
Collaboration for 
Structured Data



Outline
● Motivation

○ Why do we need structured Data?
○ The Problems of Data Management for Teams

● Challenges
○ Why can't I just use git?
○ Why can't I just use my Database?

● Solution
○ Distributed Data Collaboration using Revision 

Control



Motivation: Why 
Structured Data?



Data is Core
Structured data gives us the ability to surface the 
data we need to software (which can then give it 
to people)

○ Data analytics / data science is required for good 
decisions, but machines need to be able to eat the 
data. Currently 80% of time taken in curation.

○ Curation and editing to obtain high quality data is 
therefore critical and it is facilitated by well 
structured (schema controlled) data.

○ Publishing of data requires easy access (query) and 
sufficient information to surface the data 
appropriately (graphs, charts, forms, web-pages 
etc.) 



Challenges: 
Data is Still in the 
Dark Ages



Structured or Unstructured, 
we're doing it wrong
● Core data in excels and CSVs

○ Distribution via e-mail and slack
○ Repeatedly recleaning, reparsing, recasting
○ Nobody is sure which version it is "foo1.3_final2.xls"

● Git isn't really the right tool for data
○ Git can be used but awkward and stores changes as 

lines of text. 
○ It doesn't scale brilliantly on data
○ We need structure and discoverability

● Databases are awkward (that's why the csvs are still there)
○ You can add revision features (by table, by row, by etc.)
○ But doesn't resolve changes to structure (schema)
○ You have to hand-roll your distribution
○ Centralised and not "bottom-up", increasing the costs 

of experimentation



Managing Data means 
Collaborating

Software solved "team" with git

○ Provenance (revisions and authorship)
○ Safety (rollback, branching)
○ Quality (CI/CD pipelines)
○ Distribution (push/pull/clone/merge)



Solution: 

We need databases 
designed for Distributed 
Collaboration



But What Should a Tool Built for 
Collaboration on Structured Data 
Look Like?



Discoverability & Schema
Structured data requires a real database - not just git

● Queries: Easy retrieval and update 
programmatically (not just updating a 
monster CSV file)

● Structured and typed entities - data 
cleaning and casting should not be a 
constantly re-solved problem

● Having a schema means we pay attention 
has to be payed to schema migration



Revision Control

○ Scalable to typical dataset sizes 
○ Provenance - authorship, commit time etc.
○ Pipelining - Modern CI/CD architectures work 

because of branching
○ Safety - branch and rollback allow test and 

experimentation (before pushing to production)



Collaboration
Collaboration is really the main reason your data-engineers are likely 
still using CSVs and Excels and not your centralised database.

● Modification has to be safe
● Effective collaboration requires revision control
● Distribution between collaborators: push / pull / clone 

- remove the perceived need to slack / e-mail data.
○ I need the data where I have the problem - on my 

computer or on my ML processing server
○ Distribution requires deltas, compact 

representations of only what was changed
● Change management: merge - gives you the ability to 

do truly distributed data management 
● End-to-End encryption should be possible



There are multiple solutions to this 
problem from custom toolchains through 
to a number of open-source databases 
such as DVC, Dolt and TerminusDB.

If you're interested in an open-source 
solution to collaborative revision control 
for graphs or complex datasets, you 
should Give TerminusDB a try!

Terminusdb.com


