as
needed.

Many developers use a design strategy called progressive enhancement to ensure that
their pages provide at least basic functionality when JavaScript is turned off or broken.
The idea is to first provide a working skeleton of static markup and only then enhance
the page’s behavior with JavaScript. Certain types of projects such as games, book-
marklets, or internal business applications might not need progressive enhancement,
but in general, failing to follow this strategy can lead to costly errors. YUI includes
several patterns that directly or indirectly support progressive enhancement, such as
feature detection and Widget’s HTML_PARSER attribute, described in Recipe 7.5.

Even today, many older tutorials and scripts rely on the document.write() method,
which compiles strings into elements and writes those elements into the DOM as the
document is loading. Calling document.write() after the document has loaded wipes
out and replaces the entire page content, which can lead to surprising bugs. Calling
document.write() before the document has loaded makes it difficult for the browser to
optimize how it fetches resources and renders the page.

YUI’s Node API provides much better approaches than document.write() for creating
new elements. These approaches fall into several families:

• The static Y.Node.create() method, which creates a new node disconnected from
the document. This is the workhorse method for creating Y.Node objects in YUI.

• cloneNode(), which can create a shallow copy of a Y.Node (only copy the open and
close tags) or a deep copy (copy all attributes and internal contents). Cloning is a
useful optimization when you need to create several similar nodes: use Y.Node.cre
ate() to create a template node, and then clone the template. Like Y.Node.cre
ate(), cloned nodes are created outside the document.

• setHTML() and the innerHTML DOM property, discussed in Recipe 2.4. These meth-
ods use the browser’s HTML parser to compile a string into elements and insert
those elements into the DOM all in one step, completely replacing the element’s
inner contents.

2.6 Creating New Elements | 63

Although setHTML() and innerHTML might seem superficially similar
to document.write(), these approaches are scoped to an individual
element and are fine to use after the document has loaded.

• appendChild(), insertBefore(), and replaceChild(). These are YUI DOM façade
methods. They act like the similarly named native DOM methods, but return YUI
Node objects. Use these methods if you feel more comfortable working with an API
that looks more like the DOM.

• append(), prepend(), insert(), and replace(). These are YUI sugar methods. In
addition to having shorter names, they are also chainable. These methods can ei-
ther attach existing Node objects, or compile strings into objects and then attach
the results.

Y.Node.create() and cloneNode() involve a two-step process: first you create the Node
objects you want, and then you assemble them into a tree and add them to the document
with append() or a similar method. Appending a tree of Node objects into the document
makes them visible, but requires the browser to run an expensive reflow and repaint
operation. It is therefore best to use append() “off document” to completely assemble
a Node structure, then perform a final append() to add the entire structure into the
document in one operation.

The other approach is to pass raw strings of HTML into innerHTML, setHTML(), or
append() and its cousins. It can be very efficient to serialize strings directly into the
DOM without needing to mess with intermediate Node objects. However, if you want
to manipulate the nodes later, you must then incur the overhead of flagging the markup
to be locatable (by adding classes and IDs) and calling Y.one() or Y.all() to get node
references. The more methodical Y.Node.create() ensures that you already have refer-
ences to everything you need. Often, the choice between compiling and parsing HTML
strings versus assembling nodes as objects boils down to which approach yields the
cleanest code.

See Also
Mike Davies on the costs of ignoring progressive enhancement (http://isolani.co.uk/
blog/javascript/BreakingTheWebWithHashBangs).

2.7 Adding Custom Methods to Nodes
Problem
You want to be able to determine whether an individual node contains one of the new
elements that were added in the HTML5 specification.

64 | Chapter 2: DOM Manipulation

http://isolani.co.uk/blog/javascript/BreakingTheWebWithHashBangs
http://isolani.co.uk/blog/javascript/BreakingTheWebWithHashBangs
http://isolani.co.uk/blog/javascript/BreakingTheWebWithHashBangs

Solution
Use Y.Node.addMethod() to add a hasHTML5() method to all Node objects, as shown in
Example 2-8. addMethod() takes three arguments: the string name of the method to bind
to Node, a function that actually becomes the method, and an optional context with
which to call the method.

To determine whether an element is new in HTML5:

1. Define a string that lists all HTML5 element names. This string serves as a CSS
selector.

2. Use Node.all() to return a NodeList of all child elements that match this selector.
Within addMethod(), the this object refers to the YUI node where the method is
operating, and the domNode parameter represents the native DOM object that un-
derlies the YUI node.

3. Return true if any HTML5 elements were found; false otherwise.

Example 2-8. Adding the hasHTML5() method

<!DOCTYPE html>
<title>Adding the hasHTML5() method</title>

<article id="demo"><p>Hello</p></article>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 Y.Node.addMethod('hasHTML5', function(node) {
 var html5elements = 'article, aside, audio, bdi, canvas, command, ' +
 'datalist, details, figcaption, figure, footer, header, ' +
 'hgroup, keygen, mark, meter, nav, output, progress, rp, rt, ' +
 'ruby, section, source, summary, time, video, wbr';

 return (this.one(html5elements) !== null);
 });

 Y.log(Y.one('#demo').hasHTML5());
 Y.log(Y.one('body').hasHTML5());
});
</script>

Y.log() logs debug messages to the browser console. For more infor-
mation, refer to Recipe 12.1.

Strictly speaking, most HTML 4.01 elements are also HTML5 elements, so perhaps
this method should have been named hasNewInHTML5() or the even more horrible hasE
lementNewInHTML5().

2.7 Adding Custom Methods to Nodes | 65

Discussion
Having a Node façade makes it straightforward to augment the DOM. The YUI team
uses Node to make it easy to fix browser bugs, normalize browser behaviors, and add
features. There is no reason why you can’t also use this abstraction layer for your own
purposes.

When you use addMethod(), any values you return from your function automatically
get normalized to maintain the façade:

• If you return a native DOM node, addMethod() wraps it as a YUI node.

• If you return a native DOM collection or array, addMethod() wraps it as a YUI
NodeList.

• If you return some other value (other than undefined), the value passes through
unaltered.

• If you declare no return value, addMethod() returns the underlying Node instance,
which enables your method to be chained.

There is also an equivalent Y.NodeList.addMethod() for augmenting NodeLists. Any
method you add in this manner will automatically get iterated over the NodeList’s
members when that method is called.

Augmenting Node with new methods is probably the kind of thing you should bundle
into a module for reuse. For more information, refer to Recipe 1.8.

2.8 Adding Custom Properties to Nodes
Problem
To celebrate International Talk Like a Pirate Day (September 19), you want to create
a custom property that provides the pirate-speak version of the element’s text.

Solution
Add the property to Y.Node.ATTRS. A custom property is an object that contains a
getter function, and optionally a setter function if the property is writable.

In Example 2-9, the getter function uses a simple object as a map for replacing English
words with pirate-speak. It acts by:

1. Getting the Node’s text property, which represents the plain-text content. The
text property is a YUI abstraction over browser native properties such as inner
Text and textContent. (Within Y.Node.ATTRS, the this object refers to the node in
question.)

2. Creating an object to serve as a mapping between English words and pirate words.
The mapping in Example 2-9 is pretty short; you should feel free to expand it.

66 | Chapter 2: DOM Manipulation

3. Performing a String.replace() on the normal text. The regular expression matches
all words in the string. For each word matched, replace() calls a function that
replaces the word with a pirate word or leaves the word alone, depending on the
contents of the map.

4. Returning the pirate text, with a bonus “Arrrr!” thrown in.

To prove that the property works, the example sets the demo <div>’s content to an
English sentence, then immediately turns around and uses the pirate property to
change the <div> to the pirate-speak equivalent.

Example 2-9. Adding a read-only pirate property

<!DOCTYPE html>
<title>Adding a read-only pirate property</title>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var demo = Y.one('#demo');

 Y.Node.ATTRS.pirate = {
 getter: function() {
 var normalText = this.get('text'),
 pirateMap = {'hello':'ahoy', 'my':'me', 'the':"th'",
 'you':'ye', 'to':"t'", 'is':'be', 'talk':"be talkin'"},
 pirateText = normalText.replace(/\b\w*\b/g, function (word) {
 return pirateMap[word] || word;
 });

 return pirateText + ' Arrrr!';
 }
 };

 demo.setHTML('It is fun to talk like a pirate!');
 demo.setHTML(demo.get('pirate'));
});
</script>

Discussion
Although converting an element’s text to pirate-speak is an admittedly silly example,
there are all sorts of other simple text transformations that you might want to imple-
ment as custom properties. For example, the ROT13 transformation replaces each let-
ter with the letter 13 places further in the alphabet: a (letter 1) becomes n (letter 14),
u (letter 21) wraps around to h (letter 8), and so on. ROT13 is useful for obscuring joke
punchlines, plot spoilers, and answers to puzzles. Other possibly interesting transfor-
mations on node text include disemvowelling, reversing text, pretty printing code in
<pre> elements, and more.

2.8 Adding Custom Properties to Nodes | 67

Custom properties also don’t necessarily have to revolve around the element’s text
content. For example, you could have designed the hasHTML5() method from
Recipe 2.7 as a custom property with a getter function.

As with the hasHTML5() method described in Recipe 2.7, you should probably register
the pirate property in a custom YUI module using YUI.add(). For more information,
refer to Recipe 1.8.

Keep in mind that custom YUI node properties do not end up as custom properties in
the DOM, so you can access them only by calling get() and set() on the YUI node.
You cannot retrieve custom properties by accessing myNode.myProperty, either on the
YUI node or the underlying native DOM node.

68 | Chapter 2: DOM Manipulation

CHAPTER 3

UI Effects and Interactions

Originally, JavaScript provided only small niceties like the occasional animation, fade,
or rollover. Today’s browsers have advanced to the point where it is possible to build
and maintain sophisticated applications. But sometimes, the small niceties are all you
need.

Many YUI developers are frontend engineers who tend to take an application-centric
view of the code they are writing. The amount of work that goes into JavaScript dom-
inates all else, and the HTML and CSS is something to tweak later or (hopefully) hand
off to a designer.

But if you’re a designer who codes, or you’re working on a very content-heavy page, it
might be the HTML and CSS that dominates. In this more page-centric view, the HTML
page needs only some snippets of JavaScript to sprinkle in some user interface effects.

To support this kind of use case, YUI enables you to add interesting UI effects with
little overhead. You can make an element draggable in one line of code. You can fade
an element in response to a click in just three lines of code. You can perform an inter-
esting sequence of animations in only a few lines of code.

In some ways, YUI is actually better suited for the page-centric world than you might
expect. If the JavaScript is meant to be a light cosmetic addition to the page, then the
worst thing you can do is load a huge monolithic library just to do a fade. YUI’s flexible
module system enables you to be far more selective about which components you load
to create a particular effect.

Recipe 3.1 demonstrates how to hide and show an element immediately.

Recipe 3.2 introduces a slightly fancier approach to hiding and showing, by explaining
how to gracefully fade an element in and out of visibility.

Recipe 3.3 builds on these concepts by introducing the YUI Transition API, which
makes it easy to do basic DOM animations.

Recipe 3.4 demonstrates a more complicated transition that animates multiple prop-
erties on independent timers, and chains a second transition after the first.

69

Recipe 3.5 describes how to register slide effects and other custom transitions with YUI
under a string name.

Recipe 3.6 uses the handy Y.DOM.inViewportRegion() to create a simple “infinite scroll”
interaction.

Recipe 3.7 explains how to make an element draggable and several variations on this
behavior. It also covers the concept of plugins, which are discussed in more detail in
Chapter 8.

Recipe 3.8 introduces the resize module, an extension of the Drag and Drop (DD) API
that makes elements and widgets resizable.

Recipe 3.9 provides a complete working example of a table with rows that you can
reorder by dragging. In addition to showing how to use drop targets, this example
introduces some new event-related concepts, such as inspecting the event object and
using a central event manager for event handlers.

3.1 Hiding an Element
Problem
When the user clicks a button, you want to hide an element from view.

Solution
Use Y.one() to get the <button> and the <div> as a YUI node. Then add a click event
listener to the button using Node’s on() method. When the user clicks the button, the
callback function executes and calls hide() on the demo <div>. See Example 3-1.

Example 3-1. Hiding an element in response to a click

<!DOCTYPE html>
<title>Hiding an element in response to a click</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<button id="hide">Hide</button>
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', function (Y) {
 var hideButton = Y.one('#hide'),
 demo = Y.one('#demo');

 hideButton.on('click', function () {
 demo.hide();
 });

70 | Chapter 3: UI Effects and Interactions

});
</script>

If you use Y.one() inline, the code is even more compact:

YUI().use('node', function (Y) {
 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide();
 });
});

Discussion
Not surprisingly, YUI offers a show() method as a counterpart to hide(). If you need to
hide and show the <div>, add a second HTML <button> with an id of show. Then add
another event listener:

YUI().use('node', function (Y) {
 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide();
 });

 Y.one('#show').on('click', function () {
 Y.one('#demo').show();
 });
});

Technically speaking, you can always set display: none yourself by setting the style, as
described in Chapter 2. Calling hide() is more elegant than setting the style manually,
and it also offers some extra functionality as described in Recipe 3.2.

Nearly all page effects are triggered by some sort of event—a button click, a mouseover,
or some other action by the user or the system. Most of the examples in this chapter
use the on() method for setting an event listener on that node. This method takes a
string representing the type of the event (such as 'click' or 'mouseover') and a function
to execute when the event occurs.

The node rollup exposes a small amount of event functionality via on(), but to get the
full power of the YUI Event API, you must use event-base and related modules, or pull
in the event rollup. For much more information about how the YUI event system works
in general, refer to Chapter 4.

3.2 Fading an Element
Problem
You want to make an element disappear a little more gracefully, as having it disappear
immediately is kind of jarring.

3.2 Fading an Element | 71

Solution
Use the hide() method as before, but load the transition module as well. Among other
features, the transition module augments hide() and show() with additional func-
tionality, enabling you to fade the element in and out by passing true to hide() and
show(). See Example 3-2.

Example 3-2. Fading an element in response to a click

<!DOCTYPE html>
<title>Fading an element in response to a click</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<button id="hide">Hide</button> <button id="show">Show</button>
<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', 'transition', function (Y) {
 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide(true);
 });

 Y.one('#show').on('click', function () {
 Y.one('#demo').show(true);
 });
});
</script>

Passing true to hide() and show() without loading the transition module has no effect.

Discussion
The transition module enables you to perform simple animations. It relies on the API
defined by the CSS3 Transitions specification, which describes how to change CSS
values over time. The YUI transition module presents you with the same API regardless
of whether the browser supports CSS3 Transitions natively.

With the transition module enabled, hide() and show() support three optional argu-
ments. You can invoke a fade by passing in true as the first argument to hide(). This
activates a default transition that fades the element over a period of 0.5 seconds.

You can also change the behavior of the default fade. For example, you can change the
duration by passing in a configuration object instead of true:

YUI().use('node', 'transition', function (Y) {
 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide({ duration: 2.0 });
 });

72 | Chapter 3: UI Effects and Interactions

 Y.one('#show').on('click', function () {
 Y.one('#demo').show({ duration: 1.5 });
 });
});

This stretches the duration to 2.0 seconds for the hide(), and 1.5 seconds for the
show(). In general, you can pass in:

• true, as in hide(true). This triggers hide()’s default transition. It is sugar for
hide('fadeOut').

• A string name for a predefined transition, as in hide('fadeOut'). In addition to
fadeIn and fadeOut, YUI also ships with a sizeIn and sizeOut transition, which
means you can call hide('sizeOut') to shrink an element to oblivion. For more
information about how to register your own custom transitions, refer to Recipe 3.5.

• An arbitrary transition object. For examples, refer to Recipes 3.3 and 3.4.

You can also provide a callback function to execute when the transition completes, as
shown in Example 3-3. For example, when the hide() completes, you can remove the
element from the DOM entirely by calling remove() on the node. As long as you save
the node reference, you can still reverse the hide() operation by inserting the node back
into the DOM and then calling show().

Example 3-3. Fading and removing an element in response to a click

YUI().use('node', 'transition', function (Y) {
 var demo = Y.one('#demo');

 Y.one('#hide').on('click', function () {
 demo.hide({ duration: 2.0 }, function () {
 demo.remove();
 });
 });

 Y.one('#show').on('click', function () {
 Y.one('#show').insert(demo, 'after');
 demo.show({ duration: 1.5 });
 });
});

The code is not symmetric—the node gets removed in a callback for demo.hide(), but
it gets reinserted just before calling demo.show(). If you tried to make the show() code
mirror the hide() code, then the <div> would appear to pop into existence after 1.5
seconds, which is not the desired effect.

See Also
Recipe 3.5; the CSS3 Transitions specification (http://www.w3.org/TR/css3-transi
tions/).

3.2 Fading an Element | 73

http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/
http://www.w3.org/TR/css3-transitions/

3.3 Moving an Element
Problem
You want to animate an element and move it across the page.

Solution
Set the element’s CSS position property to absolute. Then load the transition module
and call the node’s transition() method, passing in a configuration object. As you can
see in Example 3-4, the configuration object includes these properties:

delay
An optional delay in seconds before starting the transition.

duration
The time in seconds to run the transition.

easing
The optional name of a predefined mathematical function for controlling the ele-
ment’s acceleration.

left
The final state of the element’s left CSS property. You can animate a large number
of CSS properties, including the size, position, text color, and more.

Example 3-4. Moving an element across the screen

<!DOCTYPE html>
<title>Moving an element across the screen</title>
<style>
#demo {
 width: 100px; height: 100px; border: 1px #000 solid; background: #d72;
 position: absolute;
}
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', 'transition', function (Y) {
 Y.one('#demo').transition({
 delay: 1.0,
 duration: 2.0,
 easing: 'ease-in',
 left: '500px'
 });
});
</script>

74 | Chapter 3: UI Effects and Interactions

Discussion
Calling hide(true) is convenient for simply fading an element. For more general access
to CSS3 Transitions, use the transition() method.

JavaScript has always had timers and DOM manipulation, so it’s easy to think about
creating basic animations by changing an element in many small steps over a certain
timeframe. But the devil is in the details. JavaScript timers are unreliable over short
time slices. Constant DOM repaints are expensive and compete with myriad other tasks
the browser might be trying to do. In short, creating robust, nonjittery animations in
older browsers is not easy. CSS3 Transitions greatly simplifies DOM animations by
natively handling many of these fiddly details for you.

Naturally, the YUI Transition API has you covered either way. For all browsers, YUI
presents a consistent, friendly interface for configuring transitions. If the browser does
not support transitions natively, YUI loads additional fallback code that implements
the API in pure JavaScript.

The basic concept of CSS transitions is that over a certain duration, using a certain
easing function, the transition() method transitions an element from one CSS state to
another. The easing function, also known as a transition timing function, controls how
the element accelerates from one CSS state to another over the specified time period.
Here, the concept of “acceleration” doesn’t just apply to the element’s position. An
element transitioning from red to green could stay red for most of the transition, then
quickly accelerate into green—or vice versa. For a complete list of available timing
functions and CSS properties you can animate, refer to the CSS3 Transitions specifi-
cation.

Example 3-4 starts the animation one second after the page loads. You can, of course,
trigger this from an event instead:

YUI().use('node', 'transition', function (Y) {
 var demo = Y.one('#demo');

 demo.on('mouseover', function () {
 demo.transition({
 duration: 2.0,
 easing: 'ease-in',
 left: '500px'
 });
 });
});

The transition() method can also animate different CSS properties independently. It
is even possible to chain transitions together, as shown in Recipe 3.4.

To simply jump an element to a new location without any animation,
use the setXY() method. setXY() works on elements regardless of wheth-
er you remembered to set the CSS position.

3.3 Moving an Element | 75

See Also
The CSS3 Transitions specification’s sections on transition timing functions (http://
www.w3.org/TR/css3-transitions/#transition-timing-function_tag) and animatable
properties (http://www.w3.org/TR/css3-transitions/#animatable-properties-).

3.4 Creating a Series of Transitions
Problem
You want to perform a series of transitions that work together to create an effect.

Solution
Use durations and delays to animate CSS properties independently. In the configuration
object, you can specify CSS properties as simple values. But if you specify a CSS property
as an object, each CSS property can have its own delay, duration, and easing function
that overrides the default.

In addition to playing tricks with durations and delays, Example 3-5 chains a second
transition after the first one by creating an on object with an end function. YUI calls this
event handler function after all animations in the first transition finish.

Example 3-5. A series of transitions

<!DOCTYPE html>
<title>A series of transitions</title>
<style>
#demo {
 width: 200px; height: 200px; border: 1px #000 solid; background: #d72;
 position: absolute;
 text-align: center;
 opacity: 0.3;
}
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('node', 'transition', function (Y) {
 var demo = Y.one('#demo');

 demo.transition({
 duration: 2.5,
 width: '100px',
 height: '100px',
 left: {
 easing: 'ease-in',
 value: '500px'
 },

76 | Chapter 3: UI Effects and Interactions

http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag
http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag
http://www.w3.org/TR/css3-transitions/#transition-timing-function_tag
http://www.w3.org/TR/css3-transitions/#animatable-properties-
http://www.w3.org/TR/css3-transitions/#animatable-properties-
http://www.w3.org/TR/css3-transitions/#animatable-properties-

 opacity: {
 delay: 1.0,
 duration: 1.75,
 value: 1.0
 },
 on: {
 start: function () {
 demo.setHTML("It's just a jump to the left...");
 },
 end: function () {
 demo.setHTML('And then a step to the riiight!');
 demo.transition({
 duration: 2.0,
 left: '0px',
 easing: 'linear'
 });
 }
 }
 });
});
</script>

Discussion
Moving the <div> back and forth across the screen requires changing the left CSS
property twice. Since you can’t define the same property twice in the same configuration
object, this requires calling another transition() function.

Naively, you might try chaining the second transition() immediately after the first, as
in: node.transition({...}).transition({...}). Here the second transition() func-
tion gets called almost immediately after the first, so the two animations clobber each
other. Instead, set the second transition() in an end callback, as shown in the example.
This ensures that the second transition() picks up properly where the first one leaves
off.

You can also use start and end to set and remove extra CSS properties that you need
for the transition, such as overflow or position. For an example of this, refer to
Recipe 3.5.

Use caution when trying out complex transitions in older browsers. The fallback code
handles simple transitions smoothly, but more complex series of transitions can cause
jumps and jitters. As mentioned in Recipe 3.3, emulating CSS transitions in pure Java-
Script is inherently less precise than the real thing.

3.5 Defining Your Own Canned Transitions
Problem
You have a standard animation configuration that you want to use over and over, but
passing the full config to transition() each time is cumbersome.

3.5 Defining Your Own Canned Transitions | 77

Solution
Append your named transition to the Y.Transition.fx object. Example 3-6 adds two
named transitions: a slideFadeIn for hiding elements, and a slideFadeOut for reversing
the operation. This registers the transition and enables you to refer to it by name, like
fadeIn and fadeOut.

For this particular slide effect, the element must have its CSS position set to rela
tive. The example uses the start callback to just clobber the element’s position prop-
erty, whatever it might be. A more sophisticated transition could be more careful about
applying and removing this property.

Example 3-6. Defining a named slideFadeOut transition

<!DOCTYPE html>
<title>Defining a named slideFadeOut transition</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<button id="hide">Hide</button>
<button id="show">Show</button>
<div id="demo"></div>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI().use('node', 'transition', function (Y) {
 function setRelativePosition() {
 this.setStyle('position', 'relative');
 }

 Y.Transition.fx.slideFadeOut = {
 opacity: 0,
 right: '-100px',
 easing: 'ease-out',
 on: { start: setRelativePosition }
 };

 Y.Transition.fx.slideFadeIn = {
 opacity: 1.0,
 right: '0px',
 easing: 'ease-in',
 on: { start: setRelativePosition }
 };

 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide('slideFadeOut');
 });

 Y.one('#show').on('click', function () {
 Y.one('#demo').show('slideFadeIn');
 });
});
</script>

78 | Chapter 3: UI Effects and Interactions

Discussion
Registering a named transition makes it easy to reuse that code, particularly for people
with less JavaScript expertise than you have. If you are a frontend engineer or lead
prototyper, Y.Transition.fx makes it easy to register a whole host of canned transitions
for other designers and prototypers on your team to use.

Example 3-6 demonstrates using named transitions in hide() and show(), but you can
always use named transitions in a general transition() call as well.

To simplify things even further, you can redefine the default transition behavior of
hide() and show(), as Example 3-7 illustrates. This enables your team to simply call
hide(true) without having to care whether this causes a fade, resize, slide, or something
more complex.

Example 3-7. Redefining the default hide and show transition

YUI().use('node', 'transition', function (Y) {
 function setRelativePosition() {
 this.setStyle('position', 'relative');
 }

 Y.Transition.fx.slideFadeOut = {
 opacity: 0,
 right: '-100px',
 easing: 'ease-out',
 on: { start: setRelativePosition }
 };

 Y.Transition.fx.slideFadeIn = {
 opacity: 1.0,
 right: '0px',
 easing: 'ease-in',
 on: { start: setRelativePosition }
 };

 Y.Transition.HIDE_TRANSITION = 'slideFadeOut';
 Y.Transition.SHOW_TRANSITION = 'slideFadeIn';

 Y.one('#hide').on('click', function () {
 Y.one('#demo').hide(true);
 });

 Y.one('#show').on('click', function () {
 Y.one('#demo').show(true);
 });
});

3.5 Defining Your Own Canned Transitions | 79

3.6 Creating an Infinite Scroll Effect
Problem
You want to create an “infinite scroll” interaction that appends new results as the user
scrolls down the page.

Solution
Load the dom module, which provides the Y.DOM.inViewportRegion() method. Then
define two functions: addContent(), which is responsible for adding new content to the
page, and fillToBelowViewport(), which is responsible for calling addContent() until
the last paragraph is no longer in the viewport.

Then add a scroll event listener that calls fillToBelowViewport() as the user scrolls.
Finally, call addContent() to initially populate the page, followed by fillToBelowView
port() to guarantee that the viewport starts out overfilled. The initial fillToBelowView
port() might do nothing, depending on the size of the user’s screen.

One slightly tricky aspect to inViewportRegion() is that Y.DOM is designed to work in-
dependently of YUI Node, which means its methods all operate on native HTMLElement
objects. For convenience, Example 3-8 loads the Node API anyway. The scroll listener
uses Y.one() to fetch a Node instance, and then calls getDOMNode() to get the underlying
native HTMLElement object, to be passed into Y.DOM.inViewportRegion().

The YUI Node API also has a handy generateID() method, which the example uses to
generate a unique ID on the last paragraph. Every time new content gets added, a new
ID gets saved as a handle for use in the scroll listener.

Example 3-8. Creating an infinite scroll effect

<!DOCTYPE html>
<title>Creating an infinite scroll effect</title>
<style>
p { font-family: courier; color: #333; }
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dom-core', 'node', function (Y) {
 var lastParaId;

 function addContent(numParas) {
 var i, content = '',
 para = '<p>All work and no play makes Jack a dull boy.</p>';

 for (i = 0; i < numParas; i += 1) {
 content += para;
 }

80 | Chapter 3: UI Effects and Interactions

 Y.one('#demo').append(content);
 return Y.one('#demo p:last-child').generateID();
 }

 function fillToBelowViewport() {
 var lastPara = Y.one('#' + lastParaId).getDOMNode();
 if (Y.DOM.inViewportRegion(lastPara)) {
 lastParaId = addContent(10);
 }
 }

 Y.on('scroll', fillToBelowViewport);

 lastParaId = addContent(20);
 fillToBelowViewport();
});
</script>

Discussion
Example 3-8 is the skeleton of an infinite scroll interaction. Most real-world infinite
scrolls use Ajax to fetch new content. Since Ajax requests can take a noticeable amount
of time, you could add a spinner or some other animation to indicate that the page is
fetching more data. You could also improve perceived performance by fetching Ajax
data a bit earlier, perhaps by triggering off of an element a few positions above the last
paragraph or by tracking scroll velocity.

Y.DOM contains a few methods for creating elements and manipulating classes, which
means that in a pinch, you can use it as a lightweight substitute for the full YUI Node
API. However, it is really more useful for doing things like checking whether an element
is in a certain region or whether two elements intersect.

See Also
The ImageLoader User Guide (http://yuilibrary.com/yui/docs/imageloader/); YUI DOM
API documentation (http://yuilibrary.com/yui/docs/api/classes/DOM.html).

3.7 Dragging an Element
Problem
You want to enable users to drag an element around the screen.

Solution
The easiest way to make an element draggable is to load the dd-drag module, create a
new Y.DD.Drag instance, and configure that instance to work on a particular node, as
shown in Example 3-9.

3.7 Dragging an Element | 81

http://yuilibrary.com/yui/docs/imageloader/
http://yuilibrary.com/yui/docs/imageloader/
http://yuilibrary.com/yui/docs/api/classes/DOM.html
http://yuilibrary.com/yui/docs/api/classes/DOM.html
http://yuilibrary.com/yui/docs/api/classes/DOM.html

Example 3-9. Creating a draggable node

<!DOCTYPE html>
<title>Creating a draggable node</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
});
</script>

Alternatively, you can load the dd-plugin module and plug the Y.Plugin.Drag plugin
into the Node instance, as shown in Example 3-10. Every node exposes a method named
plug() that can augment that node with additional behavior. Plugins enable you to add
behavior to a YUI object in a reversible, nondestructive way.

Example 3-10. Creating a draggable node using a plugin

YUI().use('dd-plugin', function(Y) {
 Y.one('#demo').plug(Y.Plugin.Drag);
});

In YUI, a plugin is a specialized object designed to augment or change the behavior of
another object. YUI has a specific interface for consuming plugins (the plug() and
unplug() methods), and a dedicated API for writing plugins. For more information,
refer to Recipes 7.7 and 7.8.

Discussion
When you create a DD.Drag instance, you can configure the drag behavior by passing a
configuration object into the constructor. For example, if you want the element to be
draggable only by a <p> handle within the <div>, you can configure that by setting the
handles attribute, as Example 3-11 shows.

Example 3-11. Creating a draggable node with a handle

<!DOCTYPE html>
<title>Creating a draggable node with a handle</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
#demo p { margin: 0px; padding 3px; border-bottom: 1px #000 solid; background: #e9e; }
</style>

<div id="demo"><p>handle</p></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>

82 | Chapter 3: UI Effects and Interactions

<script>
YUI().use('dd-drag', function (Y) {
 var dd = new Y.DD.Drag({
 node: '#demo',
 handles: ['p']
 });
});
</script>

In addition to drag functionality, a DD.Drag instance gains new methods such as addHan
dle() and stopDrag(). For example, an equivalent to Example 3-11 would be to create
the DD.Drag instance, then call the dd.addHandle() method:

YUI().use('dd-drag', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
 dd.addHandle('p');
});

While DD.Drag defines a particular set of dragging functionality, you can change its
behavior by loading yet more modules and plugging plugins into the drag instance.

For example, by default the dragged element follows your mouse or finger around the
screen. To change the behavior so that the element stays in place and a “ghost” proxy
element follows the pointer around instead, load the dd-proxy module and plug the
drag instance with Plugin.DDProxy, as shown in Example 3-12.

Example 3-12. Creating a draggable-by-proxy node

<!DOCTYPE html>
<title>Creating a draggable-by-proxy node</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
</style>

<div id="demo"></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', 'dd-proxy', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
 dd.plug(Y.Plugin.DDProxy);
});
</script>

You can also use a plugin to constrain the draggable area, as shown in Example 3-13.
(By default, the user can drag the element anywhere on the screen.) To constrain a
draggable element inside a container element, load the dd-constrain module, plug the
instance with the Plugin.DDConstrained plugin, and configure Plugin.DDConstrained to
use the box <div> as the container.

3.7 Dragging an Element | 83

Example 3-13. Creating a constrained draggable node

<!DOCTYPE html>
<title>Creating a constrained draggable node</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
#box { width: 400px; height: 300px; border: 1px #000 dashed; background: #ccc; }
</style>

<div id="box"><div id="demo"></div></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', 'dd-constrain', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
 dd.plug(Y.Plugin.DDConstrained, { constrain2node: '#box' });
});
</script>

Plugins are powerful because you can mix and match them for different situations.
Example 3-14 combines the functionality of Examples 3-12 and 3-13 to create a con-
strained draggable-by-proxy node.

Example 3-14. Creating a constrained draggable-by-proxy node

<!DOCTYPE html>
<title>Creating a constrained draggable-by-proxy node</title>
<style>
#demo { width: 100px; height: 100px; border: 1px #000 solid; background: #d72; }
#box { width: 400px; height: 300px; border: 1px #000 dashed; background: #ccc; }
</style>

<div id="box"><div id="demo"></div></div>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', 'dd-proxy', 'dd-constrain', function (Y) {
 var dd = new Y.DD.Drag({ node: '#demo' });
 dd.plug(Y.Plugin.DDProxy);
 dd.plug(Y.Plugin.DDConstrained, { constrain2node: '#box' });
});
</script>

3.8 Creating a Resizable Node
Problem
You want to enable users to resize a node by dragging its edges and corners.

84 | Chapter 3: UI Effects and Interactions

Solution
Make sure the node has a CSS position of relative, then plug it with Y.Plugin
.Resize, as shown in Example 3-15.

Example 3-15. Making an element resizable

<!DOCTYPE html>
<title>Making an element resizable</title>
<style>
#demo {
 width: 100px; height: 100px; border: 1px #000 solid; background: #d72;
 position: relative;
}
</style>

<div id="demo"></div>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI().use('resize', function (Y) {
 var resize = new Y.Resize({ node: '#demo' });
});
</script>

Similar to Drag and Drop, an alternative to using the plugin approach is to create a new
Resize instance and configure it to work on a particular node:

YUI().use('resize-plugin', function (Y) {
 Y.one('#demo').plug(Y.Plugin.Resize);
});

Discussion
The Resize API uses the Drag and Drop API under the hood and has similar semantics.
You can use Resize as a plugin to a node or widget, or use it as a standalone instance.
Also like Drag and Drop, Resize supports resize constraints and resizing by proxy. For
instance, Example 3-16 uses a “plug the plugin” approach to constrain the resize to a
width between 50 and 200 pixels. The height is unconstrained. (That’s right—plugins
are themselves pluggable.)

Example 3-16. Creating a constrained resizable node

YUI().use('resize-plugin', 'resize-constrain', function (Y) {
 var demo = Y.one('#demo');
 demo.plug(Y.Plugin.Resize);
 demo.resize.plug(Y.Plugin.ResizeConstrained, {
 minWidth: 50,
 maxWidth: 200
 });
});

3.8 Creating a Resizable Node | 85

When a user resizes an element, you can also listen for resize events that bubble up to
the Resize instance (not the node the resize is acting on). Here, it’s a little more con-
venient to create an explicit Resize instance rather than plugging the node. Exam-
ple 3-17 illustrates how to toggle the node’s appearance when the user starts and stops
the resize.

Example 3-17. Responding to resize events

<!DOCTYPE html>
<title>Responding to resize events</title>
<style>
#demo {
 width: 100px; height: 100px; border: 1px #000 solid; background: #d72;
 position: relative;
}
#demo.resizing { background: #27d; }
</style>

<div id="demo"></div>

<script src='http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js'></script>
<script>
YUI().use('resize', function (Y) {
 var resize = new Y.Resize({ node: '#demo' });
 resize.on('resize:start', function () {
 this.get('node').addClass('resizing');
 });
 resize.on('resize:end', function () {
 this.get('node').removeClass('resizing');
 });
});
</script>

Conveniently, the Resize instance stores a handle to the node it is acting on, which you
can retrieve by calling get('node'). This handle is actually a YUI attribute, not to be
confused with an HTML attribute. For more information about the Attribute API, refer
to Recipe 7.1.

See Also
The Resize User Guide (http://yuilibrary.com/yui/docs/resize/); Resize API documenta-
tion (http://yuilibrary.com/yui/docs/api/modules/resize.html).

3.9 Implementing a Reorderable Drag-and-Drop Table
Problem
You want to enable the user to reorganize a table’s rows using Drag and Drop.

86 | Chapter 3: UI Effects and Interactions

http://yuilibrary.com/yui/docs/resize/
http://yuilibrary.com/yui/docs/resize/
http://yuilibrary.com/yui/docs/api/modules/resize.html
http://yuilibrary.com/yui/docs/api/modules/resize.html
http://yuilibrary.com/yui/docs/api/modules/resize.html

Solution
Use Y.all() and each() to configure each row in the table body as a draggable node
and as a drop target, as shown in Example 3-18. Constrain each row to the interior of
the table, and set each row not only to be draggable by proxy, but to stay in place when
the user drops the proxy on the target.

This means that there are three main elements of concern:

The dragged element
The row the user is trying to drag, which stays in place

The proxy element
A “ghost” row that follows the user’s mouse or finger

The drop target
The row that the proxy is hovering over, or that has been dropped on

After configuring drag and drop targets, use the Drag and Drop Manager, Y.DD.DDM, to
handle events that bubble up from dragged elements and drop targets. The most im-
portant event is the drop:hit event, which fires when the user drops the element over
a drop target. Here the handler function checks whether the proxy’s midpoint was
above or below the drop target’s midpoint. Based on this check, it inserts the dragged
element either before or after the drop target. The proxy automatically disappears, and
the DOM change causes the browser to slide the dragged row into its new position.
Other events such as drag:start and drag:end need listeners only for cosmetic reasons.

Example 3-18. Reorderable drag-and-drop table

<!DOCTYPE html>
<title>Reorderable drag-and-drop table</title>
<style>
table.dd {
 border: 1px #000 solid; border-spacing: 1px;
 background: #844; width: 25em;
}
table.dd th { background: #999; padding: 0.2em; }
table.dd td { background: #ddd; padding: 0.2em; }
table.dd td.over { background: #9c9; }
table.dd tr.being-dragged { opacity: 0.5; }
</style>

<table class="dd">
<thead>
 <tr><th>Type</th><th>From</th><th>Weaknesses</th></tr>
</thead>
<tbody>
 <tr><td>Vampires</td><td>Transylvania</td><td>Crosses, Garlic</td></tr>
 <tr><td>Werewolves</td><td>The Forest</td><td>Silver, Teen Angst</td></tr>
 <tr><td>Zombies</td><td>Unwise Experiments</td><td>Headshots</td></tr>
 <tr><td>Robots</td><td>The Distant Future</td><td>Illogic</td></tr>
 <tr><td>Ninjas</td><td>Feudal Japan</td><td>Dishonor</td></tr>

3.9 Implementing a Reorderable Drag-and-Drop Table | 87

 <tr><td>Pirates</td><td>The High Seas</td><td>Rum</td></tr>
 <tr><td>Bob</td><td>Human Resources</td><td>None Known</td></tr>
</tbody>
</table>

<script src="http://yui.yahooapis.com/3.5.0/build/yui/yui-min.js"></script>
<script>
YUI().use('dd-drag', 'dd-drop', 'dd-proxy', 'dd-constrain', function (Y) {
 var rows = Y.all('table.dd tbody tr');
 rows.each(function (row) {
 var rowDrop = new Y.DD.Drop({ node: row }),
 rowDrag = new Y.DD.Drag({ node: row });

 rowDrag.plug(Y.Plugin.DDConstrained, { constrain2node: 'table.dd' });
 rowDrag.plug(Y.Plugin.DDProxy, { moveOnEnd: false });
 });

 function midpoint(node) {
 return node.getY() + (node.get('offsetHeight') / 2);
 }

 Y.DD.DDM.on('drop:hit', function (ev) {
 var drop = ev.drop.get('node'),
 drag = ev.drag.get('node'),
 proxy = ev.drag.get('dragNode');

 if (midpoint(proxy) >= midpoint(drop)) {
 drop.insert(drag, 'after');
 }
 else {
 drop.insert(drag, 'before');
 }
 drop.all('td').removeClass('over');
 });

 Y.DD.DDM.on('drag:start', function (ev) {
 ev.target.get('node').addClass('being-dragged');
 });

 Y.DD.DDM.on('drag:end', function (ev) {
 ev.target.get('node').removeClass('being-dragged');
 });

 Y.DD.DDM.on('drop:over', function (ev) {
 ev.drop.get('node').all('td').addClass('over');
 });

 Y.DD.DDM.on('drop:exit', function (ev) {
 ev.target.get('node').all('td').removeClass('over');
 });
});
</script>

88 | Chapter 3: UI Effects and Interactions

Discussion
If you’ve read Recipe 2.5, you should be familiar with using Y.all() and NodeList to
work with a collection of nodes. The each() method applies a function to each node in
the NodeList. Conveniently, the <table> markup supplies an explicit <thead> and
<tbody>, making it easy to exclude the header rows in the Y.all().

Chapter 4 discusses events in much more detail, but the key concept in Exam-
ple 3-18 is Y.DD.DDM, which listens for all Drag and Drop custom events, signified with
the prefix drag:. The Drag and Drop Manager provides a central point of control for
handling Drag and Drop events. For more information about how to configure custom
events to bubble up to a particular event target, refer to Recipe 4.7.

Each event handler function receives an event object representing the drag event. The
event object provides a target object representing the node that is being acted upon,
and the Drag and Drop API may further decorate the event object with a drag object,
a drop object, and even a dragNode object (which can represent the proxy). This enables
you to modify the relevant nodes as Drag and Drop events occur.

As mentioned in the solution, drop:hit is the core event handler that is actually re-
sponsible for inserting the row into a new location in the DOM. Keep in mind that if
you want to implement a reorderable table, list, or anything else with YUI, you must
use a Drag and Drop proxy and set moveOnEnd to false. When Drag and Drop moves a
dragged node, it changes the node’s position to be absolute and animates its xy coor-
dinates appropriately. In a reorderable list or table, this is undesirable for two reasons.

First, as soon as the drag begins, the table will try to close on the missing row. You can
solve this by using a proxy, preventing the table from closing on the row.

Second, when the user drops the row, the row continues to float at its current xy co-
ordinates and will look incorrect, even if your code inserts the row into the correct DOM
location. You can solve this by setting moveOnEnd to false, which prevents Drag and
Drop from artificially changing the row’s position and xy coordinates, and by listening
for drop:hit as the signal to change the structure of the table. When the row drops, the
browser simply reflows and displays all table rows in their natural, correct position.

The other event handlers are there to improve aesthetics and usability. For example,
the drag:start handler clarifies which row is being dragged, while the drop:over han-
dler highlights the current target to help the user see where the row will be dropped.

Some variations you could make to this recipe include:

• Instead of inserting the row into the DOM on a drop:hit, insert it into the DOM
on every drop:over event. In this implementation, the dragged row appears to slide
its way through its neighbors as the user drags the row around.

• The current implementation is a bit touchy when the user is trying to drag and
insert an element at the top or bottom. You can make this action a little easier by
expanding the possible drop targets beyond just the rows containing table data.

3.9 Implementing a Reorderable Drag-and-Drop Table | 89

	Table of Contents
	Preface
	YUI 2 Versus YUI 3
	Why Use YUI?
	Library or Framework?

	Who This Book Is For
	Resources and Community
	Conventions Used in This Book
	About the Examples
	Typesetting Conventions

	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Loading Modules
	1.1 Loading Rollups and Modules
	Problem
	Solution
	Discussion

	1.2 Loading SimpleYUI
	Problem
	Solution
	Discussion

	1.3 Identifying and Loading Individual Modules
	Problem
	Solution
	Discussion
	See Also

	1.4 Loading a Different Default Skin
	Problem
	Solution
	Discussion
	See Also

	1.5 Loading Gallery Modules
	Problem
	Solution
	Discussion
	See Also

	1.6 Loading a YUI 2 Widget
	Problem
	Solution
	Discussion
	See Also

	1.7 Loading Locally Hosted Builds
	Problem
	Solution
	Discussion
	See Also

	1.8 Creating Your Own Modules
	Problem
	Solution
	Discussion
	See Also

	1.9 Creating a Module with Dependencies
	Problem
	Solution
	Discussion
	See Also

	1.10 Creating Truly Reusable Modules
	Problem
	Solution
	Discussion

	1.11 Defining Groups of Custom Modules
	Problem
	Solution
	Discussion
	See Also

	1.12 Reusing a YUI Configuration
	Problem
	Solution
	Discussion

	1.13 Defining Your Own Rollups
	Problem
	Solution
	Discussion
	See Also

	1.14 Loading jQuery as a YUI Module
	Problem
	Solution
	Discussion
	See Also

	1.15 Loading Modules Based on Browser Capabilities
	Problem
	Solution
	Discussion
	See Also

	1.16 Monkeypatching YUI
	Problem
	Solution
	Discussion
	See Also

	1.17 Loading Modules on Demand
	Problem
	Solution
	Discussion
	See Also

	1.18 Enabling Predictive Module Loading on User Interaction
	Problem
	Solution
	Discussion

	1.19 Binding a YUI Instance to an iframe
	Problem
	Solution
	Discussion
	See Also

	1.20 Implementing Static Loading
	Problem
	Solution
	Discussion

	Chapter 2. DOM Manipulation
	2.1 Getting Element References
	Problem
	Solution
	Discussion
	See Also

	2.2 Manipulating CSS Classes
	Problem
	Solution
	Discussion

	2.3 Getting and Setting DOM Properties
	Problem
	Solution
	Discussion
	See Also

	2.4 Changing an Element’s Inner Content
	Problem
	Solution
	Discussion

	2.5 Working with Element Collections
	Problem
	Solution
	Discussion
	See Also

	2.6 Creating New Elements
	Problem
	Solution
	Discussion
	See Also

	2.7 Adding Custom Methods to Nodes
	Problem
	Solution
	Discussion

	2.8 Adding Custom Properties to Nodes
	Problem
	Solution
	Discussion

	Chapter 3. UI Effects and Interactions
	3.1 Hiding an Element
	Problem
	Solution
	Discussion

	3.2 Fading an Element
	Problem
	Solution
	Discussion
	See Also

	3.3 Moving an Element
	Problem
	Solution
	Discussion
	See Also

	3.4 Creating a Series of Transitions
	Problem
	Solution
	Discussion

	3.5 Defining Your Own Canned Transitions
	Problem
	Solution
	Discussion

	3.6 Creating an Infinite Scroll Effect
	Problem
	Solution
	Discussion
	See Also

	3.7 Dragging an Element
	Problem
	Solution
	Discussion

	3.8 Creating a Resizable Node
	Problem
	Solution
	Discussion
	See Also

	3.9 Implementing a Reorderable Drag-and-Drop Table
	Problem
	Solution
	Discussion

	Chapter 4. Events
	4.1 Responding to Mouseovers, Clicks, and Other User Actions
	Problem
	Solution
	Discussion
	See Also

	4.2 Responding to Element and Page Lifecycle Events
	Problem
	Solution
	Discussion

	4.3 Controlling Event Propagation and Bubbling
	Problem
	Solution
	Discussion
	See Also

	4.4 Preventing Default Behavior
	Problem
	Solution
	Discussion

	4.5 Delegating Events
	Problem
	Solution
	Discussion

	4.6 Firing and Capturing Custom Events
	Problem
	Solution
	Discussion

	4.7 Driving Applications with Custom Events
	Problem
	Solution
	Discussion

	4.8 Using Object Methods as Event Handlers
	Problem
	Solution
	Discussion

	4.9 Detaching Event Subscriptions
	Problem
	Solution
	Discussion
	See Also

	4.10 Controlling the Order of Event Handler Execution
	Problem
	Solution
	Discussion

	4.11 Creating Synthetic DOM Events
	Problem
	Solution
	Discussion

	4.12 Responding to a Method Call with Another Method
	Problem
	Solution
	Discussion

	Chapter 5. Ajax
	5.1 Fetching and Displaying XHR Data
	Problem
	Solution
	Discussion
	See Also

	5.2 Handling Errors During Data Transport
	Problem
	Solution
	Discussion
	See Also

	5.3 Loading Content Directly into a Node
	Problem
	Solution
	Discussion
	See Also

	5.4 Submitting Form Data with XHR
	Problem
	Solution
	Discussion

	5.5 Uploading a File with XHR
	Problem
	Solution
	Discussion

	5.6 Getting JSON Data Using Script Nodes (JSONP)
	Problem
	Solution
	Discussion
	See Also

	5.7 Fetching and Displaying Data with YQL
	Problem
	Solution
	Discussion
	See Also

	5.8 Scraping HTML with YQL
	Problem
	Solution
	Discussion
	See Also

	5.9 Querying Data Using DataSource
	Problem
	Solution
	Discussion
	See Also

	5.10 Normalizing DataSource Responses with a DataSchema
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. CSS
	6.1 Normalizing Browser Style Inconsistencies
	Problem
	Solution
	Discussion
	See Also

	6.2 Rebuilding Uniform Base Styles
	Problem
	Solution
	Discussion

	6.3 Applying Consistent Fonts
	Problem
	Solution
	Discussion

	6.4 Laying Out Content with Grids
	Problem
	Solution
	Discussion
	See Also

	6.5 Using Grids for Responsive Design
	Problem
	Solution
	Discussion
	See Also

	6.6 Creating Consistent Buttons
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Infrastructure
	7.1 Managing State with Attributes
	Problem
	Solution
	Discussion
	See Also

	7.2 Creating Base Components with Y.extend()
	Problem
	Solution
	Discussion
	See Also

	7.3 Creating Base Components with Y.Base.create()
	Problem
	Solution
	Discussion
	See Also

	7.4 Creating a Basic Widget
	Problem
	Solution
	Discussion
	See Also

	7.5 Creating a Widget That Uses Progressive Enhancement
	Problem
	Solution
	Discussion
	See Also

	7.6 Rendering Remote Data with a Widget
	Problem
	Solution
	Discussion
	See Also

	7.7 Creating a Simple Plugin
	Problem
	Solution
	Discussion
	See Also

	7.8 Creating a Plugin That Alters Host Behavior
	Problem
	Solution
	Discussion
	See Also

	7.9 Bundling CSS with a Widget as a CSS Module
	Problem
	Solution
	Discussion
	See Also

	7.10 Bundling CSS with a Widget as a Skin
	Problem
	Solution
	Discussion
	See Also

	7.11 Representing Data with a Model
	Problem
	Solution
	Discussion
	See Also

	7.12 Persisting Model Data with a Sync Layer
	Problem
	Solution
	Discussion
	See Also

	7.13 Managing Models with a Syncing ModelList
	Problem
	Solution
	Discussion
	See Also

	7.14 Rendering HTML with a View
	Problem
	Solution
	Discussion
	See Also

	7.15 Rendering a Model with a View
	Problem
	Solution
	Discussion
	See Also

	7.16 Rendering a ModelList with a View
	Problem
	Solution
	Discussion
	See Also

	7.17 Saving State Changes in the URL
	Problem
	Solution
	Discussion
	See Also

	7.18 Defining and Executing Routes
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Using Widgets
	8.1 Instantiating, Rendering, and Configuring Widgets
	Problem
	Solution
	Discussion
	See Also

	8.2 Creating an Overlay
	Problem
	Solution
	Discussion
	See Also

	8.3 Aligning and Centering an Overlay
	Problem
	Solution
	Discussion
	See Also

	8.4 Making an Overlay Draggable
	Problem
	Solution
	Discussion
	See Also

	8.5 Creating a Simple, Styled Information Panel
	Problem
	Solution
	Discussion
	See Also

	8.6 Creating a Modal Dialog or Form
	Problem
	Solution
	Discussion
	See Also

	8.7 Creating a Tooltip from an Overlay
	Problem
	Solution
	Discussion
	See Also

	8.8 Creating a Lightbox from an Overlay
	Problem
	Solution
	Discussion
	See Also

	8.9 Creating a Slider
	Problem
	Solution
	Discussion
	See Also

	8.10 Creating a Tabview
	Problem
	Solution
	Discussion
	See Also

	8.11 Creating a Basic DataTable
	Problem
	Solution
	Discussion
	See Also

	8.12 Formatting a DataTable’s Appearance
	Problem
	Solution
	Discussion
	See Also

	8.13 Displaying a Remote JSON DataSource in a DataTable
	Problem
	Solution
	Discussion
	See Also

	8.14 Plotting Data in a Chart
	Problem
	Solution
	Discussion
	See Also

	8.15 Choosing Dates with a Calendar
	Problem
	Solution
	Discussion
	See Also

	8.16 Defining Calendar Rules
	Problem
	Solution
	Discussion

	8.17 Creating a Basic AutoComplete
	Problem
	Solution
	Discussion
	See Also

	8.18 Highlighting and Filtering AutoComplete Results
	Problem
	Solution
	Discussion
	See Also

	8.19 Using AutoComplete with Remote Data
	Problem
	Solution
	Discussion
	See Also

	8.20 Customizing the AutoComplete Result List
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Utilities
	9.1 Determining a Variable’s Type
	Problem
	Solution
	Discussion
	See Also

	9.2 Iterating Over Arrays and Objects
	Problem
	Solution
	Discussion
	See Also

	9.3 Filtering an Array
	Problem
	Solution
	Discussion

	9.4 Merging Objects
	Problem
	Solution
	Discussion

	9.5 Composing and Inheriting from Other Objects
	Problem
	Solution
	Discussion
	See Also

	9.6 Automatically Caching Function Call Results
	Problem
	Solution
	Discussion

	9.7 Templating with Simple String Substitution
	Problem
	Solution
	Discussion
	See Also

	9.8 Formatting Numbers
	Problem
	Solution
	Discussion
	See Also

	9.9 Formatting Dates
	Problem
	Solution
	Discussion
	See Also

	9.10 Parsing Arbitrary XML
	Problem
	Solution
	Discussion
	See Also

	9.11 Converting Color Values
	Problem
	Solution
	Discussion

	9.12 Managing History and the Back Button
	Problem
	Solution
	Discussion
	See Also

	9.13 Escaping User Input
	Problem
	Solution
	Discussion
	See Also

	9.14 Assigning Special Behavior to a Checkbox Group
	Problem
	Solution
	Discussion
	See Also

	9.15 Implementing Easy Keyboard Actions and Navigation
	Problem
	Solution
	Discussion
	See Also

	9.16 Reliably Detecting Input Field Changes
	Problem
	Solution
	Discussion
	See Also

	9.17 Managing and Validating Forms
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Server-Side YUI
	10.1 Installing and Running YUI on the Server
	Problem
	Solution
	Discussion
	See Also

	10.2 Loading Modules Synchronously on the Server
	Problem
	Solution
	Discussion
	See Also

	10.3 Using YUI on the Command Line
	Problem
	Solution
	Discussion
	See Also

	10.4 Calling YQL on the Server
	Problem
	Solution
	Discussion

	10.5 Using the YUI REPL
	Problem
	Solution
	Discussion

	10.6 Constructing and Serving a Page with YUI, YQL, and Handlebars
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Universal Access
	11.1 Preventing the Flash of Unstyled Content
	Problem
	Solution
	Discussion
	See Also

	11.2 Adding ARIA to Form Error Messages
	Problem
	Solution
	Discussion
	See Also

	11.3 Building a Widget with ARIA
	Problem
	Solution
	Discussion
	See Also

	11.4 Retrofitting a Widget with an ARIA Plugin
	Problem
	Solution
	Discussion
	See Also

	11.5 Defining Translated Strings
	Problem
	Solution
	Discussion
	See Also

	11.6 Internationalizing a Widget
	Problem
	Solution
	Discussion
	See Also

	Chapter 12. Professional Tools
	12.1 Enabling Debug Logging
	Problem
	Solution
	Discussion

	12.2 Rendering Debug Log Output in the Page
	Problem
	Solution
	Discussion
	See Also

	12.3 Writing Unit Tests
	Problem
	Solution
	Discussion
	See Also

	12.4 Organizing Unit Tests into Suites
	Problem
	Solution
	Discussion
	See Also

	12.5 Testing Event Handlers by Simulating Events
	Problem
	Solution
	Discussion

	12.6 Mocking Objects
	Problem
	Solution
	Discussion
	See Also

	12.7 Testing Asynchronously Using wait()
	Problem
	Solution
	Discussion

	12.8 Collecting and Posting Test Results
	Problem
	Solution
	Discussion
	See Also

	12.9 Precommit Testing in Multiple Browsers
	Problem
	Solution
	Discussion

	12.10 Testing on Mobile Devices
	Problem
	Solution
	Discussion
	See Also

	12.11 Testing Server-Side JavaScript
	Problem
	Solution
	Discussion

	12.12 Minifying Your Code
	Problem
	Solution
	Discussion
	See Also

	12.13 Documenting Your Code
	Problem
	Solution
	Discussion
	See Also

	Index

