
Practical MySQL
for web applications

Domas Mituzas
MySQL @ Sun Microsystems

Wikimedia Foundation



This is different world

• Not OLAP, Not OLTP

• OLWP. On line web processing

• OLP?



Web

• Need data now. Right now. Instantly.

• High scale, huge churns

• Repetitive reads

• Click, click, click!



MySQL

• Great network bit-bucket

• Lightweight and fast

• Likes reads a lot

• Data clustering

• Covering indexes

• Index-order reads



Data
• Mostly variable length

• Web users are lazy to type

• Tends to be short:

• Example of varchar(255) web supplied data 
length distribution:

0
200,000
400,000
600,000
800,000

<5 >5 >10 >15 >20 >25 >30 >35 >40 >45



Access
• Writes are small and rare

• Inserts mostly

• Text changes uncommon

• Reads are bigger and everywhere

• Ordered data

• Range scans

• Pages



View patterns

• User

• Tag

• Time

• Related, friends, etc



Ordering

• Filesorts are bad.

• TEXT/BLOB go to filesystem immediately

• ORDER BY a LIMIT x will still scan whole 
range, 1000x costs

• Filesort alone is more than 2x expensive 
operation, than just fetching rows

• In Web, order is known and rarely changed



Indexing

• Provide index for every view pattern

• Composite indexes are a must

• varchar(255) cries for index

• Overindexing sometimes is worth it

• As long as indexes get used



InnoDB

• Data is clustered by PK

• Composite PKs group logical sets

• PK value is in secondary keys

• Adding PK to index definition - cheap

• Reading PK+SK values doesn’t read PK 
(table) itself - very very cheap

• Every read is in index-order



Covering index

• A (partial) copy of table for different access 
pattern/view

• Especially useful if table doesn’t fit in 
memory

• 100x less seeks for cold data

• Probably no need with SSDs :-)



JOIN orders

• 5.1 fixes this

• In 5.0, order on joined tables caused 
filesorts, even if indexes exist

• Might be faster fetching single row as 
separate SELECT, instead of joining to it

• May use FORCE INDEX and rely on implicit 
order, instead of ORDER BY. <-- DIRTY!

• Can use app-defined ordering columns in 
keys



Simple, not elegant

• Keep data where needed, not where elegant

• WHERE and ORDER BY fields - in same 
table

• JOIN for single static value not worth it

• (usernames are short too!)

• Used to be heresy in other worlds



Query cache

• Does not work for big apps (transactions, 
lots of changes)

• Does great job for small ones

• Needs uniform queries

• Less dynamic queries - better hitrate

• Primary tweak on shared hosting



Counts

• MyISAM count(*) works, sometimes

• Scanning rows - inefficient

• Maintaining counts is easy and cheap

• Aggregate data is easier to keep hot

• INSERT ... ON DUPLICATE KEY ...



BLOBs

• Keep in separate tables

• Keep outside search query logic, display only

• Cheaper metadata updates, especially 
InnoDB

• Less data to read in big scans, orders, 
grouping, etc

• Can always revisit blobs in second query

• Easier to move out afterwards



Paging

• Bad: OFFSET .. LIMIT ..

• Good: WHERE id>xxx LIMIT ..

• Who cares about 15th page?



Character sets

• Lucky if latin1 (or other 8bit charset) is 
enough

• Even luckier if binary 

• Have to be very careful with utf8 and friends

• More expensive filesorts!



Connections

• Persistent - bad

• Connect is cheap, connection is not

• Applications may spend less than 20% time 
in db

• Prepare application, do all db work, 
disconnect, continue with other work

• ___QQQ___ instead of _Q_Q_Q_Q_



Locking

• SELECT ... FOR UPDATE - necessary evil

• Good: Hot potato transactions

• Bad: waiting for anything

• Especially streaming of files, etc

• Use output buffers!

• ob_flush() after COMMIT, not before

• Delay and split big changes



Replication

• Number one scaling technique

• Lag is not lag, if users don’t notice it:

• Check master status on change

• Wait for it on slaves



Understanding

• Poor man’s backtrace:

• SELECT /* __METHOD__ */ ...

• Automatic, or manual, tagging of queries 
helps

• Profile!

• Thats why query wrappers help



Main rule

• Your needs, your design

• Don’t listen to others



Questions? Lunch?

• Ask now!

• or domas @ #mysql freenode

• or domas at mysql dot com



Bon appétit

• I hope lunch is warm today

• Thanks for coming by


