
SQL Row Store vs Data Warehouse

Which Is Right for Your
Application?

Robert Hodges
Percona Live Online 2020

Presenter Bio

www.altinity.com

The Enterprise Guide to ClickHouse

Major committer and community
sponsor in US and Western Europe

Robert Hodges - Altinity CEO

30+ years on DBMS plus
virtualization and security.

ClickHouse is DBMS #20

What do we
mean by a row

store?

Key Features of MySQL

Single C++ binary

SQL language

Row storage

High concurrency

Single threaded query

Single server

GPL V2 license

 a b c d

 a b c d

 a b c d

 a b c d

 a b c d

 a b c d

 a b c d

 a b c d

Airline flight management in MySQL

FlightDate
CarrierID
FlightNum
OriginID
DepTime
DepDelay
TaxiOut
WheelsOff
WheelsOn
DestinationID
. . .

ontime
ID

Name
UniqueID
AirlineID
. . .

carrier
ID

Name
City
Country
IATA
ICAO
Latitude
Longitude
. . .

airport
ID

Year
Quarter
Month...

time
Date

How row data is organized

ID FlightDate CarrierID FlightNum OriginID ...

ID FlightDate CarrierID FlightNum OriginID ...

ID FlightDate CarrierID FlightNum OriginID ...

ID FlightDate CarrierID FlightNum OriginID ...

...

Clustered
Primary Key

Index

FlightDate Index

CarrierID Index

Secondary Indexes

. . . No index? Read the entire table!

Strengths and weaknesses of MySQL

(+) Lots of lookups

(+) Lots of updates

(+) High concurrency

(+) Consistency critical

(-) Very long tables

(-) Very wide tables

(-) Open ended questions

(-) Lots of aggregates

OLTP
“Online Transaction Processing”

Analytic Queries

MySQL servers can easily reach 1M QPS

How do data
warehouses

work?

Key features of ClickHouse
Single C++ binary

SQL language

Column storage

Compression and codecs

Vectorized query execution

MPP-enabled (shards/replicas)

Apache 2.0 license

 a b c d

 a b c d

 a b c d

 a b c d

Airline ontime table definition
CREATE TABLE airline.ontime (
 `Year` UInt16, `Quarter` UInt8, `Month` UInt8, . . .
 `FlightDate` Date CODEC(DoubleDelta, ZSTD(1)),
 `UniqueCarrier` LowCardinality(String) CODEC(ZSTD(1)),
 `AirlineID` UInt32,
 `Carrier` LowCardinality(String),
 . . . another 102 columns . . .
)
ENGINE = MergeTree
PARTITION BY FlightDate
ORDER BY (Carrier, DepTime);

Table
Part

Index Columns

Sparse index

Columns sorted
on ORDER BY
columns

Rows match
PARTITION BY
expression

Part
Index Columns

Part

Compressed
block

There is no longer a penalty for wide tables

We make data even smaller by compressing

Data
Type Codec Compression

LowCardinality
(String) (none) LZ4

UInt32 DoubleDelta ZSTD(1)

Data reductions from real data

5.64% 0.64%0.64% 0.46% 0.30%

48.3%

We can speed up queries using more CPUs

-- Find cancelled/delayed flights
SELECT toYear(FlightDate) year,
 sum(Cancelled)/count(*) cancelled,
 sum(DepDel15)/count(*) delayed_15
FROM airline.ontime
GROUP BY year ORDER BY year LIMIT 10

SET max_threads = 2

SET max_threads = 4
. . .

Materialized views reduce data still more...

Source
TableIngest Target Table

Transforms Data
(Trigger)

Materialized View

Original Data Aggregates

Materialized views restructure/reduce data

Source
TableIngest Target TableMaterialized View

14.59 GiB 2.31 MiB

CREATE MATERIALIZED VIEW ontime_daily_cancelled_mv
ENGINE = SummingMergeTree
PARTITION BY tuple() ORDER BY (FlightDate, Carrier)
POPULATE
AS SELECT FlightDate, Carrier, count(*) AS flights,

sum(Cancelled) AS cancelled,
sum(DepDel15) AS delayed_15

FROM ontime GROUP BY FlightDate, Carrier

50-100x query speed-up

Still not fast enough? Add more servers!

Shards

Replicas

Host Host Host

Host

Replicas help with
concurrency

Shards add
read/write
bandwidth

ClickHouse distributes queries automatically

● Sharding and replication are
built-in

● Replication is multi-master
with eventual consistency

● Best case performance: linear
with number of shards

Strengths and weaknesses of ClickHouse

(-) Lots of lookups

(-) Lots of updates

(-) High concurrency

(-) Consistency critical

(+) Very long tables

(+) Very wide tables

(+) Open ended questions

(+) Lots of aggregates

OLTP
(“Online Transaction Processing”)

Analytic Queries

ClickHouse >> MySQL for analytic queries

Wrap-up

Where MySQL shines -- transaction processing

Where ClickHouse shines - analytic apps

A parting question...

Can one database handle both?

So far, not really.

Reason: Database and app complexity

Conclusions
● Row stores like MySQL are great for transaction processing

○ Lots of updates and small queries
○ Transactional integrity

● Column stores like ClickHouse are great for analytic queries
○ Wide, long tables
○ Open-ended questions
○ Lots of aggregated results

Thank you!

We’re hiring

www.altinity.com

Email:
rhodges@altinity.com

ClickHouse:
https://github.com/ClickHouse/

ClickHouse

MySQL:
https://www.percona.com

http://www.altinity.com
mailto:rhodges@altinity.com
https://github.com/ClickHouse/ClickHouse
https://github.com/ClickHouse/ClickHouse
https://www.percona.com

