Sharding:
DIY or Out of the Box Solution?

October 21, 2020

By Art van Scheppingen
art.vanscheppingen@messagebird.com

-4

Agenda

MessageBird & me

Short sharding primer

DIY sharding project

Vitess sharding project

DIY shards vs Vitess shards
Conclusion

MessageBird & me

Who am | and who is MessageBird?

MessageBird

MessageBird is a cloud communications platform that empowers
consumers to communicate with your business in the same way
they communicate with their friends - seamlessly, on their own
timeline and with the context of previous conversations.

For additional information visit:
www.messagebird.com

245+ Agreements
We have 245+ direct-to-carrier agreements with
operators worldwide.

20,000+ Customers
Customers in over 60+ countries, across a great
variety of industries.

350+ Employees
More than 350 employees speaking over 20
languages based in the Americas, Europe & Asia.

http://www.messagebird.com

We’re hiring!

Short sharding primer

Just to be sure we’re all on the same page

What is (database) sharding?

e Breaking up a database into multiple smaller parts
e Not the same as a table partitioning:

o Partitions are kept on the same database host
e Two types of sharding:

o Functional sharding

o Horizontal sharding

What is functional sharding? @

e Functional sharding (a.k.a. Poor Man’s Sharding) customers
o Split a database by function
o E.g. move “customers” table to a different database cluster
o Typically shard schema contains with 1 or 2 tables

e Allows scaling to function
o Vary in cpu/memory/diskspace

e No cross shard queries possible
o You cant join customers and orders table
o Two separate queries are necessary

e Data integrity

orders

order_rows

o Foreign keys are not possible between shards

o Integrity can’t be guaranteed orders
e Shard outage

o Makes part of your data inaccessible

order_rows

What is horizontal sharding?

Horizontal sharding (a.k.a. True Sharding)

o Split a database upon data

o E.g. move “customer-X” to a different database cluster

o Typically multiple identical shards with full schema
Algorithm on a value in the data

o Identifier, Creation date, (Geographic) location
Dynamic sharding

o Database to store pointers
Allows scaling on even resources

o Same number of CPUs, memory, etc

db01

!

Customers

Customer #1
Customer #2
Customer #5
Customer #6

orders

order_rows

db02

No cross shard queries possible \/ \/

o You can’t select all rows from the customers

table
Data duplication

Customers

Customer #1
Customer #5

Customers

Customer #2
Customer #6

o Certain tables need to be duplicated

orders

orders

o Shared records need to be duplicated

order_rows

\ order_rows /

Why not do both?

Adds more complexity

Less data duplication

Allows scaling to function

Allows scaling on even resources
o Reshard when necessary

dbO01

N

orders

order_rows

~~—__

!

Customers

Customer #1
Customer #2
Customer #5
Customer #6

orders

order_rows

Customers

Customer #1

Customer #5

db03

Customers

Customer #2
Customer #6

S

DIY Shards

Our own sharding solution

Problematic replication on short-term storage database

e Database primary is able to persist all messages
o Sent from the MP workers in parallel
e Database replicas can’t keep up
o Replication on MySQL is single threaded
o Scaling up is no option (no faster CPUs in GCE)
o 40% YoY growth

Possible solutions

e Write less

e Write smarter

e Enable parallel replication
e Shard our data

Possible solutions

e Write less: not possible

e Write smarter. multi-insert statements requires code overhaul

e Enable parallel replication: requires database migration

e Shard our data: requires database migration (and connection logic)

How do we shard in our DIY sharding?

e Sharding our messages
o Message UUID as shard key
o Random data distribution
o No cross shard queries necessary
e Sharding our connections
o For every shard open a connection
o Write to shard connection based upon UUID
o Read from shard connection based upon UUID

Sharding algorithm

e Algorithm definition
o UUID v1requires a bit of tinkering
o Similar to “UUID % <shards>”
e Algorithm validity
o Algorithm is valid for UUIDs between <start_date> and <end_date>
o Allows us to switch algorithms and store data differently
o Necessary for adding new shards
e Data retention
o Data retention is 10 days
o Schema and algorithm changes can cycle quickly
o No shard splitting is necessary

A typical database at Messagebird

. o

Kubegnetes Kubefnetes
Engine Engine
RW/ADM HO
v v
Google
LB
Cloud Load Cloud Load
ProxySQL

ProxySQL

Let’s apply that multiple times for sharding!

Kubegnetes
Engdine

App

LB

Google

How does that look from the application side?

Service
Discovery

i
rimary mary

'.

Shard-2 Shard-n
e i ey
> e
—
Replica Replica
N S
= > =

What if a shard becomes unavailable?

Service
Discovery

i
’ﬁ
rim mary

Shard-2 Shard-n

What if a shard becomes unavailable?

e Part of our existing data is inaccessible

o Updating existing data: not possible

o Reading existing data: read from replica

o Remember: not all our data is inaccessible!
® Inserting new data

o Recalculate UUID

o Write to shard connection based upon new UUID

o Read from shard connection based upon new UUID
e Intheory we would be able to always store messages

Did it work out as planned?

e Qutages happened
o Complete shard unavailability
o Re-sharding algorithm
o UUID recalculation
e Scalability
o Adding new shards is relatively difficult
o Adding a new shard requires a code change
e ProxySQL
o ProxySQL is receiving many connections
o Connection multiplexing helps (1 out of 5 connections)

Can we reuse it?

e Sharding algorithm is very (UUID) specific
o Not usable as a template for other data types
e More “permanent” data
o Shard splitting is not possible
o Hot spots are difficult to fix
o Asymmetric scaling isn’t possible
e Otherissues
o Cross shard querying is not possible
o Cross shard joins are not possible
e Dependencies
o ProxySQL is an essential component
o Deployments need to be coordinated very carefully

Replacing the Archive

Are we able to use Vitess out of the box?

The Archive challenge

e Mid-term storage is being used for the following use cases:
o Short term (near-realtime) monitoring of routes
o “Quick” reference for messages <7 days
o Ship data to our Archive (6 months retention)
e Similar to the short-term storage: replication lag
o Replication lag means no read-scaling
e The Archive is huuuge
o 6TB maximum data size on mid-term storage (between 1 and 3 months of data)
o ™3TB of data in cold-storage CloudSQL (about 6 months of data)

The Archive solution

e Split up functionality
o Realtime data should be in a realtime database
o All referencing should be done on the Archive
e Sharding is inevitable
o 40% YoY growth
o Small hands make great work

What boundaries were set?

e Simple access paths

o On message identifier (UUID)

o On customer identifier (int)

o Within a certain date range (datetime)
e Simple aggregations

o How many messages by X
e FEverything else: analytics

Why did we consider Vitess?

e \itess promises
o Transparent sharding
o Shard splitting
o Asymmetrical sharding
o Materialized views (aggregates)
e Vitess uses MySQL as a foundation
e Vitess might also be suitable for sharding our other databases
e Vitess might also be suitable for multi-region data

Choosing the right solution for the Archive

e Kubernetes or VM install?
o Vitess K8s are advised to be small (250GB max)
PoC is the MT Archive with almost 10TB of data
10TB / 250GB = 40 shards
1 shard consists out of 3 instances (master, replica, backup host)
40 shards =120 instances
o 120 instances =120 worker nodes
e VMs can be larger (500GB to 1TB)

o O O O

Our Archive Vitess setup
=

VTGate host VTGate host VTGate host VTGate host

/ VTCH \

mtarchive_meta mtarchive -60 /" marchive 6060\ /" miarchivebo-
Shard host Shard host Shard host Shard host VTCIt host
[@ VTTablet [(@ VTTablet [@ VTTablet 0 VTCtid

= = L , -

S e T e

s w—— MySQL r r — MySQL r — MySQL eted
== L ==
Shard host Shard host Shard host
VTCIt host
PR <’Nﬁﬁ
c® (V‘I‘Tablet ¢ (@) 2 vrTablet (z 3
2 V&5 @®
S oS 5 (©) 5 vrow
\ﬁ s
MySQL
Shard host Shard host Shard host Shard host
o B VTCit host

R o ~X, NS

¢ (®) viTaet c® f VTTablet o (©) § vravlet ¢ () ¢ VTablet
% ¢ 2 VTCtid

S

\ﬁ, ~

MysaL

MySQL
y etcd

What did we encounter during the PoC?

e Vitess Shard performance
o Performance bottlenecks have been identified
o InnoDB/MySQL have been tuned to our setup
o Vitess also needs tuning (e.g. grpc thread pools)
e Productionalizing Vitess
o Automation via ansible (provisioning + config)
o Send Vitess metrics to Prometheus
o Integrate backups
e Vitess Administration
o Shard splitting
o Schema migrations

Comparison between Vitess and DIY Shards

How different is it?

How do we perceive them?

DIY Shards
e We are in control

o We “define” our sharding algorithm
and store over shards

o Algorithm tied to a specific time
range

o Algorithm change involves setting
an end date to the previous
algorithm

Vitess
We rely completely on a framework

o Vitess enforces us to make our
schemas fit

o We don’t have any influence on
what goes on behind the scene

o We simply point our queries to
VTGate and then the magic
happens

How do others (devs) perceive them?

DIY Shards Vitess
e Fear of change e Fear of unknown
o Alot of work and risk to add shards o More moving components means
o Shard operations have to be done more (possible) failures
in code o Certain (specific) queries are not
supported

o If a shard fails, we can’t write that
specific data

Operational: schema changes

DIY Shards
Daily tables
Application handles data truncation

Application handles schema migrations

Vitess

Vitess forces named columns
Multiple schema versions can co-exist
OSC tools work (per shard)

OSC is tedious on 8+ shards

OSC requires space

Operational: scaling out

DIY Shards

Deploy new shard hosts
Define new hosts in service discovery
Deploy code with new algorithm

Connections to new shards

Vitess

Deploy new shard hosts
Initiate shard split
Move reads to new shards

Move writes to new shards

Operational: MySQL upgrades

DIY Shards
Upgrade replica hosts
Initiate switchover via Orchestrator

Upgrade old primary

Vitess

Upgrade replica hosts

Initiate switchover via Vitess
(commandline)

Upgrade old primary

Operational: sharding platform upgrades

DIY Shards

Deploy new application version

Vitess

® Upgrade shard hosts
® Upgrade Vitess control hosts

® Upgrade VTGate hosts

(So far we performed only minor version upgrades)

Conclusion

Regrets? Words of caution?

Running Vitess on “iron”
9

e Allows us to keep things “as they are”
o Easy integration into existing DBA tools
o Less steep learning curve
e Pros:
o We get “more” performance out of our hosts
o We can allow larger data size
e Cons:
o Less agile
o Shard operations take longer and may time out
o Hosts need to be repaired (when broken)

Is Vitess saving you time?

e Total time for DIY Shards was 3 sprints for 1 squad
o Close collaboration between database engineers and developers
o Simple problem, simple solution
e Total time for Vitess Archive is 5 months
o 1developer and 1 database engineer
o Learning curve for Vitess (new components)
o Incompatible queries
o Vitess frequent updates + documentation

Questions?

