Zhao Wei <twitter/linkedin/wechat: david.zhao.cn@gmail.com>

About the author

» Zhao Wei (David Zhao) twitter/linkedin/wechat: david.zhao.cn@gmail.com
» Database kernel developer in Oracle
» Berkeley DB
» MySQL
» Database kernel developer in Tencent
» TDSQL --- most popular distributed DBMS inside Tencent and Tencent Public/Private Cloud
» Evolved TDSQL from a table-sharding solution to a distributed DBMS
» Started Kunlun project in Aug 2019
» Goal
» A distributed DBMS from day 1, with knowledge&lessons learned from TDSQL
» Premium scalability, availability, fault-tolerance&crash safety
» Premium performance, ease of use&administration, and autonomousity;
» Cloud native & DBaaS
» Cost effective in cloud: seperation of computing & storage paradigm
» Finished over 60% kernel development

o Why we need a distributed DBMS cluster

o Kunlun Architecture

Kunlun Basics & Examples

O
o Kunlun Indepth Technologies
O

Kunlun Project Progress & Plans

Why we need a distributed DBMS

o Ever growing Data Commodity hardware
Management Needs infrastructure

Application developers pain o DBA pain points
points

Ever growing Data Management Needs

» New techs changing the world NOW! '*-«t?
» 5@, loT, sensors, robots, drones
» auto-pilot & intellegient
transportation
> Intellegient
city/manufacture/agriculture
» Data will be produced, accumulated
and used much faster & much more
extensive
» by humans, animals, plants,
smart devices/equipments,
Sensors, etc
» on ground, in water, air and
space, 24*7 non-stop
» Largely relational data, but multi-
model(graph, time-series, spatial,
json, text)

Hardware infrastructure for computing

» Commodity hardware
» low cost & moderate reliability
» limited computing resources&capacity (CPU/memory/storage/network)
» deployed massively in multiple data centers of multiple places
» interconnected via tcp/ip network
» Problems of hardware infrastructure
» server nodes stop working usually&randomly/unpredictably
» hardware/software fault/failure
» power outage: node, rack, data-center
» planned hardware/software maintenance/upgrade
» planned restart/renewal/retire
» network issues are common&random/unpredictable
» partition/congestion
» break/slow-down
» Resource bottlenecks easily reached
» Infrastructures Software Needs --- DBMS
» High availability & crash safety & fault-tolerance
» Scale out efficiently
» Single point hotspot kills performance&scalability
» share nothing(sharding) paradigm

DBMS User Needs

» DBA&Devops

» least human intervention, esp. in case of random incidents

» work autonomously

» help diagnose/analyze/monitor performance and other issues
» Application developers

» isolate data mgmt complexity from alications
ry:

» agnostic to data physical layout cursor. execute("begin™)
» execute transactions&queries cursor.execute("insert into orders values(...)")
. cursor.execute("update stock set amount = amount - 3 where 1d = ...'
» handle DB eXCGDtIOﬂS cursor.execute("commit")

» focus on business logic design&imp| Sl LTI
> adapt to changes&evolve quick| LI
» base on simple logical data layer abstraction

» Agile&predictable development & affordable cost
» leave common data mgmt work to DBMS

Future DBMS Requirement

» Distributed DBMS Requirement

» manage TBs to PBs of frequently accessed data
» no single hotspot/single point of failure
» multiple read&write nodes

» run on many commodity hardwares collaborating efficiently
» highly available
» crash safe & fault tolerant

» scale out elastically on demand continuously & automatically
» zero impact to apps/users

» run as DBaaS
» public VS private cloud
» one cloud VS multi-clouds
» on premise deployment

» work autonomously, require least human(DBA) intervention
» diagnose/analyze/monitor

EXxisting solutions -——— common

» DBMS HA Cluster
» Achieve HA by replicating entire data set
» each node stores all data storage: storage/computing capacity bottleneck
» single primary node for write traffic
» unscalable for writes
» multiple replicas, can serve read requests
» eventual consistency
» propagate changes to replicas
» as binlogs/WAL logs
» MySQL async/semisync/group replication
» PostgreSQL WAL replication
» alternative: replicate data/log file blocks using shared storage
» Aurora and its variants
» challenges
» scalability

Existing solutions

» DBMS HA clusters plus middleware/proxy/gateway instances
» supports sharding
» supports multiple write&read nodes
» no support for global transaction/query processing
» can write only one shard in a transaction
» or risk inconsistent global transactions in node failures
» can read only tablets of one shard in a SELECT stmt
» implement specific multi-table joins in app code
» some with limited multi tablets (of one table) queries, often aggregates
» Application developers need to often write their SQL queries/transactions according to
data physical layout
» fixed tablet layout setting, no automatic scaling-out allowed
» unable to adapt to DBMS node failures/alterations automatically
» DBMS HA clusters plus application level sharding implemented specifically
» table sharding for each table
» cross shard DML queries for each query
» global transaction commit&recovery for each transaction

Existing solutions

» DBMS HA clusters plus micro-services
» micor-services collaborating asyncly & loosely coupled via message queues
» user data partitioned by micro-services, each has its own part of data
» smaller amount data to manage for each service&its DB instance
» handle inconsistency/eventual consistency between cooperating services
» hard to impl correct business logic
» hard to maintain consistent global data snapshot
» handle service crash-safety
» reliable message queue positions to resume consumption
» more infrastructure facilities (message queue & DB cluster deployment)
» more hardware costs
» more maintenance/administration work for DBAs & Devops
» service scale-out VS DBMS scale-out
» services defined by business domain NOT data
» can't scale-out a service's data
» some services may still face huge amount of data
» e.g. place-order service, money-transfer-out/in services
» Conclusion: micro-service architecture can't meet/resolve the needs for a distributed DBMS

Pain points

» Application developers
» write SQL queries/transactions according to data physical location
» physical data layout dependency is nasty!
» implement cross shard transaction ACID in application code
» assemble user result using multiple queries in application code
» overwhelmed by redundant & error prone data mgmt work
» writing db functionality in application repeatedly for each specific task
» DBAs/devops
» scale out manually
» impacts apps/end users
» handle db node failures manually
» reconfigure proxy nodes in case of primary switch or when add/drop a table
» A lot of unforeseeable chores and routines to do, any-time in any day, quite error-prone
» Business owners
» high human cost and/or hardware/infrastructure cost
» unpredictable development timespan and quality and slow response to business changes
» service&revenued&user loss during db node failures

Best approach -—- Distributed DBMS

» Manage huge amount of data using distributed DBMS
» keep application independent from data mgmt work & work automously
» architect: design with one integral/consistent data snapshot which scales-out on demand
» natural&straightforward thinking
» can still use micro-service paramdigms in application design&mpl
» app developers: focus on business logic impl, based on reliable DBMS functionality
» simpy use SQL stmts, no message queues needed
» assume transactions and ACID guarantees
» app developers: all parts/services work with 'simple' application data
» consistent data snapshot/view
» always available
» always crash-safe&fault-tolerant and resillient
» always sufficient resources --- scales-out on demand
» DBAs: more efficient & productive
» automate almost everything, minimal manual maintenance work
» focus on valuable work: data schema design, performance tuning, resource planning, etc
» Kunlun Distributed DBMS fully meet all such needs

Kunlun Architecture

loT Devices

Clien§ Apps

network&cloud
services

Kunlun Metadata Cluster
Computing Group Replication

Nodes(CN)

Replica

Kunlun Cluster_mgr

Kunlun Distributed DBMS Cluster
shared components

Kunlun Distributed DBMS Cluster

» Computing nodes
» accept & validate user connections
» accept & process user queries
» parse -> optimize -> execute(send SQL -> receive & assemble)
» executes DDLs and DMLs
» can have one or more nodes in a cluster, independent from each other
» doesn't store user data, only store metadata locally
» takes trivial storage space
» store user data in storage shards
» based on PostgreSQL-11.5, supports pg client protocol
» supports common PostgreSQL DDL grammar
» supports most PostgreSQL DML grammar & native data types
» will support mysql client protocol and common MySQL private DML grammar(pending)

» Storage shards

» Uses MySQL group replication(MGR) single primary mode for shard HA
» primary election
» robust consistency guarantees

» Require kunlun-percona-MySQL-8.0.18-9
» developed based on percona-MySQL-8.0.18-9
» contains critical bug fixes & supporting features
» will advance versions with upper stream

» Stores application(user) data in standalone tables
» PG single tables
» PG table partitions

» execute mostly single table queries
» in a global transaction's local transaction branch

» Metadata Cluster
» kunlun-percona-mysql MGR cluster
» Shared by one or more Kunlun distributed db clusters
» stores metadata of Kunlun clusters
» Cluster_mgr
» maintain MGR cluster&node online status
» nodes come&god&rejoin
» must join GR explicitly
» primary&replicas join GR differently & primary first
» startup entire MGR cluster
» choose the right primary
» work on all Kunlun clusters registered in a metadata cluster

Kunlun Distributed DBMS cluster metadata stored in Metadata Cluster

mysql> use kunlun_metadata_db; ysql> select*from shard_nodes;
OERELE] changed
mysql> show tables

Tables 127.0.0. > 2020-09-18 11:43:27

|
127.0.0. > 2020-09-18 11:43:27 |
commit_log 127.0.0. > 2020-09-18 11:43:27 | creating
commit_log_clustl 127.9.8.1] 2020-09-18 43:27 | creating
commit_log_clust4 127.9.6.1 > 2020-09-18 143:27 | creating
commit_log_clusts 127.0.0.1 2020-09-18 11:43:27 | creating
comp_nodes
db_clusters
dd1l_ops_log_clustil
dd1l_ops_log_clust4
dd1l_ops_log_clusts
dd1_ops_log_template_table
meta_db_nodes -
shard nodes 1 | shardl | 2020-09-18 11:43:27
s 2 | shardz | 2020-89-18 11:43:27

e e ———— — %

13 rows in set

sql> select* ysql> select*from shards t1, db clusters t2 where ti.db_cluster_id=t2.id;
LEEE T + B T TS S F----
| i | db_cluster_ | when_created _na sta id | name | when_c space_vo
+ -
| compl | 1] | abc | creating | 1 | shardl | 2020-09-18 11:43:27 | ; | clustl | abc | dd1_ops_log_clustl 9-09-18 11:43:24
| compz | e 1 | 2020-09-18 11:43:25 | abc | creating 2 | shard2z | 2020-09-18 11: 27 | 0 | clust1l | abc | dd1_ops_log_clustl 2020-09-18 11:43:24

ecom=# select*from pg_shard;
name | id | master_node_id | when_created

shard1 | : 18 1 7.116262+08

shardz | 4 ; 2020-09-18 11:43:27.116262+08 lecom=# select*from pg_cluster_meta;

(2 rows) comp_node_1id | cluster_id | cluster_maste

ecom=# select*from pg_shard_node;

id | port | shard_id i when_created

. - S

pgx_pwd 2026-09-18 143:27.116262+08 lecom=# select*from pg_cluster_meta_nodes;
pgx_pwd 2020-09-18 143:27.116262+08 server_id | cluster_id is_master | i user_name passw
pgx_pwd 2020-09-18 143:27.116262+08 —00O SEoo
pgx_pwd 2020-09-18 143:27.116262+08 .a.0. pgx | pgx_pwd
pgx_pwd 2020-09-18 143:27.116262+08 -8.8. pgx | pgx_pwd
pgx_pwd 2020-09-18 143:27.116262+08 1 : -a.a. pgx | pgx_pwd

(6 rows)

DDL & Table sharding in Kunlun computing node DDL & Table sharding in Kunlun's
storage shards
S ./psql -hlocalhost -p64e1 -Uabc ecom ysql> show databases;

create table orders(id bigint primary key, good_id bigint, good_amount int, total_price money, timestamptz

TABLE M

create table orders_1 partition of orders for values with(modulus 4, remainder 8); ECON_SS_DUD].'LC
TABLE information_schema

ecom_5S_public
create table orders_2 partition of orders for values with(modulus 4, remainder 1); information schema
TABLE mysql -

create table orders_3 partition of orders for values with(modulus 4, remainder 2); performance schema mys?—_l h
TABLE - . perrtormance_schema
create table orders_4 partition of orders for values with(modulus 4, remainder 3); postgre§_$$_pub11c' ostares SS_ ublic
TABLE regression_$$_public PRI me

select relname, relkind, relnatts, relispartition, relshardid from pg_class where relname like 'orders%'; sys regresston_ss_publlc
relname relkind | relnatts | relispartition | relshardid

+
orders |
orders_1 | . 2 .
orders_1_pkey [rows in set (0.02 sec) rows in set (0.01 sec)
orders_2 |

orders_2_pkey |

orders_3 |

orders_3_pkey |

orders_4 |

orders_4_pkey |

orders_pkey |

(10 rows)

ysql> use ecom_S$S_public; ysql> use ecom_$5_public
Database changed Database changed
ysql> show tables; ysql> show tables;

DB NNEENNO

ecom database and orders table are accessible in other orders_3

Computlng nOd rows in set (0.82 sec)

- S ./psql -h localhost -p6402 -Uabc ecom
psql (11.5)
Type "help" for help.

ecom=# select*from orders;
id | good_id | good_amount | total_price when_paid

1 $20.00 | 2020-10-09
3 $12.30 | 2020-10-09
2 $80.00 | 2020-10-09 16:16: orders_4 | CREATE TABLE “orders_4°
4 $1.09 | 2020-10-09 *id® bigint(20) NOT NULL,
‘good_id" bigint(20) DEFAULT NULL,
ecom=# \d+ orders; ‘good_amount® int(11) DEFAULT NULL,
P COﬁgﬂsxfﬁbﬁéﬂgﬂS&fwlt ‘total_price” decimal(57,8) DEFAULT NULL,
‘when_paid® datetime DEFAULT NULL,
| bigint | not null | i PRIMARY KEY (id") USING BTREE
good_id | bigint t ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai _ci |

| I
good_amount | integer | I
| I
| |

(4 rows)

total_price | money
when_paid | timestamp with time zone

Partition key: HASH (id)

Indexes:

"orders_pkey" PRIMARY KEY, btree (id)

Partitions: orders_1 FOR VALUES WITH (modulus remainder
orders_2 FOR VALUES WITH (modulus remainder
orders_3 FOR VALUES WITH (modulus remainder
orders_4 FOR VALUES WITH (modulus remainder

DML & transactions in storage shards

DML & transactions in
computing node

insert into orders values(1, 1, 1, 5 now());

01

insert into orders values(2, 2, 1, . now()):;

61

insert into orders values(3, 5, 7, - now());

01

insert into orders values(4, 3, 4, 1. now());

01

select*from orders;

good_1id good_amount total_price when_paid

mysql> select*from orders_1; mysql> select*from orders_2;

1 row in set (0.00 sec) 1 row in set (0.00 sec)

mysql> select*from orders_3; Imysql> select*from orders_4;

1 row in set (0.88 sec) 1 row in set (0.00 sec)

2020-10-09 16:16:17+08
2020-10-09 16:16:59+08
2020-10-09 16:16:34+08

2020-10-09 16:17:19+08 binlog.000094 | Gtid SET @@SESSION.GTID_NEXT= '32078c3a-547e-11lea-9780-981fd1bd416d:24633"

|
binlog.000094 | Query XA START '1-1602232850-160994'

lecom=# select*from orders_1;

id | good_id | good_amount | total price when_paid binleg.000094 | Rows_query # update ecom_$$_public.orders_1 set good amount = (good amount + 1)

2020-10-09 16:16:17+08 binlog.000094 | Table_map table_id: 85 (ecom_S$S_public.orders_1)

|
binlog.000094 | Update_rows_partial | table_id: 85 flags: STMT_END_F

lecom=# select*from orders_2;

id | good_id | good_amount total_price when_patid binlog.000094 | Rows_query | # update ecom_5_public.orders_3 set good_amount = (good_amount + 1)

2020-10-09 16:16:59+08 binlog.000094 | Table_map | table_id: 86 (ecom_$$_public.orders_3)

binlog.000094 | Update_rows_partial | table_id: 86 flags: STMT_END F

lecom=# select*from orders_3;

|
id | good_id | good_amount | total_price when_paid binleg.000054 | Query I XA END '1-1602232050-160994'

2020-10-09 16:16:34+08 binlog.080094 | XA_prepare XA PREPARE '1-1602232050-160994

binlog.000094 | Gtid SET @@SESSION.GTID NEXT= '32078c3a-547e-1lea-9780-981fd1bd410d:24634"'

ecom=# select*from orders_4; . s s
good_id | good_amount total_price when_patd binlog.000094 | Query XA COMMIT '1-1662232050-160994
2020-10-09 16:17:19+08

binlog.000032 Gtid SET @@SESSION.GTID_NEXT= '31078c3a-547e-11ea-9780-981fd1bd41ed:892"'

ecom=# update orders set good_amount=good_amount+1;

UPDATE 4

ecom=# select*from orders;

id | good_id | good_amount total_price when_paid

binlog.000032 Query XA START '1-1602232050-160994'
binlog.0008032 Rows_query # update ecom_S$S_public.orders_2 set good_amount = (good_amount + 1)
2020-18-09 16:16:17+08 binlog.000032 Table_map table_id: 86 (ecom_S$S_public.orders_2)

2020-10-09 16:16:59+08
2020-10-09 16:16:34408 binlog.0008032 Update_rows_partial table_id: 86 flags: STMT_END_F

2020-16-09 16:17:13+08 binlog.000032 Rows_query # update ecom_$5_public.orders_4 set good_amount (good_amount + 1)
binlog.0000832 Table_map table_id: 87 (ecom_$S_public.orders_4)
binlog.000632 Update_rows_partial table_id: 87 flags: STMT_END_F
binlog.0000832 Query XA END '1-1602232050-160994"'
binlog.000032 XA_prepare XA PREPARE '1-1602232050-168994'

binlog.000032 Gtid SET @@SESSION.GTID_NEXT= '31078c3a-547e-11ea-9780-981fd1bd410d:893"'

binlog.000832 Query XA COMMIT '1-1602232050-160994'

Kunlun Indepth ——— Computing nodes

» Table sharding

» Table mapping between computing nodes&storage shards
» single table -> single table
» table partition -> single table
» use tables OR partitioned tables ?

» Specifiy shard keys in 'create table' stmt
» any (group of) columns
» enable precise control of table data distribution for best performance
» suggested simple default: use primary key
» must be included in pk/unique keys

» Table sharding methods: PostgreSQL table partitioning methods
» hash
» range
» list

» map rows of table partitions to target on storage shards
» automatic&transparent

Kunlun Indepth ——— Computing nodes

» Global transaction coordinator
» two phase commit for transactions writing to multiple shards
» one phase commit for 0/1 written shards & readonly shards
» can resist node failures/network issues during commit
» App developers can
» use transactions as if using standalone db
» write to multiple shards in a transaction

Kunlun Indepth ——— Computing nodes

Storage resillience & auto failover

adapt to primary node failures of storage shards/metadata cluster

automatically

» Always use latest primary node for write

» check against potential issues of MGR

] $./psql -h localhost -p64@2 -Uabc ecom
psql (11.5)
Type "help" for help.

ecom=# select now();select*from pg_Shard;
2020-10-11 12:35:39.684367+08
(1 row)
name | id | master_node_id | num_nodes | space_volumn | num_tablets | db_cluster_id

when_created

1 | 2020-09-18 11:43:29.124588+08
1 | 2020-09-18 11:43:29.124588+08

2020-10-11 12:36:51.139977+08
(1 row)

ERROR: Connection with MySQL storage node (2, 5) is gone: 2013, Lost connection to MySQL server during query. Resend the statement.
DETAIL: Disconnected all connections to MySQL storage nodes.
ecom=# select now();select*from pg_Shard;

2020-10-11 12:36:53.612078+08
(1 row)
name | id | master_node_id | num_nodes | space_volumn | num_tablets | db_cluster_id

when_created

1 | 2020-09-18 11:43:29.124588+08
1 | 2020-09-18 11:43:29.124588+08

ecom=# select now(); update orders set good_amount=good_amount+1;
2020-10-11 12:36:56.371882+08
(1 row)
ERROR: Shard (2) primary node(5) currently unavailable, retry in a few seconds.
ecom=# select now(); update orders set good_amount=good_amount+1;
2020-10-11 12:36:58.948288+08
(1 row)
UPDATE 12
ecom=# select now();select*from pg_Shard;
2020-10-11 12:37:01.572108+08
(1 row)
name | id | master_node_id | num_nodes | space_volumn | num_tablets | db_cluster_1id | when_created
shard1l | | 2020-09-18 11:43:29.124588+08

shard2 | | 2020-09-18 11:43:29.124588+08
(2 rows)

primary election & auto-failover completed within
8 seconds

Kunlun Indepth -—— Computing nodes

» Global deadlock detector(GDD)
» local wait-for edges form global cyclic wait-for graph
» undetected in single innodb
» detected&resolved periodically&actively
» when writing to multiple DB HA cluster in app code, still need GDD
» Can not without supporting features
> alternative: lock/stmt timeout: resolves slowly
» e.g.Onshard1, GT1.LT1 -> GT2.LT1 ==> GT1 -> GT2
On shard2, GT2.LT2 -> GT1.LT2 ==> GT2 -> GT1

begin;

=# update orders set good amount=good amount+1 where id=1;
UPDATE 1

update orders set good_amount=good_amount+1 where id=3;
1

ecom=# update orders set good_amount=good_ amount+l where id=3;

ERROR: MySQL storage node (1, 2) returned error: 1317, Query execution was interrupted.
ecom=# rollback;

ROLLBACK

update orders set good_amount=good_amount+1l where id=1;
1
commit;

Kunlun Indepth ——— Computing nodes

» DDL synchronization
» no human intervention needed
» executed in storage shards automatically
» replicated by all other computing nodes
» All computing nodes share consistent metadata
» DDL executed as an autocommit transaction
» crash safe & fault-tolerant
» MySQL 8.0 atomic DDL: can't be aborted
» concurrency control: allow consistent concurrent execution

Kunlun Indepth ——— Computing nodes

» Scalability

» replica reads (under development)
» chooses the right one at the right time
» eventual consistent, inconsistency tolerant

» async data read/write with target storage shards
» parallel query execution
» high performance

» balanced tablet (re)distribution on new storage shards (pending)
» elastically & continuously & on demand & automatically
» done at background
» undetected in application or by end users

» Typical cost effective usage
» start with one or a few shards
» scale out on demand

» Single shard usage benefit
» storage resillience&auto failover
» replica read
» cluster&node GR state maintenenace cluster_mgr
» scale out on demand, no capacity planning/restriction

Kunlun Indepth -- Storage shards

» Storage shards
» Crash safety&fault tolerance challenges in MySQL XA transaction processing
» keep XA transactions in innodb and binlog identical
» keep XA transactions in primary and replicas identical
» keep XA transaction gtids in innodb undo log and binlog identical (8.0)
» Performance enhancement in XA transaction processing
» 50%+ QPS increase & 50%+ latency decrease in sysbench write cases
» https://zhuanlan.zhihu.com/p/151664455
» Less frequent jitter in QPS if any
» Supporting features needed by computing nodes
» transaction status for global deadlock detector
» MGR issues
» bug#101114

Kunlun Development Progress

» Completed functionality (latest release version: 0.7)
Table sharding
Global transaction processing
single table DML queries
crash safety&fault tolerance and auto failover
Common DDLs(create/drop db/schema/table/index)
DDL synchronization
Basic cluster mgmt
POC ready
» On-going development (version 0.8)
» advanced cross shard multi-table query processing
» advanced query supporting features
» sequences
» prepared stmts
» query cache
» Project access
» https://github.com/david-zhao/Kunlun
» A lot of tech articles around kunlun & db in general: https://www.zhihu.com/column/dbtech
» Latest released binary download: https://share.weiyun.com/PCIlfvwFF

VVVVVVYY

Kunlun Development Plan

» Planned work (version 0.9 and higher)
k8s & containerization
DBaaS & Cloud native
elastic scale-out
mysq| client protocol & popular private DML stmts
More DDL stmts
» alter table
» views
Cluster Backup & Restore
Advanced data types
» json/spatial
» Stored procedure & more advanced query processing
» GUI for DBA&Devops and end users
» administration/mgmt
» diagnosis/analysis/monitor
» Improve db internal security
» User Requested features

YV V VY

Y VY

Q&A

Thank You

Zhao Wel

2020-10-17

