MySQL Ecosystem on ARM

By Krunal Bauskar Driving #mysqlonarm initiative

about me

- Working in MySQL space for more than decade now.
- In past worked
 - @ Percona as PXC product lead
 - @ Oracle/MySQL as InnoDB Developer
 - @ Yahoo! Labs as Big-Data Research Engineer
 - @ Startup (now part of Teradata) as MySQL Engineer (world fastest storage engine)
 - o ... more to add
- Currently working
 - @ Huawei Open Source DB group driving #mysqlonarm initiative
 - o driving all variants of mysql: mysql, mariadb, percona and ecosystem tools.

agenda

- growing arm ecosystem
- mysql/mariadb/percona on arm
- why run dbs on arm?
- state of ecosystem
- moving forward

agenda

- growing arm ecosystem
- mysql/mariadb/percona on arm
- why run dbs on arm?
- state of ecosystem
- moving forward

- cell phones and network equipment
- housing appliance & IoT

- cell phones and network equipment
- housing appliance & IoT
- automobiles/space/defense

- cell phones and network equipment
- housing appliance & IoT
- automobiles/space/defense
- high-performance computing

what is fueling hpc growth on arm?

- lower ownership cost thereby improved cost/performance (go-green initiative //)
- increasing ecosystem
- growing user-base/developer-base
- majority of the data-generating device using arm
- availability of arm instances through cloud
 - huawei-cloud kunpeng 920
 - o aws graviton 2
 - oracle cloud/packet.com ampere altra

- majority of os providers now provide arm port
- applications are being ported (big-data, databases, application server, load-balancer)
- arm cloud instances are estimated to provider 30% saving (compared to x86 instance of same class).
- by 2030* arm instances would be most booted instances for running hpc software

ARM is there for quite sometime why it is taking that long to port things to ARM?

- Weak Memory Model
- Low Level Code (Timer/SpinLoop)
- More Core/NUMA compatible
- Use of ACLE
- NEON parallelization
- Cache Line-Size/Branching/Pipeline Differences

agenda

- growing arm ecosystem
- mysql/mariadb/percona on arm
- why run dbs on arm?
- state of ecosystem
- moving forward

- started releasing packages for arm starting 8.x
- no major/dedicated optimization yet (till 8.0.21) except bug fixes.
- active community patches (30+).
- some good traction expected in 8.0.22+ (few already committed. more work-in-progress).
- other ecosystem tools on arm
 - mysql-router (load-balancer)
 - mysql-shell (smart-shell)
 - mysql-connector (connector)
 - group-replication (inherent to server)

- major contributions around
 - crc32/crc32c (hardware optimization)
 - memory barrier (arm weak memory model)
 - numa-aware constructs (counter/connection)
 - 64-bits optimizations (8 bytes copy, etc..)
 - cache-line optimizations
 - switch to/optimal use of atomics (c+11)
 - spin-loop optimization

percona on arm

- no official packages yet but compiles and run successfully on arm (except tokudb and myrocks)
- fully upstream (mysql) compatible so has all the needed fixes/optimizations (for arm) from upstream.
- enjoy good community support with multiple users/developer tried running percona-server on varied arm architecture.

mariadb on arm

- official packages available on arm (centos, rhel and ubuntu). more distro in progress.
- first to support and optimize on arm.
- actively accept arm patches (including correctness and performance)
- evaluation of feature involves considering performance on arm too.
- lacks ecosystem support (connector/maxscale) for arm.

mariadb on arm

- optimizations (mostly folded).
 - numa scalability
 - spin-loop optimization
 - memory barrier
 - o crc32/crc32c
 - port to use atomic (all over)
 - Ise/branching/cache line optimization
 - o timer-counter optimization

agenda

- growing arm ecosystem
- mysql/mariadb/percona on arm
- why run dbs on arm?
- state of ecosystem
- moving forward

- arm usp is lower cost and more computing resources
- needed a model to help exploit this fact and also compare it with the current baseline numbers to see if real cost saving is being achieved.
- we developed a cost-performance-model (cpm) to exploit this fact by keeping cost constant thereby allowing more arm resources in turn more tps/usd.

https://mysqlonarm.github.io/CPM/

	Huawei Cloud	AWS	packet.com
ARM	2745 USD (yearly)	3384 USD (yearly)	8760* USD (yearly)
	16 vCPU/64GB	16 vCPU/64GB	32 vCPU/128GB
	(2.6 Ghz Kunpeng 920 based	(2.5 Ghz Graviton 2 based	(3.3 Ghz Ampere eMAG with
	instance)	instance)	storage)
x86	4687 USD (yearly)	4239 USD (yearly)	17520 USD (yearly)
	16 vCPU/64GB	16 vCPU/64GB	32 vCPU/256GB
	(3.0/3.4 Ghz Intel Xeon 6266C	(2.5/3.1 Ghz Intel Xeon 8175M	(2.5 Ghz AMD EPYC 7502P
	Cascade Lake based instance)	Skylake)	with storage pricing)
Saving	41%	20%	~ 50% (with storage)

https://www.huaweicloud.com/intl/en-us/pricing/index.html?tab=detail#/ecs https://aws.amazon.com/ec2/pricing/on-demand/ https://www.packet.com/cloud/servers/

Can we leverage the said cost saving and still get improved or on-par throughput?

Challenges with existing model:

- CPU frequency differences. (2.5, 2.6. 3.1, Turbo mode).
- CPU generation differences (supporting advanced instruction set).
- x86 physical cores -vs- HT cores (vCPU as per cloud terminology)
- NUMA arrangements.
- Memory differences.
- Scheduler (especially for more-numa) issues. (improved kernel support).

Keeping cost constant let's analyze if we can get more throughput (there by more tps/per USD) from ARM based instances

given x usd user can get

- m arm resources
- n x86 resources (where m > n)
 can these extra arm resources helps improve performance?

Given the on-par cost of both the resources can we exploit the ARM variant to its fullest benefit and get better performance when compared to x86?

- on huawei-cloud for 3500 USD (yearly)
 - x86: 12 vCPU/48GB 3432 (3.0 Ghz)
 - o arm: 24 vCPU/48GB 3578 (2.6 Ghz)

almost double the compute power (36 -vs- 62.4) difference increases with bare-metal (2.5-5x)

benchmarking

- Server Configuration:
 - 100 tables * 3 millions (69 GB)
 - 80 GB (CPU Bound) /35 GB (IO Bound)
 - 20 GB of redo-log
 - MySQL-8.0.21 (latest GA release)
 - Percona Server 8.0.21 (release branch)
 - MariaDB Server 10.5.6 (latest GA release)
- Test-Scenarios:
 - sysbench: point-select, read-only, read-write, update-index, update-non-index
- Machine Configuration (bare-metal)
 - **x86_64:** Intel(R) Xeon(R) Gold 6151 CPU @ 3.00GHz (*HT enabled*) [28 ht-cores: 22 server + 6 client], 192GB mem
 - ARM: Kunpeng 920 (2.6 Ghz) [64 cores: 56 server + 8 client], 192GB mem
- Storage
 - 1.6TB NVMe SSD (random read/write 180K/70K)

tpcc cpu-bound 8.0.21

percona on arm

mariadb on arm

mariadb on arm

mariadb on arm

what does increase performance means?

what does increase performance means?

• for given cost, running an instance on arm can save you more by increasing throughput.

what does increase performance means?

• for given cost, running an instance on arm can save you more by increasing throughput.

cost of instance: 800 usd (yearly) [mysql-8.0.21 uniform/cpu-bound]

threads	arm (tps)	tps/usd (arm)	x86 (tps)	(tps/usd) (x86)	%
1024 (update-i ndex)	78869	98 tps/usd	55537	69 tps/usd	42%

what does increase performance means?

 for given cost, running an instance on arm can save you more by increasing throughput.

More TPS
@ Same Cost

cost of instance: 800 usd (yearly) [mysql-8.0.21 uniform/cpu-bound]

threads	arm (tps)	tps/usd (arm)	x86 (tps)	(tps/usd) (x86)	%
1024 (update-i ndex)	78869	98 tps/usd	55537	69 tps/usd	42%

"Can I scale DB w/o migrating database and keeping the cost constant?"

- Any flavor (mysql/percona/mariadb)
- Any workload (cpu/io bound)
- Any pattern (read-only/read-write)
- Any configuration (contention/non-contention)
- Any setup (single node/multi-node)

ARM always score

agenda

- growing arm ecosystem
- mysql/mariadb/percona on arm
- why run dbs on arm?
- state of ecosystem
- moving forward

- all that is good but what about ecosystem/supporting tools/support/community?
 - mysql/mariadb officially support server so rest assured your correctness issues (if any) would be looked on with same priority like x86.
 - db on arm in general is gaining lot of traction and mysql ecosystem too is adding users/developers expanding #arm community.

- server: mysql mdb ps
- load-balancer: proxysql maxscale mysql-router
- monitoring: pmm cluster-control
- ha/replication: binlog/galera-cluster/group replication
- backup: mariabackup percona-backup
- connector: mysql-connector mariadb-connector
- toolkit: mysql-shell percona-toolkit

for some tools community is trying build tools on arm. with more support and push from community we can expect ecosystem to build faster.

"Community need your support"

- why aim for completion?
 - server can run on arm and tools on x86 to start with but all things on arm can help realize better saving
 - also, we are hoping other environmental components like sharding solution, migration tools, containers can join the ecosystem.

agenda

- growing arm ecosystem
- mysql/mariadb/percona on arm
- why run dbs on arm?
- state of ecosystem
- moving forward

moving forward

moving forward

- community continue to push for more performance improvement.
- o more distro, docker images, missing ecosystem components?
- as community, we are exploring/trying different use-case of #mysqlonarm to help explore/expose/understand/study issues that would ease adaptability.

let's remain connected

- read more about #mysqlonarm
 - https://mysqlonarm.github.io/
- slack channel
 - 🔾 mysql-slack: #mysqlonarm 📜

mariadb-zulip-chat: #mariadbonarm

- reach me
 - krunalbauskar@gmail.com
 - M mysqlonarm@gmail.com
- social
 - #mysqlonarm
 - https://in.linkedin.com/in/krunal-bauskar-b7a0b66

q&a

• so when are you moving

