
Best Practice for Designing and
Implementing MySQL Geographic

Distributed, High Availability Solutions

Marco Tusa
Percona

2

• Open source enthusiast
• MySQL tech lead; principal architect
• Working in DB/development

world over 33 years (yes, I am that old)
• Open source developer and community

contributor

About Me

3

Why Are We Talking About Geographic Distribution?
The need to have geographic distribution for…

3

Why Are We Talking About Geographic Distribution?
The need to have geographic distribution for…

Disaster
Recovery

3

Why Are We Talking About Geographic Distribution?
The need to have geographic distribution for…

Disaster
Recovery

Data close to
consumer/user

3

Why Are We Talking About Geographic Distribution?
The need to have geographic distribution for…

Disaster
Recovery

Data close to
consumer/user

Security by
regulations/laws

3

Why Are We Talking About Geographic Distribution?
The need to have geographic distribution for…

Disaster
Recovery

Data close to
consumer/user

Security by
regulations/laws

4

What is Geographic Distribution?
● What is geographic distribution?

○ Near ! High Availability
○ Far ! Disaster Recovery

• Geographic distribution in
High Availability is to cover
service availability in a location

○ 10 Gb Ethernet best case scenario
400 metre distance max

What is HA and What is DR?

• Geographic distribution in
Disaster Recovery is to assure
we can restore service, in a
geographically distributed location

○ Real speed may vary
○ Linear distance ~1000Km

What is HA and What is DR?

7

The Impact of Distance on Geographic Distribution

A Real-Life Example
I worked on many cases where a customer had two data centers (DC).
I will use information from one of the case as example.
The DC were at a distance of approximately 400 km, connected with a “fiber
channel”.
Server 1 and Server 2 were hosted in the same DC, while Server 3 was in the
secondary DC.
Their ping to Server3 was ~3ms. Not bad at all, right?
We decided to perform some serious tests, running multiple sets of tests with
netperf for many days collecting data. We also used the data to perform
additional fine-tuning on the TCP/IP layer AND at the network provider.

A Real-Life Example

Observations
37ms latency is not very high. If that had been the top limit, it would have
worked.
But, it was not.
In the presence of the optimized channel, with fiber and so on, when the tests
were hitting heavy traffic, the congestion was enough to compromise the data
transmitted.
It hit a latency >200ms for Server 3. Note those were spikes, but if you are in
the presence of a tightly coupled database cluster, those events can become
failures in applying the data, and can create a lot of instability.

Facts About Server 3
The connection between the two was with fiber.
Distance Km ~400 (~800), we need to double because of the round trip,
we also receive packages.
Theoretical time at light-speed =2.66ms (2 ways)
Ping = 3.10ms (signal traveling at ~80% of the light speed) as if the
signal had traveled ~930Km (full round trip 800 Km)
TCP/IP best at 48K = 4.27ms (~62% light speed) as if the signal had
traveled ~1,281km
TCP/IP best at 512K =37.25ms (~2.6% light speed) as if the signal had
traveled ~11,175km
Given the above, we have from ~20%-~40% to ~97% loss from the
theoretical transmission rate.

TCP Encapsulation

Max transportable 1500 MTU – IP Header – TCP Header 1500 – ~40 = 1460 bytes

TCP Sliding Window

Some Numbers
• With 8KB we need 6 IP Frames
• With 40KB we need 28 IP Frames
• With 387KB we need 271 IP Frames
• With 1MB we need 718 IP Frames
• With 4MB we need ~2,800 Frames

All this if we use the full TCP capacity

Which Solutions Are Available?
2 Models
Tightly coupled database clusters

• Datacentric approach (single state of
the data, distributed commit)

• Data is consistent in time cross nodes
• Replication requires high performant

link
• Geographic distribution is forbidden
• DR is not supported

Loosely coupled database clusters
• Single node approach (local commit)
• Data state differs by node
• Single node state does not affect the

cluster
• Replication link doesn’t need to be high

performance
• Geographic distribution is allowed
• DR is supported

Replicate Data is the Key - Sync vs Async

1 Data State

3 Different
Data States

Tightly
coupled

Loosely
coupled

17

Which Implementations?: Primary - Secondary
Replication by internal design
Positive things:
• Each node is independent
• Read scale
• Low network impact
Negative things:
• Stale reads
• Low HA
• Consistent only in the Primary

• Each node has its own data state

Loosely coupled

18

Replication by internal design
Positive things:
• Highly available
• Read scale
• Data is in almost in sync all of the time
Negative things:
• Doesn’t scale writes
• More nodes = more internal

overhead
• Network is a very impacting factor
• 1 Writer only (PLEASE!!!!!)

Which Implementations?: PXC

Tightly coupled

19

Which Implementations?: PS – Group Replication
Replication by standard MySQL
Positive things:
• Highly available
• Read scale
• Data is in almost in sync

all the time
• More network tolerant
Negative things:
• Doesn’t scale writes
• 1 Writer only (PLEASE!!!!!)

Tightly coupled

20

Implementations by HA Level and Tight/Loose Relation

20

Implementations by HA Level and Tight/Loose Relation

Architectures: What Should NOT Be Done 1

London West

London East

Frankfurt

Node 1

Node 2

Node 3

Sync High perf link

Sync Internet link

Async Internet link

Sync High perf internet link

Architectures: What Should NOT Be Done 1

London West

London East

Frankfurt

Node 1

Node 2

Node 3

Sync High perf link

Sync Internet link

Async Internet link

Sync High perf internet link

Slave

Architectures: What Should NOT Be Done 2

London West

London East

Frankfurt

Node 1

Node 2

Node 3

Secondary

Sync High perf link

Sync Internet link

Async Internet link

Sync High perf internet link

Slave

Architectures: What Should NOT Be Done 2

London West

London East

Frankfurt

Node 1

Node 2

Node 3

Secondary

Sync High perf link

Sync Internet link

Async Internet link

Sync High perf internet link

Architectures: What Can Be Done

Slave

London West

London West
(400 mt limit)

Frankfurt

Node 1

Node 2

Node 3

S-Node1

S-Node2

S-Node3

Sync High perf link

Sync Internet link

Async Internet link

Sync High perf internet link

Architectures: What Can Be Done

Slave

London West

London West
(400 mt limit)

Frankfurt

Node 1

Node 2

Node 3

S-Node1

S-Node2

S-Node3

Sync High perf link

Sync Internet link

Async Internet link

Sync High perf internet link

Architectures: What You Should Do

Slave

London Frankfurt

Node 1

Node 2

Node 3

S-Node1

S-Node2

S-Node3

Sync High perf link

Sync Internet link

Async Internet link

Sync High perf internet link

Conclusion - a Healthy Solution

Must have a business continuity plan and cover at least:
● HA
● DR (RTO)
● Backup/restore (RPO)
● Load distribution
● Correct monitoring/alerting

Conclusion - a Healthy Solution*

*I am showing PXC/Galera replication by convenience, but it could also be Percona Server with Group
Replication

Conclusion - a Healthy Solution
Must have a business continuity plan and cover at least:
● HA → (PXC OR PS-GR)
● DR → (PXC OR PS-GR) with Asynchronous replication and RMP

(replication manager for PXC/PS-GR)
● Backup/restore → Backup/restore policy
● Load distribution → ProxySQL with Query rules
● Correct monitoring/alerting → Percona Monitoring and

Management (PMM)

Useful References
● https://www.percona.com/blog/2018/11/15/mysql-high-availability-on-premises-a-geographically-distributed-scenario/
● https://dev.mysql.com/doc/mysql-ha-scalability/en/ha-overview.html
● https://www.percona.com/blog/2014/11/17/typical-misconceptions-on-galera-for-mysql/
● http://galeracluster.com/documentation-webpages/limitations.html
● http://tusacentral.net/joomla/index.php/mysql-blogs/170-geographic-replication-and-quorum-calculation-in-mysqlgalera.html
● http://tusacentral.net/joomla/index.php/mysql-blogs/167-geographic-replication-with-mysql-and-galera.html
● http://tusacentral.net/joomla/index.php/mysql-blogs/164-effective-way-to-check-the-network-connection-when-in-need-of-a-

geographic-distribution-replication-.html
● http://tusacentral.net/joomla/index.php/mysql-blogs/183-proxysql-percona-cluster-galera-integration.html
● https://github.com/sysown/proxysql/wiki
● https://www.percona.com/blog/2018/11/15/how-not-to-do-mysql-high-availability-geographic-node-distribution-with-galera-

based-replication-misuse/
● https://github.com/y-trudeau/Mysql-tools/tree/master/PXC

https://www.percona.com/blog/2018/11/15/mysql-high-availability-on-premises-a-geographically-distributed-scenario/
https://dev.mysql.com/doc/mysql-ha-scalability/en/ha-overview.html
https://www.percona.com/blog/2014/11/17/typical-misconceptions-on-galera-for-mysql/
http://galeracluster.com/documentation-webpages/limitations.html
http://tusacentral.net/joomla/index.php/mysql-blogs/170-geographic-replication-and-quorum-calculation-in-mysqlgalera.html
http://tusacentral.net/joomla/index.php/mysql-blogs/167-geographic-replication-with-mysql-and-galera.html
http://tusacentral.net/joomla/index.php/mysql-blogs/164-effective-way-to-check-the-network-connection-when-in-need-of-a-geographic-distribution-replication-.html
http://tusacentral.net/joomla/index.php/mysql-blogs/164-effective-way-to-check-the-network-connection-when-in-need-of-a-geographic-distribution-replication-.html
http://tusacentral.net/joomla/index.php/mysql-blogs/183-proxysql-percona-cluster-galera-integration.html
https://github.com/sysown/proxysql/wiki
https://www.percona.com/blog/2018/11/15/how-not-to-do-mysql-high-availability-geographic-node-distribution-with-galera-based-replication-misuse/
https://www.percona.com/blog/2018/11/15/how-not-to-do-mysql-high-availability-geographic-node-distribution-with-galera-based-replication-misuse/
https://github.com/y-trudeau/Mysql-tools/tree/master/PXC

