J9

Deep dive into the Eclipse Openl9 GC technologies

Charlie Gracie
IBM Senior Software Developer
charlie gracie@ca.ibm.com

@crgracie
() charliegracie

Important Disclaimers

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.

WHILST EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED.

ALL PERFORMANCE DATA INCLUDED IN THIS PRESENTATION HAVE BEEN GATHERED IN A CONTROLLED
ENVIRONMENT. YOUR OWN TEST RESULTS MAY VARY BASED ON HARDWARE, SOFTWARE OR
INFRASTRUCTURE DIFFERENCES.

ALL DATA INCLUDED IN THIS PRESENTATION ARE MEANT TO BE USED ONLY AS A GUIDE.

IN ADDITION, THE INFORMATION CONTAINED IN THIS PRESENTATION IS BASED ON IBM’S CURRENT
PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM, WITHOUT NOTICE.

IBM AND ITS AFFILIATED COMPANIES SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT
OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION.
NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR SHALL HAVE THE EFFECT OF:

* CREATING ANY WARRANT OR REPRESENTATION FROM IBM, ITS AFFILIATED COMPANIES OR ITS
OR THEIR SUPPLIERS AND/OR LICENSORS

About me

J9

* Senior Software Developer on the IBM

* Project Lead on Eclipse OM

* Has worked on Garbage Co

on scalability

committer on Eclipse Open.

Runtime Technologies Team

R and a
9

lection

Technology for over 10 years with a focus

Openl9 GC technologies

* Open J9 Project

* Garbage collection overview
* Open J9 GC technologies

* Questions

J9

nDenljo)

Eclipse OpenlJ9
Created Sept 2017

http://www.eclipse.org/openi9
https://qgithub.com/eclipse/openi9

Dual License:
Eclipse Public License v2.0
Apache 2.0

Users and contributors very welcome
https://qithub.com/eclipse/openj9/blob/master/CONTRIBUTING.md

=zm AdoptOpendDK

Prebuilt OpendDK Binaries

Java™ is the world's leading programming language and platform. The code for Java is
open source and available at OpenJDK™. AdoptOpendDK provides prebuilt OpendDK
binaries from a fully open source set of build scripts and infrastructure.

Looking for docker images? Pull them from our repository on dockerhub

Downloads

OpendDK 8 with Eclipse OpenJ9 @

Latest build @
jdk8u152-b16

Archive &

Installation ® Get involved ®

Blog Support Sponsors About API

J9

The place to get OpenlDK builds

For both:
* OpenlDK with Hotspot
* OpenlDK with Eclipse OpenlJ9

https://adoptopenjdk.net/releases.html?va

riant=openjdk9-openj9

&

Eclipse OMR
Created March 2016

http://www.eclipse.org/omr
https://github.com/eclipse/omr
https://developer.ibm.com/open/omr/

Dual License:
Eclipse Public License v2.0
Apache 2.0

Users and contributors very welcome
https://github.com/eclipse/omr/blob/master/CONTRIBUTING.md

Garbage Collection

“Garbage Collection (GC) is form automatic memory management.
The garbage collector attempts to reclaim memory occupied by
objects that are no longer is use by the program.”

J9

Garbage Collection

Positives:
1. Automatic memory management
2. Help reduce certain categories of bugs

Negatives:

1. Requires additional resources

2. Can cause application pauses

3. May introduce runtime costs

4. Application has little control of when memory is reclaimed

J9

Openl)9 GC goals

1. Implement re-usable technology
2. Provide highly scalable GC technology
3. Favor smaller memory consumption

J9

Garbage collection policies

e -Xgcpolicy:
1. optthruput — stop the world parallel collector

J9

Garbage collection policies

e -Xgcpolicy:
1. optthruput — stop the world parallel collector
2. optavgpause — concurrent collector

J9

Garbage collection policies

e -Xgcpolicy:
1. optthruput — stop the world parallel collector
2. optavgpause — concurrent collector
3. gencon — generational copying collector

J9

Garbage collection policies

e -Xgcpolicy:
1. optthruput — stop the world parallel collector
2. optavgpause — concurrent collector
3. gencon — generational copying collector
4. balanced — region based generational collector

J9

Garbage collection policies

e -Xgcpolicy:

optthruput — stop the world parallel collector
optavgpause — concurrent collector

gencon — generational copying collector
balanced — region based generational collector
metronome — incremental soft realtime collector

Lk wheE

J9

-Xgcpolicy:optthruput

* Parallel global collector
* GC operations are completed in Stop the world (STW) pauses
* Mark, sweep and optional compaction collector
* All GC operations are completed in parallel by multiple helper threads

e GC native memory overhead for mark map and work packets

J9

Oped@@
-Xgcpolicy:optthruput heap

* Flat heap

* 1 continuous block of memory

Heap

17

Open@
-Xgcpolicy:optthruput heap

* Flat heap

* 1 continuous block of memory

* Divided into 2 logical memory areas for allocation
* SOA —small object area
 LOA —large object area

Heap

18

Oped@@
-Xgcpolicy:optthruput heap

* Allocation is a first fit algorithm
e OpenlJ9 uses TLHs to improve allocation performance*

! Heap !

_freelist _freelist

19

Open@
-Xgcpolicy:optthruput heap

* Allocation is a first fit algorithm
e OpenlJ9 uses TLHs to improve allocation performance*

/*

_freelist _freelist

20

Open@
-Xgcpolicy:optthruput heap

* Allocation is a first fit algorithm
e OpenlJ9 uses TLHs to improve allocation performance*

_freelist _freelist

21

Open@
-Xgcpolicy:optthruput heap

* Allocation is a first fit algorithm
e OpenlJ9 uses TLHs to improve allocation performance*

* Allocate until SOA is completely full

_free“st _freelist

22

Open@
-Xgcpolicy:optthruput heap

* Allocation is a first fit algorithm
e OpenlJ9 uses TLHs to improve allocation performance*

* Allocate until SOA is completely full
* Now perform a GC

_free“st _freelist

23

Open@
-Xgcpolicy:optthruput GC

-Xgcpolicy:optthruput GC

GC1l GC1
Start End
q
#
ﬂ
ﬁ
ﬁ

ﬂ

J9

Open@
-Xgcpolicy:optthruput GC

GC1 GC1
Start End
q
q

-Xgcpolicy:optthruput GC

GC1 GC1 GC?2 GC?2

Start End Start End

— —

q ﬁ
ﬁ ﬁ
ﬁ ﬁ
ﬁ ﬁ
ﬂ ﬁ

Open@

-Xgcpolicy:optthruput GC

GC1l GC1
Start End
q
]
ﬂ
ﬁ
ﬁ
ﬂ

GC2 GC2
Start End
ﬁ
ﬁ
ﬁ
ﬁ
ﬁ
ﬁ

ﬁ

Open@

-Xgcpolicy:optthruput GC

Each GCis divided into 3 phases:
1. Marking — finds all of the live objects
2. Sweeping — reclaims memory for dead objects
3. Compaction — (optional) defragment the heap

J9

Oped@@

-Xgcpolicy:optthruput marking

Heap

Opeﬁi@)

-Xgcpolicy:optthruput marking

Root Set

Heap

Opeﬁg§)

-Xgcpolicy:optthruput marking

Root Set
Mark map

Heap

Opeﬁg§)

-Xgcpolicy:optthruput marking

Root Set
Mark map

h

Heap

Opeﬁg§)

-Xgcpolicy:optthruput marking

Root Set
Mark map

h

Heap

Open@

Work Stack
Input Output

-Xgcpolicy:optthruput marking

Root Set

Mark map

h

Heap

35

Open@

Work Stack
Input Output

-Xgcpolicy:optthruput marking

Root Set

Mark map

O

Heap

36

Open@

Work Stack
Input Output

-Xgcpolicy:optthruput marking

Root Set

Mark map

1 1 1

1 !

O

Heap

37

Open@

-Xgcpolicy:optthruput marking

Work Stack
Root Set Input Output
Mark map 1
1 1 1 1
1 |
D
e A

Heap

38

OperiJo;
-Xgcpolicy:optthruput marking

Work Stack
Input Output
Mark map ;
1 1 1 :
!
D
A

Heap

39

-Xgcpolicy:optthruput marking

Work List
Mark map

1 1 1

Work Stack
Input Output

L

!

D

A

Heap

40

{J9
-Xgcpolicy:optthruput marking

Work Stack
Work List Input Output
—5 Mark map
e |. 1 1 1 1
1 |
| D
- A

Heap

41

-Xgcpolicy:optthruput marking

Work List
1]

< vlwn|lo

Mark map

1

119

Work Stack
Input Output

L

!

D

A

Heap

42

{J9
-Xgcpolicy:optthruput marking

Work Stack
Wchll.ist Input Output
IR 1 1 Mark |1nap | L
|s |
| P D
IR A

W _/ Heap \/

43

{J9
-Xgcpolicy:optthruput marking

Work Stack
Work List Input Output
' Mark map
W Q 1 1 1 1
S 1 |
P D
|y A

J9
-Xgcpolicy:optthruput marking

Work Stack
Work List Input Output
' Mark map
[Q 1 1 1 1 1
| S 1 |
P D
|y A M

J9
-Xgcpolicy:optthruput marking

Work Stack
Work List Input Output
' Mark map
[Q 1 1 1 1 1
| S 1
| P D
|y A M

J9
-Xgcpolicy:optthruput marking

Work Stack
Work List Input Output
' Mark map
[Q 1 1 1 1 1 1
| S 1
P D K
|y A M

-Xgcpolicy:optthruput marking

Work List
1]

< vlwn|lo

Mark map

1

1

t

119

Work Stack
Input Output

K

A M

J9
-Xgcpolicy:optthruput marking

Work Stack
Work List Input Output
' Mark map
[Q 1 1 1 1 1 1 1
S 4 F
P K
|y A M

J9
-Xgcpolicy:optthruput marking Work Stack

Work List Input Output
' Mark map

1 1 1 1 1 1 1

< O 0LV O
—)
g

per{Jo
-Xgcpolicy:optthruput marking Work Stack

Work List Input Output
' Mark map

1 1 1 1 1 1 1

< O 0LV O
—)
-

J9
-Xgcpolicy:optthruput marking

Work Stack

Work List Input Output
;‘ _— I\lllark |1narz 1 | B
1S 4 F
P K
|y M

{J9
-Xgcpolicy:optthruput marking

Work Stack
Work List Input Output
—5 Mark map
= B 11 1 1 1 1 1 1
| F
1| K
| M

-Xgcpolicy:optthruput marking

Work List

Mark map

1

1

1

Work Stack

Input

Output

-Xgcpolicy:optthruput sweeping

Mark map

11 1 1

1

1

_freelist =——>

Open@

Heap

55

-Xgcpolicy:optthruput sweeping

Mark map

11 1 1

1

1

_freelist =——>

Open@

Heap

56

-Xgcpolicy:optthruput sweeping

Mark map

11 1 1

1

1

_freelist "1

Open@

Heap

57

-Xgcpolicy:optthruput sweeping

Mark map

11 1 1

1

1

t

_freelist —1 /\

Open@

Heap

-Xgcpolicy:optthruput sweeping

Mark map

11 1 1 1 1 1 1

t

_freelist’l /\ /\
EACIN IS I P s

Heap

-Xgcpolicy:optthruput sweeping

Mark map

11 1 1 1 1 1 1

t

AN\
als] To [LTe [[« L [mln [«

Heap

_freelist

-Xgcpolicy:optthruput sweeping

Mark map

11 1 1 1 1 1 1

_freelistj /\ AN\ NN
Ale o e o e I m]

Heap

-Xgcpolicy:optthruput sweeping

Mark map

11 1 1 1 1 1 1

~freelist —j/-\

Heap

-Xgcpolicy:optthruput compaction

Mark map

11 1 1 1 1 1 1

~freelist —j/-\

Heap

63

-Xgcpolicy:optthruput compaction

Compact table

~freelist —j/-\

Heap

J9

-Xgcpolicy:optthruput compaction

Compact table

256

~freelist —j/-\

Heap

65

-Xgcpolicy:optthruput compaction

Compact table

256 | 512

~freelist —j/-\

Heap

66

-Xgcpolicy:optthruput compaction

Compact table

256 512 1024

~freelist —j/-\

Heap

67

-Xgcpolicy:optthruput compaction

Compact table

256 | 512 1024 1280 1536 2048

~freelist —j/-\

Heap

68

-Xgcpolicy:optthruput compaction

Compact table

256 | 512 1024 1280 1536 2048

_freelist "\

Heap

69

-Xgcpolicy:optthruput compaction

Compact table

256 | 512 1024 1280 1536 2048

A.field1=D

1 Heap

70

-Xgcpolicy:optthruput compaction

Compact table

256 | 512 1024 1280 1536 2048

t

A.field1l = (D — compactTable[0])

1 Heap

71

-Xgcpolicy:optthruput compaction

Compact table

256 | 512 1024 1280 1536 2048

t

A.field1l = (D — 256)

1 Heap

72

-Xgcpolicy:optavgpause

* Concurrent global collector

* Mark and sweep phases are completed concurrently with the
application. If required, compaction is completed STW

 Utilizes a low priority background to complete concurrent work
* Application threads also perform concurrent GC work!

* Improves STW pause times and application responsiveness
* Introduces the requirement for an object write barrier

* GC native memory overhead for mark map, work packets and
card table

J9

Oped@@
-Xgcpolicy:optavgpause heap

* Heap layout is the same as optthruput

Heap

74

Oped@@
-Xgcpolicy:optavgpause heap

 Allocation is the same as with optthruput

! Heap !

_freelist _freelist

75

Open@
-Xgcpolicy:optavgpause heap

 Allocation is the same as with optthruput

/*

_freelist _freelist

76

Open@
-Xgcpolicy:optavgpause heap

 Allocation is the same as with optthruput

_freelist _freelist

77

Open@
-Xgcpolicy:optavgpause heap

 Allocation is the same as with optthruput

I

_freelist _freelist

78

Open@
-Xgcpolicy:optavgpause heap

 Allocation is the same as with optthruput
 Start a concurrent GC before the heap memory is exhausted

- Heap | !
_freelist _freelist

Kick off concurrent GC

79

Open@
-Xgcpolicy:optavgpause heap

 Allocation is the same as with optthruput
 Start a concurrent GC before the heap memory is exhausted
* Application runs during the GC so allocations continue

m——

_freelist _freelist

Kick off concurrent GC

80

-Xgcpolicy:optavgpause heap

 Allocation is the same as with optthruput
 Start a concurrent GC before the heap memory is exhausted
* Application runs during the GC so allocations continue

_freelist

_

_freelist

Kick off concurrent GC Finish GC

81

per9

Open@
-Xgcpolicy:optavgpause GC

-Xgcpolicy:optavgpause GC

Open@
-Xgcpolicy:optavgpause GC

-Xgcpolicy:optavgpause GC

GC1
Start

ﬁ
ﬁ
ﬁ
ﬁ

>
P>

GC1

324

End

S
>

Open@

-Xgcpolicy:optavgpause GC

GC1
Start

ﬁ
ﬁ
ﬁ
ﬁ

S
P>

GC1

324

End

S
>

ﬁ

Open@

-Xgcpolicy:optavgpause GC

GC1
Start

ﬂ
ﬁ
ﬁ
ﬁ

S
P>

GC1

324

End

S
>

GC2
Start

S
>

()pen{jgb

-Xgcpolicy:optavgpause GC

GC1
Start

ﬁ
~
ﬁ
ﬁ

S
P>

GC1

544
it}
il

End

S
>

Start

.

()pen{igb

-Xgcpolicy:optavgpause GC

GC1
Start

ﬂ
ﬁ
ﬁ
ﬁ

S
P>

GC1

R34
il

End

S
>

GC2 GC?2

Start End

> >

> >
ﬁ

Open@

-Xgcpolicy:optavgpause GC

GC1
Start

ﬁ
~
ﬁ
ﬁ

S
P>

GC1

il
I

End

S
>

GC2
Start

S
>

I

GC2
End

R4

()pen{igb

-Xgcpolicy:optavgpause write barrier

* Why is there a write barrier required?

J9

-Xgcpolicy:optavgpause write barrier

b

119

Open@

-Xgcpolicy:optavgpause write barrier

X

-Xgcpolicy:optavgpause write barrier

* How is the write barrier implemented?

J9

-Xgcpolicy:optavgpause write barrier

* How is the write barrier implemented?

private void setField(Object A, Object C) {
A.fieldl = C;
}

J9

-Xgcpolicy:optavgpause write barrier

* How is the write barrier implemented?

private void setField(Object A, Object C) {
A.fieldl = C;
if (concurrentGCActive) {
cardTable->dirtyCard(A);

}
}

J9

Open@

-Xgcpolicy:optavgpause write barrier

Mark map

1 1

Card table

/‘\
A s el

Heap

97

Open@

-Xgcpolicy:optavgpause write barrier

Mark map

1 1

Card table

/\
A B e

Heap

98

Open@

-Xgcpolicy:optavgpause write barrier

Mark map

1 1

Card table

/\
A B e

Heap

99

Open@
-Xgcpolicy:optavgpause GC

Mark map

1 1

Card table

/\
A B e

Heap

100

Open@
-Xgcpolicy:optavgpause GC

Mark map

1 1

Card table

=

t

/\
A B e

Heap

101

Open@
-Xgcpolicy:optavgpause GC

Mark map

1 1

Card table

/\
A B e

Heap

102

Open@
-Xgcpolicy:optavgpause GC

Mark map

1 1

Card table

/\
A B e

Heap

103

Open@
-Xgcpolicy:optavgpause GC

Mark map

1 1 1

Card table

/\
A B e

Heap

104

-Xgcpolicy:gencon

* Generational copy collector
* Focuses collection on a small part of the heap

* Provides a significant reduction in GC STW pause times
* Introduces another write barrier for the remembered set

* GC native memory overhead for mark map, work packets, card
table and copy scan caches

e Concurrent Global collector from optavgpause

J9

Open@
-Xgcpolicy:gencon heap

* Heap is divided into Nursery and Tenure areas
e Generally the Nursery is smaller than the Tenure area

Heap

106

-Xgcpolicy:gencon heap

* Heap is divided into Nursery and Tenure spaces
* Generally the Nursery is smaller than Tenure

* The Nursery is divided into 2 logical spaces: Allocate and Survivor
* Objects are allocated in Allocate space*

Alocate survor [enure

Heap

107

J9

-Xgcpolicy:gencon heap

* Heap is divided into Nursery and Tenure spaces
* Generally the Nursery is smaller than Tenure

* The Nursery is divided into 2 logical spaces: Allocate and Survivor
* Objects are allocated in Allocate space*

\ Heap

_freelist _freelist

108

119

-Xgcpolicy:gencon heap

* Heap is divided into Nursery and Tenure spaces
* Generally the Nursery is smaller than Tenure

* The Nursery is divided into 2 logical spaces: Allocate and Survivor
* Objects are allocated in Allocate space*

Heap

_freelist _freelist

109

Oper{J9)

-Xgcpolicy:gencon heap

* Heap is divided into Nursery and Tenure spaces
* Generally the Nursery is smaller than Tenure

* The Nursery is divided into 2 logical spaces: Allocate and Survivor
* Objects are allocated in Allocate space*

Heap

_freelist _freelist

110

Open@
-Xgcpolicy:gencon heap

* Heap is divided into Nursery and Tenure spaces
* Generally the Nursery is smaller than Tenure

* The Nursery is divided into 2 logical spaces: Allocate and Survivor
* Objects are allocated in Allocate space*

/ Heap ,

_freelist _freelist

111

-Xgcpolicy:gencon GC

122

J9

-Xgcpolicy:gencon GC

Scavenge
1

>
P>

122

J9

-Xgcpolicy:gencon GC

Scavenge
1

S
P>

Hi
Hi

()peﬁj@)

-Xgcpolicy:gencon GC

Scavenge Scavenge

1 2
. .
. .

Hi
Hi

Oper{J9)

Open@
-Xgcpolicy:gencon GC

Scavenge Scavenge
1 2

> >
> >

122
W
Wi

-Xgcpolicy:gencon GC

Scavenge Scavenge Global
1 2 Start

> > >
> > >

122
W
Wi

Open@

-Xgcpolicy:gencon GC

Scavenge Scavenge Global

1 2 Start

> > >
> > >

Wi

s
Wi
il

Open@

-Xgcpolicy:gencon GC

Scavenge Scavenge Global Scavenge
1 2 Start 3
> > > >
—_— — —> PP
—_— — — =

Open@

-Xgcpolicy:gencon GC

Scavenge Scavenge Global

1 2 Start

> > >
> > >

Wi

s
Wi
il

3

o
o

Scavenge

AR

()pedj@)

-Xgcpolicy:gencon GC

Scavenge Scavenge Global Scavenge Global

1 2 Start 3 End

> > > > >

>_ > _ P P
— — ——p PP P P

Open@

-Xgcpolicy:gencon GC

Scavenge Scavenge Global
1 p) Start
> > >

R4
!
- YVYVV

3

o
o

Scavenge Global

End

E
T

M

Open@

-Xgcpolicy:gencon generational write barrier

* Why is there a write barrier required?

J9

-Xgcpolicy:gencon generational write barrier

* Why is there a write barrier required?

* The GC needs to be able to find objects in the nursery which are
only referenced from tenure space

J9

-Xgcpolicy:gencon generational write barrier

* How is the write barrier implemented?

private void setField(Object A, Object C) {
A.fieldl = C;
}

J9

-Xgcpolicy:gencon generational write barrier

* How is the write barrier implemented?

private void setField(Object A, Object C) {
A.fieldl =C;
if (A is tenured) {
if (Cis NOT tenured) {
remember(A);

}
J
}

J9

-Xgcpolicy:gencon generational write barrier

* How is the write barrier implemented?

private void setField(Object A, Object C) {
A.fieldl =C;
if (A is tenured) {
if (Cis NOT tenure) {
remember(A);
}
if (concurrentGCActive) {
cardTable->dirtyCard(A);

J
}
J

J9

Open@
-Xgcpolicy:gencon GC

g —

Allocate Survivor Tenure

128

Open@
-Xgcpolicy:gencon GC

Root Set

AN/,

Allocate Survivor Tenure

129

Open@
-Xgcpolicy:gencon GC

g —

Allocate Survivor Tenure

130

OperiJ9)
-Xgcpolicy:gencon GC Work List

Root Set Scan cache

g —

Allocate Survivor Tenure

131

Oper{J9)

-Xgcpolicy:gencon GC

Root Set Scan cache

TG —

Allocate Survivor Tenure

132

-Xgcpolicy:gencon GC

Root Set
I

Allocate

Scan cache

Copy cache

Survivor

Tenure

133

per9

-Xgcpolicy:gencon GC

Root Set
I

Allocate

Scan cache

Copy cache

Survivor

Tenure

134

per9

-Xgcpolicy:gencon GC

Root Set
I

Allocate

Scan cache

Copy cache

Survivor

Tenure

135

per9

-Xgcpolicy:gencon GC

Root Set
I

Allocate

Scan cache

Copy cache

Survivor

Tenure

136

per9

-Xgcpolicy:gencon GC

Root Set Scan cache

Copy cache | Al (D1
PR

Al|D?

Allocate Survivor Tenure

137

-Xgcpolicy:gencon GC

Root Set Scan cache

Copy cache | Al (D1
<

Al|D?

Allocate Survivor Tenure

138

-Xgcpolicy:gencon GC

Root Set

I

Allocate

Scan cache

Copy cache

Dl

|:1

Survivor

Tenure

139

119

-Xgcpolicy:gencon GC

Work list

Allocate

Scan cache

Copy cache

Dl

|:1

Survivor

Tenure

140

J9

-Xgcpolicy:gencon GC

Work list

[

A1

Dl |:1

Allocate

Scan cache

Copy cache

D1

|:1

Survivor

Tenure

141

J9

-Xgcpolicy:gencon GC

Work list

L

Q

R | LY

Allocate

Scan cache

Copy cache

D1

|:1

Survivor

Tenure

142

J9

-Xgcpolicy:gencon GC

Work list

L

Q

R | LY

Allocate

Scan cache

Copy cache

D1

|:1 Cl

Survivor

Tenure

143

J9

-Xgcpolicy:gencon GC

Work list

L

Q

R | LY

Allocate

Scan cache

Copy cache

D1

|:1 Cl

Survivor

Tenure

144

J9

-Xgcpolicy:gencon GC |

Work list Scancache |A!|D!| F! | Ct

LQI RY| L? Copy cache |Al|D?|F! | C?

_Al 0[]

Allocate Survivor Tenure

145

-Xgcpolicy:gencon GC |

Work list Scancache |A!|D!| F! | Ct

LQI RY| L? Copy cache |Al|D?|F! | C?

_Al 0[]

Allocate Survivor Tenure

146

-Xgcpolicy:gencon GC |

Work list Scancache |A!|D!| F! | Ct

LQI RY| L? Copy cache |Al|D?|F! | C?

_Al 0[]

Allocate Survivor Tenure

147

-Xgcpolicy:gencon GC |

Work list Scancache |A!|D!| F! | Ct

LQI RY| L? Copy cache |Al|D?|F! | C?

_Al s

Allocate Survivor Tenure

148

-Xgcpolicy:gencon GC

Work list

Scan cache

Copy cache

Dl

F1

Cl

][] [elw

Allocate

Survivor

Tenure

149

-Xgcpolicy:gencon GC

Allocate

Dl

|:1

cl

Survivor

Tenure

Open@

150

Open@
-Xgcpolicy:gencon GC

Survivor Allocate Tenure

151

Open@
-Xgcpolicy:gencon GC

wolele W

Survivor Allocate Tenure

152

-Xgcpolicy:balanced

* Region based generational collector
 Partial Garbage Collections (PGC) focus on high ROI regions
* Goal of no global collections
* NUMA aware allocation and GC

* Provides a significant reduction in max GC STW pause times
* Introduces a write barrier to track inter region references

* GC native memory overhead for 2 mark maps, work packets,
remembered set card table and copy scan caches

* Full parallel global as a fall back if the PGCs can not keep up

J9

Open@
-Xgcpolicy:balanced heap

* Heap is divided into a fixed number of regions
* Region size is always a power of 2
e Attempts to have between 1000-2000 regions
* Bigger heap == bigger region size
* Regions are evenly distributed across NUMA nodes

Heap

154

per9

-Xgcpolicy:balanced heap

 Allocate from Eden regions
* Eden can be any set of completely free regions
* Attempts to pick regions from each NUMA node

* Application threads allocate from the NUMA node they are
running on

Heap

155

-Xgcpolicy:balanced heap

* No non-array object can be larger than region size
* Object size > region size == OutOfMemoryError

* Large arrays are allocated as arraylets
* Arrays less than region size are allocated as normal arrays

J9

-Xgcpolicy:balanced arraylets

* Arraylets are a dis-contiguous representation of arrays
* Array is create from construct and an arraylet spine and 1 or more
arraylet leaves
* An arraylet spine is allocate like a normal object
e Each leaf consumes an entire region

J9

Open@

-Xgcpolicy:balanced arraylets

* To access an element you calculate
the leaf (index / leaf size)

* Then you calculate the index into
that leaf (index % leaf size)

Arraylet spine

158

-Xgcpolicy:balanced arraylets

* Array element access is slower due to an extra dereference
* JNI critical sections causes the entire data section of the arraylet
to be copied into a native memory buffer

J9

Oped@@
-Xgcpolicy:balanced heap

e What does allocation look like?

Heap

160

Oped@@
-Xgcpolicy:balanced heap

Heap

Oped@@
-Xgcpolicy:balanced heap

Heap

Oped@@
-Xgcpolicy:balanced heap

Heap

Oped@@
-Xgcpolicy:balanced heap

e Time for a PGC

Heap

164

-Xgcpolicy:balanced GC

122

J9

-Xgcpolicy:balanced GC

PGC1

>
P>

122

J9

Open@
-Xgcpolicy:balanced GC

PGC1

S
P>

122
122

-Xgcpolicy:balanced GC

GMP
PGC 1 start
> >
o P

Jpenlo

-Xgcpolicy:balanced GC

GMP

PGC 1 start
> >
P P

122
122
122

Open@

-Xgcpolicy:balanced GC

Open@

-Xgcpolicy:balanced GC

Open@

-Xgcpolicy:balanced GC

Open@

-Xgcpolicy:balanced GC

Open@

-Xgcpolicy:balanced GC

Open@

-Xgcpolicy:balanced GC

Open@

J9

-Xgcpolicy:balanced Global Mark Phase (GMP)

* Does not reclaim any memory!

* Performs a marking phase only

* Scheduled to run in between PGCs

* Builds an accurate mark map of the whole heap
* Mark map is used to predict region ROI for PGC
* Scrubs RSCL

-Xgcpolicy:balanced PGC

 Select regions for inclusion
* Always select Eden regions
* Use GMP mark map to predict regions with low live counts
* If RSCL has too many entries it is not a good candidate

* RSCL for selected regions becomes a root

R S

Heap

177

-Xgcpolicy:balanced PGC

 Select regions for inclusion
* Always select Eden regions
* Use GMP mark map to predict regions with low live counts
* If RSCL has too many entries it is not a good candidate

* RSCL for selected regions becomes a root

S RN CI

Heap

178

-Xgcpolicy:balanced PGC

 Select regions for inclusion
* Always select Eden regions
* Use GMP mark map to predict regions with low live counts
* If RSCL has too many entries it is not a good candidate

* RSCL for selected regions becomes a root

Heap

Oped@@
-Xgcpolicy:balanced PGC

* Perform the copy forward operation

Heap

180

Open@
-Xgcpolicy:balanced PGC

* Perform the copy forward operation
* Pick the next free regions for Eden

LR R L e

Heap

181

-Xgcpolicy:balanced inter region write barrier

* Why is there a write barrier required?

J9

-Xgcpolicy:balanced inter region write barrier

* Why is there a write barrier required?

* Balanced PGCs can select any region to be included in the collect.
e Similar to the generational barrier the GC needs to know which
regions reference a given region

J9

-Xgcpolicy:balanced inter region write barrier

* How is the write barrier implemented?

private void setField(Object A, Object C) {
A.fieldl = C;
}

J9

-Xgcpolicy:balanced inter region write barrier

* How is the write barrier implemented?

private void setField(Object A, Object C) {
A.fieldl = C;
if (findRegion(A) !=findRegion(C)) {
addRSCLEntryFor(C, A);
J
}

J9

-Xgcpolicy:metronome

* Incremental soft realtime collector
e Ultra low STW pause times of 3ms
* Incremental mark and sweep phases with no compactor
* Application receives 70% of the utilization
* In any timing windows of 100ms application will run for 70ms

* Provides a significant reduction in max GC STW pause times
e Uses a Snapshot At The Beginning (SATB) write barrier
* High percentage of floating garbage

* GC native memory overhead for a mark map, work packets and a
remembered set

J9

Open@

-Xgcpolicy:metronome heap

* Heap is divided into fixed sized regions
* Region size is 64k
* Bigger heap == more regions

Heap

187

Open@

-Xgcpolicy:metronome heap

e Cell based allocation

* Regions are assigned a cell size on first use
* Cell sizes range from 16 bytes to 2048 bytes
* Only objects of that cell size can be allocated in a region of a particular
cell size

Heap

188

Open@

-Xgcpolicy:metronome heap

* Objects larger than 2048 bytes consume contiguous regions
* If no contiguous regions a full STW GC is completed before OOM

* Large arrays are allocated as arraylets
* Arraylet leaves are 2048 bytes
* Each arraylet leaf region contains 32 arraylet leaves

Heap

189

Oped@@

-Xgcpolicy:metronome heap

e What does allocation look like?

Heap

190

Oped@§)

-Xgcpolicy:metronome heap

e What does allocation look like?

Heap

191

Oped@@

-Xgcpolicy:metronome heap

e What does allocation look like?

Heap

192

Oped@@

-Xgcpolicy:metronome heap

e What does allocation look like?

Heap

193

Open@

-Xgcpolicy:metronome heap

* Time to start a GC before the heap is exhausted
* GCs are triggered with 50% heap free

Heap

194

OperiJ9)
-Xgcpolicy:metronome heap

* While the GC is happening heap is still consumed
* All objects allocated during the GC are kept alive for this GC

Heap

195

-Xgcpolicy:metronome heap

* At marking end the heap basically full

Heap

196

-Xgcpolicy:metronome heap

* Sweep phase will start freeing memory

Heap

197

Open@

-Xgcpolicy:metronome heap

* Sweep phase will start freeing memory

Heap

198

OperiJ9)
-Xgcpolicy:metronome heap

* At sweep complete the application goes back to getting 100%
utilization
* If less than 50% of the heap is freed another GC is triggered

Heap

199

-Xgcpolicy:metronome GC

122

J9

-Xgcpolicy:metronome GC

GC Start

>
P

J9

-Xgcpolicy:metronome GC

GC Start

o
P

-Xgcpolicy:metronome GC

GC Start

> >
P

119

Open@

-Xgcpolicy:metronome GC

GC Start

> >
P

\AAA/

Open@

-Xgcpolicy:metronome GC

GC Start

> >
P

>
D>

Open@

-Xgcpolicy:metronome GC

GC Start

> >
P

\AAA/

Open@

-Xgcpolicy:metronome GC

Open@

-Xgcpolicy:metronome GC

Open@

-Xgcpolicy:metronome GC

Open@

-Xgcpolicy:metronome GC

Open@

-Xgcpolicy:metronome GC

Open@

-Xgcpolicy:metronome GC

-Xgcpolicy:metronome SATB write barrier

* A snapshot at the beginning barrier makes the guarantee that all
objects alive at the beginning of the GC will be alive at the end

* This causes a lot of floating garbage but ensures correctness for
the incremental collector

* The barrier has to be performed before the store

J9

-Xgcpolicy:metronome SATB write barrier

* How is the write barrier implemented?

private void setField(Object A, Object C) {
A.fieldl = C;
}

J9

-Xgcpolicy:metronome SATB write barrier

* How is the write barrier implemented?

private void setField(Object A, Object C) {
Object temp = A.fieldl;
if (barrier isActive) {
remember(temp):
}
A.fieldl = C;
}

J9

-Xgcpolicy:metronome GC

* Metronome uses the same marking and sweeping as optthruput

* Root scanning, marking and sweeping all have yield points

* The remembered set is added as a new root

* If the pause time has been reached the GC pauses and lets the
application run again

J9

Open@
GC policy quick guide

GC Policy Memory used in addition to | Throughput
heap (% of Xmx)

gencon* Webservers, desktop applications, 9 Highest
runs most apps well

balanced Very large heaps, large NUMA 13.5 High
systems
metronome Soft-realtime systems, trading 4.5 Low-Medium

applications, etc.

optthruput Small heaps with little GC 4.5 Medium

optavgpause Why not gencon? 6 Low-Medium

217

Links

* Eclipse OMR
https://www.eclipse.org/omr/

* Eclipse Openl9
https://www.eclipse.org/openj9

* AdoptOpenJDK
https://adoptopenjdk.net/?variant=openjdk8-openj9

218

J9

Questions???

J9

