
by: NXP Semiconductors

1 Introduction
This application note describes how to securely generate, store, and retrieve
user keys using the root key. The root key is used as a Key Encryption Key
(KEK) to protect other user keys. The root key is generated by the Physically
Unclonable Function (PUF) periphery. The PUF technology generates a
device-unique 256-bit KEK, which is a digital fingerprint of a device. The
encrypted keys (key codes) can then be stored in the MCU. This document
discusses the key code storage in the flash memory of the Protected Flash Region (PFR) and key provisioning to the system by
the ISP and IAP commands. The communication tools (blhost and elftosb) are also described.

2 Physically Unclonable Feature (PUF)

2.1 PUF features
• The PUF periphery generates a 256-bit key. The key is device-unique, unclonable, and used as the Key Encryption Key

(KEK), which is a digital fingerprint.

• The PUF can generate 64-bit to 4096-bit keys.

• The PUF encrypts a 64-bit to 4096-bit key to a key code.

• The PUF decrypts a key code back to a key.

• The key can be sent to the hash crypt engine (or PRINCE) through the internal hardware bus.

• The key can be read by the CPU through the register and the AHB bus.

• The PUF offers other features to prevent hacking, such as blocking functionalities (enroll, code output, keylock) or
enhanced side-channel attack (keymask).

2.2 PUF unique key principle
The uniqueness of the KEK generated by the PUF is based on naturally occurring variations in the attributes of transistors when
chips are fabricated (length, width, thickness). Each time the SRAM block powers on, the cells come up as either 1 or 0. The
start-up values create a random and repeatable pattern, which is unique to each chip. It is called SRAM Startup Data (SD).

The SRAM SD, together with the Activation Code (AC), are turned into a digital fingerprint used as a secret key that builds the
foundation of a security subsystem. The digital fingerprint is used as a root key (or KEK).

Contents

1 Introduction..1

2 Physically Unclonable Feature
(PUF)...1

3 Key management................................. 8

4 Usage of the PUF testing software...13

AN12324
LPC55Sxx usage of the PUF and Hash Crypt to AES coding
Rev. 0 — February 2019 Application Note

Figure 1. PUF principle based on an array of SRAM cells

The PUF module features embedded error correction, so the probability of a key reconstruction failure is < 10-9 (in worst-case
conditions).

2.3 PUF usage
The security of any system depends on how securely the keys are stored. If the key is placed in the inaccessible flash memory,
hackers may uncap the chip and read the memory. The same applies for the fuses, which can be read after uncapping.

When you encrypt a key, you must store it somewhere. If hackers read out the whole flash, they can clone your device because
the stored key is the same for the whole production. If hackers successfully crack your key, the key is valid for all your devices.
All these problems are solved using PUF. Each MCU has its own unique digital fingerprint, which is not stored on the chip and
cannot be read when the device is not powered. The following sections show how to use the PUF to generate, store, and retrieve
keys.

The PUF controller functionality includes these commands: Zeroize, Enroll, Start, SetKey, GenerateKey, and GetKey. These
commands are used to control the PUF key management.

2.4 PUF Enroll
To start working with PUF, you need to enroll it. During enrolling, the SRAM startup data are derived to a digital fingerprint and a
corresponding activation code is generated. The activation code is read out through the CODEOUTPUT register.

NXP Semiconductors

Physically Unclonable Feature (PUF)

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 2 / 27

Figure 2. PUF Enroll command

Each time the PUF Enroll is performed, a new and different activation code (and digital fingerprint) is generated. The key code
can be decrypted to a key with a corresponding digital fingerprint used for the key encryption to the key code. This is the reason
why the AC must be stored to decrypt the key code later. The AC is a 1192-byte data chunk, which must be stored into the non-
volatile memory.

After a successful PUF Enroll command, the SetKey command becomes available. The PUF must be power-cycled and started
to enable the GetKey command. The keys and the activation code can be also generated using the ISP commands (they use the
ROM code to call the PUF functions internally) and stored into the flash.

2.5 PUF Start
After the PUF Enroll command is performed and the AC is stored, the PUF can be used. The PUF must be power-cycled and
started by the PUF Start command. The activation code is loaded into the PUF through the CODEINPUT register and the PUF
engine combines it together with the SRAM startup data into a digital fingerprint.

NXP Semiconductors

Physically Unclonable Feature (PUF)

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 3 / 27

Figure 3. PUF Start command

The digital fingerprint is a 256-bit key used as a root key or a KEK for encryption/decryption of user keys. After a successful Start
command, the SetKey and GetKey commands become available. The digital fingerprint is available in the PUF until the next power
cycle.

2.6 PUF SetKey
The SetKey command is used to create a user key and a corresponding key code. The user key and the digital fingerprint are
combined to generate a key code. The input parameters are user key, key size, and key index.

• The user key is sent to the PUF through the KEYIN register and must have a correct length, depending on the key size.

• The key size is sent to the PUF through the KEYSIZE register. It must have a number between 0 and 63. It instructs the
PUF periphery to generate a corresponding key size between 64 and 4096 bits (0 generates a 4096-bit key; see the user
manual).

• The key index is a number from 0 to 15, which is added to the header of a generated key code. It is sent to the PUF
through the KEYIDX register. The key index is retrieved back during the GetKey command and accessible in the
KEYOUTIDX register.

A special case is using a key index of 0 to instruct the GetKey command to send the decrypted key into one of the peripheries
(AES or PRINCEx) through the internal secure bus or to the AHB. The key code is a secure representation of the encrypted key,
which must be read out through the CODEOUTPUT register and safely stored into the flash memory. There is also a mechanism

NXP Semiconductors

Physically Unclonable Feature (PUF)

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 4 / 27

to block a key with a given index from being present on the APB register interface and from being read by the CPU. This setting
is done through the IDXBLK and IDXBLK_DP registers.

Figure 4. PUF SetKey command—generating user key code

The generated key code is a block of data with a 32-bit key header in the beginning.

The 32-bit key header has these features:

• Type:

— 0—generated key.

— 1—user key.

• Index: from 0 to 15. 0 is a special case to send the key internally to the AES or PRINCE engines. Otherwise, it can be used
as a user’s tag.

• Size: from 0 to 63 for keys ranging from 64 bits to 4096 bits (0 means 4096 bits).

2.7 PUF GenerateKey

NXP Semiconductors

Physically Unclonable Feature (PUF)

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 5 / 27

The difference between the GenerateKey and SetKey commands is that the generated key is a random number generated by the
PUF periphery in contrary to the key defined and provided by the user. The only required parameter (key size) must be entered
into the KEYSIZE register and the key index must be entered into the KEYIDX register. The output is read out from the
CODEOUTPUT register and must be stored for the key reconstruction later on.

Figure 5. PUF GenerateKey command—generating key code

2.8 PUF GetKey
The GetKey command is used to get a key out of a key code. The key code is input into the CODEINPUT register after the PUF
is started with a corresponding activation code (the GetKey command is not available after the Enroll command).

After combining the key code with the digital fingerprint, the key is retrieved. Depending on the value of the key index in the key
code header, the key is sent to the internal secret hardware bus (key index = 0) or the CODEOUTPUT register (key index > 0).
The user code must read out the key from this register, as well as the key index from the KEYIDX register.

The internal hardware bus may feed the key to hardware encryption units AES, PRINCE1, PRINCE2, or PRINCE3 (depending
on the setting of the KEYENABLE register).

The KEYMASK[0..3] register must be loaded with a random number. It is used to obscure the key value stored in the key hold
registers. A random value must be loaded into this register. This protects from the side channel analysis.

NXP Semiconductors

Physically Unclonable Feature (PUF)

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 6 / 27

Figure 6. PUF GetKey command to get a key out of a key code

2.9 PUF Zeroize
When the Zeroize command is called, all the internal, critical, and security parameters are erased and the PUF controller goes
to the error state. No new operations can be performed until the device is re-powered.

2.10 PUF DisableEnroll
Calling this command causes the PUF periphery to block the enroll operation.

2.11 PUF DisableSetKey
This command blocks the key output data. If the bit is set to 1, the PUF periphery blocks the key output (keyout data = 0) when
the key code index is equal to 15. If the bit is set to 0, the key output is not blocked (even if key output index = 15).

NXP Semiconductors

Physically Unclonable Feature (PUF)

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 7 / 27

3 Key management

3.1 Key storage in the Protected Flash Region (PFR)
Physically Unclonable Feature (PUF) on page 1 shows that it is possible to securely store a key code into the MCU flash memory
(or any other external memory), because the master key is not physically accessible on the MCU. The place to store the key codes
is in the Protected Flash Region (PFR) on the MCU.

The PFR is protected from being accessed from the bus and has three areas:

• CFPA (Customer Field Programmable Area) holds the monotonic counters, key revocation, and PRINCE IV codes.

• CMPA (Customer Manufacturing floor Programable Area) holds the boot configurations, security policies, user-defined
data, and PUF key storage.

Figure 7. Keys and PUF boot option in the PFR

The key storage is used and managed mainly by the boot code.

 NOTE

The secure boot uses the secure-boot KEK code. The flash encryption by PRINCE uses the PRINCE1 to PRINCE3 key codes
for its protected regions. When correct key codes are found, they are applied to PRINCE by the boot process. The boot process
checks the key code storage for existing code validity. If the AC (or KC) is corrupt, booting stops and blocks the MCU forever.

NXP Semiconductors

Key management

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 8 / 27

This region is also protected against data corruption or modification. When locked by the ROM, all regions are protected from the
erase/write commands. Each region has a SHA256 hash digest field used in the deployment lifecycle state to cross-check the
integrity of the region.

Figure 7. on page 8 shows the positions for key codes in the PFR memory. There is enough place for the activation code and five
key codes—secure boot key code, user key code (can be used for AES), and three PRINCE key codes. One position is secured
for the Unique Device Secret (UDS). Each key code position has the maximum size limited to 52 bytes, which gives the maximum
key size of 256 bits. This may seem low, but the internal encrypting engines accept a maximum key size of 256 bits. The AES
maximum allowed key size is 128/196/256 bits. The maximum PRINCE allowed key size is 128 bits.

From the PUF periphery use point of view, the important part is also placed in the CMPA page. There are the "PUF Enrollment
Disable" and "PUF Code Generation Disable" options. These options are copied to the PUF periphery during the boot process.
Remember that these settings may be changed only after a power cycle. If the options are loaded during the boot process, the
PUF may never be enrolled or a new key code may never be generated after that in the user code. However, you may read out
the existing activation code and key codes from the PFR and use them.

The CFPA region may be updated through the ROM API—both ISP and IAP. The “In System Programming” function supports the
key-provisioning commands to generate the key codes and store them into the PFR. Another option is to use the flash IAP
commands to manage the key storage area in the PFR from the user code.

The following sections describe the IAP and the ISP commands dedicated to work with the key storage area.

3.2 ISP KeyProvision commands
The “In System Programming (ISP) is a bunch of functions to support image programming through serial interfaces (UART, I2C,
SPI, USB HID). There is a security-related command (KeyProvision) to install the pre-shared keys, generate random keys, and
save them into the Protected Flash Region (PFR) key store.

There are three possible parameters for the KeyProvision command: key operation, key type, and key size.

• Key operation—required to specify the KeyProvision command behavior and may have these values: Enroll, SetUserKey,
SetIntrinsicKey, WriteNonVolatile, ReadNonVolatile, WriteKeyStore, ReadKeyStore.

• Key type—this parameter defines what the generated key code will be used for.

Key Type Value

UserKEK 11

SBKEK 3

PRINCE0 7

PRINCE1 8

PRINCE2 9

UDS 12

• Key size—The key size parameter is defined in bytes.

3.3 Configure key store area by the blhost PC application
As a part of the SDK package, there is a command-line application called blhost. The blhost application is used on a host computer
to issue commands to an MCU running an implementation of the MCU bootloader. The blhost application, in conjunction with the

NXP Semiconductors

Key management

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 9 / 27

MCU bootloader, allows to program a firmware application onto the MCU device without a programming tool. The blhost application
supports also several key-provisioning-related commands described in these examples:

• Enroll the PUF—this command calls a ROM code that configures, starts, and enrolls the PUF periphery:

.\blhost\win\blhost.exe -V -p COM32,57600 -- key-provisioning enroll

• Generate UDS-—this command calls the ROM code that uses the PUF to generate an intrinsic 32-byte key and its key code
and stores them to the CMPA key code storage [UDS key code] position (RAM version):

.\blhost\win\blhost.exe -V -p COM32,57600 -- key-provisioning set_key 12 32

• Generate user Secure Bootloader Code SBKEK—this command calls the ROM code that generates a key code based on
the key stored in the tempSbkek.bin file and stores it to the CMPA key code storage [secure boot KEK] position (RAM
version), where tempSbkek.bin is a plain text file with the SB KEK:

.\blhost\win\blhost.exe -V -p COM32,57600 -- key-provisioning set_user_key 3 ".\temp\tempSbkek.bin"

• Generate User Key Code SBKEK—this command sets the user key code and stores it to the CMPA key code storage [user
key code SB KEK] position (RAM version), where tempSbkek.bin is a plain-text file with the SB KEK:

\blhost\win\blhost.exe -V -p COM32,57600 -- key-provisioning set_user_key 11 ".\temp\UserKek.bin"

• Generate intrinsic key code for PRINCE0-—this command generates a 128-bit intrinsic key code for PRINCE0 and stores it
to the CMPA key code storage [PRINCE0 key code] (RAM version):

.\blhost\win\blhost.exe -V -p COM32,57600 -- key-provisioning set_key 7 16

• Generate intrinsic key code for PRINCE1—this command generates a 128-bit intrinsic key code for PRINCE1 and stores it
to the CMPA key code storage [PRINCE1 key code] (RAM version):

.\blhost\win\blhost.exe -V -p COM32,57600 -- key-provisioning set_key 8 16

• Generate 16-byte intrinsic key code for PRINCE 2—this command generates a 128-bit intrinsic key code for PRINCE2 and
stores it to the CMPA key code storage [PRINCE2 key code] (RAM version):p

.\blhost\win\blhost.exe -V -p COM32,57600 -- key-provisioning set_key 9 16

• This command is used to update the key storage in the PFR with the RAM version of key codes created in the previous
operation (including the activation code created during the enroll operation):

.\blhost\win\blhost.exe -V -p COM32,57600 -- key-provisioning write_key_nonvolatile 0

3.4 Key provisioning through the blhost—elftosb-gui tool
There is a window-based PC tool called elftosb-gui, built on the command-line blhost application, which helps to generate an
image and adds all the settings and encryption needed. The tool can be used to tell the PUF to enroll and store an activation
code, generate a key/key code, and store it to the PFR. At this time, the tool does not support the generation of a user KEK code.

NXP Semiconductors

Key management

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 10 / 27

Figure 8. Key provisioning through the elftosb-gui tool

The elftosb tool can also set the security options of the PUF, disable the Enroll command, and disable the SetKey command.

NXP Semiconductors

Key management

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 11 / 27

Figure 9. Various security settings supported by the elftosb tool

Both PC applications (elftosb-gui and blhost) are in the MCU SDK at this path: <SDK_ver\middleware\mcu-boot\bin\Tools>.

3.5 Key management IAP commands
You can program the key codes into the key storage area of the PFR in the MCU by the user application. There are several FRR
IAP ROM commands dedicated to read the key codes and the activation code and to store a block of data into the key storage
area.

To use the key codes stored in the PFR key storage section, start the PUF with the activation code that was used to create the
key codes.

• The ffr_keystore_get_ac returns the AC from the key storage:

status_t ffr_keystore_get_ac (flash_config_t *config, uint8_t* pActivationCode)

pActivationCode is a pointer to a buffer long enough to hold a 1192-byte activation code.

The AC must be passed to the PUF using the PUF Start command.

• ffr_keystore_get_kc is used to load the key code from the PFR:

status_t ffr_keystore_get_kc (flash_config_t *config, uint8_t* pKeyCode, ffr_key_type_t keyIndex);

pKeyCode is the buffer into which the key code is copied.

NXP Semiconductors

Key management

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 12 / 27

The key types are specified in this table:

Table 1. Key types

Key type Value

SB KEK 0

User KEK 1

UDS 2

PRINCE0 3

PRINCE1 4

PRINCE2 5

There are also commands to read the PFR non-volatile memory, such as ffr_keystore_write, ffr_infield_page_writem,
and ffr_get_customer_infield_data.

For more details, see the user manual.

4 Usage of the PUF testing software
The sw_an12324.zip software package comes together with this application note. This software enables you to perform basic
PUF commands (Enroll, Init, Start, Stop, SetKey, GetKey) and security-enhancing commands (DisableEnroll, DisableSetKey).
The software also enables you to get the key code and provide it to the AES module through a standard memory bus or a secret
bus between the PUF and the hash crypt engine. You can also encrypt/decrypt a 16-byte data block with the key provided. The
example code is based on the SDK and uses the SDK drivers.

The software is controlled via a serial line terminal and uses the on-board built-in virtual serial COM port (LPC-LinkII UCom Port).
Use any ASCII-based serial COM port terminal application, such as Teraterm or Putty. The terminal must have the local echo
enabled.

4.1 Setting up the PUF example code
Open the application note software package, compile it, and run it on the LPCXpresso5500 board. Connect the LPCXpresso5500
board to the PC via connector P9. The LPCLinkII CMSIS DAP and the virtual serial COM port LPC-Link UCOM appear in the
Windows

®
 OS Device Manager.

Use the terminal to open a correct COM port and set the parameters to 115200 bps, bits, no parity, no hardware control. After a
reset, an initial menu appears in the console.

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 13 / 27

Figure 10. Virtual serial COM port and board

4.2 Application
When the application is running, a menu is printed out in the terminal window. On the screen, the PUF status and the PUF allowed
operation are always shown.

The initial status shown in the console is out of reset, so the PUF periphery is not started and no commands are allowed. However,
the PUF may be started from the boot code, depending on the CMPA key storage area and the "Disable PUF enrollment" and
"Disable PUF key code generation" boot options.

The PUF periphery must be initialized before it is run. During the initialization, the SRAM memory is re-powered and prepared to
be read.

The PUF status means the following:

• Busy—an operation is in progress.

• Success—the last operation was successful.

• Error—the PUF is in the error state and no operations can be performed.

At the start of the PUF-allowed operation, all four status bits mean the following:

• Enroll—the Enroll operation is allowed.

• Start—the Start operation is allowed.

• SetKey—the SetKey operations are allowed.

• GetKey—the GetKey operation is allowed.

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 14 / 27

Figure 11. Application main screen

4.3 Enroll PUF
The first step to start using the PUF is to enroll. During the enrolling, an activation code is created. The enroll operation firstly
powers up the PUF periphery, initializes it (Start), and then calls the Enroll command. The activation code is created and can be
stored to the RAM or flash memory for further use.

After a successful Enroll command, only the SetKey command is allowed.

 NOTE

To call the Enroll command again, the PUF periphery must be power-cycled and initialized again. To enable the GetKey function,
the PUF periphery must be power-cycled and started again. The AC can be stored into the RAM or flash memory for further usage.

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 15 / 27

Figure 12. Enroll operation

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 16 / 27

4.4 Start and load AC to PUF command
The Start and Load AC to PUF command starts the PUF and loads one of the stored activation codes. The activation code must
match the key code generated by the same AC. Otherwise, the GetKey command fails. The activation code can be loaded from
the RAM or flash memory (stored in the previous step) or from the CMPA position (created and stored by blhost).

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 17 / 27

Figure 13. Start and Load AC to PUF command

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 18 / 27

4.5 Generate Key Code command
The Generate Key Code command enables you to create a user key or an intrinsic key.

• User key—a key is entered to the PUF and the key code is generated out of this key.

• Intrinsic key—a key is randomly generated inside the PUF and you get only the key code. If the intrinsic code has index 0,
the key itself is hidden forever and cannot be read by the CPU, because the PUF never sends it to the AHB bus.

The next step is to set the key index in the interval from 0 to 15. A key index of 0 causes the key retrieved from the key code during
the GetKey command to be sent to the internal hardware bus. A key index of 1 (and higher) sends the retrieved key to the AHB
and it can be read by the CPU.

Enter the key size. The PUF supports key sizes from 64 to 4096 bits. However, the PRINCE engine supports only 128-bit keys
and AES 128/196/256-bit keys.

The last step to generate the user key is to enter the user key size. The terminal supports only ASCII codes for simplicity reasons.

The entered parameters are sent to the PUF periphery and the key code is generated and printed out.

The generated key code can be stored in one of four available places, two key codes in the RAM, and two key codes in the flash
memory for further use.

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 19 / 27

Figure 14. SetKey operation

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 20 / 27

4.6 GetKey command
Use the GetKey command to retrieve a key back from a key code. If a key code index is higher than 0, the key is reconstructed
and printed out.

If a key code index equals 0, the key is sent to a secret internal hardware bus. This bus is connected to the AES and PRINCE
engines. Enter a keyslot value of 1 to send the key to the AES engine. Values from 2 to 4 send the key to PRINCE1, PRINCE2,
or PRINCE3. If the command is successful, the key is temporarily stored in the AES engine and can be used to encrypt/decrypt
a 16-byte block of data.

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 21 / 27

Figure 15. GetKey operation—internal hardware bus

For key codes with a key index higher than 0, the key is printed to the console.

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 22 / 27

Figure 16. GetKey command—key is printed out

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 23 / 27

4.7 Using a key to encrypt a block of data
This command enables you to encrypt/decrypt a 16-byte block of data using a key reconstructed by the PUF.

You can choose between a secret key (sent to the AES through an internal secret hardware bus using the GetKey command) or
a user key (generated by the PUF from one of the stored key codes).

Enter the plain text in ASCII. This block is then encrypted/decrypted using the provided key. AES uses the ECB mode.

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 24 / 27

Figure 17. Encrypt/decrypt menu

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 25 / 27

4.8 Miscellaneous menu
The miscellaneous menu has these options:

• Init PUF.

• Stop PUF.

• Zeroize PUF.

• Disable Enroll PUF.

• Disable Key Generation.

The "Disable Enroll PUF" and "Disable Key Generation" settings can be cleared only by power-cycling the MCU.

Figure 18. Miscellaneous menu

NXP Semiconductors

Usage of the PUF testing software

LPC55Sxx usage of the PUF and Hash Crypt to AES coding, Rev. 0, February 2019
Application Note 26 / 27

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to

use NXP products. There are no express or implied copyright licenses granted hereunder to

design or fabricate any integrated circuits based on the information in this document. NXP

reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for

any particular purpose, nor does NXP assume any liability arising out of the application or use

of any product or circuit, and specifically disclaims any and all liability, including without limitation

consequential or incidental damages. “Typical” parameters that may be provided in NXP data

sheets and/or specifications can and do vary in different applications, and actual performance

may vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer's technical experts. NXP does not convey any license under

its patent rights nor the rights of others. NXP sells products pursuant to standard terms and

conditions of sale, which can be found at the following address: nxp.com/

SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to

unidentified vulnerabilities. Customers are responsible for the design and operation of their

applications and products to reduce the effect of these vulnerabilities on customer’s applications

and products, and NXP accepts no liability for any vulnerability that is discovered. Customers

should implement appropriate design and operating safeguards to minimize the risks associated

with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,

EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE

CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,

MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,

TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,

ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,

mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,

SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,

BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,

TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the

property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan,

big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,

Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,

ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered

trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related

technology may be protected by any or all of patents, copyrights, designs and trade secrets. All

rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The

Power Architecture and Power.org word marks and the Power and Power.org logos and related

marks are trademarks and service marks licensed by Power.org.

© NXP B.V. 2019. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: February 2019

Document identifier: AN12324

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions
http://www.nxp.com/SalesTermsandConditions

	LPC55Sxx usage of the PUF and Hash Crypt to AES coding
	Contents
	1 Introduction
	2 Physically Unclonable Feature (PUF)
	2.1 PUF features
	2.2 PUF unique key principle
	2.3 PUF usage
	2.4 PUF Enroll
	2.5 PUF Start
	2.6 PUF SetKey
	2.7 PUF GenerateKey
	2.8 PUF GetKey
	2.9 PUF Zeroize
	2.10 PUF DisableEnroll
	2.11 PUF DisableSetKey

	3 Key management
	3.1 Key storage in the Protected Flash Region (PFR)
	3.2 ISP KeyProvision commands
	3.3 Configure key store area by the blhost PC application
	3.4 Key provisioning through the blhost—elftosb-gui tool
	3.5 Key management IAP commands

	4 Usage of the PUF testing software
	4.1 Setting up the PUF example code
	4.2 Application
	4.3 Enroll PUF
	4.4 Start and load AC to PUF command
	4.5 Generate Key Code command
	4.6 GetKey command
	4.7 Using a key to encrypt a block of data
	4.8 Miscellaneous menu

