

Migrating to Apache HBase
on Amazon S3 on Amazon

EMR
Guidelines and Best Practices

May 2021

Notices

Customers are responsible for making their own independent assessment of

the information in this document. This document: (a) is for informational

purposes only, (b) represents current AWS product offerings and practices,

which are subject to change without notice, and (c) does not create any

commitments or assurances from AWS and its affiliates, suppliers or licensors.

AWS products or services are provided “as is” without warranties,

representations, or conditions of any kind, whether express or implied. The

responsibilities and liabilities of AWS to its customers are controlled by AWS

agreements, and this document is not part of, nor does it modify, any

agreement between AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction 1

Introduction to Apache HBase 1

Introduction to Amazon EMR 2

Introduction to Amazon S3 3

Introduction to EMRFS 3

Running Apache HBase directly on Amazon S3 with Amazon EMR 3

Use cases for Apache HBase on Amazon S3 5

Planning the Migration to Apache HBase on Amazon S3 6

Preparation task 7

Selecting a Monitoring Strategy 7

Planning for Security on Amazon EMR and Amazon S3 9

Encryption 9

Authentication and Authorization 10

Network 12

Minimal AWS IAM Policy 12

Custom AMIs and Applying Security Controls to Harden your AMI 13

Auditing 14

Identifying Apache HBase and EMRFS Tuning Options 16

Apache HBase on Amazon S3 configuration properties 16

EMRFS Configuration Properties 36

Testing Apache HBase and EMRFS Configuration Values 37

Options to approach performance testing 37

Preparing the Test Environment 39

Preparing your AWS account for performance testing 39

Preparing Amazon S3 for your HBase workload 40

Amazon EMR Cluster Setup 42

Troubleshooting 45

Migrating and Restoring Apache HBase Tables on Apache HBase on Amazon S3

 46

Data Migration 46

Data Restore 47

Deploying into Production 48

Preparing Amazon S3 for Production load 48

Preparing the Production environment 48

Managing the Production Environment 49

Operationalization tasks 49

Conclusion 52

Contributors 52

Further Reading 52

Document Revisions 53

Appendix A: Command Reference 54

Restart HBase 54

Appendix B: AWS IAM Policy Reference 55

Minimal EMR Service Role Policy 55

Minimal Amazon EMR Role for Amazon EC2 (Instance Profile) Policy 58

Minimal Role Policy for User Launching Amazon EMR Clusters 60

Appendix C: Transparent Encryption Reference 63

Abstract

This whitepaper provides an overview of Apache HBase on Amazon S3 and

guides data engineers and software developers in the migration of an on-

premises or HDFS backed Apache HBase cluster to Apache HBase on Amazon

S3. The whitepaper offers a migration plan that includes detailed steps for each

stage of the migration, including data migration, performance tuning, and

operational guidance.

Page 1

Introduction
In 2006, Amazon Web Services (AWS) began offering IT infrastructure services

to businesses in the form of web services—now commonly known as cloud

computing. One of the key benefits of cloud computing is the opportunity to

replace upfront capital infrastructure expenses with low variable costs that scale

with your business. With the cloud, businesses no longer need to plan for and

procure servers and other IT infrastructure weeks or months in advance.

Instead, they can instantly spin up hundreds or thousands of servers in minutes

and deliver results faster. Today, AWS provides a highly reliable, scalable, low-

cost infrastructure platform in the cloud that powers hundreds of thousands of

businesses in 190 countries around the world.

Many businesses have been taking advantage of the unique properties of the

cloud by migrating their existing Apache Hadoop workloads, including Apache

HBase, to Amazon EMR and Amazon Simple Storage Service (Amazon S3). The

ability to separate your durable storage layer from your compute layer, have

flexible and scalable compute, and have the ease of integration with other AWS

services provides immense benefits and opens up many opportunities to

reimagine your data architectures.

Introduction to Apache HBase

Apache HBase is a massively scalable, distributed big data store in the Apache

Hadoop ecosystem. It is an open-source, non-relational, versioned database that

runs on top of the Apache Hadoop Distributed File System (HDFS). It is built

for random, strictly consistent, real-time access for tables with billions of rows

and millions of columns. It has tight integration with Apache Hadoop, Apache

Hive, and Apache Phoenix, so you can easily combine massively parallel

analytics with fast data access through a variety of interfaces. The Apache

HBase data model, throughput, and fault tolerance are a good match for

workloads in ad tech, web analytics, financial services, applications using time-

series data, and many more.

Here are some of the features and benefits when you run Apache HBase:

• Strongly consistent reads and writes – when a writer returns, all of the

readers will see the same value.

https://aws.amazon.com/elasticmapreduce/details/hbase/
https://aws.amazon.com/elasticmapreduce/details/hadoop/
https://hive.apache.org/
https://hive.apache.org/
https://phoenix.apache.org/

Amazon Web Services – Migrating to HBase on Amazon S3

Page 2

• Scalability – individual Apache HBase tables comprise billions of rows

and millions of columns. Apache HBase stores data in a sparse form to

conserve space. You can use column families and column prefixes to

organize your schemas and to indicate to Apache HBase that the

members of the family have a similar access pattern. You can also use

timestamps and versioning to retain old versions of cells.

• Graphs and time series – you can use Apache HBase as the foundation

for a more specialized data store. For example, you can use Titan for

graph databases and OpenTSDB for time series.

• Coprocessors – you can write custom business logic (similar to a trigger

or a stored procedure) that runs within Apache HBase and participates in

query and update processing (refer to Apache HBase Coprocessors to

learn more).

• OLTP and analytic workloads - you can run massively parallel analytic

workloads on data stored in Apache HBase tables by using tools such as

Apache Hive and Apache Phoenix. Apache Phoenix provides ACID

transaction capabilities via standard SQL and JDBC APIs. For details on

how to use Apache Hive with Apache HBase refer to Combine NoSQL

and Massively Parallel Analytics Using Apache HBase and Apache Hive

on Amazon EMR.

You also get easy provisioning and scaling, access to a pre-configured

installation of HDFS, and automatic node replacement for increased durability.

Introduction to Amazon EMR

Amazon EMR provides a managed Apache Hadoop framework that makes it

easy, fast, and cost-effective to process vast amounts of data across dynamically

scalable Amazon Elastic Compute Cloud (Amazon EC2) instances. You can also

run other popular distributed engines, such as Apache Spark, Apache Hive,

Apache HBase, Presto, and Apache Flink in Amazon EMR, and interact with

data in other AWS data stores, such as Amazon S3 and Amazon DynamoDB.

Amazon EMR securely and reliably handles a broad set of big data use cases,

including log analysis, web indexing, data transformations (ETL), streaming,

machine learning, financial analysis, scientific simulation, and bioinformatics.

For an overview of Amazon EMR, refer to Overview of Amazon EMR

Architecture and Overview of Amazon EMR.

http://hbase.apache.org/book.html#columnfamily
http://hbase.apache.org/0.94/book/versions.html
http://thinkaurelius.github.io/titan/
http://opentsdb.net/
http://hbase.apache.org/book.html#cp
https://phoenix.apache.org/
https://aws.amazon.com/blogs/big-data/combine-nosql-and-massively-parallel-analytics-using-apache-hbase-and-apache-hive-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/combine-nosql-and-massively-parallel-analytics-using-apache-hbase-and-apache-hive-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/combine-nosql-and-massively-parallel-analytics-using-apache-hbase-and-apache-hive-on-amazon-emr/
https://aws.amazon.com/elasticmapreduce/details/hadoop
https://aws.amazon.com/elasticmapreduce/details/spark
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview-arch.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview-arch.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-overview.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 3

Introduction to Amazon S3

Amazon Simple Storage Service (Amazon S3) is a durable, highly available, and

infinitely scalable object storage with a simple web service interface to store and

retrieve any amount of data from anywhere on the web.

With regard to Apache HBase and Apache Hadoop, storing data on Amazon S3

gives you more flexibility to run and shut down Apache Hadoop clusters when

you need to. Amazon S3 is commonly used as a durable store for HDFS

workloads. Due to the durability and performance scalability of Amazon S3,

Apache Hadoop workloads that store data on Amazon S3 no longer require the

3x replication as when the data is stored on HDFS. Moreover, you can resize

and shut down Amazon EMR clusters with no data loss or point multiple

Amazon EMR clusters at the same data in Amazon S3.

Introduction to EMRFS

The Amazon EMR platform consists of several layers, each with specific

functionality and capabilities. At the storage layer, in addition to HDFS and the

local file system, Amazon EMR offers the Amazon EMR File System (EMRFS),

an implementation of HDFS that all Amazon EMR clusters use for reading and

writing files to Amazon S3.

EMRFS features include data encryption and data authorization. Data

encryption allows EMRFS to encrypt the objects it writes to Amazon S3 and to

decrypt them during reads. Data authorization allows EMRFS to use different

AWS Identify and Access Management (IAM) roles for EMRFS requests to

Amazon S3 based on cluster users, groups, or the location of EMRFS data in

Amazon S3. For more information, refer to Using EMR File System (EMRFS).

Running Apache HBase directly on Amazon S3 with

Amazon EMR

When you run Apache HBase on Amazon EMR version 5.2.0 or later, you can

enable HBase on Amazon S3. By using Amazon S3 as a data store for Apache

HBase, you can separate your cluster’s storage and compute nodes. This enables

you to save costs by sizing your cluster for your compute requirements instead

of paying to store your entire dataset with 3x replication in the on-cluster

HDFS.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-fs.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 4

Many customers have taken advantage of the numerous benefits of running

Apache HBase on Amazon S3 for data storage, including lower costs, data

durability, and easier scalability. Customers such as Financial Industry

Regulatory Agency (FINRA) have lowered their costs by 60% by moving to an

HBase on Amazon S3 architecture in addition to the numerous operational

benefits that come with decoupling storage from compute and using Amazon S3

as the storage layer.

HBase on Amazon S3 Architecture

An Apache HBase on Amazon S3 allows you to launch a cluster and immediately

start querying against data within Amazon S3. You don’t have to configure

replication between HBase on HDFS clusters or go through a lengthy snapshot

restore process to migrate the data off your HBase on HDFS cluster to another

HBase on HDFS cluster. Amazon EMR configures Apache HBase on Amazon S3

to cache data in-memory and on-disk in your cluster, delivering fast

performance from active compute nodes. You can quickly and easily scale out or

scale in compute nodes without impacting your underlying storage, or you can

terminate your cluster to save costs and quickly restore it without having to

recover using snapshots or other methods.

http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-hbase-s3.html
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/

Amazon Web Services – Migrating to HBase on Amazon S3

Page 5

Using Amazon EMR version 5.7.0 or later, you can set up a read-replica cluster,

which allows you to achieve higher read availability by distributing reads across

multiple clusters.

Use cases for Apache HBase on Amazon

S3
Apache HBase on Amazon S3 is recommended for applications that require high

availability of reads and do not require high availability of writes.

Apache HBase on Amazon S3 can be configured to achieve high requests per

second for Apache HBase’s API calls. This configuration, together with the

proper instance type and cluster size, allows you to find the optimal Apache

HBase on Amazon S3 configuration values to support similar requests per

second as your HDFS backed cluster. Moreover, as Amazon S3 is used as a

storage layer, you can decouple storage from compute, have the flexibility to

bring up/down clusters as needed, and considerably reduce costs of running

your Apache HBase cluster.

Applications that require high availability of reads are supported by Apache

HBase on Amazon S3 via Read Replica Clusters pointing to the same Amazon

S3 location. Although Apache HBase on Amazon S3 Read Replica Clusters are

not part of this whitepaper, see Further Reading for more details.

Since Apache HBase’s Write Ahead Log (WAL) is stored in the cluster, if your

application requires support for high availability of writes, Apache HBase on

HDFS is recommended. Specifically, you can set up Apache HBase on HDFS

with multi-master on an Amazon EC2 custom installation or set up Apache

HBase on HDFS on Amazon EMR with an HBase on HDFS replica cluster on

Amazon EMR.

Apache HBase on Amazon S3 is recommended if your application does not

require support for high availability of writes and can tolerate failures during

writes/updates. If you would like to mitigate the impact of Amazon EMR Master

node failures (or Availability Zone failures that can cause the termination of the

Apache HBase on Amazon S3 cluster or any temporary degradation of service

due to Apache HBase RegionServer operational/transient issues), we

Amazon Web Services – Migrating to HBase on Amazon S3

Page 6

recommend that your pipeline architecture relies on a stream/messaging

platform upstream to the Apache HBase on Amazon S3 cluster.

We recommend that you always use the latest Amazon EMR release so you can

benefit from all changes and features continuously added to Apache HBase.

Planning the Migration to Apache HBase

on Amazon S3
To migrate an existing Apache HBase cluster to an Apache HBase on Amazon

S3 cluster, consider the following activities to help scope and optimize

performance for Apache HBase on Amazon S3:

• Select a strategy to monitor your Apache HBase cluster's performance

• Plan for security on Amazon EMR and Amazon S3

• Identify Apache HBase and EMRFS tuning options

• Test Apache HBase and EMRFS configuration values

• Prepare the test environment

o Prepare your AWS account for performance testing

o Prepare Amazon S3 for your Apache HBase workload

o Set up Amazon EMR cluster

o Troubleshoot

• Migrate and restore Apache HBase tables on HBase on Amazon S3

o Migrate data

o Restore data

• Deploy into production

o Prepare Amazon S3 for production load

o Prepare the production environment

• Manage the production environment

o Manage operationalization tasks

Amazon Web Services – Migrating to HBase on Amazon S3

Page 7

Preparation task
Before the migration starts, we recommend that you select a strategy to monitor

the performance of your cluster.

Selecting a Monitoring Strategy

We recommend you use an enterprise third-party monitoring agent or Ganglia

to guide you during the tuning of Apache HBase on Amazon S3. This agent is

helpful to understand the changes in performance when changing Apache

HBase properties during your tuning process. Moreover, this monitoring allows

quick detection of operational issues when the cluster is in production.

Monitoring Apache HBase, subsystems, and dependent systems

To measure the overall performance of Apache HBase, monitor metrics such as

those around Remote Procedure Calls (RPCs) and the Java virtual machine

(JVM) heap. In addition to Apache HBase metrics, collect metrics from

dependency systems, such as HDFS, the OS, and the network.

Monitoring the write path

To measure the performance of the write path, monitor the metrics for the

WAL, HDFS (on Apache HBase on Amazon S3 on Amazon EMR, WALs are on

HDFS), MemStore, flushes, compactions, garbage collections, and procedure

metrics of a related procedure.

Monitoring the read path

To measure the performance of the read path, monitor the metrics for the block

cache and the bucket cache. Specifically, monitor the number of evictions,

Garbage Collection (GC) time, cache size, and cache hits/misses.

Monitoring with a third-party tool

Apache HBase supports exporting metrics via Java Management Extensions

(JMX). Most third-party monitoring agents can then be configured to collect

metrics via JMX. For more information refer to Using with JMX. Section

Configuring HBase to expose metrics via JMX will provide the configurations to

export Apache HBase metrics via JMX on an Apache HBase on Amazon S3

cluster.

http://ganglia.info/
http://hbase.apache.org/book.html#_procedures
http://hbase.apache.org/book.html#_procedures
https://hbase.apache.org/metrics.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 8

Note that the Apache HBase Web UI allows you access to the available metrics.

In the UI, select a RegionServer or the Apache HBase Master, and then click the

“Metrics Dump” tab. This tab provides all available metrics collected from the

JMX bean and exposes the metrics in JSON format.

For more details on the metrics exposed by Apache HBase, refer to

MetricsRegionServerSource.java.

Use the following steps to add monitoring into your Amazon EMR Cluster:

• Create an Amazon EMR bootstrap action to set up the agent of any

enterprise monitoring tool used in your environment. (For more

information and example bootstrap actions, refer to Create Bootstrap

Actions to Install Additional Software.

• Create a dashboard in your enterprise monitoring tool with the metrics

to monitor per each Amazon EMR Cluster.

• Create unique tags for each cluster. This tagging avoids multiple clusters

writing to the same dashboard.

In addition to monitoring the Amazon EMR Cluster at every layer of the stack,

have the monitoring dashboard for your application’s API available for use

during the performance tests for Apache HBase. This dashboard keeps track of

the performance of the application APIs that rely on Apache HBase.

Monitoring Cluster components with Ganglia

The Ganglia open-source project is a scalable, distributed system designed to

monitor clusters and grids while minimizing the impact on their performance.

When you enable Ganglia on your cluster, you can generate reports and view the

performance of the cluster as a whole, as well as inspect the performance of

individual node instances. For more information about the Ganglia open-source

project, refer to http://ganglia.info/. For more information about using Ganglia

with Amazon EMR clusters, refer to Ganglia in Amazon EMR Documentation.

Configuring Ganglia is outside the scope of this whitepaper.

Note that Ganglia produces high amounts of data for large clusters. Consider

this information when sizing your cluster. If you choose to use Ganglia to

https://github.com/apache/hbase/blob/rel/1.4.6/hbase-hadoop-compat/src/main/java/org/apache/hadoop/hbase/regionserver/MetricsRegionServerSource.java
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-bootstrap.html
http://ganglia.info/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-ganglia.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 9

monitor your production cluster, make sure to thoroughly understand Ganglia

functionality and configuration properties.

Planning for Security on Amazon EMR and

Amazon S3
Many customers in regulated industries, such as financial services or healthcare,

require security and compliance controls around their Amazon EMR clusters

and Amazon S3 data storage. It is important to consider these requirements as

part of an overall data strategy that adheres to any regulatory or internal data

security requirements in an industry, such as PCI or HIPAA. This section covers

a variety of security best practices around configuring your Amazon EMR

environment for HBase on Amazon S3.

Encryption

There are multiple ways to encrypt data at rest in your Amazon EMR clusters. If

you are using EMRFS to query data on Amazon S3, you can specify one of the

following options:

• SSE-S3: Amazon S3 manages encryption keys for you

• SSE-KMS: An AWS Key Management Service (KMS) customer master

key (CMK) encrypts your data server-side on Amazon S3.

• CSE-KMS/CSE-C: The encryption and decryption takes place client-

side on your Amazon EMR cluster and the encrypted object is stored on

Amazon S3. You can use keys provided by AWS KMS (CSE-KMS) or use

a custom Java class that provides the master key (CSE-C). When you

consider this encryption mode, you should think about the overall

ecosystem of tools you will use to access your data and if these tools

support CSE-KMS/CSE-C.

In the context of HBase on Amazon S3, many customers use SSE-S3 and SSE-

KMS as their methods of encryption because CSE encryption requires additional

key management.

Although the bulk of the data is stored on Amazon S3, you still need to consider

the following options for local disk encryption:

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-s3

Amazon Web Services – Migrating to HBase on Amazon S3

Page 10

• Amazon EMR Security Configuration: Amazon EMR gives you the

ability to encrypt your storage volumes using local disk encryption. It

uses a combination of open-source HDFS encryption as well as LUKS

encryption. If you want to use this feature, you must specify an AWS

KMS key ARN or provide a custom Java class with the encryption

artifacts.

• Custom AMI: You can create a Custom AMI for Amazon EMR, and

specify an Amazon EBS volume encryption to encrypt both your boot

and storage volumes.

Amazon EMR security configurations allow you to choose a method for

encrypting data using Transport Layer Security (TLS). You can choose to:

• Manually create PEM certificates, zip them in a file, and reference from

Amazon S3, or

• Implement a certificate custom provider in Java and specify the Amazon

S3 path to the JAR.

For more information on how these certificates are used with different big data

technologies, refer to In Transit Data Encryption with Amazon EMR. Note that

traffic between Amazon S3 and cluster nodes is encrypted using TLS. This

encryption is enabled automatically.

Authentication and Authorization

Authentication and authorization, are two crucial components that must be

considered when controlling access to data. Authentication is the verification of

an entity, whereas authorization is checking whether the entity actually has

access to the data or resources it is asking for. Another way of looking at it is

that authentication is the “are you really who you say you are” check and

authorization is “do you actually have access to what you're asking for” check.

For example, Alice can be authenticated as being Alice, but this does not

necessarily mean that Alice has authorization, or access, to look at Bob's bank

account.

Authentication on Amazon EMR

Kerberos, a network authentication protocol created by the Massachusetts

Institute of Technology (MIT), uses secret-key cryptography to provide strong

authentication and avoid sensitive information, such as passwords or other

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-localdisk
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-encryption-enable.html#emr-encryption-certificates
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-data-encryption-options.html#emr-encryption-intransit

Amazon Web Services – Migrating to HBase on Amazon S3

Page 11

credentials, being sent over the network in an unencrypted and exposed format.

With Kerberos, you maintain a set of services (known as a realm) and users that

need to authenticate (known as principals) and then provide a means for these

principals to authenticate. You can also integrate your Kerberos setup with

other realms. For example, you can have users authenticate from an Active

Directory domain or LDAP namespace and have a cross-realm trust set up such

that these authenticated users can be seamlessly authenticated to access your

Amazon EMR clusters.

Amazon EMR installs open source Apache Hadoop ecosystem applications on

your cluster, meaning that you can leverage the existing security features in

these products. For example, you can enable Kerberos authentication for YARN,

giving user-level authentication for applications running on YARN, such as

HBase.

You can configure Kerberos on an Amazon EMR cluster (known as Kerberizing)

to provide a means of authentication for users who use your clusters. We

recommend that you become familiar with Kerberos concepts before

configuring Kerberos on Amazon EMR. Refer to Use Kerberos Authentication

on the Amazon EMR documentation page. See Further Reading for blog posts

that show you how to configure Kerberos on your Amazon EMR Cluster.

Authorization on Amazon EMR

Authorization on Amazon EMR falls into three general categories:

• Object-level authorization against objects in Amazon S3.

• Component-specific functionality that is built in (such as Apache HBase

Authorization).

• Tools that provide an intermediary access layer between users running

commands on Apache Hadoop components and the storage layer (such

as Apache Ranger). (This category is outside the scope of this

whitepaper.)

Object-level Authorization

Prior to Amazon EMR version 5.10.0, the AWS Identity and Access

Management (IAM) role attached to the Amazon EC2 instance profile role on

Amazon EMR clusters determined data access in Amazon S3. Data access to

Amazon S3 could only be granular at the cluster-level, making it difficult to have

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-kerberos.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 12

multiple users with potentially different levels of access to data touching the

same cluster.

EMRFS fine-grained authorization was introduced with Amazon EMR versions

5.10.0 and later. This authorization allows you to specify the AWS IAM role to

assume at the user or group level when EMRFS is accessing Amazon S3. This

allows for fine-grained access control for Amazon S3 on multi-tenant Amazon

EMR clusters. In addition, it makes it easier to enable cross-account Amazon S3

access to data. For more information on how to configure your security

configurations and AWS IAM roles appropriately, refer to Configure AWS IAM

Roles for EMRFS Requests to Amazon S3 and Build a Multi-Tenant Amazon

EMR Cluster with Kerberos, Microsoft Active Directory Integration and AWS

IAM Roles for EMRFS.

HBase Authorization

Authorization on Apache HBase on Amazon S3 is feature-equivalent to Apache

HBase on HDFS, with the ability to set authorization rules at the table, column,

and cell-level. Note that access to the Apache HBase web UIs is not restricted

even when Kerberos is used.

Network

The network topology is also important when designing for security and privacy.

We recommend placing your Amazon EMR clusters in private subnets, with

only outbound internet access via NAT.

Security groups control inbound and outbound access from your individual

instances. With Amazon EMR, you can use both Amazon EMR-managed

security groups as well as your own to control network access to your instance.

By applying the principle of least privilege to your security groups, you can lock

down your Amazon EMR cluster to only the applications and/or individuals

who need access.

Minimal AWS IAM Policy

By default, the AWS IAM policies that are associated with Amazon EMR are

generally permissive in order to allow customers to easily integrate Amazon

EMR with other AWS services. When securing Amazon EMR, a best practice is

to start from the minimal set of permissions required for Amazon EMR to

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-iam-roles.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-emrfs-iam-roles.html
https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/
https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/
https://aws.amazon.com/blogs/big-data/build-a-multi-tenant-amazon-emr-cluster-with-kerberos-microsoft-active-directory-integration-and-emrfs-authorization/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-man-sec-groups.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-man-sec-groups.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-additional-sec-groups.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 13

function and add permissions as necessary. Since HBase on Amazon S3 depends

on Amazon S3 as a storage medium, it is important to ensure that bucket

policies are also scoped correctly, such that HBase on Amazon S3 can function

while also being secure.

The Appendix B: AWS IAM Policy Reference at the end of this paper includes

three policies that are scoped around what Amazon EMR minimally requires for

basic operation. These policies could be further minimized/restricted by

removing actions related to spot pricing and autoscaling.

Custom AMIs and Applying Security Controls to

Harden your AMI

Custom AMIs are another approach you can use to harden and secure your

Amazon EMR cluster. Amazon EMR uses an Amazon Linux Amazon Machine

Image (AMI) to initialize Amazon EC2 instances when you create and launch a

cluster. The AMI contains the Amazon Linux operating system, other software,

and configurations required for each instance to host your cluster applications.

By default, when you create a cluster, you don't need to think about the AMI.

When Amazon EC2 instances in your cluster launch, Amazon EMR starts with a

default Amazon Linux AMI that Amazon EMR owns, runs any bootstrap actions

you specify, and then installs and configures the applications and components

that you select.

Alternatively, if you use Amazon EMR version 5.7.0 or later, you can specify a

custom Amazon Linux AMI when you create a cluster and customize its root

volume size as well. When each Amazon EC2 instance launches, it starts with

your custom AMI instead of the Amazon EMR owned AMI.

Specifying a custom AMI is useful for the following cases:

• Encrypt the Amazon EBS root device volumes (boot volumes) of Amazon

EC2 instances in your cluster. For more information, refer to Creating a

Custom AMI with an Encrypted Amazon EBS Root Device Volume.

• Pre-install applications and perform other customizations instead of

using bootstrap actions, which can improve cluster start time and

streamline the startup work flow.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-encrypted
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-encrypted

Amazon Web Services – Migrating to HBase on Amazon S3

Page 14

• Implement more sophisticated cluster and node configurations than

bootstrap actions allow.

Using a custom AMI, as opposed to a bootstrap action, can allow you to have

your hardening steps pre-configured into the images you use, rather than

having to run the bootstrap action scripts on instance provision time. You don't

have to choose between the two—you can create a custom AMI for the common,

less likely to change security characteristics of your cluster and leverage

bootstrap actions to pull the latest configurations/scripts that might be cluster-

specific.

One approach many of our customers take is to apply the Center for Internet

Security (CIS) benchmarks to harden their Amazon EMR clusters. For more

details, refer to A step-by-step checklist to secure Amazon Linux. It is important

to verify each and every control for necessity and function test against your

requirements when applying these benchmarks to your clusters.

Auditing

The ability to audit compute environments is a key requirement for many

customers. There are a variety of ways that you can support this requirement

within Amazon EMR:

• For Amazon EMR version 5.14.0 and later, EMR File System (EMRFS),

Amazon EMR’s connector for Amazon S3, supports auditing of users

who ran queries that accessed data in Amazon S3 through EMRFS. This

feature is enabled by default and passes on user and group information

to audit logs like AWS CloudTrail, providing you with comprehensive

request tracking.

• If it exists, application-specific auditing can be configured and

implemented on Amazon EMR.

• You can use tools such as Apache Ranger to implement another layer of

auditing and authorization.

• AWS CloudTrail, a service that provides a record of actions taken by a

user, role, or an AWS service, is integrated with Amazon EMR. AWS

CloudTrail captures all API calls for Amazon EMR as events. The calls

captured include calls from the Amazon EMR console and code calls to

the Amazon EMR API operations. If you create a trail, you can enable

https://www.cisecurity.org/benchmark/amazon_linux/

Amazon Web Services – Migrating to HBase on Amazon S3

Page 15

continuous delivery of AWS CloudTrail events to an Amazon S3 bucket,

including events for Amazon EMR.

• You can also audit the Amazon S3 objects that Amazon EMR is accessing

via Amazon S3 access logs. AWS CloudTrail only provides logs for AWS

API calls, so if a user runs a job that reads/writes data to Amazon S3, the

Amazon S3 data that was accessed by Amazon EMR won’t appear in

AWS CloudTrail. By using Amazon S3 access logs, you can

comprehensively monitor and audit access against your data in Amazon

S3 from anywhere, including Amazon EMR.

• Because you have full control over your Amazon EMR cluster, you can

always install your own third-party agents or tooling via bootstrap

actions or custom AMIs to help support your auditing requirements.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 16

Identifying Apache HBase and EMRFS

Tuning Options

Apache HBase on Amazon S3 configuration

properties

This section helps you optimize components that support the read/write path

for your application access patterns by identifying the components and

properties to configure. Specifically, the goal of tuning is to prepare the initial

configurations to influence cluster behavior, storage footprint behavior, and

individual components behavior that support the read and write paths.

The whitepaper covers only HBase tuning properties that were critical to many

HBase on Amazon S3 customers during migration. Make sure to test any

additional HBase configuration properties that have been tuned on your HDFS

backed cluster but not included in this section. You also need to tune EMRFS

properties to prepare your cluster for scale.

This whitepaper should be used together with existing resources or materials on

best practices and operational guidelines for HBase.

For a detailed description of the HBase properties mentioned on this document,

refer to HBase default configurations and HBase-default.xml (HBase 1.4.6). For

more details on the metrics mentioned on this document, refer to

MetricsRegionServerSource.java (HBase 1.4.6). To monitor changes to some of

the properties mentioned on this document, you require access to the Logs for

the master and specific Region Servers.

To access the HBase logs during tuning, you can use the HBase Web UI. First

select the HBase Master or the specific RegionServer, and then click the “Local

Logs” tab. Or, you can SSH to the particular instance that hosts the

RegionServer or HBase Master and visualize the last lines added to the logs

under /var/log/hbase.

Next, we identify the several settings on HBase and later on EMRFS to take into

consideration during the tuning stage of the migration.

https://hbase.apache.org/book.html
https://github.com/apache/hbase/blob/rel/1.4.6/hbase-common/src/main/resources/hbase-default.xml
https://github.com/apache/hbase/blob/rel/1.4.6/hbase-hadoop-compat/src/main/java/org/apache/hadoop/hbase/regionserver/MetricsRegionServerSource.java

Amazon Web Services – Migrating to HBase on Amazon S3

Page 17

For some of the HBase properties, we propose a starting value or a setting, for

others you will need to iterate on a combination of configurations during

performance tests to find adequate values.

All of the configuration settings that you decide to set can be applied to your

Amazon EMR Cluster via a configuration object that the Amazon EMR service

uses to configure HBase and EMRFS when deploying a new cluster. For more

details, see Applying HBase and EMRFS Configurations to the Cluster.

Speeding up the Cluster initialization

Use the properties that follow when you want to speed up the cluster’s startup

time, speed up region assignments, and speed up region initialization time.

These properties are associated with the HBase Master and the HBase

RegionServer.

HBase master tuning

hbase.master.handler.count

• This property sets the number of RPC handlers spun up on the HBase

Master.

• The default value is 30.

• If your cluster has thousands of regions you will likely need to increase

this value. Monitor the queue size (ipc.queue.size), min and max

time in queue, total calls time, min and max processing time, and then

iterate on this value to find the best value for your use case.

• Customers at the 20000 region scale have configured this property to 4

times the default value.

HBase RegionServer tuning

hbase.regionserver.handler.count

• This property sets the number of RPC handlers created on

RegionServers to serve requests. For more information about this

configuration setting, refer to hbase.regionserver.handler.count.

http://hbase.apache.org/0.94/book/important_configurations.html#hbase.regionserver.handler.count

Amazon Web Services – Migrating to HBase on Amazon S3

Page 18

• The default value is 30.

• Monitor the number of RPC Calls Queued, the 99th percentile latency for

RPC calls to stay in queue, and RegionServer memory. Iterate on this

value to find the best value for your use case.

• Customers at the 20000 region scale have configured this property to 4

times the default value.

hbase.regionserver.executor.openregion.threads

• This property sets the number of concurrent threads for region opening.

• The default value is 3.

• Increase this value if the number of regions per RegionServer is high.

• For clusters with thousands of regions, it is common to see this value at

10–20 times the default.

Preventing initialization loops

The default values of the properties that follow may be too conservative for

some use cases. Depending on the number of regions, number of RegionServers,

and the settings you have chosen to control initialization and assignment times,

the default values for the master timeout can prevent your cluster from starting

up.

Relevant Master initialization timeouts

hbase.master.initializationmonitor.timeout

• This property sets the amount of time to sleep in milliseconds before

checking the Master’s initialization status.

• The default value is 900000 (15 minutes).

• Monitor masterFinishedInitializationTime and the HBase Master

logs for a “master failed to complete initialization” timeout message.

Iterate on this value to find the best value for your use case.

hbase.master.namespace.init.timeout

Amazon Web Services – Migrating to HBase on Amazon S3

Page 19

• This property sets the time for the master to wait for the namespace

table to initialize.

• The default value is 300000 (5 minutes).

• Monitor the HBase Master logs for a “waiting for namespace table to be

assigned” timeout message. Iterate on this value to find the best value

for your use case.

Scaling to a high number of regions

This property allows the HBase Master to handle high number of regions.

• Set hbase.assignment.usezk to false

• For detailed information, refer to HBase ZK-less Region Assignment.

Getting a balanced Cluster after initialization

To ensure that the HBase Master only allocates regions when a target number of

RegionServers is available, tune the following properties:

hbase.master.wait.on.regionservers.mintostart

hbase.master.wait.on.regionservers.maxtostart

• These properties set the minimum and maximum number of

RegionServers the HBase Master will wait for before starting to assign

regions.

• By default, hbase.master.wait.on.regionservers.mintostart

is set to 1.

• An adequate value for the min and max is 90 to of the total number of

RegionServers. A high value for both min and max results in a more

uniform distribution of regions across RegionServers.

hbase.master.wait.on.regionservers.timeout

hbase.master.wait.on.regionservers.interval

• The timeout property sets the time the master will wait for

RegionServers to check in. The default value is 4500.

https://blogs.apache.org/hbase/entry/hbase_zk_less_region_assignment

Amazon Web Services – Migrating to HBase on Amazon S3

Page 20

• The interval property sets the time period used by the master to

decide if no new RegionServers have checked in. The default value is

1500.

• These properties are especially relevant for a cluster with a large number

of regions.

• If your use case requires aggressive initialization times, these properties

can be set to lower values so that the condition that is dependent on

these properties is evaluated earlier.

• Customers at the 20000 region scale and with a requirement of low

initialization time, have set timeout to 400 and interval to 300.

• For more information on the condition used by the master to trigger

allocation, refer to HBASE-6389.

Preventing timeouts during Snapshot operations

Tune the following properties to prevent timeouts during snapshot operations:

hbase.snapshot.master.timeout.millis

• This property sets the time the master will wait for a snapshot to

conclude. This property is especially relevant for tables with a large

number of regions.

• The default value is 300000 (5 minutes).

• Monitor the logs for snapshot timeout messages and iterate on this

value.

• Customers at the 20000 region scale have set this property to 1800000

(30 minutes).

hbase.snapshot.thread.pool.max

• This property sets the number of threads used by the snapshot manifest

loader operation.

• Default value is 8.

https://issues.apache.org/jira/browse/HBASE-6389

Amazon Web Services – Migrating to HBase on Amazon S3

Page 21

• This value depends on the instance type and the number of regions in

your cluster. Monitor snapshot average time, CPU usage, and your

application API to ensure the value you choose does not impact

application requests.

• Customers at the 20000 region scale have used 2–8 times the default

value for this property.

If you will be performing online snapshots while serving traffic, set the following

properties to prevent timeouts during the online snapshot operation.

hbase.snapshot.region.timeout

• Sets the timeout for RegionServers to keep threads in the snapshot

request pool waiting.

• Default value is 300000 (5 minutes).

• This property is especially relevant for tables with a large number of

regions.

• Monitor memory usage on the RegionServers, monitor the logs for

snapshot timeout messages, and iterate on this value. Increasing this

value consumes memory on the Region Servers.

• Customers at the 20000 region scale have used 1800000 (30 minutes)

for this property.

hbase.snapshot.region.pool.threads

• Sets the number of threads or snapshotting regions on the RegionServer.

• Default value is 10.

• If you decide to increase the value for this property, consider setting a

lower value for hbase.snapshot.region.timeout.

• Monitor snapshot average time, CPU usage, and your application API to

ensure the value that you choose does not impact application requests.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 22

Running the balancer for specific periods to minimize the impact of region
movements on snapshots

Controlling the operation of the Balancer is crucial for smooth operation of the

cluster. These properties provide control over the balancer.

hbase.balancer.period

hbase.balancer.max.balancing

• The hbase.balancer.period property configures when the balancer

runs, and the hbase.balancer.max.balancing property configures

how long the balancer runs.

• These properties are especially relevant if you programmatically take

snapshots of the data every few hours because the snapshot operation

will fail if regions are being moved. You can monitor the snapshot

average time to have more insight into the snapshot operation.

At a high level, balancing requires flushing data, closing the region, moving the

region and then opening it on a new RegionServer. For this reason, for busy

clusters, consider running the balancer every couple of hours and configuring

the balancer to run for only one hour.

Tuning the Balancer

Consider the following additional properties when configuring the balancer:

• hbase.master.loadbalancer.class

• hbase.balancer.period

• hbase.balancer.max.balancing

We recommend that you test your current LoadBalancer settings, and then

iterate on the configurations. The default LoadBalancer is the Stochastic

Balancer. If you choose to use the default LoadBalancer, refer to

StochasticLoadBalancer for more details on the various factors and costs

associated with this balancer. Most use cases can use the default values.

Access Pattern considerations and read/write path tuning

This section covers tuning the diverse HBase components that support the

read/update/write paths.

https://hbase.apache.org/devapidocs/org/apache/hadoop/hbase/master/balancer/StochasticLoadBalancer.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 23

To properly tune the components that support the read/update/write paths, you

start by identifying the overall access pattern of your application.

If the access pattern is read-heavy, then you can reduce the resources allocated

to the write path. The same guidelines apply for write-heavy access patterns. For

mixed access patterns, you should strive for a balance.

Tuning the Read Path

This section identifies the properties used t when tuning the read path. The

properties that follow are beneficial on both random-read and sequential-read

access patterns.

Tuning the Size of the BucketCache

The BucketCache is central to HBase on Amazon S3. The properties that follow

set the overall size of the BucketCache per instance and allocate a percentage of

the total size of the BucketCache to specialized areas, such as single access

BucketCache, multiple access BucketCache, and in-memory BucketCache. For

more details, refer to HBASE-18533.

The goal of this section is to configure the BucketCache to support your access

pattern. For an access pattern of random reads and sequential reads, it is

recommended to cache all data in the BucketCache, which is stored in disk. In

other words, each instance allocates part of its disk to the bucket cache so that

the total size of the BucketCache across all the instances in the cluster equals the

size of the data on Amazon S3.

To configure the BucketCache, tune the following properties:

hbase.bucketcache.size

• As a baseline, set the BucketCache to a value equal to the size of data you

would like cached.

• This property impacts Amazon S3 traffic. If the data is not in the cache,

HBase must retrieve the data from Amazon S3.

• If the BucketCache size is smaller than the amount of data being cached,

it may cause many cache evictions, which will also increase overhead on

GC. Moreover, it will increase Amazon S3 traffic. Set the BucketCache

https://issues.apache.org/jira/browse/HBASE-18533

Amazon Web Services – Migrating to HBase on Amazon S3

Page 24

size to the total size of the dataset required for your application’s read

access pattern.

• Take into account the available disk resources when setting this

property. HBase on Amazon S3 uses HDFS for the write path so the total

disk available for the BucketCache must consider any storage required

by Apache Hadoop/OS/HDFS. See the Amazon EMR Cluster Setup

section for recommendations on sizing the cluster local storage for the

BucketCache, choosing storage type and its mix (multiple disks versus a

single large disk).

• Monitor GC, cache evictions metrics, cache hit ratio, cache miss ratio

(you can use HBase UI to quickly access these metrics) to support the

process of choosing the best value. Moreover, consider the application

SLA requirements to increase or decrease the BucketCache size. Iterate

on this value to find the best value for your use case.

hbase.bucketcache.single.factor

hbase.bucketcache.multi.factor

hbase.bucketcache.memory.factor

• Note that the bucket areas follow the same areas as LRU cache. A block

initially read from Amazon S3 is populated in the single-access area

(hbase.bucketcache.single.factor) and consecutive accesses

promote that block into the multi-access area

(hbase.bucketcache.multi.factor). The in-memory area is

reserved for blocks loaded from column families flagged

as IN_MEMORY (hbase.bucketcache.memory.factor).

• By default, these areas are sized at 25%, 50%, 25% of the total

BucketCache size, respectively.

• Tune this value according to the access pattern of your application.

• This property impacts Amazon S3 traffic. For example, if single access is

more prevalent than multi access, you can reduce the size allocated to

multi access. If multi access is common, ensure that multi access areas

are large enough to avoid cache evictions.

hbase.rs.cacheblocksonwrite

Amazon Web Services – Migrating to HBase on Amazon S3

Page 25

• This property forces all blocks that are written to be added to the cache

automatically. Set this property to true.

• This property is especially relevant to read-heavy workloads and setting

it to true will populate the cache and reduce Amazon S3 traffic when a

read request to the data is issued. Setting this to false in read-heavy

workloads will result in reduced read performance and increased

Amazon S3 activity.

• HBase on Amazon S3 uses the file base BucketCache together with on-

heap cache, BlockCache. This setup is commonly referred as a combined

cache. The BucketCache only stores data blocks and the BlockCache

stores bloom filters and indices. The physical location of the file base

BucketCache is the disk, and the location of the BlockCache is the heap.

Pre-warming the BucketCache

HBase provides additional properties that control the prefetch of blocks when a

region is opening. This is a form of cache pre-warming and recommended for

HBase on Amazon S3, especially for read access patterns. Pre-warming the

BucketCache results in reduced Amazon S3 traffic for subsequent requests.

Disabling pre-warming in read-heavy workloads results in reduced read

performance and increased Amazon S3 activity.

To configure HBase to prefetch blocks, set the following properties:

hbase.rs.prefetchblocksonopen

• This property controls whether the server should asynchronously load

all of the blocks when a store file is opened (data, meta, and index). Note

that enabling this property contributes to the time the RegionServer

takes to open a region and therefore initialize.

• Set this value to true to apply the property to all tables. This can also be

applied per CF instead of using a global setting. Prefer this over enabling

it cluster-wide.

• If you set hbase.rs.prefetchblocksonopen to true, the properties

that follow increase the number of threads and the size of the queue for

the pre-fetch operation:

o Set hbase.bucketcache.writer.queuelength to 1024 as a

starting value. The default value is 64.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 26

o Set hbase.bucketcache.writer.threads to 6 as a starting value.

The default value is 3.

o The values should be configured together and consider the instance

type for the RegionServer and the number of regions per

RegionServer. By increasing the number of threads, you may be able

to choose a lower value for

hbase.bucketcache.writer.queuelength.

o Property hbase.rs.prefetchblocksonopen will control how

fast you get data from Amazon S3 during the pre-fetch.

o Monitor HBase logs to understand how fast the bucket cache is

being initialized and monitor cluster resources to see the impact of

the properties on memory and CPU. Iterate on these values to find

the best value for your use case.

o For more details, refer to HBASE-15240.

Modifying the Table Schema to Support Pre-warming

Finally, prefetching can be applied globally or per column family. In addition,

the IN_MEMORY region of the BucketCache can be applied per column family.

You must change the schema of the tables to set these properties. For each

column family and for the access patterns, you must identify which column

families should always be placed in memory and which column families that

benefit from prefetching. For example, if one column family is never read by the

HBase read path (only read by an ETL job), you can save resources on the

cluster and avoid using the PREFETCH_BLOCKS_ON_OPEN Key or the

IN_MEMORY for that column family. To modify an existing table to use

PREFETCH_BLOCKS_ON_OPEN or IN_MEMORY keys see the following

examples:

hbase shell

hbase(main):001:0> alter 'MyTable', NAME => 'myCF',

PREFETCH_BLOCKS_ON_OPEN => 'true'

hbase(main):002:0> alter 'MyTable', NAME => 'myCF2', IN_MEMORY

=> 'true'

Tuning the Updates/Write Path

https://issues.apache.org/jira/browse/HBASE-15240

Amazon Web Services – Migrating to HBase on Amazon S3

Page 27

This section shows you how to tune and size the MemStore to avoid having

frequent flushes and small HFiles. As a result, the frequency of compactions and

Amazon S3 traffic is reduced.

hbase.regionserver.global.memstore.size

• This property sets the maximum size of all MemStores in a

RegionServer.

• The memory allocated to the MemStores is kept in the main memory of

the RegionServers.

• If the value of hbase.regionserver.global.memstore.size is

exceeded, updates are blocked, and flushes are forced until the total size

of all the MemStores in a RegionServer is at or below the value of

hbase.regionserver.global.memstore.size.lower.limit.

• The default value is 0.4 (40% of the heap).

• For write-heavy access patterns, you can increase this value to increase

the heap area dedicated to all MemStores.

• Consider the number of regions per Region Server and the number of

column families with high write activity when setting this value.

• For read-heavy access patterns, this setting can be decreased to free up

resources that support the read path.

hbase.hregion.memstore.flush.size

• This property sets the flush size per MemStore.

• Depending on the SLA of your API, the flush size may need to be higher

than the flush size configured on the source cluster.

• This setting impacts the traffic to Amazon S3, the size of HFiles, and the

impact of compactions in your cluster. The higher you set the value, the

fewer Amazon S3 operations are required, and the higher the size of

each resulting HFile.

• This value is dependent on the total number of regions per RegionServer

and the number of column families with high write activity.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 28

• Use 536870912 bytes (512 MB) as the starting value, then monitor the

frequency of flushes, the Memstore Flush Queue Size, and Application

APIs response time. If frequency of flushes and queue size is high,

increase this setting.

hbase.regionserver.global.memstore.size.lower.limit

• When the size of all Memstores exceeds this value, flushes are forced.

This property prevents the Memstore from being blocked for updates.

• By default, this property is set to 0.95, 95% of the value set for

hbase.regionserver.global.memstore.size.

• This value depends on the number of Regions per RegionServer and the

write activity in your cluster.

• You might want to decrease this value if as soon as the Memstores reach

this safety threshold, the write activity quickly fills the missing 0.05 and

the MemStore is blocked for writes.

• Monitor the frequency of flushes, the Memstore Flush Queue Size, and

Application APIs response time. If frequency and queue size is high,

increase this setting.

hbase.hregion.memstore.block.multiplier

• This property is a safety threshold and controls spikes in write traffic.

• Specifically, this property sets the threshold at which writes are blocked.

If the MemStore reaches

hbase.hregion.memstore.block.multiplier times

hbase.hregion.memstore.flush.size bytes writes are blocked.

• In case of spikes in traffic, this property prevents the Memstore from

continuing to grow and in this way prevents HFiles with large sizes.

• The default value is 4.

• If your traffic has a constant pattern, consider keeping the default value

for this property and tune only

hbase.hregion.memstore.flush.size.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 29

hbase.hregion.percolumnfamilyflush.size.lower.bound.min

• For the tables that have multiple column families, this property forces

HBase to flush only the MemStores of each column family that exceed

hbase.hregion.percolumnfamilyflush.size.lower.bound.m

in.

• The default value for this property is 16777216 bytes.

• This setting impacts the traffic to Amazon S3. A higher value reduces

traffic to Amazon S3.

• For write-heavy access patterns with multiple column families, this

property should be changed to a value higher than the default of

16777216 bytes but less than half of the value of

hbase.hregion.memstore.flush.size.

hfile.block.cache.size

• This property sets the percentage of the heap to be allocated to the

BlockCache.

• Use the default value of 0.4 for this property.

• By default, the BucketCache stores data blocks, and the BlockCache

stores bloom filters and indices.

• You will need to allocate enough of the heap to cache indices and bloom

filters, if applicable. To measure HFile indices and bloom filters sizes,

access the web UI of one of the RegionServers.

• Iterate on this value to find the best value for your use case.

hbase.hstore.flusher.count

• This property controls the number of threads available to flush writes

from memory to Amazon S3.

• The default value is 2.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 30

• This setting impacts the traffic to Amazon S3. A higher value reduces the

MemStore flush queue and speeds up writes to Amazon S3. This setting

is valuable for write-heavy environments. The value is dependent on the

instance type used by the cluster.

• Test the value and gradually increase it to 10.

• Monitor the MemStore flush queue size, the 99th percentile for flush

time, and application API response times. Iterate on this value to find

the best value for your use case.

Note: Small clusters with high region density and high write activity should also

tune HDFS properties that allow the HDFS NameNode and the HDFS

DataNode to scale. Specifically, properties dfs.datanode.handler.count

and dfs.namenode.handler.count should be increased to at least 3x their

default value of 10.

Region size considerations

Since this process is a migration, set the region size to the same region size on

your HDFS backed cluster.

As a reference, on HBase on Amazon S3, customer regions fall into these

categories: small-sized regions (1-10 GB), mid-sized regions (10-50 GB), and

large-sized regions (50-100 GB).

Controlling the Size of Regions and Region Splits

This property sets the size of the regions in your cluster. This property should be

configured together with the property

hbase.regionserver.region.split.policy which is not covered on this

whitepaper.

• Use your current cluster’s value for hbase.hregion.max.filesize

o As a starting point you can use the value in your HDFS backed

cluster.

• Set hbase.regionserver.region.split.policy to the same

policy in your HDFS backed cluster

o This property controls when a region should be split.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 31

o The default value is

org.apache.hadoop.hbase.regionserver.SteppingSplit

Policy.

• Set hbase.regionserver.regionSplitLimit to the same value in

your HDFS backed cluster.

o This property acts as a guideline/limit for the RegionServer to stop

splitting.

o Its default value is 1000.

Tuning HBase Compactions

This section shows you how to configure properties that control major

compactions, reduce the frequency of minor compactions, and control the size

of HFiles to reduce Amazon S3 traffic.

Controlling Major Compactions

In production environments, we recommend you disable major compaction.

However, there should always be a process to run major compactions. Some

customers opt to have an application that incrementally runs major

compactions in the background, in a table, or RegionServer basis.

Set hbase.hregion.majorcompaction to 0 to disable automatically

scheduled major compactions.

Reduce the frequency of minor compactions and control the size of HFiles to reduce

Amazon S3 traffic

The following properties are dependent on the MemStore size, flush size, and

the need to control the frequency of minor compactions.

The properties that follow should be set according to response time needs and

average size of generated StoreFiles during a MemStore flush.

To control the behavior of minor compactions, tune these properties:

hbase.hstore.compaction.min.size

• If a StoreFile is smaller than the value set by this property, the StoreFile

will be selected for compaction. If StoreFiles have a size equal or larger

Amazon Web Services – Migrating to HBase on Amazon S3

Page 32

than the value of hbase.hstore.compaction.min.size,

hbase.hstore.compaction.ratio is used to determine if the files

are eligible for compaction.

• By default, this value is set to 134217728 bytes.

• This setting depends on the frequency of flushes, the size of StoreFiles

generated by flushes, and hbase.hregion.memstore.flush.size.

• This setting impacts the traffic to Amazon S3. The higher you set the

value, the more frequent minor compactions will occur, and therefore

trigger Amazon S3 activity.

• For write-heavy environments with many small StoreFiles, you may

want to decrease this value to reduce the frequency of minor

compactions and therefore Amazon S3 activity.

• Monitor the frequency of compactions, the overall StoreFile size, and

iterate on this value to find the best value for your use case.

hbase.hstore.compaction.max.size

• If a StoreFile is larger than the value set by this property, the StoreFile is

not selected for compaction.

• This value setting depends on the size of the HFiles generated by flushes

and the frequency of minor compactions.

• If you increase this value, you will have fewer, larger StoreFiles and

increased Amazon S3 activity. If you decrease this value, you will have

more, smaller StoreFiles, and reduced Amazon S3 activity.

• Monitor the frequency of compactions, the compaction output size, the

overall StoreFile size, and iterate on this value.

hbase.hstore.compaction.ratio

Accept the default of 1.0 as a starting value for this property. For more details

on this property, refer to hbase-default.xml.

https://github.com/apache/hbase/blob/rel/1.4.6/hbase-common/src/main/resources/hbase-default.xml

Amazon Web Services – Migrating to HBase on Amazon S3

Page 33

hbase.hstore.compactionThreshold

• If a store reaches hbase.hstore.compactionThreshold, a

compaction is run to re-write the StoreFiles into one.

• A high value will result in less frequent minor compactions, larger

StoreFiles, longer minor compactions, and less Amazon S3 activity.

• The default value is 3.

• Start with a value of 6, monitor Compaction Frequency, the average size

of StoreFiles, compaction output size, compaction time, and iterate on

this value to get the best value for your use case.

hbase.hstore.blockingStoreFiles

• This property sets the total number of StoreFiles a single store can have

before updates are blocked for this region. If this value is exceeded,

updates are blocked until a compaction concludes or

hbase.hstore.blockingWaitTime is exceeded.

• For write-heavy workloads, use two to three times the default value as a

starting value.

• The default value is 16.

• Monitor the frequency of flushes, blocked requests count, and

compaction time to set the proper value for this property.

Minor and major compactions will flush the BucketCache. For more details,

refer to HBASE-1597.

Controlling the storage footprint locally and on Amazon S3

At a high level, on HBase on Amazon S3, WALs are stored on HDFS. When a

compaction occurs, previous HFiles are moved to the archive and only deleted if

they are not associated with a snapshot. HBase relies on a Cleaner Chore that is

responsible for deleting unnecessary HFiles and expired WALs.

https://issues.apache.org/jira/browse/HBASE-1597

Amazon Web Services – Migrating to HBase on Amazon S3

Page 34

Ensuring the Cleaner Chore is always running

With HBase 1.4.6 (Amazon EMR version 5.17.0 and later), we recommend that

you deploy the cluster with the cleaner enabled. This is the default behavior. The

property that sets this behavior is hbase.master.cleaner.interval.

We recommend that you use the latest Amazon EMR release. For versions prior

to Amazon EMR 5.17.0, see the Operational Considerations section for the

HBase shell commands that control the cleaner behavior.

To enable the cleaner globally, set the hbase.master.cleaner.interval to

1.

Speeding up the Cleaner Chore

HBASE-20555, HBASE-20352 and HBASE-17215 add additional control to the

Cleaner Chore that deletes expired WALs (HLogCleaner) and expired archived

HFiles (HFileCleaner). These controls are available on HBase 1.4.6 (Amazon

EMR version 5.17.0) and later.

The number of threads allocated to the preceding properties should be

configured together and take into consideration the capacity and instance type

of the Amazon EMR Master node.

hbase.regionserver.hfilecleaner.large.thread.count

• This property sets the number of threads allocated to clean expired large

HFiles.

• hbase.regionserver.thread.hfilecleaner.throttle sets the

size that distinguishes between a small and large file. The default value

is 64 MB.

• The value for this property is dependent on the number of flushes, write

activity in the cluster, and snapshot deletion frequency.

• The higher the write and snapshot deletion activity, the higher the value

should be.

• By default, this property is set to 1.

• Monitor the size of the HBase root directory on Amazon S3 and iterate

on this value to find the best value for your use case. Consider the

Amazon EMR Master CPU resources and the values set for the other

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-s3.html#emr-hbase-s3-performance
https://issues.apache.org/jira/browse/HBASE-20555
https://issues.apache.org/jira/browse/HBASE-20352
https://issues.apache.org/jira/browse/HBASE-17215

Amazon Web Services – Migrating to HBase on Amazon S3

Page 35

configuration properties identified in this section. For more information,

see the Enabling Amazon S3 metrics for the HBase on Amazon S3 root

directory section.

hbase.regionserver.hfilecleaner.small.thread.count

• This property sets the number of threads allocated to clean expired small

HFiles.

• The value for this property is dependent on the number of flushes, write

activity in the cluster, and snapshot deletion frequency.

• By default, this property is set to 1.

• The higher the write and snapshot deletion activity, the higher the value

should be.

• Monitor the size of the HBase root directory on Amazon S3 and iterate

on this value to find the best value for your use case. Consider the

Amazon EMR Master CPU resources and the values set for the other

configuration properties identified in this section.

hbase.cleaner.scan.dir.concurrent.size

• This property sets the number of threads to scan the oldWALs

directories.

• The value for this property is dependent on the write activity in the

cluster.

• By default, this property is set to ¼ of all available cores.

• Monitor HDFS use and iterate on this value to find the best value for

your use case. Consideration the Amazon EMR Master CPU resources

and the values set for the other configuration properties identified in

this section.

hbase.oldwals.cleaner.thread.size

Amazon Web Services – Migrating to HBase on Amazon S3

Page 36

• This property sets the number of threads to clean the WALs under the

oldWALs directory.

• The value for this property is dependent on the write activity in the

cluster.

• By default, this property is set to 2.

• Monitor HDFS use and iterate on this value to find the best value for

your use case. Consider the Amazon EMR Master CPU resources and the

values set for the other configuration properties identified in this

section.

For more details on how to set the configuration properties to clean expired

WALs, refer to HBASE-20352.

Porting existing settings to HBase on Amazon S3

Some properties you have tuned in your on-premises cluster but were not

included in the Apache HBase tuning section. These configurations include the

heap size for HBase and supporting Apache Hadoop components, Apache

HBase Split Policy, Apache Zookeeper timeouts, and so on. For these

configuration properties, use the value in your HDFS backed cluster as a

starting point. Follow the same process to iterate and determine the best value

that supports your use case.

EMRFS Configuration Properties

Starting December 1, 2020, Amazon S3 delivers strong read-after-write

consistency automatically for all applications. Therefore, there is no need to

enable EMRFS consistent view and other consistent view-related configurations

as detailed in Configure Consistent View in the Amazon EMR Management

Guide. For more details on Amazon S3 strong read-after-write consistency, see

Amazon S3 now delivers strong read-after-write consistency automatically for

all applications.

Setting the total number of connections used by EMRFS to read/write data
from/to Amazon S3

With HBase on Amazon S3, access to data is done via EMRFS. This means that

tasks such as an Apache HBase Region opening, MemStore flushes and

compactions all will initiate a request to Amazon S3. To support workloads for a

large number of regions and datasets, you must tune the total number of

connections to Amazon S3 that EMRFS can make (fs.s3.maxConnections).

https://issues.apache.org/jira/browse/HBASE-20352
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emrfs-configure-consistent-view.html
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/
https://aws.amazon.com/about-aws/whats-new/2020/12/amazon-s3-now-delivers-strong-read-after-write-consistency-automatically-for-all-applications/

Amazon Web Services – Migrating to HBase on Amazon S3

Page 37

To tune fs.s3.maxConnections, account for the average size of the HFiles,

number of regions, the frequency of minor compactions, and the overall read

and write throughput the cluster is experiencing.

fs.s3.maxConnections

• The default value for HBase on Amazon S3 is 10000. This value should

be set to more than 10000 for clusters with a large number of regions

(2500+), large datasets (1 TB+), high minor compactions activity, and

intense read/write activity.

• Monitor the logs for the ERROR message “Unable to execute HTTP

request: Timeout waiting for connection” and iterate on this value. See

more details about this error message in the Troubleshooting section.

• Several customers at the +50TB/20k regions scale set this property to

50000.

Testing Apache HBase and EMRFS

Configuration Values

Options to approach performance testing

During the testing phase, we recommend that you use the metrics for the

relevant HBase sub components together with the overall response times of

your application to gauge the impact of the changes made to HBase properties.

We also recommend that you start by testing the HBase configuration settings

that contribute to a healthy cluster state at your dataset scale (fast initialization

times, balanced cluster, and so on), and then focus on testing the configuration

property values for the read and write/update paths.

We provide guidelines on how to size the cluster compute and local storage

resources. The R5/R5d instance types are good candidates for a starting point as

they are memory-optimized instances.

As you focus on tuning the read and write/update paths, we recommend you

iterate on the number of regions per RegionServer (cluster size). As a starting

value, you can use the same region density as in your HDFS-backed cluster and

Amazon Web Services – Migrating to HBase on Amazon S3

Page 38

iterate according to the behavior indicated by the metrics for the RegionServers

resources and HBase read/write path components. For more details, see Sizing

Compute Capacity, Selecting an Instance Type. Also, consider costs while you

iterate on instance size and type. Refer to the AWS Simple Monthly Calculator

to quickly help you estimate costs for the different clusters of your test

environment.

To test the HBase configuration values you have selected as a starting value, use

one of the following options.

Traffic Segmentation

If the use case permits and the application traffic can be segmented by

API/Table, consider creating empty tables pre-partitioned with the same

number of regions as the original and then have the test cluster receive 10-50%

of the production traffic. Although this won’t be an accurate representation of

the production load, you will be able to iterate faster on the configurations for

most HBase components. This way, as soon as the HBase configuration values

have been identified for the smaller cluster/set up, you can deploy a new cluster,

gradually increase the traffic load, and iterate again on the configurations.

Dataset Segmentation

Dataset segmentation is especially relevant for datasets on the terabyte and

petabyte scale. If you choose this option and the use case permits, we

recommend that you use between 10% to 30% of the overall dataset and iterate

to find the HBase configuration values that contribute to a stable cluster and

good response time for your application’s APIs. Alternatively, you can focus on a

few tables at first. As soon as you are satisfied with the performance with a

subset of the dataset or some of the tables, you can deploy to a new cluster

pointing to the full data set and iterate again on the configurations.

We provide steps on how to migrate and restore the full datasets in the next

section.

For both options, when you have identified a set of HBase properties that can be

adjusted to improve stability and performance, you can apply the configurations

to each node of the cluster with a script and then restart HBase. For more

details on the steps to restart HBase, see the Rolling Restart section.

https://calculator.s3.amazonaws.com/index.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 39

When you are satisfied with the cluster behavior and application response times

with segmented traffic and dataset, you can also iterate on the instance size and

instance type for both the Amazon EMR Master and Amazon EMR Core/Task

Nodes. When you are ready to do so, you can terminate the test cluster, update

the Amazon EMR Configuration Settings, and deploy a new cluster. See the

Cluster termination without data loss section to follow the correct cluster

termination procedure.

Finally, when you are ready to test with the full production traffic and full

production dataset, size the cluster accordingly using the metrics for the

previous tests as a reference. Then, migrate the data and redeploy a new

Amazon EMR Cluster.

Preparing the Test Environment

Preparing your AWS account for performance

testing

To identify the optimal configuration of your HBase on Amazon S3 cluster, you

will need to iterate on several configuration values during a testing stage. Not

only will you make changes to HBase configurations but also to the type and

family of the cluster's Amazon EC2 instances.

To avoid any impact on existing workloads on the account used for testing or

production, we recommend that you raise the limits identified in this section

according to your testing or production account needs.

Increasing Amazon EC2 and Amazon EBS Limits

To avoid any delays during performance tests, raise the following limits in your

AWS account since you may need to deploy several clusters at the same time

(replicas, clusters pointing to different HBase root directories, and so on). If

your cluster size is small, the default values may be sufficient. For more details

about the current limits applied into your account, refer to Trusted Advisor

(Login Required). If your cluster is expected to have more than 100 instances,

open an AWS Support Case (Login Required) to have the following Amazon EC2

and Amazon EBS limits increased:

https://console.aws.amazon.com/trustedadvisor/home?region=us-east-1
https://console.aws.amazon.com/trustedadvisor/home?region=us-east-1
https://console.aws.amazon.com/support/v1#/case/create?issueType=service-limit-increase&type=service_limit_increase

Amazon Web Services – Migrating to HBase on Amazon S3

Page 40

• R5/R5d family: increase the limit to 200% of your clusters estimated

size for xl, 2xl and 4xl.

• Total volume storage of General Purpose SSD (gp2) volumes: increase

the limit with additional capacity (4x the total dataset size).

For example: if dataset is 40 TB, the SSD available (instance store or

Amazon EBS Volumes) must be at least 40 TB. Account for additional

storage because you may need to deploy several clusters at the same

time (replicas, clusters pointing to different Apache HBase root

directories). See the Sizing Local Storage section for more details.

Increasing AWS KMS limits

Amazon S3 encryption works with EMRFS objects read from and written to

Amazon S3. If you do not have a security requirement for data at rest, then you

can skip this section. If your cluster is small, the default values may be

sufficient. For additional details about AWS KMS limits, refer to Requests per

second limit for each AWS KMS API operation.

Preparing Amazon S3 for your HBase workload

Amazon S3 can scale to support very high request rates to support your HBase

on Amazon S3 cluster. It’s valuable to understand the exact performance

characteristics of your HBase workloads when migrating to a new storage layer,

especially when moving to an object store such as Amazon S3.

Amazon S3 automatically scales to high request rates and currently supports up

to 3500 PUT/POST/DELETE requests per second and 5500 GET requests per

second per prefix in a bucket. If your request rate grows steadily, Amazon S3

automatically scales beyond these rates as needed.

If you expect the request rate per prefix to be higher than the preceding request

rate, or if you expect the request rate to rapidly increase instead of gradually

increase, the Amazon S3 bucket must be prepared to support the workloads of

your HBase on Amazon S3 Cluster. For more details on how to prepare the

Amazon S3 bucket, see the Preparing Amazon S3 for production load section.

This helps minimize throttling on Amazon S3. To understand how you can

recognize that Amazon S3 is throttling the requests from your cluster, see the

Troubleshooting section.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-storage.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-storage.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second-table
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html#requests-per-second-table

Amazon Web Services – Migrating to HBase on Amazon S3

Page 41

Enabling Amazon S3 metrics for the HBase on Amazon S3 root
directory

The Amazon CloudWatch request metrics for Amazon S3 enable the collection

of Amazon S3 API metrics for a specific bucket. These metrics provide a good

understanding of the TPS driven by your HBase cluster and they can be helpful

to identify any operational issues.

Note: Amazon CloudWatch metrics incur a cost. For more information, refer to

How Do I Configure Request Metrics for an S3 Bucket? and Monitoring Metrics

with Amazon CloudWatch.

Enabling Amazon S3 lifecycle rules to end and clean up incomplete
multipart uploads

HBase on Amazon S3 via EMRFS uses Amazon S3 Multipart API. The Multipart

upload API enables EMRFS to upload large objects in parts. For more details on

the Multipart API, refer to Multipart Upload Overview.

Note: After you initiate a multipart upload and upload one or more parts, you

must either complete or abort the multipart upload to stop storage charges of

the uploaded parts. Only after you either complete or abort a multipart upload

will Amazon S3 free up the parts storage and stop charging you for the parts

storage.

Amazon S3 provides a lifecycle rule that, when configured, automatically

removes incomplete multipart uploads. For complete steps on how to create a

Bucket Lifecycle Policy and apply it to the HBase root directory bucket, refer to

Aborting Incomplete Multipart Uploads Using a Bucket Lifecycle Policy.

Alternatively, you can use the AWS Console and configure the Lifecycle policy.

For more details, refer to Amazon S3 Lifecycle Management Update – Support

for Multipart Uploads and Delete Markers. We recommend that you configure

the lifecycle policy to end and clean up incomplete multipart uploads after 3

days.

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/configure-metrics.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/cloudwatch-monitoring.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/cloudwatch-monitoring.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/mpuoverview.html#mpu-abort-incomplete-mpu-lifecycle-config
https://aws.amazon.com/blogs/aws/s3-lifecycle-management-update-support-for-multipart-uploads-and-delete-markers/
https://aws.amazon.com/blogs/aws/s3-lifecycle-management-update-support-for-multipart-uploads-and-delete-markers/

Amazon Web Services – Migrating to HBase on Amazon S3

Page 42

Amazon EMR Cluster Setup

Selecting an Amazon EMR Release

We strongly recommended that you use the latest release of Amazon EMR when

possible. Refer to Amazon EMR 5.x Release Versions to find the software

versions available at the latest Amazon EMR release. For more details, refer to

Migrating from Previous HBase Versions.

We also recommend that you deploy the cluster with only the required

applications. This is especially important in production so you can properly use

the full resources of the cluster.

Applying HBase and EMRFS Configurations to the Cluster

Amazon EMR allows the configuration of applications by supplying a JSON

object with any changes to default values. For more information, refer to

Configuring Applications.

Applying HBase configurations

This section includes guidelines on how to construct the JSON object that can

be supplied to the cluster during cluster deployment. Most of these properties

are configured on the hbase-site.xml file.

Other settings of HBase, such as Region and Master server heap size and

logging settings, have their own configuration file and their own classification

when setting up the JSON object.

For an example JSON object to configure the properties written to hbase-

site.xml, see Configure HBase. In addition to hbase-site classification, you

may need to use classification hbase-log4j to change values in HBase's

hbase-log4j.properties file and classification hbase-env to change

values in HBase’s environment.

Configuring HBase to expose metrics via JMX

An example JSON object to configure HBase to expose metrics via JMX can be

found below.

[

 {

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-5x.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-migrate.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-configure.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 43

 "Classification": "hbase-env",

 "Properties": {

 },

 "Configurations": [

 {

 "Classification": "export",

 "Properties": {

 "HBASE_REGIONSERVER_OPTS": " -

Dcom.sun.management.jmxremote.ssl=false -

Dcom.sun.management.jmxremote.authenticate=false -

Dcom.sun.management.jmxremote.port=10102",

 "HBASE_MASTER_OPTS": “-

Dcom.sun.management.jmxremote.ssl=false -

Dcom.sun.management.jmxremote.authenticate=false -

Dcom.sun.management.jmxremote.port=10101"

 },

 "Configurations": [

]

 }

]

 }

]

Configuring the Log Level for HBase

 {

 "Classification": "hbase-log4j",

 "Properties": {

 "log4j.logger.org.apache.hadoop.hbase": "DEBUG"

 }

 }

Applying EMRFS configurations

 {

 "Classification": "emrfs-site",

 "Properties": {

 "fs.s3.maxConnections": "10000"

 }

 }

Amazon Web Services – Migrating to HBase on Amazon S3

Page 44

Sizing the cluster compute and local storage resources

Sizing Compute Capacity, Selecting an Instance Type

When sizing your cluster, you can consider having a large cluster with a smaller

instance type or having a small cluster with a more powerful instance type. We

recommend extensive testing to find the correct instance type for your

application SLA. As a starting point, you can use the latest generation of

memory-optimized instance types (R5/R5d) and the same region density per

RegionServer as in your HDFS backed cluster. R5d instances share the same

specifications as R5 instances, and also include up to 3.6TB of local NVMe

storage. For more details on these instance types, refer to Now Available: R5,

R5d, and z1d Instances. As you progress to tune the read and write path, first

establish a configuration that supports the SLA of your application. Then,

increase the region density by reducing the number of nodes in the cluster.

Sizing Local Storage

The disk requirements of the cluster depend on your application SLA and access

patterns. As a rule of thumb, read intensive applications benefit from caching

data on the BucketCache. For this reason, the disk size should be large enough

to cover all caching requirements, HDFS requirements (write path), and OS and

Apache Hadoop requirements.

Storage options on Amazon EMR

On Amazon EMR, you have the option to choose an Amazon EBS volume or the

instance store. The AMI used by your cluster dictates whether the root device

volume uses the instance store or an Amazon EBS volume. Some AMIs use

Amazon EC2 instance store, and some use Amazon EBS. When you configure

instance types in Amazon EMR, you can add Amazon EBS volumes, which

contribute to the total capacity together with instance store (if present) and the

default Amazon EBS volume. Amazon EBS provides the following volume types:

General Purpose (SSD), Provisioned IOPS (SSD), Throughput Optimized

(HDD), Cold (HDD), and Magnetic. They differ in performance characteristics

and price to support multiple analytic and business needs. For a detailed

description of storage options on Amazon EMR, refer to Instance Store and

Amazon EBS.

Selecting and Sizing Local Storage for the BucketCache

Most HBase workloads perform well with General Purpose volumes (GP2)

volumes. The volume mix per Amazon EMR Core instances can be either two or

more large volumes, or multiple small volumes, in addition to the root volume.

https://aws.amazon.com/blogs/aws/now-available-r5-r5d-and-z1d-instances/
https://aws.amazon.com/blogs/aws/now-available-r5-r5d-and-z1d-instances/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-storage.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-storage.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 45

Note that when your instance has multiple volumes, the BucketCache is divided

across n-1 volumes. The first volume stores logs and temporary data. See the

Tuning the Size of the BucketCache section for details on how to choose a

starting value for the size of the BucketCache and the stark disk requirements

for your Amazon EMR Core/Task nodes.

Applying Security Configurations to Amazon EMR and EMRFS

You can use Security Configurations to apply the configurations that support at-

rest data encryption, in-transit data encryption, and authentication. For more

details, see Create a Security Configuration.

Depending on the strategy you choose for authorizing access to HBase, HBase

configurations can be applied via the same process included in the Applying

HBase and EMRFS Configurations to the Cluster.

Due to performance issues reported when Block encryption is using 3DES,

Transparent Encryption is preferred over encrypting block data transfer. For

more details on Transparent Encryption, see the Transparent Encryption

Reference section.

Troubleshooting

Error message excerpt Description/Solution

Please reduce your request rate.

(Service: Amazon S3; Status Code:

503; Error Code: SlowDown…)

Amazon S3 is throttling requests from your cluster

due to an excessive number of transactions per

second to specific object prefixes.

Find the request rate and prepare the Amazon S3

bucket for that request rate. Use the metrics for the

Amazon S3 bucket location for the HBase root

directory to review the number of requests for the

previous hour (request rate). See the Preparing

Amazon S3 for your HBase workload and Preparing

Amazon S3 for Production load sections for details on

how to prepare the Amazon S3 bucket location for

the HBase root directory for your request rate.

Unable to execute HTTP request:

Timeout waiting for connection

from pool

Increase the value of the fs.s3.maxConnections

property.

See the Setting the total number of connections used

by EMRFS to read/write data from/to Amazon S3

section for more details on how to tune this property.

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-create-security-configuration.html

Amazon Web Services – Migrating to HBase on Amazon S3

Page 46

Migrating and Restoring Apache HBase

Tables on Apache HBase on Amazon S3

Data Migration

This paper covers using the ExportSnapshot tool to migrate the data. For

additional options, see Tips for Migrating to Apache HBase on Amazon S3 from

HDFS.

Creating a Snapshot

To create a snapshot, perform the following commands from the HBase shell:

hbase shell

hbase(main):001:0>disable 'table_name'

hbase(main):002:0>snapshot 'table_name',

'table_name_snapshot_date'

hbase(main):003:0>enable 'table_name'

If you are taking the snapshot from a production HBase cluster and cannot

afford service disruption, you do not need to disable the table to take a

snapshot. There is minimal performance degradation if you keep the table

active. However, there may be some inconsistencies between the state of the

table at the end of the snapshot operation and the snapshot contents.

If you can afford service disruption in your production HBase cluster, disabling

the table guarantees that the snapshot is fully consistent with the state of the

disabled table.

Validating the Snapshot

As soon as the snapshot is concluded, use the following command to check that

the snapshot was successful.

hbase org.apache.hadoop.hbase.snapshot.SnapshotInfo -stats -

snapshot table_name_snapshot_date

Snapshot Info

--

 Name: table_name_snapshot_date

https://aws.amazon.com/blogs/big-data/tips-for-migrating-to-apache-hbase-on-amazon-s3-from-hdfs/
https://aws.amazon.com/blogs/big-data/tips-for-migrating-to-apache-hbase-on-amazon-s3-from-hdfs/

Amazon Web Services – Migrating to HBase on Amazon S3

Page 47

 Type: FLUSH

 Table: table_name

 Format: 2

Created: 2018-03-29T16:02:06

 Owner:

10 HFiles (0 in archive), total size 48.8 K (100.00% 48.8 K

shared with the source table)

0 Logs, total size 0

Exporting a Snapshot to Amazon S3

Next, use org.apache.hadoop.HBase.snapshot.ExportSnapshot to copy

the data over to the Apache HBase root directory on Amazon S3.

hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot

<snapshot_name> -copy-to s3://<HBase_on_S3_root_dir>/

As an example, the export of 40 TB of data with 4x10GB Direct Connect takes

approximately four to five hours.

Data Restore

Creating an empty table

If you are restoring data from a snapshot, first create an empty table and then

issue a snapshot restore instead of a snapshot clone. A snapshot clone

(clone_snapshot) produces an actual copy of the files. A snapshot restore

(restore_snapshot) creates links to the files copied to the Amazon S3 root

directory.

hbase shell

hbase(main):001:0> create ‘table-name’,’cf1’

hbase(main):002:0> disable ‘table-name’

Restoring the snapshot from the HBase shell

After creating an empty table, you can restore the snapshot.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 48

hbase(main):004:0> restore_snapshot ‘table-name-snapshot’

hbase(main):005:0> enable ‘table-name’

Deploying into Production
After you complete the steps in this section, you are ready to migrate the full

dataset from your HDFS-backed cluster to HBase on Amazon S3 and restore it

to an HBase on Amazon S3 cluster running in your AWS production account.

Preparing Amazon S3 for Production load

Analyze the Amazon CloudWatch metrics for Amazon S3 captured for the

HBase root directory in the development account and confirm the number of

requests per Amazon S3 API as noted in the Preparing the Test Environment

section.

If you expect a rapid increase in the request rate for the HBase on Amazon S3

root directory bucket in the production account to more than the rates in the

Preparing the Test Environment section, open a support case to prepare for the

workload and to avoid any temporary limits on your request rate. You do not

need to open a support case for request rates lower than those in the Preparing

the Test Environment section.

Preparing the Production environment

Follow all the steps in the Preparing the Test Environment to prepare your

Production Environment with the configuration settings you have found during

the testing phase.

To migrate and restore the full dataset into the production environment, follow

the steps in the Migrating and Restoring HBase Tables on HBase on Amazon S3

section.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 49

Managing the Production Environment

Operationalization tasks

Node Decommissioning

When a node is gracefully decommissioned by the YARN Resource Manager

(during a user initiated shrink operation or node failures such as bad disk), the

regions are first closed and then shut down by the RegionServer. You can also

gracefully decommission a RegionServer on any active node by stopping the

daemon manually. This step may be required while troubleshooting a particular

RegionServer in the cluster.

sudo stop hbase-regionserver

During shutdown, the RegionServer’s Znode expires. The HMaster notices this

event and considers that RegionServer as a crashed server. The HMaster then

reassigns the regions the RegionServer used to serve to other online

RegionServers. Depending on the prefetch settings, the RegionServer warms the

cache on the new RegionServer that is now assigned to serve the region.

Rolling Restart

A rolling restart restarts HMaster process on the master node and

HRegionServer process on all the core nodes.

Check for any inconsistencies and make sure that the HBase balancer is turned

off so that the load balancer does not interfere with region deployments.

Use the shell to disable HBase balancer:

hbase(main):001:0> balance_switch false

true

0 row(s) in 0.2970 seconds

The following is a sample script that performs a rolling restart on an Apache

HBase cluster. This script should be executed on the Amazon EMR Master node

that has the Amazon EC2 Key Pair (.pem extension) file to log in to the Amazon

EMR Core nodes.

Amazon Web Services – Migrating to HBase on Amazon S3

Page 50

#!/bin/bash

sudo stop hbase-master; sudo start hbase-master

for node in $(yarn node -list | grep -i ip- | cut -f2 -d: | cut

-f2 -d'G' | xargs) ; do

 ssh -i ~/hadoop.pem -t -o "StrictHostKeyChecking no"

hadoop@$node "sudo stop hbase-regionserver;sudo start hbase-

regionserver"

done

sudo stop hbase-master; sudo start hbase-master #Restart HMaster

again to clear out dead servers list and reenable the balancer

hbase hbck #Run hbck utility to make sure HBase is consistent

Cluster resize

Nodes can be added or removed from the HBase clusters on Amazon S3 by

performing a resize operation on the cluster. If an AutoScaling policy was set

based on a specific CloudWatch metric (such as IsIdle), the resize operation

happens based on that policy. All these operations are performed gracefully.

Backup and Restore

With HBase on Amazon S3 you can still consider taking snapshots of your tables

every few hours (and deleting them after some days) so you have a point in time

recovery option available to you. See also the Running the balancer for specific

periods to minimize the impact of region movements on snapshots section.

Cluster termination without data loss

If you want to terminate the current cluster and build a new one on the same

Amazon S3 root directory, we recommend that you disable all of the tables in

the current cluster. This ensures that all of the data that have not been written

to Amazon S3 yet are flushed from MemStore cache to Amazon S3 in the form

of new store files. To do so, the script below uses an existing script

(/usr/lib/hbase/bin/disable_all_tables.sh) to disable the tables.

#!/bin/bash

clusterID=$(cat /mnt/var/lib/info/job-flow.json | jq -r

".jobFlowId")

#call disable_all_tables.sh

bash /usr/lib/hbase/bin/disable_all_tables.sh

#Store the output of "list" command in a temp file

echo "list" | hbase shell > tableListSummary.txt

Amazon Web Services – Migrating to HBase on Amazon S3

Page 51

#fetch only the list of tables and store it in an another temp

file

tail -1 tableListSummary.txt | tr ',' '\n' | tr -d '"' | tr -d [

| tr -d] | tr -d ' ' > tableList.txt

#prepare for iteration

while true; do

 while read line; do

 flag="N"

 echo "is_enabled '$line'" | hbase shell > bool.txt

 bool=$(tail -3 bool.txt | head -1)

 if ["$bool" = "true"]; then

 flag="Y"

 break

 fi

 done < tableList.txt

echo "flag: "$flag

if ["$flag" = "N"]; then

 aws emr terminate-clusters --cluster-ids $clusterID

 break

else

 echo "Tables aren't disabled yet. Sleeping for 5 seconds

to try again"

fi

sleep 5

done

#cleanup temporary files

rm tableListSummary.txt tableList.txt bool.txt

The preceding script can be place on a file and named

disable_and_terminate.sh. Note that the script does not exist on the

instance. You can add an Amazon EMR step to first copy the script to the

instance and then run the step to disable and terminate the cluster. To run the

script, you can use the following Amazon EMR Step properties.

Name="Disable all tables",Jar="command-

runner.jar",Args=["/bin/bash","/home/hadoop/disable_and_terminat

e.sh"]

Amazon Web Services – Migrating to HBase on Amazon S3

Page 52

OS and Apache HBase patching

Similar to AMI upgrades on Amazon EC2, the Amazon EMR service team plans

for application upgrades with every new Amazon EMR version release. This

removes any OS and Apache HBase patching activities from your team. The

latest version of Amazon EMR (5.17.0 as of this paper) runs Apache HBase

version 1.4.6. Details of each Amazon EMR version release can be found on

Amazon EMR 5.x Release Versions.

Conclusion
This paper includes steps to help you migrate from HBase on HDFS to HBase

on Amazon S3. The migration plan provided detailed steps and HBase

properties to configure when migrating to HBase on Amazon S3.

Using the various best practices and recommendations highlighted in this

whitepaper, we encourage you to test several values for HBase configuration

properties so your HBase on Amazon S3 cluster supports the performance

requirements of your application and use case.

Contributors
The following individuals contributed to the first version of this document:

• Francisco Oliveira, Senior Big Data Consultant, Amazon Web Services

• Tony Nguyen, Senior Big Data Consultant, Amazon Web Services

• Veena Vasudevan, Big Data Support Engineer, Amazon Web Services

Further Reading
For additional information, see the following:

• HBase on Amazon S3 Documentation

• Tips for Migrating to Apache HBase on Amazon S3 from HDFS

• Low-Latency Access on Trillions of Records: FINRA’s Architecture

Using Apache HBase on Amazon EMR with Amazon S3

• Setting up Read Replica Clusters with HBase on Amazon S3

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-release-5x.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hbase-s3.html
https://aws.amazon.com/blogs/big-data/tips-for-migrating-to-apache-hbase-on-amazon-s3-from-hdfs/
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/
https://aws.amazon.com/blogs/big-data/low-latency-access-on-trillions-of-records-finras-architecture-using-apache-hbase-on-amazon-emr-with-amazon-s3/
https://aws.amazon.com/blogs/big-data/setting-up-read-replica-clusters-with-hbase-on-amazon-s3/

Amazon Web Services – Migrating to HBase on Amazon S3

Page 53

• Use Kerberos Authentication to Integrate Amazon EMR with Microsoft

Active Directory

Document Revisions

Date Description

May 2021 Reviewed for technical accuracy

January 2021 Removed information addressing EMRFS Consistent View because

Amazon S3 now delivers strong read-after-write consistency

automatically for all applications. October 2018 First publication

https://aws.amazon.com/blogs/big-data/use-kerberos-authentication-to-integrate-amazon-emr-with-microsoft-active-directory/
https://aws.amazon.com/blogs/big-data/use-kerberos-authentication-to-integrate-amazon-emr-with-microsoft-active-directory/

Amazon Web Services – Migrating to HBase on Amazon S3

Page 54

Appendix A: Command Reference

Restart HBase

Commands to run on the master:

 sudo stop hbase-master

 sudo stop hbase-rest

 sudo stop hbase-thrift

 sudo stop zookeeper-server

 sudo start hbase-master

 sudo start hbase-rest

 sudo start hbase-thrift

 sudo start zookeeper-server

Commands to run in all core nodes

 sudo stop hbase-regionserver

 sudo start hbase-regionserver

Amazon Web Services – Migrating to HBase on Amazon S3

Page 55

Appendix B: AWS IAM Policy Reference
The policies that follow are annotated with comments - remove the comments

prior to use.

Minimal Amazon EMR Service Role Policy

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Resource": "*",

 "Action": [

 "ec2:AuthorizeSecurityGroupEgress",

 "ec2:AuthorizeSecurityGroupIngress",

 "ec2:CancelSpotInstanceRequests",

 "ec2:CreateNetworkInterface",

 "ec2:CreateSecurityGroup",

 "ec2:CreateTags",

 "ec2:DeleteNetworkInterface", // This is only needed if you are

launching clusters in a private subnet.

 "ec2:DeleteTags",

 "ec2:DeleteSecurityGroup", // This is only needed if you are

using Amazon managed security groups for private subnets. You can omit this

action if you are using custom security groups.

 "ec2:DescribeAvailabilityZones",

 "ec2:DescribeAccountAttributes",

 "ec2:DescribeDhcpOptions",

 "ec2:DescribeImages",

 "ec2:DescribeInstanceStatus",

 "ec2:DescribeInstances",

 "ec2:DescribeKeyPairs",

 "ec2:DescribeNetworkAcls",

 "ec2:DescribeNetworkInterfaces",

 "ec2:DescribePrefixLists",

 "ec2:DescribeRouteTables",

 "ec2:DescribeSecurityGroups",

 "ec2:DescribeSpotInstanceRequests",

Amazon Web Services – Migrating to HBase on Amazon S3

Page 56

 "ec2:DescribeSpotPriceHistory",

 "ec2:DescribeSubnets",

 "ec2:DescribeTags",

 "ec2:DescribeVpcAttribute",

 "ec2:DescribeVpcEndpoints",

 "ec2:DescribeVpcEndpointServices",

 "ec2:DescribeVpcs",

 "ec2:DetachNetworkInterface",

 "ec2:ModifyImageAttribute",

 "ec2:ModifyInstanceAttribute",

 "ec2:RequestSpotInstances",

 "ec2:RevokeSecurityGroupEgress",

 "ec2:RunInstances",

 "ec2:TerminateInstances",

 "ec2:DeleteVolume",

 "ec2:DescribeVolumeStatus",

 "ec2:DescribeVolumes",

 "ec2:DetachVolume",

 "iam:GetRole",

 "iam:GetRolePolicy",

 "iam:ListInstanceProfiles",

 "iam:ListRolePolicies",

 "s3:CreateBucket",

 "sdb:BatchPutAttributes",

 "sdb:Select",

 "cloudwatch:PutMetricAlarm",

 "cloudwatch:DescribeAlarms",

 "cloudwatch:DeleteAlarms",

 "application-autoscaling:RegisterScalableTarget",

 "application-autoscaling:DeregisterScalableTarget",

 "application-autoscaling:PutScalingPolicy",

 "application-autoscaling:DeleteScalingPolicy",

 "application-autoscaling:Describe*"

]

 },

 {

 "Effect": "Allow",

 "Resource":

["arn:aws:s3:::examplebucket/*","arn:aws:s3:::examplebucket2/*"], // Here you

Amazon Web Services – Migrating to HBase on Amazon S3

Page 57

can specify the list of buckets which are going to be storing cluster logs,

bootstrap action script, custom JAR files, input & output paths for EMR steps

 "Action": [

 "s3:GetBucketLocation",

 "s3:GetBucketCORS",

 "s3:GetObjectVersionForReplication",

 "s3:GetObject",

 "s3:GetBucketTagging",

 "s3:GetObjectVersion",

 "s3:GetObjectTagging",

 "s3:ListMultipartUploadParts",

 "s3:ListBucketByTags",

 "s3:ListBucket",

 "s3:ListObjects",

 "s3:ListBucketMultipartUploads"

]

 },

 {

 "Effect": "Allow",

 "Resource": "arn:aws:sqs:*:123456789012:AWS-ElasticMapReduce-*", //

This will allow EMR to only perform actions (Creating queue, receiving messages,

deleting queue, etc) on SQS queues whose names are prefixed with the literal

string AWS-ElasticMapReduce-

 "Action": [

 "sqs:CreateQueue",

 "sqs:DeleteQueue",

 "sqs:DeleteMessage",

 "sqs:DeleteMessageBatch",

 "sqs:GetQueueAttributes",

 "sqs:GetQueueUrl",

 "sqs:PurgeQueue",

 "sqs:ReceiveMessage"

]

 },

 {

 "Effect": "Allow",

 "Action": "iam:CreateServiceLinkedRole", // EMR needs permissions

to create this service-linked role for launching EC2 spot instances

 "Resource": "arn:aws:iam::*:role/aws-service-

Amazon Web Services – Migrating to HBase on Amazon S3

Page 58

role/spot.amazonaws.com/AWSServiceRoleForEC2Spot*",

 "Condition": {

 "StringLike": {

 "iam:AWSServiceName": "spot.amazonaws.com"

 }

 }

 },

 {

 "Effect": "Allow",

 "Action": "iam:PassRole", // We are passing the custom EC2 instance

profile (defined below) which has bare minimum permissions

 "Resource": [

 "arn:aws:iam::*:role/Custom_EMR_EC2_role",

 "arn:aws:iam::*:role/EMR_AutoScaling_DefaultRole"

]

 }

]

}

Minimal Amazon EMR Role for Amazon EC2

(Instance Profile) Policy

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Resource": "*",

 "Action": [

 "ec2:Describe*",

 "elasticmapreduce:Describe*",

 "elasticmapreduce:ListBootstrapActions",

 "elasticmapreduce:ListClusters",

 "elasticmapreduce:ListInstanceGroups",

 "elasticmapreduce:ListInstances",

 "elasticmapreduce:ListSteps"

]

 },

 {

Amazon Web Services – Migrating to HBase on Amazon S3

Page 59

 "Effect": "Allow",

 "Resource": [// Here you can specify the list of buckets which

are going to be accessed by applications (Spark, Hive, etc) running on the nodes

of the cluster

 "arn:aws:s3:::examplebucket1/*",

 "arn:aws:s3:::examplebucket1*",

 "arn:aws:s3:::examplebucket2/*",

 "arn:aws:s3:::examplebucket2*"

],

 "Action": [

 "s3:GetBucketLocation",

 "s3:GetBucketCORS",

 "s3:GetObjectVersionForReplication",

 "s3:GetObject",

 "s3:GetBucketTagging",

 "s3:GetObjectVersion",

 "s3:GetObjectTagging",

 "s3:ListMultipartUploadParts",

 "s3:ListBucketByTags",

 "s3:ListBucket",

 "s3:ListObjects",

 "s3:ListBucketMultipartUploads",

 "s3:PutObject",

 "s3:PutObjectTagging",

 "s3:HeadBucket",

 "s3:DeleteObject"

]

 },

 {

 "Effect": "Allow",

 "Resource": "arn:aws:sqs:*:123456789012:AWS-ElasticMapReduce-*", //

This will allow EMR to only perform actions (Creating queue, receiving messages,

deleting queue, etc) on SQS queues whose names are prefixed with the literal

string AWS-ElasticMapReduce-

 "Action": [

 "sqs:CreateQueue",

 "sqs:DeleteQueue",

 "sqs:DeleteMessage",

 "sqs:DeleteMessageBatch",

Amazon Web Services – Migrating to HBase on Amazon S3

Page 60

 "sqs:GetQueueAttributes",

 "sqs:GetQueueUrl",

 "sqs:PurgeQueue",

 "sqs:ReceiveMessage"

]

 }

]

}

Minimal Role Policy for User Launching Amazon

EMR Clusters

// This policy can be attached to an AWS IAM user who will be launching EMR

clusters. It provides minimum access to the user to launch, monitor and

terminate EMR clusters

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "Statement1",

 "Effect": "Allow",

 "Action": "iam:CreateServiceLinkedRole",

 "Resource": "*",

 "Condition": {

 "StringLike": {

 "iam:AWSServiceName": [

 "elasticmapreduce.amazonaws.com",

 "elasticmapreduce.amazonaws.com.cn"

]

 }

 }

 },

 {

 "Sid": "Statement2",

 "Effect": "Allow",

 "Action": [

 "iam:GetPolicyVersion",

 "ec2:AuthorizeSecurityGroupIngress",

Amazon Web Services – Migrating to HBase on Amazon S3

Page 61

 "ec2:DescribeInstances",

 "ec2:RequestSpotInstances",

 "ec2:DeleteTags",

 "ec2:DescribeSpotInstanceRequests",

 "ec2:ModifyImageAttribute",

 "cloudwatch:GetMetricData",

 "cloudwatch:GetMetricStatistics",

 "cloudwatch:ListMetrics",

 "ec2:DescribeVpcAttribute",

 "ec2:DescribeSpotPriceHistory",

 "ec2:DescribeAvailabilityZones",

 "ec2:CreateRoute",

 "ec2:RevokeSecurityGroupEgress",

 "ec2:CreateSecurityGroup",

 "ec2:DescribeAccountAttributes",

 "ec2:ModifyInstanceAttribute",

 "ec2:DescribeKeyPairs",

 "ec2:DescribeNetworkAcls",

 "ec2:DescribeRouteTables",

 "ec2:AuthorizeSecurityGroupEgress",

 "ec2:TerminateInstances", //This action can be scoped in similar

manner like it has been done below for "elasticmapreduce:TerminateJobFlows"

 "iam:GetPolicy",

 "ec2:CreateTags",

 "ec2:DeleteRoute",

 "iam:ListRoles",

 "ec2:RunInstances",

 "ec2:DescribeSecurityGroups",

 "ec2:CancelSpotInstanceRequests",

 "ec2:CreateVpcEndpoint",

 "ec2:DescribeVpcs",

 "ec2:DescribeSubnets",

 "elasticmapreduce:*"

],

 "Resource": "*"

 },

 {

 "Sid": "Statement3",

 "Effect": "Allow",

Amazon Web Services – Migrating to HBase on Amazon S3

Page 62

 "Action": [

 "elasticmapreduce:TerminateJobFlows"

],

 "Resource":"*",

 "Condition": {

 "StringEquals": {

 "elasticmapreduce:ResourceTag/custom_key": "custom_value" //

Here you can specify the key value pair of your custom tag so that this IAM user

can only delete the clusters which are appropriately tagged by the user

 }

 }

 },

 {

 "Sid": "Statement4",

 "Effect": "Allow",

 "Action": "iam:PassRole",

 "Resource": [

 "arn:aws:iam::*:role/Custom_EMR_Role",

 "arn:aws:iam::*:role/Custom_EMR_EC2_role",

 "arn:aws:iam::*:role/EMR_AutoScaling_DefaultRole"

]

 }

]

}

Amazon Web Services – Migrating to HBase on Amazon S3

Page 63

Appendix C: Transparent Encryption

Reference
To configure Transparent Encryption, use the following Amazon EMR

Configuration JSON:

[{"classification":"hdfs-encryption-

zones","properties":{"/user/hbase":"hbase-key"}}]

In addition to the preceding classification, you must disable HDFS Opensource

Security. By default, Amazon EMR Security Configurations for at-rest

Encryption for Local Disks tie Open-source HDFS Encryption with LUKs

encryption.

If you need to configure Transparent Encryption and your application is latency

sensitive, do not enable at-rest encryption via Amazon EMR Security

Configuration. You can configure LUKS via a bootstrap action.

To check that WALs are being encrypted, use the following commands:

sudo –u hdfs hdfs dfs -ls /user/HBase/WAL/ip-xx-xx-x-

xx.ec2.internal,16020,1520373175110

sudo –u hdfs hdfs crypto -getFileEncryptionInfo -path

/user/HBase/WAL/WALs/ip-xx-xx-x-

xx.ec2.internal,16020,1520373175110/ip-xx-xx-x-

xx.ec2.internal%2C16020%2C1520373175110.1520373184129

To verify that the oldWALs are being encrypted, the output to the last command

should be the following:

{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16},

cryptoProtocolVersion:

CryptoProtocolVersion{description='Encryption zones', version=2,

unknownValue=null}, edek:

7c3c2fcf8337f14bbf815697686de5a696c6670c0f41eb71678b53ee5326c33e

Amazon Web Services – Migrating to HBase on Amazon S3

Page 64

, iv: eac6cf91bdd2eee8496f1ddb19b4fcf8, keyName: HBase-key,

ezKeyVersionName: hbase-key@0}

Note: The default configurations grant access to the DECRYPT_EEK operation

on all keys (/etc/hadoop-kms/conf/kms-acls.xml).

For more details, see Transparent Encryption in HDFS on Amazon EMR and

Transparent Encryption in HDFS.

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-encryption-tdehdfs.html
https://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html

	Introduction
	Introduction to Apache HBase
	Introduction to Amazon EMR
	Introduction to Amazon S3
	Introduction to EMRFS
	Running Apache HBase directly on Amazon S3 with Amazon EMR

	Use cases for Apache HBase on Amazon S3
	Planning the Migration to Apache HBase on Amazon S3
	Preparation task
	Selecting a Monitoring Strategy
	Monitoring Apache HBase, subsystems, and dependent systems
	Monitoring the write path
	Monitoring the read path
	Monitoring with a third-party tool
	Monitoring Cluster components with Ganglia

	Planning for Security on Amazon EMR and Amazon S3
	Encryption
	Authentication and Authorization
	Authentication on Amazon EMR
	Authorization on Amazon EMR
	Object-level Authorization
	HBase Authorization

	Network
	Minimal AWS IAM Policy
	Custom AMIs and Applying Security Controls to Harden your AMI
	Auditing

	Identifying Apache HBase and EMRFS Tuning Options
	Apache HBase on Amazon S3 configuration properties
	Speeding up the Cluster initialization
	HBase master tuning
	HBase RegionServer tuning

	Preventing initialization loops
	Relevant Master initialization timeouts

	Scaling to a high number of regions
	Getting a balanced Cluster after initialization
	Preventing timeouts during Snapshot operations
	Running the balancer for specific periods to minimize the impact of region movements on snapshots
	Tuning the Balancer

	Access Pattern considerations and read/write path tuning
	Tuning the Read Path
	Tuning the Size of the BucketCache
	Pre-warming the BucketCache
	Modifying the Table Schema to Support Pre-warming

	Tuning the Updates/Write Path

	Region size considerations
	Controlling the Size of Regions and Region Splits

	Tuning HBase Compactions
	Controlling Major Compactions
	Reduce the frequency of minor compactions and control the size of HFiles to reduce Amazon S3 traffic

	Controlling the storage footprint locally and on Amazon S3
	Ensuring the Cleaner Chore is always running
	Speeding up the Cleaner Chore

	Porting existing settings to HBase on Amazon S3

	EMRFS Configuration Properties
	Setting the total number of connections used by EMRFS to read/write data from/to Amazon S3

	Testing Apache HBase and EMRFS Configuration Values
	Options to approach performance testing
	Traffic Segmentation
	Dataset Segmentation

	Preparing the Test Environment
	Preparing your AWS account for performance testing
	Increasing Amazon EC2 and Amazon EBS Limits
	Increasing AWS KMS limits

	Preparing Amazon S3 for your HBase workload
	Enabling Amazon S3 metrics for the HBase on Amazon S3 root directory
	Enabling Amazon S3 lifecycle rules to end and clean up incomplete multipart uploads

	Amazon EMR Cluster Setup
	Selecting an Amazon EMR Release
	Applying HBase and EMRFS Configurations to the Cluster
	Applying HBase configurations
	Configuring HBase to expose metrics via JMX
	Configuring the Log Level for HBase
	Applying EMRFS configurations

	Sizing the cluster compute and local storage resources
	Sizing Compute Capacity, Selecting an Instance Type
	Sizing Local Storage
	Storage options on Amazon EMR
	Selecting and Sizing Local Storage for the BucketCache

	Applying Security Configurations to Amazon EMR and EMRFS

	Troubleshooting

	Migrating and Restoring Apache HBase Tables on Apache HBase on Amazon S3
	Data Migration
	Creating a Snapshot
	Validating the Snapshot
	Exporting a Snapshot to Amazon S3

	Data Restore
	Creating an empty table
	Restoring the snapshot from the HBase shell

	Deploying into Production
	Preparing Amazon S3 for Production load
	Preparing the Production environment

	Managing the Production Environment
	Operationalization tasks
	Node Decommissioning
	Rolling Restart
	Cluster resize
	Backup and Restore
	Cluster termination without data loss
	OS and Apache HBase patching

	Conclusion
	Contributors
	Further Reading
	Document Revisions
	Appendix A: Command Reference
	Restart HBase
	Commands to run on the master:
	Commands to run in all core nodes

	Appendix B: AWS IAM Policy Reference
	Minimal Amazon EMR Service Role Policy
	Minimal Amazon EMR Role for Amazon EC2 (Instance Profile) Policy
	Minimal Role Policy for User Launching Amazon EMR Clusters

	Appendix C: Transparent Encryption Reference

