
ELIMINATION
from Design to Analysis

Ahmed Khalifa, Dan Gopstein, Julian Togelius
Game Innovation Lab, New York University, NY, USA

ahmed@akhalifa.com, dgopstein@nyu.edu, julian@togelius.com

Abstract—Elimination is a word puzzle game for browsers and
mobile devices, where all levels are generated by a constrained
evolutionary algorithm with no human intervention. This paper
describes the design of the game and its level generation methods,
and analysis of playtraces from almost a thousand users who
played the game since its release. The analysis corroborates that
the level generator creates a sawtooth-shaped difficulty curve, as
intended. The analysis also offers insights into player behavior
in this game.

Index Terms—word games, game design, procedural content
generation, puzzles, difficulty measurement, postmortem

I. INTRODUCTION

Using procedural content generation (PCG) in games, es-
pecially for core game elements such as levels, is a bit of an
art. When it is executed well, it enhances the player experience
and keeps the player wanting to play again [1] but any mistake
in the system and the game can feel boring and repetitive, and
may lead to disappointment [2]. Just like game design, PCG
systems are designed using designers’ intuition and a trial and
error process. Designers usually test the system on a group of
players and adjust the generator based on the feedback until
it works as intended [3].

The designers of successful games often write a postmortem
about what went right and what went wrong during the
development process to summarize the lessons learned and
help themselves and others better understand the underlying
systems [3]–[5]. Few postmortems, however, are supplemented
by player data to validate the design decisions and understand
player behavior; conversely, game analytics papers are rarely
written by the designers of the analyzed game [6], [7]. In this
paper, we will discuss the design decisions for the word puzzle
game Elimination and its level generator. Our postmortem
is complemented by an analysis of player data to validate
our generation system and better understand the parameters
influencing player decisions.

II. THE DESIGN OF ELIMINATION

Elimination is a word puzzle game that was designed during
GameZanga 81, a game jam, with a theme of “Minimalism”.
The game follows the theme literally by showing the player a
bunch of letters and the player has to remove some of these
letters so that the remaining letters form a recognized English
word. In this paper, we are analyzing the final version of the
game which was released on January 23, 2019 for browsers,

1https://itch.io/jam/gamezanga8

iOS, and Android devices. The game supports three different
gameplay modes: Infinite, Daily, and Levels. In this work,
we will only focus on the most popular mode, Levels, which
presents players with a fixed sequence of challenges. The
Levels mode includes 30 levels with 10 challenges each, all
of which were procedurally generated initially, and reused in
each playthrough.

A. Challenges
An Elimination challenge is a sequence of letters which

doesn’t form a word by itself but through the removal of
letters will result in a recognized English word. A challenge
should have more than one word that can be discovered
after removing various groups of letters. Figure 1 shows an
example challenge in the game. The player is shown 6 letters
“HATDEL” (see figure 1a). The player can eliminate letters
by clicking them. A solution for that challenge can be seen
in figure 1b and 1c respectively where the player removes
the letter “D” then “L” to find “HATE”. That is not the only
solution, as the player can remove “H”, “D”, and “L” to find
“ATE”. One of the incentives to lead the player to find certain
words is that the score depends on the length of the found
word. Looking back on the example in figure 1, “HATE” will
have score of 4 while “ATE” will have score of 3.

We also use bonus letters which are called the 2X letter
to influence the player choices. The 2X letter multiplies the
score of the found word by 2. For example: if the player found
the word “TRUE” where the “U” is a 2X letter the resulting
score would be 8 instead of 4. The 2X letter is a good way to
influence the player choices toward certain words which could
be used in creating easier levels for the player.

B. Levels
An Elimination level consists of 10 consecutive challenges

where each challenge has to be solved before a timer runs
out. A level ends either when the player find the 10th word
or if the timer runs out. The timer is added to make sure
that the players don’t solve the challenges using brute force
by listing all the different possible words and then choosing
the highest score. The timer also adds an element of pressure
to a generally casual and relaxed game. Equation 1 shows the
time in seconds allocated for each challenge in the level where
challengeNumber ranges between 1 and 10.

challengeT ime =
30

1 + (challengeNumber − 1)/5
(1)

https://itch.io/jam/gamezanga8

(a) Current Challenge. (b) Eliminate “D” letter. (c) Eliminate “L” letter.

Fig. 1: Example of a challenge where the player eliminated “D” and “L” letters to find the word “HATE” for 4 points of score.

When the level ends (regardless of whether all 10 words are
found), the game automatically unlocks the next level for the
player to be played. We decided to allow players progress to
higher levels without completing previous levels to make sure
the game is more relaxing and casual by not getting players
stuck on particular level. This will make sure that players who
play the same level are doing so willingly and not because the
game forces them to.

III. PUZZLE GENERATION

Elimination levels are generated by running an evolution-
ary algorithm 10 times with same parameters to generate a
single challenge per run. No human curation or editing was
performed when generating the included levels.

A. Generative System

For the generation we used Feasible Infeasible 2-Population
(FI-2Pop) Algorithm [8] to generate the game challenges. Each
challenge is generated by mixing a group of English words
called the source words (usually two or three words) together
to form the challenge word. The challenge here is that the
mixture has to be efficient and this is tested by satisfying two
basic constraints: the final word has to be less than a target
length and the order of the letters in the challenge has to obey
the same order in the source words. The first constraint is
added to make sure the system does an intelligent mixing of
the source words so there is no repeated letters. For example:
“CAR” and “COOL” could be mixed as “CARCOOL” or
it can be mixed as “CAROOL” where the second one is a
better mixing than the first as it has fewer repeated letters.
The second constraint is added to make sure that the player
can solve the level and find any of the source words. For
example: if “CDATOG” is a mixture of the source words
“CAT” and “DOG”, the ‘G’ can’t come before the ‘O’ as
it will be impossible to construct “DOG” from that mixture
by just eliminating letters.

Based on that, we decided that the chromosome consists
of a list of integer values. The first three values point to the
source words in the corpus (We don’t use the full corpus during
generation. We define a fraction of the corpus to work with for
each level so earlier levels uses more frequent source words
than later levels.), while the remaining values are used for
the mixing procedure. The mixing procedure uses the integer
values to determine which mixing word to grab the next letter

from. After the mixing is done (before testing for constraints
or fitness), the challenge word is shortened by using a greedy
algorithm that removes a single letter at a time, each time
verifying that the source words can be still extracted from
the new challenge word. The reduction algorithm continues
removing letters until either no more letters can be removed
or the new final word satisfies the length constraints. Since
the problem of letter ordering solved by the representation, the
only constraint being satisfied is the length of the final word.
Target word length is calculated by the formula in equation 2
where w is the challenge word and tl is the target length.

c =

{
1 |w| ≤ tl

1− log(|w| − tl + 1) |w| > tl
(2)

As soon as the chromosome satisfies the constraint function
shown in equation 2, it gets tested for its fitness which
measures the degree to which recognized English words in
the challenge word are obvious to spot or not. For example:
“CADOGT” and “CDAOGT” are two different challenge
words for “CAT” and “DOG” where the word “DOG” is
easier to be noticed in “CADOGT” than in “CDAOGT”.
The fitness function first generates all the possible recognized
English words in challenge word. For example: “HATDEL”
is a mixture of “HATE” and “DEL” but these are not the
only words in that challenge word as you can get “HADE”,
“ATE”, “TEL”, etc. The possible words set is split based on
each word length using a certain value called the maximum
sequence parameter to form two sets of words: long words
and short words. The fitness function tries to minimize the
number of words from the long words set that appears as a
full words in the challenge word and maximize the number of
words from the short words set that appear as a full words in
the challenge word. Equation 3 describes the fitness function
f , where maxSeq is a the maximum sequence parameter,
chWord is the challenge word, and words is a set of all
possible words in the chWord.

Long = {w|w ∈ words ∧ |w| > maxSeq}
Short = {w|w ∈ words ∧ |w| ≤ maxSeq}

v = {w|w ∈ Long ∧ w ∈ chWord}
e = {w|w ∈ Short ∧ w ∈ chWord}

f = (1.1− |e|
|Short|

) ∗ (1.1− |v|
|Long|

)/1.21

(3)

0

100

200

300

0 100 200 300

of challenges solved

F
re

qu
en

cy

Histogram of challenges solved by players

(a) Histogram of challenges
solved.

0

250

500

750

1000

0 10 20 30

Level

P

la
ye

rs

How Many Players Reached Each Level

(b) The number of players that
reached each level.

Fig. 2: General gameplay statistics.

It is important to note that the fitness function works as a
soft constraint compared to the target length in equation 2.
We consider length as a hard constraint since a too-long word
might not fit on the screen. Because of this we chose FI-2Pop
over a standard genetic algorithm, because it makes sure that
the hard constraint is satisfied before checking the fitness.

After all 10 challenges are generated for each level, the
system picks a fixed number of these challenges to which to
apply the 2X letter bonus. The 2X letter is picked by finding
the least frequent letter in each source word then picking a
random letter out of that list.

B. Parameter Choices

All 30 levels in Elimination were generated automatically
by the system with minimum interference from the designers.
We only controlled the difficulty of the generated level by
controlling the system parameters for each level. We used
the following five parameters to control the difficulty of the
generated level, corpusFreq: the subset of the corpus used
during generation (this subset is defined by a minimum word
frequency and a maximum word frequency), sourceWords:
a list of the length of the source words being selected (usually
two or three source words), targetLength: the length of the
challenge word after mixture that is being used to calculate
the constraints, maxSeq: the split parameter used in the fitness
function to calculate the fitness, and num2X: the number of
challenges in the level that has 2X.

The level generator of Elimination was designed to guide the
user through ups and downs in difficulty of play. The idea was
to alternate between challenging the user and rewarding them
with successes. We selected the parameter values for each level
such that the difficulty of the level increases every 5 levels
then drops at the 6th level to form a saw-toothed difficulty
curve [9]–[11] which is discussed in details in section IV-B.
The reason for the difficulty drop is to allow players to have
some breathing room after a hard sequence of levels, also
the sequence of gradual increase followed by sharp decline is
designed to make sure that the generated levels will help the
user to be in state of flow [12].

IV. PLAYER ANALYSIS

Without a large sample of play-testers, the design goals of
the game, and the accuracy of the level generation parameters
was not fully tested before the game was released. After the

(a)

0.3

0.4

0.5

0.6

0.7

0.8

0 10 20 30

Level

In
fe

rr
ed

 D
iff

ic
ul

ty
[1

 −
 m

ea
n(

S
co

re
)]

Average Inferred Difficulty per Level

(b)

Fig. 3: Comparison between the ideal difficulty curve on the
left, and the observed difficulty curve on the right.

public launch sufficient player data was gathered to measure
the relationship between the intended design of the game and
the actual reception by players.

A. General Gameplay Statistics

In total 975 users played Elimination over the course of
98 days. The dedication of these players varied from casual,
people who stumbled across the game and quickly realized
it wasn’t for them, to the hardcore, playing levels over and
over again trying to achieve perfect results. The median player
solved 20 challenges, equivalent to solving all the challenge of
the first 2 levels, and the most diligent player solved exactly
2000 challenges, repeating several levels over dozens of times
perfecting them. Figure 2 illustrates the distribution of player
dedication through the number of completed challenges and
the number of players that played each level.

B. Validation of Difficulty Measure

The shape of the difficulty curve was intended to be a saw-
tooth graph (as discussed in section III-B) similar to the one
showed in Figure 3a. In practice it’s impossible to measure the
absolute difficulty of a level (as players get better playing the
game), but we can estimate the relative difficulty by comparing
players’ score from one level to another. We can assume that
levels in which players score higher are easier, and levels in
which players score lower are harder. Under this interpretation
we had hoped to see that player scores would follow the
inverse saw-toothed pattern the game’s difficulty was designed
to produce. The observed outcome is displayed in Figure 3b.

To validate the efficacy of our level-generation parameters
on the resultant game, we employ a linear regression to
measure the predictive power of the generation parameters
on the observed player scores. Our linear regression over the
generation parameters took the form of normalizedScore ∼
min(corpusFreq) +maxSeq+ targetLength+ num2X +
min(sourceWord), predicting the mean normalized score of
each level based on the parameters described in section III-B
where min(corpusFreq) is the popularity of constituent
words in the English language and min(sourceWord) is the
size of the smallest constituent word. Together these features
explain almost 20% of the variance (R2 = 19.43) of player
scores. What this model indicates is that, of the generation
parameters used, the ones most correlated with user score were
the ones controlling word popularity, and the length of the
challenge word.

C. Understanding Word Choices

Since a level in Elimination consists of 10 independent
challenges, we can get a more detailed understanding of
the players’ responses by focusing on the outcomes of each
individual challenge. Similar to our analysis of level generation
parameters, we can use a linear regression model to explain
a player’s selections on a word-by-word basis. Rather than
evaluating the efficacy of our AI algorithm, this analysis is
more suited to teaching us about the way players think while
searching for words in a challenge. We analyzed the following
regression selectionRate ∼ wordLength+maxSequence+
has2X + splitDistance + firstOccurrence + dirtyWord
which measures the correlation between the frequency a
particular word is selected in a challenge (selectionRate)
and the following features: the length of the selected word
(wordLength), the largest number of letters from the se-
lected word appearing consecutively in the original challenge
(maxSequence), whether the selected word has a 2x bonus
on one of its letters (has2X), the total number of letter from
other words that are interspersed with letters of the selected
word (splitDistance), the position in the challenge word of
the first letter of the selected word (firstOccurrence), and
whether or not the selected word is profane (dirtyWord).
Together these features account for 21% of the variance in
word selection rates (R2 = 21.0).

The biggest contributing features are wordLength and
maxSequence. It is fairly intuitive that words with more
sequential letters directly in the challenge word are more
likely to be selected, as they can be read without any visual
interpretation. However, it is less obvious why longer words
are more likely to be selected. There are several reasons why
players might tend to select longer words. Firstly, longer words
are more highly rewarded by the scoring system, selecting
longer words rewards the player with a bigger score. Counter-
intuitively, though, longer words may also be easier to select
than shorter words. For example, longer words necessarily
require fewer eliminations (clicks) to be selected than shorter
words. Some elimination paths (series of clicks required to
select a short word) will accidentally select larger words in
the process, immediately solving the challenge. In fact, in the
(somewhat rare) context of specific challenge words, there
are some desired words that exist, but cannot be selected.
For example: the challenge word “AFART”, if the player
tries to select the word “FAR” they will quickly find out it
is impossible. To transform “AFART” into “FAR” requires
removing the first letter ‘A’ and the last letter ‘T’, however
neither can be removed without inadvertently creating another
word (“FART” or “AFAR”, respectively). This property was
completely unknown to us before finding the prevalence of
longer word selections.

V. CONCLUSION

This paper described the design of Elimination, a word
puzzle game where all the levels were generated using the
FI-2Pop algorithm. The generator was controlled using five
different parameters that were adjusted to reflect a saw-toothed

difficulty curve. We analyzed the collected user data to validate
our difficulty curve by using a linear regression model to
predict the players’ scores based on the generation parameters.
The model was able to explain 20% of the data with the
highest correlation for the frequency of the source words and
the challenge word length. We further analyzed the data to
understand more about the player word choices. We found
that the length of the selected word and number of consecutive
letters from the selected word in the challenge word have the
most effect on the player’s choice.

There is much room for improvement to the game, for
example we can use automated tuning to adjust the parameters
to fit the saw-toothed difficulty curve similar to what was
done by Isaksen et al [13]. Another direction can be achieved
by using Constrained Map-Elites [14] for offline generation
instead of FI-2Pop to generate challenges that explores the
full space of the game behaviors.

ACKNOWLEDGMENT

Ahmed Khalifa acknowledges the financial support from
NSF grant (Award number 1717324 - “RI: Small: General
Intelligence through Algorithm Invention and Selection.”).

REFERENCES

[1] P. Glagowski, “Life after death: Edmund mcmillen on the success of
the binding of isaac and his future,” https://www.destructoid.com/life-
after-death-edmund-mcmillen-on-the-success-of-the-binding-of-isaac-
and-his-future-523209.phtml, 2018, last Accessed: May 14, 2019.

[2] E. Maiberg, “’No Mans Sky’ is like 18 quintillion bowls of oat-
meal,” https://www.vice.com/en us/article/nz7d8q/no-mans-sky-review,
2016, last Accessed: May 14, 2019.

[3] D. Yu, Spelunky: Boss Fight Books# 11. Boss Fight Books, 2016,
vol. 11.

[4] E. McMillen, “Postmortem: Mcmillen and himsl’s the binding
of isaac,” https://www.gamasutra.com/view/feature/182380/postmortem
mcmillen and himsls .php?print=1, 2012, last Accessed: May 14, 2019.

[5] Lee, L. Kenny, and Teddy, “Rogue legacy design postmortem: Budget
development,” https://www.gdcvault.com/play/1020541/Rogue-Legacy-
Design-Postmortem-Budget, 2014, last Accessed: May 14, 2019.

[6] B. G. Weber, M. John, M. Mateas, and A. Jhala, “Modeling player
retention in madden nfl 11,” in Twenty-Third IAAI Conference, 2011.

[7] A. Drachen, M. S. El-Nasr, and A. Canossa, Game Analytics: Maximiz-
ing the Value of Player Data. Springer, 2013.

[8] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible–
infeasible two-population (fi-2pop) genetic algorithm for constrained
optimization: Distance tracing and no free lunch,” European Journal
of Operational Research, vol. 190, no. 2, 2008.

[9] P. Holleman, Reverse Design: Super Mario World. CRC Press, 2018.
[10] J. Brown, “Difficulty curves start at their peak,” https:

//www.gamasutra.com/blogs/JonBrown/20100922/88111/Difficulty
Curves Start At Their Peak.php?print=1, 2010, last Accessed: May
14, 2019.

[11] D. Strachan, “The idea of a difficulty curve is all wrong,” http://www.
davetech.co.uk/difficultycurves, 2018, last Accessed: May 14, 2019.

[12] J. Nakamura and M. Csikszentmihalyi, “The concept of flow,” in Flow
and the foundations of positive psychology. Springer, 2014.

[13] A. Isaksen, D. Gopstein, and A. Nealen, “Exploring game space using
survival analysis.” in FDG, 2015.

[14] A. Khalifa, S. Lee, A. Nealen, and J. Togelius, “Talakat: Bullet hell
generation through constrained map-elites,” in Proceedings of The
Genetic and Evolutionary Computation Conference. ACM, 2018.

https://www.destructoid.com/life-after-death-edmund-mcmillen-on-the-success-of-the-binding-of-isaac-and-his-future-523209.phtml
https://www.destructoid.com/life-after-death-edmund-mcmillen-on-the-success-of-the-binding-of-isaac-and-his-future-523209.phtml
https://www.destructoid.com/life-after-death-edmund-mcmillen-on-the-success-of-the-binding-of-isaac-and-his-future-523209.phtml
https://www.vice.com/en_us/article/nz7d8q/no-mans-sky-review
https://www.gamasutra.com/view/feature/182380/postmortem_mcmillen_and_himsls_.php?print=1
https://www.gamasutra.com/view/feature/182380/postmortem_mcmillen_and_himsls_.php?print=1
https://www.gdcvault.com/play/1020541/Rogue-Legacy-Design-Postmortem-Budget
https://www.gdcvault.com/play/1020541/Rogue-Legacy-Design-Postmortem-Budget
https://www.gamasutra.com/blogs/JonBrown/20100922/88111/Difficulty_Curves_Start_At_Their_Peak.php?print=1
https://www.gamasutra.com/blogs/JonBrown/20100922/88111/Difficulty_Curves_Start_At_Their_Peak.php?print=1
https://www.gamasutra.com/blogs/JonBrown/20100922/88111/Difficulty_Curves_Start_At_Their_Peak.php?print=1
http://www.davetech.co.uk/difficultycurves
http://www.davetech.co.uk/difficultycurves

	Introduction
	The Design of Elimination
	Challenges
	Levels

	Puzzle generation
	Generative System
	Parameter Choices

	Player Analysis
	General Gameplay Statistics
	Validation of Difficulty Measure
	Understanding Word Choices

	Conclusion
	References

