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Agenda

● Causes of SQL engine OOM

● Solutions

● Implementation in TiDB (TiDB is an open-source, distributed, NewSQL database)

● Q&A



Part I - When will SQL engine run OOM
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SQL engine runs out of memory

● statistics cache, table metadata cache, and etc. takes up too much memory space

● hash join builds a large hash table

● in-memory sort on a large dataset

● table scan/index scan reads data fast cause buffers too much data

● ...



PingCAP.com

Scenario summarization

● Memory resident object consumption

○ statistics cache, table metadata cache, ...

● Large memory consumption during calculating

○ pipeline breaker: hash join, sort, hash aggregation, …

○ pipelining operators: table scan, index scan, ...



Part II - Solutions



PingCAP.com

Solution

● Memory resident object consumption

○ In-memory cache with limited size

● Large memory consumption during calculating

○ pipeline breaking operators: spill to disk

○ pipelining operators: adaptive control
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Pipeline breaker
● HashJoin
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Pipeline breaker
● HashJoin
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Pipeline breaker
● Sort



PingCAP.com

Pipelining operators

● producer-consumer model
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Pipelining operators

● suspend all the producers when the memory quota is exceeded

quota is exceeded
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Pipelining operators

● producers keep creating data

● the rate will be controlled by removing one producer



Part III - Implementation in TiDB
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What is TiDB?

Open-source distributed NewSQL database for hybrid transactional 
and analytical processing (HTAP) which speaks MySQL protocol

Horizontal Scalability

Transparent scale-out or scale-in

High Availability

Auto-failover to ensure 

business continuity

Strongly Consistent

Full ACID transactions at 

distributed environments

MySQL Compatibility

Without changing MySQL 

application code in most cases
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Interfaces

● MemTracker
○ track the memory usage of each element

● OOMAction
○ abstract of different memory management strategies
○ DiskSpillAcion (spill to disk strategy)
○ RateLimitAction (adaptive control strategy)
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DiskSpillAction

● select * from partsupp order by PS_AVAILQTY;  (TPC-H SF:50)

mem_quota is unlimited mem_quota is set to 1GB
DiskSpillAction is triggered
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RateLimitAction

● dump 200GB data

○ OOM will happen when mem_quota is unlimited
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Implementation in TiDB

● select s.b from t join s on t.a = s.a order by s.b 
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Implementation in TiDB

● select s.b from t join s on t.a = s.a order by s.b 
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Future work

● Support priority for different actions

● Support more adaptive memory control strategy

● Support a server-level memory control strategy
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Join us

● GitHub: https://github.com/pingcap/tidb 
● Website: https://www.pingcap.com/ 
● Twitter: @PingCAP
● Slack: #everyone in Slack

https://github.com/pingcap/tidb
https://www.pingcap.com/
https://slack.tidb.io/invite?team=tidb-community&channel=everyone&ref=Percona
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Q&A
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Thank You !


