
Ontology-based Data Management

Maurizio Lenzerini

Dipartimento di Ingegneria Informatica
Automatica e Gestionale Antonio Ruberti

20th ACM Conference on Information and Knowledge Management

Glasgow, UK, October 24 – 28, 2011

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Outline

1 The data chaos

2 Ontology-based data management

3 Ontology-based data access: Answering queries

4 Ontology-based data access: Inconsistency tolerance

5 Concluding remarks

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (1/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Outline

1 The data chaos

2 Ontology-based data management

3 Ontology-based data access: Answering queries

4 Ontology-based data access: Inconsistency tolerance

5 Concluding remarks

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (2/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Information system architecture enabled by DBMS

Pre-DBMS architecture (need of a unified data storage):

Application

Data sources

Application Application

“Ideal information system architecture” with DBMS (’80s):

Database

Application Application Application

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (3/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Actual information system structure in many organizations

Application

Data sources

Application Application

Distributed, redundant, application-dependent, and mutually
incoherent data

Desperate need of a coherent, conceptual, unified view of data

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (4/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Information integration

From [Bernstein & Haas, CACM Sept. 2008]:

Large enterprises spend a great deal of time and money on information
integration (e.g., 40% of information-technology shops’ budget).

Market for information integration software estimated to grow from $2.5
billion in 2007 to $3.8 billion in 2012 (+8.7% per year)
[IDC. Worldwide Data Integration and Access Software 2008-2012
Forecast. Doc No. 211636 (Apr. 2008)]

Data integration is a large and growing part of software development,
computer science, and specific applications settings, such as scientific
computing, semantic web, etc..

Basing the information system on a clean, rich and abstract conceptual
representation of the data has always been both a goal and a challenge
[Mylopoulos et al 1984]

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (5/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Outline

1 The data chaos

2 Ontology-based data management

3 Ontology-based data access: Answering queries

4 Ontology-based data access: Inconsistency tolerance

5 Concluding remarks

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (6/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Ontology-based data management: basic idea

Use Knowledge Representation and Reasoning principles and techniques
for a new way of managing data.

Leave the data where they are

Build a conceptual specification of the domain of interest, in terms
of knowledge structures (semantic transparency)

Map such knowledge structures to concrete data sources

Express all services over the abstract representation

Automatically translate knowledge services to data services

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (7/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Ontology-based data management: architecture

C1

C2

C3
Ontology

Source
1

Source
2

Source
3

Mapping

Data sources

Query

Based on three main components:

Ontology, used as the conceptual layer to give clients a unified
conceptual specification of the domain.

Data sources, representing external, independent, heterogeneous,
storage (or, more generally, computational) structures.

Mappings, used to semantically link data at the sources to the
ontology.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (8/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Ontology-based data management (OBDM): topics

Ontology-based data access and integration (OBDA)

Ontology-based privacy-aware data access (OBDP)

Ontology-based data quality (OBDQ)

Ontology-based data and service governance (OBDG)

Ontology-based data restructuring (OBDR)

Ontology-based data update (OBDU)

Ontology-based service management (OBDS)

Ontology-based data coordination (OBDC)

General requirements:

large data collections

efficiency with respect to size of data (data complexity)

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (9/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Formalization of ontology-based data access

An ontology-based data access system is a triple 〈O,S,M〉, where

O is the ontology, expressed as TBox in OWL 2 DL (or its logical
counterpart SROIQ(D))

S is a (federated) relational database representing the sources

M is a set of GLAV mapping assertions, each one of the form

Φ(~x) ; Ψ(~x)

where

Φ(~x) is a FOL query over S, returning values for ~x
Ψ(~x) is a FOL query over O, whose free variables are from ~x.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (10/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Semantics

Let I= (∆I , ·I) be an interpretation for the ontology O.

Def.: Semantics

I= (∆I , ·I) is a model of K = 〈O,S,M〉 if:

I is a model of O;

I satisfies M wrt S, i.e., satisfies every assertion in M wrt S.

Def.: Mapping satisfaction

We say that I satisfies Φ(~x) ; Ψ(~x) wrt a database S, if the sentence

∀~x (Ψ(~x) → Ψ(~x))

is true in I ∪ S.

Def.: The certain answers to a UCQ q(~x) over K = 〈O,S,M〉

cert(q,K) = { ~c I ∈ qI | for every model I of K }

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (11/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Ontology-based data access: queries

In principle, we are interested in First-order logic (FOL), which is the
standard query language for databases. Mostly, we consider
conjunctive queries (CQ), i.e., queries of the form (Datalog notation)

q(~x)← R1(~x, ~y), . . . , Rk(~x, ~y)

where the lhs is the query head, the rhs is the body, and each Ri(~x, ~y) is
an atom using (some of) the free variables ~x, the existentially quantified
variables ~y, and possibly constants.

CQs contain no disjunction, no negation, no universal
quantification.

Correspond to SQL/relational algebra select-project-join (SPJ)
queries – the most frequently asked queries.

They can also be written as SPARQL queries.

A Union of CQs (UCQ) is a set of CQs with the same head
predicate.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (12/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Example of query

Consider the following ontology (represented as a UML class diagram).

name: String
age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

q(nf , af ,nd) ← worksFor(f, c) ∧ isHeadOf(d, c) ∧ name(f,nf) ∧
name(d,nd) ∧ age(f, x) ∧ age(d, x)

Query: return name, age, and name of dean of all faculty that have the
same age as their dean.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (13/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Outline

1 The data chaos

2 Ontology-based data management

3 Ontology-based data access: Answering queries

4 Ontology-based data access: Inconsistency tolerance

5 Concluding remarks

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (14/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Which languages?

Which language for expressing queries over the ontology?

Which language for the mappings?

Which language for the ontology?

Challenge: optimal compromise between expressive power and data
complexity.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (15/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Query language for user queries

Answering FOL queries is undecidable, even if the ontology is
empty, and the set of mappings is empty.

Unions of conjunctive queries (UCQs) do not suffer from this
problem.

We can go beyond unions of conjunctive queries without falling
into undecidability, but we get intractability in data complexity very
soon.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (16/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Which languages?

Which language for expressing queries over the ontology?

Essentially UCQs

Which language for the mappings?

Which language for the ontology?

Challenge: optimal compromise between expressive power and data
complexity.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (17/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Query languages for the mappings

O lhs of M rhs of M Query language Query answering

∅ single atom FOL single atom undecidable (1)

∅ single atom UCQ single atom NP-complete (2)

∅ FOL CQ UCQ AC0 (3)

(1) (Abiteboul & Duschka, PODS’98).
(2) (van Der Meyden, TCS’93; Abiteboul & Duschka, PODS’98)
(3) (Duschka & Genesereth, PODS’97; Pottinger & Levy VLDBJ 2001).

We measure the computational complexity of query answering with respect to
the size of the data at S (data complexity)

Note: AC0 ⊆ LogSpace, and going beyond LogSpace means going beyond
relational databases

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (18/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Impedance mismatch problem

The impedance mismatch problem

In relational databases, information is represented in forms of
tuples of values.

In ontologies (or more generally object-oriented systems or
conceptual models), information is represented using both objects
and values ...

... with objects playing the main role, ...

... and values a subsidiary role as fillers of object’s attributes.

; How do we reconcile these views?

Solution: We need constructors to create objects of the ontology out
of tuples of values in the database.

Note: from a formal point of view, such constructors can be simply
Skolem functions!

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (19/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Impedance mismatch – Example

Employee
salary: Integer

Project

projectName: String

1.* worksFor

Actual data is stored in a DB:
D1[SSN: String,PrName: String]

Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s Code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

. . .

From the domain analysis it turns out that (pers and proj Skolem functions):

An employee should be created from her SSN: pers(SSN)
A project should be created from its Name: proj(PrName)

If VRD56B25 is a SSN, then pers(VRD56B25) is an object term denoting a
person.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (20/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Impedance mismatch: the technical solution

Creating object identifiers

To denote objects, i.e., instances of concepts in the ontology, we use
object terms of the form f(d1, . . . , dn), where f is a function symbol of
arity n > 0, and each di is value constant retrieved from the sources.

; No confusion between the values stored in the database and the
terms denoting objects.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (21/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Ontology-based data access system – Example

Ontology O (UML)

Employee
salary: Integer

Project

projectName: String

1.* worksFor

federated schema of the DB S
D1[SSN: String, PrName: String]

Employees and Projects they work for
D2[Code: String, Salary : Int]

Employee’s Code with salary
D3[Code: String, SSN: String]

Employee’s Code with SSN
D4[SSN: String, Tel : String]

Employees of the production department:
they work for at least one Project

Mapping M
M1: SELECT SSN, PrName

FROM D1

; Employee(pers(SSN)),
Project(proj(PrName)),
projectName(proj(PrName), PrName),
worksFor(pers(SSN), proj(PrName))

M2: SELECT SSN, Salary

FROM D2, D3

WHERE D2.Code = D3.Code

; Employee(pers(SSN)),
salary(pers(SSN), Salary)

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (22/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Ontology-based data integration system – Example

Ontology O (UML)

Employee
salary: Integer

Project

projectName: String

1.* worksFor

federated schema of the DB S
D1[SSN: String,PrName: String]

Employees and Projects they work for

D2[Code: String,Salary : Int]
Employee’s Code with salary

D3[Code: String,SSN: String]
Employee’s Code with SSN

D4[SSN: String,Tel : String]
Employees of the production department:
they work for at least one Project

Mapping M
M3: SELECT SSN

FROM D4

; worksFor(pers(SSN), y)

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (23/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Which languages?

Which language for expressing queries over the ontology?

Essentially UCQs

Which language for the mappings?

FOL-to-CQ, with object constructors

Which language for the ontology?

Challenge: optimal compromise between expressive power and data
complexity.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (24/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Ontologies with large number of instances

The best current ontology reasoning systems can deal with a
moderately large instance level. ; 104 individuals (and this is a big
achievement of the last years)!

But data of interests in typical information systems (and in data
integration) are much larger
; 106 − 109 individuals

Question

How can we use ontologies together with large amounts of instances?

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (25/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Query answering in Description Logic Ontologies

To address these questions, we proceed in two steps

1 we fist deal with the problem of answering queries posed to a
“stand-alone” DL ontology.
A “stand-alone” DL ontology K = 〈T ,A〉 is constituted by a
TBox T (general axioms on concepts and roles) and ABox A
(facts).

2 We then tackle the problem of ansering queries to an
ontology-based data integration system K = 〈O,S,M〉 where the
TBox is now considered “the ontology” (O), and the ABox A is
replaced by S and M.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (26/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Query answering in Description Logic Ontologies

DL Data complexity of query answering

SROIQ(D) ? (1)

SHIQ(D) coNP-complete (2)

? AC0 (3)

(1) It is in fact open whether answering CQs over OWL 2 DL (i.e.,
SROIQ(D)) ontologies is decidable.

(2) (Hustadt & al., IJCAI’05; Glimm & al., JAIR’08; Ortiz & al., JAIR’08). In
fact, (Calvanese & al., KR’06) show coNP-hardness for very simple languages
(fragments of OWL 2 DL) allowing for union.

(3) Question: Are there significative fragments of OWL 2 DL for which
answering CQs has the same complexity as SQL query evaluation over a
database instance?

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (27/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

The DL-Lite family

A family of Description Logics (DLs) optimized according to the
trade-off between expressive power and complexity of query
answering, with emphasis on data.

Carefully designed to have nice computational properties for
answering UCQs (i.e., computing certain answers):

The same complexity as relational databases.
In fact, query answering can be delegated to a relational DB engine.
The DLs of the DL-Lite family are essentially the maximally
expressive ontology languages enjoying these nice computational
properties.

We present DL-LiteR, a member of the DL-Lite family.

DL-LiteR essentially corresponds to OWL 2 QL, one of the three
candidates OWL 2 Profiles.

Extends (the DL fragment of) the ontology language RDFS.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (28/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

DL-LiteR ontologies

TBox assertions:

Concept inclusion assertions: Cl v Cr , with:

Cl −→ A | ∃Q
Cr −→ A | ∃Q | ¬A | ¬∃Q
Q −→ P | P−

Property inclusion assertions: Q v R, with:

R −→ Q | ¬Q

ABox assertions: A(c), P (c1, c2), with c1, c2 constants

Note: DL-LiteR can be straightforwardly adapted to distinguish also
between object and data properties (attributes).

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (29/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Semantics of DL-LiteR
Construct Syntax Example Semantics

atomic conc. A Doctor AI ⊆ ∆I

exist. restr. ∃Q ∃child− {d | ∃e. (d, e) ∈ QI}
at. conc. neg. ¬A ¬Doctor ∆I \AI

conc. neg. ¬∃Q ¬∃child ∆I \ (∃Q)I

atomic role P child P I ⊆ ∆I ×∆I

inverse role P− child− {(o, o′) | (o′, o) ∈ P I}
role negation ¬Q ¬manages (∆I ×∆I) \QI

conc. incl. Cl v Cr Father v ∃child ClI ⊆ CrI

role incl. Q v R hasFather v child− QI ⊆ RI

mem. asser. A(c) Father(bob) cI ∈ AI

mem. asser. P (c1, c2) child(bob, ann) (cI1 , cI2) ∈ P I

DL-LiteR (as all DLs of the DL-Lite family) adopts the Unique Name

Assumption (UNA), i.e., different individuals denote different objects.

However, reasoning in DL-LiteR would have been the same even without UNA.

OWL 2 QL (as OWL) does not adopt UNA (immaterial for reasoning).Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (30/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Example

name: String
age: Integer

Faculty

Professor

AssocProf

Dean

1..1

1..*

isAdvisedBy

name: String

College
1..*

1..1

1..1

worksFor

isHeadOf

1..*

{disjoint}

Professor v Faculty
AssocProf v Professor

Dean v Professor
AssocProf v ¬Dean
∃worksFor v Faculty
∃worksFor− v College

Faculty v ∃worksFor
College v ∃worksFor−

∃isHeadOf v Dean
∃isHeadOf− v College

Dean v ∃isHeadOf
College v ∃isHeadOf−

isHeadOf v worksFor

...

UML attributes can be captured considering the extension of DL-LiteR to data
properties.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (31/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Technical properties of DL-Lite: no finite model property

DL-Lite does not enjoy the finite model property.

Example

TBox T : Nat v ∃succ ∃succ− v Nat

Zero v Nat Zero v ¬∃succ− (funct succ−)

ABox A: Zero(0)

K = 〈T ,A〉 admits only infinite models.
Hence, it is satisfiable, but not finitely satisfiable.

Hence, reasoning w.r.t. arbitrary models is different from reasoning
w.r.t. finite models only.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (32/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inference in query answering

cert(q, 〈T ,A〉)
Logical inference

q

A

T

To be able to deal with data efficiently, we need to separate the
contribution of A from the contribution of q and T .

; Query answering by query rewriting.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (33/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Query rewriting

rewriting
Perfect

(under OWA)
Query

(under CWA)

evaluation

q

T

A cert(q, 〈T ,A〉)

rq,T

Query answering can always be thought of as done in two phases:

1 Perfect rewriting: produce from q and the TBox T a new query
rq,T (called the perfect rewriting of q w.r.t. T).

2 Query evaluation: evaluate rq,T over the ABox A seen as a
complete database (and without considering the TBox T).
; Produces cert(q, 〈T ,A〉).

Note: The “always” holds if we pose no restriction on the language in which to

express the rewriting rq,T .

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (34/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Language of the rewriting

The expressiveness of the ontology language affects the query
language into which we are able to rewrite UCQs

Complexity of rewriting language We need at least

AC0 FOL/SQL (1)

NLogSpace-hard Linear Datalog

PTime-hard Datalog

coNP-hard Disjunctive Datalog

(1) FOL-rewritability: relational database technology (SQL) suffices

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (35/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Query answering in DL-LiteR

Given an (U)CQ Q and a consistent∗ ontology 〈T ,A〉:
1 Compute its perfect rewriting, PerfectRef(Q, T), which turns

out to be a UCQ.

2 Evaluate the perfect rewriting on the ABox seen as a DB.

To compute the perfect rewriting, starting from the original (U)CQ,
iteratively get a CQ to be processed and either:

expand positive inclusions, i.e., Cl v A | ∃Q or Q v Q′ , or

unify atoms in the CQ to obtain a more specific CQ to be further
expanded

ensuring termination, by carefully choosing new variables in the
rewriting.
Each result of the above steps is added to the queries to be processed.
——————∗We will come back to the case of inconsistent ontology

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (36/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Query answering in DL-LiteR – Example

TBox: Professor v ∃worksFor
∃worksFor− v College

Query: q(x)← worksFor(x, y),College(y)

Perfect Reformulation: q(x)← worksFor(x, y),College(y)
q(x)← worksFor(x, y),worksFor(z, y)
q(x)← worksFor(x, z)
q(x)← Professor(x)

ABox: worksFor(john, collA) Professor(john)
worksFor(mary, collB) Professor(nick)

Evaluating the last two queries over the ABox (seen as a DB) produces
as answer {john, nick, mary}.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (37/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Using DL-LiteR in ontology-based data integration

We go back to an OBDA system K = 〈O,S,M〉 such that

O is a DL-LiteR TBox

S is a relational database

M is a set of GLAV mapping assertions of the form that we have
seen before

We extend the notion of perfect rewriting to such a setting.

Ontology
Rewriting

q
O

qO Mapping
Rewriting

S

M

qO,M

Query
Evaluation

cert(q,J)

qO,M is the perfect reformulation of q w.r.t. K
qO,M = MapRewritingM(PerfectRef(Q,O))

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (38/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Computational complexity of query answering

Theorem

Query answering in an ontology-based data integration system
K = 〈O,S,M〉 of the kind considered so far is

1 NP-complete in the size of the query.

2 PTime in the size of the ontology O and the mappings M.

3 AC0 in the size of the database S, in fact FOL-rewritable.

Note: In fact, we can we adopt a DL-Lite logic with functionalities and
identification assertions (DL-LiteA,id) to specify O, but only coupled
with GAV mappings, otherwise query answering becomes
NLogSpace-hard (Calvanese & al., SKDB’08).

Can we extend the framework?
Essentially no, if we want to stay in AC0.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (39/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Beyond DL-LiteR: results on data complexity

lhs rhs funct.
Prop.
incl.

Data complexity
of query answering

0 DL-LiteA,id −
√

in AC0

1 A | ∃P .A A − − NLogSpace-hard
2 A A | ∀P .A − − NLogSpace-hard
3 A A | ∃P .A

√
− NLogSpace-hard

4 A | ∃P .A | A1 uA2 A − − PTime-hard
5 A | A1 uA2 A | ∀P .A − − PTime-hard
6 A | A1 uA2 A | ∃P .A

√
− PTime-hard

7 A | ∃P .A | ∃P−.A A | ∃P − − PTime-hard
8 A | ∃P | ∃P− A | ∃P | ∃P−

√ √
PTime-hard

9 A | ¬A A − − coNP-hard
10 A A | A1 tA2 − − coNP-hard
11 A | ∀P .A A − − coNP-hard

Giving up property inclusions from DL-LiteR allows for having functional roles,
remaining in AC0 (cf. DL-LiteF). Prop. incl. and funct. can be also used
together (cf. DL-LiteA), provided that functional properties are not specialized.

NLogSpace and PTime hardness holds already for instance checking.

For coNP-hardness in line 10, a TBox with a single assertion
AL v AT tAF suffices! ; No hope of including covering constraints.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (40/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Which languages?

Which language for expressing queries over the ontology?

Essentially UCQs

Which language for the mappings?

FOL-to-full-CQ (GAV), with object constructors

Which language for the ontology?

DL-LiteA,id

Challenge: optimal compromise between expressive power and data
complexity.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (41/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Outline

1 The data chaos

2 Ontology-based data management

3 Ontology-based data access: Answering queries

4 Ontology-based data access: Inconsistency tolerance

5 Concluding remarks

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (42/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

The problem

One popular approach to dealing with inconsistency in data
management is data cleaning

However, even with data cleaning, inconsistencies may remain, and we
would like our system to provide meaningful answers to queries.

The problem is that query answering based on classical logic becomes
meaningless in the presence of inconsistency (ex falso quodlibet)

Question

How to handle classically-inconsistent ontologies in a more meaningful
way?

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (43/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Example: an inconsistent DL-Lite ontology

O
RedWine v Wine WhiteWine v Wine
RedWine v ¬ WhiteWIne Wine v ¬ Beer
Wine v ∃producedBy ∃producedBy vWine
Wine v ¬ Winery Beer v ¬ Winery
∃producedBy− v Winery (funct producedBy)

M
R1(x,y,‘white’) ; WhiteWine(x) R1(x,y,‘red’) ; RedWine(x)
R2(x,y) ; Beer(x) R1(x,y,z) ∨ R2(x,y) ; producedBy(x,y)

S
R1(grechetto,p1,‘white’) R1(grechetto,p1,‘red’)
R2(guinnes,p2) R1(falanghina,p1,‘white’)

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (44/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistent-tolerant semantics

The semantics we propose for inconsistent OBDA systems is based on
the following principles:

We assume that O and M are always consistent (this is true if O is
expressed in DL-LiteA,id)

Inconsistencies are caused by the interaction between the data at S
and the other components of the system

We resort to the notion of repair [Arenas, Bertossi, Chomicki,
PODS 1999]. Intuitively, a repair for 〈O,S,M〉 is an ontology
〈O,A〉 that is consistent, and “minimally” differs from 〈O,S,M〉.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (45/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

The notion of “minimally different”

What does it mean to be “minimally different” from 〈O,S,M〉?
Since O and M cannot change, one might be tempted to base the
notion on the difference with S. However, this would neglect the impact
of S on the models of the OBDI systems (which are based on O).

So, we base our concept of distance on a new notion, namely M(S).

Definition (M(S))

Given 〈O,S,M〉, M(S) is the ABox obtained by computing the tuples
obtained by evaluating the queries in the lhs of the mappings, and
“transferring” such tuples to the rhs.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (46/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

The notion of “minimally different”

M
R1(x,y,‘white’) ; WhiteWine(x) R1(x,y,‘red’) ; RedWine(x)
R2(x,y) ; Beer(x) R1(x,y,z) ∨ R2(x,y) ; producedBy(x,y)

S
R1(grechetto,p1,‘white’) R1(grechetto,p1,‘red’)
R2(guinnes,p2) R1(falanghina,p1,‘white’)

M(S)

WhiteWine(grechetto) RedWine(grechetto)
Beer(guinnes) ProducedBy(guiness,p2)
ProducedBy(grechetto,p1) WhiteWine(falanghina)
ProducedBy(falanghina,p1)

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (47/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistent-tolerant semantics

We write S1 ⊕ S2 to denote the symmetric difference between S1 and
S2, i.e.,

S1 ⊕ S2 = (S1 \ S2) ∪ (S1 \ S2)

Definition (Repair)

Let K = 〈O,S,M〉 be an OBDA system. A repair of K is a pair
〈O,M(S′)〉 such that:

1 Mod(〈O,M(S′)〉) 6= ∅,
2 no set of facts A exists such that

Mod(〈O,A〉) 6= ∅,
A⊕M(S) ⊂M(S ′)⊕M(S)

The set of repairs for K is denoted by Rep(K).

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (48/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Example: Repairs

Rep1

{WhiteWine(grechetto), Beer(guinnes), WhiteWine(falanghina)}

Rep2

{RedWine(grechetto), Beer(guinnes), WhiteWine(falanghina)}

Rep3

{WhiteWine(grechetto), producedBy(guinnes, p2),
WhiteWine(falanghina)}

Rep4

{RedWine(grechetto), producedBy(guinnes, p2),
WhiteWine(falanghina)}

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (49/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistent-tolerant semantics

Definition (Repair model)

Let K = 〈O,S,M〉 be an OBDA system. An interpretation I is a
repair model, or simply an R-model, of K if there exists
〈T ,A〉 ∈ Rep(K) such that I |= 〈T ,A〉. The set of repair models is
denoted by R-Mod(K).

The following notion of consistent entailment is the natural
generalization of classical entailment to the repair semantics.

Definition (AR-entailment)

Let φ be a first-order sentence. We say that φ is r-consistently
entailed, or simply R-entailed, by K, written K |=R φ, if I |= φ for
every I ∈ R-Mod(K).

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (50/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistent-tolerant semantics

Problems:

Many repairs in general

What is the complexity of reasoning about all such repairs?

Theorem

Let K = 〈O,S,M〉 be an OBDA system, and let α be a ground atom.
Deciding whether K |=R α is coNP-complete with respect to data
complexity.

Idea

Consider the “intersection of all repairs”, and consider the set of models
of such intersection as the semantics of the system (When in Doubt,
Throw It Out).

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (51/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistent-tolerant semantics

Definition

Let K = 〈O,S,M〉 be an OBDA system. An Intersection Repair (IR)
for K is a pair 〈O,A〉 such that

A =
⋂

A′∈Rep(K)

A′

The set of all IR-repairs for K is denoted by IR-Rep(K).

Example (IR Semantics)

IR-Rep(K) is the singleton formed by the ABox
Rep1 ∩Rep2 ∩Rep3 ∩Rep4 = {WhiteWine(falanghina)}.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (52/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistent-tolerant semantics

Definition (IAR-repair model)

Let K = 〈O,S,M〉 be an OBDA system. An interpretation I is an
Intersection Repair model, or simply an IR-model, of K if there exists
〈T ,S ′,M〉 ∈ IR-Rep(K) such that I |= 〈T ,S ′,M〉. The set of
Intersection Repair models is denoted by IR-Mod(K).

Definition

Let K = 〈O,S,M〉 be an OBDA system, and let φ be a first-order
sentence. We say that φ is IR-consistently entailed, or simply
IR-entailed, by K, written K |=IR φ, if I |= φ for every I ∈ IR-Mod(K).

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (53/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistent-tolerant query answering

Two possible methods for answering queries posed to K = 〈O,S,M〉
according to the inconsistency-tolerant semantics:

Compute 〈O,A〉 ∈ IR-Rep(K), and then compute ~t such that
〈O,A〉 |= q(~t)
Rewrite the query q into q′ in such a way that, for all ~t, we have
that K |=IR q(~t) is equivalent to ~t ∈ q′(S). Then, evaluate q′ over
S.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (54/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Rewriting technique

We provide a rewriting technique which encodes a UCQ Q into a FOL
query Q′ which evaluated against the original S retrieves only the
certain answers of Q w.r.t the IR semantics

Rewriting technique

Given a UCQ Q = q1 ∨ q2 ∨ . . . ∨ qn over 〈O,S,M〉
we compute PerfectRefIR(Q,O,M) as

MapRewritingM(IncRewritingUCQIR(PerfectRef(Q,O),O))

we evaluate PerfectRefIR(Q,O,M) over S
where

PerfectRef(Q,O) rewrites Q taking care of O
IncRewritingUCQIR(Q,O) =

∨n
i=1 IncRewriting(qi,O) rewrites Q

taking care of inconsistencies

MapRewritingM(Q) rewrites Q taking care of M

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (55/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistency on disjointness assertions

Given a disjointness assertion B v ¬C implied by O, an inconsistency
may arise if both B(a) and C(a) are in M(S), for some constant a.
Analogously, given B v ¬∃P (resp. B v ¬∃P−), an inconsistency may
arise if B(a) and P (a, b) (resp. P (b, a)) belong to M(S).
In order to characterize such inconsistencies, given a concept B we
define NotDisjClashOB(t) as the following FOL formula:

∧
C∈DC(B,O)

¬C(t)
∧

P∈DRD(B,O)

¬∃y.P (t, y)
∧

P∈DRR(B,O)

¬∃y.P (y, t)

where
DC(B,O) = {C | C is an atomic concept s.t. O |= B v ¬C}
DRD(B,O) = {P | P is an atomic role s.t. O |= B v ¬∃P}
DRR(B,O) = {P | P is an atomic role s.t. O |= B v ¬∃P−}

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (56/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistency on disjointness assertions: example

O
RedWine v Wine WhiteWine v Wine
RedWine v ¬ WhiteWine Beer v ¬ Wine
Wine v ∃producedBy ∃producedBy vWine
∃producedBy− v Winery Beer v ¬ ∃producedBy
Wine v ¬ Winery Beer v ¬ Winery
(funct producedBy)

Due to RedWine v ¬RedWine we have that:

NotDisjClashORedWine(t) = ¬WhiteWine(t) ∧ ¬Winery(t) ∧ ¬Beer(t)

and due to Beer v ¬∃ProducedBy we have that:

NotDisjClashOBeer(t) = ¬∃y.producedBy(t, y) ∧ ¬Wine(t)∧

¬RedWine(t) ∧ ¬WhiteWine(t) ∧ ¬Winery(T)

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (57/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Inconsistency on functionalities

Given a functionality assertion (funct P) over a role P , an inconsistency
may arise if the assertions P (a, b) and P (a, c) belong to the ABox A.

Analogously, given a functionality assertion (funct P−) over a role P−,
an inconsistency may arise if P (a, b) and P (a, c) belong to the ABox A.

In order to detect such inconsistencies, given a role P we define
NotFunctClashOP (t, t′) as the FOL formula:

¬(∃y.P (t, y) ∧ y 6= t′), if (funct P) exists in the ontology, and

¬(∃y.P (y, t′) ∧ y 6= t), if (funct P−) exists in the ontology

¬(∃y.P (t, y) ∧ y 6= t′) ∧ ¬(∃y.P (y, t′) ∧ y 6= t), if both the
functionalities are present.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (58/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Other inconsistency causes

Other less intuitive cases which the algorithm takes into account:

inconsistency deriving form irreflexive roles (that is, roles for which
the ontology implies P v ¬P−)

inconsistency deriving from roles such that T |= ∃P v ¬∃P−

P (a, a)

inconsistencies deriving from attribute assertion in which the type
of the range is not respected

T = {ρ(U) v xsd : string} A = {U(a, 12)}

“false” inconsistencies.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (59/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Skipping false inconsistencies

An atomic concept B is called empty (unsatisfiable) in O if
O |= B v ¬B.

An ABox assertion B(a) over an empty concept B, violating a
disjointness assertion B v ¬C together with C(a), is not a real
inconsistency because it does not belong to any repair.

In order to skip false inconsistencies we define the condition

ConsAtomOB(t) =
{

false if O |= B v ¬B
true otherwise

and put it in conjunction with NotDisjClash and NotFunctClash
formulas.
A similar conditions holds for roles, which leads to the definition of the
formula ConsAtomOP (t, t′) for every empty role P .

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (60/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Skipping false inconsistencies (2)

Considering the ConsAtom conditions, the check on disjointness
becomes:

NotDisjClashOB(t) =
∧

C∈DC(B,T)

¬C(t) ∧ ConsAtomOC (t)

∧
P∈DRD(B,O)

¬∃y.P (t, y) ∧ ConsAtomOP (t, y)

∧
P∈DRR(B,O)

¬∃y.P (y, t) ∧ ConsAtomOP (y, t)

and the check on functionalities (with both (funct P) and
(funct P−)) becomes:

NotFunctClashOP (t, t′) = ¬(∃y.P (t, y) ∧ y 6= t′ ∧ ConsAtomOP (t, y))∧

¬(∃y.P (y, t′) ∧ y 6= t ∧ ConsAtomOP (y, t))

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (61/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Put it all together: IncRewritingIR(q,O)

Let q be a CQ of the form

∃x1, . . . , xk.

n∧
i=1

Bi(t1i) ∧
m∧

i=1

Pi(t2i , t
3
i)

For every concept Bi and every role Pi appearing in q we define the
following conditions:

NotClashOB(t) = NotDisjClashOB(t)

NotClashOP (t, t′) = NotDisjClashOP (t) ∧ NotFunctClashOP (t, t′)

and use them to build the rewriting:

∃x1, . . . , xk.
n∧

i=1

Bi(t1i) ∧ ConsAtomOBi
(t1i) ∧ NotClashOBi

(t1i)∧∧m
i=1 Pi(t2i , t

3
i) ∧ ConsAtomOPi

(t2i , t
3
i) ∧ NotClashOPi

(t2i , t
3
i)

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (62/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Example

Let us consider the CQ

q = ∃x.RedWine(x)

We have that IncRewritingIR(q,O) is

∃x.RedWine(x) ∧ ¬WhiteWine(x) ∧ ¬Beer(x) ∧ ¬Winery(x)∧

¬(∃y.producedBy(y, x) ∧ x 6= y)

Notice that ConsAtomORedWine = true because RedWine is not an empty
concept.

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (63/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Contribution

Theorem

Let O be a DL-LiteA ontology, and let Q be a UCQ, deciding whether
O entails Q under IAR semantics is in AC0 in data complexity.

The above result can be extended to DL-LiteA,id.

problem R-semantics IR-semantics

instance checking coNP-complete in AC0

UCQ answering coNP-complete in AC0

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (64/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Outline

1 The data chaos

2 Ontology-based data management

3 Ontology-based data access: Answering queries

4 Ontology-based data access: Inconsistency tolerance

5 Concluding remarks

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (65/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

MASTRO

We have designed MASTRO, a DL-LiteA,id-based system for
OBDM, and we are experimenting the system in real world settings.

Is “first-order rewritability” a real limit that cannot be surpassed by
data-intensive ontologies? ; real issue (open research problem).

Our opinion:

FOL rewritability = reuse of relational database technology for query
processing
more expressive ontology/query languages necessarily require
support for (at least linear) recursion
currently, there is no available technology for recursive queries
(notwithstanding with negation interpreted under the stable model
semantics) that is comparable to SQL technology
more research is needed!

Many research challenges remain (i.e., updates, data quality,
service and process management, etc.)

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (66/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Ongoing work on OBDM

Ontology-based data access (OBDA)

Ontology-based data integration (OBDI)

Ontology-based privacy-aware data access (OBDP)

Ontology-based data quality (OBDQ)

Ontology-based data and service governance (OBDG)

Ontology-based data restructuring (OBDR)

Ontology-based data update (OBDU)

Ontology-based service management (OBDS)

Ontology-based data coordination (OBDC)

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (67/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Updates and erasures: challenges

Which is a reasonable semantics for updates expressed over an
ontology?

How to “push” updates espressed over the ontology to updates
over the sources?

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (68/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Updates and erasures: how to push updates

T1(.) T2(.)

C D

Mapping

DB

TBox

Suppose C(a), D(a) are not logically implied by 〈O,S,M〉.
Update { C(a) }:
not realizable

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (69/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Updates and erasures: how to push updates

T1(.) T2(.)

C D

Mapping

DB

TBox

Suppose C(a), D(a) are not logically implied by 〈O,S,M〉.
Update { C(a), D(a) }:
realizable by inserting T1(a) in DB, or by inserting T1(a), T2(a) in DB

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (70/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Updates and erasures: how to push updates

T1(.) T2(.)

C D

Mapping

DB

TBox

Suppose C(a), D(a) are logically implied by 〈O,S,M〉.
Erase { C(a) }:
realizable by removing T1(a) and inserting T2(a) in DB

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (71/72)

Introduction Ontology-based data management Query answering Inconsistency tolerance Conclusions

Acknowledgements

People involved in this work:

Sapienza Università di Roma

Giuseppe De Giacomo
Floriana Di Pinto
Domenico Lembo
Maurizio Lenzerini
Antonella Poggi
Riccardo Rosati
Marco Ruzzi
Domenico Fabio Savo

Libera Università di Bolzano

Diego Calvanese
Mariano Rodriguez Muro

Many students

Maurizio Lenzerini Ontology-based Data Management CIKM 2011 (72/72)

	The data chaos
	Ontology-based data management
	Ontology-based data access: Answering queries
	Ontology-based data access: Inconsistency tolerance
	Concluding remarks

