
© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Sirish Chandrasekaran,
Director Amazon RDS Open Source (PostgreSQL, MySQL, MariaDB)
October 20, 2020

Managing databases at scale
in the cloud

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Our best practices come from a set of
amazing customers

Hundreds of thousands of customers use
Amazon Relational Database Service
• 7 database engines

• RDS for: PostgreSQL, MySQL, MariaDB,
SQL Server, Oracle

• Aurora with: MySQL compatibility,
PostgreSQL compatibility

• 25 AWS Regions, 77 Availability Zones, RDS
on Outposts, RDS on VMware

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

…who span the spectrum of scale

1 dev/test Free Tier instance 1000s of instances

Internet-scale workloads

Example: Amazon.com’s Inventory
Management System runs on Aurora

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Which problems become
especially hard at scale?

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Database fleet management at scale
In our experience, it falls into 3 categories

Provisioning: Accounts, users, database
configurations

Operating: Replication, monitoring, backups,
disaster recovery, cost management

Patching: Database upgrades, instance upgrades,
OS patching

Most importantly: self-managing is hard – and the undifferentiated

heavy lifting grows with scale

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

So you adopt a managed database service…

Now what can you do to provision,
operate and patch your database fleet
at scale?

Let us share a few of our learnings.

(Note: we’ll show generic points in white
and AWS-specific points in orange)

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Tips for database management at scale

• Use fine-grained resources with flexible hierarchy

• Centralize management of those resources

• Standardize and script your deployments

• Auto-scale where possible

• Offload the undifferentiated heavy lifting

• Watch the application-database interface carefully

1

2

3

4

5

6

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#1: Use fine-grained resources with
flexible hierarchy

• Use separate accounts for different BUs, dev vs. prod etc.

• Set permissions at a fine grain

• Tag, tag, and tag again

• Use cross-account features where available

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#1: Use fine-grained resources with
flexible hierarchy

• Use separate accounts for different BUs, dev vs. prod etc.

• Set permissions at a fine grain (AWS Identity and Access Management – IAM)

• Tag, tag, and tag again (AWS Resource Groups)

• Use cross-account features where available (RDS cross-account snapshot restore, …)

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#2: Centralize management of those resources

• Use centralized governance and management tools

• Centralize user/policy management across all cloud services

• Store passwords centrally, and rotate them frequently

• Maintain a global view of your spend

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#2: Centralize management of those resources

• Use centralized governance and management tools
(AWS Organizations)

• Centralize user/policy management across all cloud services
(AWS Identity and Access Management)

• Store passwords centrally, and rotate them frequently (AWS Secrets Manager)

• Maintain a global view of your spend (AWS Budgets; AWS Cost Explorer)

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#3: Standardize and script your deployments

• Set standard DB configurations for dev and prod

• Treat infrastructure as code

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#3: Standardize and script your deployments

• Set standard DB configurations for dev and prod
(RDS DB parameter groups)

• Treat infrastructure as code (CloudFormation)

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#4: Auto-scale where possible

Use cloud-native automation for scaling:
• Writes

• Reads

• Storage

• I/O

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#4: Auto-scale where possible

Use cloud-native automation for scaling:
• Writes (Aurora Serverless)

• Reads (Auto-scaled read replicas)

• Storage (Auto-scaled storage)

• I/O (Aurora - by default)

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#5: Offload the undifferentiated heavy lifting

Use cloud-native automation for:
• HA and read scaling

• Logging

• Monitoring

• Backup and DR

• Patching

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#5: Offload the undifferentiated heavy lifting

Use cloud-native automation for:
• HA and read scaling (RDS Multi-AZ, managed in-region replicas)

• Logging (CloudWatch Logs)

• Monitoring (CloudWatch Metrics, Enhanced Monitoring)

• Backup and DR (RDS automated backups, RDS cross-region replicas, Aurora Global Database)

• Patching (RDS Auto Minor Version Upgrades)

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#6: Watch the application-database interface
carefully

• Tune connection behavior across the stack

• Monitor query-level performance

• Use cross-stack tools where possible

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

#6: Watch the application-database interface
carefully

• Tune connection behavior across the stack (RDS Proxy)

• Monitor query-level performance (RDS Performance Insights)

• Use cross-stack tools where possible (AWS Backups)

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Closing thoughts

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Managing databases in the cloud is a shared responsibility

• Offload the undifferentiated heavy lifting to the cloud vendor…

• …which frees you to focus on your applications so you can give them the
fast performance, high availability, security and compatibility they need

© 2020, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Thank you!
Reach out to RDS at the AWS Developer Forums:

https://forums.aws.amazon.com/forum.jspa?forumID
=60

	Slide Number 1
	Our best practices come from a set of�amazing customers
	…who span the spectrum of scale
	Which problems become especially hard at scale?
	Database fleet management at scale�In our experience, it falls into 3 categories
	So you adopt a managed database service…
	Tips for database management at scale
	#1: Use fine-grained resources with� flexible hierarchy
	#1: Use fine-grained resources with� flexible hierarchy
	#2: Centralize management of those resources
	#2: Centralize management of those resources
	#3: Standardize and script your deployments
	#3: Standardize and script your deployments
	#4: Auto-scale where possible
	#4: Auto-scale where possible
	#5: Offload the undifferentiated heavy lifting
	#5: Offload the undifferentiated heavy lifting
	#6: Watch the application-database interface� carefully
	#6: Watch the application-database interface� carefully
	Closing thoughts
	Slide Number 21
	Thank you!

