
PostgreSQL WAL, Commit Synchronization
and Optimization Opportunities

Jobin Augustine
Senior Support Engineer

2

Agenda

1. What are WAL Records?
2. Synchronization Considerations
3. What is Important From the Host IO Subsystem?
4. Parameters for Tuning
5. Different Levels of Tuning, Instance, Database, User, Session,

and Transaction
6. How it Impacts Performance
7. WAL Propagation to Standby
8. Synchronous Standby, Important Points To Be Considered
9. Remote Write, Flush, and Replay Stages

3

What is WAL?

● Journal/ledger of changes
● Speeds up transactions

○ Transaction can just add a WAL record and proceed, rather than going to the exact datafile and
updating the right block(s)

● Unavoidable for transaction processing.
○ Identify committed and uncommitted transaction.

WAL is the metadata to reconstruct the changed data in the database

4

Why WAL?

1. Instance Crash Recovery
2. Restore from a hot backup
3. Maintain Standby Database
4. Logical Replication

History, importance
and WAL volume

wal_level determines how much information is written to the WAL

5

WAL Record Generation

● Every PostgreSQL backend can produce WAL record
● Concurrent generation is of WAL records
● WAL Buffer - The birthplace of WAL record

○ Shared among all the process (shared memory for WAL)
○ Auto-tuned - Default is 1/32 (3%) of the shared_buffers capped to WAL segment size (16MB)

○ Flushed as part of every commits

xbuffers = NBuffers / 32;
if (xbuffers > (wal_segment_size / XLOG_BLCKSZ))

xbuffers = (wal_segment_size / XLOG_BLCKSZ);
if (xbuffers < 8)

xbuffers = 8;
return xbuffers;

TIP: WAL_BUFFERS: In extreme busy system with large number of cores, increase to 64MB up to 128MB found to help.

6

Transaction processing by session

● Insert/Update the tuple in shared_buffer pages
● Invoke XLogInsert()

○ Insert a XLOG Record
● Each concurrent Inserter acquires an insertion lock

○ There is a small, fixed number of insertion locks determined by NUM_XLOGINSERT_LOCKS (default 8)
○ The lock also has progress recording
○ Two-step process:

■ 1. Reserve right amount of space in WAL
■ 2. Copy the record to the reserved space

7

WAL Writing

● pg_pwrite() function is used, which internally uses write() system call, which does not
guarantee that that the data is flushed to disk. To complete the flush, another function
issue_xlog_fsync() is called which issues the appropriate kind of fsync

● If the writing happened at the last page of the WAL segment, fsync the file, so that we don't
have to open it later for fsync

● The backend will be waiting for the confirmation of write and flush

Which process writes WAL?
1. Individual backends
2. WAL Writer (wakes up periodically and checks the WAL buffer periodically and writes all

unwritten XLOG records into the WAL segments)

8

WAL Archives

Archive_mode = ON Other values like “true”,1,”yes” are also accepted
archive_mode = OFF Other values like “false”,0,”no” are also accepted
archive_mode = ALWAYS

9

Wait Events Associated With WAL Gen/Writing

● WALBufMapping - Waiting to replace a page in WAL buffers. WALBufMappingLock must be
held to replace a page in the WAL buffer cache.
To change the identity of a buffer (and InitializedUpTo), the process needs to hold
WALBufMappingLock.

● WALWrite - Waiting for WAL buffers to be written to disk. A WALWriteLock must be held to
write WAL buffers to disk (XLogWrite or XLogFlush).
To change the identity of a buffer that is still dirty, the old page needs to be written out first,
and for that you need to acquire WALWriteLock and make sure that no other sessions are
dirtying it now.

10

Flushing

● On Commit
● WAL switch
● Checkpoints

...and many more

11

Synchronization to Local Disk

Shared buffers

WAL buffers

OS with Page cache

WAL Record
Inserts

(2) WAL flush

WAL Writes

● Local synchronization archives
basic durability requirements

● synchronous_commit can be
turned off for specific
scenarios. Effectively it will be
an Asynchronous commit

It is possible to have both synchronous and asynchronous commit transactions running concurrently

https://www.postgresql.org/docs/current/wal-async-commit.html

12

Synchronization with Standbys

Key Concepts
● The primary defines which standbys it wishes to wait for
● The standbys are completely unaware of the durability requirements
● No shipment of state information or through WALs is required.
● If there is synchronous standby then the primary has the option to wait for write, flush or

apply on the standby before releasing the waiting backend.
● Primary will be maintaining an ordered queue of waiting backends. So that whenever a reply

comes from the standby a bulk of waiters can be released.

13

History and Features

● PG 9.5 single synchronous standby
● PG 9.6 priority based multiple synchronous standby

○ The method FIRST is used for specifying the priority-based synchronous standbys. Transaction commit
on the standby waits for specified number of standbys whose names appear earlier in the list.

● PG 10 quorum based multiple synchronous standby
○ Method ANY is used for specifying the quorum based synchronous standbys.

synchronous_standby_names specifies the standby names that the Primary should be
considering for synchronization.

FIRST 3 (s1, s2, s3, s4)

ANY 3 (s1, s2, s3, s4)

14

Synchronization with “Remote Write”

WAL records are written to remote standbys (but not yet flushed).
The data may remain on the page cache for some time.
Cannot be useful if Primary and Standby instances are crashing at the same time

When set to remote_write, commits will wait until replies from the current synchronous
standby(s) indicate they have received the commit record of the transaction and written it out
to their operating system

15

Remote Write

Local PostgreSQL

Shared buffers

WAL buffers

OS with Page cache

(1) WAL Inserts

WAL Sender WAL Receiver

OS with Page cache

(3) Remote Write

(2) WAL flush (4) Remote flush

Remote PostgreSQL

Shared buffers

WAL buffers

WAL Writes

16

Remote Flush/“on” With Synch Standby

Local PostgreSQL

Shared buffers

WAL buffers

OS with Page cache

WAL Inserts

WAL Sender WAL Receiver

OS with Page cache

(3) Remote Write

(2) WAL flush (4) Remote flush

Remote PostgreSQL

Shared buffers

WAL buffers

WAL Writes

17

Remote Apply

Local PostgreSQL

Shared buffers

WAL buffers

OS with Page cache

(1) WAL Inserts

WAL Sender WAL Receiver

OS with Page cache

(3) Remote
Write

(2) WAL flush (4) Remote flush

Remote PostgreSQL

Shared buffers

WAL buffers

(5) Remote Apply
WAL Writes

18

IO Recommendations

● Dedicated disk for WAL files
○ Transactions Per Second (TPS) depends only on WAL writing
○ Dedicated disks gives isolation from load of data file writing
○ More consistent performance (checkpoint overheads/datafile writings)

● Low Latency disks for WAL files
○ Latency in flushing is more important than total bandwidth

● Reduce the checkpoint frequency.
○ full_pate_writes after checkpoints are heavy. Full pages are written into WAL segments

max_wal_size
checkpoint_completion_target
checkpoint_timeout

19

WAL Compression

wal_compression = on
Enabling the WAL compression helps to compress the full pages which are written to WAL. This
effectively reduces the WAL data to be transmitted.

Compressing WAL for archive and backup
A standby can rely on WALs from archives and external compression can achieve very high
degree of compression.
https://www.percona.com/blog/2020/02/13/compression-of-postgresql-wal-archives-
becoming-more-important/

https://www.percona.com/blog/2020/02/13/compression-of-postgresql-wal-archives-becoming-more-important/

20

Selecting Synchronization at Different Scope

Transaction Level postgres=# BEGIN;
BEGIN
postgres=# SET LOCAL synchronous_commit=off;
SET
postgres=# SHOW synchronous_commit;
synchronous_commit

off
(1 row)

postgres=# END;
COMMIT
postgres=# SHOW synchronous_commit;
synchronous_commit

local
(1 row)

21

Selecting Synchronization at Different Scopes

Session Level

If session cannot be altered at run time, it can be passed as part of connection string.

postgres=# SET synchronous_commit=remote_write;
SET

"host=localhost user=postgres options='-c synchronous_commit=off'"

22

Selecting Synchronization at Different Scopes

User Level

Database Level

Instance Level

ALTER USER critical_user SET synchronous_commit=remote_apply;

ALTER DATABASE stagingdb SET synchronous_commit=off;

ALTER DATABASE stagingdb SET synchronous_commit=off;
ALTER SYSTEM SET synchronous_commit=on;
select pg_reload_conf();

ALTER DATABASE stagingdb SET synchronous_commit=off;

23

WAL Propagation

Fast Network
pg_current_wal_lsn | sent_lsn | flush_lsn | replay_lsn

--------------------+------------+------------+------------
2/3C31E000 | 2/3C31E000 | 2/3C0C0000 | 2/3C02D4D0

2424 kB 3011 kB
Network slowness
pg_current_wal_lsn | sent_lsn | flush_lsn | replay_lsn

--------------------+------------+------------+------------
2/5C982000 | 2/4E620000 | 2/4E000000 | 2/4DF5FC38

227 MB
234 MB 234 MB

24

How Fast/Slow?

Disclaimer: Numbers are for
conveying the overhead involved.
They shouldn’t be considered a
benchmark.

25

Disclaimer: Numbers
are for conveying the
overhead involved.
They shouldn’t be
considered as a
benchmark.

26

Thank You! Q&A

