


This is not a DB 

optimization talk

It’s a talk about how doing

things in a specific way

leads to getting way better

results by default



"We should forget 

about small 

efficiencies, say 

about 97% of the 

time: premature 

optimization is 

the root of all 

evil"

-- Donald Knuth



Preoptimization

Don’t denormalize Maintenance prevails
over performance

Use InnoDB



Preoptimization

Don’t denormalize Maintenance prevails
over performance

Use InnoDB

by default

by default

by default



Preoptimization



Tuning

MySQL 

Parameters



MySQL 

Parameter 

Tuning

Will get you out of SOME trouble



MySQL 

Parameter 

Tuning

Will get you out of SOME trouble

But not a good default strategy, 

specially if the base is flawed



MySQL 

Parameter 

Tuning

Will get you out of SOME trouble

But not a good default solution, 
specially if the base is flawed

Please do tune 
MySQLs defaults

Not the theme
for this talk



Start with 

your schema



Start with your

Schema

 Your schema is probably the root cause of your “My DB 

doesn’t scale” problems

 The solution is not “have a loose/no schema”

 How to fake a DB Design (Curtis Ovid Poe)

 https://www.youtube.com/watch?v=y1tcbhWLiUM

https://www.youtube.com/watch?v=y1tcbhWLiUM


Care for 

your 

datatypes



Data types: how (not) to bloat your DB

SELECTING DATA TYPES WITH A BIT OF 

CARE IS VERY PRODUCTIVE

IT MAKES MORE DATA FIT IN LESS SPACE OPTIMIZES USE OF INNODB BUFFER POOL, 

MYISAM KEY BUFFER, JOIN BUFFER, SORT 
BUFFER, SMALLER INDEXES



Integers



Type Bytes Unsigned Signed

TINYINT 1 255 -128 to 127

SMALLINT 2 65K -32K to 32K

MEDIUMINT 3 16M -8M to 8M

INT 4 4000M -2000M to 2000M

BIGINT 8 1.8x1019 -9x1018 to 9x1018



INT(1) == INT(10) == 4 bytes

Same range!





Type Bytes Unsigned Signed

TINYINT 1 255 -128 to 127

SMALLINT 2 65K -32K to 32K

MEDIUMINT 3 16M -8M to 8M

INT 4 4000M -2000M to 2000M

BIGINT 8 1.8x1019 -9x1018 to 9x1018



The Integer family

Type Bytes Unsigned Signed

TINYINT 1 255 -128 to 127

SMALLINT 2 65K -32K to 32K

MEDIUMINT 3 16M -8M to 8M

INT 4 4000M -2000M to 2000M

BIGINT 8 1.8x1019 -9x1018 to 9x1018

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html


Strings



Strings are sequences of bytes with a charset and a collation



Strings are sequences of bytes with a charset and a collation



Strings are sequences of bytes with a charset and a collation

BINARY and VARBINARY



u
tf

8
m

b
4

41

61

80

A

a

C3 À

la
ti

n
1

41

61

C0

A

a

À

Strings are sequences of bytes with a charset and a collation



u
tf

8
m

b
4

41

61

80

A

a

C3 À

la
ti

n
1

41

61

C0

A

a

À

sw
e
d
is

h
_
c
i

sw
e
d
is

h

À aA

b

B

À A

B ba

Strings are sequences of bytes with a charset and a collation



Strings are sequences of bytes with a charset and a collation

BINARY and VARBINARY

CHAR and VARCHAR



Strings are sequences of bytes with a charset and a collation

BINARY and VARBINARY

CHAR and VARCHAR

utf8mb4_swedish_ci



BINARY and CHAR: Fixed length

BINARY(10)

CHAR(10) LATIN1

???

P E R C O N A



BINARY and CHAR: Fixed length

BINARY(10)

CHAR(10) LATIN1

P E R C O N A

O N L I N E



BINARY and CHAR: Fixed length

BINARY(10)

CHAR(10) LATIN1

CHAR(10) utf8

P E R C O N A

O N L I N E

2 0 2 0 ⭐ ⭐ ⭐ ⭐ ⭐



BINARY and CHAR: Fixed length

BINARY(10)

CHAR(10) LATIN1

CHAR(10) utf8 + InnoDB

P E R C O N A

O N L I N E

2 0 2 0 ⭐ ⭐ ⭐ ⭐ ⭐

2 0 2 0

https://dev.mysql.com/doc/refman/8.0/en/data-size.html


Use uft8mb4 by default

Don't use utf8 (alias for utf8mb3)

https://dev.mysql.com/doc/refman/8.0/en/charset-unicode-utf8.html


Texts are sequences of bytes with a charset and a collation

BINARY and VARBINARY

CHAR and VARCHAR



Texts are sequences of bytes with a charset and a collation

BINARY and VARBINARY

CHAR and VARCHAR



VARBINARY and VARCHAR

VARBINARY(10)

VARCHAR(10) LATIN1

VARCHAR(10) utf8mb4

7 P E R C O N A

O N L I N E

2 0 2 0 ⭐ ⭐ ⭐ ⭐ ⭐

2 0 2 0

6

2

0

4



VARBINARY and VARCHAR

VARBINARY(10)

VARCHAR(10) LATIN1

VARCHAR(10) utf8mb4

7 P E R C O N A

O N L I N E

2 0 2 0 ⭐ ⭐ ⭐ ⭐ ⭐

2 0 2 0

6

2

0

4

1 to 11

bytes

1 to 41

bytes



2 0 2 04

VARCHAR(560) latin1

L o r e500 m e u .

VARBINARY(65535) and VARCHAR(65535)

MySQL Max row size: 65K





I’ll just go for VARCHAR(255) on all text columns



I’ll just go for VARCHAR(255) on all text columns
“After all… I’ll just consume the number of bytes + 1





All your VARCHAR(255) are now CHAR(255) in 

memory temp tables

That’s 255 bytes binary/latin-1. Or 1K 

utf8mb4 O_o



Big texts



The Blob family

Text Blob Bytes Max

TINYTEXT TINYBLOB 255

TEXT BLOB 65K

MEDIUMTEXT MEDIUMBLOB 16M

LONGTEXT LONGBLOB 4GB

https://dev.mysql.com/doc/refman/8.0/en/blob.html

https://dev.mysql.com/doc/refman/8.0/en/blob.html


The Blob family

Text Blob Bytes Max

TINYTEXT TINYBLOB 255

TEXT BLOB 65K

MEDIUMTEXT MEDIUMBLOB 16M

LONGTEXT LONGBLOB 4GB

https://dev.mysql.com/doc/refman/8.0/en/blob.html

https://dev.mysql.com/doc/refman/8.0/en/blob.html


The Blob family

Text Blob Bytes Max

TINYTEXT TINYBLOB 255

TEXT BLOB 65K

MEDIUMTEXT MEDIUMBLOB 16M

LONGTEXT LONGBLOB 4GB

https://dev.mysql.com/doc/refman/8.0/en/blob.html

https://dev.mysql.com/doc/refman/8.0/en/blob.html


The Blob family

Text Blob Bytes Max

TINYTEXT TINYBLOB 255

TEXT BLOB 65K

MEDIUMTEXT MEDIUMBLOB 16M

LONGTEXT LONGBLOB 4GB

https://dev.mysql.com/doc/refman/8.0/en/blob.html

FS / 

Object 

Store

Don´t 

use

https://dev.mysql.com/doc/refman/8.0/en/blob.html


IF a SELECT references a BLOB/TEXT column

Temporary tables go DIRECTLY to DISK





Small sets



ENUM

One value out of a set of possibilities (‘big’, ‘small’)

1 or 2 bytes

Looks like a string to the client



SET

Choose a set of non-exclusive 
possible values (‘pool’,’terrace’,’fence’,’guard’)

SETS are NOT good for finding stuff

FIND_IN_SET is a function. No indexes

Model by default to a separate table + relation



Date and 

Time



The Date and Time Family

Text Bytes

YEAR 1

DATE 3

TIME 3 + ...

DATETIME 8 + ...

TIMESTAMP 4 + ...

Careful with ranges. Consult the manual frequently

https://dev.mysql.com/doc/refman/8.0/en/date-and-time-types.html

http://Tahttps:/dev.mysql.com/doc/refman/8.0/en/date-and-time-types.html


The Date and Time Family

Text Bytes

YEAR 1

DATE 3

TIME 3 + ...

DATETIME 8 + ...

TIMESTAMP 4 + ...

Careful with ranges. Consult the manual frequently

https://dev.mysql.com/doc/refman/8.0/en/date-and-time-types.html

An epoch!

Things 

that 

happen 
"now"

http://Tahttps:/dev.mysql.com/doc/refman/8.0/en/date-and-time-types.html


NULL vs NOT NULL

Gives the DB hints

Set NULL where ever it
makes sense



Masked Data



An IP Address

234.34.123.92

Choose type for



An IP Address

234.34.123.92
CHAR(15)? VARCHAR(15)?

Choose type for





INT





INSERT INTO table (col) VALUES (INET_ATON(’10.10.10.10’));

SELECT INET_NTOA(col) FROM table;



Choose type for

MD5("The quick brown fox jumps over the lazy cat")

"71bd588d5ad9b6abe87b831b45f8fa95"



Choose type for

MD5("The quick brown fox jumps over the lazy cat")

"71bd588d5ad9b6abe87b831b45f8fa95"

CHAR(32)?



BINARY(16)





Others

UUIDs

HASH functions

Network masks



Your new best

friend

 https://dev.mysql.com/doc/refm

an/5.7/en/storage-

requirements.html

 https://dev.mysql.com/doc/refm

an/8.0/en/storage-

requirements.html

https://dev.mysql.com/doc/refman/5.7/en/storage-requirements.html
https://dev.mysql.com/doc/refman/8.0/en/storage-requirements.html


Smaller is better

VS



Indexes



Datatype for 

keys



AUTONUMERIC UNSIGNED INT by default. Think if it can be smaller.

TINY, SMALL, MEDIUM. Always UNSIGNED!

UNIQUE INDEX your "natural keys"

This is called a surrogate key

InnoDB stores whole PK on every index.

The DB bloats with “big keys”

Default to an Integer for your PK



Do you really need an UNSIGNED BIGINT?

The magnitude comparison trick



Do you really need an UNSIGNED BIGINT?

The magnitude comparison trick

Epochs in Unix have 4 bytes (like an UNSIGNED INT)



Do you really need an UNSIGNED BIGINT?

The magnitude comparison trick

Epochs in Unix have 4 bytes (like an UNSIGNED INT)

The epoch has been counting every second since 1970



Do you really need an UNSIGNED BIGINT?

The magnitude comparison trick

Epochs in Unix have 4 bytes (like an UNSIGNED INT)

The epoch has been counting every second since 1970

Will run out in 2038



Do you really need an UNSIGNED BIGINT?

The magnitude comparison trick

Epochs in Unix have 4 bytes (like an UNSIGNED INT)

The epoch has been counting every second since 1970

Will run out in 2038

An INT can identify ONE THING HAPPENING EVERY SECOND for 68 YEARS!

Do you STILL need a BIGINT?







Index the two sides of relations

PK



Index the two sides of relations

Non-Unique index

Use REFERENCES Customers.CustomerID

https://dev.mysql.com/doc/refman/8.0/en/create-table-foreign-keys.html


Index the two sides of relations

Same Data Type







PK is (contract_id, customer_id)

(Implied uniqueness)

Index “both ways”: 
(customer_id, contract_id)

InnoDB optimization: Don’t index the full (customer_id, contract_id). The
index ALREADY HAS customer_id in it’s leafs. So just index (customer_id)

N-M relation: Junction tables







Don’t operate on fields

 Because they can’t use indexes

 WHERE column = ‘x’
WHERE column > 2000

WHERE column LIKE ‘prefix%’

 WHERE column + 2000 > 2013

WHERE FIND_IN_SET(column)

WHERE CONCAT(f1,f2) = “xxxx.com”

WHERE YEAR(date) = 2015

WHERE column LIKE ‘%.com’



Polish your maths: Algebra

 Doesn’t use index

WHERE column + 2000 > 2013

WHERE FIND_IN_SET(‘pool’,column)

WHERE CONCAT(f1,’.’,f2) = 

“xxxx.com”

WHERE YEAR(date) = 2015

WHERE column LIKE ‘%.com’

 Uses index

WHERE column > 13

?

WHERE f1 = ‘xxxx’ AND f2 = ‘com’

WHERE date BETWEEN ’01-01-2015’ 

and ’31-12-2015’

?



The old switcheroo…

 Doesn’t use index

WHERE column + 2000 > 2013

WHERE FIND_IN_SET(‘pool’,column)

WHERE CONCAT(f1,’.’,f2) = 

“xxxx.com”

WHERE YEAR(date) = 2015

WHERE column LIKE ‘%.com’

 Uses index

WHERE has_pool = 1

WHERE column_rev LIKE ‘moc.%’



The old switcheroo…

 Doesn’t use index

WHERE column + 2000 > 2013

WHERE FIND_IN_SET(‘pool’,column)

WHERE CONCAT(f1,’.’,f2) = 

“xxxx.com”

WHERE YEAR(date) = 2015

WHERE column LIKE ‘%.com’

 Uses index

WHERE has_pool = 1

UPDATE t SET has_pool = 

FIND_IN_SET(‘pool’,column);

WHERE column_rev LIKE ‘moc.%’

UPDATE t SET 

column_rev=REVERSE(column)





CAT IS HERE



Wrap up

Data Types

How to select them

Masked types

Indexes

Surrogate keys

Indexing relations

Using indexes



pplu_io

Click to add text

https://www.linkedin.com/in/

joseluismartineztorres/

https://twitter.com/pplu_io
https://www.linkedin.com/in/joseluismartineztorres/

