HLIOS

VIRTUALHEALTH'

Building Data Lake with

MariaDB ColumnStore
Sasha Vaniachine

HELIOS SaaS Platform

* Ranked among fastest growing companies in North
America by Deloitte for two years in a row,
VirtualHealth empowers healthcare organizations
to achieve enhanced outcomes, while
maximizing efficiency and lowering costs

. |
* Our SaaS platform HELIOS is utilized by largest Il ’m ‘I
and most innovative US health plans to v

manage about ten million members

/ Best Places to Work’

CRAIN’'S 2020

~ best

places
~ toworkin

NYC

Modern Healthcare

2020

Relational Data Lake

*In a course of daily operations, VirtualHealth clients accumulate a
growing volume of transactional data in relational OLTP databases
* With age, these operational data became less relevant to daily operations

* In contrast, as historical volumes grow, these data grow in value for analytics

*VirtualHealth needs to provide data scientists and developers with
on-demand access to de-identified patient data increasing in volume
and complexity

* We chose a relational data lake approach, storing daily, read-only snapshots of
OLTP databases

* To lower the costs, we chose MariaDB ColumnStore because of its inherent
data compression and S3 storage support

Data Lake

* A data lake is a storage repository that holds a large amount of data in
its native, raw format

* James Dixon introduced this concept as: “If you think of a Data Mart as a store
of bottled water — cleansed and packaged and structured for easy consumption
—the Data Lake is a large body of water in a more natural state.”

Implementing one of the Data Warehouse rules:

* Store snapshot data captured at a given point in time
* We store daily, read-only snapshots of OLTP databases

Bridging the Gap

* Healthcare operational data originate from relational database
systems that are not directly suitable for analytics and/or machine
learning algorithms

* We describe here VirtualHealth experience in building the data
pipeline between the operational data in relational database systems,
that are row-oriented and machine learning tools that prefer data in
columnar formats

* We chose to build a data pipeline using MariaDB ColumnStore since it
already provides open source examples of integration with Jupyter
Notebooks and Apache Zeppelin used for data exploration and
analysis by data scientists

H

Rationale

« Analytical queries are slow on a transactional database

* A special storage format - columnar - improves performance of
such queries

« Although there are several open source columnar databases,
« in this talk, we will focus on the MariaDB ColumnStore

HLIOS

VIRTUALHEALTH'

Slow Queries
Row-oriented RDBMS

Query 1: Ranking

* A ranking query: top ten clients who visited doctors most often
e data from 2017-2020

mysql> SELECT

-> client _id,

-> min(date) as first visit,

-> max(date) as last visit,

-> count(distinct date) as days visited,

-> count(cv.id) as visits,

-> count(distinct cv.service location _name) as locations

-> FROM client visit cv

-> GROUP BY client_id

-> ORDER by visits desc

-> LIMIT 10;
R e T il Hommm e e H+------ - R el +
| client_id | first visit | last_visit | days _visited | visits | locations |
R et e T e e T - - - R +
| o | 2017-08-07 | 2020-03-13 | oo cev | oo

10 rows in set (10 min 53.826 sec)

Ranking Query Speedup: Using index

select type:
table:
partitions:
type:
possible keys:
key:

key len:
ref:

rOwS :
filtered:
Extra:

PRIMARY KEY

SIMPLE

cV

NULL

index

FK _client visit author_id
FK _client visit author_id
5

NULL

26847507

100.00

Using temporary; Using filesort

("id),

KEY "FK _client_visit author _id" (" client _id’)

Adding Covered Index

mysgl> alter table client visit add key comb (client id, date, service location name);
Query OK, © rows affected (2 min 31.424 sec)
Records: @ Duplicates: © Warnings: ©

table: cv
partitions: NULL
type: index
possible keys: FK client visit author_id,comb
key: comb
key len: 776
ref: NULL

rows: 26847507
filtered: 100.00
Extra: Using index; Using temporary; Using filesort

10 rows in set (21.096 sec)

That was only the beginning... now Query 2

SELECT
cv.client _id as client id,
min(date) as first visit,
max(date) as last visit,
count(distinct date) as days _visited,
count(distinct cv.id) as visits,
count(distinct cp.cpt_code) as procedures,
count(distinct cv.service location name) as locations,
sum(billed amount) as total billed,
max(billed amount) as max_price,
avg(billed amount) as avg price
FROM
client visit cv
join client procedure cp on cp.encounter_id = cv.encounter_id
join client procedure claim cpc on cp.id = cpc.client procedure_id
join client claim cc on cc.id = cpc.client claim id
GROUP BY client id
ORDER BY total billed desc
LIMIT 10

OLTP: Highly
normalized
schema

Query 2: Four table JOINs, all tables large

fmmmmmmmmaaa O fmmmmmmmmaaa- fmmmmmmmmmmaaaa fmmmmmmn- fmmmmmmmmana- fmmmmmmmmaa- ey RS +
| client_id | first visit | last_visit | days_visited | visits | procedures | locations | total billed | max_price | avg price |
fmmmmmmmmma- S fmmmmmmmmaaa- fmmmmmmmmmmaaaa fmmmmmmn- fmmmmmmmmana- fmmmmmmmmana fommmmmmmmeaaas fmmmmmmmmaan S +
| ... | 2018-02-14 | 2019-09-04 | 154 | 161 | . . 724K | 12K | 355.49 |

10 rows in set (9 hours 22 min 28.387 sec)

HLIOS

VIRTUALHEALTH'

Why our OLAP queries were slow
in the OLTP environment?
Rows vs. Columns

Why MariaDB is slow for OLAP queries?

o Itis row-oriented

o if query needs two columns
o it will read the entire row

« InnoDB organizes table by 16k pages
o will read even more

« MariaDB/MySQL will use only '
one CPU-core per query T
o not utilizing all cores] ' \
Parallel Query Execution

E L I OS Y cona Live Online 2020

VIRTUALHEALTH’

-:' 'l

!

https://www.percona.com/blog/2019/01/23/mysql-8-0-14-a-road-to-parallel-query-execution-is-wide-open

Benefits of the ColumnStore Approach

Row-oriented MariaDB Column-oriented MariaDB

date client id service location_name

date client id service location_name

Databases comparison by ClickHouse

HLIOS

VIRTUALHEALTH'

What type of queries benefited
most from MariaDB ColumnStore
architecture?

InnoDB vs. ColumnStore

MariaDB ColumnStore Tests

MariaDB ColumnStore: 1.2.5 Community Edition
* single-node distributed install e
e Testing box 1 —recommended minimum:
* AWS EC2 instance: m4.4xlarge
e RAM: 64.0 GiB
* vCPU: 16
* Disk: gp2 SSD
* Testing box 2:
AWS EC2 instance: c5d.18xlarge
RAM: 144.0 GiB
vCPU: 72
Disk: gp2 SSD

[]
E L I OS Y cona Live Online 2020

VIRTUALHEALTH’

Query 1: Is it worth using MariaDB ColumnStore?

InnoDB: no index 10 min 53.826 sec 1
InnoDB: Using index 21 sec 31
ColumnStore 26 sec 25

AWS EC2 instance: m4.4xlarge

HLIOS

VIRTUALHEALTH’ Percona Live Online 2020

18

Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec

ColumnStore ?

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: m4.4xlarge

HLIOS

VIRTUALHEALTH’ Percona Live Online 2020

19

Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec

ColumnStore 1st attempt

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: m4.4xlarge

ERROR 1815 (HY000): Internal
<<:i{§;§i error: IDB-2001: Join or :iéé}ii:>
subselect exceeds memory limit

n\ Stbselect exceeds nenory Tmtt-

HLIOS

VIRTUALHEALTH’ Percona Live Online 2020 20

Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec

ColumnStore Allow SSD Based Joins

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: m4.4xlarge

ERROR 1815 (HY000): Internal
error: IDB-2001: Join or
subselect exceeds memory limit

mcsadmin shutdownSystem y

/usr/local/mariadb/columnstore/bin/setConfig HashJoin AllowDiskBasedJoin Y
mcsadmin startSystem

HLIOS

VIRTUALHEALTH’ Percona Live Online 2020

21

Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec
ColumnStore 3 min 50.772 sec 146.2

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: m4.4xlarge

Even with disk-based joins
(using gp2 SSD volume)

HLIOS

VIRTUALHEALTH

Percona Live Online 2020

22

Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec

ColumnStore 2 min 32.626 sec

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: c5d.18xlarge

221

times
faster!

HLIOS

VIRTUALHEALTH

Percona Live Online 2020

221.1

No disk-based joins

23

Table Sizes on Disk

Table InnoDB Columnstore Improvement
(GB) (GB)

client visit

client procedure
client procedure_claim
client claim

Total

HLIOS

VIRTUALHEALTH

30
5.7
26
73

Percona Live Online 2020

7.1
0.68
7.9
19.9

4.2
8.4
3.3
3.7

Compression
Indexing

24

HLIOS

VIRTUALHEALTH'

How we transfer OLTP data to

MariaDB ColumnStore?
0. Extract-Transform-Load

Extract

In contrast to traditional data
extraction done in "batches," our
Staging Area is persistent and is
implemented as a secure MariaDB

slave replica

Data are continuously replicated over
the secure encrypted channel to the
same OLTP InnoDB schema

HLIOS

VIRTUALHEALTH’

rcona Live Onlﬁine 2020

'

Transform

In contrast to complex data
transformations in a traditional data
warehouse, in the Data Lake
approach, data transformation is
minimized, thus retaining the original
form and format of our transactiona
data to the extent possible

-;-«-

b 4

| ‘
HLIOS AN .

VIRTUALHEALTH’

Load

- We load daily data snapshots to the MariaDB ColumnStore schema like

HELIOS_ColumnStore using a simple but elegant approach:

1. STOP SLAVE;

2. Perform efficient parallel transfer of the binary data (encrypted PHI) via multiple queries like:

Insert into HELIOS ColumnStore.client visit select * from HELIOS.client visit;

3. START SLAVE;

ELT

. By minimizing complex data transformation step,
we are implementing the big data ELT paradigm
that avoids significant business analysis and
modeling before storing data in our Data Lake

. Essentially, we are flipping the order ETL with ELT,
where data transformation happens later - at the
point where it is needed, such as during analysis

HLIOS

VIRTUALHEALTH'

How we transfer OLTP data to

MariaDB ColumnStore?
1. ETL for Schema

Extract-Transform-Load InnoDB Schema to ColumnStore

Extract:
mysqldump --no-data

Transform:
... change ENGINE=InnoDB
to ENGINE=Columnstore

Schema Load

mcsmysql test < client visit.sql

ERROR 1069 (42000) at line 25: Too many keys specified;
max @ keys allowed

mcsmysql test < client visit.sql

ERROR 1075 (42000) at line 25: Incorrect table
definition; there can be only one auto column and it
must be defined as a key

Percona Live Online 2020

32

ColumnStore DDL Syntax Differences

You can not load InnoDB table schema to ColumnStore as is

* Remove all lines with word KEY like

PRIMARY KEY (" id’),

UNIQUE KEY “uuid™ (uuid’),

KEY ~type (type),

CONSTRAINT FK _city id FOREIGN KEY (city id) REFERENCES city (id)
* Remove AUTO_INCREMENT from column definitions like

“id int unsighed NOT NULL AUTO_ INCREMENT,

e Remove CHECK from column definitions like
CHECK (json valid(json data’))

‘ _)
H ‘ e’ Gt

ColumnStore Unsupported Data Types

binary

bit

set

enum
year
varbinary

Mtimestamp

tinyblob

tinyint

char(N)

char(N)

date

tinyblob or blob
datetime

int

Percona Live Online 2020

34

Other Unsupported ColumnStore DDL Syntax

* Replace ENGINE name InnoDB to ColumnStore

* Remove legacy InnoDB table definitions like
ROW_FORMAT=COMPACT | ROW_FORMAT=DYNAMIC

* Remove not supported definitions like
DEFAULT CURRENT_TIMESTAMP | ON UPDATE CURRENT_TIMESTAMP

* Remove unsupported collations like
COLLATE utf8 unicode ci

* Remove escaped apostrophe in possessives like
COMMENT 'Submitter''s ID’

* Three-byte ZIP Code
mediumint(5) unsigned zerofill replaced with char(5)

NULL Values vs Empty Strings

Consider string type columns like:
CREATE TABLE test (
“empty_string® varchar(10) NOT NULL
) ENGINE=InnoDB;
Note: The implicit default for string types is an empty string
CREATE TABLE test cs (
“empty_string® varchar(10) NOT NULL
) ENGINE=Columnstore;

insert into test cs select * from test;

Note: ColumnStore treats a zero-length string as a NULL value

Line number 1; Error: Data violates NOT NULL constraint with no default; field 1

‘ _)
H ‘ e’ Gt

ColumnStore DDL: NOT NULL constraint with no default

Remove NOT NULL for columns with string data types

* CHAR

* VARCHAR

e TINYTEXT/MEDIUMTEXT/TEXT/LONGTEXT

« TINYBLOB/MEDIUMBLOB/BLOB/LONGBLOB

Otherwise you will be unable to load InnoDB data with empty strings

To reduce confusion, remove DEFAULT "'

HLIOS

VIRTUALHEALTH'

How we transfer OLTP data to

MariaDB ColumnStore?
2. ETL for Data

ETL from InnoDB to ColumnStore

- Execute
insert into columstore_table select * from innodb_table

- Injects the binary row data from MariaDB into cpimport
. During import, you may see two subprocesses:

1300 ? S1 14:31 _ /usr/local/mariadb/columnstore/mysql//bin/mysqld

9958 ? S1 0:44 _ /usr/local/mariadb/columnstore/bin/cpimport -m 1 -N -s ? -e @ -E ? HELIOS VirtualHealth
1663 ? S1 2:07 _ [WriteEngineServ]

9982 ? S<1 2:38 | _ /usr/local/mariadb/columnstore/bin/cpimport.bin -e @ -s ? -E ?

-R /tmp/columnstore_tmp_files/BrmRpt03051540539958.rpt -m 1 -P pml1l-9958 -u98e45db5-41b0-42aa-8616-4cld6e2c35f2 HELIOS VirtualHealth

. Note the undocumented option -R for the BrmReport file about import
- BRM = Block Resolution Manager

Another way to import data from InnoDB to ColumnStore

Due to MCOL-3933, during
insert into columstore_table select * from innodb_table

a row with the backslash character \ results in

ERROR 1030 (HY00Q) at line 1: Got error -1 "Internal error < @ (Not system error)"
from storage engine Columnstore

To debug, look in your mysql datadir for files like:
-rw-rw---- 1 mysql mysql 83 Apr 1 20:04 VirtualHealth.tbl.Job_14171 30475.err_1
-rw-rw---- 1 mysql mysql 115 Apr 1 20:04 VirtualHealth.tbl.Job 14171 30475.bad_1
To retry with a different escape (*Q) and/or separator (*G), execute:

mcsmysgl -q -e 'select * from client _memo' -N HELIOS \
| cpimport -s '\t' HELIOS ColumnStore VirtualHealth

https://jira.mariadb.org/browse/MCOL-3933

Configuring data import from InnoDB to ColumnStore

During
insert into columstore_table select * from innodb_table

you may encounter an error like:

ERR : Error reading import file VirtualHealth.tbl; near line 18; Single row fills read
buffer; try larger read buffer. [1456]

Due to MCOL-1234 this error is silent - but you will get as a result:

The following tables are locked:
LockID Name Process PID Session CreationTime State DBRoots

50 HELIOS_ColumnStore.VirtualHealth cpimport 8593 BulkLoad 2020-04-05 11:49:42 PM Abandoned 1

As a workaround, use cpimport command with increased buffer, like:
mcsmysql -q -e 'select * from VirtualHealth' -N HELIOS |
/usr/local/mariadb/columnstore/bin/cpimport -s '\t' -c 4194304
HELIOS ColumnStore VirtualHealth

cpimport default option for NULL values

. As documented, using default cpimport command, like:

mcsmysql -q -e 'select * from VirtualHealth' -N HELIOS |
/usr/local/mariadb/columnstore/bin/cpimport -s '\t' HELIOS_ColumnStore VirtualHealth

would result in replacement of NULL values with O for nullable INT or
date/time columns, like:

2020-04-07 14:24:09 (14236) WARN : Column HELIOS ColumnStore.VirtualHealth.updated_date;
Number of invalid date/times replaced with zero value : 6

- This is due to the default cpimport option:

cpimport -h
-n NullOption (©-treat the string NULL as data (default);
1-treat the string NULL as a NULL value)

- To avoid that, change the default option by adding: cpimport -n 1

Big Data

. For very large tables, during
insert into columstore_table select * from innodb_table

you may experience
ERROR 1206 (HY00Q) at line 1: The total number of locks exceeds the lock table size

- Increase MariaDB innodb_buffer_pool size dynamically, then check:

SHOW STATUS LIKE 'Innodb_buffer _pool resize status';

== mmmmmmmmmmmmemememememememeaea-- === m e e e e eeemememememmememem—e—ea- +
| variable_name | value |
== mmmmmmmmmemmemeeemememememeaea-- NN +
| Innodb_buffer_pool resize status | Completed resizing buffer pool at 200403 17:13:33. |
== mmmmmmmmmemmemeeemememememeaea-- NN +

Binary logs during data import from InnoDB to ColumnStore

You will accumulate huge binary logs volume during
insert into columstore_table select * from innodb_table

https://mariadb.com/kb/en/columnstore-storage-architecture/#transaction-log

You could disable binary logging for the session
SET SESSION SQL_LOG_BIN=0

https://mariadb.com/kb/en/columnstore-storage-architecture/

HLIOS

VIRTUALHEALTH'

Summary
Next Steps

Success

. The successful load of healthcare data to ColumnStore is
attesting to its level of maturity

. A preview of healthcare systems complexity is provided by
open source LibreHealthlO and OpenEMR database
schemas, with about two hundred tables each

. The VirtualHealth HELIOS database schema is on par with more

comprehensive commercial electronic health records systems
that have three times as much tables and thousands of columns

Summary

o Relational Data Lake built with MariaDB ColumnStore retains the
source data in their original format

o« We observed OLAP query speedup of more than two orders of
maghitude

o “Native” MariaDB/MySQL protocol

easier to integrate

o Native shared nothing cluster

cluster version 1.5 requires Enterprise Edition

HLIOS

VIRTUALHEALTH'

Getting Ready for Upgrade
From 1.2.5 to 1.5.4/1.5.5

MariaDB ColumnStore Versions

Community Edition

ColumnStore Release Date

10.5.5-GA 1.5.4-Gamma 2020-08-10

10.5.4-GA 1.5.2-Beta 2020-06-24

10.3.16-GA 1.2.5-GA 2019-06-23

-
.,

.

E L I OS Hrcona Live Online 2020

VIRTUALHEALTH’

Caveat

 MariaDB 10.5.5 official docker image does not have ColumnStore

MariaDB [(none)]> show plugins;

partition | ACTIVE | STORAGE ENGINE | NULL
e et e e e Attt e ¥ W— S — ¥ W——— Y — +
68 rows in set (0.002

partition ACTIVE STORAGE ENGINE NULL

Columnstore ACTIVE STORAGE ENGINE ha_columnstore.

Store COLUMNSTORE_COLUMNS ACTIVE INFORMATION SCHEMA ha_columnstore.
COLUMNSTORE_TABLES ACTIVE INFORMATION SCHEMA ha_columnstore.
COLUMNSTORE_FILES ACTIVE INFORMATION SCHEMA ha_columnstore.
COLUMNSTORE_EXTENTS ACTIVE INFORMATION SCHEMA ha_columnstore.

Column

73 rows in set (0.001 sec)

New Maturity in 10.5.5/1.5.4 and 10.5.4/1.5.2

MariaDB [test]> SELECT PLUGIN_DESCRIPTION, PLUGIN_AUTH_VERSION, PLUGIN_MATURITY
-> FROM INFORMATION_SCHEMA.PLUGINS

-> WHERE PLUGIN_TYPE='STORAGE ENGINE' AND PLUGIN_NAME='Columnstore';

L e L e e L +
| PLUGIN_DESCRIPTION | PLUGIN_AUTH_VERSION | PLUGIN_MATURITY |
L e e e L L +
| ColumnStore storage engine | 1.5.4 | Gamma |
L e L e S e +

MariaDB [test]> SELECT PLUGIN_DESCRIPTION, PLUGIN_AUTH_VERSION, PLUGIN_MATURITY
-> FROM INFORMATION_SCHEMA.PLUGINS
-> WHERE PLUGIN_TYPE='STORAGE ENGINE' AND PLUGIN_NAME='Columnstore';

L R L e +
| PLUGIN_DESCRIPTION | PLUGIN_AUTH_VERSION | PLUGIN_MATURITY |
Y L T R L L L e +
| ColumnStore storage engine | 1.5.2 | Beta |
Y T L e s L +

Steep Learning Curve

 MariaDB ColumnStore 1.5 underwent significant refactoring
* |tis now managed by systemd
* infinidb_vtable is gone
* On the other hand, the systemd is absent in Docker
* ColumnStore 1.5.2 docker image replaces systemd with tiny
* Official ColumnStore 1.5.4 docker image has not been released yet
* As aresult, you must
* either use VirtualBox to install official 1.5.4 ColumnStore distribution
* or build your own Docker image

to familiarize yourself with 1.5.4 ColumnStore version syntax

New Defaults in MariaDB 10.5 vs. MariaDB 10.3

MariaDB [test]> select @@version,@@sql_mode\G

Fokokok ok ok ook kokokokok ok kokkokokok ok kkkkkokk] popy KRR KKKk ok 3k sk skook sk sk ok ok ok sk sk ok sk ok ok ok ok ok ok

@@version: 10.5.5-MariaDB-1:10.5.5+maria~stretch
@@sql_mode: STRICT_TRANS_ TABLES,ERROR_FOR_DIVISION BY ZERO,NO AUTO CREATE_USER,NO_ENGINE_SUBSTITUTION

MariaDB [test]> select @@version,@@sql _mode\G

Fokokok ok ok ook kokokokok ok kokkokokok ok kkkkkokk] popy RORRRkokok ok 3k sk skook sk sk ok ok sk sk sk ok ok ok ok ok ok ok ok

@@version: 10.5.4-MariaDB
@@sql_mode: STRICT_TRANS_ TABLES,ERROR_FOR_DIVISION BY_ ZERO,NO AUTO CREATE_USER,NO_ENGINE_SUBSTITUTION

MariaDB [(none)]> select @@version,@@sql_mode\G

Fokokok ok ok ook kokokokok ok ko ko kokokokok ko kkkkkk] popy KRR KKKk ok sk sk skook sk sk ok ok ok sk sk ok ok ok ok ok ok k ok

@@version: 10.3.16-MariaDB-log
@@sql_mode: ERROR_FOR_DIVISION_ BY ZERO,NO AUTO_ CREATE_USER,NO ENGINE_SUBSTITUTION

New Features and Behavior in 10.5.5/1.5.4

MariaDB [test]> alter table test engine=Columnstore;

ERROR 1815 (HY000): Internal error: CALOOO1l: Insert
Failed: 1IDB-4015: Column 'empty_string' cannot be null.

MariaDB [test]> insert into test cs select * from test;

ERROR 1815 (HY@00): Internal error: IDB-2001: Join or
subselect exceeds memory limit.

/IRTUALHEA

Lesson Learned

o« Do not wait for the new ColumnStore GA release

o Start evaluating Beta/Gamma releases now

HLIOS

VIRTUALHEALTH'

This presentation extended the
VirtualHealth presentation by Alik
Rubin at Percona Live 2019 in Austin

Any Questions?

https://www.percona.com/live/19/sessions/opensource-column-store-databases-mariadb-columnstore-vs-clickhouse

