

AN12292
Secure Storage with SRAM PUF on NXP LPC54S0xx

Rev. 1.0 — 06 November 2018 Application note

Document information

Info Content

Keywords LPC54S0xx,PUF, Security

Abstract This application note describes how the NXP LPC54S0xx family of ARM

Cortex-M4 based microcontrollers can be used to develop secure

embedded applications that provides strong protection for stored

information.

NXP Semiconductors AN12292
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note Rev. 1.0 — 06 November 2018 2 of 17

Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history

Rev Date Description

1.0 1106 2018 Initial version

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 3 of 17

1. Introduction

The LPC54S0xx is a family of ARM© Cortex-M4 based microcontrollers for embedded

applications featuring a rich peripheral set with very low power consumption and

enhanced security features. This family of microcontrollers include a Physically

Unclonable Function (PUF) controller based on SRAM that enables the secure

generation of a unique device fingerprint and device-unique cryptographic keys. The

SRAM PUF mechanism is tightly integrated into the LPC54S0xx family enabling keys

from the PUF to be directly used by the device’s internal AES-256 encryption engine.

The unique and unclonable keys provide significant security benefits over other means of

key injection or storage. The PUF keys reduce the threat of break once repeat

everywhere attacks by basing the foundation of the security on device-unique unclonable

keys.

This application note describes how the NXP LPC54S0xx family of ARM Cortex-M4

based microcontrollers can be used to develop secure embedded applications that

provide very strong protection for stored information using SRAM PUF. The encryption

may be used to protect both data and the boot image from external SPIFI, EMC, and SPI

NOR flash devices or downloaded via serial slave interface (UART, SPI, I2C).

1.1 SRAM based PUF key derivation

Due to deep submicron manufacturing process variations, every transistor in an

Integrated Circuit (IC) has slightly different physical properties. These lead to small but

measurable differences in terms of electronic properties like transistor threshold voltages

and gain factor. Since these process variations are not fully controllable during

manufacturing, these physical device properties cannot be copied or cloned.

It turns out that every SRAM cell has its own preferred state every time the SRAM is

powered resulting from the random differences in the threshold voltages. This preference

is independent from the preference of the neighboring cells and independent of the

location of the cell on the chip or on the wafer.

Hence an SRAM region yields a unique and random pattern of 0’s and 1’s. This pattern

can be called an SRAM fingerprint, since it is unique per SRAM and hence per chip. It

can be used as a PUF.

Keys that are derived from the SRAM PUF are not stored on the chip but they are

extracted from the chip, only when they are needed. In this way they are only present in

the chip during a very short time window. When the SRAM is not powered there is no key

present on the chip making the solution very secure from reverse engineering and key

extraction.

1.2 LPC54S0xx SRAM PUF features

The SRAM PUF hardware constructs a 256-bit strength device-unique root key using the

digital fingerprint of a device derived from uninitialized SRAM and error correction data

called the Activation Code (AC). The Activation Code is generated during an enrollment

process which takes place during the provisioning/personalization of the device at the

manufacturer; see Section 2.1 – Device provisioning.

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 4 of 17

The LPC54S0xx PUF hardware supports:

1. Generation, storage and reconstruction of device-unique keys based on PUF.

2. Routing of a PUF generated key to the AES encryption engine to support the

encryption and authentication of external flash during device boot.

3. Secure storage and reconstruction of user keys with key sizes from 64-bits to

4096-bits. 

Each generated PUF key is assigned a 4-bit index value to identify its usage. Keys with

non-zero index are available through a register interface.

Keys that are assigned index value zero are output through a dedicated bus to the AES

engine such that they cannot be accessed by software. The MCU may be configured to

boot directly from external flash that has been protected by the PUF generated index

zero key.

The PUF hardware supports the protection of additional application secrets using Key

Codes (KC). A Key Code (KC) is a package of data that is encrypted by a PUF

generated key. The encryption allows the confidential information to be secure stored

outside of a processor. While normally used for the secure storage of cryptographic keys

a key code may be used to for any sensitive application data. The key code data may be

between 64-bits and 4096-bits in size. The 4-bit index values are used to identify the

keys used for the encryption and decryption of the key codes.

The encrypted information stored in external NV memory cannot be transferred to any

other device. The encryption process is unique to a specific processor and the encrypted

information will not decrypt correctly if moved to another processor. The encryption

process includes integrity checks that also prevent any modification of the information

outside of the protected confines of the MCU.

1.3 Scope

This application note covers the LPC54S0xx use of SRAM PUF to:

• Protect the device firmware when stored on external flash devices.

• Create and use device-unique keys and identifiers.

• Protect provided keying material that may be used by applications.

• Ensure overall system security when using SRAM PUF.

2. Using SRAM PUF hardware

The process flow to use the SRAM PUF hardware on LPC54S0xx provides benefits

throughout the lifecycle of a product. The use of the SRAM PUF hardware is described

for:

• Device provisioning during OEM manufacturing.

• Secure boot from encrypted flash.

• Derivation of device-unique keys for use by applications.

• Protection of application secrets during device operation.

The device provisioning process initializes the security of the device and establishes a

unique identifier for each device. The provisioning process stores an encrypted version of

the firmware in external NV memory.

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 5 of 17

On each boot, the decryption of the firmware uses a PUF device key, index zero key, to

decrypt the firmware into on chip RAM. In operation, the firmware is never available

unencrypted external to the device.

The PUF key generation may be used to create additional device unique keys for use by

applications. The keys may be symmetric secret keys or asymmetric public/private key

pairs. For example, the application software may use the key generation interfaces to

create an elliptic curve public key pair for use by the TLS protocol. It enables the strong

storage of per-device keys that may be used to remotely authenticate a device.

A system may have additional secrets that need to be configured into the device. Such

secrets may use a PUF generated key to locally encrypt and store this information. This

wrapped information may be securely stored in external NV memory since it is encrypted.

2.1 Device provisioning

A product is personalized in the OEM facility using a manufacturing tool that is used to

test and program the device. The manufacturing tool starts the personalization process

by injecting and running an enrollment image into a device. This code is transient and

only runs once.

The functions of the enrollment image include:

• Device test functions.

• PUF initialization and device-unique key extraction.

• Optional extraction of a Unique Device Identifier (UDI) and additional device-unique

keys for the protection of other data or secrets.

• Writing the PUF Activation Code to NV memory.

• At the end of the device provisioning process all debug and boundary interfaces must

be disabled.

The enrollment image is specific to an MCU type and may include application specific

testing and initialization. The PUF enrollment should be integrated with the existing

enrollment image software.

The PUF initialization generates secret keys that never leave the device. The first key,

index zero key, is dedicated to encryption and decryption of external NV memory and

used during the boot process.

2.2 SRAM PUF hardware and the AES engine

2.2.1 Usage for secure boot

LPC54S0xx has no internal flash for code and data storage. The application images must

reside in external devices like quad SPI and parallel flash memory. The AES engine may

be configured to decrypt the boot image from external flash (SPI, QSPI, or parallel flash)

or the serial ports (SPI, I2C, UART). The device-unique PUF key makes any externally

stored encrypted information only useable by the device on which the PUF has been

enrolled.

The key with index 0 created by SRAM PUF may be directly used by the LPC54S0xx’s

AES engine. The use of PUF, as compared to OTP, provides considerable benefits for

system security. The unclonable PUF keys are unique to a device and guarantees that

encrypted information can only be used with that one device.

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 6 of 17

Fig 1. SRAM PUF enables the encryption of information with a device-specific unclonable key

The PUF hardware can be used to generate keys and key identifiers for applications.

These keys are never stored and are device-unique and unclonable. The keys may be

from 64-bits to 4096-bits in size and may be used by the application as symmetric or

asymmetric secrets.

2.2.2 Derivation of device unique keys for applications

The PUF secrets may be used by applications.

2.2.3 Protection of user secrets

The PUF hardware supports the protection of user secrets. The secrets may be

confidential configuration information or secret keys required for applications. This secret

information would normally be provided at the factory part of the initial device

provisioning. This protection may also be used in an operation device to protect selected

secrets (for example, user configured passwords). The secrets are encrypted, and

integrity protected in a format called a Key Code (KC). The Key Code (KC) format

supports the protection of arbitrary user provided information. This information may be

from 64-bits to 4096-bits in size. The device-unique key used to wrap these secrets are

not readable by software, so the key codes may be safely stored on external non-volatile

memory. The protected information must be word aligned.

3. Example software snippets

This section contains examples of code supporting the integration of PUF based security

features on the LPC54S0xx to create secure applications.

3.1 Provisioning example code

The following example code should be integrated into the manufacturing provisioning

process. Code examples are provided for:

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 7 of 17

• The manufacturing time provisioning of PUF.

• The manufacturing time configuration of the LPC54S0xx AES engine to use a PUF

generated key and encrypt the installed image.

• The manufacturing time configuration to lock down the debug and boundary scan

interfaces.

This section provides high-level code that can be used as starting point for the

development of the driver code. The example code uses status polling to control the flow.

Note:

1. The status polling method is used for clarity. For more efficient operation, an

interrupt-driven architecture is recommended.

2. It is assumed that the key is going directly to the secure part of the design; see

Fig 1. Therefore, no key output register is defined.

After PUF is reset (with or without a power cycle of SRAM) it needs time to initialize

(indicated by busy asserted). It is assumed that the system waits for initialization to be

finished before it starts issuing commands. The function puf_waitForInit can be used for

this.

Note: This code does not include controls for powering on and off the SRAM. It is
assumed that it is done in other parts of the system.

Glossary

CTRL
PUF control register

STAT PUF status register

ALLOW PUF allow register

CODEINPUT PUF code input register

CODEOUTPUT PUF code output register

ENROLL PUF control register bit1 – begin enroll operation

START PUF control register bit2 – begin start operation

BUSY PUF status register bit0 - indicates that operation is in

progress

SUCCESS PUF status register bit1 - last operation was successful

ERROR PUF status register bit2 – PUF is in ERROR state; no

operations allowed.

CODEOUTAVAIL PUF status register bit7 – next part of AC is available.

ALLOWENROLL PUF allow register bit0 – enroll operation is allowed.

ALLOWSTART PUF Allow register bit1 – start operation is allowed.

Initialize (target)
Empties the target data structure.

get_data (data, source)
Retrieves the next data word from the source
structure puts it in data and removes it from the head.

append_data (data, target) Appends the data in data to the end of target.

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 8 of 17

3.1.1 PUF provisioning code examples

The following code should be executed during device provisioning by the enrollment

image to obtain:

• The unique device id.

• The device Activation Code (AC).

The Activation Code (AC) must be subsequently stored in non-volatile memory for later

use.

Note: The Activation Code (AC) does not need to be stored in NVRAM, any addressable

memory.

3.1.1.1 PUF provisioning code example for initialize

1 status PUF_waitForInit() {

2

3 // wait until initialization has finished

4 while (*STAT & BUSY != 0) {}

5

6 // check that initialization has passed

7 if (*STAT & SUCCESS == 0) {

8 return ERROR

9 }

10 return OK

11 }

3.1.1.2 PUF provisioning code example for enroll

12 /* output: ACdata – byte array for Activation Code storage */

13 status_t PUF_Enroll(

14 PUF_Type *base,

15 uint8_t *activationCode,

16 size_t activationCodeSize)

17 {

18 // clear the ACdata storage

19 initialize(ACdata)

20

21 // check if Enroll is allowed

22 if (*ALLOW & ALLOWENROLL == 0) {

23 return NOT_ALLOWED

24 }

25

26 // Make sure that the module that receives the key is initialized

27 // and can accept the key

28 // begin Enroll

29 *CTRL = ENROLL

30

31 // wait till command is accepted

32 while (*STAT & (BUSY | ERROR) == 0) {

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 9 of 17

33 }

34 // while busy read AC

35 while (*STAT & BUSY != 0) {

36 if (*STAT & CODEOUTAVAIL != 0) {

37 tempData = *CODEOUTPUT

38 append_data(tempData, ACdata)

39 }

40 // During this loop the key is transported to the

41 // receiving module using the interlocked interface

42 } // while

43 // check result

44 if (*STAT & SUCCESS == 0) {

45 return ERROR

46 }

47 return OK

48 }

3.1.1.3 PUF provisioning code example for start

49 /* input: activationCode – byte array containing Activation Code */

50

51 status_t PUF_Start(

52 PUF_Type *base,

53 const uint8_t *activationCode,

54 size_t activationCodeSize)

55 {

56 // check if Start is allowed

57 if (*ALLOW & ALLOWSTART == 0) {

58 return NOT_ALLOWED

59 }

60

61 // Make sure that the module that receives the key is initialized

62 // and can accept the key

63 // begin Start

64 *CTRL = START

65

66 // wait till command is accepted

67 while (*STAT & (BUSY | ERROR) == 0) {

68 }

69

70 // while busy send AC, read key

71 while (*STAT & BUSY != 0) {

72 if (*STAT & CODEINREQ != 0) {

73 get_data(tempData, activationCode)

74 *CODEINPUT = tempData

75 }

76

77 // During this loop the the key is transported to the

78 // receiving module using the interlocked interface

79 } // while

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 10 of 17

80

81 // check result

82 if (*STAT & SUCCESS == 0) {

83 return ERROR

84 }

85 return OK

86 }

3.2 AES engine usage of PUF

The AES engine on the LPC54S0xx may be configured to directly use keys from the PUF

engine. The following code snippets demonstrate the routing and usage of the PUF keys

to the AES engine for encryption and decryption.

3.2.1 AES engine configuration for PUF usage.

The AES engine must be configured to use PUF keys rather than OTP keys. The

following code provides the details of this configuration.

It shows how to select the PUF key with index 0

87 #define PUF_INTRINSIC_KEY_SIZE 16

88 status_t result;

89 uint8_t keyCode[PUF_GET_KEY_CODE_SIZE_FOR_KEY_SIZE(PUF_INTRINSIC_KEY_SIZE)];

90

91 result = PUF_SetIntrinsicKey(PUF, kPUF_KeyIndex_00, PUF_INTRINSIC_KEY_SIZE,

keyCode, sizeof(keyCode));

92 if(result != kStatus_PUF_Success) return result;

93

94 /* Get Intrinsic Key */

95 result = PUF_GetHwKey(PUF, keyCode, sizeof(keyCode), kPUF_KeySlot0, rand());;

96 if(result != kStatus_PUF_Success) return result;

3.2.2 AES engine using PUF derived key for encryption

The use of a PUF generated device unique key for AES encryption may be integrated

with the boot process to protect firmware images.

PUF generated keys can be used with AES for create secure storage of data:
Set KEY as shown in Section 3.2.1 (AES engine configuration for PUF usage).

97 /* Applicatin_Specific iv is 96-bit unique value */

98 uint8_t explicit_iv[12] =

{0x58,0x9C,0x84,0xD1,0x7D,0x1B,0x43,0xBE,0x57,0xCB,0xD6,0xD9};

99

100 /* Application Specific/

101 uint8_t aad[] =

102 { 0xDF, 0x76, 0xB5, 0x5A, 0x48, 0x8E, 0x68, 0xF8,

103 0xF9, 0xCB, 0x82, 0x95, 0xC9, 0x1A, 0xCF, 0xEB };

104

105 uint8_t tag[16];

106

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 11 of 17

107 status = AES_EncryptTagGcm(APP_AES, clear_data,encrypt_data, *image_length,

108 explicit_iv, sizeof(explicit_iv),

109 aad, sizeof(aad),

110 tag, sizeof(tag));

3.2.3 AES engine using PUF for decryption

The following code example describes the use of a PUF derived key to decrypt external

storage.

Set KEY as shown in Section 3.2.1 (AES engine configuration for PUF usage)

111 /* iv is 96-bit unique value */

112 uint8_t explicit_iv[12] =

{0x58,0x9C,0x84,0xD1,0x7D,0x1B,0x43,0xBE,0x57,0xCB,0xD6,0xD9};

113

114 uint8_t aad[] =

115 { 0xDF, 0x76, 0xB5, 0x5A, 0x48, 0x8E, 0x68, 0xF8,

116 0xF9, 0xCB, 0x82, 0x95, 0xC9, 0x1A, 0xCF, 0xEB };

117

118 uint8_t tag[16];

119

120 status = AES_DecryptTagGcm(APP_AES, encrypt_image, clear_image, *image_length,

121 explicit_iv, sizeof(explicit_iv),

122 aad, sizeof(aad),

123 tag, sizeof(tag));

3.3 User key protection examples

The following code examples are used to encrypt or decrypt user secrets using a PUF

generated device unique secret. This key wrapping and unwrapping may be used by

applications to securely store secret information.

3.3.1 Wrapping (Set Key)

The following code snippet demonstrates how an application’s secret information may be

encrypted. The device unique encryption allows the key code that is created to be stored

off the device in any non-volatile storage.

KC : Key Code

124 status SetIntrinsicKey(KCdata, KeyIndex, KeySize) {

125 // clear the KCdata storage initialize(KCdata)

126 // check if Set Key is allowed

127 if (*ALLOW & ALLOWSETKEY == 0) {

128 return NOT_ALLOWED

129 }

130

131 // program the key size and index

132 *KEYSIZE = KeySize >> 6 // convert to 64-bit blocks

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 12 of 17

133 *KEYINDEX = KeyIndex

134

135 // begin Set Key

136 *CTRL = GENERATEKEY

137

138 // wait till command is accepted

139 while (*STAT & (BUSY | ERROR) == 0) {

140 }

141 // while busy read KC

142 while (*STAT & BUSY != 0) {

143 if (*STAT & CODEOUTAVAIL != 0) {

144 tempData = *CODEOUTPUT

145 append_data(tempData, KCdata)

146 }

147 } // while

148

149 // check result

150 if (*STAT & SUCCESS == 0) {

151 return ERROR

152 }

153 return OK

154 }

155 status SetUserKey(KCdata, KeyIndex, UKdata) {

156 // clear the KCdata storage

157 initialize(KCdata)

158

159 // check if Set Key is allowed

160 if (*ALLOW & ALLOWSETKEY == 0) {

161 return NOT_ALLOWED

162 }

163

164 // detect key size

165 KeySize = length_in_bits(UKdata)

166

167 // program the key size and index

168 *KEYSIZE = KeySize >> 6 // convert to 64-bit blocks

169 *KEYINDEX = KeyIndex

170

171 // begin Set Key

172 *CTRL = SETUSERKEY

173

174 // wait till command is accepted

175 while (*STAT & (BUSY | ERROR) == 0) {}

176

177 // while busy write UK and read KC

178 while (*STAT & BUSY != 0) {

179 if (*STAT & KEYINREQ != 0) {

180 get_data(tempData, UKdata)

181 *KEYINPUT = tempData

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 13 of 17

182 }

183 if (*STAT & CODEOUTAVAIL != 0) {

184 tempData = *CODEOUTPUT

185 append_data(tempData, KCdata)

186 }

187 } // while

188 // check result

189 if (*STAT & SUCCESS == 0) {

190 return ERROR

191 }

192 return OK

193 }

3.3.2 Unwrapping (Get Key)

The following code snippet demonstrates how an applications secret information may be

encrypted. The device unique encryption allows the key code that is created to be stored

off the device in any non-volatile storage.

Example for Get Key (UnWrap)

194 status GetKey(KCdata, KeyIndex, KeyData) {

195 // clear the KeyData storage

196 initialize(KeyData)

197 // put unused value in KeyIndex

198 KeyIndex = 255

199

200 // check if Get Key is allowed

201 if (*ALLOW & ALLOWGETKEY == 0) {

202 return NOT_ALLOWED

203 }

204

205 // begin Get Key

206 *CTRL = GETKEY

207

208 // wait till command is accepted

209 while (*STAT & (BUSY | ERROR) == 0) {

210 }

211

212 // while busy send KC, read key

213 while (*STAT & BUSY != 0) {

214 if (*STAT & CODEINREQ != 0) {

215 get_data(tempData, KCdata)

216 *CODEINPUT = tempData

217 }

218 if (*STAT & KEYOUTAVAIL != 0) {

219 KeyIndex = *KEYOUTINDEX

220 tempData = *KEYOUTPUT

221 append_data(tempData, KeyData)

222 }

223 } // while

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 06 November 2018 14 of 17

224

225 // check result

226 if (*STAT & SUCCESS == 0) {

227 return ERROR

228 }

229 return OK

230 }

4. Conclusion

LPC54S0xx devices provide PUF functionality to generate and use device-unique

cryptographic keys. The keys may be used to support the secure storage of firmware

images or other user data in non-volatile memory off-chip. The keys are also available to

support application authentication services. This application note provides usage

descriptions and detailed code examples to integrate PUF in the LPC54S0xx.

E
rro

r!

U
n
k
n

o
w

n

d
o

c
u

m
e

n
t

p
ro

p
e

rty

n
a

m
e

.

E
rro

r! U
n
k
n
o

w
n
 d

o
c
u
m

e
n
t p

ro
p
e
rty

 n
a
m

e
.

E
rro

r! U
n

k
n

o
w

n
 d

o
c
u

m
e

n
t p

ro
p

e
rty

n
a

m
e

.

NXP Semiconductors AN12292
 Secure Storage with SRAM PUF on NXP LPC54S0xx

AN12292 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2018. All rights reserved.

Application note Rev. 1.0 — 06 November 2018 15 of 17

5. Legal information

5.1 Definitions
Draft — The document is a draft version only. The content is still under

internal review and subject to formal approval, which may result in

modifications or additions. NXP Semiconductors does not give any

representations or warranties as to the accuracy or completeness of

information included herein and shall have no liability for the consequences

of use of such information.

5.2 Disclaimers
Limited warranty and liability — Information in this document is believed to

be accurate and reliable. However, NXP Semiconductors does not give any

representations or warranties, expressed or implied, as to the accuracy or

completeness of such information and shall have no liability for the

consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental,

punitive, special or consequential damages (including - without limitation -

lost profits, lost savings, business interruption, costs related to the removal

or replacement of any products or rework charges) whether or not such

damages are based on tort (including negligence), warranty, breach of

contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason

whatsoever, NXP Semiconductors’ aggregate and cumulative liability

towards customer for the products described herein shall be limited in

accordance with the Terms and conditions of commercial sale of NXP

Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make

changes to information published in this document, including without

limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior

to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,

authorized or warranted to be suitable for use in life support, life-critical or

safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected

to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of

NXP Semiconductors products in such equipment or applications and

therefore such inclusion and/or use is at the customer’s own risk.

Applications — Applications that are described herein for any of these

products are for illustrative purposes only. NXP Semiconductors makes no

representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

Customers are responsible for the design and operation of their applications

and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or

customer product design. It is customer’s sole responsibility to determine

whether the NXP Semiconductors product is suitable and fit for the

customer’s applications and products planned, as well as for the planned

application and use of customer’s third party customer(s). Customers should

provide appropriate design and operating safeguards to minimize the risks

associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,

damage, costs or problem which is based on any weakness or default in the

customer’s applications or products, or the application or use by customer’s

third party customer(s). Customer is responsible for doing all necessary

testing for the customer’s applications and products using NXP

Semiconductors products in order to avoid a default of the applications and

the products or of the application or use by customer’s third party

customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein

may be subject to export control regulations. Export might require a prior

authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all

faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates

and their suppliers expressly disclaim all warranties, whether express,

implied or statutory, including but not limited to the implied warranties of non-

infringement, merchantability and fitness for a particular purpose. The entire

risk as to the quality, or arising out of the use or performance, of this product

remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be

liable to customer for any special, indirect, consequential, punitive or

incidental damages (including without limitation damages for loss of

business, business interruption, loss of use, loss of data or information, and

the like) arising out the use of or inability to use the product, whether or not

based on tort (including negligence), strict liability, breach of contract, breach

of warranty or any other theory, even if advised of the possibility of such

damages.

Notwithstanding any damages that customer might incur for any reason

whatsoever (including without limitation, all damages referenced above and

all direct or general damages), the entire liability of NXP Semiconductors, its

affiliates and their suppliers and customer’s exclusive remedy for all of the

foregoing shall be limited to actual damages incurred by customer based on

reasonable reliance up to the greater of the amount actually paid by

customer for the product or five dollars (US$5.00). The foregoing limitations,

exclusions and disclaimers shall apply to the maximum extent permitted by

applicable law, even if any remedy fails of its essential purpose.

5.3 Licenses

Purchase of NXP <xxx> components

<License statement text>

5.4 Patents
Notice is herewith given that the subject device uses one or more of the

following patents and that each of these patents may have corresponding

patents in other jurisdictions.

<Patent ID> — owned by <Company name>

5.5 Trademarks
Notice: All referenced brands, product names, service names and

trademarks are property of their respective owners.

<Name> — is a trademark of NXP B.V.

COMPANY CONFIDENTIAL

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

 All information provided in this document is subject to legal disclaimers. © NXP Semiconductors N.V. 2018. All rights reserved.

Application note Rev 1.0 — 1 August 2018 16 of 17

6. List of figures

Fig 1. SRAM PUF enables the encryption of

information with a device-specific unclonable

key .. 6

COMPANY CONFIDENTIAL

NXP Semiconductors ANxxxx1
 Secure Storage with SRAM PUF on NXP LPC54S0xx

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP Semiconductors N.V. 2018. All rights reserved.

For more information, visit: http://www.nxp.com

Date of release: 06 November 2018

Document identifier: AN12292

7. Contents

1. Introduction ... 3
1.1 SRAM based PUF key derivation 3
1.2 LPC54S0xx SRAM PUF features 3
1.3 Scope ... 4
2. Using SRAM PUF hardware 4
2.1 Device provisioning .. 5
2.2 SRAM PUF hardware and the AES engine 5
2.2.1 Usage for secure boot .. 5
2.2.2 Derivation of device unique keys for applications

 ... 6
2.2.3 Protection of user secrets................................... 6
3. Example software snippets 6
3.1 Provisioning example code 6
3.1.1 PUF provisioning code examples 8
3.2 AES engine usage of PUF 10
3.2.1 AES engine configuration for PUF usage. 10
3.2.2 AES engine using PUF derived key for

encryption... 10
3.2.3 AES engine using PUF for decryption 11
3.3 User key protection examples 11
3.3.1 Wrapping (Set Key) .. 11
3.3.2 Unwrapping (Get Key) 13
4. Conclusion ... 14
5. Legal information .. 15
5.1 Definitions .. 15
5.2 Disclaimers... 15
5.3 Licenses ... 15
5.4 Patents ... 15
5.5 Trademarks .. 15
6. List of figures ... 16
7. Contents ... 17

	1. Introduction
	1.1 SRAM based PUF key derivation
	1.2 LPC54S0xx SRAM PUF features
	1.3 Scope

	2. Using SRAM PUF hardware
	2.1 Device provisioning
	2.2 SRAM PUF hardware and the AES engine
	2.2.1 Usage for secure boot
	2.2.2 Derivation of device unique keys for applications
	2.2.3 Protection of user secrets

	3. Example software snippets
	3.1 Provisioning example code
	3.1.1 PUF provisioning code examples
	3.1.1.1 PUF provisioning code example for initialize
	3.1.1.2 PUF provisioning code example for enroll
	3.1.1.3 PUF provisioning code example for start

	3.2 AES engine usage of PUF
	3.2.1 AES engine configuration for PUF usage.
	3.2.2 AES engine using PUF derived key for encryption
	3.2.3 AES engine using PUF for decryption

	3.3 User key protection examples
	3.3.1 Wrapping (Set Key)
	3.3.2 Unwrapping (Get Key)

	4. Conclusion
	5. Legal information
	5.1 Definitions
	5.2 Disclaimers
	5.3 Licenses
	5.4 Patents
	5.5 Trademarks

	6. List of figures
	7. Contents

