
Analysis of inherent randomness of the Linux kernel

Nicholas Mc Guire, Peter Okech, Georg Schiesser

Distributed & Embedded System Lab, SISE, Lanzhou University, China

Tianshui South Road 222,Lanzhou,P.R.China

mcguire@lzu.edu.cn,POkech@strathmore.edu,georg@opentech.at

Abstract

While analyzing latency data from real-time Linux variants we found that there are distinct parts
to the system jitter - those that can be attributed to software constructs and those that are inherent
in complex software systems running on non-deterministic hardware. Initial investigations focussed on
explaining these results by considering various caches (L1,L2,BTB,TLB,etc) [12]. While this seemed to
allow some level of explanation it did not satisfactory explain the distributions found during analysis.

Essentially hunting for the maxima of latency, which was the common initial approach, only can detect
grave latency issues, like excessively long holding of locks - but it is not able to detect low-level latency
causes like miss-alignments, or short term locks that are in a hot path and thus contribute significantly
to the systems overall latency and jitter. Further the maxima - if the assumption of inherent randomness
hold - are not associated with a specific code-path but rather with the code-path being executed in a
specific, system level, context - thus we believe that a statistic approach to tracing latency is needed.

Basic analysis of real time behavior in complex software systems can be split roughly into the following
parts:

• Timestamp precision - how precisely can an event be associated with a timestamp from a specific
clock-source

• inherent randomness - how non-predictable is the execution of functionally deterministic code.

The first can be quite nicely measured (or rather estimated based on measurements) - the second is a
bit more complicated as there currently is not even a well accepted definition, nor a practically meaningful
metric.

These two factors, we believe, can form a useful constraint for the lower-bounds of timing behavior that
can be achieved in complex software systems - be that scheduling jitter, interrupt latency, or bandwidth
variance.

In this paper we will present the current state of our assessment along with an argument why we
believe that inherent randomness is present and of what quality this randomness actually is based on
preliminary evaluation of a random number generated (RNG) derived from our timestamp measurement
code.

KeyWords: inherent randomness, non-determinism, randomness, complex systems

1 Introduction

Real Time Operating Systems (RTOS) are typically
identified with determinism and predictability. The
prime way to tackle the problem of RT seems to be to
postulate a deterministic hardware system and put
on top of it a deterministic software blob - albeit
neglecting the limitations of the abstractions behind
both the hardware and software. Based on this one

then starts hunting for the cause of excessive latency
or jitter in a RTOS and tries to identify it with par-
ticular code-paths or event sequences. While this
is to a certain extent successful - notably as long as
there are specific code-paths that need improvement,
there is a certain point at which this ”hunting-for-
maxima” seems to yield no significant improvement.
In this paper we will outline our findings with respect
to inherent randomness of complex hardware/soft-

1

ware systems and argue that there is a certain level
of randomness that is associated with the complexity
rather than the specific code path and for complex
hardware/software systems - GNU/Linux on main-
stream super-scalar COTS CPUs - we need to de-
velop metrics and methods to live with this inherent
randomness rather than try to fight it.

1.1 Related Work

J. Viega in [3] focussed on security related random
number needs, and outlines what methods seem suit-
able to provide reliable random numbers, though
these are based on a seed which is from a true random
source (i.e. OS entropy pool fed by interrupt related
entropy [4]). The prime conclusion from this paper,
from the perspective of our work, is that there are
sound algorithms available, notably universal hash
functions, that would allow to attain good random-
ness in a security sense in general purpose OS. A
further note in this paper that our contribution also
suffers from is that there ”..there is not a consistent
set of requirements or terminology between different
solutions”.

Sameer Niphadkar and Matt Davis in [2] de-
scribe there approach of using concurrent threads
and the indeterminism in the scheduling of a com-
plex OS to produce random numbers through thread
synchronization timing variance. They describe this
approach being neither a TRNG nor a PRNG -
”Threads on the contrary lie somewhere in the mid-
dle between the true and pseudo random number
generators.” In their publication [1] they brand this
approach as a ”Pseudo Random Number Generator”
while we believe there is sound evidence for such an
approach being a True Random Number Generator
albeit with some deficits that may need fixing in the
specific implementation.

With respect to metrics, the most relevant work
we have been building on is the work from Pierre
L’Ecuyer [6] which provides a extensive set of statis-
tical test utilities to evaluate the output of random
number generators. We believe that a subset of these
tests along with a well specified procedure could con-
stitute a good basis for a generally acceptable metric
for system level inherent randomness.

2 Sources of non-determinism

Any system has global variables in the one or other
form, in complex systems there are many such global
variables (think of free shadow registers, TLBs, avail-
able cache lines, memory ... timeouts in communica-
tion, etc.) many of these global variables are locally
references directly or indirectly.

• direct reference - a send operation on a queue
that can block

• indirect reference - a system call that inter-
nally allocates memory dynamically and thus
can take largely diverging amounts of time de-
pending on the systems state

• an instruction that needs to evict a L1 I line
before being performed

• a my-op that gets stalled due to a (function-
ally) unrelated pipeline condition

• a branch in the my-ops that is once taken and
once not due to the BTB being exhausted by
functionally and temporally unrelated code ex-
ecution paths.

Note that we are not referring to any external or
asynchronous events yet in this list - so we refer to
this as internal sources of non-determinism.

This for it self still is not non-deterministic from
the perspective of the individual application. At
the moment where we have a concurrent preemptible
system the picture dramatically changes. The local
state (application) actually can be revisited, but its
dependency on global state makes the outcome inde-
terminable. For the temporal domain this is a well
accepted fact - after all race conditions in software
are a much feared fault for decades now and anybody
hunting down such a bug knows how undetermined
the temporal precision of full featured preemptive
operating systems are. Notably the introduction of
the lock-dependency validator in mainline 2.6 had re-
vealed a number of race conditions that had not yet
been discovered at runtime by anybody, even though
they had been present for a substantial time in the
kernels code-base.

2.1 Intentional non-determinism

In some cases we know that data used for decisions
is random - some may be:

• random numbers (i.e. from a TRNG)

• asynchronous event timestamps

• global conditions (i.e. if(in interrupt()) derived
from asynchronous events

• error conditions (i.e. checking return values) -
or is anybody expecting a deterministic failure
rate of printf ?

These and other sources of non-determinism ex-
ist at even simply applications levels - paired with
concurrency this de-facto means that individual ap-
plication code - while exhibiting a well defined local

state - has no deterministic global state and we are
unable to predict the actual behavior of even simple
applications.

Example: timing of a 5 integer instruction (C-
level)

This code run with interrupts disabled, executes
5 integer instructions in a warmup loop - this ensures
they are cache hot - and then times the final execu-
tion - the plot over the warmup loops indicate that
it takes quite a few warmup loops to get the system
into a more or less well-defined state - never the less
it never reaches a constant execution time.

__asm__ __volatile__("cli ":::"memory ");

for(j=0; j< w; j++){

x1=l;

x2=x1*l;

x3=x1*l;

x3 --;

dummy +=x3 /4;

}

__asm__ __volatile__("cpuid\n\t" \

"rdtsc\n\t":\

"=A" (start));

x1=l;

x2=x1*l;

x3=x1*l;

x3 --;

dummy +=x3/4;

__asm__ __volatile__("rdtsc\n\t":\

"=A" (stop));

__asm__ __volatile__("sti ":::"memory ");

timestamps [n++]=((long)(stop -start));

 0.1
 1

 10
 100

 1000
 10000

 100000
 1e+06

 10
 100

 1
 10

 100
 1000

 10000
 100000

samples

AMD Sempron 5inst load irqoff

"3d_5inst_load_n1_d1_p0_l512"

warmups

cycles

samples

FIGURE 1: 5 instruction execution time
with disabled interrupts (AMD Sempron)

In a modern operating system even a trivial hello
world:

#include <stdio.h>

#include <string .h>

#include <stdlib .h>

#define MSG "Hello World\n"

int main(int argc , char ** arg){

int ret;

ret=printf (MSG);

if(ret == strlen (MSG)) {

return EXIT_SUCCESS;

} else {

return EXIT_FAILURE;

}

}

exhibits non-deterministic properties. At the ap-
plication level printf could fail, at the system level the
entire process of spawning the application could fail
and this program might actually never be executed
at all. If one looks at the possible points of failure
of this trivial application on a modern UNIX oper-
ating system there are actually a few hundred points
in the code where failures are possible (coded fault
handling) each of which has only a very small prob-
ability of actually ever being seen - never the less we
only can guarantee this hello wold to actually out-
put the intended ”Hello World” string with a certain
probability and even if we were to analyze the entire
OS level code (kernel, libc, shell, etc) involved we
would not be able to guarantee its execution. The
main sources of non-determinism of this trivial ap-
plication are not in the scope of the application code
- in fact one rarely sees anybody bothering to catch
the return value of a printf as it simply is assumed
to behave well - so most readers will feel this hello
world is a bit artificial code. What this does exhibit
though is that the local state transition of this triv-
ial example (with its terminal state being success or
failure) is dependant entirely on the OS level com-
ponent and we are unable to actually predict there
behavior other than statistically.

2.2 The issues with defining real-time

We are not going to go into the multitude of real-time
definitions available, there are many and new ones
being added (i.e. cooperate real-time recently hit the
stage) - the only contribution to this discussion that
we would like to add is that the question of deter-
minism (hard real-time) vs probabilistic definitions
(soft real-time,firm real-time) is maybe simply miss-
ing the point as they are concerned with two different
system descriptions. The hard real-time definitions
are focussed on functional determinism - neglecting
problems of system failures (i.e. random hardware
faults, or meteorites striking the test-system), while
the soft real-time definitions are focusing on observa-
tions in systems where not all components are known
(the question if they could be known or not is not so
essential).

The claim we are making here is that at sys-
tem level (a computing system in a real-world setup)
there are always potential failure scenarios that in-
validate any deterministic hard real-time definition
- although one may be able to reach very high lev-
els of confidence (lets say less than 10E-9 failures per

hour). So we are considering real-time a probabilistic
quality of a system and are going to present recent
tests to argue why this approach makes sense to us.
I would like to emphasis that it is not relevant if the
system might be deterministic, the question is only
if we actually are able to formulate this property and
the initial state of the system in a way that allows us
to predict the behavior - which would amount to a
deterministic hard real-time system - or if the inabil-
ity to define the initial state and/or formulate the
systems behavior prohibit us from determining the
”next state” of the system with absolute certenty.
This inability need not be based on physical con-
straints (like in quantum mechanics) they might be
simply due to the limited resources available to us in
the real-world.

3 Real Time Metrics

While there have been discussions on Real Time vs
Real Fast at a qualitative level, we believe that a
quantitative approach is mandatory for system level
comparison - the long history of failed RT-metrics
might suggest otherwise though.

We are not claiming that we solved the problem
of RT-metrics, but we will give it a shot to introduce
two fundamental metrics that allow system compar-
ison.

• Inherent System Randomness

• Timestamp precision

These two metrics are the lower bound con-
straints for any quantitative statements of higher
level metrics (i.e. interrupt response, scheduling jit-
ter or WCET) in complex computing systems.

3.0.1 attempt at a definition

Inherent System Randomness: Non-
determinism of a complex HW/SW system due to
the limitations of putting any task (SW) into a well
defined initial state.

The issue here simply is that, while it is not dis-
puted that HW and SW in principle are deterministic
(functionally and temporally) - the actual problem is
to determine the initial state of both the hardware
(i.e. CPU internal shadow registers, state of execu-
tion units, pipelines, caches, external controllers...)
and software.

Missusing the concept of the pilot-wave theory
[7] the claim is that the systems global state and the
next state transition are well defined at all times, but
not known by the observer; the initial conditions of
the system (HW and SW) are not known accurately,

so that from the point of view of the observer, there
are uncertenties which can be modeled as random
characteristics.

While one can argue that it might be possible to
actually determine the initial state of a modern CPU
or even the entire system, this ability is not relevant
for any practical system and our experiments at de-
randomization suggest that achieving a well-defined
state at application level is at least not practicable
for any real-life application (see below)

3.0.2 Measuring randomness

The first problem to resolve is to demonstrate that a
modern CPU actually exhibits inherent randomness
- that is randomness that is not triggert by external
events like interrupts.

The actual metric proposed for this is the quality
values for random bitstreams produced by execution
time randomness of a trivial code construct - some-
thing like:

__inline__ unsigned long long hwtime (int shift)

{

unsigned long long int x,res;

int i;

int bit =1;

res =0;

bit <<= shift;

for (i=0;i <32;i++){

__asm__ __volatile__("rdtsc \n\t"\\

:"=A" (x));

res |=(((x&bit)>>shift)<<i);

usleep (delay);

}

return res;

}

If this were run as a tight-loop then patterns in
sampling the TSC do emerge (though they still ex-
hibit a high-level of entropy) - if the loop is allowed
to run ”unknown” code in between by the call to
usleep, the randomness of the sampled TSC reaches
very high levels, comparable to TRNGs based on
background radiation of thermal noise - thus clearly
indicating that the OS is ”randomizing” access pat-
terns. It should be noted that even when run with
disabled interrupts this works just fine.

If the underlying system is deterministic this
code will yield a non-random sequence - but as mea-
surements show the output is comparable (if not bet-
ter) than random generators using background radi-
ation [9], thermal noise [8] or interrupts events [4] to
”generate” entropy.

Readers will note that it is technically not
feasable that the results of a software RNG - even
if sampling the inherent randomnes of the CPU -
be of better quality than a geiger counter sampling
background radiation - this supprising result can be

explained by reviewing the driver used at hotbits.org
[10], which uses a serializing instruction befor the
call to rdtsc and futther uses a slow peripheral (se-
rial port) as input device - these two factors reduce
the randomness of the sampling process and explain
why such a lower randomness can be observed.

The second metric (and this still needs some
work) is to look at the execution time variance of
simple code sequences on the respective hardware.
The interest in the behavior of simple code sequences
is simply that if these exhibit a non-deterministic be-
havior timing wise then in a preemptive system like
GNU/Linux this will be amplified at the higher levels
of the system as small variances in execution times in
individual code-paths induce unpredictability of in-
struction sequence at the CPU level. Thought these
variations might seem small the impact on modern
CPUs is quite large due to the internal complexity
of these CPUs (multiple pipelines, prefetch-units, pi-
pline inter-dependencies, etc.).

To measure this we again utilize a randomness
metric but instead of calling on the OS to ”random-
ize” the state of the CPU (the call to usleep(delay))
we put a well defined code sequence before the actu-
ally measured code and look at the timing variance
of the fixed sequence:

warmup_loop{

sequence

}

rdtsc

sequence

rdtsc

The actual code then looks like this:

for(i=0;i<32;i++){

/* this code is a deterministic warmup */

for(j=0; j< warmup ; j++){

x1=i;

x2=x1*i;

x3=x1*i;

x3 --;

dummy +=x3*x2 -(x1 /4);

}

__asm__ __volatile__("rdtsc\n\t":"=A" (x));

res |=(((x&bit)>>shift)<<i);

}

The code sequence only references local vari-
ables, is using a simple subset of instructions (arith-
metic instruction available on all systems) and the re-
sults are stored in an array that is much smaller than
the L1 D cache (we chose 1/8) to minimze caching
effects. Further this is run with interrupts disabled.
By doing so we can observer the randomness of the
CPU it self, and by iterating over the number of
warmup loops used we can seek to ”de-randomize”
the CPU (which currently seems to be doable only

in very specific tuned assembler code cases). Thus
what we get from this is the inherent variance of the
CPUs execution time for a given simple sequence of
instructions - any attempt to rely on a system pro-
viding a higher level of determinism seems unrealistic
as impact of interrupts and caches will make things
even worse.

As actual metrics we propose the use of the eval-
uation code presented at random.org [11], which tests
for

• Entropy

• Arithmetic Mean

• Chi Square

• Monte Carlo Pi calculation

• Serial correlation

A typical run of this on a AMD Hammer (UP)
will yield:

Entropy = 7.625602/byte.

compres = 4 %.

chi sqr = 71.09.

Arit mean = 119.2637

Mont Car Pi = 3.105882353, err. 1.14 %

Ser. Corel. = 0.041795

(Note that only the output format of ent was
reformatted to allow better script processing - the
tests them selves are unaltered).

A verification with the full test-suit from
TestU01 [6] convinced us that the results are actu-
ally statistically random in nature reliably. Further
these test have been done on AMD Sempron, AMD
Duron, Intel Core Duo 2, Intel Celleron

Note on other architectures: on MIPS (Loongson
2F) we were simply not able to access the respec-
tive register from user-space directly - so this sim-
ply measurement method did not work, on PowerPC
(405/440) we had similar problems with direct access
to the Timebase - so this is X86 only at present - for
other architectures kernel level implementations are
in the works.

timestamp precision:
Why timestamp precision ? Any decisions made

based on time mandate that an event of interest can
actually be timestampt precisely - thus the times-
tamp precision is a lower bounds for any time re-
lated decision in a system. Specifically in an RTOS
no decision can be more precise than the timestamp
capability of the system.

Timestamp precision - dependant on:

• time source resolution

• inherent randomness of the CPU (hardware)

• inherent randomness of the system (software)

• isolation of the time-sampling code

there is no point to claim any bounded jitter on
scheduling that is below the inherent randomness of
the system it self - this is a hard lower bounds for
timestamp precision.

The time source resolution has been increased
dramatically over the past decade allowing at least
microsecond resolution on most current systems,
generally allowing resolutions of one to 10 cycle at
CPU frequency (though this depends on specific set-
tings on some systems).

At the same time the complexity of CPUs has
increased to a point where the inherent randomness
of the CPU and its interdependency on other hard-
ware units (i.e. FSB, north-bridge) makes it useless
to increase the time source resolution any further.

At the software level the impact of functionally
unrelated code has been improved (notably in RT-
preempt) in GNU/Linux providing relatively good
code isolation under appropriate configuration.

So timestamp precision in CPU cycles would be
one of the proposed base metrics for a RTOS. The
timestamp precision of system we measured can be
as bad as a few hundred cycles due to the impact
of serializing instructions. Claiming scheduling jitter
below the timestamp precision technically makes no
sense in our opinion.

3.1 Measuring timestamp precision

The actual metric proposed for the timestamp pre-
cision is quite trivially, run two calls to consecutive
calls to ”rdtsc”, calculate the difference and search
for min/max values.

while (n < loops){

unsigned long long index =0;

usleep (1);

hwtime2 = rdtsc ();

hwtime1 = rdtsc ();

jitt=hwtime1 -hwtime2 ;

index =jitt/scale ;

if(index > GRAPH_SIZE){

out_of_bounds=1;

} else {

graph [policy][index] += 1;

}

n++;

}

If this is now run at different priorities and
scheduling policies one gets an overview of what the
lower bounds of any timing decisions at code level
will be for the given settings. At the same time
this gives a suitable lower bounds for the OS level
scheduling jitter. What ever is able to interrupt or
intrude the two consecutive rdtsc calls is also able to

impact any other instruction (note there is no cpuid
instruction used as we are interested in the possible
impact of the pipelines) thus even if the OS does
better at scheduling the application would not bene-
fit from this simply because the scheduling tests will
indicate when the application code got started, but
not when the code was able to actually perform the
intended operation. If we know how intrusive the OS
environment can be then we get a better estimate of
the actual jitter of any action code might be taking.

Note that we have not used a serializing instruc-
tion to read the TSC (rdtscp or cpuid+rdtsc) as this
does not improve the timestamp precision - quite
the contrary, serializing instructions have a profound
negative impact on timestamp precision and are in-
fact one of the main limitations to timestamp pre-
cision as cpuid it self can take up to a few hundred
cpu-cycles on multiprocessor systems in the worst
case.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 500 1000 1500 2000

sa
m

pl
es

cycles

cpuid execution time (AMD Sempron)

cpuid amd sempron

FIGURE 2: cpuid execution time in cycles
(AMD Sempron)

4 De-randomization

To actually confirm that on of the sources of inherent
randomness in a modern computing system can be
attributed to the CPU, we investigated the ability
to construction code that would not exhibit random
execution times. The code in question is very simple
code and the constraints needed to achieve this de-
terministic behavior preclude use of these methods
for any real-life code - never the less it is interesting
in-sight in the level of randomness of a modern CPU.

Measures taken to ”de-randomize” code include:

• warmup loops (to ensure cache hot code/data)

• Fitted into L1 cache or even a single cache line
(instruction and data cache)

• only local data involved that fit into a L1 D
cache or a single cache line.

• nosmp on multicore boxes

• interrupts disabled

• dynamic cpu frequency scaling disabled

• well selected CPU frequency - not all CPU fre-
quencies allow constant execution times to be
attained

• serializing instructions (cpuid)

• manually tuned loop, both length and instruc-
tion distribution, to fit pipelines

• simple set of instructions (typically a single
one-byte instruction, i.e. ”inc

Even with these quite excessive de-
randomization efforts which mainly focus on limiting
the physical resources involved in the execution of
the code to an absolute minimum, even within the
CPU, it is not reliably possible to achieve absolutely
constant execution times - though the variance can
be reduced to roughly 10E-9/10E-10. The CPU in
this setup was not using most of its execution units
(FP,SSE,complex-ALU,barel shifter) but rather lim-
ited to a subset, which tentatively explains why the
randomness was reduced.

A side note on serializing instructions - cpuid -
does not increase the precision of rdtsc - it only pre-
vent out of order execution - but the penalty of cpuid
it self is so high that it actually reduces the precision
of timestamp association. On a 1.8GHz AMD Sem-
pron a cpuid causes an overhead of 65 cycles, reduc-
ing the variance of rdtsc - but the offset is far larger
than the variance - so the net precision is reduced.
In fact one of the sources of decreased randomization
in the random.org device based on background radi-
ation monitoring might well be the cpuid instruction
along with the serial line used for triggering the cpuid
rdtsc - this is a bit speculative at this point though
as we have not been able to verify these claims due
to lack of appropriate equipment.

Further it showed that the actual parameters (i.e.
inner and outer loop length CPU-frequency selected)
had to be re-adjusted to fit each CPU, we from this
conclude that it is not possible to write any mean-
ingful code for a modern CPU that would actually
provide constant execution times over even a closely
related set of CPUs, and thus de-facto any real-life
code exhibits inherent randomness.

5 Conclusion

The maybe most provocative conclusion at this point
- modern CPUs are inherently random and a com-
plex general purpose OS on top amplifies this inher-
ent randomness substantially. More work on this is
in the pipeline, and we hope to provide more evi-
dence of this speculation in the neer future.

From the current work we have drawn three main
practical conclusion are:

• Real Time metrics must be found that can re-
flect the inherent randomness of modern com-
plex hardware/software systems

• A set of accepted metrics to describe the basic
system parameters of inherent randomness and
timestamp precision is needed to make systems
comparable

• A probabilistic approach to real-time perfor-
mance to us seems the only meaningful one.

As a starting point we propose the use of:

• timestamp precision in cpu cycles based on a
simple test-code that iterates over priorities
and considers serializing instruction impact.

• system randomness based on entropy, chi
square, Monte Carlo simulation of Pi and serial
correlation.

While we were able to find a, in our opinion, con-
vincing demonstrating of the inherent randomness
of modern systems by providing a software based
random-number generator, we think this is currently
not much more than a discussion input and should
lead to a widely accepted metric for system random-
ness to base ”high-level” real-time metrics on. The
second contribution is the definition of, though triv-
ial, timestamp precision tests. Essentially it is not
relevant to which specific phenomena the variance
can be attributed, essential is only that these phe-
nomena can’t be evaded with acceptable penalty as
the de-randomization tests showed and thus any real-
time metric will have to take this inherent uncertenty
of time-stamps into account.

Practical use of these conclusions are proposed
for the initialization of random number pools at
boot time of GNU/Linux or for entropy generation
of systems that don’t have sufficient sources from
asynchronous events (typically on embedded systems
with only low-bandwidth peripherals). Work on this
is under way.

In future works we hope to cover inherent ran-
domness in more depth and find suitable models
that allow estimations of execution times for actual
real-time systems based on complex hardware/soft-
ware like GNU/Linux with its real-time extensions
on COTS hardware.

References

[1] Matthew Davis & Sameer Niphadkar, LibMT-
PRNG: A Multithreaded Pseudo Random Num-
ber Generator Dr. Dobb’s Journal April 20, 2009

[2] Sameer Niphadkar & Matt Davis, Random Num-
ber Generation via Threadding, December 12
2009

[3] Viega, J. Practical Random Number Generation
in Software Proceedings of the 19t h Annual
Computer Security Applications Conference. De-
cember 2003.

[4] Jake Edge, On entropy and randomness
http://lwn.net/Articles/261804/, December
12, 2007

[5] Maurice Herlihy, Nir Shavit The art of multipro-
cessor programming, Morgan Kauffman, Febru-
ary, 2008, ISBN 978-0-12-370591-4

[6] Pierre L’Ecuyer, TestU01: Test-
ing Random Number Generators,
www.iro.umontreal.ca/ simardr/testu01/tu01.html,
2002

[7] Wikipedia,http://en.wikipedia.org/wiki/Pilot wave,2009

[8] random.org, RANDOM.ORG - Introduc-
tion to Randomness and Random Numbers,
http://www.random.org/randomnes

[9] HotBits.org, HotBits: Genuine Random Num-
bers, http://www.fourmilab.ch/hotbits/

[10] hblogo.zip, HotBits driver
http://www.fourmilab.ch/hotbits/source/hblogo.zip

[11] John Walker, random.zip
http://www.fourmilab.ch/random/

[12] Nicholas Mc Guire, Qingguo Zhou, Benchmark-
ing - Cache issues, Proceedings of the 7th Real
Time Linux Workshop, Lile 2005

