

Unmanned Ground Vehicle Software
Development Environment
A Flexible and Portable Environment for Developing UGV Software

G. Broten, S. Verret and B. Digney
Defence R&D Canada – Suffield

Technical Memorandum

DRDC Suffield TM 2004-060

June 2004

Defence Research and Recherche et développement
Development Canada pour la défense Canada

Unmanned Ground Vehicle Software
Development Environment
A Flexible and Portable Environment for Developing UGV Software

G. Broten

S. Verret

B. Digney
Defence R&D Canada – Suffield

Defence R&D Canada – Suffield
Technical Memorandum

DRDC Suffield TM 2004-060

June 2004

© Her Majesty the Queen as represented by the Minister of National Defence, 2004

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2004

DRDC Suffield TM 2004-060 i

Abstract

The Autonomous Intelligent Systems (Land) initiative has been tasked with researching and
developing innovative autonomous vehicles that will assist the Canadian Forces in performing
their duties in the 22nd century. This research will continue for many years on many different
types of unmanned ground vehicles. Thus it requires a software development environment
that will protect what will become a substantial investment in intellectual property that is
implemented in software algorithms. This environment must be based upon standards that are
as universally supported as possible. The software development environment must also be
compatible with the Autonomous Land Systems (ALS) project Unmanned Ground Vehicle
Electronic Hardware Architecture[1]. This report describes the software development
environment developed for the ALS project. The environment is based upon open standards
and meets the diverse requirements of the project. This environment is currently being used
by all applications being developed for unmanned ground vehicles (UGV) at DRDC Suffield
under the ALS project.

Résumé

L’initiative des Systèmes intelligents autonomes (terrestres) a reçu la mission d’entreprendre
des recherches et de mettre au point des véhicules autonomes novateurs qui procureront, au
22è siècle, une assistance aux Forces canadiennes durant l’exercice de leurs fonctions. Cette
recherche se déroulera durant plusieurs années sur plusieurs types de véhicules terrestres sans
pilote. Ceci exige un environnement d’élaboration de logiciels visant à protéger ce qui
deviendra un important investissement en propriété intellectuelle, implémentée par des
algorithmes logiciels. Cet environnement doit être basé sur des normes aussi universellement
reconnues que possible. Cet environnement d’élaboration de logiciels doit aussi être
compatible avec les Systèmes terrestres autonomes (STA) du projet de l’Équipement
électronique de l’architecture des véhicules terrestres sans pilote[1]. Ce rapport décrit le
développement de l’environnement de logiciels élaborés pour le projet STA. L’environnement
est basé sur des normes ouvertes et satisfait aux diverses exigences du projet. Cet
environnement est actuellement utilisé par toutes les applications développées pour les
véhicules terrestres sans pilote à RDDC sous le projet STA.

ii DRDC Suffield TM 2004-060

Executive summary

Background: Defence R&D Canada, on behalf of Canadian Department of National Defence,
is developing new and innovative land vehicles. An important aspect of this research is the
investigation and development of autonomous unmanned ground vehicles to augment and/or
replace existing tele-operation capabilities. This research is being conducted under the
auspices of the Tactical Vehicles Systems Section (TVSS) as part of their ALS project. This is
an on-going field of research that is expected to define the future capabilities of autonomous
unmanned ground vehicles. This research is expected to yield valuable intellectual property
(IP) with a significant portion of this IP being implemented as software algorithms. In order to
protect this investment in IP the ALS project has defined a software development
environment. The environment defines set of standards to follow and the tool chain to be used
in the software development process. The use of this software development environment will
help ensure the long term viability of all software developed for the ALS project and thus for
AIS (Land) research initiative.

Principle Results: A software development environment has been selected for the ALS
project. This environment defines five keys aspects of the software development process:

1. The ALS project supports the Open Source Model and will use Open Source tools

wherever possible.

2. The C/C++ languages will be used for all software development related to the core

competence of the ALS project.

3. All software will use the GCC tool chain for compiling the high level languages into the

machine code instructions that are used at the processor level.

4. The Linux operating system will be used for software that has soft real-time or lesser

constraints. For software that interacts with external devices that impose hard real-time
restraints the RTEMS operating system will be used.

5. All software developed will adhere to the POSIX 1003.1 and 1003.1b extensions where

possible.

This software development environment defines a set of standards, tools, languages and
applications that are well suited to meet the needs of the ALS project. The proposed
environment defines a model for developing software that protects DRDC’s investment in the
intellectual property that the software represents while maintaining the flexibility and
scalability that is required for compatibility with UGV Electronic Hardware Architecture[1].

This software development environment will allow the software developed under the ALS
project to be used across a range of UGV platforms that feature diverse requirements. It will
allow the researchers working on the ALS project to concentrate on developing algorithms
that enable and enhance UGV autonomy with minimal concerns about algorithm
compatibility between the various types of UGV platforms.

G. Broten, S. Verret, B. Digney. 2004. Unmanned Ground Vehicle Software Development
Environment. DRDC Suffield TM 2004-060. Defence R&D Canada – Suffield.

DRDC Suffield TM 2004-060 iii

Sommaire

Contexte : R & D pour la défense Canada, au nom du ministère de la Défense nationale, met
actuellement au point des véhicules terrestres nouveaux et novateurs. Un aspect important de
cette recherche consiste à investiguer et à mettre au point des véhicules terrestres autonomes
sans pilote afin d’augmenter et / ou de remplacer les capacités de téléopération existantes.
Cette recherche est conduite sous les auspices de la Section des systèmes de véhicules
tactiques et fait partie de leur projet STA. Il s’agit d’un domaine de recherche de longue durée
devant définir les capacités futures des véhicules terrestres autonomes sans pilote. On s’attend
à ce que cette recherche produise une propriété intellectuelle intéressante dont une partie
importante sera implémentée par des algorithmes logiciels. Le projet STA a défini
l’environnement du processus d’élaboration de logiciels qui vise à protéger cet investissement
en propriété intellectuelle. L’environnement définit un ensemble de normes à suivre et la
chaîne d’outils à utiliser dans le processus d’élaboration des logiciels. L’utilisation de cet
environnement d’élaboration de logiciels permettra d’assurer la viabilité à long terme de tous
les logiciels développés pour le projet STA et ainsi pour l’initiative de recherche SIA
(terrestre).

Résultats de principe : Un environnement d’élaboration de logiciels a été sélectionné pour le
projet STA. Cet environnement définit cinq aspects clés du processus d’élaboration de ces
logiciels :

1. Le projet STA soutient le Modèle du logiciel ouvert et utilisera autant que possible des

outils ouverts.

2. Les langages C/C++ seront utilisés pour tout le développement des logiciels associés à la

compétence fondamentale du projet STA.

3. Tous les logiciels utiliseront la chaîne d’outils de la collection de compilateurs GNU pour

compiler les langages de haut niveau dans le code des instructions d’ordinateur qui seront
utilisées au niveau processeur.

4. Le système d’exploitation Linux sera utilisé pour les logiciels qui ont des contraintes en

temps réels souples ou des contraintes moindres. Des systèmes d’exploitation en temps réel
en mode multitâche seront utilisés pour les logiciels qui interagissent avec des appareils
externes imposant des temps réels à forte contrainte.

5. Tous les logiciels élaborés adhèreront autant que possible aux extensions POSIX 1003,1 et

1003,1 b.

L’environnement d’élaboration de logiciels définit un ensemble de normes, d’outils, de
langages et d’applications bien adaptés aux besoins du projet STA. L’environnement proposé
définit un modèle d’élaboration de logiciels qui protège l’investissement en propriété
intellectuelle de RDDC, représenté par le logiciel, tout en maintenant la souplesse et la
variabilité dimensionnelle requise pour être compatible avec l’Équipement électronique de
l’architecture des véhicules terrestres sans pilote[1].

iv DRDC Suffield TM 2004-060

Cet environnement d’élaboration de logiciels permettra au logiciel développé pour le projet
STA d’être utilisé pour toute la gamme des plates-formes de véhicules terrestres sans pilote
qui possèdent des exigences diverses. Il permettra aux scientifiques de travailler sur le projet
STA en se concentrant sur le développement d’algorithmes. Ces derniers permettront et
amélioreront l’autonomie des véhicules terrestres sans pilote et ne présenteront que des
préoccupations minimales au sujet de la compatibilité des algorithmes entre les différents
types de plates-formes STA.

G. Broten, S. Verret, B. Digney. 2004. Unmanned Ground Vehicle Software Development
Environment. DRDC Suffield TM 2004-060. R & D pour la défense Canada – Suffield.

Table of contents

Abstract . i

Resume . i

Executive Summary . ii

Sommaire . iii

Table of contents . v

List of tables . vii

1. Introduction . 1

1.1 Electronic Hardware Architecture . 1

2. Software Architecture . 1

2.1 Interaction with Hardware . 2

2.2 Software Modes . 2

2.2.1 Consumer Software . 3

2.2.2 Industrial Software . 3

2.2.3 The Open Source Model . 4

2.2.3.1 Open Source Definition 4

2.2.3.2 Significance and Advantages of the Open Source
Model . 5

2.2.4 Open Source and the ALS Project 6

3. ALS Development Environment . 6

3.1 Software Languages . 6

3.1.1 Java . 7

3.1.2 C# . 7

3.1.3 Ada . 8

DRDC Suffield TM 2004-060 v

3.1.4 C and C++ . 8

3.1.5 Conclusions . 8

3.2 C/C++ Compilers . 9

3.2.1 GNU C/C++ Compiler . 10

3.2.2 Intel Compiler . 10

3.2.3 Microsoft Visual C++ .NET 10

3.2.4 Fujitsu Compiler . 10

3.2.5 IBM VisualAge . 10

3.2.6 Summary . 11

3.3 Operating Systems . 11

3.3.0.1 Soft and Hard Real-time Capabilities 12

3.3.0.2 Operating System Portability 12

3.3.0.3 Operating System Evaluation 13

3.3.1 Linux . 13

3.3.2 FreeBSD . 14

3.3.3 RTLinux and RTAI . 14

3.3.4 MontaVista Linux and Linux 2.6 Kernel 15

3.3.5 TimeSys Linux . 15

3.3.6 eCos . 16

3.3.7 RTEMS . 17

3.3.8 Linux Operating System Performance 18

3.3.9 Summary . 19

4. Conclusions . 21

References . 23

vi DRDC Suffield TM 2004-060

List of tables

Table 1. Candidate Operating Systems . 12

Table 2. Kernel Preemption Latency Comparison[2] . 18

Table 3. RedHat Benchmarks of the Linux Scheduler[3] 19

DRDC Suffield TM 2004-060 vii

This page intentionally left blank.

viii DRDC Suffield TM 2004-060

1. Introduction

Defence R&D Canada, on behalf of the Canadian Department of National Defence, is
developing new and innovative land vehicles. An important aspect of this research is
the investigation and development of autonomous UGVs to augment and/or replace
existing tele-operation capabilities. This research is being conducted under the auspices
of the TVSS as part of their AIS (Land) research initiative. This is an on-going field of
research that is expected to define the future capabilities of autonomous UGVs.

The key aspect of this research is the autonomous capabilities that it will develop.
There is a taxonomy of operational regimes for UGVs1 ranging from a fully
autonomous through to a semi-autonomous system[4]. A robot is called fully
autonomous when it operates without the need for full-time external human control. A
semi-autonomous robot requires a full-time human operator but is permitted to make
certain decisions on its own. Within the semi-autonomous division there are two
sub-categories: tele-robotic and tele-operated. A tele-robotic system has levels of
software that interpret the operator’s commands while a tele-operated robot is directly
and completely controlled by the operator.

1.1 Electronic Hardware Architecture

The Unmanned Ground Vehicle Electronic Hardware Architecture[1] memorandum
describes an electronic hardware architecture that has the flexibility and extensibility to
support a wide range of UGV platforms. It achieves this flexibility by ascribing to a
distributed paradigm which enables the use of multiple scales of processors. The
Electronic Hardware Architecture is applicable to small indoor platforms with limited
payloads and it easily scales to support large platforms that do not have payload
limitations. The hardware architecture does not exist in isolation since it provides
services and functionality to software algorithms. It is the software that creates
autonomous capabilities to the UGV. These autonomous capabilities are implemented
by software algorithms such as: the representation of the world; path planning; obstacle
avoidance; and others. Additional software will be involved in commanding the various
motors that allow the UGV to traverse the selected path.

Given the important role software algorithms play in developing a UGV the software
must work hand in hand with hardware to implement an overall architecture that
provides the scalability and flexibility required by the ALS project.

2. Software Architecture

The ALS program is researching and developing UGVs that will assist the Canadian
Forces in performing a variety of tasks. A key component of this research is the

1The terms unmanned ground vehicles, autonomous ground vehicles, robots and mobile robot are used synony-
mously throughout this report.

DRDC Suffield TM 2004-060 1

development of software algorithms that create autonomous capabilities on a UGV. It is
probable that the algorithms developed today will be in use for many years and perhaps
even decades. To a large extent these algorithms encapsulate the knowledge acquired
through an intensive research and development process. Given the large scale
investment that these algorithms will represent it is essential that they be as future proof
as possible. The term future proof refers to following requirements:

• The programming language(s) of implementation must be relevant and in use for
many years/decades.

• The compiler(s) must have a high probability of continued use and advancement
well into the future.

• The operating system(s) must be of a nature that they will have a long lifespan.

The prime goal of the software architecture is protect the ALS program from expensive
ports or re-writes that occur when the support for a given component is no longer
available. While it is preferable to use a single programming language, compiler and
operating system, this may or may not be achievable. Certain programming languages
are well suited for larger projects, while others are more suitable for embedded devices
and it may be advisable to use a set of complimentary programming languages.

2.1 Interaction with Hardware

The high level goals of the software architecture described in Section 2. are also
influenced by the hardware requirements of the ALS project. As outlined in Section 1.1
the ALS project requires a flexible and scalable hardware architecture. To assist in
meeting these flexibility and scalability requirements the software architecture should
support a wide range of processors, from a variety of manufactures. The capability to
support differing processors allows the ALS project to use the appropriate processor for
the particular task at hand[1]. Thus, the programming language(s), compiler(s) and
operating system(s) must be portable across a range of processor options, ranging from
high speed number crunching processors to specialized embedded micro-processors.

2.2 Software Modes

Three major software modes can be identified. The software mode is defined by the
major features that characterize the software. The three modes are:

• Consumer Software

• Industrial Software

• Open Source Software

2 DRDC Suffield TM 2004-060

2.2.1 Consumer Software

The world of desktop/laptop computers is representative of consumer
software. This world features ever increasing performance and short product
lifespans. Consumer software has a strong tendency to follow the latest
available hardware technology and thus it is in a constant state of change.
Given the huge market size this software services, the prices tend to be
relatively inexpensive. The dominance of Microsoft in this market results in a
propensity to adopt common standards which results in good cross product
compatibility.

This market has traditionally been characterised by the user demanding
improved computer performance. This demand for superior performance has
led to an upgrade cycle that has often benefited both the vendor of
applications and the user. The user has received better and more powerful
applications than the previous versions while the vendor has profited from
developing and selling these new or improved applications.

The bottom line for this market is that the vendor’s prime goal is the
generation of a revenue and profit. In some cases this prime goal of the vendor
is in direct conflict with the requirements of the user of the application. When
an application has matured the addition of more processing power does not
lead to a substantial improvement of the product. At this point the vendor still
has an incentive to convince the user to upgrade to next release of the
application whether or not this is in the best interests of the user. This
motivation to convince the user to upgrade is often associated with the
practice on not keeping applications compatible with previous versions. To
add an additional incentive to upgrade the vendor sometimes drops support for
previous versions of the application and leaves the user with no avenues to
solve problems or fix bugs. Hence, there is a very strong tendency in the
world of consumer applications for the user to be forced into upgrades that are
neither desired or required.

2.2.2 Industrial Software

Industrial software, in contrast to consumer software, features much longer
lifespans. It caters to industries such as the automotive and forestry sectors
where the infrastructure costs are high. Software used in this setting is
expected to have a much longer lifespan. Significant investments are made in
developing specialized software for the factory floor and office. In order to
receive a good return on this investment this software is often expected to
have a lifespan in the realm of the lifespan of the equipment on the factory
floor. These special requirements that the industrial sector impose on software
has had the effect of forcing the software vendors into product cycles that are
appropriately matched with the needs of their customers and thus offering
software with longer lifespans than found in the consumer market.

DRDC Suffield TM 2004-060 3

While industrial software has the positive feature of longer lifespans it
unfortunately suffers from a very fragmented market. No single vendor like
Microsoft dominates the market. A large group of vendors lead by VxWorks,
CMX, US Software, Accelerated Technology, Metroworks, GE Fanuc, Allen
Bradley and many others have offerings in this market. Unfortunately there
are no widely implemented standards that all vendors support that allow for
cross vendor transportability. The IEEE has sanctioned the Portable Operating
System Interface (POSIX) standardization effort that defines common
standards for operating systems. While the POSIX standard is often
supported, many vendors support is only a subset of the POSIX standard.
Even if a vendor supports the POSIX standard there is a plethora of other
applications, such as debuggers and editors, that the vendor supplies that may
not be compatible other vendor’s products. Each vendor has an incentive to
keep clients and it is not in their interest to allow a user to easily switch to a
competitor’s product.

2.2.3 The Open Source Model

The open source model has numerous advantages over the consumer and
industrial models, but before expanding on these advantages it is first
necessary to define the open source model.

2.2.3.1 Open Source Definition

The Open Source Initiative (OSI) is a non-profit corporation
dedicated to managing and promoting open source software. They
define open source as having the following attributes:

1. Free redistribution

2. Source code

3. Derived works

4. Integrity of the author’s source code

5. No discrimination against persons or groups

6. No discrimination against fields of endeavor

7. Distribution of license

8. The license must not be specific to a product

9. The license must not restrict other software

10. The license must be technology neutral

4 DRDC Suffield TM 2004-060

A detailed explanation of the significance of each of the attributes
can be found on the Open Source Initiative website2. In summary
the goals of open source software are to give software developers
access to the source code and to allow them to modify the
software.

2.2.3.2 Significance and Advantages of the Open Source Model

The most significant aspects of the open source model are:

• Community ownership.

• The open and collaborative development model.

• Support of open standards.

These three aspects create loyal user and developer communities
that have an ongoing stake in in the software. To appreciate the
significance of these aspects it useful to contrast this type of
community with the commercial software products and its
associated upgrade cycle. The open source, by contrast, is driven
by different motivations. While the open source model is not
immune to upgrade cycle, the forces driving the release of new
versions are significantly different. A new release of an application
under the open source model is mostly driven by the demands of
the users and advances in technology. Given that the open source
upgrade cycle is driven by the user there is a very strong incentive
to keep backwards compatibility.

The open source model relies on a community approach to
software development and thus there is a strong motivation for the
community to use open standards where possible. Open standards
are advantageous to the open source model since they represent a
common rule set which all developers can abide by. In contrast it
is less attractive for commercial vendors to support open standards
since open standards allow the user to migrate to a competitor’s
product.

The open source user, in the final analysis, always has the option
of not upgrading and continue to in-house support of application in
question. The source code is available and a cost benefit analysis
can be performed comparing the cost of the upgrade with the cost
of performing in-house3 support. This option for in-house support

2OSI website definition of Open Source can be found at http://www.opensource.org/docs/definition.php.
3The in-house support could be contracted to an outside developer.

DRDC Suffield TM 2004-060 5

is not available for closed source commercial or industrial
applications.

2.2.4 Open Source and the ALS Project

The ALS project will use the open source applications for components of the
software architecture wherever they meet the needs of the project. The
program accrues a number of benefits by choosing open source model. The
program requires software applications that are very long lived. For the
reasons listed in Section 2.2.3.2 the life expectancy and compatibility of open
source software applications are superior to most offerings from commercial
vendors. As for industrial software, while its lifespan is superior to straight
commercial software, the fragmentation of the industrial software market has
lead to major incompatibilities between its numerous vendors.

Finally it is important to note that the quality of open source tools are in most
cases equivalent or superior to commercial offerings. There is no penalty to
pay by choosing open source applications. In many important instances the
open source offerings are the best that are available.

For all the reasons outlined in Section 2.2.3 the ALS project concluded that
the open source model is the best model to ensure the longevity of the
software algorithms developed.

3. ALS Development Environment

The ALS software development environment defines the software language(s),
compiler(s) and operating system(s) that are to be used when developing software
algorithms. This development environment tries to meet the various needs of the ALS
project as detailed in the previous sections.

3.1 Software Languages

The ALS project had a variety of software languages to chose from when selecting the
language(s) to use for software development. A list of relevant languages was compiled
and each language was investigated. Each language was graded by the following
criteria:

• Good longevity, meaning that it will be in use many years into the future.

• A very large and significant user base.

• Processor independence, in terms of not being restricted to a particular processor
architecture.

6 DRDC Suffield TM 2004-060

• The language’s applicability to use in real-time systems.

The languages considered included: Java, C#, Ada, C and C++.

3.1.1 Java

Java is a very promising language with its roots in platform independence. It
has a large user base, especially among web programmers where Java applets
are used extensively. Java has a two part implementation: the platform
independent Java byte code and the platform dependent Java Virtual Machine.
While in theory Java is very attractive in practice it suffers from limitations.
Java is a relatively new language and the Java Virtual Machine is not widely
available across processing platforms. There are many processors, especially
in the embedded realm, for which the Java Virtual Machine does not yet exist.
Additionally, standard Java is not particularly well suited for real-time
applications. The automatic garbage collection process of standard Java is
unrestrained and thus can cause problems for real-time systems. The
Real-Time Specification for Java (RTSJ), also known as JSR-1, is an
implementation of Java for real-time systems but it is not widely available and
it has not been proven to be capable and robust. Finally, Microsoft does not
support Java but has instead released a competing language which is known as
C#. As a result the verdict is not in yet on the long term acceptance of this
language.

3.1.2 C#

The C# language is Microsoft’s response to Java and is in many ways similar
to Java. C# promises to be extremely popular on systems supporting
Microsoft operating systems. It has a large and growing user base due to its
incorporation into Microsoft’s development environment and it can be
expected that Microsoft will continue to use this language well into the future.
At the present time C# is almost exclusively tied to Microsoft operating
systems. An open source clone of the C# language and .Net development
platform, called Mono, is underway but has yet to be completed. Microsoft
C# is tied exclusively to the Intel line of processors. The Mono project, if
successful, may expand the C# language to include support for all processors
support by Linux. It must be noted that the Mono project is not funded,
supported or approved by Microsoft and the success of an open source
implementation of C# is far from assured. From the real-time perspective the
capabilities of C# are weak. Lutz and Laplante tested the real-time
capabilities of C# and the .Net Framework and concluded that it was not
suitable for hard real-time systems but with the appropriate precautions it
could be used under soft real-time conditions[5].

DRDC Suffield TM 2004-060 7

3.1.3 Ada

Ada is a modern language that was originally developed for the U.S. military.
It features code that is: portable, modular, reusable, reliable and maintainable.
Additionally, Ada has been specifically engineered for real-time applications.
Major Ada applications include: strategic military embedded systems;
NASAs Space Shuttle and Space Station environments; and commercial jets
and air traffic control systems. While Ada has many admirable attributes its
general acceptance has been limited. Ada is not widely used outside the niche
sectors where reliability is a paramount issue, hence it has a limited user base.
While military UGVs could benefit from such reliability, the ALS project is at
a stage where sharing algorithms with other research institutions is important
and the use of a niche language such as Ada would be a hindrance to the goals
of the ALS project.

3.1.4 C and C++

C and C++ aexceptionre closely related programming languages that are
probably the most widely used languages in the world. C has is roots in the
early 1970s when it was created as a language to code the Unix operating
system. C++ started life as C with object classes in the early 1980 before it
was eventually released as C++ three years later. These languages boast huge
developer bases and have been used to develop an innumerable number of
applications. C has been the workhorse language for real-time and embedded
system for decades. C++ is well suited for large scale software development
projects and can be used under real-time conditions if precautions are taken.
Both of these languages have been used for years and will be continued to be
used for the foreseeable future. The C language can be used on probably all
processors and micro-processors that currently in production. C++, which
requires more resources in terms of processing power and memory, is not as
well suited for micro-processors, but is supported by general purpose
processors. Given that C and C++ are such commonly used programming
languages they also facilitate the co-operation between research institutions.

3.1.5 Conclusions

The ALS project has selected the C/C++ combination of programming
languages as the standard languages to be used for software development.
They both have a long history of use with very large user communities who
will help ensure that these languages continue to thrive long into the feature.
C is the arguably the most portable language in the world given that it was
specifically developed as a language for creating operating systems4 and as a

4To this day the major of all major operating systems are developed using C.

8 DRDC Suffield TM 2004-060

result is available on probably every processor/micro-processor5 in
production. C++ is also very widely supported across numerous processor
architectures. Both languages can be used with real-time systems though C
has a performance advantage over C++. The other languages surveyed did not
have the breadth of support that is found with the C/C++ combination. Java is
limited by processor architecture for which the Java Virtual Machine exists.
C# is heavily tied to the Intel processor architecture which precludes its use
on embedded systems featuring micro-processors. Ada is excellent for
real-time applications but does not have a large acceptance outside of niche
applications. In the final analysis the C/C++ languages have the longevity,
user base, processor support and real-time capabilities that are demanded by
the ALS project.

Other Programming Languages

While the ALS project has selected the C/C++ combination of languages,
software that is not related to the core competence of the ALS project may use
other programming languages. This exception would allow specialized
applications to integrate into the UGV architecture on an as needed be basis.
The merits of accepting non-standard software would be reviewed on a case
by case basis. Under these instances a preference would be given to languages
that fall within the C family of languages.

3.2 C/C++ Compilers

For a computer language to be useful it must have a compiler to parse the high level
language and turn it into machine code that a processor is capable of executing. The
high level languages to be used by the ALS project are the C/C++ combination and
thus a C/C++ compiler is required. The use of a single compiler is required since using
the same compiler, for all code, simplifies the moving of coded algorithms across
processor architectures. This simplification occurs since the compiler uses the same
constructs in terms of defining the processor, debugging, optimization options and
other compiler directives.

There are many C/C++ compilers available including: Fujitsu, GNU, Intel, IBM and
Microsoft to name a few. For the ALS project one of the most important attributes of
the compiler is the range of processors that the compiler supports. Flexibility and
scalability are key aspects of the ALS project and the compiler must support a variety
of processor architectures to meet these goals.

5The micro-processor claim should be qualified by the note that certain, small, 8 bit processors may only support
assembly language programming.

DRDC Suffield TM 2004-060 9

3.2.1 GNU C/C++ Compiler

The GNU C/C++ compiler is an open source compiler suite for the C and C++
languages. It can run on a multitude of platforms ranging from mainframe
system all the way down to embedded systems6. This compiler is also capable
of being configured as cross compiler where it runs under one processor
architecture and compiles code for a different target architecture. It is portable
across a wide range of processors include: Intel x86, PowerPC, VAX,
Motorola 68K, MIPS, DEC Alpha, Texas Instruments TMS320 DSPs,
Motorola Mcore, ARM architecture, Sun Sparc, and other less used processor
models. The GCC complier runs under numerous flavours of unix including:
Linux, AIX, HP-UX, FreeBSD, SCO, SGI, IRIX, Digital Unix and Solaris.
The GCC compiler is also available under Microsoft operating systems via
Cygwin project.

3.2.2 Intel Compiler

The most recent release of the Intel C++ compiler is version 7.1 and it
supports both the Windows and Linux operating systems. The Intel C++
compiler supports only the Intel processor architecture including the x86,
Itanium and XScale processor lines.

3.2.3 Microsoft Visual C++ .NET

The Visual C++ compiler is only available for systems running the Windows
operating system and the Intel or AMD x86 Pentium class of processors. It is
geared to support the .NET initiative from Microsoft which aims to allow
internet capabilities to be easily incorporated into Windows applications.

3.2.4 Fujitsu Compiler

The Fujitsu C/C++ Express V2.0 compiler suite is targeted for the Intel x86
architecture running Linux and the Sun SPARC architecture running the
Solaris operating system.

3.2.5 IBM VisualAge

VisualAge C++ V6.0 is an advanced C/C++ compiler developed by IBM. It
runs under the AIX and Linux operating systems. The VisualAge C++
compiler supports the x86, RS/6000, PowerPC and Power4 processor
architectures.

6A partial list of supported operating systems includes: Linux, FreeBSD, Solaris, HPUX, Darwin and Microsoft
Windows.

10 DRDC Suffield TM 2004-060

3.2.6 Summary

The capability to support a wide range of processors is an important attribute
for the ALS project since the program defines a distributed hardware
architecture that currently uses multiple different processor types[1]. Only
one compiler among those surveyed has the flexibility to support multiple
processor architectures and this is the GNU C/C++ compiler. The GNU
C/C++ compiler is also the only compiler that scales from the small embedded
micro-processors all the way to high-end, number crunching processors. The
GNU C/C++ compiler gives the ALS project the ability to use most, if not all,
of the processors/microprocessors that commonly in use at this time. The Intel
and Microsoft compilers are limited to x86 compatible processors7. The
Fujitsu compiler targets the x86 and Sparc processor architectures, while the
IBM compiler is focused on the x86 and PowerPC processor architectures.
None of the other compilers surveyed have the flexibility and scalability that
is found with the GNU C/C++ compiler. While the GNU C/C++ compiler has
been specified for general use, the use of other compilers would be acceptable
if their application falls outside the core competence of the ALS project.

3.3 Operating Systems

The selection of an operating system is a difficult task. The ALS project defines a
scalable and flexible architecture and these two requirements are traits that are difficult
to find in operating systems. The operating system interacts directly with the hardware
of the processor, which results in a tendency to make operating systems processor
centric. Programming languages are insulated from the processor hardware via the
compiler and thus they are easy to make universal in nature. Compilers must
understand the architecture of a processor in order to be able to translate a high level
language into machine code. While this process of converting the abstract high level
language to machine code is not a simple endeavor it does not have to deal with the
intricacies of dealing directly with hardware. The processor underlying the operating
system has hardware and timing related issues and in order for the operating system to
be portable it must deal with these issues in a manner that minimizes their significance.

Operating systems can define a Hardware Abstraction Layer (HAL) to isolate the
operating system from the details of the processor’s hardware. The HAL consists of
code that is architecture, platform and implementation specific. It abstracts processor
specific items like: interrupt delivery, context switching, CPU startup, platform startup,
timer devices, I/O register access, interrupt controller and on-chip devices. When
porting the operating system from one processor architecture to another, the developer
concentrates on the HAL code. Once the HAL layer is ported the conversion of the
remaining operating system code is straight forward.

7It should be noted that the Intel XScale processor is not x86, but is a license for the StrongARM architecture
from ARM.

DRDC Suffield TM 2004-060 11

For the reasons explained under Section 2.2.3 the ALS project will use the Open
Source model as a key factor when selecting an operating system. This restriction
means that proprietary operating systems such as Microsoft Windows derivatives or the
real-time Wind kernel from VxWorks are excluded from the list of potential candidates.
The list of open source operating systems that were reviewed is summarized in Table 1.

Operating System Type Comments

Linux General Purpose The original Open Source Unix like OS
FreeBSD General Purpose A free implementation of the Berkeley Unix

RTAI Real-time Extensions Runs Linux as a processor under a real-time kernel
RTLinux Real-time Extensions Runs Linux as a processor under a real-time kernel
Timesys Real-time Extension Modifications to the Linux kernel adding real-time capabilities

Montavista Linux Real-time Extension Modifications to the Linux kernel adding real-time capabilities
Ecos Embedded Linux Scaled down version of Linux for embedded systems

RTEMS Real-time An open source hard real-time OS

Table 1: Candidate Operating Systems

3.3.0.1 Soft and Hard Real-time Capabilities

Real-time operating systems are often split into two distinct
categories, those with soft real-time characteristics and those who
meet hard real-time deadlines. Hard real-time systems feature
deterministic response times throughout all their capabilities. The
interrupt, context switch, and scheduler latencies are all
deterministic in nature with an upper end that is bound by an
maximum response time that will never be exceeded. Soft
real-time systems on the other hand feature average latency times
that are responsive in nature, but their maximum latencies may
exceed the average latency values by a couple of orders of
magnitude. Hard real-time operating systems are essential where
the missing of a deadline will have drastic consequences, where as
soft real-time operating systems are useful where responsiveness is
a desirable quality, but the missing of a deadline does not lead to
serious consequences. Systems that have a multitude of
interactions with external devices, such as encoders and motors,
are better served by a hard real-time operating system.

3.3.0.2 Operating System Portability

POSIX stands for the Portable Operating System Interface and is a
standard that is being jointly developed by the IEEE and The Open
Group. It defines a standard operating system interface and
environment. The goal of the POSIX standard is to allow software
to be portable across differing operating systems. When POSIX

12 DRDC Suffield TM 2004-060

compliant functions are used they allow code to become portable
from one POSIX compliant operating system to another.

3.3.0.3 Operating System Evaluation

The key criteria with respect to the evaluation of the operating
systems will be:

• The acceptance and long term viability.

• The size of the user base.

• The support for multiple processor architectures.

• The support of hard real-time operation and/or the support of
soft real-time operation.

• Support of third party applications8.

The following sections discuss each operating system in detail.

3.3.1 Linux

Linux is a very popular open source clone of the Unix operating system.
Linux was created by Linus Torvalds9 in the early 1990s and Linux is
considered the poster child for a successful open source project. Standard
Linux supports multiple processor architectures including: Intel x86, AMD
x86, PowerPC and Sun’s Sparc. Linux boasts a huge community of
developers who advance and maintain the kernel. Estimating the market share
for Linux is difficult to derive since it is free to download and a single
download may correspond to multiple installations[6]. Surveys have shown
that in 2001 Linux servers held between 8.6% and 27% of the office server
market depending on the who conducted the survey10. A 2003 survey of small
and mid-size business found that 19% of businesses use an open source
operating system on the desktop[7].

Linux is renown for its reliability and its highly configurable kernel.
Reliability translates into infrequent system crashes and reconfigurability
allows the operating system to be tailored to the requirements of an UGV. It
supports the POSIX 1003.1 standard and has partial compliance to the
1003.1b standard. A huge variety of third party applications are available for
Linux.

8This refers to applications such a graphical interfaces, GUI development tools, communications packages, etc
which all relate to the ease of use and development of software.

9With the assistance of developers around the world.
10A 2001 Gartner Group survey estimated the Linux share at 8.6%. The 2001 IDC survey estimated Linux at

27%, Windows 41% and Netware 17%.

DRDC Suffield TM 2004-060 13

3.3.2 FreeBSD

FreeBSD11 is in many ways similar to Linux. It is an open source
implementation of the Berkeley Unix operating system. It supports many of
the same tools and applications that are used under Linux such as X Window,
Apache and the GNU C/C++ compiler. While Linux and FreeBSD are similar
in many ways, their development models differ. The Linux development
model is open and allows input from a large and diverse set of developers.
FreeBSD on the other hand has a more closed development model. This
development model has resulted in a smaller developer’s community than the
one associated with Linux and as a result the BSD support for peripheral
devices is significantly inferior to that of Linux. Due to their unix heritages,
most applications that are available for Linux are also available for FreeBSD.

3.3.3 RTLinux and RTAI

Both RTLinux and RTAI use a sub-kernel approach to imparting real-time
capabilities on the Linux operating system The sub-kernel approach creates a
small sub-kernel that is fully preemptive and thus real-time responsive. This
sub-kernel is a small operating system that provides the real-time capabilities
for the Linux kernel. The Linux kernel is simply a special low priority process
that is scheduled to periodically run. All interrupts are controlled by the
sub-kernel. Communications between the sub-kernel and the Linux occur
through special communication channels. The sub-kernel environment
implements only a very basic low level functionality and does not support
standard C or math libraries. It also does not support standard Linux drivers or
file systems.

The basic philosophies of both these operating systems are that only time
critical tasks are implemented at the sub-kernel level, while a majority of the
application runs as an ordinary program under Linux user space. The major
impediment with this approach is the difficulty of writing device drivers at the
sub-kernel level. This approach supports a sub-set of the CPU’s and platforms
supported by Linux including the following: X86, PowerPC, Alpha and MIPS.

Software development for these RTOS’s is accomplished using the GNU tool
chain. The C language is the primary software language for software
development at the real-time sub-kernel level. Almost any other language
could be used for the development of applications to run in Linux user space.
Under the Linux user space all third party Linux applications are available.
RTLinux and RTAI service niche markets and do not have large, developed
user bases. The verdict is still out as to where this approach will become
widely accepted by mainstream users of Linux.

11FreeBSD, NetBSD and OpenBSD are all related variants of Berkeley Unix.

14 DRDC Suffield TM 2004-060

3.3.4 MontaVista Linux and Linux 2.6 Kernel

MontaVista extends preemptibility to the Linux kernel through the use of the
SMP12 locking mechanism that is available in 2.4 or greater kernel version.
The SMP locking mechanism was incorporated into the Linux 2.4 kernel to
allow the kernel to operate in multi-processor configurations. The SMP lock
allows the kernel to protect critical segments of code or memory from
unauthorized access by a different processor of the SMP configuration.
MontaVista extended the use of the SMP lock mechanism to the uniprocessor
configuration and added additional preemption checks to the SMP lock and
interrupt processing, thus creating a more responsive Linux kernel. The SMP
lock mechanism indicates whether or not preemption is permissible. When an
interrupt occurs or a SMP lock is released the scheduler checks the status of
the SMP lock counter. If it has a value of zero then preemption is allowed but
if the value is non-zero then preemption is disabled. When preemption is
disabled all processes including those with a high priority must wait.
MontaVista also makes small modifications to the Linux scheduler to improve
its performance.

The MontaVista approach is implemented as a patch to the existing Linux
kernel and thus allows almost all of parts of the Linux operating system to
benefit for these enhancements. Linux drivers gain the most benefit from this
added preemptibility. If a driver is SMP safe then it will automatically accrue
this preemption capability. Drivers that are not SMP safe may not function
correctly with the MontaVista patch to the Linux kernel. In accordance with
the GNU Public License (GPL) principles MontaVista has made these
changes available to the general Linux community. Linus Torvalds has
included the MontaVista patch into the next release of the Linux kernel and
thus these enhancements are available in all versions of the kernel later than
version 2.5.4-pre6. The 2.5 series of kernels are alpha releases. The next
stable version of the Linux kernel that will incorporate the MontaVista
enhancements will be the 2.6 version of the kernel.

MontaVista Linux, given that it is supplied as a patch to the regular Linux
kernel, is capable of running on all the platforms that are currently supported
by Linux including the following: AMD, ARM, Hitachi SH, PowerPC, Intel
x86 and MIPS. For software development MontaVista uses the same standard
tool chain used by generic Linux and all Linux applications will run.

3.3.5 TimeSys Linux

TimeSys uses an approach to enhancing the responsiveness of the Linux
kernel that is similar to the technique implemented Montavista. The TimeSys
changes build upon the existing SMP locking mechanism but the TimeSys

12SMP - Symmetric Multi-Processing

DRDC Suffield TM 2004-060 15

implementation is significantly more sophisticated than the Montavista patch.
The TimeSys enhancement replaces the SMP lock mechanism with kernel
mutex locks. While a SMP lock disables all preemption, a mutex lock is a
mechanism for controlling access to shared resources and thus does not
disable all kernel threads and processes. With a mutex lock only the kernel
threads or processes that are vying for access to the same resource are affected
by the mutex lock. This nuance is best explained by way of an analogy
provided by Timesys. “As an analogy, in a city with many traffic lights, using
a spinlock or disabling preemption to ensure that only one car is in any
intersection at any time would freeze all traffic in a city whenever any car
entered any intersection. In contrast, using a mutex would only stop traffic
from entering the specific intersection that the car is passing through. Traffic
would continue to move everywhere else.”[2] While the TimeSys
enhancements to the Linux kernel are theoretically superior to the changes
championed by MontaVista, the TimeSys implementation has significant
implications in terms of its compatibility with existing Linux device drivers.
These implications are evident in the TimeSys release for the Embedded
Planet EP405 board where the TimeSys kernel broke support for the PCI bus
and the USB bus.

The Timesys patch is available under the GPL though unlike the MontaVista
patch there does not seem to be any momentum to include the TimeSys
changes into future releases of the Linux kernel. The commitment of TimeSys
Inc. to the principles of the Open Source community is unclear. Though
TimeSys has made its source code available with the distribution of its version
of the Linux kernel, it has not made these changes readily available on the
internet.

TimeSys Linux runs under a wide variety of architectures, including: AMD,
ARM, Hitachi SH, PowerPC, Intel x86/xScale, Sparc and MIPS. As with all
Linux based systems TimeSys uses the standard GNU tool chain and supports
all standard Linux applications13. The TimeSys commerical model directs all
support to a paid TimeSys programs. They do not seem to support or
encourage input from external sources and this makes it difficult to judge
TimeSys’s market acceptance. The best clue about TimeSys’ acceptance is
found in its lack of acceptance by Linus Torvalds. Linus has chosen to
incorporate MontaVista’s kernel modifications into the 2.6 kernel of Linux
and has passed on using the TimeSys approach.

3.3.6 eCos

eCos stands for the “Embedded Configurable Operating System” and is an
open source, royalty-free, license-free, real-time operating system for deeply
embedded applications. It is partially supported by RedHat and has a strong

13Assuming these applications are not dependent upon a device driver and hardware.

16 DRDC Suffield TM 2004-060

developer community. eCos has been designed to support applications with
real-time requirements, providing features such as full preemptibility, minimal
interrupt latencies and all the necessary synchronization primitives,
scheduling policies and interrupt handling mechanisms needed for these types
of applications. eCos supports a wide range of target architectures including:
ARM, Hitachi SH3/4, MIPS, NEC V850, Panasonic AM3x, PowerPC,
SPARC and x86.

The GNU tool chain is the standard development environment for eCos. The
support for third party applications under eCos is limited. This is mainly due
to the processors that eCos targets which are limited in processing power and
memory. eCos is a relatively new entry that has somewhat of a checkered past.
It was originally developed by Cygnus, who was then acquired by RedHat.
RedHat dropped official support for eCos and has instead given eCos to the
user community. How well the eCos user community will fair in the long run
as an unknown at this point.

3.3.7 RTEMS

RTEMS stands for the “Real Time Executive for Multiprocessor Systems”. It
was originally developed by OAR Corp. for the U.S. DoD14. It eventually
followed the open source model and is now licensed under a GPL variant.
Even though RTEMS is now an open source operating system the company
that developed it, OAR Corp., is still actively involved with enhancing this
operating system.

Unlike a majority of the operating systems reviewed in this section, RTEMS is
a true real-time operating system (RTOS) that has been designed from the
ground up with real-time capabilities. It is targeted for embedded systems that
may be memory limited in nature. It has a modular design that allows the
operating system to be compiled with a varying levels of capabilities15. The
pure real-time design of RTEMS allows all system services and libraries to be
directly available to any application task. RTEMS is compliant to the POSIX
1003.1b API, the uITRON 3.0 API as well as its own RTEID/ORKID based
classic API. Additionally, RTEMS has been certified for use in military
systems by the U.S. DoD. This certification could be a potential benefit
if/when UGV’s are enabled to use lethal force.

RTEMS supports a wide range of CPU architectures including: Motorola 68k,
ColdFire, Hitachi SH, Intel i386, Intel i960, MIPS, PowerPC, SPARC, AMD
A29k and HP PA-RISC. This wide range of supported architectures is a
testament to RTEMS portable design which eases its porting to new
architectures.

14At one time the M in RTEMS signified Missile, then was changed to signify Military before finally becoming
Multiprocessor.

15For example if an ethernet interface is not available RTEMS can be compiled without networking support.

DRDC Suffield TM 2004-060 17

RTEMS uses the GNU Tool Chain with the primary programming languages
being C/C++ and Ada. Like eCos the list of available third party applications
is limited for RTEMS. RTEMS has a signficant user base that includes mainly
military and research type institutions16. With RTEMS having a core client
with the U.S. military its use in both military and non-military applications
should continue to grow.

3.3.8 Linux Operating System Performance

Various studies have been undertaken to quantify the performance of the
standard Linux kernel as well as the performance of the competing
enhancements to the kernel that make it more responsive. This performance is
usually measured in terms of the average latency and the maximum latency of
Linux processes17. Latency under Linux usually refers to the scheduler
latency since it is this latency that dominates all others. Scheduler latency is
the time between a wakeup signaling that an event has occurred and the kernel
scheduler getting an opportunity to schedule the thread that is waiting for the
wakeup to occur.

Benchmarks conducted by TimeSys compare the performance of the TimeSys
enhancements to various other Linux configurations such as standard Linux18.
Table 2 shows the results of these tests.

Operating System Average Latency (us) Maximum Latency (us)

Standard Linux <10,000 100,000
Linux with Preemptible Kernel <1,000 100,000

TimeSys Linux GPL <50 1,000
TimeSys Linux/Real-Time <10 51

Table 2: Kernel Preemption Latency Comparison[2]

The Linux scheduler was bench-marked by RedHat in the spring of 2002 to
compare the performance of two different lower latency patches with the
standard Linux kernel. These benchmarks were performed for the 2.4.17
kernel on an AMD 700 MHZ Duron system with 360 MB RAM and a 20 GB
Western Digital IDE drive. The tests were performed while stressing the
Linux kernel by simultaneously executing six different stressing applications.
The tests were executed for a period of 41 minutes. Table 3 shows the
benchmarks derived by the RedHat investigations.

For these benchmarks the preemptive patch is the same as the MontaVista

16RTEMS is use extensively the physics community in controlling high enery particle accelerators.
17Interrupt latency on recent x86 hardware in in the order of 10us, the interrupt handler latency is in the low 100’s

us, while the scheduler has a latency in the realm of a few microseconds[3].
18For this comparison TimeSys did not define the kernel revision used, the hardware platform nor their definition

of kernel preemption latency.

18 DRDC Suffield TM 2004-060

Metric Standard Linux Preemptive Patch Low Latency Patch

Ave. Latency ms 0.0883 0.0529 0.0543
Max. Latency ms 232.6 45.2 1.3

<0.1 ms 92.84% 97.95% 96.66%
<0.2 ms 97.08% 99.56% 99.21%
<0.5 ms 99.73% 99.97% 99.996%
<0.7 ms 99.84% 99.99% 99.9998%
<1 ms 99.94% 99.997% 99.99999%
<5 ms 99.97% 99.9995%

<10 ms 99.98% 99.9998%
<50 ms 99.986%
<100 ms 99.988%

Table 3: RedHat Benchmarks of the Linux Scheduler[3]

changes to the Linux kernel. The low latency patch was introduced by Ingo
Molnar and focuses on introducing explicit preemptions points into blocks of
code where the kernel may execute for long stretches of time. While the
MontaVista approach is kernel independent, the low latency patch requires a
detailed profiling of each kernel revision and tweaking of the kernel code.

The TimeSys and RedHat benchmarks show that modifications can be made to
the Linux kernel that significantly improve its performance. The MontaVista
preemptive patch, the low latency patch and the TimeSys enhancements
improve the performance of the Linux kernel such that it is eminently usable
under soft real-time conditions. The RedHat benchmarks document the exact
configuration used during the tests but unfortunately the TimeSys results
make no reference to either the kernel versions used, the hardware platform or
the stress testing placed on the Linux kernel. As a result it is not easy to make
comparisons between the two sets of benchmarks. While TimeSys Linux
seems to have the advantage of a lesser maximum latency, the average latency
of all these three approaches seem to be very similar19. The MontaVista patch
has the advantage that it has been given the nod by Linus Torvalds to be
included in the next release of the Linux kernel, which will be version 2.6.

3.3.9 Summary

This section has reviewed a selection of open source operating systems. The
ALS project at DRDC Suffield requires an operating system(s) that will
compliment the scalability and flexibility of the corresponding UGV
Electronic Hardware Architecture [1]. The above survey shows that it is not
possible for a single operating system to meet all the requirement listed in the
evaluation criteria. Operating systems that suitable for hard real-time

19Since TimeSys did not publish their benchmark configuration this statement can not be made conclusively.

DRDC Suffield TM 2004-060 19

applications, on small embedded micro-processors, do not have a large pool
of third party applications available. Conversely, operating systems that have
a large based of third party applications are not well suited for hard real-time
operations. This paradox is not surprising since general purpose operating
systems, which have a large pool of third party applications, cater to largest
user group which is the realm of the desktop computer user. While on the
other hand, pure real-time time systems target an audience where performance
is the key factor and applications are less significant. The RTLinux and RTIA
operating systems try to bridge this divide by offering both real-time
performance with access to all the capabilities and applications associated
with a general purpose operating system. The major deficiencies of this
approach is the limited support processor architectures, the difficulty of using
the real-time sub-kernel and the lacked of compatibility with standard Linux
device drivers20. Timesys Linux attempts to bridge this divide by converting
Linux into a true real-time, pre-emptible operating system. While this
approach is theoretically the most appealing, the difficulties in converting a
monolithic general purpose kernel to a responsive real-time kernel are large.
The Timesys approach has introduced incompatibilities with existing Linux
device drivers which has thus far limited its appeal. While Timesys has had
success, Linus Torvalds has opted to use approach pioneered by MontaVista
Linux which probably means that the Timesys modifications to the Linux
kernel will never enter the main stream of use.

Given the distributed nature of the UGV Electronic Hardware Architecture[1]
it is feasible to implement a mixture of soft and hard real-time operating
systems, using the hard real-time capabilities only where required and using
soft real-time capabilities for less time sensitive applications. This approach
allows UGV’s to benefit from both the real-time performance and the ease of
use perspectives. It also allows for the selection of operating systems that are
optimum for the roles they will perform.

The UGV Electronic Hardware Architecture has a requirement for hard
real-time capabilities at the control layer where software is interacting, in
real-time, with external devices. At this layer the RTEMS operating system
will be used. RTEMS has all the capabilities that will enable software to
respond to external devices in a deterministic and real-time manner. The
design of the RTEMS kernel is such that it is fully preemptible thus giving it
latencies that are amenable to the interactions with external devices. RTEMS
also has a military heritage that could eventually a useful asset for the ALS
project. RTEMS was chosen over eCos mostly due to its long history of stable
use and its established user community.

At the High Level and Intermediate Level Intelligence Layers of the UGV

20In clarification standard Linux device drivers operate but they execute under the Linux thread, and thus they do
not meet real-time constraints.

20 DRDC Suffield TM 2004-060

Electronic Hardware Architecture, where only soft real-time capabilities are
required, the ALS project will use standard Linux. If the Linux 2.4 kernel
version is used, the MontaVista preemptive patch will be applied. When the
Linux 2.6 kernel becomes available the ALS project will standardize on it
since it will incorporate the preemptive patch that was pioneered by
MontaVista.

The use of the POSIX standards will assist the ALS project in achieving the
portability, flexibility and scalability that is required to allow the program to
seamlessly support multiple UGV platforms. RTEMS completely complies to
the POSIX 1003.1b standard while Linux fully supports the 1003.1 standard
and partially supports the 1003.1b standard. Patches are available for Linux
that enhance its support of the 1003.1b standard. By using the POSIX API the
process of moving code between the Linux and RTEMS operating systems
will be a fairly seamless process that will not require a significant amount of
effort. Software developed for the ALS project will adhere to the POSIX
standard where possible and feasible.

4. Conclusions

This document has described the software development environment that will be used
by the ALS project for developing autonomous unmanned ground vehicles. The
software development environment defines five keys aspects of the software
development process:

1. The ALS project supports the Open Source Model and will use Open Source tools
wherever possible.

2. The C and C++ languages will be used for all software development related to the
core competence of the ALS project.

3. All software will use the GCC tool chain for compiling the high level languages
into the machine code instructions that are used at the processor level.

4. The Linux operating system will be used for software that has soft real-time or
lesser constraints. For software that interacts with external devices that impose
hard real-time restraints the RTEMS operating system will be used.

5. All software developed will adhere to the POSIX 1003.1 and 1003.1b extensions
wherever possible.

This software development environment defines a set of standards, tools, languages and
applications that are well suited to meet the needs of the ALS project. The proposed
environment defines a model for developing software that protects DRDC’s investment
in the intellectual property that the software represents while maintaining the flexibility

DRDC Suffield TM 2004-060 21

and scalability that is required for compatibility with UGV Electronic Hardware
Architecture.

This software development environment will allow the software developed under the
ALS project to be used across a range of UGV platforms that feature diverse
requirements. It will allow the researchers working on the ALS project to concentrate
on developing algorithms that enable and enhance UGV autonomy while having
minimal concerns about algorithm compatibility between the various types of UGV
platforms.

22 DRDC Suffield TM 2004-060

References

1. Broten, G. and Monckton, S. (2004). Unmanned Ground Vehicle Electronic
Hardware Architecture. Technical Memorandum. DRDC. Suffield TM 2004-122.

2. Locke, D. (2002). A TimeSys Perspective on the Linux Preemptible Kernel. No.
V1.0. TimeSys Corporation.

3. Williams, C. (2002). Linux Scheduler Latency. Technical Report. Red Hat Inc.

4. Dudek, G. and Jenkin, M. (2000). Computational Principles of Mobile Robotics,
Cambridge, UK: Cambridge University Press. p. 10.

5. Lutz, M.H. and P.A., Laplante (2003). C# and the .NET Framework: Ready for
Real Time? IEEE Software Real Time Systems -
http://www.computer.org/software/homepage/2003/s1lap.htm?SMSESSION=NO.

6. Petrele, N. (2003). Debunking the Linux-Windows market-share myth. LinuxWorld
- http://www.linuxworld.com/story/32648.htm.

7. Gonsalves, A (2003). Microsoft Faces Linux Threat in SMB Market. Internetweek
- http://www.internetweek.com/story/showArticle.jhtml?articleID=12800636.

DRDC Suffield TM 2004-060 23

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor’s report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Suffield
PO Box 4000, Medicine Hat, AB, Canada T1A 8K6

2. SECURITY CLASSIFICATION
(overall security classification of the document
including special warning terms if applicable).

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C,R or U) in parentheses after the title).

Unmanned Ground Vehicle Software Development Environment

4. AUTHORS
(Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)

Broten, G. ; Verret, S. ; Digney, B.

5. DATE OF PUBLICATION (month and year of publication of document)

June 2004

6a. NO. OF PAGES (total
containing information. Include
Annexes, Appendices, etc).

33

6b. NO. OF REFS (total cited in
document)

7

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered).

Technical Memorandum

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include address).

Defence R&D Canada – Suffield
PO Box 4000, Medicine Hat, AB, Canada T1A 8K6

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research and
development project or grant number under which the document was
written. Specify whether project or grant).

9b. CONTRACT NO. (if appropriate, the applicable number under which
the document was written).

10a. ORIGINATOR’S DOCUMENT NUMBER (the official document number
by which the document is identified by the originating activity. This
number must be unique.)

DRDC Suffield TM 2004-060

10b. OTHER DOCUMENT NOs. (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to the Document
Availability (11). However, where further distribution beyond the audience specified in (11) is possible, a wider announcement audience may be
selected).

Unlimited

Unlimited

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the
abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the
information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in
both official languages unless the text is bilingual).

The Autonomous Intelligent Systems (Land) initiative has been tasked with researching and developing in-
novative autonomous vehicles that will assist the Canadian Forces in performing their duties in the 22nd
century. This research will continue for many years on many different types of unmanned ground vehicles.
Thus it requires a software development environment that will protect what will become a substantial invest-
ment in intellectual property that is implemented in software algorithms. This environment must be based
upon standards that are as universally supported as possible. The software development environment must
also be compatible with the Autonomous Land Systems (ALS) project Unmanned Ground Vehicle Electronic
Hardware Architecture. This report describes the software development environment developed for the ALS
project. The environment is based upon open standards and meets the diverse requirements of the project.
This environment is currently being used by all applications being developed for unmanned ground vehicles
(UGV) at DRDC Suffield under the ALS project.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in
cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade
name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus. e.g.
Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the
classification of each should be indicated as with the title).

Unmanned ground vehicles,
robotics,
autonomous vehicles,
software development environment

Unlimited

Unlimited

