
Chatwork API Documentation

Chatwork API Documentation

© Chatwork

1. What’s Chatwork API?

2. Chatwork API Endpoints

3. OAuth

4. Webhook

Chatwork API Documentation

© Chatwork

What’s Chatwork API?
Chatwork API is an API provided for developers to programmatically interact with Chatwork's services. It enables you to
integrate Chatwork’s features into your own web application and business system. Chatwork API can be used to make
a web server notify the administrator when an error occurs, or make a project management tool send out messages to
other Chatwork users when tasks status are updated.

Before You Start
If you are using Business or Enterprise plan, you need to have a permission from admin user to use APIs.
Please submit your request from the link below.

Submit Your Request

1/26/2017 - Chatwork API update announcement

https://www.chatwork.com/service/packages/chatwork/subpackages/api/request.php
http://support-en.chatwork.com/hc/en-us/articles/115000511946-01-26-2017-Chatwork-API-Update-Notice

Chatwork API Documentation

© Chatwork

Chatwork API Endpoints

Chatwork API Documentation

© Chatwork

RAML
Chatwork API's architecture is designed and maintained in RAML (RESTful API Modeling Language). API gateway,
application interface, and this API documentation are all automatically generated from one RAML document to maintain
consistency among each other.

RAML is a YAML based specification to describe and model RESTful APIs. There are various tools you can use to
easily generate API documentation from a RAML document (here are some RAML related projects).

Example Tool: RAML API Designer

CharWork API’s RAML Document
RAML document for Chatwork API is open to the public on GitHub. Please use the repository to check for updates in
our API specification.

http://raml.org/index.html
http://raml.org/projects.html
http://api-portal.anypoint.mulesoft.com/raml/api-designer?ref=apihub#/api-designer
https://github.com/chatwork/api/blob/master/RAML/api-ja.raml

Chatwork API Documentation

© Chatwork

Chatwork API Endpoints
Chatwork API is designed according to the REST architectural style. In Chatwork API, a unique URI is given to each of
the API resource. These are called API endpoints. You can interact with the Chatwork API by passing parameters
through HTTP request methods such as GET, POST, PUT, and DELETE.

The base URI for the API endpoint is https://api.chatwork.com/v2.
You will need to add the unique endpoint path to the base URI path to use the desired API method (for example, to use
“/me” you will write “https://api.chatwork.com/v2/me”).

In the future, when the API version is updated, "/v2" part of the path will be modified.
You will be given a certain transition time to accommodate the change when an API version is updated.

http://en.wikipedia.org/wiki/Representational_state_transfer

Chatwork API Documentation

© Chatwork

HTTP Request
Chatwork API requires that connection to the API endpoint is made with https (secure protocol). Using http will result in
a connection error.

As it was discussed earlier in the Authentication section, every HTTP request must include the API token in its header
field. The key name used to set the value of the API token in the HTTP header field is "X-ChatWorkToken".

PUT or DELETE method must be used to update or delete a resource. For systems that do not support these methods,
it is also possible to specify the HTTP mehod in the URL's query string (i.e. "?method=PUT" or "?method=DELETE").

[important] Since API tokens do not have expiration date, it is important to keep the API token secure. Be sure to set the
API token in the HTTP header field and NOT in the URL query string.

Chatwork API Documentation

© Chatwork

HTTP Response
The HTTP response you get back from the Chatwork API will be in JSON format. The response body in JSON format
will not include any information to indicate whether or not the request was processed successfully. To find out if you
have a successful response, you can check the HTTP status code in the response header.

The output below shows the result from executing "GET /my/status" which returns you information about how many
unread messages you have and more.

HTTP/1.1 200 OK

Content-Type: application/json

{

 "unread_room_num": 2,

 "mention_room_num": 1,

 "mytask_room_num": 3,

 "unread_num": 12,

 "mention_num": 1,

 "mytask_num": 8

}

HTTP Response Header

HTTP Response Body

Chatwork API Documentation

© Chatwork

HTTP Response
If an error occurs, the response header will contain the corresponding HTTP status code and the response body will
contain the error message in JSON format.
Below is a case where the API token was not valid.

HTTP/1.1 401 Unauthorized

Content-Type: application/json

{

 "errors": ["Invalid API token"]

}

HTTP Response Header

HTTP Response Body

Error message will be returned in array format under key name "errors"

Chatwork API Documentation

© Chatwork

API Usage Limits
Number of API requests you can make in 5 minutes is limited to 300 times (This limit could possibly change in the
future). Number of remaining API calls and the reset time can be obtained from the response header.

HTTP/1.1 200 OK

Content-Type: application/json

X-RateLimit-Limit: 300

X-RateLimit-Remaining: 244

X-RateLimit-Reset: 1390941626

Example Response Header

Each field has the following meaning:
X-RateLimit-Limit: Maximum number of calls you can make in the time frame
X-RateLimit-Remaining: Remaining number of calls you can make
X-RateLimit-Reset: Time at which the limit will next be reset (Unix time)

If you exceed the limit, the API will return response with status code: 429 Too Many Request error.

HTTP/1.1 429 Too Many Requests

Content-Type: application/json

X-RateLimit-Limit: 300

X-RateLimit-Remaining: 0

X-RateLimit-Reset: 1390941626

Example Response Header

Chatwork API Documentation

© Chatwork

Chatwork API Endpoints

● /me

○ GET: /me

● /my

○ GET: /my/status

○ GET: /my/tasks

● /contacts

○ GET: /contacts

● /rooms

○ GET: /rooms

○ POST: /rooms

○ GET: /rooms/{room_id}

○ PUT: /rooms/{room_id}

○ DELETE: /rooms/{room_id}

○ GET: /rooms/{room_id}/members

○ PUT: /rooms/{room_id}/members

○ GET: /rooms/{room_id}/messages

○ POST: /rooms/{room_id}/messages

○ GET: /rooms/{room_id}/messages/{message_id}

○ GET: /rooms/{room_id}/tasks

○ POST: /rooms/{room_id}/tasks

○ GET: /rooms/{room_id}/tasks/{task_id}

○ GET: /rooms/{room_id}/files

○ GET: /rooms/{room_id}/files/{file_id}

Chatwork API Documentation

© Chatwork

Endpoints: /me
Used to access your account information.

[GET] /me
Get your account information
curl -X GET -H "X-ChatWorkToken: Your API token" "https://api.chatwork.com/v2/me”

Response:

{
 "account_id": 123,
 "room_id": 322,
 "name": "John Smith",
 "chatwork_id": "tarochatworkid",
 "organization_id": 101,
 "organization_name": "Hello Company",
 "department": "Marketing",
 "title": "CMO",
 "url": "http://mycompany.com",
 "introduction": "Self Introduction",
 "mail": "taro@example.com",
 "tel_organization": "XXX-XXXX-XXXX",
 "tel_extension": "YYY-YYYY-YYYY",
 "tel_mobile": "ZZZ-ZZZZ-ZZZZ",
 "skype": "myskype_id",
 "facebook": "myfacebook_id",
 "twitter": "mytwitter_id",
 "avatar_image_url": "https://example.com/abc.png"
}

Chatwork API Documentation

© Chatwork

Endpoints: /my
Used to access your data on the account.

{
 "unread_room_num": 2,
 "mention_room_num": 1,
 "mytask_room_num": 3,
 "unread_num": 12,
 "mention_num": 1,
 "mytask_num": 8
}

[GET] /my/status
Get the number of: unread messages, unread To messages, and unfinished tasks.

curl -X GET -H "X-ChatWorkToken: Your API token" "https://api.chatwork.com/v2/my/status"

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /my

[
 {
 "task_id": 3,
 "room": {
 "room_id": 5,
 "name": "Group Chat Name",
 "icon_path": "https://example.com/ico_group.png"
 },
 "assigned_by_account": {
 "account_id": 78,
 "name": "Anna",
 "avatar_image_url": "https://example.com/def.png"
 },
 "message_id": "13",
 "body": "buy milk",
 "limit_time": 1384354799,
 "status": "open"
 }
]

[GET] /my/tasks
Get the list of all unfinished tasks (*This method returns up to 100 entries. We are planning to implement pagination to
support larger number of data retrieval)

curl -X GET -H "X-ChatWorkToken: Your API token"
"https://api.chatwork.com/v2/my/tasks?assigned_by_account_id=78&status=done"

Response:
[Parameter]

assigned_by_account_id [integer]
Account ID of the person who assigned task

status [string] [enum]
Task status

enum values:

Example input 78

Example input done

open,done

Chatwork API Documentation

© Chatwork

Endpoints: /contacts
Used to access the list of your contacts

[
 {
 "account_id": 123,
 "room_id": 322,
 "name": "John Smith",
 "chatwork_id": "tarochatworkid",
 "organization_id": 101,
 "organization_name": "Hello Company",
 "department": "Marketing",
 "avatar_image_url": "https://example.com/abc.png"
 }
]

[GET] /contacts
Get the list of your contacts

curl -X GET -H "X-ChatWorkToken: Your API token" "https://api.chatwork.com/v2/contacts”

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /rooms
Used to access information such as messages, members, files, and tasks associated to a specific conversation. The
conversation can be Group chat, Direct chat, or My chat.

[
 {
 "room_id": 123,
 "name": "Group Chat Name",
 "type": "group",
 "role": "admin",
 "sticky": false,
 "unread_num": 10,
 "mention_num": 1,
 "mytask_num": 0,
 "message_num": 122,
 "file_num": 10,
 "task_num": 17,
 "icon_path": "https://example.com/ico_group.png",
 "last_update_time": 1298905200
 }
]

[GET] /rooms
Get the list of all chats on your account

curl -X GET -H "X-ChatWorkToken: Your API token" "https://api.chatwork.com/v2/rooms"

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /rooms
Used to access information such as messages, members, files, and tasks associated to a specific conversation. The
conversation can be Group chat, Direct chat, or My chat.

{
 "room_id": 1234
}

[POST] /rooms
Create a new group chat

curl -X POST -H "X-ChatWorkToken: Your API token" -d
"description=group+chat+description&icon_preset=meeting&members_admin_ids=123%2C542%2C1001&members_m
ember_ids=21%2C344&members_readonly_ids=15%2C103&name=Website+renewal+project"
"https://api.chatwork.com/v2/rooms”

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

[POST] /rooms

[Parameter]

description [string]
Chat Description
Description of the group chat

group, check, document, meeting, event, project, business, study,
security, star, idea, heart, magcup, beer, music, sports, travel

icon_preset [string][enum]
Icon Type
Type of the group chat icon

enum values:

members_admin_ids [integer] [list] [reqired]
Group Chat Administrators
List of user IDs who will be given administrator permission for the group
chat. At least one user must be specified as an administrator.

members_member_ids [integer] [list]
Group Chat Members
List of user IDs who will be given member permission for the group
chat.

members_readonly_ids [integer] [list]
Group Chat Read-only Users
List of user IDs who will be given read-only permission for the group
chat.
*Use commas to separate each entry in the list

members_admin_ids [string] [reqired]
Group Chat Name
Title of the group chat.

Example input group chat description

Example input meeting

Example input 123,542,1001

Example input 21,344

Example input 15,103

Example input Website renewal project

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

{
 "room_id": 123,
 "name": "Group Chat Name",
 "type": "group",
 "role": "admin",
 "sticky": false,
 "unread_num": 10,
 "mention_num": 1,
 "mytask_num": 0,
 "message_num": 122,
 "file_num": 10,
 "task_num": 17,
 "icon_path": "https://example.com/ico_group.png",
 "last_update_time": 1298905200,
 "description": "room description text"
}

[GET] /rooms/{room_id}
Get chat name, icon, and Type (my, direct, or group)

curl -X GET -H "X-ChatWorkToken: Your API token" "https://api.chatwork.com/v2/rooms/{room_id}"

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

{
 "room_id": 1234
}

[PUT] /rooms/{room_id}
Change the title and icon type of the specified chat

curl -X PUT -H "X-ChatWorkToken: Your API token" -d
"description=group+chat+description&icon_preset=meeting&name=Website+renewal+project"
"https://api.chatwork.com/v2/rooms/{room_id}”

Response:

[Parameter]

description [string]
Chat Description
Description of the group chat

icon_preset [string] [enum]
Icon Type
Type of the group chat icon

enum values:

Example input group chat description

Example input meeting

group, check, document, meeting, event, project, business, study, security,
star, idea, heart, magcup, beer, music, sports, travel

name [string]
Group Chat Name
Title of the group chat.

Example input Website renewal project

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

[DELETE] /rooms/{room_id}
Leave/Delete a group chat

curl -X DELETE -H "X-ChatWorkToken: Your API token" -d "action_type=leave"
"https://api.chatwork.com/v2/rooms/{room_id}”

Response:
none

[Parameter]

action_type [string] [enum] [reqired]
Chat Description
Description of the group chat

enum values:

Example input group chat description

leave, delete

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

[
 {
 "account_id": 123,
 "role": "member",
 "name": "John Smith",
 "chatwork_id": "tarochatworkid",
 "organization_id": 101,
 "organization_name": "Hello Company",
 "department": "Marketing",
 "avatar_image_url": "https://example.com/abc.png"
 }
]

[GET] /rooms/{room_id}/members
Get the list of all chat members associated with the specified chat

curl -X GET -H "X-ChatWorkToken: Your API token" "https://api.chatwork.com/v2/rooms/{room_id}/members”

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

{
 "admin": [123, 542, 1001],
 "member": [10, 103],
 "readonly": [6, 11]
}

[PUT] /rooms/{room_id}/members
Change associated members of group chat at once

curl -X PUT -H "X-ChatWorkToken: Your API token" -d
"members_admin_ids=123%2C542%2C1001&members_member_ids=21%2C344&members_readonly_ids=15%2C10
3" "https://api.chatwork.com/v2/rooms/{room_id}/members”

Response:
[Parameter]

members_admin_ids [integer] [list] [reqired]
Group Chat Administrators
List of user IDs who will be given administrator permission for the group
chat. At least one user must be specified as an administrator.

members_member_ids [integer] [list]
Group Chat Members
List of user IDs who will be given member permission for the group
chat.

members_readonly_ids [integer] [list]
Group Chat Read-only Users
List of user IDs who will be given read-only permission for the group
chat.

Example input 123,542,1001

Example input 21,344

Example input 15,103

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

[
 {
 "message_id": "5",
 "account": {
 "account_id": 123,
 "name": "Bob",
 "avatar_image_url": "https://example.com/ico_avatar.png"
 },
 "body": "Hello Chatwork!",
 "send_time": 1384242850,
 "update_time": 0
 }
]

[GET] /rooms/{room_id}/messages
Get all messages associated with the specified chat (returns up to 100 entries).
If the parameter is not set, it returns the next 100 entries from previous call.

curl -X GET -H "X-ChatWorkToken: Your API token" "https://api.chatwork.com/v2/rooms/{room_id}/messages”

Response:

[Parameter]

force [boolean]
Flag which forces to get 100 newest entries regardless of previous
calls.
※Set to 1 to start from the beginning regardless of previous calls (0 is
the default value)

Example input 0

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

{
　"message_id": "1234"
}

[POST] /rooms/{room_id}/messages
Add new message to the chat

curl -X POST -H "X-ChatWorkToken: Your API token" -d "body=Hello+Chatwork%21&self_unread=0"
"https://api.chatwork.com/v2/rooms/{room_id}/messages”

Response:

[Parameter]

body [string] [required]
message body

self_unread [boolean]
Make the messages you posted unread
※By setting this as 1, the messages you posted is turned to unread (0
is the default value: read)

Example input Hello Chatwork!

Example input 0

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

{
 "message_id": "5",
 "account": {
 "account_id": 123,
 "name": "Bob",
 "avatar_image_url": "https://example.com/ico_avatar.png"
 },
 "body": "Hello Chatwork!",
 "send_time": 1384242850,
 "update_time": 0
}

[GET] /rooms/{room_id}/messages/{message_id}
Get information about the specified message

curl -X GET -H "X-ChatWorkToken: Your API token"
"https://api.chatwork.com/v2/rooms/{room_id}/messages/{message_id}”

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

[
 {
 "task_id": 3,
 "account": {
 "account_id": 101,
 "name": "Bob",
 "avatar_image_url": "https://example.com/abc.png"
 },
 "assigned_by_account": {
 "account_id": 456,
 "name": "Anna",
 "avatar_image_url": "https://example.com/def.png"
 },
 "message_id": "13",
 "body": "buy milk",
 "limit_time": 1384354799,
 "status": "open"
 }
]

[GET] /rooms/{room_id}/tasks
Get the list of tasks associated with the specified chat (*This method returns up to 100 entries. We are planning to
implement pagination to support larger number of data retrieval)

curl -X GET -H "X-ChatWorkToken: Your API token"
"https://api.chatwork.com/v2/rooms/{room_id}/tasks?account_id=101&assigned_by_account_id=78&status=done”

Response:
[Parameter]

account_id [integer]
Account ID of the person responsible to complete the task

assigned_by_account_id [integer]
Group Chat Members
Account ID of the person who assigned the task

status [integer] [enum]
Status of the task

enum values:

Example input 101

Example input 78

Example input done

open, done

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

{
 "task_ids": [123,124]
}

[POST] /rooms/{room_id}/tasks
Add a new task to the chat

curl -X POST -H "X-ChatWorkToken: Your API token" -d "body=Buy+milk&limit=1385996399&to_ids=1%2C3%2C6"
"https://api.chatwork.com/v2/rooms/{room_id}/tasks"

Response:
[Parameter]

body [string] [required]
Task description

limit [integer]
When the task is due
* Use Unix time as input

to_ids [integer] [list] [required]
Account ID of the person/people responsible to complete the task
If multiple, IDs must be separated by comma

Example input Buy milk

Example input 1385996399

Example input 136

https://api.chatwork.com/v1/rooms/%7Broom_id%7D/tasks

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

{
 "task_id": 3,
 "account": {
 "account_id": 123,
 "name": "Bob",
 "avatar_image_url": "https://example.com/abc.png"
 },
 "assigned_by_account": {
 "account_id": 456,
 "name": "Anna",
 "avatar_image_url": "https://example.com/def.png"
 },
 "message_id": "13",
 "body": "buy milk",
 "limit_time": 1384354799,
 "status": "open"
}

[GET] /rooms/{room_id}/tasks/{task_id}
Get information about the specified task

curl -X GET -H "X-ChatWorkToken: (Your API Token)"
 "https://api.chatwork.com/v2/rooms/{room_id}/tasks/{task_id}”

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

[
 {
 "file_id": 3,
 "account": {
 "account_id": 101,
 "name": "Bob",
 "avatar_image_url": "https://example.com/ico_avatar.png"
 },
 "message_id": "22",
 "filename": "README.md",
 "filesize": 2232,
 "upload_time": 1384414750
 }
]

[GET] /rooms/{room_id}/files
Get the list of files associated with the specified chat
(*This method returns up to 100 entries. We are planning to implement pagination to support larger number of data
retrieval)

curl -X GET -H "X-ChatWorkToken: (Your API Token)"
"https://api.chatwork.com/v2/rooms/{room_id}/files?account_id=101"

Response:
[Parameter]

account_id [integer]
Account ID of the person who uploaded the file

Example input 101

Chatwork API Documentation

© Chatwork

Endpoints: /rooms

{
 "file_id":3,
 "account": {
 "account_id":123,
 "name":"Bob",
 "avatar_image_url": "https://example.com/ico_avatar.png"
 },
 "message_id": "22",
 "filename": "README.md",
 "filesize": 2232,
 "upload_time": 1384414750
}

[GET] /rooms/{room_id}/files/{file_id}
Get information about the specified file

curl -X GET -H "X-ChatWorkToken: (Your API Token)"
"https://api.chatwork.com/v2/rooms/{room_id}/files/{file_id}?create_download_url=1”

Response:

[Parameter]

create_download_url [boolean]
whether or not to create a download link
If set to true, download like will be created for 30 seconds.

Example input 1

Chatwork API Documentation

© Chatwork

Endpoints: /incoming_requests
You can access contact approval requests you received

[
 {
 "request_id": 123,
 "account_id": 363,
 "message": "hogehoge",
 "name": "John Smith",
 "chatwork_id": "tarochatworkid",
 "organization_id": 101,
 "organization_name": "Hello Company",
 "department": "Marketing",
 "avatar_image_url": "https://example.com/abc.png"
 }
]

[GET] /incoming_requests
You can get the list of contact approval request you received
(*This method returns up to 100 entries. We are planning to implement pagination to support larger number of data
retrieval)

curl -X GET -H "X-ChatWorkToken: (Your API Token)"
"https://api.chatwork.com/v2/incoming_requests"

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /incoming_requests

 {
 "account_id": 363,
 "room_id": 1234,
 "name": "John Smith",
 "chatwork_id": "tarochatworkid",
 "organization_id": 101,
 "organization_name": "Hello Company",
 "department": "Marketing",
 "avatar_image_url": "https://example.com/abc.png"
 }

[PUT] /incoming_requests/{request_id}
You can approve a contact approval request you received

curl -X PUT -H "X-ChatWorkToken: (Your API Token)"
"https://api.chatwork.com/v2/incoming_requests/{request_id}"

Response:

Chatwork API Documentation

© Chatwork

Endpoints: /incoming_requests

[DELETE] DELETE/incoming_requests/{request_id}
You can decline a contact approval request you received

curl -X DELETE -H "X-ChatWorkToken: (Your API Token)"
"https://api.chatwork.com/v2/incoming_requests/{request_id}"

Response:
none

Chatwork API Documentation

© Chatwork

OAuth

Chatwork API Documentation

© Chatwork

Authorization flow
Of the authorization flows (authorization grants) described in RFC6749, you can only use the
Authorization Code Grant type.

Features
All of the current Chatwork APIs are available.

Chatwork API Documentation

© Chatwork

How to use a Chatwork API from a client program

1. Client registration
You can register clients from the OAuth client creation screen.

Register the following parameters as client information.

Parameter Required Description

Client name ◯ The name of the client.

URL of the client's logo
This logo is displayed on the consent screen and in other
locations. If no URL is specified, the default logo is shown.

Redirect URIs ◯
Register at least one redirect URI. You can register up to five
redirect URIs. Redirect URIs must use https.

Scope ◯
Register at least one scope. The scopes you need to call all
Chatwork APIs are listed in the Appendix scope list .

Chatwork API Documentation

© Chatwork

2. Obtaining an authorization code
To obtain an authorization code, you need to access the consent screen via a web browser.

How to access the consent screen
The consent screen is displayed after you set the necessary query parameters and access the consent screen
(URL: https://www.chatwork.com/packages/oauth2/login.php).
*If the login screen is displayed, enter your authentication information and log in. The web browser is then
redirected to the consent screen.
Query parameters Parameter Specified Value Required Description

 response_type Strings ◯ Currently, only “code” is supported.

client_id Strings ◯ Specify the client ID.

redirect_uri
Strings

Choose from the URLs set during client registration.

For example: https://example.com/callback
 This is required if more than one redirect_uri is set, but optional if only one redirect_uri is set.

scope
Strings ◯

rooms.all:read_write

● Appendix scope list

 state Strings

This is a character string that is used as a countermeasure against CSRF attacks. It is managed by associating it with the
resource owner's session. When the resource owner approves or rejects authorization, the state string set here is set as the
query parameter and the web browser is redirected to redirect_uri.

After this, the state associated with the session is compared to the state string that was passed on as the query parameter.
Always take countermeasures against CSRF attacks in production runs.

For example: 343ab3341331218786ef

code_challenge Strings

● code_challenge string format
○ String length should be 43 to 128 characters
○ String should correspond to [a-zA-Z0-9-._~]+

● code_challenge value
○ code_challenge = URLSafe Base64(SHA256(code_verifier)))
○ code_verifier is used at token end point.

code_challenge_method Strings
 "S256" should be specified as a fixed value in order to use code_challenge,

https://www.chatwork.com/packages/oauth2/login.php

Chatwork API Documentation

© Chatwork

For example: URL for displaying the consent screen

https://www.chatwork.com/packages/oauth2/login.php?

response_type=code

&redirect_uri=https://example.com/callback.php

&client_id=Lvo0YN92ga5kP

&state=811435b3683ae95c1cf3197deaf1bfe4b411f587

&scope=rooms.all:read_write%20users.profile.me:read

&code_challenge=jlkGAsNvHshJNC7uXSSmC2tALONajPdupVf3TScb7zk

&code_challenge_method=S256

Chatwork API Documentation

© Chatwork

Generating the authorization code
When the resource owner clicks the "Authorize" button on the consent screen, an authorization code is generated. The
web browser is then redirected to redirect_uri after the authorization code is set as the query parameter.

For example: Redirect destinations when the authorization code is generated
● code

○ Authorization code with a validity period of 1 minute
● state

○ The value of the state specified when the consent screen is displayed

https://example.com/callback.php?

code=a2f0c1fe96af8c3a46fa0

&state=811435b3683ae95c1cf3197deaf1bfe4b411f587

Chatwork API Documentation

© Chatwork

Denying authorization
When the resource owner clicks the "Deny" button on the consent screen, authorization is denied, and the web
browser is redirected to redirect_uri.
● error

○ Set to access_denied
● state

○ The value of the state specified when the consent screen is displayed

https://example.com/callback.php?

error=access_denied

&state=811435b3683ae95c1cf3197deaf1bfe4b411f587

Limitations of the login screen
Authentication using SAML is not supported via the dedicated OAuth2 login screen. Log in using SAML
authentication via the regular login screen, then go to the consent screen again.
● Login screen

https://www.chatwork.com/login.php

Chatwork API Documentation

© Chatwork

3. Generating or regenerating an access token

Request

Endpoint
Use HTTP POST to access the following endpoint.

https://oauth.chatwork.com/token

Authentication
In accordance with Basic Authentication, specify the client ID as the user name and the client secret as the
password, join these with a colon (:), and encode the character string with Base64. You can obtain this
information via the client administration screen.

Authorization: Basic THZvMFl1OO==

Format of the request body

application/x-www-form-urlencoded

Chatwork API Documentation

© Chatwork

When regenerating an access token using a refresh token

Body parameters
When generating an access token with an authorization code

 Parameter Specified Value Required Description

grant_type Strings ◯ Specify authorization_code.

code Strings ◯
Specify the authorization code (Authorization Code) for
authorization.

redirect_uri Strings

Specify the value that was specified when the consent screen
is displayed.

For example: https://example.com/callback
 This is required if more than one redirect_uri is set, but
optional if only one redirect_uri is set.

code_verifier Strings
required if code_challenge and
code_challenge_method when

authorization request

● String length should be 43 to 128 characters
● String should correspond to [a-zA-Z0-9-._~]+

 Parameter Specified Value Required Description

 grant_type Strings ◯ Specify refresh_token.

 refresh_token Strings ◯
Specify the value of refresh_token that was generated when
the token was generated.

 scope Strings users.profile.me:read

Chatwork API Documentation

© Chatwork

Response

Format of the response body

application/json

Response body (identical whether a token is being generated or regenerated)

 JSON Field Name JSON Value nullable Ex Description

access_token String The validity period is 15 minutes.

refresh_token String
◯ The validity period is 14 days. (However, this

is subject to change)

token_type String ◯ Bearer

expires_in Int ◯ The validity period of the token. (In seconds)

scope String ◯

error String ◯ "invalid_grant" Field that is returned when an error occurs.

error_description String ◯ Field that is returned when an error occurs.

error_uri String ◯
Field that is returned when an error occurs.
Currently always null.

Chatwork API Documentation

© Chatwork

For example: Generating a token with the curl command

Request

curl -v --user 'Lvo0YN92ga5kP:secret' \
-X POST -d 'grant_type=authorization_code \
&code=26d13798facc9a0ca05a8cb7246020f15a311 \
&redirect_uri=https://127.0.0.1/callback' \
&code_verifier=5b0029bd34e559e0abe7a37051aa411398913fc3579e27bd963a2b9a647f12f58a335beeb4d83
a53a74ff1a6f99f6af385d2992c73beead39f57dcee95e0f954' \
https://oauth.chatwork.com/token

> POST /token HTTP/1.1
> Host: 127.0.0.1
> Authorization: Basic THZvMFlOOTJnYTVrUDphYmNkZWZnaGlqa2xu
bW9wcXJzdHV2d3h5ejAxMjM0NTY3ODk=
> Accept: */*
> Content-Length: 199
> Content-Type: application/x-www-form-urlencoded

< HTTP/1.1 200 OK
< Cache-Control: no-store
< Pragma: no-cache
< Content-Type: application/json
< Content-Length: 989

{
 "access_token": "eyJjdHkiOiJKV1QiLCJ0eXAiOiJKV1QiL
CJhbGciOiJSUzI1NiIsImtpZCI6ImlOUVh0dFR2RHZhcDVkSW
dWQiOiJodHRwczovL2FwaS5jaGF0d29yay5jb20iLCJzdWIi
BnRlQOXvXqymGijQXgqDOo3LLFY_k62OoPYAQ3UXkaum8
6Al-DJM6iC-043kBINbYLLPo0uwwsolmjRDG5zBzPC0GtcjXiLy4Gqg",
 "token_type": "Bearer",
 "expires_in": "1501138041000",
 "refresh_token": "86277ab4fd9d111bd3225215d96d6
22c9ae6810d82cd6d0e9530bf35adda67ab7d3c24e2a0
052e9d3b442ce212ca17ecf07ddbd8c3477aa3abde15e4ebcf7b53",
 "scope": "rooms.all:read_write"
}

Response

Chatwork API Documentation

© Chatwork

4. Accessing a Chatwork API

Request
When sending a request to a Chatwork API, use the Bearer authentication scheme to set
the access token (access_token) in the Authorization request header field instead of using
the usual Chatwork API authentication method.

Authorization: Bearer eyJjdHkiOiJKV1QiLCJ0eXAiOiJKV1QiLCJh
bGciOiJSUzI1NiIsImtpZCI6ImlOUVh0dFR2RHZhcDVkSWpGQzA5Z
HZadHFXaGQ2WmFRb2pKenVuUS1vV28ifQ.eyJhdWQiOiJodHRwcz
ovL2FwaS5jaGF0d29yay5jb20iLCJzdWIiOiIzIiwiYWNjb3VudF9pZC
I6IjMiLCJzY29wZSI6WyJhbGwiXSwiaXNzIjoiaHR0cHM6Ly9vYXV0a
C5jaGF0d29yay5jb20iLCJleHAiOjE1MDExMzgwNDEsImlhdCI6MTU
wMTEzNzE0MSwianRpIjoiOTcwNDAwOWItNTdlNi00NDU5LTg5NzMt
Njc3ZmM5YjA5MjgyIiwiY2xpZW50X2lkIjoiTHZvMFlOOTJnYTVrUCJ9.
BIS8QvyTHz7KK_fnmvc0fa8NQDOWy7v8Ni0LvLyuROE5UEi7l_Hx
DT8tHLTQLELIm3jOw4SiW94KPYwduRL467vJ2j2eNT-zTkCXtEN
8pxbA0HtnBrtCcp0dRJEMnfBegzkoAe8BTB6gee3rrXy6sQcLb19
WBrrHNbjICFL0--SG3IvPanOzABqiNMqfScnasTtj7xtIaNpbxf8LDIH3E
F150Iif4BqSczJr-XppBTBYuP32UlBnRlQOXvXqymGijQXgqDOo3LLFY
_k62OoPYAQ3UXkaum86Al-DJM6iC-043kBINbYLLPo0uwwsolmjRD
G5zBzPC0GtcjXiLy4Gqg

Response
Please see the documentation for the endpoint of each Chatwork API.

Chatwork API Documentation

© Chatwork

Errors
When the access token has been revoked or is invalid, error information is set in the WWW-Authenticate header
field.

For example: When the access token has been revoked

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer error="invalid_token",
error_description="The access token expired"

For example: Accessing a Chatwork API using the curl command

curl -v -H 'Authorization: Bearer eyJjdHkiOiJKV1QiLCJ0eXAiOiJKV1
QiLCJhbGciOiJSUzI1NiIsImtpZCI6ImlOUVh0dFR2RHZhcDVkSWpGQz
A5ZHZadHFXaGQ2WmFRb2pKenVuUS1vV28ifQ.eyJhdWQiOiJodHR
wczovL2FwaS5jaGF0d29yay5jb20iLCJzdWIiOiIxNzMiLCJhY2NvdW5
0X2lkIjoiMTczIiwic2NvcGUiOlsiYWxsIl0sImlzcyI6Imh0dHBzOi8vb2F1
dGguY2hhdHdvcmsuY29tIiwiZXhwIjoxNTAyMjUxNDU4LCJpYXQiOjE1
MDIyNDk2NTgsImp0aSI6IjRlNzg5ZTAzLTk2NjAtNDc4MC1hYThkLTV
mZjk2YmU0MzMyNSIsImNsaWVudF9pZCI6Ikx2bzBZTjkyZ2E1a1AifQ.
Y14Sr0SmtgwLegwWPMeQlPut2XmP74y3QdupCAN7Hc5Id10Qvgq-
csuYVxxAYStqZUO4sZ_j9SeE7-rqhuNowDMwqVaTGfDvAvtQLitPKD
Ub2g6x87c-lfffkJkIiL1xcH3lHrmQkBa_H81-_a3VFJila8hFptvygOp1
9OSDSrUIlcq6PeHlfNQtXjs2VFREQydQNE2cdLe68Nh5F5V4HX20C4
49MKNWK4ybwmFrnX-o9KgERaP1rjrCcWYrZ-lK8TquHti9XMfSaj71e
DkfPVOLyCOe1_zBEEH8NRFtN2OcVQWJFPy09rz1yw7a1YARdsU4
DukrhWvWcVxIad8ygA' \
'https://api.chatwork.com/v2/me'

Chatwork API Documentation

© Chatwork

> GET /v2/me HTTP/1.1
> Host: api.chatwork.com
> Accept: */*
> Authorization: Bearer eyJjdHkiOiJKV1QiLCJ0eXAiOiJKV1QiLCJ
hbGciOiJSUzI1NiIsImtpZCI6ImlOUVh0dFR2RHZhcDVkSWpGQzA5Z
HZadHFXaGQ2WmFRb2pKenVuUS1vV28ifQ.eyJhdWQiOiJodHRwc
zovL2FwaS5jaGF0d29yay5jb20iLCJzdWIiOiIxNzMiLCJhY2NvdW50
X2lkIjoiMTczIiwic2NvcGUiOlsiYWxsIl0sImlzcyI6Imh0dHBzOi8vb2F1
dGguY2hhdHdvcmsuY29tIiwiZXhwIjoxNTAyMjUxNDU4LCJpYXQiOjE
1MDIyNDk2NTgsImp0aSI6IjRlNzg5ZTAzLTk2NjAtNDc4MC1hYThkL
TVmZjk2YmU0MzMyNSIsImNsaWVudF9pZCI6Ikx2bzBZTjkyZ2E1a1
AifQ.Y14Sr0SmtgwLegwWPMeQlPut2XmP74y3QdupCAN7Hc5Id10
Qvgq-csuYVxxAYStqZUO4sZ_j9SeE7-rqhuNowDMwqVaTGfDvAvtQ
LitPKDUb2g6x87c-lfffkJkIiL1xcH3lHrmQkBa_H81-_a3VFJila8hFpt
vygOp19OSDSrUIlcq6PeHlfNQtXjs2VFREQydQNE2cdLe68Nh5F5V4
HX20C449MKNWK4ybwmFrnX-o9KgERaP1rjrCcWYrZ-lK8TquHti9X
MfSaj71eDkfPVOLyCOe1_zBEEH8NRFtN2OcVQWJFPy09rz1yw7a1
YARdsU4DukrhWvWcVxIad8ygA
>
< HTTP/1.1 200 OK
< Content-Type: application/json; charset=utf-8
< Content-Length: 412
< Connection: keep-alive
< X-RateLimit-Limit: 300
< X-RateLimit-Remaining: 299
< X-RateLimit-Reset: 1502250163
< Vary: Accept-Encoding,User-Agent
<
{"account_id":1, ...(略) }

Chatwork API Documentation

© Chatwork

Regarding the offline_access scope

Even when a resource owner is offline, the offline_access scope allows for persistent API access.

If this scope is not specified, it is assumed by the resource owner that the client will use the service while online, and
after a certain period of time a refresh token will become unavailable if that is not the case, making it impossible to
update the access token.
This is the default behavior and is the generally recommended usage, but it is not suitable for things such as bots
where the resource owner may be absent. In such cases, it is possible to use the offline_access scope.

When the offline_access scope is specified, the refresh token remains valid indefinitely, unless it is revoked.
Until it is revoked, the access token can be renewed, even when the resource owner is absent.

Compared to online use, the refresh token can be used for long periods, so please give careful consideration to
potential security risks before using.

Chatwork API Documentation

© Chatwork

Regarding PKCE
PKCE (Proof Key for Code Exchange by OAuth Public Clients) is an extended specification for OAuth2, which is
considered to protect public clients from authorization code interception attack.There is a possibility where the
authorization code is intercepted by attacker's application when the public client executes authorized code flow.
PKCE prevent this type of attacks. Currently, confidential client is the only the client type you can register(you can
also use PKCE for confidential client.). The public client is currently under development.

Chatwork API Documentation

© Chatwork

Appendix

A.List of Scopes

Name API Description

offline_access All API Allow permanent API access

users.all:read
users.profile.me:read
users.status.me:read
users.tasks.me:read

Access your account information

users.profile.me:read GET /me Access your profile information

users.status.me:read] GET /my/status Access your unread messages

users.tasks.me:read GET /my/tasks Access your task lists

rooms.all:read_write
rooms.all:read
rooms.all:write

Access and modify your chatroom's messages,
tasks, files, notes and member information

rooms.all:read

rooms.info:read
rooms.members:read
rooms.messages:read
rooms.tasks:read
rooms.files:read

Access your chatroom's messages, tasks, files,
notes and member information

rooms.all:write

rooms:write
rooms.info:write
rooms.members:write
rooms.messages:write
rooms.tasks:write

Modify your chatroom's messages, tasks, files,
and member information

Chatwork API Documentation

© Chatwork

Name API Description

rooms:write
POST /rooms
DELETE /rooms/{room_id}

Create new chatrooms and delete
your chatrooms

rooms.info:read
GET /rooms
GET /rooms/{room_id}

Access your chatrooms list

rooms.info:write PUT /rooms/{room_id} Modify your chatroom's information

rooms.members:read GET /rooms/{room_id}/members
Access your chatroom's member
information

rooms.members:write PUT /rooms/{room_id}/members
Modify your chatroom's member
information

rooms.messages:read
GET /rooms/{room_id}/messages
GET /rooms/{room_id}/messages/{message_id}

Access your chatroom's messages

rooms.messages:write

POST /rooms/{room_id}/messages
PUT /rooms/{room_id}/messages/{message_id}
DELETE /rooms/{room_id}/messages/{message_id}
PUT /rooms/{room_id}/messages/read
PUT /rooms/{room_id}/messages/unread

Post messages to your chatrooms

Chatwork API Documentation

© Chatwork

Name API Description

rooms.tasks:read
GET /rooms/{room_id}/tasks
GET /rooms/{room_id}/tasks/{task_id}

Access your chatroom's tasks

rooms.tasks:write POST /rooms/{room_id}/tasks Create tasks in your chatrooms

rooms.files:read
GET /rooms/{room_id}/files
GET /rooms/{room_id}/files/{file_id}

Access file infomration in your chatrooms

contacts.all:read_write
contacts.all:read
contacts.all:write

Access and modify your contact
information

contacts.all:read
GET /contacts
GET /incoming_requests

Access your contact information

contacts.all:write
PUT /incoming_requests/{request_id}
DELETE /incoming_requests/{request_id}

Modify your incoming contact requests
information

Chatwork API Documentation

© Chatwork

B. List of errors that can occur during authorization

Error Code Error Description Supplementary

1001 `response_type` parameter is missing.
The response_type parameter is not specified when the consent screen is
displayed.

3001 The resource owner denied the request.
The resource owner refused permission on the login screen or consent
screen.

4001 `token` response type is not supported.
An unsupported response_type is specified when the consent screen is
displayed.

4002 `foo` response type is unknown.
An undefined response_type is specified when the consent screen is
displayed.

5001 Scope is missing. The scope is not specified.

5002 The scope is unknown. An undefined scope is specified.

11000 `client_id` is missing. The client_id is not specified.

13000 `redirect_uri` is missing. A redirect_uri is not specified.

14000 The redirect URI is malformed. The format of client_id is incorrect.

15000 The redirect URI is unregistered. client_id is not registered.

18000 `code_challenge_method` is unsupported. An unsupported code_challenge_method is specified.

19000 `code_challenge` is malformed. The format of code_challenge is incorrect.

2000 `code_verifier` is malformed. The format of code_verifier is incorrect.

Chatwork API Documentation

© Chatwork

Webhook

Chatwork API Documentation

© Chatwork

About Webhook

Chatwork Webhook sends you real-time notifications of events, such as sending and editing messages and
you being mentioned, in chatrooms (group chat, direct chat, my chat) you are participating to a Webhook
URL you specify.

By using Chatwork Webhook, you can receive real-time notifications without having to periodically call
Chatwork API (by polling) to bring up events.

Please give it a try, as you will be able to easily create functions that can link with external services, such as
an interactive bot that can operate inside of Chatwork.

Webhook URL can be set from the API control screen.

Chatwork API Documentation

© Chatwork

Request
Chatwork Webhook sends event notifications by giving HTTPS POST requests to a
Webhook URL specified on Webhook control screen. POST requests have the
following structure:

Field Name Type Required Description

webhook_setting_id String ◯ Set Webhool ID to notify this event.

webhook_event_type String ◯ Types of Webhook Event Object

webhook_event_time Value ◯
The time when the event was recorded on Chatwork
Webhook system (epoch seconds).

webhook_event JSON
Object

◯ Webhook event object suitable for webhook_event_type.

Common request body
It is a JSON object with the following items:

Field Name Value Sample

Content-Type
application/json

Content-Type: application/json

User-Agent
ChatWork-Webhook/<version> User-Agent:

ChatWork-Webhook/1.0.0

X-ChatWorkWebhookSignature Signature
X-ChatWorkWebhookSignature:
5202BF4...B02772F

Common request header

Chatwork API Documentation

© Chatwork

Sample request body

{
 "webhook_setting_id": "12345",
 "webhook_event_type": "mention_to_me",
 "webhook_event_time": 1498028130,
 "webhook_event":{
 "from_account_id": 123456,
 "to_account_id": 1484814,
 "room_id": 567890123,
 "message_id": "789012345",
 "body": "[To:1484814]What do you like to eat？",
 "send_time": 1498028125,
 "update_time": 0
 }
}

Chatwork API Documentation

© Chatwork

Response
● Always respond to an HTTPS request with a status code 200.
● The HTTPS POST Request sent from Chatwork Webhook will not be resent, even it fails.
● The maximum response body size is 512 bytes. Anything in excess will be considered as an error.

About the Failure Limit function for when the notification error rate is on the rise.

When an HTTPS POST Request causes an error for some reason, it is treated as a notification error.
When the notification error rate becomes high, Chatwork Webhook automatically changes applicable
Webhook settings to an “invalid” status. Users must explicitly validate his/her status. Please see
Webhook editing screen for how to validate user status.

Chatwork API Documentation

© Chatwork

Signature verification for requests
In order to verify that the source of the request is indeed Chatwork, for each request, the signature must
be verified on the user’s server.

Verification process is as follows:
1. The digest value for the request body will be obtained through HMAC-SHA256 algorithm, using a byte

string of a BASE64 decoded token as the secret key.

2. The string of BASE64 encoded digest value is verified that it matches the signature
(X-ChatWorkWebhookSignature’s header value). on the request header.

Token can be verified on Webhook editing screen.

Chatwork API Documentation

© Chatwork

Webhook Event Object

● Create message（webhook_event_type = "message_created"）
● Edit message（webhook_event_type = "message_updated"）
● Getting mentioned（webhook_event_type = "mention_to_me"）

Chatwork API Documentation

© Chatwork

Create message（webhook_event_type = "message_created"）

Field Name Type Required Description

message_id String ◯ Message ID

room_id Value ◯ Chatroom ID, where the message was sent.

account_id Value ◯ Account ID, from which the message was sent.

body String ◯ The content of the message.

send_time Value ◯ Time when the message was sent (epoch seconds).

update_time Value ◯
The last time the message was editied (epoch seconds).

Warining: the value is 0, when the message was created.

Sample event object when creating a message:

{
 "message_id": "789012345",
 "room_id": 567890123,
 "account_id": 1484814,
 "body": "Please prepare your presentation slides up to 3 pages",
 "send_time": 1498028120,
 "update_time": 0
}

Chatwork API Documentation

© Chatwork

Edit message（webhook_event_type = "message_updated"）

Message edit event has the same structure as Create message event.

Chatwork API Documentation

© Chatwork

Getting mentioned（webhook_event_type = "mention_to_me"）

Field Name Type Required Description

from_account_id Value ◯ Account ID of the user that mentioned another user.

to_account_id Value ◯ Account ID of the user that got mentioned.

room_id Value ◯ Chatroom ID, in which the user was mentioned.

message_id String ◯ Message ID, in which the user was mentioned.

body String ◯ The content of the message in which the user was mentioned.

send_time Value ◯ Time when the message was sent (epoch seconds).

update_time Value ◯
The last time the message was editied (epoch seconds).

Warining: the value is 0, when the message was created.

Sample event when getting mentioned:

{
 "from_account_id": 1234567890,
 "to_account_id": 1484814,
 "room_id": 567890123,
 "message_id": "789012345",
 "body": "[To:1484814] Can you prepare the presentation slide?",
 "send_time": 1498028125,
 "update_time": 0
}

Chatwork API Documentation

© Chatwork

URLs you can use as Webhook URL

There are some restrictions for the URLs you can use for Webhook URL

● It should be starting with "https://".
● If the domain is IDN, it should be converted with ToASCII (4.1) based on RFC3490.
● It should be encoded based on RFC3986.

