
There is no Fork: an Abstraction for Efficient,
Concurrent, and Concise Data Access

Simon Marlow
Facebook

smarlow@fb.com

Louis Brandy
Facebook

ldbrandy@fb.com

Jonathan Coens
Facebook

jon.coens@fb.com

Jon Purdy
Facebook

jonp@fb.com

Abstract
We describe a new programming idiom for concurrency, based on
Applicative Functors, where concurrency is implicit in the Applica-
tive <*> operator. The result is that concurrent programs can be
written in a natural applicative style, and they retain a high degree
of clarity and modularity while executing with maximal concur-
rency. This idiom is particularly useful for programming against
external data sources, where the application code is written without
the use of explicit concurrency constructs, while the implementa-
tion is able to batch together multiple requests for data from the
same source, and fetch data from multiple sources concurrently.
Our abstraction uses a cache to ensure that multiple requests for
the same data return the same result, which frees the programmer
from having to arrange to fetch data only once, which in turn leads
to greater modularity.

While it is generally applicable, our technique was designed
with a particular application in mind: an internal service at Face-
book that identifies particular types of content and takes actions
based on it. Our application has a large body of business logic that
fetches data from several different external sources. The framework
described in this paper enables the business logic to execute ef-
ficiently by automatically fetching data concurrently; we present
some preliminary results.

Keywords Haskell; concurrency; applicative; monad; data-fetching;
distributed

1. Introduction
Consider the problem of building a network service that encap-
sulates business logic behind an API; a special case of this being
a web-based application. Services of this kind often need to effi-
ciently obtain and process data from a heterogeneous set of external
sources. In the case of a web application, the service usually needs
to access at least databases, and possibly other application-specific
services that make up the distributed architecture of the system.

The business logic in this setting is the code that determines,
for each request made using this service, what data to deliver as
the result. In the case of a web application, the input is an HTTP
request, and the output is a web page. Our goal is to have clear and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICFP ’14, September 1–6, 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s).
ACM 978-1-4503-2873-9/14/09.
http://dx.doi.org/10.1145/2628136.2628144

concise business logic, uncluttered by performance-related details.
In particular the programmer should not need to be concerned
with accessing external data efficiently. However, one particular
problem often arises that creates a tension between conciseness and
efficiency in this setting: accessing multiple remote data sources
efficiently requires concurrency, and that normally requires the
programmer to intervene and program the concurrency explicitly.

When the business logic is only concerned with reading data
from external sources and not writing, the programmer doesn’t
care about the order in which data accesses happen, since there
are no side-effects that could make the result different when the
order changes. So in this case the programmer would be entirely
happy with not having to specify either ordering or concurrency,
and letting the system perform data access in the most efficient way
possible. In this paper we present an embedded domain-specific
language (EDSL), written in Haskell, that facilitates this style of
programming, while automatically extracting and exploiting any
concurrency inherent in the program.

Our contributions can be summarised as follows:

• We present an Applicative abstraction that allows implicit
concurrency to be extracted from computations written with a
combination of Monad and Applicative. This is an extension
of the idea of concurrency monads [10], using Applicative <*>
as a way to introduce concurrency (Section 4). We then develop
the idea into an abstraction that supports concurrent access to
remote data (Section 5), and failure (Section 8).

• We show how to add a cache to the framework (Section 6).
The cache memoises the results of previous data fetches, which
provides not only performance benefits, but also consistency in
the face of changes to the external data.

• We show that it isn’t necessary for the programmer to use
Applicative operators in order to benefit from concurrency
in our framework, for two reasons: first, bulk monadic oper-
ations such as maps and filters use Applicative internally,
which provides a lot of the benefit of Applicative concur-
rency for almost zero effort (Section 5.5), and secondly we can
automatically translate code written using monadic style into
Applicative in certain cases (Section 7).

• We have implemented this system at Facebook in a back-end
service that contains over 200,000 lines of business logic. We
present some preliminary results showing that our system run-
ning with production data efficiently optimises the data ac-
cesses. When running without our automatic concurrency, typ-
ical latencies were 51% longer (Section 9).

While our work is mostly focused on a setting in which all
the operations of the DSL are data reads, we consider how to
incorporate side-effecting operations in Section 9.3. Section 10
compares our design with other concurrent programming models.

2. Motivation
To motivate the design, we will present two use cases. The first is
a typical web application, which needs to render a web page based
on data fetched from one or more external sources. The second is
a real-world use case from Facebook: a rule-engine for detecting
certain types of content and taking actions based on it.

2.1 Example: rendering a blog
In this example we’ll look at some code to render a blog, focusing
on the part of the application that fetches and processes the data
from the external data source (e.g. a database). The blog web page
will consist of two panes:

• The main pane shows the most recent posts to the blog in date
order.

• The side pane contains two sub-panes:

a list of the posts with the most page views (“popular
posts”),

a list of topics and the number of posts in each topic.

Assuming a set of operations to fetch the necessary data, and a
set of functions to actually render the HTML, the task is to write the
code to collect the necessary data and call the rendering functions
for each of the separate parts of the page. The goal is to write code
that has two properties:

• It should be modular, so that new sections on the page can be
added and removed without disturbing the rest of the code.

• It should execute efficiently, but without the programmer having
to implement optimisations manually. In particular, we should
be fetching as much data concurrently as possible.

Our framework allows both of these goals to be met; the code
will be both maximally modular and maximally efficient (in terms
of overlapping and batching external requests for data).

The example requires a bit of setup. First, some types:

data PostId -- identifies a post
data Date -- a calendar date
data PostContent -- the content of a post

data PostInfo = PostInfo
{ postId :: PostId
, postDate :: Date
, postTopic :: String
}

A post on the blog is represented by two types: PostInfo and
PostContent. PostInfo contains the metadata about the post: the
date it was created, and its topic. The actual content of the post is
represented by the abstract PostContent type.

Posts have an identifier that allows them to be fetched from the
database, namely PostId. For the purposes of this example we will
assume the simplest storage model possible: the storage performs
no computation at all, so all sorting, joining, and so forth must be
done by the client.

Our computation will be done in a monad called Fetch. The
implementation of Fetch will be given later, but for this example
all we need to know is that Fetch has instances of Monad, Functor
and Applicative, and has the following operations for fetching
data:

getPostIds :: Fetch [PostId]
getPostInfo :: PostId → Fetch PostInfo
getPostContent :: PostId → Fetch PostContent
getPostViews :: PostId → Fetch Int

getPostIds returns the identifiers of all the posts, getPostInfo
retrieves the metadata about a particular post, getPostContent
fetches the content of a post, and finally getPostViews returns
a count of the number of page views for a post. Each of these
operations needs to retrieve the data from some external source,
perhaps one or more databases. Furthermore a database might be
highly distributed, so there is no expectation that any two requests
will be served by the same machine.

We assume a set of rendering functions, including.

renderPosts :: [(PostInfo,PostContent)] → Html
renderPage :: Html → Html → Html

renderPosts takes a set of posts and returns the corresponding
HTML. Note that we need both the PostInfo and the PostContent
to render a post. The renderPage function constructs the whole
page given the HTML for the side pane and the main pane. We’ll
see various other functions beginning with render; the implemen-
tations of these functions aren’t important for the example.

Now that the background is set, we can move on to the actual
code of the example. We’ll start at the top and work down; here is
the top-level function, blog:

blog :: Fetch Html
blog = renderPage <$> leftPane <*> mainPane

blog generates a web page by calling leftPane and mainPane to
generate the two panes, and then calling renderPage to put the re-
sults together. Note that we’re using the Applicative combinators
<$> and <*> to construct the expression: leftPane and mainPane
are both Fetch operations because they will need to fetch data.

To make the main pane, we need to fetch all the information
about the posts, sort them into date order, and then take the first
few (say 5) to pass to renderPosts:

mainPane :: Fetch Html
mainPane = do

posts ← getAllPostsInfo
let ordered =

take 5 $
sortBy (flip (comparing postDate)) posts

content ← mapM (getPostContent . postId) ordered
return $ renderPosts (zip ordered content)

Here getAllPostsInfo is an auxiliary function, defined as
follows:

getAllPostsInfo :: Fetch [PostInfo]
getAllPostsInfo = mapM getPostInfo =<< getPostIds

As you might expect, to fetch all the PostInfos we have to
first fetch all the PostIds with getPostIds, and then fetch each
PostInfo with getPostInfo.

The left pane consists of two sub-panes, so in order to construct
the left pane we must render the sub-panes and put the result
together by calling another rendering function, renderSidePane:

leftPane :: Fetch Html
leftPane = renderSidePane <$> popularPosts <*> topics

Next we’ll look at the popularPosts sub-pane. In order to
define this we’ll need an auxiliary function, getPostDetails,
which fetches both the PostInfo and the PostContent for a post:

getPostDetails :: PostId
→ Fetch (PostInfo, PostContent)

getPostDetails pid =
(,) <$> getPostInfo pid <*> getPostContent pid

Here is the code for popularPosts:

popularPosts :: Fetch Html
popularPosts = do

pids ← getPostIds
views ← mapM getPostViews pids
let ordered =

take 5 $ map fst $
sortBy (flip (comparing snd))

(zip pids views)
content ← mapM getPostDetails ordered
return $ renderPostList content

First we get the list of PostIds, and then the number of page views
for each of these. The number of page views are used to sort the
list; the value ordered is a list of the top five PostIds by page
views. We can use this list to fetch the information about the posts
that we need to render, by calling getPostDetails for each one,
and finally the result is passed to renderPostList to render the
list of popular posts.

Next the code for rendering the menu of topics:

topics :: Fetch Html
topics = do

posts ← getAllPostsInfo
let topiccounts =

Map.fromListWith (+)
[(postTopic p, 1) | p ← posts]

return $ renderTopics topiccounts

Creating the list of topics is a matter of calculating a mapping
from topic to the number of posts in that topic from the list of
PostInfos, and then passing that to renderTopics to render it.

This completes the code for the example. The code clearly
expresses the functionality of the application, with no concession
to performance. Yet we want it to execute efficiently too; there are
two ways in which our framework will automatically improve the
efficiency when this code is executed:

• Concurrency. A lot of the data fetching can be done concur-
rently. For example:

every time we use mapM with a data-fetching operation,
there is an opportunity for concurrency.

we can compute mainPane and leftPane at the same time,
and within leftPane we can compute popularPosts and
topics at the same time.

Our goal is to exploit all this inherent concurrency without
the programmer having to lift a finger. The framework we
will describe in this paper does exactly that: with the code as
written, the data will be fetched in the pattern shown in Figure 1.
The dotted lines indicate a round of data-fetching, where all
the items in a round are fetched concurrently. There are three
rounds:

getPostIds (needed by all three panes)

getPostInfo for all posts (needed by mainPane and
topics), and getPostViews for all posts (needed by
popularPosts).

getPostContent for each of the posts displayed in the
main pane, and getPostInfo and getPostContent for
each of the posts displayed in popularPosts.

• Caching. We made no explicit attempt to fetch each piece of
data only once. For example, we are calling getPostIds three
times. Remember the goal is to be modular: there is no global
knowledge about what data is needed by each part of the page.

blog

mainPaneleftPane

topics popularPosts

getPostIds

getPostViews

getPostInfo

getPostContent

time

Figure 1. Data fetching in the blog example

Furthermore, even though we could reasonably predict that we
need getPostIds in several places and so do it once up front, it
is much harder to predict which getPostContent calls will be
made: the main pane displays the five most recent posts, and the
side pane displays the five most popular posts. There might well
be overlap between these two sets, but to write the code to fetch
the minimal set of PostContent would require destroying the
modularity.
Our system uses caching to avoid fetching the same data mul-
tiple times, which lets the programmer keep the modularity in
their code without worrying about duplicate data fetching. Fur-
thermore, as we describe in Section 6, caching has important
benefits beyond the obvious performance gains.

2.2 Example: a data-rich DSL
Our second use-case is a service inside the Facebook infrastructure
that identifies spam, malware, and other types of undesirable con-
tent [11]. Every action that creates an item of content on the site
results in a request to this service, and it is the job of the service to
return a result indicating whether the content should be allowed or
rejected1. The service runs on many machines, and each instance of
the service runs the same set of business logic, which is typically
modified many times per day.

As an example of the kind of calculations that our business logic
needs to perform, consider this hypothetical expression fragment:

length (intersect (friendsOf x) (friendsOf y))

length is the usual list length operation, intersect takes the
intersection of two lists, and friendsOf is a function that returns
the list of friends of a user:

friendsOf :: UserId → [UserId]

1 This is a huge simplification, but will suffice for this paper.

The value of this expression is the number of friends that x and
y have in common; this value tends to be a useful quantity in our
business logic and is often computed.

This code fragment is an example of how we would like the
business logic to look: clear, concise, and without any mention of
implementation details.

Now, the friendsOf function needs to access a remote database
in order to return its result. So if we were to implement this directly
in Haskell, even if we hide the remote data access behind a pure
API like friendsOf, when we run the program it will make two
requests for data in series: first to fetch the friends of x, and then
to fetch the friends of y. We ought to do far better than this: not
only could we do these two requests concurrently, but in fact the
database serving these requests (TAO, [14]) supports submitting
several requests as a single batch, so we could submit both requests
in a single unit.

The question is, how could we modify our language such that
it supports an implementation that submits these two requests con-
currently? The problem is not just one of exploring simple expres-
sions like this; in general we might have to wait for the results of
some data accesses before we can evaluate more of the expression.
Consider this:

let

numCommonFriends =
length (intersect (friendsOf x) (friendsOf y))

in

if numCommonFriends < 2 && daysRegistered x < 30
then ...
else ...

Here daysRegistered returns the number of days that a user has
been registered on the site.

So now, assuming that we want a lazy && such that if the left
side is False we don’t evaluate the right side at all, then we cannot
fetch the data for daysRegistered until we have the results of the
two friendsOf calls.

Scaling this up, when we consider computing the result of a
request that involves running a large amount of business logic, in
general at any given time there might be many requests for data
that could be submitted concurrently. Having fetched the results
of those requests, the computation can proceed further, possibly
along multiple paths, until it gets blocked again on a new set of
data fetches.

Our solution is to build an abstraction using Applicative and
Monad to support concurrent data access, which we describe in the
next few sections. We will return in Section 5.3 to see how our DSL
looks when built on top of the framework.

3. Concurrency monads
A concurrency monad embodies the fundamental notion of a com-
putation that can pause and be resumed. The concurrency monad
will be the foundation of the abstractions we develop in this paper.
Here is its type:

data Fetch a = Done a | Blocked (Fetch a)

An operation of type Fetch a has either completed and deliv-
ered a value a, indicated by Done, or it is blocked (or paused), in-
dicated by Blocked. The argument to Blocked is the computation
to run to continue, of type Fetch a.

For reference, we give the definitions of the Functor and
Monad type classes in Figure 2. The instances of Functor and
Monad for Fetch are as follows:

class Functor f where

fmap :: (a → b) → f a → f b

class Functor f => Applicative f where

pure :: a → f a
(<*>) :: f (a → b) → f a → f b

class Monad f where

return :: a → f a
(>>=) :: f a → (a → f b) → f b

ap :: (Monad m) => m (a → b) → m a → m b
ap mf mx = do f ← mf; x ← mx; return (f x)

Figure 2. Definitions of Functor, Applicative, Monad, and ap

instance Functor Fetch where

fmap f (Done x) = Done (f x)
fmap f (Blocked c) = Blocked (fmap f c)

instance Monad Fetch where

return = Done

Done a >>= k = k a
Blocked c >>= k = Blocked (c >>= k)

In general, a computation in this monad will be a sequence of
Blocked constructors ending in a Done with the return value. This
is the essence of (cooperative) concurrency: for example, one could
implement a simple round-robin scheduler to interleave multiple
tasks by keeping track of a queue of blocked tasks, running the task
at the front of the queue until it blocks again, and then returning it
to the end of the queue.

Our monad isn’t very useful yet. There are two key pieces
missing: a way to introduce concurrency into a computation, and
a way for a computation to say what data it is waiting for when
it blocks. We will present these elaborations respectively in the
next two sections. Following that, we will return to our motivating
examples and show how the Fetch framework enables efficient and
modular data-fetching.

4. Applicative concurrency
Concurrency monads have occurred in the literature several times.
Scholz [10] originally introduced a concurrency monad based on
a continuation monad, and then Claessen [2] used this as the ba-
sis for his Poor Man’s Concurrency Monad. This idea was used
by Li and Zdancewic [5] to implement scalable network services.
A slightly different formulation but with similar functionality was
dubbed the resumption monad by Harrison and Procter [4]. The
resumption monad formulation was used in describing the seman-
tics of concurrency by Swierstra and Altenkirch [12]. Our Fetch
monad follows the resumption monad formulation. It is also worth
noting that this idea is an instance of a free monad [1].

All these previous formulations of concurrency monads used
some kind of fork operation to explicitly indicate when to create
a new thread of control. In contrast, in this paper there is no fork.
The concurrency will be implicit in the structure of the computa-
tions we write using this abstraction. To make it possible to build
computations that contain implicit concurrency, we need to make
Fetch an Applicative Functor [7]. For reference, the definition of
the Applicative class is given in Figure 2 (omitting the *> and
<* operators, which are not important for this paper).

Applicative Functors are a class of functors that may have ef-
fects that compose using the <*> operator. Morally, the class of Ap-

plicative Functors sits between Functors and Monads: every Monad
is an Applicative Functor, but the reverse is not true. For historical
reasons, Applicative is not currently a superclass of Monad in
Haskell, although this is expected to change in the future.

An Applicative instance can be given for any Monad, simply
by making pure = return and <*> = ap (Figure 2). However,
for Fetch we want a custom Applicative instance that takes
advantage of the fact that the arguments to <*> are independent,
and uses this to introduce concurrency:

instance Applicative Fetch where

pure = return

Done g <*> Done y = Done (g y)
Done g <*> Blocked c = Blocked (g <$> c)
Blocked c <*> Done y = Blocked (c <*> Done y)
Blocked c <*> Blocked d = Blocked (c <*> d)

This is the key piece of our design: when computations in Fetch
are composed using the <*> operator, both arguments of <*> can
be explored to search for Blocked computations, which creates the
possibility that a computation may be blocked on multiple things
simultaneously. This is in contrast to the monadic bind operator,
>>=, which does not admit exploration of both arguments, because
the right hand side cannot be evaluated without the result from the
left.

For comparison, if we used <*> = ap, the standard definition
for a Monad, we would get the following (refactored slightly):

instance Applicative Fetch where

pure = return

Done f <*> x = f <$> x
Blocked c <*> x = Blocked (c <*> x)

Note how only the first argument of <*> is inspected. The differ-
ence between these two will become clear if we consider an ex-
ample: Blocked (Done (+1)) <*> Blocked (Done 1). Un-
der our Applicative instance this evaluates to:

Blocked (Done (+1) <*> Done 1)
==>
Blocked (Done (1 + 1))

whereas under the standard Applicative instance, the same ex-
ample would evaluate to:

Blocked (Done (+1) <*> Blocked (Done 1))
==>
Blocked ((+1) <$> Blocked (Done 1))
==>
Blocked (Blocked ((+1) <$> Done 1))
==>
Blocked (Blocked (Done (1 + 1)))

If Blocked indicates a set of remote data fetches that must be
performed (we’ll see how this happens in the next section), then
with our Applicative instance we only have to stop and fetch data
once, whereas the standard instance has two layers of Blocked, so
we would stop twice.

Now that we have established the basic idea, we need to elabo-
rate it to do something useful; namely to perform multiple requests
for data simultaneously.

5. Fetching data
In order to fetch some data, we need a primitive that takes a
description of the data to fetch, and returns the data itself. We will
call this operation dataFetch:

dataFetch :: Request a → Fetch a

where Request is an application-specific type that specifies re-
quests; a value of type Request a is an instruction that the system
can use to fetch a value of type a. For now the Request type is a
concrete but unspecified type; we will show how to instantiate this
for our blog example in Section 5.2, and we outline how to abstract
the framework over the request type in Section 9.

How can we implement dataFetch? One idea is to elaborate
the Blocked constructor to include a request:

data Fetch a
= Done a
| forall r . Blocked (Request r) (r → Fetch a)

This works for a single request, but quickly runs into trouble
when we want to block on multiple requests because it becomes
hard to maintain the connections between multiple result types r
and their continuations.

We solve this problem by storing results in mutable refer-
ences. This requires two changes. First we encapsulate the re-
quest and the place to store the result in an existentially quantified
BlockedRequest type:

data BlockedRequest =
forall a . BlockedRequest (Request a)

(IORef (FetchStatus a))

(a forall outside the constructor definition is Haskell’s syntax
for an existentially-quantified type variable). IORef is Haskell’s
mutable reference type, which supports the following operations
for creation, reading and writing respectively:

newIORef :: a → IO (IORef a)
readIORef :: IORef a → IO a
writeIORef :: IORef a → a → IO ()

The FetchStatus type is defined as follows:

data FetchStatus a
= NotFetched
| FetchSuccess a

Before the result is available, the IORef contains NotFetched.
When the result is available, it contains FetchSuccess. As we will
see later, using an IORef here also makes it easier to add caching
to the framework.

The use of IORef requires that we layer our monad on top of the
IO monad. In practice this isn’t a drawback, because the IO monad
is necessary in order to perform the actual data fetching, so it will
be available when executing a computation in the Fetch monad
anyway. The IO monad will not be exposed to user code.

Considering that we will need computations that can block on
multiple requests, our monad now also needs to collect the set
of BlockedRequest associated with a blocked computation. A
list would work for this purpose, but it suffers from performance
problems due to nested appends, so instead we will use Haskell’s
Seq type, which supports logarithmic-time append.

With these two modifications (adding IO and attaching Seq
BlockedRequest to the Blocked constructor), the monad now
looks like this:

data Result a
= Done a
| Blocked (Seq BlockedRequest) (Fetch a)

newtype Fetch a = Fetch { unFetch :: IO (Result a) }

instance Applicative Fetch where

pure = return

Fetch f <*> Fetch x = Fetch $ do

f’ ← f
x’ ← x
case (f’,x’) of

(Done g, Done y) → return (Done (g y))
(Done g, Blocked br c) → return (Blocked br (g <$> c))
(Blocked br c, Done y) → return (Blocked br (c <*> return y))
(Blocked br1 c, Blocked br2 d) → return (Blocked (br1 <> br2) (c <*> d))

Figure 3. Applicative instance for Fetch

instance Monad Fetch where

return a = Fetch $ return (Done a)

Fetch m >>= k = Fetch $ do

r ← m
case r of

Done a → unFetch (k a)
Blocked br c → return (Blocked br (c >>= k))

and the Applicative instance is given in Figure 3. Note that in the
case where both arguments to <*> are Blocked, we must combine
the sets of blocked requests from each side.

Finally we are in a position to implement dataFetch:

dataFetch :: Request a → Fetch a
dataFetch request = Fetch $ do

box ← newIORef NotFetched -- (1)
let br = BlockedRequest request box -- (2)
let cont = Fetch $ do -- (3)

FetchSuccess a ← readIORef box -- (4)
return (Done a) -- (5)

return (Blocked (singleton br) cont) -- (6)

Where:

• Line 1 creates a new IORef to store the result, initially contain-
ing NotFetched.

• Line 2 creates a BlockedRequest for this request.
• Lines 3–5 define the continuation, which reads the result from

the IORef and returns it in the monad. Note that the contents
of the IORef is assumed to be FetchSuccess a when the
continuation is executed. It is an internal error of the framework
if this is not true, so we don’t attempt to handle the error
condition here.

• Line 6: dataFetch returns Blocked in the monad, including
the BlockedRequest.

5.1 Running a computation
We’ve defined the Fetch type and its Monad and Applicative
instances, but we also need a way to run a Fetch computation.
Clearly the details of how we actually fetch data are application-
specific, but there’s a standard pattern for running a computation
that works in all settings.

The application-specific data-fetching can be abstracted as a
function fetch:

fetch :: [BlockedRequest] → IO ()

The job of fetch is to fill in the IORef in each BlockedRequest
with the data fetched. Ideally, fetch will take full advantage of
concurrency where possible, and will batch together requests for

data from the same source. For example, multiple HTTP requests
could be handled by a pool of connections where each connection
processes a pipelined batch of requests. Our actual implementa-
tion at Facebook has several data sources, corresponding to various
internal services in the Facebook infrastructure. Most have asyn-
chronous APIs but some are synchronous, and several of them sup-
port batched requests. We can fetch data from all of them concur-
rently.

Given fetch, the basic scheme for running a Fetch computa-
tion is as follows:

runFetch :: Fetch a → IO a
runFetch (Fetch h) = do

r ← h
case r of

Done a → return a
Blocked br cont → do

fetch (toList br)
runFetch cont

This works as follows. First, we run the Fetch computation. If
the result was Done, then we are finished; return the result. If the
result was Blocked, then fetch the data by calling fetch, and then
run the continuation from the Blocked constructor by recursively
invoking runFetch.

The overall effect is to run the computation in stages that we call
rounds. In each round runFetch performs as much computation as
possible and then performs all the data fetching concurrently. This
process is repeated until the computation returns Done.

By performing as much computation as possible we maximise
the amount of data fetching we can perform concurrently. This
makes good use of our network resources, by providing the maxi-
mum chance that we can batch multiple requests to the same data
source, but it might not be the optimal scheme from a latency per-
spective; we consider alternatives in Section 11.

Our design does not impose a particular concurrency strategy on
the data sources. The implementation of fetch has complete free-
dom to use the most appropriate strategy for executing the requests
it is given. Typically that will involve a combination of batching re-
quests to individual data sources, and performing requests to mul-
tiple data sources concurrently with each other using Haskell’s ex-
isting concurrency mechanisms.

5.2 Example: blog
In this section we will instantiate our framework for the blog ex-
ample described in Section 2.1, and show how it delivers automatic
concurrency.

First, we need to define the Request type. Requests are parame-
terised by their result type, and since there will be multiple requests
with different result types, a Request must be a GADT [9]. Here
is the Request type for our blog example:

data Request a where

FetchPosts :: Request [PostId]
FetchPostInfo :: PostId → Request PostInfo
FetchPostContent :: PostId → Request PostContent
FetchPostViews :: PostId → Request Int

Next we need to provide implementations for the data-fetching
operations (getPostIds etc.), which are simply calls to dataFetch
passing the appropriate Request:

getPostIds = dataFetch FetchPosts
getPostInfo = dataFetch . FetchPostInfo
getPostContent = dataFetch . FetchPostContent
getPostViews = dataFetch . FetchPostViews

Now, if we provide a dummy implementation of fetch that
simulates a remote data source and prints out requests as they are
made2, we do indeed find that the requests are made in three rounds
as described in Section 2.1. A real implementation of fetch would
perform the requests in each round concurrently.

5.3 Example: Haxl
In Section 2.2 we introduced our motivation for designing the
applicative concurrency abstraction. Our implementation is called
Haxl, and we will describe it in more detail in Section 9.1. Here,
we briefly return to the original example to show how to implement
it using Fetch.

The example we used was this expression:

length (intersect (friendsOf x) (friendsOf y))

How does this look when used with our Fetch monad? Any oper-
ation that may fetch data must be a Fetch operation, hence

friendsOf :: UserId → Fetch [UserId]

while length and intersect are the usual pure functions. So to
write the expression as a whole we need to lift the pure operations
into the Applicative world, like so:

length <$> intersect’ (friendsOf x) (friendsOf y)
where intersect’ = liftA2 intersect

This is just one way we could write it, there are many other equiv-
alent alternatives. As we shall see in Section 7, it is also acceptable
to use the plain do-notation, together with a source-to-source trans-
formation that turns do-notation into Applicative operations:

do a ← friendsOf x
b ← friendsOf y
return (length (intersect a b))

In fact, this is the style we advocate for users of our DSL.

5.4 Semantics of Fetch
It’s worth pondering on the implications of what we have done here.
Arguably we broke the rules: while the Applicative laws do hold
for Fetch, the documentation for Applicative also states that if a
type is also a Monad, then its Applicative instance should satisfy
pure = return and <*> = ap. This is clearly not the case for our
Applicative instance. But in some sense, our intentions are pure:
the goal is for code written using Applicative to execute more
efficiently, not for it to give a different answer than when written
using Monad.

Our justification for this Applicative instance is based on
more than its literal definition. We intend dataFetch to have

2 Sample code is available at https://github.com/simonmar/
haxl-icfp14-sample-code

certain properties: it should not be observable to the programmer
writing code using Fetch whether their dataFetch calls were
performed concurrently or sequentially, or indeed in which order
they were performed, the results should be the same. Therefore,
dataFetch should not have any observable side-effects—all our
requests must be read-only. To the user of Fetch it is as if the
Applicative instance is the default <*> = ap, except that the
code runs more efficiently, and for this to be the case we must
restrict ourselves to read-only requests (although we return to this
question and consider side-effects again in Section 9.3).

Life is not quite that simple, however, since we are reading data
from the outside world, and the data may change between calls to
dataFetch. The programmer might be able to observe a change in
the data and hence observe an ordering of dataFetch operations.
Our approach is to close this loophole as far as we can: in Section 6
we add a cache to the system, which will ensure that identical
requests always return the same result within a single run of Fetch.
Technically we can argue that runFetch is in the IO monad and
therefore we are justified in making a non-deterministic choice for
the ordering of dataFetch operations, but in practice we find that
for the majority of applications this technicality is not important:
we just write code as if we are working against a snapshot of the
external data.

If we actually did have access to an unchanging snapshot of the
remote data, then we could make a strong claim of determinism for
the programming model. Of course that’s not generally possible
when there are multiple data sources in use, although certain indi-
vidual data sources do support access to a fixed snapshot of their
data; one example is Datomic3.

5.5 Bulk operations: mapM and sequence

In our example blog code we used the combinators mapM and
sequence to perform bulk operations. As things stand in Haskell
today, these functions are defined using monadic bind, for example
sequence is defined in the Haskell 2010 Report as

sequence :: Monad m => [m a] → m [a]
sequence = foldr mcons (return [])
where mcons p q = do x ← p; y ← q; return (x:y)

Unfortunately, because this uses monadic bind rather than Ap-
plicative <*>, in our framework it will serialise the operations
rather than perform them concurrently. Fortunately sequence
doesn’t require monadic bind; Applicative is sufficient [7], and
indeed the the Data.Traversable module provides an equivalent
that uses Applicative: sequenceA. Similarly, traverse is the
Applicative equivalent of mapM. Nevertheless, Haskell program-
mers tend to be less familiar with the Applicative equivalents, so
in our EDSL library we map sequence to sequenceA and mapM to
traverse, so that client code can use these well-known operations
and obtain automatic concurrency.

In due course when Applicative is made a superclass of
Monad, the Applicative versions of these functions will become
the defaults, and our workaround can be removed without changing
the client code or its performance.

6. Adding a cache
In Section 2.1 we identified two ways that the framework can pro-
vide automatic performance benefits for the application. So far
we have demonstrated the first, namely exploiting implicit concur-
rency. In this section we turn our attention to the second: avoiding
duplicate requests for data.

3 http://www.datomic.com/

https://github.com/simonmar/haxl-icfp14-sample-code
https://github.com/simonmar/haxl-icfp14-sample-code
http://www.datomic.com/

The solution is not surprising, namely to add caching. However,
as we shall see, the presence of a cache provides some rather nice
benefits in addition to the obvious performance improvements.

Recall that data is fetched using dataFetch:

dataFetch :: Request a → Fetch a

Caching amounts to memoising this operation, such that the
second time it is called with a request that has been previously
issued, it returns the result from the original request. Not only do
we gain performance by not repeating identical data-fetches, as
mentioned in Section 5.4 the programmer can rely on identical
requests returning the same results, which provides consistency
within a single Fetch computation in the face of data that might
be changing.

We also gain the ability to do some source-to-source transfor-
mations. For example, common subexpression elimination:

do x ← N; M
==>
do x ← N; M[return x/N]

Where M and N stand for arbitrary Fetch expressions, This holds
provided dataFetch is the only way to do I/O in our framework,
and all dataFetch requests are cached.

6.1 Implementing the cache
Let’s consider how to add a cache to the system. In order to store a
mapping from requests to results, we need the following API:

data DataCache

lookup :: Request a → DataCache → Maybe a
insert :: Request a → a → DataCache → DataCache

If we want to use an existing efficient map implementation, we
cannot implement this API directly because its type-correctness
relies on the correctness of the map implementation, and the Eq
and Ord instances for Request. But if we trust these, Haskell
provides an unsafe back-door, unsafeCoerce, that lets us convey
this promise to the type system. The use of unsafe features to
implement a purely functional API is common practice in Haskell;
often the motivation is performance, but here it is the need to
maintain a link between two types in the type system.

A possible implementation is as follows:

newtype DataCache =
DataCache (forall a . HashMap (Request a) a)

The contents of a DataCache is a mapping that, for all types a,
maps things of type Request a to things of type a. The invariant
we require is that a key of type Request a is either not present
in the mapping, or maps to a value of type a. We will enforce the
invariant when an element is inserted into the Map, and assume it
when an element is extracted. If the Map is correctly implemented,
then our assumption is valid.

Note that we use a HashMap rather than a plain Map. This
is because Map requires the key type to be an instance of the
Ord class, but Ord cannot be defined for all Request a because
it would entail comparing keys of different types. On the other
hand, HashMap requires Eq and Hashable, both of which can
be straightforwardly defined for Request a, the former using a
standalone deriving declaration:

deriving instance Eq (Request a)

and the latter with a hand-written Hashable instance (see the
sample code4).

4 https://github.com/simonmar/haxl-icfp14-sample-code

Looking up in the cache is simply a lookup in the Map:

lookup :: Request a → DataCache → Maybe a
lookup key (DataCache m) = Map.lookup key m

This works because we have already declared that the Map in a
DataCache works for all types a. The insert operation is where
we have to make a promise to the type system:

insert :: Request a → a → DataCache → DataCache
insert key val (DataCache m) =
DataCache $ unsafeCoerce (Map.insert key val m)

We can insert a key/value pair into the Map without any difficulty.
However, that results in a Map instantiated at a particular type a
(the type of val passed to insert), so in order to get back a
Map that works for any a we need to apply unsafeCoerce. The
unsafeCoerce function has this type:

unsafeCoerce :: forall a b . a → b

Therefore, applying unsafeCoerce to the Map allows it to be
generalised to the type required by DataCache.

Now we have a cache that can store a type-safe mapping from
requests to results. We will need to plumb this around the Monad to
pass it to each call to dataFetch so that we can check the cache
for a previous result. However, this won’t be enough: consider what
happens when we make two identical requests in the same round:
there won’t be a cached result, but nevertheless we want to ensure
that we only make a single request and use the same result for
both dataFetch calls. Indeed, this happens several times in our
blog example: the first round issues three calls to getPostIds, for
example.

In dataFetch we need to distinguish three different cases:

1. The request has not been encountered before: we need to create
a BlockedRequest, and block.

2. The request has already been fetched: we can return the cached
result and continue.

3. The request has been encountered in the current round but
not yet fetched: we need to block, but not create a new
BlockedRequest since it will already have been added to the
set of requests to fetch elsewhere.

The key idea is that in the third case we can share the IORef
(FetchStatus a) from the BlockedRequest that was created
the first time the request was encountered. Hence, all calls to
dataFetch for a given request will automatically share the same
result. How can we find the IORef for a request? We store it in the
cache.

So instead of storing only results in our DataCache, we need to
store IORef (FetchStatus a). This lets us distinguish the three
cases above:

1. The request is not in the DataCache.

2. The request is in the DataCache, and the IORef contains
FetchSuccess a.

3. The request is in the DataCache, and the IORef contains
NotFetched.

This implies that we must add an item to the cache as soon as the
request is issued; we don’t wait until the result is available. Filling
in the details, our DataCache now has the following API:

data DataCache

lookup :: Request a → DataCache
→ Maybe (IORef (FetchStatus a))

https://github.com/simonmar/haxl-icfp14-sample-code

dataFetch :: Request a → Fetch a
dataFetch req = Fetch $ λref → do

cache ← readIORef ref
case lookup req cache of

Nothing → do

box ← newIORef NotFetched
writeIORef ref (insert req box cache)
let br = BlockedRequest req box
return (Blocked (singleton br) (cont box))

Just box → do

r ← readIORef box
case r of

FetchSuccess result →
return (Done result)

NotFetched →
return (Blocked Seq.empty (cont box))

where

cont box = Fetch $ λref → do

FetchSuccess a ← readIORef box
return (Done a)

Figure 4. dataFetch implementation with caching

insert :: Request a → IORef (FetchStatus a)
→ DataCache → DataCache

(the implementation is the same). The cache itself needs to be
stored in an IORef and passed around in the monad; Fetch now
has this definition:

newtype Fetch a = Fetch {
unFetch :: IORef DataCache → IO (Result a) }

The alterations to the Monad and Applicative instances are
straightforward, so we omit them here.

The definition of dataFetch is given in Figure 4, The three
cases identified earlier are dealt with in that order:

1. If the request is not in the cache, then we create a new IORef
for the result (initially containing NotFetched) and add that
to the cache. Then we create a BlockedRequest, and return
Blocked in the monad, with a continuation that will read the
result from the IORef we created.

2. If the request is in the cache, then we check the contents of
the IORef. If it contains FetchSuccess result, then we have
a cached result, and dataFetch returns Done immediately (it
doesn’t block).

3. If the contents of the IORef is NotFetched, then we return
Blocked, but with an empty set of BlockedRequests, and a
continuation that will read the result from the IORef.

6.2 Cache Persistence and Replaying
Within a single runFetch, the cache only accumulates informa-
tion, and never discards it. In the use-cases we have described, this
is not a problem: requests to a network-based service typically take
a short period of time to deliver the result, after which we can dis-
card the cache. During a computation we don’t want to discard any
cached data, because the programmer might rely on the cache for
consistency.

We have found that the cache provides other benefits in addition
to the ones already described:

• at the end of a Fetch computation, the cache is a complete
record of all the requests that were made, and the data that was

fetched. Re-running the computation with the fully populated
cache is guaranteed to give the same result, and will not fetch
any data. So by persisting the cache, we can replay computa-
tions for the purposes of fault diagnosis or profiling. When the
external data is changing rapidly, being able to reliably repro-
duce past executions is extremely valuable.

• We can store things in the cache that are not technically re-
mote data fetches, but nevertheless we want to have a single
deterministic value for. For example, in our implementation we
cache the current time: within a Fetch computation the current
time is a constant. We can also memoise whole Fetch compu-
tations by storing their results in the cache.

7. Automatic Applicative
Our Fetch abstraction requires the programmer to use the opera-
tions of Applicative in order to benefit from concurrency. While
these operations are concise and expressive, many programmers are
more comfortable with monadic notation and prefer to use it even
when Applicative is available. Furthermore, we don’t want to pe-
nalise code that uses monadic style: it should be automatically con-
current too. Our monad is commutative, so we are free to re-order
operations at will, including replacing serial >>= with concurrent
<*>.

In general, the transformation we want to apply is this:

do p ← A; q ← B; ...
==> {- if no variable of p is a free variable of B -}
do (p,q) ← (,) <$> A <*> B

for patterns p and q and expressions A and B. The transforma-
tion can be applied recursively, so that long sequences of indepen-
dent statements in do-notation can be automatically replaced by
Applicative notation.

At the time of writing, the transformation is proposed but not
implemented in GHC; it is our intention to implement it as an
optional extension (because it is not necessarily valid for every
Applicative instance). In our Haxl implementation we currently
apply this transformation as part of the automatic translation of our
existing DSL into Haskell.

8. Exceptions
Handling failure is an important part of a framework that is de-
signed to retrieve data from external sources. We have found that
it is important for the application programmer to be able to han-
dle failure, particularly transient failures that occur due to network
problems or outages in external services. In these cases the pro-
grammer typically wants to choose between having the whole com-
putation fail, or substituting a conservative default value in place of
the data requested.

We need to consider failure in two ways: first, the way in which
exceptions propagate in the monad, and second, how failure is
handled at the data-fetching layer. We’ll deal with these in order.

8.1 Exceptions in Fetch

First, we add explicit exception support to our monad. We need to
add one constructor to the Result type, Throw, which represents a
thrown exception:

data Result a
= Done a
| Blocked (Seq BlockedRequest) (Fetch a)
| Throw SomeException

The SomeException type is from Haskell’s Control.Exception
library and represents an arbitrary exception [6]. To throw an ex-

ception we need to convert it to a SomeException and return it
with Throw:

throw :: Exception e => e → Fetch a
throw e = Fetch $ _ →

return (Throw (toException e))

The Monad instance for Fetch with the Throw constructor is as
follows:

instance Monad Fetch where

return a = Fetch $ λref → return (Done a)

Fetch m >>= k = Fetch $ λref → do

r ← m ref
case r of

Done a → unFetch (k a) ref
Blocked br c → return (Blocked br (c >>= k))
Throw e → return (Throw e)

and Figure 5 gives the Applicative instance. It is straightforward
except for one case: in <*>, where the left side returns Blocked
and the right side returns Throw, we must not propagate the excep-
tion yet, and instead we must return a Blocked computation. The
reason is that we don’t yet know whether the left side will throw
an exception when it becomes unblocked; if it does throw an ex-
ception, then that is the exception that the computation as a whole
should throw, and not the exception from the right argument of <*>.
If we were to throw the exception from the right argument of <*>
immediately, the result would be non-determinism: the exception
that gets thrown depends on whether the left argument blocks.

We also need a catch function:

catch :: Exception e
=> Fetch a → (e → Fetch a) → Fetch a

catch (Fetch h) handler = Fetch $ λref → do

r ← h ref
case r of

Done a → return (Done a)
Blocked br c →

return (Blocked br (catch c handler))
Throw e → case fromException e of

Just e’ → unFetch (handler e’) ref
Nothing → return (Throw e)

As with catch in the IO monad, our catch catches only ex-
ceptions of the type expected by the handler (the second argument
to catch). The function fromException returns Just e’ if the
exception can be coerced to the appropriate type, or Nothing oth-
erwise. The interesting case from our perspective is the Blocked
case, where we construct the continuation by wrapping a call to
catch around the inner continuation.

8.2 Exceptions in dataFetch

When a failure occurs in a data fetching operation, it must be
thrown as an exception to the caller of dataFetch. We need to pro-
gram this propagation explicitly, because the data is being fetched
in the top-level runFetch loop, outside the context of the Fetch
computation that called dataFetch.

We propagate an exception in the same way that we communi-
cate the result of the data fetch: via the IORef that stores the result.
So we modify the FetchStatus type to include the possibility that
the fetch failed with an exception:

data FetchStatus a
= NotFetched

| FetchSuccess a
| FetchFailure SomeException

and we also modify dataFetch to turn a FetchFailure into a
Throw after the fetch has executed (these modifications are straight-
forward, so we omit the code here).

This is all the support we need for exceptions. There is one pit-
fall: we found in our real implementation that some care is needed
in the implementation of a data source to ensure that an exception
is properly reported as a FetchFailure and not just thrown by the
data source; the latter causes the whole Fetch computation to be
aborted, since the exception is thrown during the call to fetch in
runFetch.

9. Implementation and evaluation
The basics of our use-case at Facebook were introduced in Sec-
tion 2.2. Essentially it is a network-based service that is used to
detect and eliminate spam, malware, and other undesirable content
on Facebook. There are about 600 different kinds of request, all
implemented by a body of Haskell code of approximately 200,000
lines; this was automatically translated into Haskell from our pre-
vious in-house DSL, FXL.

The system can be viewed as a rule-engine, where rules are
Fetch computations. Each request runs a large set of rules and
aggregates the results from all the rules. Rules are often (but not
always) short, and most of them fetch some external data. In our
system we run all the rules for a request using sequence; this has
the effect of executing all the rules concurrently.

We will give an outline of our implementation in the next sec-
tion, and then present some preliminary results.

9.1 Implementation
In the earlier description, the implementation of the Fetch monad
depended on the Request type, because the monad carries around
a DataCache that stores Requests, and the dataFetch operation
takes a Request as an argument. This is straightforward but some-
what inconvenient, because we want to have the flexibility to add
new data sources in a modular way, without modifying a single
shared Request type. Furthermore, we want to be able to build
and test data sources independently of each other, and to test the
framework against “mock” versions of the data sources that don’t
fetch data over the wire.

To gain this flexibility, in our implementation we abstracted the
core framework over the data sources and request types. Space
limitations preclude a full description of this, but the basic idea
is to use Haskell’s Typeable class so that we can store requests of
arbitrary type in the cache. The dataFetch operation has this type:

dataFetch :: (DataSource req, Request req a)
=> req a → Fetch a

where Request is a package of constraints including Typeable,
and DataSource is defined like this:

class DataSource req where

fetch :: [BlockedFetch req] → PerformFetch

data PerformFetch
= SyncFetch (IO ())
| AsyncFetch (IO () → IO ())

A data source is coupled to the type of requests that it serves, so for
each request type there must be an instance of DataSource that
defines how those requests are fetched. The fetch method takes
a list of BlockedRequests containing requests that belong to this
data source (the BlockedRequest type is now parameterised by

instance Applicative Fetch where

pure = return

Fetch f <*> Fetch x = Fetch $ λref → do

f’ ← f ref
x’ ← x ref
case (f’,x’) of

(Done g, Done y) → return (Done (g y))
(Done g, Blocked br c) → return (Blocked br (g <$> c))
(Done g, Throw e) → return (Throw e)
(Blocked br c, Done y) → return (Blocked br (c <*> return y))
(Blocked br1 c, Blocked br2 d) → return (Blocked (br1 <> br2) (c <*> d))
(Blocked br c, Throw e) → return (Blocked br (c <*> throw e))
(Throw e, _) → return (Throw e)

Figure 5. Applicative instance for Fetch with exceptions

the type of the request that it contains). The job of fetch is to fetch
the data for those requests; it can do that synchronously or asyn-
chronously, indicated by the PerformFetch type. An AsyncFetch
is a function that takes as an argument the IO operation to perform
while the data is being fetched. The idea is that when fetching data
from multiple sources we wrap all the asynchronous fetches around
a sequence of the synchronous fetches:

scheduleFetches :: [PerformFetch] → IO ()
scheduleFetches fetches = asyncs syncs
where

asyncs = foldr (.) id [f | AsyncFetch f ← fetches]
syncs = sequence_ [io | SyncFetch io ← fetches]

In our implementation, most data sources are asynchronous.
Maximal concurrency is achieved when at most one data source
in a given round is synchronous, which is the case for the vast ma-
jority of our fetching rounds. When there are multiple synchronous
data sources we could achieve more concurrency by using Haskell’s
own concurrency mechanisms; this is something we intend to ex-
plore in the future.

9.2 Results
To evaluate how well our system exploits concurrency, we ran a
random sample of 10,000 actual requests for a single common re-
quest type. We measured the number of data fetches performed by
each request (not including those that were served from the cache),
the number of rounds (batches of fetches performed concurrently),
and the total end-to-end processing time of each request. Figure 6
gives the results, in the form of histograms of the number of re-
quests against fetches, rounds, and total time (latency). Note that
the number of requests on the Y-axis is a log scale. In the histogram
of fetches, the buckets are 5 wide, so for example the first bar rep-
resents the number of requests with 10–15 data fetches (there were
no requests that performed fewer than 10 fetches). The histogram
of rounds has integral buckets, and the time histogram has buckets
of 20ms.

Figure 7 gives the 50th (median), 95th, and 99th percentiles,
and the maximum value, for each of fetches, rounds, and time.
Note that the figures for each column were calculated by sorting
the requests by fetches, rounds, and time respectively. It is not
necessarily the case that the request that performed the maximum
number of fetches is the same request that took the maximum
number of rounds or the longest time.

We can see that 95% of our 10,000 requests require at most 4
rounds of fetching (median 3), 95% perform at most 27 data fetches
(median 18), and 95% run in at most 26.3ms (median 9.5ms). There
is a long tail, however, with some requests requiring more than

2000 data fetches. A few requests took an inordinately long time
to run (the longest was 2.2s), and this turned out to be because one
particular data fetch to another service took a long time.

The second table in Figure 7 shows for comparison what hap-
pens when we disable concurrency—this was achieved by making
(<*>) = ap, so that <*> no longer batches together the fetches
from both of its arguments (caching was still enabled, however).
We can see that the number of rounds is equal to the number of
fetches, as expected. The experiments were run against production
data, so there are minor differences in the number of fetches be-
tween the two runs in Figure 7, but we can see that the effect on to-
tal runtime is significant, increasing the median time for a request
by 51%. One extreme example is the request that required 2793
fetches, which increased from 220ms to 1.3s with concurrency dis-
abled. Concurrency had no effect on the pathological data fetches,
so the maximum time was unchanged at 2.2s.

9.2.1 Discussion
We have shown that the automatic concurrency provided by our
framework has a sizeable impact on latency for requests in our
system, but is it enough? Our existing FXL-based system performs
similar data-fetching optimisations, but it does so using a special-
purpose interpreter, whereas our Haskell version is implemented in
libraries without modifying the language implementation.

Our workload is primarily I/O bound, so although Haskell is
far faster than FXL at raw compute workloads, this has little ef-
fect on comparisons between our two systems. Thus we believe
that executing data fetches concurrently is the most important fac-
tor affecting performance, and if the Haskell system were less able
to exploit concurrency that would hinder its performance in these
benchmarks. At the time of writing we have only preliminary mea-
surements, but performance of the two systems does appears to be
broadly similar, and we have spent very little time optimising the
Haskell system so far.

It is also worth noting that the current workload is I/O bound
partly because compute-heavy tasks have historically been of-
floaded to C++ code rather than written in FXL, because using
FXL would have been too slow. In the Haskell version of our sys-
tem we have reimplemented some of this functionality natively in
Haskell, because its performance is more than adequate for com-
pute tasks, and the Haskell code is significantly cleaner and safer.
We believe that being able to implement compute tasks directly in
Haskell will empower the users of our DSL to solve problems that
they couldn’t previously solve without adding C++ primitives to
the language implementation.

 1

 10

 100

 1000

 10000

 10 20 30 40 50 60 70 80

#
re

q
u

e
s
ts

#fetches

Fetches

 1

 10

 100

 1000

 10000

 0 2 4 6 8 10 12 14

#
re

q
u

e
s
ts

#rounds

Rounds

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800

#
re

q
u

e
s
ts

time (ms)

Latency

Figure 6. Results

Concurrency Fetches Rounds Time (ms)
50% 18 3 9.5
95% 27 4 26.3
99% 47 5 356.5
Max 2793 11 2200.0

No concurrency Fetches Rounds Time (ms)
50% 17 17 14.4
95% 27 27 36.1
99% 46 46 381.4
Max 2792 2792 2200.0

Figure 7. Summary results, with and without concurrency

9.3 Using Applicative Concurrency with Side-effects
As described, our framework has no side-effects except for reading,
for good reason: operations in Fetch may take place in any order
(Section 5.4). However, side-effects are important. For example, a
web application needs to take actions based on user input, and it
might need to generate some statistics that get stored. Our imple-
mentation at Facebook has various side effects, including storing
values in a separate memcache service, and incrementing shared
counters.

One safe way to perform side effects is to return them from
runFetch, and perform them afterwards. Indeed, this is exactly the
way that side effects are typically performed when using Software
Transactional Memory (STM) in Haskell.

Sometimes it is convenient to allow side-effects as part of the
Fetch computation itself. This is fine as long as it is not possible
to observe the side-effect with a Fetch operation, which would
expose the ordering of operations to the user. But this is quite
flexible: we can, for example, have a write-only instance of Fetch
that allows write operations to benefit from concurrency (obviously,
the cache is not necessary for this), or we can have side-effects that
cannot be observed, such as accumulating statistics.

10. Comparison and related work
Probably the closest relatives to the Fetch framework are the
family of async programming models that have been enjoying
popularity recently in several languages: F# [13], C#, OCaml [15],
Scala [3], and Clojure5.

A common trait of these programming models is that they are
based on a concurrency-monad-like substrate; they behave like
lightweight threads with cooperative scheduling. When a compu-
tation is suspended, its continuation is saved and re-executed later.
These frameworks are typically good for scheduling large numbers
of concurrent I/O tasks, because they have lower overhead than the
heavyweight threads of their parent languages.

In contrast with the Fetch framework, the async style has an
explicit fork operation, in the form of an asynchronous method call
that returns an object that can later be queried for the result. For
example, in C# a typical sequence looks like this:

Task<int> a = getData();
int y = doSomethingElse();
int x = await a;

The goal in this pattern is to perform getData() concurrently with
doSomethingElse(). The effects of getData() will be inter-
leaved with those of doSomethingElse(), although the degree of
non-determinism is tempered somewhat by the use of cooperative
scheduling.

Ignoring non-determinism, in our system this could be written

do [x,y] ← sequence [getData,doSomethingElse]
...

making it clear that getData and doSomethingElse are executed
together.

A similar style is available in F# and C# using Async.Parallel
and Task.WhenAll respectively; so it seems that in practice there
are few differences between the asynchronous programming mod-
els provided by these languages and our Fetch monad. However,
we believe the differences are important:

• In the asynchronous programming models, concurrency is
achieved using special-purpose operations, whereas in our ap-
proach existing standard idioms like sequence and mapM be-
come concurrent automatically by virtue of the Applicative

5 http://clojure.github.io/core.async/

http://clojure.github.io/core.async/

instance that we are using. Programmers don’t need to learn a
new concurrency library; they just use data-fetching operations
together with the tools they already know for structuring code,
and concurrency comes for free.

• Our system has a built-in cache, which is important for modu-
larity, as we described in Section 2.1.

Explicit blocking (as in await above) is often shunned in the
asynchronous programming models; instead it is recommended to
attach callback methods to the results, like this (in Scala):

val future = getData();
future map(x => x + 1);

This has the advantage that we don’t have to block on the result
of the future in order to operate on it, which allows the system
to exploit more concurrency. However, the programming style is
somewhat indirect; in our system, this would be written

do x ← getData; return (x+1)

Reactive programming models [8] add another dimension to
asynchronous programming, where instead of a single result being
returned, there is a stream of results. This is a separate problem
space from the one we are addressing in this paper.

11. Further work
The method for taking advantage of concurrency described in Sec-
tion 4 is fairly simplistic: we run as much computation as possible,
and then perform all the data fetching concurrently, repeating these
two steps as many times as necessary to complete the computation.
There are two ways we could overlap the computation phase with
the data-fetching phase:

• As soon as we have the result of any data fetch, we can start
running the corresponding blocked part(s) of the computation.

• We might want to emit some requests before we have finished
exploring the whole computation. This potentially reduces con-
currency but might also reduce latency.

We intend to investigate these in future work.

Acknowledgements
We would like to thank Richard Eisenberg for providing helpful
feedback on an early draft of this paper.

References
[1] S. Awodey. Category Theory, volume 49 of Oxford Logic Guides.

Oxford University Press, 2006.
[2] K. Claessen. A poor man’s concurrency monad. J. Funct. Program.,

9(3):313–323, May 1999.
[3] M. Eriksen. Your server as a function. In Proceedings of the Seventh

Workshop on Programming Languages and Operating Systems, PLOS
’13, pages 5:1–5:7. ACM, 2013. ISBN 978-1-4503-2460-1.

[4] W. Harrison and A. Procter. Cheap (but functional) threads. 44 pages.
Accepted for publication to Higher-Order and Symbolic Computation.

[5] P. Li and S. Zdancewic. Combining events and threads for scalable net-
work services implementation and evaluation of monadic, application-
level concurrency primitives. In Proceedings of the 2007 ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’07, pages 189–199, 2007.

[6] S. Marlow. An extensible dynamically-typed hierarchy of exceptions.
In Proceedings of the 2006 ACM SIGPLAN Workshop on Haskell,
Haskell ’06, pages 96–106, 2006.

[7] C. Mcbride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18(1):1–13, Jan. 2008. ISSN 0956-7968.

[8] E. Meijer. Reactive extensions (Rx): Curing your asynchronous pro-
gramming blues. In ACM SIGPLAN Commercial Users of Functional
Programming, CUFP ’10, pages 11:1–11:1. ACM, 2010.

[9] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Sim-
ple unification-based type inference for GADTs. In Proceedings of
the Eleventh ACM SIGPLAN International Conference on Functional
Programming, ICFP ’06, pages 50–61. ACM, 2006.

[10] E. Scholz. A concurrency monad based on constructor primitives, or,
being first-class is not enough. Technical report, Universität Berlin,
1995.

[11] T. Stein, E. Chen, and K. Mangla. Facebook immune system. In
Proceedings of the 4th Workshop on Social Network Systems, SNS
’11, pages 8:1–8:8. ACM, 2011.

[12] W. Swierstra and T. Altenkirch. Beauty in the beast. In Proceedings
of the ACM SIGPLAN Workshop on Haskell Workshop, Haskell ’07,
pages 25–36, 2007. ISBN 978-1-59593-674-5.

[13] D. Syme, T. Petricek, and D. Lomov. The F# asynchronous program-
ming model. In Practical Aspects of Declarative Languages, volume
6539 of Lecture Notes in Computer Science, pages 175–189. Springer
Berlin Heidelberg, 2011.

[14] V. Venkataramani, Z. Amsden, N. Bronson, G. Cabrera III, P. Chakka,
P. Dimov, H. Ding, J. Ferris, A. Giardullo, J. Hoon, S. Kulkarni,
N. Lawrence, M. Marchukov, D. Petrov, and L. Puzar. TAO: How face-
book serves the social graph. In Proceedings of the 2012 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’12, pages 791–792, 2012.

[15] J. Vouillon. Lwt: A cooperative thread library. In Proceedings of the
2008 ACM SIGPLAN Workshop on ML, ML ’08, pages 3–12. ACM,
2008.

	Introduction
	Motivation
	Example: rendering a blog
	Example: a data-rich DSL

	Concurrency monads
	Applicative concurrency
	Fetching data
	Running a computation
	Example: blog
	Example: Haxl
	Semantics of Fetch
	Bulk operations: mapM and sequence

	Adding a cache
	Implementing the cache
	Cache Persistence and Replaying

	Automatic Applicative
	Exceptions
	Exceptions in Fetch
	Exceptions in dataFetch

	Implementation and evaluation
	Implementation
	Results
	Discussion

	Using Applicative Concurrency with Side-effects

	Comparison and related work
	Further work

