

Deploying a Highly Available Distributed
Caching Layer on Oracle Cloud
Infrastructure using Memcached & Redis
O R A C L E W H I T E P A P E R | F E B R U A R Y 2 0 1 8 | V E R S I O N 1 . 0

0 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

Table of Contents

Purpose of this Whitepaper 1

Scope & Assumptions 1

Introduction 1

Memcached vs Redis 2

Architecting Memcached on Oracle Cloud Infrastructure 3

Deployment planning 3

Instance shape selection 3

Building Memcached cluster on Oracle Cloud Infrastructure 3

Caching Strategies 5

Cache-aside 5

Read-Through 6

Write-Through 7

Write-Back 9

Scaling Memcached - Consistent Hashing 10

Architecting Redis on Oracle Cloud Infrastructure 11

Deployment planning 12

Instance shape selection 12

Building Redis cluster on Oracle Cloud Infrastructure 13

Non-clustered multi-AD deployment 13

Clustered multi-AD deployment 14

Backup and Restore of Redis on Oracle Cloud Infrastructure 15

Conclusion 16

References 16

1 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

1 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

Purpose of this Whitepaper
This white paper is intended for Oracle customers and partners who are building solutions that will be
deployed on Oracle Cloud Infrastructure (OCI). In this white paper we shall compare the two most widely
used in-memory cache engines: Redis and Memcached. We shall understand the use cases for in-memory
caching, discuss common caching design patterns, performance considerations and the best practices for
deploying them on to the Oracle Cloud Infrastructure.

By the end of this paper, you should have a clear grasp of which caching strategies apply to your use case
and how to architect them using Redis or Memcached. Finally, we shall learn how to deploy and scale the in-
memory caching layer for your application on Oracle Cloud Infrastructure.

Scope & Assumptions
Caching can be leveraged at every layer of the technology stack ranging from operating systems,
Networking (CDN), Domain Name System (DNS), web applications, and databases, but we will not be going
over each one of them. The scope of this paper is strictly limited to in-memory shared caching layer
associated with large scale distributed systems as opposed to instance-specific private caches.

There are a number of products and topics that are beyond the scope of this document. While not all topics
are listed, Virtual Cloud Network (VCN), Identity Access Management (IAM), security lists, Load Balancer are
examples of additional components needed to architect an in-memory caching solution on Oracle
Cloud Infrastructure. Readers of this document are suggested to familiarize themselves with these services,
the links to which are in the References section.

Introduction
In computing, a cache is a high-speed data layer which stores the result of an operation, so that the future
requests are fetched faster rather than being accessed from the relatively slower primary data store. Caching
improves application performance by storing frequently accessed data items in memory, so that they can be
quickly retrieved without accessing the primary data store. Properly leveraging caching can result in an
application that not only performs better, but also costs less at scale.

Caching is one of the most effective techniques to speed up a website and has become a staple of modern
web architectures. Effective caching strategies will allow you to get the most out of your website, ease the
pressure on your database, and offer a better experience for users. An effective caching strategy is perhaps
the single biggest factor in creating an application that performs well at scale. For an application that
repeatedly accesses data from a primary data store, caching is most effective when any of the following
criteria are met:

• Computation intensive queries performed on the primary data store

• Relatively static data resides on the primary data store

• A relatively slow primary data store

• Limited support for concurrent connections to the primary data store

Caching is effective for data that is read frequently but modified infrequently. The cache shouldn’t be used as
an authoritative source of critical information. It’s good practice to fall back to a more persistent primary data

2 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

store for applications which cannot afford to lose any information. Let’s now look into the in-memory caching
solutions offered by Memcached and Redis.

Memcached vs Redis
Although Redis and Memcached are both in-memory key-value stores and appear to be very similar, under
the hood they are quite different.

Memcached is a widely adopted in-memory key-value store. It is fast, flexible and lightweight. Its manageable
design promotes fast deployment and solves many problems related to large data caches. Its APIs provide
access to a very large hash table distributed across multiple machines. Memcached server is multi-threaded,
meaning it makes good use of the larger instance shapes which offer multiple cores.

Redis is a popular open-source in-memory data structure store which supports a wide array of data structures
and not just key-value pairs. It supports data structures such as strings, hashes, lists, sets, sorted sets with
range queries, bitmaps, hyperloglogs and geospatial indexes with radius queries. Redis has replication built-in
which can provide easy redundancy across multiple Availability Domains. It can also support different levels
of disk persistence. Redis is single threaded, so it cannot effectively benefit from multi-core instances.

Because of the built-in replication and disk persistence options in Redis, it makes more sense to treat it more
as a non-relational database with support for in-memory caching. Conversely, Memcached is a pure light-
weight caching solution. Here are a few deciding factors which help you choose one over the other.

Use Memcached

• If just caching is your primary goal and nothing else

• If you are caching relatively small and static data, such as HTML code fragments. Memcached's
internal memory management, is more efficient in the simplest use cases.

• If you are running on large instance sizes and require multi-thread performance with utilization of
multiple-cores. Memcached being multithreaded, can easily scale up by giving it more computational
resources.

Use Redis

• If you are looking for more advanced data sets like lists, hashes, sets, sorted sets, bitmaps and
hyperloglogs

• If your application requires Publish Subscribe (pub/sub) functionality

• If you are looking for additional persistence to disk (with eventual consistency) in addition to just
caching

Use Redis or Memcached

• If you are planning to horizontally scale out your cache layer as you grow. In Memcached it is
possible to do this just by adding more nodes while in Redis this can be done by clustering which is
built-in.

• If your caching needs a Check and Set operation to maintain strong consistency. Memcached
supports this out of the box, whereas Redis does this using a similar operation, which provides
optimistic locking.

3 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

Architecting Memcached on Oracle Cloud Infrastructure

Deployment planning

The primary goal of Memcached deployment is to offload the reads as much as possible from your database.
It is generally a good practice to have extra cache space than what your data would require, to have a
substantial buffer in case there is a traffic spike so that the database does not get overwhelmed. A successful
Memcached deployment also requires the administrator to weigh multiple factors: initial volume size of data,
future data growth, and redundancy options.

Instance shape selection

Memcached cluster can contain one or more instances. You can attain your needed cluster memory capacity
by having a few large instances or many smaller instances. There are tradeoffs for both approaches:

Selecting fewer larger instances: In this case, the loss of one instance can have a significant
impact on the backend database. On the plus side, the large sized instances on Oracle Cloud
Infrastructure provide very high Network I/O, up to 25Gbps. Given the multi-threaded nature of
Memcached, you can also effectively utilize multiple cores provided in large sized instances. A good
example of a high performance, large sized instance suitable for Memcached is the VM.DenseIO1.4
instance type, which provides 4 OCPU cores and 60GB of memory with enhanced Network I/O.

Selecting many smaller instances: In this case, the loss of an instance does not significantly
burden the database, but at the cost of providing poor network I/O. Obviously, poor network I/O can
cause performance problems. Based on the cache access patterns, this can also cause problems
like TCP Incast which can degrade the performance of the cache. A good example of a high
performance small sized instance shape suitable for Memcached deployment is the
VM.Standard2.2, which offers two OCPU cores, giving you the option to leverage multi-threading
and 30GB of instance memory.

Building Memcached cluster on Oracle Cloud Infrastructure
When deploying Memcached on a public cloud, the common design strategy involves deploying the
Memcached instances across multiple Availability Domains (ADs) within a region. In Oracle Cloud
Infrastructure, ADs are independent datacenters, isolated from each other, fault tolerant, and very unlikely to
fail simultaneously. This ensures High Availability of your cache clusters. Also, since the latency between ADs
is on the order of milliseconds, this should not significantly affect the performance of the cache in any way.

Use security lists and private subnets to limit the access of our cache instances from the Internet. Since
Memcached or Redis have no serious authentication or encryption capabilities, it’s a best practice to launch
these instances in private subnets. There are various caching design patterns involving Memcached, some of
the patterns might not need direct access to the database tier, as your database does not directly interact with
these instances. Only application tier instances make calls to the Memcached instances. We shall discuss
this in greater detail in the caching strategies section. Let’s walkthrough the deployment steps:

• Create a VCN big enough to house the application servers, Memcached servers and database
servers. Refer to VCN Overview and Deployment Guide in references for more information on how
to create a VCN and the associated best practices.

• Create two public subnets in two separate Availability Domains, say AD1 and AD2 to act as the DMZ
subnets to host the bastion instances and the public Load Balancer. In Oracle Cloud Infrastructure,
the subnets in a VCN are bound to a specific AD. We create one subnet each in each Availability

4 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

Domain. For more information on Availability Domains and subnets, refer to Overview of OCI
Networking in the references section.

• Create a public load balancer pair to load balance the traffic between the application servers and
place it in the DMZ subnets. OCI’s public load balancer come as an Active/Standby pair by design to
provide high availability. Active and Standby should be placed in separate subnets and in separate
Availability Domains. Refer to Overview of OCI Load Balancing for more information.

• Create two private subnets in AD1 and AD2 to house the application servers. Make sure both the
subnets are still in the same VCN.

• Create two private subnets each in AD1 and AD2 to house the Memcached instances.

• Create two other private subnets each in AD1 and AD2 to house the database servers. You can
choose the OCI’s Database service to create any flavor of Oracle’s Databases for you, based on
your application requirement. Refer to Overview of OCI Database in references for more
information.

• Create appropriate route rules and security rules for the subnets created. Remember to create a
security rule on your cache servers’ subnet to allow inbound access on port 11211 for TCP and
UDP, for application servers and/or database servers based on the appropriate caching strategy
used, to interact with the cache instances. For more information, to create route and security rules,
refer to Overview of Security lists and Route tables in References section.

Once the Memcached clusters are successfully deployed on the OCI, you should configure the cache clusters
with the right kind of caching algorithm based on your use cases. After deciding on your caching strategy, you
need to apply the right set of security list rules to facilitate the inbound and outbound communication with the
cache clusters. We shall discuss that next.

 Figure 1 – Distributed Memcached architecture on OCI

5 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

Caching Strategies
There are several strategies and choosing the right one can make a big difference. Your caching strategy
depends on the data and data access patterns. In other words, how the data is written and read. For instance:

• Is the application write-heavy? (e.g. time based logs)

• Is data written once and read multiple times? (e.g. User Profile)

• Is data returned always unique? (e.g. search queries)

Let’s take a look at a various caching strategies.

Cache-aside

This is perhaps the most commonly used caching approach, especially for caches involving Memcached. The
cache sits on the side and the application directly talks to both the cache and the database. Cache-aside
strategy loads data “lazily,” that is, only when it is first read.

• The application first checks the cache.

• If the data is found in cache, it’s a cache hit. The data is read and returned to the client.

• If the data is not found in cache, it’s a cache miss. The application has to do some extra work of
querying the database to read the data, return it to the client and store the data in cache so
subsequent reads for the same data results in a cache hit.

Cache-aside caches are usually general purpose and work best for read-heavy workloads. Systems using
cache-aside are resilient to cache failures. If the cache cluster goes down, the system can still operate by
going directly to the database. (Although, it doesn’t help much if cache goes down during peak load.
Response times can become terrible and in worst case, the database can stop working.)

Another benefit is that the data model in cache can be different than the data model in database. For
example, the response generated as a result of multiple queries can be stored against the same request id on
cache.

When cache-aside is used, the most common write strategy is to write data to the database directly. When
this happens, cache may become inconsistent with the database. To deal with this, developers generally use
time to live (TTL) and continue serving stale data until TTL expires. If data freshness must be guaranteed,
developers either invalidate the cache entry or use an appropriate write strategy, as we’ll explore later. Here
are the security list rules needed for implementing cache-aside cache on OCI.

Stateful Security List rules needed for implementing Cache-aside cache on OCI

Direction Source subnet Protocol Source Port Destination Port Description

INGRESS <App subnet> TCP ALL 11211 Allows inbound
access to Memcached

INGRESS <App subnet> UDP ALL 11211 Allows inbound
access to Memcached

6 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

 Figure 2 – Cache-aside

Python pseudo code for implementing cache-aside cache

Read-Through

Both cache-aside and read-through strategies load data “lazily,” that is, only when it is first read.

While read-through and cache-aside are very similar, there are at least two key differences:

• In cache-aside, the application is responsible for fetching data from the database and populating the
cache. In read-through, this logic is usually supported by the Memcached library.

• Unlike cache-aside, the data model in read-through cache cannot be different than that of the
database.

Read-through caches work best for read-heavy workloads when the same data is requested many times. For
example, a news story. The disadvantage is that when the data is requested the first time, it always results in

7 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

a cache miss and incurs the extra penalty of loading data to the cache. This is referred to as Thundering herd.
For information on Thundering herd, check the references section of this whitepaper. Developers deal with
this by “warming” or “pre-heating” the cache by issuing queries manually. Just like cache-aside, it is also
possible for data to become inconsistent between cache and the database. The solution lies in the write
strategy, as we’ll see next. Here are the security list rules needed for implementing Read-Through cache.

Stateful Security List rules needed for implementing Read-Through cache on OCI

DIRECTION SOURCE
SUBNET

PROTOCOL SOURCE
PORT

DESTINATION
PORT

DESCRIPTION

INGRESS <App subnet> TCP ALL 11211 Allows inbound access
to Memcached

INGRESS <App subnet> UDP ALL 11211 Allows inbound access
to Memcached

EGRESS <cache subnet> TCP ALL 3306 Allows outbound access
to MYSQL DB subnet

 Figure 3 – Read-Through cache

Write-Through

In this case, when the application writes to the database, it also simultaneously writes to the cache. On their
own, write-through caches don’t seem to do much. In fact, they introduce extra write latency because data is
written to the cache first and then to the main database. But when paired with cache-aside caches, we get all

8 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

the benefits of read-through and we also get data consistency guarantee, freeing us from using cache
invalidation techniques.

Stateful Security List rules needed for implementing Write-Through cache subnet on OCI

DIRECTION SOURCE
SUBNET

PROTOCOL SOURCE
PORT

DESTINATION
PORT

DESCRIPTION

INGRESS <App subnet> TCP ALL 11211 Allows inbound access to
Memcached

INGRESS <App subnet> UDP ALL 11211 Allows inbound access to
Memcached

 Figure 4 – Write –Through cache

9 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

Python pseudo code for implementing write-through cache.

Write-Back

Here, the application writes data to the cache which acknowledges immediately and after some delay, it
writes the data back to the database. This is sometimes called write-behind as well.

Write-back caches improve write performance and are good for write-heavy workloads. When combined with
read-through, it works well for mixed workloads, where the most recently updated and accessed data is
always available in cache. This is particularly used with Redis (not so much with Memcached) to better
absorb spikes during peak load. The main disadvantage is that if there’s a cache failure, the data may be
permanently lost. Hence, with Memcached, this may not be a suitable caching strategy.

Stateful Security List rules needed for implementing Write-Back cache subnet on OCI

DIRECTION SOURCE
SUBNET

PROTOCOL SOURCE
PORT

DESTINATION
PORT

DESCRIPTION

INGRESS <App subnet> TCP ALL 11211 Allows inbound access to
Memcached

INGRESS <App subnet> UDP ALL 11211 Allows inbound access to
Memcached

EGRESS <cache subnet> TCP ALL 3306 Allows outbound access to
MYSQL DB subnet

10 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

 Figure 5 – Write-back cache

Scaling Memcached - Consistent Hashing

The vanilla version of Memcached does not have native support for persistence, replication and fault-
tolerance as it is just a light-weight caching service. Although there are many extensions of Memcached
which do offer these services (e.g. membrain, membase), these defeat the purpose of a lightweight cache.
Once you start scaling to multiple instances of memcached across multiple nodes on the cloud, it is very
important that the keys are consistently distributed so that the traffic load is evenly distributed among the
instances. One of the most important features needed to create a scalable memcached infrastructure is
consistent hashing. Consistent hashing is a great tool for partitioning data when things are scaled horizontally.
It is widely used for scaling in-memory caches.

Memcached is a simple hash table where a unique key maps to a value. This is simple when you have a
single memcached instance, but what do you do if you have more than one? Which instance should the
key/value pair be stored on? The naive approach is to hash the key to an integer and do a modulo based on
the size of the instance set. For a given key, this should return the same, random instance from the set every
time.

idx = Zlib.crc32(key) % servers.size

This works great -- if the set of allocated instances never changes. Where things can go wrong is when there
is a surge in traffic and you plan on adding a new instance to the set. When this is done, the module value for
most of the key hashes also changes. This means that the Memcached-client chooses the “wrong” instance,

11 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

which ends up in a lookup miss and hence that expensive operation you are caching needs to be performed
again, thereby thrashing the backend database. You essentially get a storm of recalculation as your cache
contents shift from their old server to their new server.

Let’s see how consistent hashing solves this problem. Instead of using a modulo, consistent hashing uses a
predefined continuum of values which map onto an instance. We select N random integers (where N is
around 100 or 200) for each server and sort those values into an array of N * instance.size values. To look up
an instance for a key, we find the closest value >= the key hash and use the associated instance. The values
form a virtual circle; the key hash maps to a point on that circle and then we find the instance clockwise from
that point. For more information on how consistent hashing works, refer to David Karger’s original paper on
Consistent Hashing

Architecting Redis on Oracle Cloud Infrastructure
Unlike Memcached, Redis is more than a simple key-value store in-memory cache. Redis can be referred to
as a key-value database where values can contain more complex data types, with atomic operations defined
on those data types. Redis combines the concepts of in-memory caching with the persistence, sharding, and
a master-slave architecture of a traditional database. Redis can also hold complicated data-structures like
lists, hashes, sets, sorted sets in-memory. Given the rich features offered by Redis out of the box, there can
be a wide variety of deployment options. Before we start architecting a Redis cluster on Oracle Cloud
Infrastructure, let’s briefly review the characteristics of Redis:

• Single Instance Architecture: Redis runs as a single threaded application, called Redis Server.
Redis server is responsible for storing data in memory. It handles all kinds of management and
forms the major part of architecture. The Redis client can be the Redis console client or any
application that uses the Redis API. As we saw, Redis stores everything in primary memory. Primary
memory is volatile so we will lose all stored data once we restart our Redis server. Therefore, we
need a way for our data to persist.

• Persistence: There are two ways to make Redis persist data: Redis Database File (RDB), or
Append Only File (AOF). RDB is a snapshot style persistence format which makes a copy of all the
data in memory and stores them in secondary storage. This happens at specified intervals, so there
is chance that you will lose data written after RDB’s last snapshot. AOF is a change-log style
persistence format, which logs all the write operations received by the server. Therefore, every
operation is persisted. The problem with using AOF is that it writes to disk for every operation and it
is an expensive task. Also, the size of the AOF file is larger than the RDB file.

• Backup and Recovery: Redis does not provide any mechanism for data store backup and
recovery. Therefore, if there is a storage crash or any other kind of disaster then all data will be lost.
You can use RDB or AOF snapshots and store them in Oracle Cloud Infrastructure’s Object Storage,
which provides durable storage. We will discuss this once we start architecting a Redis cluster.

• Partial High Availability: Redis supports replication, both for high availability and to separate read
workloads from write workloads. Redis asynchronously replicates its data to one or more nodes,
called read replicas. This is similar to a master-slave architecture, with the Redis primary node being
the master which handles both reads and writes and the read-replicas only handle reads. All the
slaves contain exactly the same data as master. In case of a failure of master node (crash of master
with loss of data on disk), Redis gives the ability to convert a slave into a master. There are many
monitoring solutions available to perform this action, the most commonly used is Redis Sentinel
which can handle service discover and automatic failover of Redis instances.

12 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

• Maximum High Availability: Clustering, although complicated provides the highest level of
Availability for Redis instances. Redis achieves clustering by partitioning and replication of data.
Partitioning involves sharding your data into multiple Redis instances such that every instance only
contains a subset of the keys. This helps by taking some load off a particular instance as the data
volume grows, and also reduces impact in case of a node failure. Redis supports primitive types of
partitioning like range partitioning and hash partitioning. It natively does not support consistent
hashing because its data structures such as multi-dimensional sets, lists and hashes cannot be
horizontally sharded. But if you are using Redis just for storing simple key-value pairs, then you can
leverage consistent hashing.

Deployment planning

A successful Redis deployment requires the administrator to weigh multiple factors:

• Type of workload: Write heavy workloads inherently tend to require significantly more memory and
in case of Redis, it requires additional memory while taking AOF snapshots, or syncing a cluster
primary with replica(s) failing over, or promoting a replica to cluster primary after a failover. It is a
best practice to select the memory size of the instance to be twice as needed for data alone.

• Memory: Amount of memory currently needed and also factoring in the rate of growth of your data.

• Mode of operation: If you are implementing Redis in a non-clustered mode, take into consideration
that the instance should have sufficient memory to accommodate all the data plus the overhead as
described above. If you are implementing in a clustered mode, in addition to accommodating
memory for snapshot/sync overhead, plan ahead to have sufficient amount of memory for your
shards. This is because, for Redis versions 3.x and below, cluster re-sharding is a non-trivial
process and is prone to downtime.

Instance shape selection

There are multiple factors which directly impact the performance of Redis and play a significant role in
instance shape selection. For more information refer to Redis benchmarking.

• Network bandwidth: In many situations, Redis throughput is directly impacted by network well
before being limited by the CPU. Redis suggests having at least 10Gbps NIC for optimal
performance.

• CPU: Being single threaded, Redis favors fast CPUs with large caches and not many cores. Use of
older hypervisors can only worsen this problem.

• Virtualization: Redis runs significantly slower in a virtualized environment as compared to the bare-
metal instances. Using any kind of nested virtualization only worsens this.

Factoring all the above requirements, Redis gives optimal performance on non-virtualized, network-optimized,
high-memory instances. If you have significant amount of write-heavy workloads requiring extreme
performance, you can use Oracle’s BM.Standard1.36 bare metal instances, which can not only offer an un-
virtualized environment but also provide 10Gbps of Network I/O, 256GB of memory with 36 OCPUs with an
option to run multiple Redis servers on the single instance. For regular workloads, you can use VM.DenseIO
instances which provide very good performance for a lower price, but with virtualization overhead.

13 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

Building Redis cluster on Oracle Cloud Infrastructure
A common design pattern for Redis involves directing very write-heavy small data workloads to Redis, while
directing big blobs of data to SQL or an eventually consistent on-disk database. Sometimes Redis is also
used to keep an in memory copy of a subset of the same data stored in the on-disk database. Redis provides
ACID properties to some extent, although its implementation is non-trivial. If your application has strict ACID
requirements, it’s best to fall back to a true RDBMS like Oracle Cloud Infrastructure’s Database service to
achieve guaranteed atomicity, consistency, isolation and durability. Now let’s walkthrough two common
patterns of deploying and scaling Redis instances on OCI.

Non-clustered multi-AD deployment

Using read replicas with Redis, you can separate your read and write workloads. This separation lets you
scale reads by adding replicas as your application grows. In this scenario, we deploy Redis nodes in two
separate Availability Domains (AD), which provides high availability in case of an accidental failure of an
entire AD. We place a Redis Master, which handles the writes from the Application servers, in one AD and
multiple read replicas (slaves) which handle reads, in both the AD. We also provision Redis Sentinel, so that
in an event of failure of the Master, Sentinel quickly does the failover by converting one of the read replicas to
Master. Let’s walkthrough the deployment steps:

• Create a VCN big enough to house your application servers, Redis servers and database servers.
Refer to VCN overview and deployment guide for more information on how to create a VCN and
the associated best practices.

• Create two public subnets in two separate Availability Domains, say AD1 and AD2 to act as the DMZ
subnets to host the Bastion instances and the public load balancer. In Oracle Cloud Infrastructure,
the subnets in a VCN are bound to a specific AD. Create one subnet each in each AD.

• Create a public load balancer pair to load balance the traffic between the application servers and
place it in the DMZ subnets. By design, OCI’s public load balancer come as an Active/Standby pair
to provide high availability. Active and Standby should be placed in separate subnets and in
separate Availability Domains.

• Create two private subnets in AD1 and AD2 to house the application servers. Make sure both the
subnets are still in the same VCN.

• Create two private subnets each in AD1 and AD2 to house the Redis instances. Place the Redis
Master in one Availability Domain and spread the read-replicas across AD1 and AD2. Finally, setup
Sentinel on these instances to provide active monitoring of the Redis instances.

• Create two other private subnets each in AD1 and AD2 to house the database servers. You can
choose the OCI’s Database service to create any flavor of Oracle’s Databases for you, based on
your application requirements.

• Create appropriate Route table rules and Security List rules for the subnets created. Remember to
create a security rule on your Redis servers’ subnet to allow inbound access on TCP port 6379
for application servers and/or database servers to interact with the Redis instances.

14 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

 Figure 6 – Redis non-clustered multi-AD deployment on OCI

Clustered multi-AD deployment

Clustered architecture involves partitioning and replication of data across multiple Redis instances. This is
particularly useful when the volume of data to be stored in memory by a single Redis instance is very large.
The data gets sharded to multiple master nodes such that at any given time a particular master only stores a
subset of keys. Just like the non-clustered approach, the data in the master can be replicated to multiple read-
replicas to distribute the reads and writes. In this scenario, we place Redis Master nodes in two separate
Availability Domains (AD) each storing a subset of actual data. You can determine the sharding logic based
on your use case. Within each AD, we place multiple read replicas to handle the reads from the master. Let’s
walk through the deployment steps:

• Create a VCN big enough to house the application servers, Redis servers and database servers.
Refer to VCN overview and deployment guide for more more information on how to create a VCN
and the associated best practices.

• Create two public subnets in two separate ADs, say AD1 and AD2 to act as the DMZ subnets to host
the Bastion instances and the public Load balancer. In Oracle Cloud Infrastructure, the subnets in a
VCN are bound to a specific AD. Create one subnet each in each AD.

• Create a public load balancer pair to load balance the traffic between the application servers and
place it in the DMZ subnets. By design, OCI’s Public Load balancer come as an Active/Standby pair
to provide high availability. Active and Standby should be placed in separate subnets and in
separate AD. Refer to OCI’s Load Balancing for more information.

• Create two private subnets in AD1 and AD2 to house the Application servers. Make sure both the
subnets are still in the same VCN.

• Create two private subnets each in AD1 and AD2 to house the Redis instances. Place one Redis
Master in one AD and another Master in the second AD. Create read-replicas of the masters in the

15 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

same AD. Finally, setup Sentinel on these instances to provide active monitoring of the Redis
instances and to failover master in case of failure.

• Create two other private subnets each in AD1 and AD2 to house the Database servers. You can
choose the OCI’s Database service to create any flavor of Oracle’s Databases for you, based on
your application requirement.

• Create appropriate Route rules and Security rules for the subnets created. Remember to create a
security rule on your Redis servers’ subnet to allow inbound access on TCP port 6379 for application
servers and/or Database servers to interact with the Redis instances.

 Figure 7 – Redis clustered multi-AD deployment on OCI

Backup and Restore of Redis on Oracle Cloud Infrastructure
As discussed earlier, persistence is built-in to Redis in the form of AOF and RDB. Redis periodically backs up
data to disk either by taking point-in-time snapshots at specific intervals or by asynchronously writing to an
append only file on disk for every write performed. As the volume of backup increases on disk, there should
be a way to save these backups to more durable storage so that even in case of an instance failure, the
backups are not lost.

Oracle Cloud Infrastructure’s Object Storage is a highly durable and extremely scalable object store which
can be used as a centralized store for saving Redis backup snapshots. Object Storage also offers APIs which
are compatible with other provider’s object store like S3 on AWS so that the Redis backups can be migrated
to Object Storage on Oracle’s Cloud Infrastructure. For more information on Object Storage, refer to Oracle
Cloud Infrastructure documentation.

Note: If you plan on implementing backups of Redis, remember that Redis consumes extra memory during
backups. This is because Redis forks a background process that writes the backup data using standard copy

16 | ORACLE WHITE PAPER: DEPLOYING MEMCACHED AND REDIS IN-MEMORY CACHING ON ORACLE CLOUD INFRASTRUCTURE

on write semantics. Please refer to Redis deployment planning section of this paper for more information on
memory requirements.

Conclusion
This white paper provides guidance for designing a highly available distributed caching layer on Oracle Cloud
Infrastructure, using Memcached and Redis. By following the steps outlined in this paper, you can easily
deploy either Memcached or Redis clusters, and then use the caching strategies we discussed to increase
the performance and resiliency of your application. The paper also highlights the use cases, best practices
and several scaling methodologies associated with a distributed in-memory caching layer.

References
• Overview of Oracle Cloud Infrastructure

• Overview of Oracle Cloud Infrastructure Networking

• Overview of Oracle Cloud Infrastructure Security Lists

• Overview of Oracle Cloud Infrastructure Route tables

• Overview of Oracle Cloud Infrastructure Load Balancing

• Overview of Oracle Cloud Infrastructure Database

• Overview of Oracle Cloud Infrastructure Compute

• VCN Deployment and best practices guide

• Memcached Wiki

• Redis Sentinel

• Caching strategies

• TCP Incast

• Redis Benchmarking

• The Twelve-factor app

• Consistent Hashing reference

Oracle Corporation, World Headquarters Worldwide Inquiries
500 Oracle Parkway Phone: +1.650.506.7000
Redwood Shores, CA 94065, USA Fax: +1.650.506.7200

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0218

Whitepaper: Deploying a Highly Available Distributed Caching Layer on Oracle Cloud Infrastructure using Memcached & Redis

February 2018
Author: Abhiram Annangi

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

