
© Copyright SELA Software & Education Labs Ltd. | 14-18 Baruch Hirsch St Bnei Brak, 51202 Israel | www.selagroup.com

Sasha	Goldshtein @goldshtn
CTO,	Sela Group github.com/goldshtn

Linux Container Performance Tools for
JVM Applications

Agenda
Mission:
Apply modern production-ready tools for performance
monitoring and profiling of Java applications in Linux
containers
Objectives:
qIdentifying overloaded resources in containers
qUnderstanding which tools work and which don’t in container

scenarios
qProfiling CPU bottlenecks
qVisualizing and exploring stack traces using flame graphs
qAnalyzing off-CPU time and CPU throttling

K
er
ne
l

Java	Performance	Information	Sources

JV
M

Syscall interface

Device drivers

CPU

Java applications

System libraries

PMU
eventsOther devices

Block I/O Ethernet Scheduler Mem

Filesystem TCP/IP

Other
applications

GC JIT

Class loader

USDT (dtrace)
probes

mbeans
JMX

JVMTI agents
Serviceability API

+PrintCompilation

+PrintGC & other

Java Flight
Recorder

Tracepoints

kprobes

uprobes

Tracepoints

attach interface
(jcmd)

hsperf (jstat)

”software events”

Linux	Containers	Under	The	Hood
Control Groups

Restrict usage (place
quotas)
cpu,cpuacct: used to cap
CPU usage and apply CPU
shares
docker run --cpus --cpu-shares
memory: used to cap user
and kernel memory usage
docker run --memory

--kernel-memory

blkio: used to cap IOPS
and throughput per block
device, and to assign

Namespaces
Restrict visibility
PID: container gets its own
PIDs
mnt: container gets its own
mount points
net: container gets its own
network interfaces
user: container gets its own
user and group ids
…etc.

Tool	Deployment:	On	The	Host

User

Kernel
perf_events

node:6 openjdk:8 ubuntu:xenial
perf record -G …

-g -F 97

Tool	Deployment:	In	Container

User

Kernel
perf_events

node:6 openjdk:8 ubuntu:xenial
perf record -G … -g -F 97

☢

Problems
On the host:

Need privileged access to the host (most container
orchestrators try to abstract this away from you)
Tools need to understand container pid namespace, mount
namespace, and other details (discussed later)

In the container:
Need to run the container with extra privileges (e.g. for perf:
enable perf_event_open syscall, perf_event_paranoid sysctl)
Bloats container images with performance tools that are not
always used, and increases attack surface
Performance tools may be throttled by quotas placed on the
container

Examples	of	JVM	Tools	That	Fail
Problems

JVM attach interface:
Mount namespace – attach
mechanism relies on file and
UNIX domain socket
User namespace – attach
mechanism requires user ids
to match

JVM performance data:
Mount namespace –
container’s
/tmp/hsperfdata_UID/PID
not visible to host

Solutions
jps and jstat will work if
volume-mapping /tmp from
the container and running
as the same user
jcmd, jmap, jinfo, and
jstack will work by using
jattach with my PR that
enables namespace support:
$ sudo jattach $PID $COMMAND

Demo

Using	JVM	Tools	on	The	Host

Tool	Deployment:	“Sidecar”	Container

User

Kernel
perf_events

node:6 openjdk:8 ubuntu:xenial
ubuntu:xenial

perf record -G …
-g -F 97

☢

Retrieving	Container	Resource	Utilization
High-level, Docker-specific: docker stats
htop with cgroup column (highly unwieldy)
systemd-cgtop
Control group metrics

E.g. /sys/fs/cgroup/cpu,cpuacct/*/*/*
Third-party monitoring solutions: cAdvisor, Intel Snap,
PCP, Prometheus, collectd

In-Container	Monitoring
Execute a command “in the container”:

nsenter -t $PID -p -m top
docker exec -it $CID top

“Attach” a container with debug tools to the target
container:

docker run -it --pid=container:target \
--cap-add sys_admin \
debugcontainer …

The target’s filesystem is in /proc/1/root if you need it

Demo

Monitoring	Container	Resource	Utilization

JVM	Stack	Sampling
Traditional CPU profilers sample all thread stacks
periodically (e.g. 100 times per second)

Typically use the JVMTI GetAllStackTraces API
jstack, JVisualVM, YourKit, JProfiler, and a lot of others

Thread 1running blocked runningGC

Thread 2running blockedGC

Thread 1blockedGC

sample samplesample

Safepoint Bias
Samples are captured only at safepoints
Research Evaluating The Accuracy of Java Profilers by
Mytkowicz, Diwan, Hauswirth, Sweeney shows wild
variety of results between profilers due to safepoint bias
Additionally, capturing a full
stack trace for all threads is
quite expensive (think Spring)

perf
perf is a Linux multi-tool for performance
investigations
Capable of both tracing and sampling
Developed in the kernel tree, must match running
kernel’s version

Debian: apt install linux-tools-common
Red Hat: yum install perf

perf_events Architecture

UserKernel

tcp_msgsend

Page fault

LLC miss

sched_switch

perf_events

libc:malloc

mmap buffer

mmap buffer

Real-time
analysis

perf script…perf.data file

Recording	CPU	Stacks	With	perf
To find a CPU bottleneck, record stacks at timed
intervals:

system-wide
perf record -ag -F 97
specific process
perf record -p 188 -g -F 97
specific cgroup
perf record -G docker-1ae… -g -F 97

Legend
-a all CPUs
-p specific process
-G specific cgroup
-g capture call stacks
-F frequency of samples (Hz)
-c # of events in each sample

Symbols
perf needs symbols to display function names (beyond
modules and addresses)

For compiled languages (C, Go, …) these are often embedded
in the binary
Or installed as separate debuginfo (usually /usr/lib/debug)

$ objdump -tT /usr/bin/bash | grep readline
0000000000306bf8 g DO .bss 0000000000000004 Base rl_readline_state
00000000000a46c0 g DF .text 00000000000001d4 Base readline_internal_char
00000000000a3cc0 g DF .text 0000000000000126 Base readline_internal_setup
0000000000078b80 g DF .text 0000000000000044 Base posix_readline_initialize
00000000000a4de0 g DF .text 0000000000000081 Base readline
00000000003062d0 g DO .bss 0000000000000004 Base bash_readline_initialized
…

Container-Specific	Challenges
Address to module and symbol resolution, dynamic
instrumentation require access to debug information

Because of mount namespace, container’s binaries and
debuginfo are not visible to host (/lib64/libc.so.6 – what?)
Need to enter the container’s namespace or share the binaries

perf handles this automatically in Linux 4.13+, as do
the BCC tools (discussed later)

Generating	Map	Files
For interpreted or JIT-compiled languages, map files
need to be generated at runtime
Java: perf-map-agent ./create-java-perf-map.sh $PID
Node: node --perf-basic-prof-only-functions app.js
.NET Core: export COMPlus_PerfMapEnabled=1
When profiling from the host:

PID namespace – always /tmp/perf-1.map in the container,
not the host
Mount namespace – container’s /tmp/perf-1.map not visible
to host
Again, perf and BCC tools can handle this automatically

Demo

Container	CPU	Profiling

Running	perf in	a	Container
Some syscalls are blocked by default:

perf_event_open
Blocked syscalls can be whitelisted in the seccomp
configuration, but this opens up risks for the host system
[source]

Need to put profiling tools in the container
Bloats the image, increases attack surface

Need a couple of sysctl tweaks to run unprivileged:
echo 0 > /proc/sys/kernel/kptr_restrict
echo -1 > /proc/sys/kernel/perf_event_paranoid

AsyncGetCallTrace
Internal API introduced to support lightweight profiling
in Oracle Developer Studio
Produces a single thread’s stack without waiting for
safepoint
Designed to be called from a signal handler
Used by Honest Profiler (by Richard Warburton and
contributors): https://github.com/jvm-profiling-
tools/honest-profiler

async-profiler
Open source profiler by Andrei Pangin and contributors:
https://github.com/jvm-profiling-tools/async-profiler

kernel

perf_events

user

CPU
PMU

Cyclic perf
buffer

JVM
thread

JVM
thread

Native
thread

perf fd

libasyncProfiler.soinotify

signal
AsyncGetCallTrace

sample stack
sample stack

Profilers,	Compared
perf

Java ≧8u60 to disable
FPO
Disabling FPO has a perf
penalty
Need a map file
Interpreter frames are not
supported
System-wide profiling is
possible

async-profiler
Works on older Java versions
FPO can stay on
No map file is required
Interpreter frames are
supported
In theory, native and Java
stacks don’t always sync

Demo

Using	async-profiler

The	BCC	BPF	Front-End

https://github.com/iovisor/b
cc
BPF Compiler Collection
(BCC) is a BPF frontend
library and a massive
collection of performance
tools

Contributors from Facebook,
PLUMgrid, Netflix, Sela

Helps build BPF-based tools
in high-level languages

Python, Lua, C++

kernel

user
BCC tool BCC tool …

BCC compiler frontend

Clang + LLVM

BCC loader library

BPF runtime event
sources

JVM

Syscall interface

Block	I/O Ethernet
Scheduler Mem

Device	drivers

Filesystem TCP/IP

CPU
Applications

System	libraries

profile
llcstat

hardirqs
softirqs
ttysnoop

runqlat
cpudist

offcputime
offwaketime
cpuunclaimed

memleak
oomkill

slabratetoptcptop
tcplife

tcpconnect
tcpaccept

biotop
biolatency
biosnoop
bitesize

filetop
filelife
fileslower
vfscount
vfsstat
cachestat
cachetop
mountsnoop
*fsslower
*fsdist
dcstat
dcsnoop
mdflush

execsnoop
opensnoop
killsnoop
statsnoop
syncsnoop
setuidsnoop

mysqld_qslower
bashreadline
dbslower
dbstat

mysqlsniff

memleak
sslsniff

gethostlatency
deadlock_detector

javastat
javagc

javathreads
javacalls
javaflow

argdist
trace

funccount
funclatency
stackcount

BCC’s	profile Tool
kernel

PMU
cpu-clocks

perf_events perf.data

user
perf script | fold

| flamegraph

monitor

kernel

BPF program
BPF map

user
profile –f |
flamegraph

monitor

BPF stacks

PMU
cpu-clocks

Identifying	CPU	Throttling
CPU share throttling and CPU caps cause involuntary
context switches

Host might have available CPUs, but the container’s cgroup
can’t use them
Diagnose with
/sys/fs/cgroup/cpu,cpuacct/docker/$CID/cpu.stat
Diagnose with /proc/$PID/status involuntary_ctxt_switches
field
Diagnose with runqlat, cpudist

Demo

Identifying	Throttling

Blocked	Thread	Investigation
CPU sampling only identifies time spent on-CPU
Blocked time is a concern for most applications

Sleep, wait, lock, disk, network, database, …
Blocked time can be traced using context switch events

Linux kernel tracepoint sched:sched_switch

CPU 0pid 121 pid 121 pid 408

switch out stack:
mutex_lock
request_processor

switch in switch out stack:
matrix_mult
request_processor

switch in

switch out stack:
sys_read
backup_daemon

pid 121

switch in

CPU 1
switch in
(created)

Blocked	Time	Observability

Application

Proxy

MySQL

Other service8.8.8.8

Filesystem

DNS

gethostlatency
tcpdump
trace
offcputime

fileslower
biosnoop
offcputime

tcpdump
trace
offcputime

dbslower
offcputime

HTTP

Turnkey	Container	Monitoring	Solutions

Consider using a complete
monitoring solution that
overcomes container monitoring
difficulties

cAdvisor, Sysdig, Datadog, New
Relic, etc.

There will always be room for
low-level troubleshooting using
perf/BPF/other tools

Summary
Mission:
Apply modern production-ready tools for performance
monitoring and profiling of Java applications in Linux
containers
Objectives:
ü Identifying overloaded resources in containers
üUnderstanding which tools work and which don’t in container

scenarios
üProfiling CPU bottlenecks
üVisualizing and exploring stack traces using flame graphs
üAnalyzing off-CPU time and CPU throttling

References
perf and flame graphs

https://perf.wiki.kernel.org/index.php/Main
_Page
http://www.brendangregg.com/flamegraph
s.html
https://github.com/brendangregg/perf-
tools

BPF and BCC
https://github.com/iovisor/bcc/blob/master
/docs/tutorial.md
https://github.com/iovisor/bpf-docs

Container performance
analysis

https://www.slideshare.net/brendangregg/c

ontainer-performance-analysis
http://batey.info/docker-jvm-
flamegraphs.html

Performance tooling
support

https://lkml.org/lkml/2017/7/5/771
https://github.com/iovisor/bcc/pull/1051

Monitoring tools
https://github.com/intelsdi-x/snap
http://pcp.io/docs/guide.html
https://github.com/bobrik/collectd-docker
https://github.com/ivotron/docker-perf

© Copyright SELA Software & Education Labs Ltd. | 14-18 Baruch Hirsch St Bnei Brak, 51202 Israel | www.selagroup.com

Sasha	Goldshtein @goldshtn
CTO,	Sela Group github.com/goldshtn

Thank You!

