
How to Avoid Pitfalls in Schema Upgrade
with Percona XtraDB Cluster

Sveta Smirnova
Percona

Sveta Smirnova

• MySQL Support engineer
• Author of

• MySQL Troubleshooting
• JSON UDF functions
• FILTER clause for MySQL

• Speaker
• Percona Live, OOW, Fosdem,

DevConf, HighLoad... 2

http://shop.oreilly.com/product/0636920021964.do

Table of Contents

•TOI

•RSU

•pt-online-schema-change (pt-osc)

3

Introduction

• Galera Replication Library
• Provides synchronous replication for MySQL

• Galera Clusters
Percona XtraDB Cluster

MariaDB Galera Cluster

Galera Cluster for MySQL

4

https://www.percona.com/doc/percona-xtradb-cluster/5.7/
https://www.percona.com/doc/percona-xtradb-cluster/5.7/
https://mariadb.com/kb/en/galera-cluster/
https://mariadb.com/kb/en/galera-cluster/
https://galeracluster.com/
https://galeracluster.com/

Introduction

• Galera Replication Library
• Provides synchronous replication for MySQL

• Galera Clusters
Percona XtraDB Cluster

MariaDB Galera Cluster

Galera Cluster for MySQL

4

https://www.percona.com/doc/percona-xtradb-cluster/5.7/
https://www.percona.com/doc/percona-xtradb-cluster/5.7/
https://mariadb.com/kb/en/galera-cluster/
https://mariadb.com/kb/en/galera-cluster/
https://galeracluster.com/
https://galeracluster.com/

How Galera works

• Data modification happens on a node
• Optimistic locking control

• While a transaction is in progress
• At the COMMIT time

• Broadcasts write set for the cluster
• Waits confirmation of the successful update

From all other nodes

Yes Commits transaction locally
No Rollbacks transaction

5

How Galera works

• Data modification happens on a node
• Optimistic locking control
• While a transaction is in progress

• Writes are applied locally
• Same as for standalone server

• At the COMMIT time
• Broadcasts write set for the cluster
• Waits confirmation of the successful update

From all other nodes

Yes Commits transaction locally
No Rollbacks transaction

5

How Galera works

• Data modification happens on a node
• Optimistic locking control
• While a transaction is in progress
• At the COMMIT time

• Broadcasts write set for the cluster
• Waits confirmation of the successful update

From all other nodes

Yes Commits transaction locally
No Rollbacks transaction

5

Data Updates

• Committed on all nodes or nowhere
• Safe

6

Challenges of DDL

• Replicated independently from storage engine

• Changes may affect query results
• Modification can happen on any node

7

Challenges of DDL

• Replicated independently from storage engine
• Changes may affect query results

• Adding/removal of UNIQUE keys
• Adding/removal columns
• Changing column definition

• Modification can happen on any node

7

Challenges of DDL

• Replicated independently from storage engine
• Changes may affect query results
• Modification can happen on any node

• The schema must be upgraded before DML
• There is no way to rollback schema upgrade
• MDLs are set only on one node

Not across the cluster
Not possible to rely on them for all nodes
Additional control required

7

TOI

Total Order Isolation (TOI)

• DDL changes are replicated in the same order
• Regarding other transactions

• All nodes are in the absolutely same state
• At any point of time

9

TOI: Illustration

• 3-nodes cluster
• Node A
• Node B
• Node C

10

TOI: Illustration

• Initial state
Node A
INSERT(103)

UPDATE(104)

ALTER(105)

Node B
UPDATE(101)

INSERT(102)

DELETE(108)

UPDATE(109)

Node C
SELECT(100)

INSERT(112)

SELECT(113)

UPDATE(114)

10

TOI: Illustration

• Queries status
Node A

� INSERT(103)

� UPDATE(104)

� ALTER(105)

Node B
� UPDATE(101)

� INSERT(102)

� DELETE(108)

� UPDATE(109)

Node C
� SELECT(100)

� INSERT(112)

! SELECT(113)

� UPDATE(114)

10

TOI: Illustration

• ALTER in progress
Node A

� ALTER(105)

Node B
� DELETE(108)

� UPDATE(109)

Node C
� INSERT(112)

! SELECT(113)

� UPDATE(114)

10

TOI: Illustration

• ALTER finished
Node A Node B

� DELETE(108)

� UPDATE(109)

Node C
� INSERT(112)

� SELECT(113)

� UPDATE(114)

10

PROCESSLIST: DML before ALTER

DML node> select DB, COMMAND, TIME, STATE, INFO from information_schema.processlist WHERE DB=’sbtest’;

+--------+---------+------+---+-----------------------+

| DB | COMMAND | TIME | STATE | INFO |

+--------+---------+------+---+-----------------------+

| sbtest | Query | 1 | wsrep: initiating pre-commit for write set (2886) | COMMIT |

| sbtest | Query | 1 | wsrep: initiating pre-commit for write set (2888) | COMMIT |

| sbtest | Query | 1 | wsrep: initiating pre-commit for write set (2884) | COMMIT |

| sbtest | Query | 1 | updating | DELETE FROM sbtest1.. |

| sbtest | Query | 1 | wsrep: initiating pre-commit for write set (2887) | COMMIT |

| sbtest | Query | 0 | wsrep: initiating pre-commit for write set (2889) | COMMIT |

| sbtest | Query | 1 | wsrep: initiating pre-commit for write set (2885) | COMMIT |

| sbtest | Query | 1 | wsrep: pre-commit/certification passed (2883) | COMMIT |

+--------+---------+------+---+-----------------------+

8 rows in set (0.00 sec)

11

PROCESSLIST: SELECT before ALTER

SELECT node> select DB, COMMAND, TIME, STATE, INFO from information_schema.processlist

-> WHERE DB=’sbtest’;

+--------+---------+------+-------------------+---------------------------------------+

| DB | COMMAND | TIME | STATE | INFO |

+--------+---------+------+-------------------+---------------------------------------+

| sbtest | Query | 0 | statistics | SELECT pad FROM sbtest2 WHERE id=5009 |

| sbtest | Query | 0 | starting | SELECT pad FROM sbtest3 WHERE id=4951 |

| sbtest | Query | 0 | statistics | SELECT pad FROM sbtest4 WHERE id=4954 |

| sbtest | Query | 0 | System lock | SELECT pad FROM sbtest2 WHERE id=5351 |

| sbtest | Query | 0 | cleaning up | SELECT pad FROM sbtest2 WHERE id=4954 |

| sbtest | Sleep | 0 | | NULL |

| sbtest | Query | 0 | Sending to client | SELECT pad FROM sbtest1 WHERE id=4272 |

| sbtest | Query | 0 | closing tables | SELECT pad FROM sbtest4 WHERE id=4722 |

+--------+---------+------+-------------------+---------------------------------------+

8 rows in set (0.00 sec)

12

ALTER

DDL node> use ddltest;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

DDL node> alter table sbtest1 add key k1(c, k, pad);

Query OK, 0 rows affected (3 min 53.73 sec)

Records: 0 Duplicates: 0 Warnings: 0

13

PROCESSLIST: DML during ALTER

DML node> select DB, COMMAND, TIME, STATE, INFO from information_schema.processlist

-> WHERE DB in (’sbtest’,’ddltest’);

+---------+---------+------+---+----------------------+

| DB | COMMAND | TIME | STATE | |

+---------+---------+------+---+----------------------+

| sbtest | Query | 36 | wsrep: initiating pre-commit for write set (7886) | COMMIT |

| sbtest | Query | 37 | wsrep: initiating pre-commit for write set (7882) | COMMIT |

| sbtest | Query | 27 | wsrep: initiating pre-commit for write set (7887) | COMMIT |

| sbtest | Query | 27 | wsrep: initiating pre-commit for write set (7888) | COMMIT |

| sbtest | Query | 36 | wsrep: initiating pre-commit for write set (7885) | COMMIT |

| sbtest | Query | 37 | wsrep: initiating pre-commit for write set (7883) | COMMIT |

| sbtest | Query | 37 | wsrep: initiating pre-commit for write set (7884) | COMMIT |

| sbtest | Query | 10 | wsrep: initiating pre-commit for write set (7889) | COMMIT |

| ddltest | Sleep | 38 | altering table | alter table sbtest1. |

+---------+---------+------+---+----------------------+

9 rows in set (0.00 sec)

14

PROCESSLIST: SELECT during ALTER

SELECT node> select DB, COMMAND, TIME, STATE, INFO from information_schema.processlist

-> WHERE DB in (’sbtest’,’ddltest’);

+---------+---------+------+-------------------+---+

| DB | COMMAND | TIME | STATE | |

+---------+---------+------+-------------------+---+

| sbtest | Sleep | 0 | | NULL |

| sbtest | Sleep | 0 | | NULL |

| sbtest | Query | 0 | Sending to client | SELECT pad FROM sbtest4 WHERE id=4989 |

| sbtest | Sleep | 0 | | NULL |

| sbtest | Query | 0 | query end | SELECT pad FROM sbtest2 WHERE id=4961 |

| sbtest | Sleep | 0 | | NULL |

| sbtest | Sleep | 0 | | NULL |

| sbtest | Sleep | 0 | | NULL |

| ddltest | Sleep | 39 | altering table | alter table sbtest1 add key k1(c, k, pad) |

+---------+---------+------+-------------------+---+

9 rows in set (0.14 sec)

15

TOI Advantages

• Data always consistent
• DDL applied to all nodes at the same time
• No failure due to schema inconsistency

16

TOI Disadvantages

• The whole cluster blocked
• For the duration of the entire DDL operation

• Schema upgrades replicated as a statement
• There is no guarantee that the ALTER succeed!

17

How to Perform Upgrade with TOI

• Schedule maintenance window
• Run DDL
• Cluster won’t be accessible until DDL ends

• SELECTs can continue
• wsrep sync wait != 1

18

When to Use TOI

• Quick DDL operations

• Creating new database objects
• Online operations which modify metadata only

• RENAME INDEX
• RENAME TABLE
• DROP INDEX
• ALGORITHM=INSTANT

Full list

19

https://mariadb.com/kb/en/innodb-online-ddl-operations-with-the-instant-alter-algorithm/
https://mariadb.com/kb/en/innodb-online-ddl-operations-with-the-instant-alter-algorithm/

When to Use TOI

• Quick DDL operations
• Creating new database objects

• CREATE DATABASE
• CREATE TABLE

• Online operations which modify metadata only
• RENAME INDEX
• RENAME TABLE
• DROP INDEX
• ALGORITHM=INSTANT

Full list

19

https://mariadb.com/kb/en/innodb-online-ddl-operations-with-the-instant-alter-algorithm/
https://mariadb.com/kb/en/innodb-online-ddl-operations-with-the-instant-alter-algorithm/

When to Use TOI

• Quick DDL operations
• Creating new database objects
• Online operations which modify metadata only

• RENAME INDEX
• RENAME TABLE
• DROP INDEX
• ALGORITHM=INSTANT

Full list

19

https://mariadb.com/kb/en/innodb-online-ddl-operations-with-the-instant-alter-algorithm/
https://mariadb.com/kb/en/innodb-online-ddl-operations-with-the-instant-alter-algorithm/

RSU

Rolling Schema Upgrade (RSU)

• Variable wsrep OSU method

• Puts node into de-sync state
• For the duration of DDL

• Pauses Galera provider
• Schema can get out of sync!

21

User Responsibility

• Run DDL on the each node of the cluster
• Block read-write access that depend on DDL

• Until all nodes are in sync
• Make sure no write is performed to the table

• Until upgrade finishes on all nodes
• Failure makes cluster unrecoverable!

22

RSU Workflow

• User Action
• SET SESSION wsrep OSU method = ’RSU’;

• DDL

• Any other statement

• Node Operation
• Nothing

• Is wsrep OSU method set to RSU?
Yes Performs DDL

• Nothing

23

How Node Internally Executes DDL in RSU Mode?

L Does node have transactions in COMMIT mode?

No Put node into de-sync state
L Pause write-set application
L Execute DDL
L Bring the node back to the cluster
 Synchronize

24

How Node Internally Executes DDL in RSU Mode?

L Does node have transactions in COMMIT mode?
Yes Wait for 5 milliseconds

• wsrep RSU commit timeout (PXC only)

No Put node into de-sync state
L Pause write-set application
L Execute DDL
L Bring the node back to the cluster
 Synchronize

24

How Node Internally Executes DDL in RSU Mode?

L Does node have transactions in COMMIT mode?
Yes Wait for 5 milliseconds

• wsrep RSU commit timeout (PXC only)
L Still transactions in the COMMIT mode exist?

No Put node into de-sync state
L Pause write-set application
L Execute DDL
L Bring the node back to the cluster
 Synchronize

24

How Node Internally Executes DDL in RSU Mode?

L Does node have transactions in COMMIT mode?
Yes Wait for 5 milliseconds

• wsrep RSU commit timeout (PXC only)
L Still transactions in the COMMIT mode exist?

Yes Abort DDL

No Put node into de-sync state
L Pause write-set application
L Execute DDL
L Bring the node back to the cluster
 Synchronize

24

How Node Internally Executes DDL in RSU Mode?

L Does node have transactions in COMMIT mode?
No Put node into de-sync state

L Pause write-set application
L Execute DDL
L Bring the node back to the cluster
 Synchronize

24

How Node Internally Executes DDL in RSU Mode?

L Does node have transactions in COMMIT mode?
No Put node into de-sync state
L Pause write-set application

L Execute DDL
L Bring the node back to the cluster
 Synchronize

24

How Node Internally Executes DDL in RSU Mode?

L Does node have transactions in COMMIT mode?
No Put node into de-sync state
L Pause write-set application
L Execute DDL

L Bring the node back to the cluster
 Synchronize

24

How Node Internally Executes DDL in RSU Mode?

L Does node have transactions in COMMIT mode?
No Put node into de-sync state
L Pause write-set application
L Execute DDL
L Bring the node back to the cluster

 Synchronize

24

How Node Internally Executes DDL in RSU Mode?

L Does node have transactions in COMMIT mode?
No Put node into de-sync state
L Pause write-set application
L Execute DDL
L Bring the node back to the cluster
 Synchronize

24

RSU: Locking

• Not avoidable
• Updates to all objects on the node in RSU mode

must finish before the operation
• Failure aborts DDL

25

RSU Advantages

• Cluster remains functional
• Schedule long-running ALTER

• In the best time possible

26

RSU Disadvantages

• No checks for data and schema consistency
• This is your responsibility!

• All writes must be stopped on the affected node
• gcache should be big enough to hold changes
• Any error can make cluster dysfunctional
• Affected table must be offline

• Until the schema upgrade is done on all nodes
• Unless this is schema-compatible change

27

RSU Disadvantages

• No checks for data and schema consistency
• All writes must be stopped on the affected node

• Otherwise DDL fails with an error

• gcache should be big enough to hold changes
• Any error can make cluster dysfunctional
• Affected table must be offline

• Until the schema upgrade is done on all nodes
• Unless this is schema-compatible change

27

RSU Disadvantages

• No checks for data and schema consistency
• All writes must be stopped on the affected node
• gcache should be big enough to hold changes

• Made while DDL was running
• Failure will cause SST when node re-joins cluster
• All schema changes will be lost

• Any error can make cluster dysfunctional
• Affected table must be offline

• Until the schema upgrade is done on all nodes
• Unless this is schema-compatible change

27

RSU Disadvantages

• No checks for data and schema consistency
• All writes must be stopped on the affected node
• gcache should be big enough to hold changes
• Any error can make cluster dysfunctional

• Affected table must be offline
• Until the schema upgrade is done on all nodes
• Unless this is schema-compatible change

27

RSU Disadvantages

• No checks for data and schema consistency
• All writes must be stopped on the affected node
• gcache should be big enough to hold changes
• Any error can make cluster dysfunctional
• Affected table must be offline

• Until the schema upgrade is done on all nodes
• Unless this is schema-compatible change

27

How to Use RSU

• Make sure gcache is big enough
• Must hold all updates while DDL is in progress

! Choose an ”upgrading node”
! Block all write requests to this node
! SET SESSION wsrep OSU method = ’RSU’;

! Perform DDL in the same session
! SET SESSION wsrep OSU method = ’TOI’;

! Re-enable writes
! Repeat for other nodes

28

How to Use RSU

• Make sure gcache is big enough
• Must hold all updates while DDL is in progress

• Block all writes to the table/schema

! Choose an ”upgrading node”
! Block all write requests to this node
! SET SESSION wsrep OSU method = ’RSU’;

! Perform DDL in the same session
! SET SESSION wsrep OSU method = ’TOI’;

! Re-enable writes
! Repeat for other nodes

28

How to Use RSU

! Choose an ”upgrading node”

! Block all write requests to this node
! SET SESSION wsrep OSU method = ’RSU’;

! Perform DDL in the same session
! SET SESSION wsrep OSU method = ’TOI’;

! Re-enable writes
! Repeat for other nodes

28

How to Use RSU

! Choose an ”upgrading node”
! Block all write requests to this node

! SET SESSION wsrep OSU method = ’RSU’;

! Perform DDL in the same session
! SET SESSION wsrep OSU method = ’TOI’;

! Re-enable writes
! Repeat for other nodes

28

How to Use RSU

! Choose an ”upgrading node”
! Block all write requests to this node
! SET SESSION wsrep OSU method = ’RSU’;

! Perform DDL in the same session
! SET SESSION wsrep OSU method = ’TOI’;

! Re-enable writes
! Repeat for other nodes

28

How to Use RSU

! Choose an ”upgrading node”
! Block all write requests to this node
! SET SESSION wsrep OSU method = ’RSU’;

! Perform DDL in the same session

! SET SESSION wsrep OSU method = ’TOI’;

! Re-enable writes
! Repeat for other nodes

28

How to Use RSU

! Choose an ”upgrading node”
! Block all write requests to this node
! SET SESSION wsrep OSU method = ’RSU’;

! Perform DDL in the same session
! SET SESSION wsrep OSU method = ’TOI’;

! Re-enable writes
! Repeat for other nodes

28

How to Use RSU

! Choose an ”upgrading node”
! Block all write requests to this node
! SET SESSION wsrep OSU method = ’RSU’;

! Perform DDL in the same session
! SET SESSION wsrep OSU method = ’TOI’;

! Re-enable writes

! Repeat for other nodes

28

How to Use RSU

! Choose an ”upgrading node”
! Block all write requests to this node
! SET SESSION wsrep OSU method = ’RSU’;

! Perform DDL in the same session
! SET SESSION wsrep OSU method = ’TOI’;

! Re-enable writes
! Repeat for other nodes

28

pt-online-schema-change (pt-osc)

pt-online-schema-change (pt-osc)

• A tool, performing non-blocking upgrades
• With TOI

• Creates a copy of table with altered definition
• Creates triggers which will copy modified rows
• Starts copying data in chunks
• Once copy is complete, drops the table
• Renames the copy into the original table name

30

pt-online-schema-change (pt-osc)

• A tool, performing non-blocking upgrades
• Creates a copy of table with altered definition

• Creates triggers which will copy modified rows
• Starts copying data in chunks
• Once copy is complete, drops the table
• Renames the copy into the original table name

30

pt-online-schema-change (pt-osc)

• A tool, performing non-blocking upgrades
• Creates a copy of table with altered definition
• Creates triggers which will copy modified rows

• Starts copying data in chunks
• Once copy is complete, drops the table
• Renames the copy into the original table name

30

pt-online-schema-change (pt-osc)

• A tool, performing non-blocking upgrades
• Creates a copy of table with altered definition
• Creates triggers which will copy modified rows
• Starts copying data in chunks

• Absolutely under control
• Can be paused or stopped

–max-flow-ctl

• Once copy is complete, drops the table
• Renames the copy into the original table name

30

https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html#cmdoption-pt-online-schema-change-max-flow-ctl
https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html#cmdoption-pt-online-schema-change-max-flow-ctl

pt-online-schema-change (pt-osc)

• A tool, performing non-blocking upgrades
• Creates a copy of table with altered definition
• Creates triggers which will copy modified rows
• Starts copying data in chunks

• All rows already in the table are copied in chunks
• Newly modified rows are copied using triggers

• Once copy is complete, drops the table
• Renames the copy into the original table name

30

pt-online-schema-change (pt-osc)

• A tool, performing non-blocking upgrades
• Creates a copy of table with altered definition
• Creates triggers which will copy modified rows
• Starts copying data in chunks
• Once copy is complete, drops the table

• Renames the copy into the original table name

30

pt-online-schema-change (pt-osc)

• A tool, performing non-blocking upgrades
• Creates a copy of table with altered definition
• Creates triggers which will copy modified rows
• Starts copying data in chunks
• Once copy is complete, drops the table
• Renames the copy into the original table name

30

pt-osc Advantages

• DDL is safe and non-blocking

31

pt-osc Disadvantages

• Works only with InnoDB tables
• Increases IO load even for inplace operations
• Conflicts with already existing triggers

• Unless you use PXC >= 5.7
• Foreign keys updates are not effectively safe

32

How to Use pt-osc

• Study pt-osc options
• --max-flow-ctl

• Set appropriate limits
• Make sure wsrep OSU method is TOI
• Run pt-osc

33

Which Method to Use?

L Will DDL be fast?
• CREATE DATABASE
• CREATE TABLE
• DROP INDEX
• Any ALTER on small tables
• Other

Yes Use TOI
No Evaluate if you can use pt-osc

Yes Use pt-osc
No Use RSU

• Stop all write traffic on the node
• Stop all write traffic to the modified table
• Make sure to upgrade on all nodes

34

Which Method to Use?

L Will DDL be fast?
Yes Use TOI

No Evaluate if you can use pt-osc
Yes Use pt-osc
No Use RSU

• Stop all write traffic on the node
• Stop all write traffic to the modified table
• Make sure to upgrade on all nodes

34

Which Method to Use?

L Will DDL be fast?
Yes Use TOI
No Evaluate if you can use pt-osc

• Operation on the InnoDB table
• Table has no triggers or PXC >= 5.7
• Table is not referenced by a foreign key
• You can tolerate increased IO

Yes Use pt-osc
No Use RSU

• Stop all write traffic on the node
• Stop all write traffic to the modified table
• Make sure to upgrade on all nodes

34

Which Method to Use?

L Will DDL be fast?
Yes Use TOI
No Evaluate if you can use pt-osc

Yes Use pt-osc

No Use RSU
• Stop all write traffic on the node
• Stop all write traffic to the modified table
• Make sure to upgrade on all nodes

34

Which Method to Use?

L Will DDL be fast?
Yes Use TOI
No Evaluate if you can use pt-osc

Yes Use pt-osc
No Use RSU

• Stop all write traffic on the node
• Stop all write traffic to the modified table
• Make sure to upgrade on all nodes

34

Conclusion

• Use TOI whenever possible
• Then use pt-osc
• RSU is a last resort

35

More information

Galera Cluster

Percona XtraDB Cluster

MariaDB Galera Cluster

pt-online-schema-change

36

http://galeracluster.com/
http://galeracluster.com/
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://www.percona.com/software/mysql-database/percona-xtradb-cluster
https://mariadb.com/kb/en/what-is-mariadb-galera-cluster/
https://mariadb.com/kb/en/what-is-mariadb-galera-cluster/
https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html
https://www.percona.com/doc/percona-toolkit/LATEST/pt-online-schema-change.html

Thank you!

www.slideshare.net/SvetaSmirnova

twitter.com/svetsmirnova

github.com/svetasmirnova

37

http://www.slideshare.net/SvetaSmirnova
www.slideshare.net/SvetaSmirnova
https://twitter.com/svetsmirnova
twitter.com/svetsmirnova
https://github.com/svetasmirnova
github.com/svetasmirnova

	TOI
	RSU
	pt-online-schema-change (pt-osc)

