
Sharding: 
DIY or Out of the Box Solution?

October 21, 2020

By Art van Scheppingen
art.vanscheppingen@messagebird.com



● MessageBird & me
● Short sharding primer
● DIY sharding project
● Vitess sharding project
● DIY shards vs Vitess shards
● Conclusion

Agenda



MessageBird & me
Who am I and who is MessageBird?



MessageBird is a cloud communications platform that empowers 
consumers to communicate with your business in the same way 
they communicate with their friends - seamlessly, on their own 
timeline and with the context of previous conversations.

For additional information visit: 
www.messagebird.com
 

245+ Agreements
We have 245+ direct-to-carrier agreements with 
operators worldwide.

20,000+ Customers
Customers in over 60+ countries, across a great 
variety of industries.

350+ Employees
More than 350 employees speaking over 20 
languages based in the Americas, Europe & Asia.

MessageBird

http://www.messagebird.com


We’re hiring!
https://messagebird.com/careers



Short sharding primer
Just to be sure we’re all on the same page



● Breaking up a database into multiple smaller parts
● Not the same as a table partitioning:

○ Partitions are kept on the same database host
● Two types of sharding:

○ Functional sharding
○ Horizontal sharding

What is (database) sharding?



● Functional sharding (a.k.a. Poor Man’s Sharding)
○ Split a database by function
○ E.g. move “customers” table to a different database cluster
○ Typically shard schema contains with 1 or 2 tables

● Allows scaling to function
○ Vary in cpu/memory/diskspace

● No cross shard queries possible
○ You can’t join customers and orders table
○ Two separate queries are necessary

● Data integrity
○ Foreign keys are not possible between shards
○ Integrity can’t be guaranteed

● Shard outage
○ Makes part of your data inaccessible

What is functional sharding?

customers

orders

order_rows

db01

db01

orders

order_rows

customers

db02



● Horizontal sharding (a.k.a. True Sharding)
○ Split a database upon data
○ E.g. move “customer-X” to a different database cluster
○ Typically multiple identical shards with full schema

● Algorithm on a value in the data
○ Identifier, Creation date, (Geographic) location

● Dynamic sharding
○ Database to store pointers

● Allows scaling on even resources
○ Same number of CPUs, memory, etc

● No cross shard queries possible
○ You can’t select all rows from the customers 

table
● Data duplication

○ Certain tables need to be duplicated
○ Shared records need to be duplicated

What is horizontal sharding?

Customers

Customer #1
Customer #2
Customer #5
Customer #6

orders

order_rows

db01

Customers

Customer #1
Customer #5

orders

order_rows

db01

Customers

Customer #2
Customer #6

orders

order_rows

db02



● Adds more complexity
● Less data duplication
● Allows scaling to function
● Allows scaling on even resources

○ Reshard when necessary

Why not do both?

Customers

Customer #1
Customer #2
Customer #5
Customer #6

orders

order_rows

db01

Customers

Customer #1
Customer #5

db02 db03

Customers

Customer #2
Customer #6

db01

orders

order_rows



DIY Shards
Our own sharding solution



● Database primary is able to persist all messages
○ Sent from the MP workers in parallel

● Database replicas can’t keep up
○ Replication on MySQL is single threaded
○ Scaling up is no option (no faster CPUs in GCE)
○ 40% YoY growth

Problematic replication on short-term storage database



● Write less
● Write smarter
● Enable parallel replication
● Shard our data

Possible solutions



● Write less: not possible
● Write smarter: multi-insert statements requires code overhaul
● Enable parallel replication: requires database migration
● Shard our data: requires database migration (and connection logic)

Possible solutions



● Sharding our messages
○ Message UUID as shard key
○ Random data distribution
○ No cross shard queries necessary

● Sharding our connections
○ For every shard open a connection
○ Write to shard connection based upon UUID
○ Read from shard connection based upon UUID

How do we shard in our DIY sharding?



● Algorithm definition
○ UUID v1 requires a bit of tinkering
○ Similar to “UUID % <shards>”

● Algorithm validity
○ Algorithm is valid for UUIDs between <start_date> and <end_date>
○ Allows us to switch algorithms and store data differently
○ Necessary for adding new shards

● Data retention
○ Data retention is 10 days
○ Schema and algorithm changes can cycle quickly
○ No shard splitting is necessary

Sharding algorithm



A typical database at Messagebird



Let’s apply that multiple times for sharding!



How does that look from the application side?



What if a shard becomes unavailable?



● Part of our existing data is inaccessible
○ Updating existing data: not possible
○ Reading existing data: read from replica
○ Remember: not all our data is inaccessible!

● Inserting new data
○ Recalculate UUID
○ Write to shard connection based upon new UUID
○ Read from shard connection based upon new UUID

● In theory we would be able to always store messages

What if a shard becomes unavailable?



● Outages happened
○ Complete shard unavailability
○ Re-sharding algorithm
○ UUID recalculation

● Scalability
○ Adding new shards is relatively difficult
○ Adding a new shard requires a code change

● ProxySQL
○ ProxySQL is receiving many connections
○ Connection multiplexing helps (1 out of 5 connections)

Did it work out as planned?



● Sharding algorithm is very (UUID) specific
○ Not usable as a template for other data types

● More “permanent” data
○ Shard splitting is not possible
○ Hot spots are difficult to fix
○ Asymmetric scaling isn’t possible

● Other issues
○ Cross shard querying is not possible
○ Cross shard joins are not possible

● Dependencies
○ ProxySQL is an essential component
○ Deployments need to be coordinated very carefully

Can we reuse it?



Replacing the Archive
Are we able to use Vitess out of the box?



● Mid-term storage is being used for the following use cases:
○ Short term (near-realtime) monitoring of routes
○ “Quick” reference for messages < 7 days
○ Ship data to our Archive (6 months retention)

● Similar to the short-term storage: replication lag
○ Replication lag means no read-scaling

● The Archive is huuuge
○ 6TB maximum data size on mid-term storage (between 1 and 3 months of data)
○ ~13TB of data in cold-storage CloudSQL (about 6 months of data)

The Archive challenge



● Split up functionality
○ Realtime data should be in a realtime database
○ All referencing should be done on the Archive

● Sharding is inevitable
○ 40% YoY growth
○ Small hands make great work

The Archive solution



● Simple access paths
○ On message identifier (UUID)
○ On customer identifier (int)
○ Within a certain date range (datetime)

● Simple aggregations
○ How many messages by X

● Everything else: analytics

What boundaries were set?



● Vitess promises
○ Transparent sharding
○ Shard splitting
○ Asymmetrical sharding
○ Materialized views (aggregates)

● Vitess uses MySQL as a foundation
● Vitess might also be suitable for sharding our other databases
● Vitess might also be suitable for multi-region data

Why did we consider Vitess?



● Kubernetes or VM install?
○ Vitess K8s are advised to be small (250GB max)
○ PoC is the MT Archive with almost 10TB of data
○ 10TB / 250GB = 40 shards
○ 1 shard consists out of 3 instances (master, replica, backup host)
○ 40 shards = 120 instances
○ 120 instances = 120 worker nodes

● VMs can be larger (500GB to 1TB)

Choosing the right solution for the Archive



Our Archive Vitess setup



● Vitess Shard performance
○ Performance bottlenecks have been identified
○ InnoDB/MySQL have been tuned to our setup
○ Vitess also needs tuning (e.g. grpc thread pools)

● Productionalizing Vitess
○ Automation via ansible (provisioning + config)
○ Send Vitess metrics to Prometheus
○ Integrate backups

● Vitess Administration
○ Shard splitting
○ Schema migrations

What did we encounter during the PoC?



Comparison between Vitess and DIY Shards
How different is it?



DIY Shards

● We are in control
○ We “define” our sharding algorithm 

and store over shards
○ Algorithm tied to a specific time 

range
○ Algorithm change involves setting 

an end date to the previous 
algorithm

Vitess

● We rely completely on a framework
○ Vitess enforces us to make our 

schemas fit
○ We don’t have any influence on 

what goes on behind the scene
○ We simply point our queries to 

VTGate and then the magic 
happens

How do we perceive them?



DIY Shards

● Fear of change
○ A lot of work and risk to add shards
○ Shard operations have to be done 

in code

Vitess

● Fear of unknown
○ More moving components means 

more (possible) failures
○ Certain (specific) queries are not 

supported
○ If a shard fails, we can’t write that 

specific data

How do others (devs) perceive them?



DIY Shards

● Daily tables

● Application handles data truncation 

● Application handles schema migrations

Vitess

● Vitess forces named columns

● Multiple schema versions can co-exist

● OSC tools work (per shard)

● OSC is tedious on 8+ shards

● OSC requires space

Operational: schema changes



DIY Shards

● Deploy new shard hosts

● Define new hosts in service discovery

● Deploy code with new algorithm

● Connections to new shards

Vitess

● Deploy new shard hosts

● Initiate shard split

● Move reads to new shards

● Move writes to new shards

Operational: scaling out



DIY Shards

● Upgrade replica hosts

● Initiate switchover via Orchestrator

● Upgrade old primary

Vitess

● Upgrade replica hosts

● Initiate switchover via Vitess 

(commandline)

● Upgrade old primary

Operational: MySQL upgrades



DIY Shards

● Deploy new application version

Vitess

● Upgrade shard hosts

● Upgrade Vitess control hosts

● Upgrade VTGate hosts

(So far we performed only minor version upgrades)

Operational: sharding platform upgrades



Conclusion
Regrets? Words of caution?



● Allows us to keep things “as they are”
○ Easy integration into existing DBA tools
○ Less steep learning curve

● Pros:
○ We get “more” performance out of our hosts
○ We can allow larger data size

● Cons:
○ Less agile
○ Shard operations take longer and may time out
○ Hosts need to be repaired (when broken)

Running Vitess on “iron”



● Total time for DIY Shards was 3 sprints for 1 squad
○ Close collaboration between database engineers and developers
○ Simple problem, simple solution

● Total time for Vitess Archive is 5 months
○ 1 developer and 1 database engineer
○ Learning curve for Vitess (new components)
○ Incompatible queries
○ Vitess frequent updates + documentation

Is Vitess saving you time?



Questions?


