
How Does Geo-replication Work in TiDB
Presented by Jay Lee

About Me

Jay Lee (李建俊)
Senior Engineer of PingCAP

Distributed system engineer / Database engineer/

Open- source advocator

TiKV Maintainer

Rustacean: raft-rs / grpc-rs

Github @busyjay

Overview

● What is TiDB

● How does replication work

● Deployment

● Q&A

Part I - Intro to TiDB

PingCAP.com

What is TiDB

● Elastic scaling-out

○ Transparent to applications, no more manual sharding!

● Always-on

○ HA with strong consistency

● SQL

○ MySQL dialect

○ HTAP = OLTP + OLAP

● ACID semantics

PingCAP.com

The whole picture

TiDB

TiDB

TiDB

A
p

p
lic

at
io

n
vi

a
M

yS
Q

L
P

ro
to

co
l

TiKV

TiKV

TiFlash

TiKV

TiKV

...

DistSQL API

KV API

...

Worker

Worker

Worker

Spark Driver

...

Sp
ark SQ

L

Spark Cluster

DistSQL API

PD PD PD

PD Cluster

PumpPump Pump

Drainer ...

TiDB Binlog

DM Worker DM Worker

Data
MigrationDM Master

Upstream
Database

Downstream
Database

Backup & RecoveryLightning

KV Importer KV Dumper

Diagnosis
Monitoring

TiDB Vision

TiDB Insight

TiDB Operator TiDB Ansible

Schrodinger

TiFlash

PingCAP.com

A closer review

TiDB-Server TiKV-Server

gRPC
MySQL wire
protocol TiDB-Server

TiDB Server TiKV-Server
TiKV Server

PD

PD PD

Metadata/Data
location

Heartbeat/Data balancing
commands

Placement Driver (PD) cluster

PingCAP.com

Data organization within TiDB

Tables (Rows with columns)

TiKV

t1_r1 {col1: v1, col2: v2, col3: v3 ...}

t1_r1 {col1: v1, col2: v2, col3: v3 ...}

... ...

t2_r1 {col1: v1, col2: v2 ...}

... ...

Key-value pairs within TiKV
ordered by key

tidb-server

Dictionary order

PingCAP.com

Data organization within TiDB

TiKV Node

Store 1

Region 1

Region 2

Region 3

Region 4

Local RocksDB instance

t1_r1 v1

t1_r2 v2

... ...

t5_r1 ...

t5_r10 ...

t1_i1_1_1 ...

t1_i1_2_2 ...

... ...

t1_i6_1_3 ...

... ...

Region 1

Region 2

Region 3

Region 4

...

PingCAP.com

Data organization within TiDB
● Region (A bunch of key-value pairs, or Split)

○ Default total size of one Region: 96MB
■ You can change it in configuration

● Region is a logical concept
○ Region meta : [Start key, End key)
○ All regions within a TiKV node share a same RocksDB

instance

● Each Region is a Raft group
○ Default: 3 replicas

TiKV Node

…...

Region 1

Region 2

Region 3

Region 4

PingCAP.com

Region: multiple replicas across different nodes

TiKV Node

…...

Region 1

Region 2

Region 3

Region 4

TiKV Node

…...

Region 1

Region 2

Region 3

Region 4

TiKV Node

…...

Region 1

Region 2

Region 3

Region 4

Raft Raft

Part II - How does replication work

PingCAP.com

Raft group

● A region is managed by a raft group

● Possible roles

○ Leader

○ Follower

○ Learner

● Leader receives votes from majority followers

● Leader manages group and report to PD

● On failure

○ Follower starts campaign and take over

Leader

Follower Follower

VoteVote

Learner

PD

PD PD

Report meta

Write

● Data is written to leader as logs

● Leader replicates logs to followers and learners

● Logs replicated to majority followers are committed

Leader

Follower Follower

Append

Learner

Append

TiDB

PD

PD PD

Query Leader

Read

● All roles can read

● Read on leader

○ Read immediately if in lease

○ Renew lease otherwise

● Read on follower and learner

○ Read log index on leader

○ Read data on follower

Leader

Follower Follower

Learner

TiDB

Read index Read index

Read index

TiDB

Configuration change

● Simple change

○ Can only handle one change at a time

○ Process as a special write

○ Change in one step

○ Quick and easy

PD

PD PD

AZ 0 AZ 1 AZ 2 AZ 3

LeaderFollower Follower

LeaderFollower Follower Learner

LeaderFollower Follower

LeaderFollower Follower

Follower

Configuration change

● Simple changes can lead to unavailability

PD

PD PD

AZ 0 AZ 1 AZ 2

LeaderFollower Follower

LeaderFollower Follower Learner

LeaderFollower Follower

LeaderFollower Follower

Follower

Configuration change

● Simple changes can lead to unavailability

● Joint Consensus

○ Enter joint state first

■ Both new and old configuration takes effects

○ Complicated

PD

PD PD

AZ 0 AZ 1 AZ 2

LeaderFollower Follower Learner

LeaderFollower Follower

LeaderFollower Follower

Follower

Commit group

● Majority may not ensure data safety

○ Destroy of one AZ can lost writes

● Replicas are assigned to different groups

● Group is calculated according to AZs

● Logs commit

○ Majority from configuration

○ Replicated to at least 2 groups

AZ 0 AZ 1

LeaderFollower Follower

Commit group

● A delegate is assigned to a group

○ Forwarding logs from leader

● Reduce bandwidth by half
AZ 0 AZ 1

Leader

Follower FollowerFollower

Delegate

Placement rules

● Place replicas by rules

● Rule

○ Contstraints on replication numbers

○ Raft roles

○ Geolocation

● Work on ranges

PD

PD PD

Part III - Deployment

Three AZs

● Replicas and leaders are distributed among 3 AZs

● Tolerate one down AZ

● Disavantage

○ High latency when request across AZs

PD

TiDB

TiKV TiKV

PD

TiDB

TiKV TiKV

PD

TiDB

TiKV TiKV

Client ClientClient

Three AZs

● Replicas are distributed among 3 AZs

● Placement rules in PD

○ controls leaders and replicas

● Leaders are scheduled relative to client

● Read can be optimized by follower read

PD

TiDB

TiKV

PD

TiDB

TiKV TiKV

PD

TiDB

TiKV TiKV

Client

TiKV

ClientClient

PingCAP.com

Two AZs

● Use even number of replicas

● Safety

○ No data lost when either AZ fails

● Availability

○ Unavailable when either AZ fails

● Higher cost

PD

TiDB

TiKV

PD

TiDB

TiKV TiKV

Client

TiKV

Client

PD

TiDB

TiKV TiKV

PD

TiDB

TiKV TiKV

PingCAP.com

Two AZs

● Odd number of replicas + group commit

● Safety is guaranteed by group commit

● Primary AZ has more replicas

● Failure of secondary AZ can be recover by removing group commit

TiDB

TiKV

PD

TiDB

TiKV TiKV

Client

TiKV

Client

PD

TiDB

TiKV TiKV

PD

PingCAP.com

Two AZs

● PD manages replication states

● Only Sync state guarantees safety

Sync

Async Sync
Recover

Secondary
failure
timeout

Secondary
recover

Secondary
catch up all logs

Summary

● Use raft algorithm to ensure atomicity and consistency

● Schedule Leaders to reduce latency using placement rules

● Introduce group commit to ensure safety across even AZs

● Follower read and replication to reduce bandwidth

Thank You !
Twitter: @pingcap @busyjaylee

https://www.pingcap.com
Slack: #everyone in Slack

https://www.pingcap.com
https://slack.tidb.io/invite?team=tidb-community&channel=everyone&ref=Percona

