
Shoulders	of	Giants
Andrey	Breslav

Sir	Isaac	Newton

If	I	have	seen	further	it	is	
by	standing	on	the	
shoulders	of	Giants

Letter	to	Robert	Hooke,	1675

Bernard	of	Charters

[Dicebat Bernardus Carnotensis nos esse quasi]	

nanos gigantium
humeris incidentes.

XII	c.

Why	I’m	giving	this	talk

The	right	question

Why	don’t	all	language	designers	give	such	talks?
Every	language	has	learned	from	others

Is	it	morally	wrong?	Or	maybe	even	illegal?

“In	science	and	in	art,	there	are,	and	can	be,	few,	if	any	things,	which	in	
an	abstract	sense	are	strictly	new	and	original	throughout.	Every	book	
in	literature,	science,	and	art	borrows,	and	must	necessarily	borrow,	
and	use	much	which	was	well	known	and	used	before.”

Supreme	Court	Justice	David	Souter
Campbell	v.	Acuff-Rose	Music,	Inc.,	510	U.S.	569	(1994)

Does	it	make	them	worse?

• Is	originality	what	really	matters	to	you	as	a	developer?
• Put	in	on	the	scale	with	productivity	and	maintainability	J

• But	I	want	to
• …	stand	out
• …	be	proud	of	my	language	(and	its	authors)
• ...	win	arguments	with	fans	of	other	languages
• …	write	awesome	software,	maybe?	J

What	do	language	designers	think?

• The	Kotlin team	had	productive	discussions	with
• Brian	Goetz
• Martin	Odersky
• Erik	Meijer
• Chris	Lattner
• …	looking	forward	to	having	more!

My	ideal	world

• Everyone	builds	on	top	of	others’	ideas

• Everyone	openly	admits	it	and	says	thank	you

• Difference	from	academia:	it’s	OK	to	not	look	at	some	prior	work	J

So,	what	languages	has	Kotlin
learned	from?

From	Java:	classes!

• One	superclass
• Multiple	superinterfaces
• No	state	in	interfaces
• Constructors	(no	destructors)
• Nested/inner	classes
• Annotations
• Method	overloading

• One	root	class
• toString/equals/hashCode
• Autoboxing
• Erased	generics
• Runtime	safety	guarantees

Leaving	things	out:	Java

• Monitor	in	every	object
• finalize()
• Covariant	arrays
• Everything	implicitly	nullable
• Primitive	types	are	not	classes
• Mutable	collection	interfaces
• Static	vs	instance	methods
• Raw	types
• …

From	Java…

class C : BaseClass, I1, I2 {

class Nested { ... }

inner class Inner { ... }

}

From	Scala,	C#...

class C(p: Int, val pp: I1) : B(p, pp) {

internal var foo: Int
set(v) { field = check(v) }

override fun toString() = "..."
}

Not	Kotlin

class Person {
private var _name: String
def name = _name
def name_=(aName: String) { _name = aName }

}

Not	Kotlin

class Person {
private string _Name;
public string Name {

get { return _Name; }
set { _Name = value }

}
}

Kotlin

class Person {
private var _name = "..."
var name: String

get() = _name
set(v) { _name = v }

}

Leaving	things	out:	Interfaces	vs	Scala	Traits

• No	state	allowed
• no	fields
• no	constructors

• Order	doesn’t	matter
• no	linearization	rules

• Delegation	through	by

Some	(more)	differences…

class C(d: Intf) : Intf by d {

init { println(d) }

fun def(x: Int = 1) { ... }

fun test() {
def(x = 2)

}
}

And	a	bit	more…

val person = Person("Jane", "Doe")

val anonymous = object : Base() {
override fun foo() { ... }

}

From	Scala…

object Singleton : Base(foo) {
val bar = ...

fun baz(): String { ... }
}

Singleton.baz()

Companion	objects

class Data private (val x: Int) {
companion object {

fun create(x) = Data(x)
}

}

val data = Data.create(10)

Companion	objects

class Data private (val x: Int) {
companion object {

@JvmStatic
fun create(x) = Data(x)

}
}

val data = Data.create(10)

BTW:	Not	so	great	ideas

• Companion	objects	L

• Inheritance	by	delegation	L

From	C#...

class Person(
val firstName: String,
val lastName: String

)

fun Person.fullName() {
return "$firstName $lastName"

}

Not	Kotlin

implicit class RichPerson(p: Person) {
def fullName = s"${p.firstName} ${p.lastName}"

}

class PersonUtil {
public static string FullName(this Person p) {

return $"{p.firstName} {p.lastName}"
}

}

It’s	Groovy	time!

mylist
.filter { it.foo }
.map { it.bar }

Not	Kotlin

mylist.filter(_.foo).map(_.bar)

mylist.stream()
.filter((it) -> it.getFoo())
.map((it) -> it.getBar())
.collect(Collectors.toList())

mylist.Where(it => it.foo).Select(it => it.bar)

Not	Kotlin (yet…)

for (it <- mylist if it.foo)
yield it.bar

from it in mylist where it.foo select it.bar

[it.bar for it in mylist if it.foo]

It’s	Groovy	time!

val foo = new Foo()
foo.bar()
foo.baz()
foo.qux() with(foo) {

bar()
baz()
qux()

}

DSLs:	Type-Safe	Builders

a(href = "http://my.com") {
img(src = "http://my.com/icon.png")

}

Not	KotlinJ

10 PRINT "Welcome to Baysick Lunar Lander v0.9"
20 LET ('dist := 100)
30 LET ('v := 1)
40 LET ('fuel := 1000)
50 LET ('mass := 1000)

60 PRINT "You are drifting towards the moon."

Not	KotlinJ

object Lunar extends Baysick {
def main(args:Array[String]) = {

10 PRINT "Welcome to Baysick Lunar Lander v0.9"
20 LET ('dist := 100)
30 LET ('v := 1)
40 LET ('fuel := 1000)
50 LET ('mass := 1000)

60 PRINT "You are drifting towards the moon."
}

}

From	Scala:	Data	Classes
data class Person(

val first: String,
val last: String

) {
override fun equals(other: Any?): Boolean
override fun hashCode(): Int
override fun toString(): String
fun component1() = first
fun component2() = last
fun copy(first: String = this.first, last: String = this.last)

}

val (first, last) = myPerson

Not	Kotlin

val greeting = x match {
case Person(f, l) => s"Hi, $f $l!"
case Pet(n) => s"Hi, $n!"
_ => "Not so greetable O_o"

}

From	Gosu:	Smart	casts

val greeting = when (x) {
is Person -> "Hi, ${x.first} ${x.last}!"
is Pet -> "Hi, ${x.name}!"
else -> "Not so greetable o_O"

}

From	Groovy,	C#:	Elvis	and	friends

val middle = p.middleName ?: "N/A"

persons.firstOrNull()?.firstName ?: "N/A"

nullable!!.foo

(foo as Person).bar
(foo as? Person)?.bar

Java/Scala/C#:	Generics

abstract class Read<out T> {
abstract fun read(): T

}

interface Write<in T> {
fun write(t: T)

}

Java/Scala/C#:	Generics

class RW<T>(var t: T): Read<T>, Write<T> {
override fun read(): T = t
override fun write(t: T) {

this.t = t
}

}

fun foo(from: RW<out T>, to: RW<in T>) {
to.write(from.read())

}

Do	other	languages	learn	from	Kotlin?

• I	can't	be	100%	sure,	but	looks	like	they	do
• xTend
• Hack
• Swift
• Java?
• C#?

• But	let	them	speak	for	themselves!

My	ideal	world

• Everyone	builds	on	top	of	others’	ideas

• Everyone	openly	admits	it	and	says	thank	you

• Difference	from	academia:	it’s	OK	to	not	look	at	some	prior	work	J

P.S.	My	Personal	Workaround

In	practice,	languages	are	often	
selected	by	passion,	not	reason.

Much	as	I’d	like	it	to	be	the	other	way	around,	
I	see	no	way	of	changing	that.

So,	I’m	trying	to	make	Kotlin a	
language	that	is	loved	for	a	reason	J

