
How to Protect the SQL Engine From
Running Out of Memory

Presented by Huaiyu Xu/ Song Gao

PingCAP.com

Huaiyu Xu
Engineer at PingCAP

Database engineer

Technical lead of TiDB SIG execution

Committer of TiDB SIG planner

Github: @XuHuaiyu

Song Gao
Engineer at PingCAP

Database engineer

Maintainer of Chaos Mesh®

Committer of TiKV SIG scheduling

Github: @Yisaer

PingCAP.com

Agenda

● Causes of SQL engine OOM

● Solutions

● Implementation in TiDB (TiDB is an open-source, distributed, NewSQL database)

● Q&A

Part I - When will SQL engine run OOM

PingCAP.com

SQL engine runs out of memory

● statistics cache, table metadata cache, and etc. takes up too much memory space

● hash join builds a large hash table

● in-memory sort on a large dataset

● table scan/index scan reads data fast cause buffers too much data

● ...

PingCAP.com

Scenario summarization

● Memory resident object consumption

○ statistics cache, table metadata cache, ...

● Large memory consumption during calculating

○ pipeline breaker: hash join, sort, hash aggregation, …

○ pipelining operators: table scan, index scan, ...

Part II - Solutions

PingCAP.com

Solution

● Memory resident object consumption

○ In-memory cache with limited size

● Large memory consumption during calculating

○ pipeline breaking operators: spill to disk

○ pipelining operators: adaptive control

PingCAP.com

Pipeline breaker
● HashJoin

PingCAP.com

Pipeline breaker
● HashJoin

PingCAP.com

Pipeline breaker
● Sort

PingCAP.com

Pipelining operators

● producer-consumer model

PingCAP.com

Pipelining operators

● suspend all the producers when the memory quota is exceeded

quota is exceeded

PingCAP.com

Pipelining operators

● producers keep creating data

● the rate will be controlled by removing one producer

Part III - Implementation in TiDB

PingCAP.com

What is TiDB?

Open-source distributed NewSQL database for hybrid transactional
and analytical processing (HTAP) which speaks MySQL protocol

Horizontal Scalability

Transparent scale-out or scale-in

High Availability

Auto-failover to ensure

business continuity

Strongly Consistent

Full ACID transactions at

distributed environments

MySQL Compatibility

Without changing MySQL

application code in most cases

PingCAP.com

Interfaces

● MemTracker
○ track the memory usage of each element

● OOMAction
○ abstract of different memory management strategies
○ DiskSpillAcion (spill to disk strategy)
○ RateLimitAction (adaptive control strategy)

PingCAP.com

DiskSpillAction

● select * from partsupp order by PS_AVAILQTY; (TPC-H SF:50)

mem_quota is unlimited mem_quota is set to 1GB
DiskSpillAction is triggered

PingCAP.com

RateLimitAction

● dump 200GB data

○ OOM will happen when mem_quota is unlimited

PingCAP.com

Implementation in TiDB

● select s.b from t join s on t.a = s.a order by s.b

PingCAP.com

Implementation in TiDB

● select s.b from t join s on t.a = s.a order by s.b

1. SQL engine builds a query plan tree.

1. SQL engine builds a query plan tree.
2. Sort starts to work.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.
5. TableScan-2 starts to work.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.
5. TableScan-2 starts to work.
6. Quota is exceeded. TableScan-2 is

adaptively controlled.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.
5. TableScan-2 starts to work.
6. Quota is exceeded. TableScan-2 is

adaptively controlled.
7. Memory usage is under control.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.
5. TableScan-2 starts to work.
6. Quota is exceeded. TableScan-2 is

adaptively controlled.
7. Memory usage is under control.
8. Quota is exceeded. TableScan-1 is

adaptively controlled.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.
5. TableScan-2 starts to work.
6. Quota is exceeded. TableScan-2 is

adaptively controlled.
7. Memory usage is under control.
8. Quota is exceeded. TableScan-1 is

adaptively controlled.
9. Memory usage is under control.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.
5. TableScan-2 starts to work.
6. Quota is exceeded. TableScan-2 is

adaptively controlled.
7. Memory usage is under control.
8. Quota is exceeded. TableScan-1 is

adaptively controlled.
9. Memory usage is under control.
10. Quota is exceeded. HashJoin is spilled to

disk.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.
5. TableScan-2 starts to work.
6. Quota is exceeded. TableScan-2 is

adaptively controlled.
7. Memory usage is under control.
8. Quota is exceeded. TableScan-1 is

adaptively controlled.
9. Memory usage is under control.

10. Quota is exceeded. HashJoin is spilled to
disk.

11. Memory usage is under control.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.
5. TableScan-2 starts to work.
6. Quota is exceeded. TableScan-2 is

adaptively controlled.
7. Memory usage is under control.
8. Quota is exceeded. TableScan-1 is

adaptively controlled.
9. Memory usage is under control.

10. Quota is exceeded. HashJoin is spilled to
disk.

11. Memory usage is under control.
12. Limit is exceeded. Sort is spilled to disk.

1. SQL engine builds a query plan tree.
2. Sort starts to work.
3. HashJoin starts to work.
4. TableScan-1 starts to work.
5. TableScan-2 starts to work.
6. Quota is exceeded. TableScan-2 is

adaptively controlled.
7. Memory usage is under control.
8. Quota is exceeded. TableScan-1 is

adaptively controlled.
9. Memory usage is under control.

10. Quota is exceeded. HashJoin is spilled to
disk.

11. Memory usage is under control.
12. Limit is exceeded. Sort is spilled to disk.
13. Memory usage is under control.

PingCAP.com

Future work

● Support priority for different actions

● Support more adaptive memory control strategy

● Support a server-level memory control strategy

PingCAP.com

Join us

● GitHub: https://github.com/pingcap/tidb
● Website: https://www.pingcap.com/
● Twitter: @PingCAP
● Slack: #everyone in Slack

https://github.com/pingcap/tidb
https://www.pingcap.com/
https://slack.tidb.io/invite?team=tidb-community&channel=everyone&ref=Percona

PingCAP.com

Q&A

PingCAP.com

Thank You !

