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HELIOS SaaS Platform

* Ranked among fastest growing companies in North
America by Deloitte for two years in a row,
VirtualHealth empowers healthcare organizations
to achieve enhanced outcomes, while
maximizing efficiency and lowering costs

. |
* Our SaaS platform HELIOS is utilized by largest Il ’m ‘I
and most innovative US health plans to v

manage about ten million members

/ Best Places to Work’

CRAIN’'S 2020

~ best

places
~ toworkin

NYC

Modern Healthcare

2020




Relational Data Lake

*In a course of daily operations, VirtualHealth clients accumulate a
growing volume of transactional data in relational OLTP databases
* With age, these operational data became less relevant to daily operations

* In contrast, as historical volumes grow, these data grow in value for analytics

*VirtualHealth needs to provide data scientists and developers with
on-demand access to de-identified patient data increasing in volume
and complexity

* We chose a relational data lake approach, storing daily, read-only snapshots of
OLTP databases

* To lower the costs, we chose MariaDB ColumnStore because of its inherent
data compression and S3 storage support




Data Lake

* A data lake is a storage repository that holds a large amount of data in
its native, raw format

* James Dixon introduced this concept as: “If you think of a Data Mart as a store
of bottled water — cleansed and packaged and structured for easy consumption
—the Data Lake is a large body of water in a more natural state.”

Implementing one of the Data Warehouse rules:

* Store snapshot data captured at a given point in time
* We store daily, read-only snapshots of OLTP databases




Bridging the Gap

* Healthcare operational data originate from relational database
systems that are not directly suitable for analytics and/or machine
learning algorithms

* We describe here VirtualHealth experience in building the data
pipeline between the operational data in relational database systems,
that are row-oriented and machine learning tools that prefer data in
columnar formats

* We chose to build a data pipeline using MariaDB ColumnStore since it
already provides open source examples of integration with Jupyter
Notebooks and Apache Zeppelin used for data exploration and
analysis by data scientists
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Rationale

« Analytical queries are slow on a transactional database

* A special storage format - columnar - improves performance of
such queries

« Although there are several open source columnar databases,
« in this talk, we will focus on the MariaDB ColumnStore
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Slow Queries
Row-oriented RDBMS




Query 1: Ranking

* A ranking query: top ten clients who visited doctors most often
e data from 2017-2020

mysql> SELECT

-> client _id,

-> min(date) as first visit,

-> max(date) as last visit,

-> count(distinct date) as days visited,

-> count(cv.id) as visits,

-> count(distinct cv.service location _name) as locations

-> FROM client visit cv

-> GROUP BY client_id

-> ORDER by visits desc

-> LIMIT 10;
R e T il Hommm e e H+------ - R el +
| client_id | first visit | last_visit | days _visited | visits | locations |
R et e T e e T - - - R +
| o | 2017-08-07 | 2020-03-13 | oo cev | oo

10 rows in set (10 min 53.826 sec)




Ranking Query Speedup: Using index

select type:
table:
partitions:
type:
possible keys:
key:

key len:
ref:

rOwS :
filtered:
Extra:

PRIMARY KEY

SIMPLE

cV

NULL

index

FK _client visit author_id
FK _client visit author_id
5

NULL

26847507

100.00

Using temporary; Using filesort

("id),

KEY "FK _client_visit author _id" (" client _id’)




Adding Covered Index

mysgl> alter table client visit add key comb (client id, date, service location name);
Query OK, © rows affected (2 min 31.424 sec)
Records: @ Duplicates: © Warnings: ©

table: cv
partitions: NULL
type: index
possible keys: FK client visit author_id,comb
key: comb
key len: 776
ref: NULL

rows: 26847507
filtered: 100.00
Extra: Using index; Using temporary; Using filesort

10 rows in set (21.096 sec)




That was only the beginning... now Query 2

SELECT
cv.client _id as client id,
min(date) as first visit,
max(date) as last visit,
count(distinct date) as days _visited,
count(distinct cv.id) as visits,
count(distinct cp.cpt_code) as procedures,
count(distinct cv.service location name) as locations,
sum(billed amount) as total billed,
max(billed amount) as max_price,
avg(billed amount) as avg price
FROM
client visit cv
join client procedure cp on cp.encounter_id = cv.encounter_id
join client procedure claim cpc on cp.id = cpc.client procedure_id
join client claim cc on cc.id = cpc.client claim id
GROUP BY client id
ORDER BY total billed desc
LIMIT 10

OLTP: Highly
normalized
schema




Query 2: Four table JOINs, all tables large

fmmmmmmmmaaa O fmmmmmmmmaaa- fmmmmmmmmmmaaaa fmmmmmmn- fmmmmmmmmana- fmmmmmmmmaa- ey RS +
| client_id | first visit | last_visit | days_visited | visits | procedures | locations | total billed | max_price | avg price |
fmmmmmmmmma- S fmmmmmmmmaaa- fmmmmmmmmmmaaaa fmmmmmmn- fmmmmmmmmana- fmmmmmmmmana fommmmmmmmeaaas fmmmmmmmmaan S +
| ... | 2018-02-14 | 2019-09-04 | 154 | 161 | . . 724K | 12K | 355.49 |

10 rows in set (9 hours 22 min 28.387 sec)
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Why our OLAP queries were slow
in the OLTP environment?
Rows vs. Columns




Why MariaDB is slow for OLAP queries?

o Itis row-oriented

o if query needs two columns
o it will read the entire row

« InnoDB organizes table by 16k pages
o will read even more

« MariaDB/MySQL will use only '
one CPU-core per query T
o not utilizing all cores ] ' \
Parallel Query Execution
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https://www.percona.com/blog/2019/01/23/mysql-8-0-14-a-road-to-parallel-query-execution-is-wide-open

Benefits of the ColumnStore Approach

Row-oriented MariaDB Column-oriented MariaDB

date client id service location_name

date client id service location_name

Databases comparison by ClickHouse
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What type of queries benefited
most from MariaDB ColumnStore
architecture?

InnoDB vs. ColumnStore




MariaDB ColumnStore Tests

MariaDB ColumnStore: 1.2.5 Community Edition
* single-node distributed install e
e Testing box 1 —recommended minimum:
* AWS EC2 instance: m4.4xlarge
e RAM: 64.0 GiB
* vCPU: 16
* Disk: gp2 SSD
* Testing box 2:
AWS EC2 instance: c5d.18xlarge
RAM: 144.0 GiB
vCPU: 72
Disk: gp2 SSD

[ ]
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Query 1: Is it worth using MariaDB ColumnStore?

InnoDB: no index 10 min 53.826 sec 1
InnoDB: Using index 21 sec 31
ColumnStore 26 sec 25

AWS EC2 instance: m4.4xlarge
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Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec

ColumnStore ?

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: m4.4xlarge
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Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec

ColumnStore 1st attempt

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: m4.4xlarge

ERROR 1815 (HY000): Internal
<<:i{§;§i error: IDB-2001: Join or :iéé}ii:>
subselect exceeds memory limit

n\ Stbselect exceeds nenory Tmtt-

HLIOS
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Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec

ColumnStore Allow SSD Based Joins

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: m4.4xlarge

ERROR 1815 (HY000): Internal
error: IDB-2001: Join or
subselect exceeds memory limit

mcsadmin shutdownSystem y

/usr/local/mariadb/columnstore/bin/setConfig HashJoin AllowDiskBasedJoin Y
mcsadmin startSystem
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Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec
ColumnStore 3 min 50.772 sec 146.2

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: m4.4xlarge

Even with disk-based joins
(using gp2 SSD volume)
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Query 2: Using MariaDB ColumnStore

. Improvement
Data Source Response time P .
(times)

InnoDB 9 hours 22 min 28.387 sec

ColumnStore 2 min 32.626 sec

MariaDB ColumnStore: 1.2.5
AWS EC2 instance: c5d.18xlarge

221

times
faster!
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Table Sizes on Disk

Table InnoDB Columnstore Improvement
(GB) (GB)

client visit

client procedure
client procedure_claim
client claim

Total

HLIOS
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30
5.7
26
73

Percona Live Online 2020

7.1
0.68
7.9
19.9

4.2
8.4
3.3
3.7

Compression
Indexing
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How we transfer OLTP data to

MariaDB ColumnStore?
0. Extract-Transform-Load




Extract

In contrast to traditional data
extraction done in "batches," our
Staging Area is persistent and is
implemented as a secure MariaDB

slave replica

Data are continuously replicated over
the secure encrypted channel to the
same OLTP InnoDB schema

HLIOS
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Transform

In contrast to complex data
transformations in a traditional data
warehouse, in the Data Lake
approach, data transformation is
minimized, thus retaining the original
form and format of our transactiona
data to the extent possible

-;-«-

b 4

| ‘
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Load

- We load daily data snapshots to the MariaDB ColumnStore schema like

HELIOS_ColumnStore using a simple but elegant approach:

1. STOP SLAVE;

2. Perform efficient parallel transfer of the binary data (encrypted PHI) via multiple queries like:

Insert into HELIOS ColumnStore.client visit select * from HELIOS.client visit;

3. START SLAVE;




ELT

. By minimizing complex data transformation step,
we are implementing the big data ELT paradigm
that avoids significant business analysis and
modeling before storing data in our Data Lake

. Essentially, we are flipping the order ETL with ELT,
where data transformation happens later - at the
point where it is needed, such as during analysis
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How we transfer OLTP data to

MariaDB ColumnStore?
1. ETL for Schema




Extract-Transform-Load InnoDB Schema to ColumnStore

Extract:
mysqldump --no-data

Transform:
... change ENGINE=InnoDB
to ENGINE=Columnstore




Schema Load

mcsmysql test < client visit.sql

ERROR 1069 (42000) at line 25: Too many keys specified;
max @ keys allowed

mcsmysql test < client visit.sql

ERROR 1075 (42000) at line 25: Incorrect table
definition; there can be only one auto column and it
must be defined as a key

Percona Live Online 2020
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ColumnStore DDL Syntax Differences

You can not load InnoDB table schema to ColumnStore as is

* Remove all lines with word KEY like

PRIMARY KEY (" id’),

UNIQUE KEY “uuid™ ( uuid’),

KEY ~type  ( type ),

CONSTRAINT FK _city id FOREIGN KEY (city id) REFERENCES city (id)
* Remove AUTO_INCREMENT from column definitions like

“id  int unsighed NOT NULL AUTO_ INCREMENT,

e Remove CHECK from column definitions like
CHECK (json valid( json data’))

‘ _ )
H ‘ e’ Gt




ColumnStore Unsupported Data Types

binary

bit

set

enum
year
varbinary

Mtimestamp

tinyblob

tinyint

char(N)

char(N)

date

tinyblob or blob
datetime

int

Percona Live Online 2020
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Other Unsupported ColumnStore DDL Syntax

* Replace ENGINE name InnoDB to ColumnStore

* Remove legacy InnoDB table definitions like
ROW_FORMAT=COMPACT | ROW_FORMAT=DYNAMIC

* Remove not supported definitions like
DEFAULT CURRENT_TIMESTAMP | ON UPDATE CURRENT_TIMESTAMP

* Remove unsupported collations like
COLLATE utf8 unicode ci

* Remove escaped apostrophe in possessives like
COMMENT 'Submitter''s ID’

* Three-byte ZIP Code
mediumint(5) unsigned zerofill replaced with char(5)




NULL Values vs Empty Strings

Consider string type columns like:
CREATE TABLE test (
“empty_string® varchar(10) NOT NULL
) ENGINE=InnoDB;
Note: The implicit default for string types is an empty string
CREATE TABLE test cs (
“empty_string® varchar(10) NOT NULL
) ENGINE=Columnstore;

insert into test cs select * from test;

Note: ColumnStore treats a zero-length string as a NULL value

Line number 1; Error: Data violates NOT NULL constraint with no default; field 1

‘ _ )
H ‘ e’ Gt




ColumnStore DDL: NOT NULL constraint with no default

Remove NOT NULL for columns with string data types

* CHAR

* VARCHAR

e TINYTEXT/MEDIUMTEXT/TEXT/LONGTEXT

« TINYBLOB/MEDIUMBLOB/BLOB/LONGBLOB

Otherwise you will be unable to load InnoDB data with empty strings

To reduce confusion, remove DEFAULT "'
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How we transfer OLTP data to

MariaDB ColumnStore?
2. ETL for Data




ETL from InnoDB to ColumnStore

- Execute
insert into columstore_table select * from innodb_table

- Injects the binary row data from MariaDB into cpimport
. During import, you may see two subprocesses:

1300 ? S1 14:31 \_ /usr/local/mariadb/columnstore/mysql//bin/mysqld

9958 ? S1 0:44 \_ /usr/local/mariadb/columnstore/bin/cpimport -m 1 -N -s ? -e @ -E ? HELIOS VirtualHealth
1663 ? S1 2:07 \_ [WriteEngineServ]

9982 ? S<1 2:38 | \_ /usr/local/mariadb/columnstore/bin/cpimport.bin -e @ -s ? -E ?

-R /tmp/columnstore_tmp_files/BrmRpt03051540539958.rpt -m 1 -P pml1l-9958 -u98e45db5-41b0-42aa-8616-4cld6e2c35f2 HELIOS VirtualHealth

. Note the undocumented option -R for the BrmReport file about import
- BRM = Block Resolution Manager




Another way to import data from InnoDB to ColumnStore

Due to MCOL-3933, during
insert into columstore_table select * from innodb_table

a row with the backslash character \ results in

ERROR 1030 (HY00Q) at line 1: Got error -1 "Internal error < @ (Not system error)"
from storage engine Columnstore

To debug, look in your mysql datadir for files like:
-rw-rw---- 1 mysql mysql 83 Apr 1 20:04 VirtualHealth.tbl.Job_14171 30475.err_1
-rw-rw---- 1 mysql mysql 115 Apr 1 20:04 VirtualHealth.tbl.Job 14171 30475.bad_1
To retry with a different escape (*Q) and/or separator (*G), execute:

mcsmysgl -q -e 'select * from client _memo' -N HELIOS \
| cpimport -s '\t' HELIOS ColumnStore VirtualHealth



https://jira.mariadb.org/browse/MCOL-3933

Configuring data import from InnoDB to ColumnStore

During
insert into columstore_table select * from innodb_table

you may encounter an error like:

ERR : Error reading import file VirtualHealth.tbl; near line 18; Single row fills read
buffer; try larger read buffer. [1456]

Due to MCOL-1234 this error is silent - but you will get as a result:

The following tables are locked:
LockID Name Process PID Session CreationTime State DBRoots

50 HELIOS_ColumnStore.VirtualHealth cpimport 8593 BulkLoad 2020-04-05 11:49:42 PM  Abandoned 1

As a workaround, use cpimport command with increased buffer, like:
mcsmysql -q -e 'select * from VirtualHealth' -N HELIOS |
/usr/local/mariadb/columnstore/bin/cpimport -s '\t' -c 4194304
HELIOS ColumnStore VirtualHealth




cpimport default option for NULL values

. As documented, using default cpimport command, like:

mcsmysql -q -e 'select * from VirtualHealth' -N HELIOS |
/usr/local/mariadb/columnstore/bin/cpimport -s '\t' HELIOS_ColumnStore VirtualHealth

would result in replacement of NULL values with O for nullable INT or
date/time columns, like:

2020-04-07 14:24:09 (14236) WARN : Column HELIOS ColumnStore.VirtualHealth.updated_date;
Number of invalid date/times replaced with zero value : 6

- This is due to the default cpimport option:

cpimport -h
-n NullOption (©-treat the string NULL as data (default);
1-treat the string NULL as a NULL value)

- To avoid that, change the default option by adding: cpimport -n 1




Big Data

. For very large tables, during
insert into columstore_table select * from innodb_table

you may experience
ERROR 1206 (HY00Q) at line 1: The total number of locks exceeds the lock table size

- Increase MariaDB innodb_buffer_pool size dynamically, then check:

SHOW STATUS LIKE 'Innodb_buffer _pool resize status';

== mmmmmmmmmmmmemememememememeaea-- === m e e e e eeemememememmememem—e—ea- +
| variable_name | value |
== mmmmmmmmmemmemeeemememememeaea-- NN +
| Innodb_buffer_pool resize status | Completed resizing buffer pool at 200403 17:13:33. |
== mmmmmmmmmemmemeeemememememeaea-- NN +




Binary logs during data import from InnoDB to ColumnStore

You will accumulate huge binary logs volume during
insert into columstore_table select * from innodb_table

https://mariadb.com/kb/en/columnstore-storage-architecture/#transaction-log

You could disable binary logging for the session
SET SESSION SQL_LOG_BIN=0



https://mariadb.com/kb/en/columnstore-storage-architecture/
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Summary
Next Steps




Success

. The successful load of healthcare data to ColumnStore is
attesting to its level of maturity

. A preview of healthcare systems complexity is provided by
open source LibreHealthlO and OpenEMR database
schemas, with about two hundred tables each

. The VirtualHealth HELIOS database schema is on par with more

comprehensive commercial electronic health records systems
that have three times as much tables and thousands of columns




Summary

o Relational Data Lake built with MariaDB ColumnStore retains the
source data in their original format

o« We observed OLAP query speedup of more than two orders of
maghitude

o “Native” MariaDB/MySQL protocol

easier to integrate

o Native shared nothing cluster

cluster version 1.5 requires Enterprise Edition
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Getting Ready for Upgrade
From 1.2.5 to 1.5.4/1.5.5




MariaDB ColumnStore Versions

Community Edition

ColumnStore Release Date

10.5.5-GA 1.5.4-Gamma 2020-08-10

10.5.4-GA 1.5.2-Beta 2020-06-24

10.3.16-GA 1.2.5-GA 2019-06-23

-
.,

.
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Caveat

 MariaDB 10.5.5 official docker image does not have ColumnStore

MariaDB [(none)]> show plugins;

partition | ACTIVE | STORAGE ENGINE | NULL
e et e e e Attt e ¥ W— S — ¥ W——— Y — +
68 rows in set (0.002

partition ACTIVE STORAGE ENGINE NULL

Columnstore ACTIVE STORAGE ENGINE ha_columnstore.

Store COLUMNSTORE_COLUMNS ACTIVE INFORMATION SCHEMA ha_columnstore.
COLUMNSTORE_TABLES ACTIVE INFORMATION SCHEMA ha_columnstore.
COLUMNSTORE_FILES ACTIVE INFORMATION SCHEMA ha_columnstore.
COLUMNSTORE_EXTENTS ACTIVE INFORMATION SCHEMA ha_columnstore.

Column

73 rows in set (0.001 sec)




New Maturity in 10.5.5/1.5.4 and 10.5.4/1.5.2

MariaDB [test]> SELECT PLUGIN_DESCRIPTION, PLUGIN_AUTH_VERSION, PLUGIN_MATURITY
-> FROM INFORMATION_SCHEMA.PLUGINS

-> WHERE PLUGIN_TYPE='STORAGE ENGINE' AND PLUGIN_NAME='Columnstore';

L e L e e L +
| PLUGIN_DESCRIPTION | PLUGIN_AUTH_VERSION | PLUGIN_MATURITY |
L e e e L L +
| ColumnStore storage engine | 1.5.4 | Gamma |
L e L e S e +

MariaDB [test]> SELECT PLUGIN_DESCRIPTION, PLUGIN_AUTH_VERSION, PLUGIN_MATURITY
-> FROM INFORMATION_SCHEMA.PLUGINS
-> WHERE PLUGIN_TYPE='STORAGE ENGINE' AND PLUGIN_NAME='Columnstore';

L R L e +
| PLUGIN_DESCRIPTION | PLUGIN_AUTH_VERSION | PLUGIN_MATURITY |
Y L T R L L L e +
| ColumnStore storage engine | 1.5.2 | Beta |
Y T L e s L +




Steep Learning Curve

 MariaDB ColumnStore 1.5 underwent significant refactoring
* |tis now managed by systemd
* infinidb_vtable is gone
* On the other hand, the systemd is absent in Docker
* ColumnStore 1.5.2 docker image replaces systemd with tiny
* Official ColumnStore 1.5.4 docker image has not been released yet
* As aresult, you must
* either use VirtualBox to install official 1.5.4 ColumnStore distribution
* or build your own Docker image

to familiarize yourself with 1.5.4 ColumnStore version syntax




New Defaults in MariaDB 10.5 vs. MariaDB 10.3

MariaDB [test]> select @@version,@@sql_mode\G

Fokokok ok ok ook kokokokok ok kokkokokok ok kkkkkokk ] popy KRR KKKk ok 3k sk skook sk sk ok ok ok sk sk ok sk ok ok ok ok ok ok

@@version: 10.5.5-MariaDB-1:10.5.5+maria~stretch
@@sql_mode: STRICT_TRANS_ TABLES,ERROR_FOR_DIVISION BY ZERO,NO AUTO CREATE_USER,NO_ENGINE_SUBSTITUTION

MariaDB [test]> select @@version,@@sql _mode\G

Fokokok ok ok ook kokokokok ok kokkokokok ok kkkkkokk ] popy RORRRkokok ok 3k sk skook sk sk ok ok sk sk sk ok ok ok ok ok ok ok ok

@@version: 10.5.4-MariaDB
@@sql_mode: STRICT_TRANS_ TABLES,ERROR_FOR_DIVISION BY_ ZERO,NO AUTO CREATE_USER,NO_ENGINE_SUBSTITUTION

MariaDB [(none)]> select @@version,@@sql_mode\G

Fokokok ok ok ook kokokokok ok ko ko kokokokok ko kkkkkk ] popy KRR KKKk ok sk sk skook sk sk ok ok ok sk sk ok ok ok ok ok ok k ok

@@version: 10.3.16-MariaDB-log
@@sql_mode: ERROR_FOR_DIVISION_ BY ZERO,NO AUTO_ CREATE_USER,NO ENGINE_SUBSTITUTION




New Features and Behavior in 10.5.5/1.5.4

MariaDB [test]> alter table test engine=Columnstore;

ERROR 1815 (HY000): Internal error: CALOOO1l: Insert
Failed: 1IDB-4015: Column 'empty_string' cannot be null.

MariaDB [test]> insert into test cs select * from test;

ERROR 1815 (HY@00): Internal error: IDB-2001: Join or
subselect exceeds memory limit.

/IRTUALHEA




Lesson Learned

o« Do not wait for the new ColumnStore GA release

o Start evaluating Beta/Gamma releases now
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This presentation extended the
VirtualHealth presentation by Alik
Rubin at Percona Live 2019 in Austin

Any Questions?



https://www.percona.com/live/19/sessions/opensource-column-store-databases-mariadb-columnstore-vs-clickhouse

