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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background  

Instructions that control program flow encompass branches, jumps, procedure 

calls and returns, and traps.  A successful and timely branch resolution is critical for 

improving performance of all modern processors with pipelined execution.  A conditional 

branch is resolved once we know a branch outcome (taken or not taken) and the target 

address (the address of the next instruction if the branch is taken).  Branches are typically 

resolved in late stages of the pipeline; in the meantime all the instructions following a 

branch instruction must wait for the branch resolution.  This degrades performance 

significantly and the problem is exacerbated in superscalar processors that fetch and 

execute multiple instructions each clock cycle.  A common solution to this problem is 

speculative execution where the branch outcome and target address are dynamically or 

statically predicted, so the execution can go on without stalling.  If the prediction is 

correct, no processor clock cycles are wasted. Otherwise, the instructions that entered the 

pipeline speculatively are flushed, and the program execution resumes from the real 
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target.  While static prediction is effective, it is insufficient in modern processors with 

deep pipelines and hundreds of instructions on-the-fly in various stages of the pipeline.  

Hence, modern processors rely on branch predictor units to speculatively predict 

outcomes and target addresses of incoming branch instructions.   

To illustrate the importance of branch predictor units, let us consider a single-

issue superscalar processor with ideal Cycles per Instruction (CPI), CPI = 1.  Let us 

assume that the branch penalty is 20 clock cycles.  Branch instructions make around 20% 

of all instructions [1].  With pipeline stalling the CPI = 1 + 0.2×20 = 5, a fivefold increase 

in program execution time.  To remedy this, let us introduce a branch predictor unit with 

a misprediction rate of 10% (9 out of 10 branches will be predicted correctly and one will 

be mispredicted resulting in a 20 clock cycle penalty).  The new CPI = 1 + 0.2×0.1×20 = 

1.4, which is still 40% of slowdown.  Let us add an improvement in the branch predictor 

unit to achieve a misprediction rate of 5%; the CPI = 1.2, a significant improvement in 

performance.  Though based on many simplifications, this example fairly illustrates the 

importance of having branch predictor units with very low misprediction rates.  As 

branch predictors reside on the critical path of processor front-ends, it is also very 

important that a correct prediction and a target address are available with minimal 

latency.  Finally, the importance of good branch predictors is further underscored with 

the proliferation of mobile battery-operated platforms.  Mispredictions tend to be costly 

in terms of energy – pursuing wrong paths in program execution wastes limited energy 

resources.   
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1.2 Motivation  

This thesis introduces a set of microbenchmarks and mechanisms for reverse 

engineering of modern branch predictor units.  The microbenchmarks and experimental 

flows are applied for reverse engineering of a branch predictor unit found in Intel’s 

Pentium M processors (Dothan core), one of the most advanced branch predictor units 

ever developed in commercial processors [2].  Intel does not disclose information about 

the exact branch predictor organization, but it claims that this predictor significantly 

outperforms previous generation branch predictor designs by 20%. 

This work builds on an initial effort in reverse engineering of branch predictor 

units done by Milenkovic et al. [3] where an experimental flow and a set of 

microbenchmarks are developed and applied to Intel’s P6 and NetBurst architectures.  A 

set of carefully crafted “spy” microbenchmarks is applied on a real machine to verify 

various hypotheses related to branch predictor unit organization.  Processor behavior is 

measured during execution of the spy microbenchmarks using on-chip performance 

monitoring registers.  Based on these results, we have been able to obtain insights into the 

complete organization of the branch predictor unit in Pentium M processors.   

The developed experimental flows and microbenchmarks have potential to greatly 

benefit academia and industry by allowing for (a) better code optimization techniques 

either through manual or automatic optimization using architecture-aware compilers, (b) 

a systematic approach in architectural analysis that can be used for targeted system 

verification and design space exploration in early or late design stages, and (c) bridging 

the gap between academia and industry.  Each of these three potential benefits is 

discussed below.   
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1.2.1 Architecture-aware Compilers 

Processors complexity grows in each generation.  Instruction-level parallelism, 

branch prediction mechanisms, multiple-level cache hierarchy, and hardware prefetchers 

are just a few of processors complex structures that greatly influence program execution 

time.  Compliers typically offer several optimization parameters for a given architecture.  

However, these optimizations are often limited and do not exploit specific characteristics 

of the processor the program is running on.  To take advantage of specific processor 

features, a more architecture-aware compiler is desirable.   

It has been shown that making compilers aware of the underlying architecture can 

result in significant performance improvements  [4-6]. Architecture aware compliers will 

become even more important with proliferation of new multi-core processors.  For 

example, a set of programs for automated extraction of the memory hierarchy [4] can be 

used to guide a manual or automatic program optimization.  Gurumani and Milenkovic 

show that Intel’s C++ compiler outperforms Microsoft’s Visual C++ compiler on the 

SPEC CPU 2000 benchmark suite [5].  Jimenez starts with microbenchmarks for 

determining branch predictor organization in NetBurst architecture [3] and introduces the 

Camino C compiler that performs code reorganization in order to reduce the number of 

branch mispredictions [6]. Unfortunately, the details about the underlying architecture are 

rarely disclosed. Consequently, we need a systematic approach for extracting these 

secrets from modern processors. 

1.2.2 Hardware Design Verification 

Ever growing processor complexity and tightening time-to-market make hardware 

design verification a critical step during the design process.  However, often late in the 



 

5 

design process architects introduce changes to the original design in order to achieve 

performance improvements, reduce cost and power consumption.  Full verification that 

usually assumes running an operating system on the top of a HDL model of the processor 

is very expensive in time and resources.  Obviously, these changes cannot be fully 

verified using conventional approaches.  In addition, it is often very difficult to assess an 

impact of the introduced changes as the total performance depends on many different 

structures with very complex interactions between each other.  Hence, there is a great 

need for microbenchmarks -- small programs that target a single structure or a specific 

functionality.  Their small sizes allow designers to manually trace the microbenchmark 

execution or to completely predict their behavior.  The microbenchmarks hence provide a 

useful tool in the design-phase for architectural analysis and rapid design-space 

exploration and verification.  

1.2.3 Bridging the Gap between Industry and Academia 

Research efforts in academia typically focus more on improving branch predictor 

accuracy and rarely on area and timing constraints imposed by chip economics and 

design specifications.  On the other hand, branch predictor designs in industry strive to 

achieve the best prediction accuracy within given design constraints, such as timing 

constraints and hardware budget.  In conditions where manufacturers conceal details 

about actual branch predictor implementations, these opposite approaches lead to an 

increase in the gap between branch predictors developed in industry and academia.   

The experimental flow discussed in this thesis is hand-crafted for the branch 

predictor unit found in Intel’s Pentium M processor.  However, we believe that the 

systematic approach and methodology can be adapted for reverse engineering of all other 
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modern branch predictor units.  The knowledge gained through this effort can be very 

useful for future research efforts in academia as it can serve as a solid starting point.     

1.3 Thesis Outline 

The thesis is organized in nine chapters as follows.  Chapter 1 gives an 

introduction, stressing the importance of the thesis topic and listing the main 

contributions of this work.  Chapter 2 surveys historical development of branch predictor 

units and discusses requirements and design-space constraints in designing a branch 

predictor unit.  Chapter 3 describes relevant industrial branch predictor unit 

implementations.  Chapter 4 describes the experimental environment, including 

microbenchmark development, microbenchmark deployment, and actual testing and 

measurement.  Chapter 5 introduces experimental flows and microbenchmarks for 

determining organization of a regular branch target buffer.  Chapter 6 introduces 

experimental flows and microbenchmarks for determining organization of a loop 

predictor.  Chapter 7 introduces experimental flow and microbenchmarks used in 

determining organization of an indirect branch predictor, while Chapter 8 focuses on a 

global branch outcome predictor.  Chapter 9 concludes the thesis and discusses future 

work.  

1.4 Contributions 

The main contribution of this thesis is a set of experimental flows and 

microbenchmarks for determining organization of modern branch predictor units.  The 

experimental flows and microbenchmarks are employed on Intel’s Pentium M processor 

(Dothan core) giving the following insights into the branch predictor organization.   
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The Intel Pentium M branch predictor unit consists of five main parts as follows:  

• Branch target buffer (BTB). The BTB caches target addresses for most the frequently 

used conditional and unconditional branches.  

• Indirect Branch target buffer (iBTB). The iBTB caches the most frequently used 

target addresses of indirect branches. 

• Bimodal predictor.  The bimodal predictor is a simple outcome predictor that gives a 

first level outcome prediction for all conditional branches. 

• Loop predictor.  The loop predictor is a specialized predictor used to provide the 

second level outcome prediction for conditional branches with loop behavior. 

• Global predictor.  The global predictor is a specialized predictor used to provide the 

third level outcome prediction for conditional branches. 

Branch Target Buffer 

The BTB is a 4-way cache organized in 512 ways (the total size is 2048 entries).  

The BTB is accessed by a 16-byte instruction block address and it is indexed by the 

branch address bits IP[12:4].  Tag bits are branch address bits IP[21:13].  Branch 

addresses are determined as follows:  it is the address of the first byte of the branch 

instruction in memory if that instruction belongs to a single 16-byte block; it is the 

address of the last byte in memory if the branch instruction spans multiple 16-byte 

blocks.  A BTB set can store multiple entries with the same tag bits, thanks to an offset 

field in the BTB (Offset field are IP address bits [3:0]) and a so called offset mechanism.  

The offset mechanism selects a target address by selecting an entry with the lowest offset 

which is not smaller than the current instruction pointer.   
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In case of a BTB miss or incorrect target address on a BTB hit, the instruction 

decoder supplies a true target at the end of instruction decoding, assuming that outcome 

prediction is correct. The BTB may give a BTB hit for a non branch instruction due to 

partial tag fields.  In this case, the instruction decoder evicts the selected entry in the 

BTB.  The BTB employs a specific allocation/replacement policy. The replacement 

policy is “least recently used” (LRU) –based, but there is an indication that a branch 

needs to occur at least twice before this policy is reinforced.  

Indirect Target Buffer 

The indirect branch target buffer (iBTB) is a direct–mapped cache organized in 

256 sets. Each iBTB entry keeps a target address of an indirect branch.  The iBTB access 

is controlled by an index and a tag field.  The index and tag are calculated as a hash 

between a path information register (PIR) and the indirect branch address. 

The PIR is a 15-bit long shift register that keeps path history for the last 8 relevant 

branch instructions.  Only conditional taken branches and indirect branches affect the 

PIR.  The PIR register is updated as follows.  When a new branch is encountered, the PIR 

is shifted to the left for two bits and 15 bits of the branch IP address or the branch target 

address are XOR-ed with the PIR.  For a conditional taken branch, the branch address 

bits IP[18:4] are XOR-ed with the PIR.  For an indirect branch, the branch target address 

bits TA[5:0] are XOR-ed with the PIR bits PIR[5:0], and the address bits IP[18:10] are 

XOR-ed with the PIR bits PIR[14:6]. 

The iBTB is indexed by the hash function represented by the XOR between the 

PIR and the indirect branch IP as follows.  The PIR bits PIR[13:6] are XOR-ed with the 

indirect branch address bits IP[11:4] to provide the index for the iBTB.  The PIR bits 
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[14,5:0] are XOR-ed with the indirect branch IP bits [18:12] to provide the tag for the 

iBTB.  

The direct-mapped organization of the iBTB indicates that the iBTB lookup is 

serialized with the corresponding BTB lookup. The iBTB lookup is performed only if the 

BTB indicated an indirect branch.  This serialization incurs additional delay, but it saves 

energy.  The increased latency is reduced by using a direct–mapped cache for the iBTB.  

If the BTB gives a hit and the iBTB gives a miss, the BTB will provide the target address.  

Loop Predictor 

The loop predictor is a two-way cache structure with 64 sets (the total size is  

128 entries). The loop predictor is indexed by the branch address bits IP [9:4].  The tag 

bits are the IP[15:10].  Each entry in the loop predictor has two 6-bit counters.  The first 

counter keeps the current iteration number for the allocated branch with loop behavior.  

The second counter keeps the maximum counter value for the allocated branch.  A loop 

predictor hit is conditional upon a BTB hit.  The regular BTB has a longer tag field 

providing more accurate branch identification.  

Global Predictor 

The global predictor is a 4-way cache structure with 512 sets (total of  

2048 entries).  Entries in the global predictor are two bit-saturating counters.  The global 

predictor is indexed by a hash function — an XOR between the path information register 

(PIR) and the conditional branch address.  The PIR bits PIR[14:6] are XOR-ed with the 

branch address bits IP[12:4] to provide the index for the global predictor cache.  The PIR 

bits PIR[5:0] are XOR-ed with the conditional branch address bit IP[18:13] to provide the 
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tag for the global predictor cache.  The global predictor overrides the prediction from the 

loop predictor. 

Bimodal Predictor 

The bimodal predictor is a flat structure with 4096 entries.  An entry in the 

bimodal predictor is a two-bit saturating counter.  The bimodal predictor is indexed by 

branch address bits IP[11:0].  The bimodal predictor always gives the prediction; hence, 

no static prediction mechanism is used. 

Putting It All Together 

The branch predictor unit in the Pentium M is very similar to McFarling’s patent 

[7] and combines the best efforts in achieving the best possible prediction rate at minimal 

cost.  Based on our reverse engineering effort, we calculate that the Intel’s Pentium M 

(Dothan Core) predictor size is approximately 135 Kbits.  Figure 1.1 shows a complete 

schematic of the Pentium M branch predictor unit. 



 

11 

Offset = IP [3:0]
   Index = IP [12:4]

          Tag = IP [21+:13]

Way 0
Way 3

Branch target buffer (BTB)
0

511

Target
(32 bit)

BTB hit BTB target

Counter max.
value (6 bits)

Counter current
value (6 bits)

Way 0

Way 1

Loop BPB hit

           BTB hit

Loop
predictor hit

Loop branch predictor buffer (Loop BPB)

Index = IP [9:4]
       Tag = IP [15:10]

Indirect target cache (iBTB)

Target (32 bit)
Tag = HASH [14,5:0] 0

255

Index = HASH [13:6]

iBTB hit

Way 0
Way 3

Global predictor

0

511

Two-bit counter

Global
predictor hit

Index = HASH[14:6]
Tag = HASH[5:0]

Bimodal
Table

Two-bit counter
Index = IP[11:0]

Bimodal
outcome prediction

Loop
outcome prediction

Global
outcome prediction

Global
outcome prediction

Outcome prediction == Taken

Instruction
Fetch
Unit

Outcome prediction

iBTB target

Loop
outcome prediction

Fetch
New target

0

63

Path Information register
PIRCurrent Instruction

IP address

Branch detected
Update PIR

XOR Hash access function
HASH

15 bits
14                                      0

14                                           0

BTB type = Uncoditional
BTB hit

BTB hit
iBTB hit

iBTB target

BTB target
Predicted

target

Type
(2-3 bits)

Tag
(9+ bits)

BTB type

Tag
(6 bits)

Tag (7 bits)

Tag (6 bits)

New target

Direct branch target from decoder

BTB hit/ target mispredicted

BTB miss
Outcome prediction == Taken

Direct branch detected in decoder
DECODER

Offset
(4 bits)

0

4095

BTB type == indirect

 

Figure 1.1  Pentium M branch predictor 



 

12 

 

 
 

CHAPTER 2 

 

 

BRANCH PREDICTION TECHNIQUES 

 

Modern branch predictor designs converge to a general organization consisting of a 

branch target buffer (BTB) and a branch outcome predictor.  The branch outcome 

predictor can be coupled with or decoupled from the BTB.  When the outcome predictor 

and the BTB are coupled, only branches that hit in the BTB are predicted, while a static 

prediction algorithm is used on a BTB miss. When the outcome predictor and the BTB 

are decoupled, all branch outcomes are predicted using the outcome predictor.   

This chapter discusses pipelining and speculative execution in modern processors 

and surveys the historical development of branch prediction techniques, from basic 

concepts to the most advanced concepts.  We also discuss two important issues in 

achieving higher accuracy of branch predictors at minimal cost, branch de-interference 

and branch classification or filtering.   

2.1 Pipelining and the Speculative Execution 

Pipelining is an execution technique where multiple instructions are overlapped in 

execution, taking advantage of parallelism that exists among the actions needed to 
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execute an instruction.  Today, pipelining is a key technique used to make fast 

processors.  Modern processors mainly operate as reduced instruction set computer 

(RISC) machines.  A classical RISC implementation of an instruction execution 

encompasses five pipeline stages. 

IF – Instruction Fetch.  A new instruction is fetched from instruction memory and the 

program counter is updated.  

ID – Instruction Decoding.  The instruction is decoded and operands are read from the 

specified general purpose registers.  

EX – Execution.  A functional unit performs the specified operation on the operands 

prepared in the ID stage (arithmetic logic operation, or effective address calculation, or a 

branch target calculation).  

MEM – Memory Access.  If the instruction is a load or a store, a memory read or write 

is performed. 

WB – Write Back.  The result is written back to the register file. 

Hazards are events that prevent execution of the next instruction in the pipeline 

stream in its designated clock cycle.  There are 3 types of hazards: structural, data and 

control.  Structural hazards arise from resource conflicts when 2 or more instructions 

compete for a single resource.  Data hazards arise when an instruction depends on the 

results of a preceding instruction, and control hazards arise from instructions that change 

the program flow.   

Control or branch hazards can cause a significant performance loss. When a 

branch is executed, it may change the Program Counter (PC) to its target address; it is a 

taken branch.  When a branch falls through, it is not taken.  The outcome and the target 
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address of a branch are typically known in execution stages of the pipeline.  By the time 

they are known, the pipeline already fetched a certain number of following instructions.  

If the branch is taken, these instructions need to be flushed, and the pipeline starts 

fetching instruction from the branch target address.  In this case, a number of clock cycles 

is wasted.  

To handle control hazards, we can freeze the pipeline when a branch instruction is 

detected or we can assume predict-not-taken (treat each branch as not taken initially and 

correct it otherwise) or predict-taken (treat each branch as taken and correct it otherwise) 

approaches.  An alternative approach is to rely on compiler (static) techniques – a very 

effective approach when branches have behavior predictable at compile time [1].  With 

dynamic branch prediction branches are predicted dynamically by the hardware at 

execution time.  Almost all modern processors have a hardware resource – a branch 

predictor unit, responsible for handling branch prediction.  The branch predictor unit is 

placed in the instruction fetch stages and needs to recognize an incoming branch 

instruction and give a correct prediction about the branch outcome (taken or not taken) 

and the branch target if the predicted outcome is taken.  If the branch is taken and the 

predictor gives correct prediction, the processor front-end will start fetching instructions 

from the branch target address without stalling the pipeline.   

Modern processors require highly accurate branch predictors, yet their complexity 

should be relatively small to ensure low latency and ease of verification during the design 

phase.  The task of an architect is to carefully examine the design trade-offs and to 

achieve the best possible predictor accuracy with minimal cost, latency, and power 

consumption. 
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2.2 Branch Types 

Branch instructions can be classified based on branch outcome to conditional 

(branch outcome can be taken or not taken) and unconditional (the branch is always 

taken).  Branch instructions can be further classified based on the branch target into direct 

(the branch target is known in compile time) and indirect (the target is not known in 

compile time).  Bellow we analyze various branch types and corresponding branch 

penalties using an example pipeline illustrated in Figure 2.1.  The pipeline has 10 stages 

and the branch target is calculated in stage D2 for direct branches and in stage E3 for 

indirect branches.  The branch outcome is resolved in stage E3.  We assume that branch 

prediction is performed in the first pipeline stage.    

Branch outcome penalties: 

1. Conditional – Direction of the branch has to be determined during execution 

stages. Prediction is needed for the branch direction and branch target.  Seven 

instructions that follow the branch are flushed from the pipeline in case of 

taken branch outcome misprediction (Figure 2.1). 

2. Unconditional – Direction of the branch is always taken. Prediction is needed 

for the branch target.  Three instructions that follow the branch are flushed 

from the pipeline in case of a branch outcome misprediction (Figure 2.1).  
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Figure 2.1  Pipeline example 

Branch target address penalties: 

1. Direct – Branch target address is specified within the branch instruction and it 

is known at compile time.  Three instructions that follow the branch are 

flushed from the pipeline in case of a branch target misprediction (Figure 2.1).  

2. Indirect – Branch target address is not known at compile time, rather it is 

determined during instruction execution.  Seven instructions that follow the 

branch are flushed from the pipeline in case of a branch target misprediction 

(Figure 2.1). 

Consequently, the prediction of the conditional branch outcome and indirect 

branch targets are more weighted because they incur higher penalties. 

2.3 Branch Target Prediction  

The target of a branch is usually predicted by a Branch Target Buffer (BTB).  The 

BTB is a cache-like structure that keeps branch target addresses as its entries.  The BTB 

is indexed by a portion of the branch instruction address.  Each BTB entry typically 

includes the tag field, the valid bit, and the replacement bits for multi-way BTBs (see 

Figure 2.2).   
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Figure 2.2  Branch-target buffer 

The tag field includes another portion of the branch address or a compressed 

version of the remaining address bits.  This reduces the size of the tag field (and 

consequently the number of transistors needed to implement the BTB) with minimal or 

no negative influence on prediction accuracy.  If the branch target provided by the BTB 

turns out to be incorrect (mispredicted target address), the corresponding BTB entry is 

updated with a new branch target address after the branch is resolved.  

An indirect branch can have multiple branch targets.  The BTB is addressed by 

the branch IP address only, allowing only for one branch target address to be successfully 

predicted.  Once, the target is changed, the BTB makes misprediction.  A separate 

hardware structure named an indirect branch target buffer (iBTB) can be employed to 

handle multiple target address of indirect branches.  The iBTB can override the target 

address coming from the BTB.  

The target of an indirect branch correlates to a program path taken to reach the 

particular indirect branch target.  In hardware, the path can be represented by a shift 

register containing different branch information (for example address bits, and branch 
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outcome).  This information can be used to address the iBTB.  The Pentium M processor 

includes an indirect branch predictor with an entry as shown in Figure 2.3.  If a branch is 

marked as an indirect one, an iBTB lookup is performed in order to retrieve a correct 

target address.  
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Instruction
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Figure 2.3  Indirect branch target address prediction in Pentium M (as presented in [2]) 

2.4 Static Branch Outcome Prediction  

The static prediction mechanism is a simple decision on outcome based on the 

branch type and displacement.  For example, backward branches can be statically 

predicted as taken, because they tend to be taken more often than not taken, for example 

in loops.  Similarly, forward branches can be statically predicted as not taken.  Behavior 

of program branches can be observed using program profiling, and special compiler hints 

or instructions can be used to enforce favorable prediction for a particular branch.  

However, to statically predict a branch, the prediction mechanism waits for the branch to 
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be decoded resulting in pipeline stalls.  Static prediction techniques are sometimes used 

in modern processors when the dynamic prediction is not available for a given branch. 

2.5 1–Bit Outcome Predictor 

Branch outcomes can be dynamically predicted using a table where each table 

entry contains a bit that says whether the branch was recently taken or not.  A table of  

1-bit predictors is usually addressed by a part of the branch address.  Consequently, the 

branch outcome prediction is the same as the outcome of the last branch that addressed 

the same entry. 

2.6 2–Bit Outcome Predictor 

The main disadvantage of the 1-bit predictor is its inability to accurately predict 

loop branches.  Each loop branch has two mispredictions per loop: the loop exit and the 

first loop iteration.  A 2-bit saturating counter allows the outcome to change its direction 

once before the prediction gets changed.  The two-bit saturating counter (bimodal) is a 

four state finite state machine.  The states are “Strongly Taken” (ST), “Weakly Taken” 

(WT), “Strongly Not Taken” (NT), “Weakly Not Taken” (WN).  The transitions between 

states are controlled by the branch outcomes (T or NT).  There have been many different 

implementations of the transitions between the states and the most frequently used one is 

shown in Figure 2.4.  The bimodal counter’s MSB bit determines the outcome prediction.  

During execution of the program code, the counter is decremented or incremented 

according to the branch outcome. 
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Figure 2.4  Bimodal saturating counter 

2.7 Two-level Predictors 

Two-level adaptive predictors are considered as a basic point for development of 

the modern branch prediction units.  The first two-level adaptive predictor was 

introduced by Yeh and Patt [8].  The same authors present thorough analyses of different 

two-level predictor schemes and their accuracy in different applications [9] [10]. 

The two-level predictor has two major structures: the branch history register 

(BHR) and the branch history table (BHT).  The branch history register is a shift register 

containing the outcomes of the recent program branches.  A branch predictor may use an 

array of individual BHR registers, each tracking a local history of a branch; this array of 

BHRs is known as a history register table (HRT).  The BHR is used as an index to the 

BHT to select a bimodal entry that will provide the prediction.  Depending on the number 

of BHR registers, three main classes of 2-level predictors are developed as follows.    

• Per-address schemes (PA) select an appropriate BHR in the HRT table by a 

part of the branch address.  If N address bits are used to address the HRT, 

there are 2N BHR registers.  



 

21 

• Per-set schemes (SA) select an appropriate BHR in the HRT table by a set 

address obtained from the branch IP address. Consequently, the number of 

BHRs is smaller than in the PA schemes.  

• Global schemes (GA) use one BHR register for all program branches. 

Each of the three classes of schemes can be further divided into sub-schemes 

according to the number of BHT tables.  Figure 2.5 shows three sub-schemes of the PA 

scheme.  Figure 2.5(A) shows the Per-Address Global scheme (PAg).  This scheme uses 

one BHT table.  Figure 2.5(B) shows the Per-Address address scheme (PAp).  This 

scheme uses 2k BHT tables, where k is the number of address bits used to access the 

BHT.  Figure 2.5(C) shows the Per-Address per-set scheme (PAs).  This scheme divides 

a number of address bits used to access the BHT tables into S sets to lower the number of 

BHT tables. 
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Figure 2.5  PA two-level schemes as presented in [8] 
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Figure 2.6 shows the Global-Address global scheme (GAg).  The GAg scheme 

uses one BHR and one BHT table.  The GAg predictor is a basis for the majority of 

modern branch prediction units.  Predictors described further are all two-level predictors 

with one BHR and one BHT, although the BHR may be combined with other branch 

information to access the BHT and BHT and may be divided into several tables to look 

closely to GAs scheme.  

 

 

BHT
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Predictor

Predictor  

Figure 2.6  GAg two-level scheme 

2.8 GShare Predictor 

In the GAg scheme, indexing in the BHT is based solely on the BHR, which is 

affected by the last N outcomes of the program branches.  McFarling proposed a so called 

GShare predictor [11].  The original GAg scheme is changed and the BHR is XOR-ed 

with a part of the branch address to create a hash function to access the BHT.  This 

approach proved to be more accurate than the other existing schemes.  
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With the introduction of the GShare, two-level predictors become focused on the 

GAg scheme rather than on the PA schemes.  GShare is still widely used in commercial 

processors and many processor simulators include the GShare as the outcome predictor. 

2.9 Hybrid Predictors 

McFarling [11] introduced a hybrid predictor.  The bimodal predictor augments the 

Gshare predictor (see Figure 2.7).  The bimodal predictor is used for highly biased 

branches where constant decision on NT or T outcome is enough for accurate prediction. 

Chooser is logic needed to make the final prediction from two outcome predictions 

coming from the bimodal and the GShare predictor.  This logic can be as simple as a  

2-bit saturating counter table (the same one used for bimodal table).  The chooser 

counter’s MSB bit selects the final prediction between the two provided. 
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Figure 2.7  Hybrid predictor 
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The tournament predictor is a hybrid predictor, where GShare (the global predictor) 

is working in parallel with a local predictor instead of the bimodal predictor [1].  The 

tournament predictors are accurate since they cover two sides of branch correlations 

(local and global), but they are not cost-effective, because local and global correlations 

are just partially orthogonal.  This leads to having redundant information in the local and 

global predictors. 

2.10 De-interference Techniques 

Negative interferences occur when two branches with opposite outcomes compete 

for the same predictor’s entry.  One or both outcomes are mispredicted.  Interference 

misses are shown to be a more important limitation in achieving higher prediction rates 

than the predictor size.  Here we give a brief description of 3 of most influential de-

interference techniques: (a) Agree predictor, (b) Bi-mode predictor, and (c) Skewed 

predictor. 

2.10.1   Agree Predictor 

The Agree predictor [12] is one of the first predictors to try and cope with 

negative interferences.  The Agree predictor introduces a bias bit dedicated for each 

branch.  It assumes that two branches with opposite outcomes that compete for the same 

predictor’s entry may have correct bias bit.  The bias bit is usually allocated in the BTB 

and reflects the first occurrence of a branch that is usually a dominant one during the 

program execution. 

Instead of providing prediction for a particular branch, the saturating counter 

provides information on whether the predictor agrees or disagrees with the bias bit.  If we 
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assume that two branches with opposite outcomes have correct bias bits, the global 

predictor may provide the same information for both branches, e.g., “agree,” and both 

branches will be correctly predicted.  The Agree predictor suffers from the bias bit 

implementation issues and moreover, in modern predictors, the bias bit is not considered 

accurate enough to have prediction relying on it.   

2.10.2   Bi-mode Predictor 

The Bi-mode predictor [13] introduces two BHT tables, a not taken table 

(NT.BHT) and a taken table (T.BHT).  Each table stores only one type of outcome.  A 

bimodal table is used to select between T.BHT and NT.BHT.  An index hash function is 

used to access the selected table (see Figure 2.8). 

The Bi-mode predictor translates a significant amount of negative interferences 

into neutral interferences.  As long as the bimodal table selects the correct table, negative 

interferences are not possible.   
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Figure 2.8  Bi-mode predictor 
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2.10.3   Skewed Predictor 

The skewed predictor [14] resolves a source of collision by trying to increase 

associativity of the BHT.  Since a tagged BHT is too expensive to implement, a special 

function named Skew function emulates a tag.  The skewed branch predictor splits the 

PHT into three even banks and hashes each index to a 2-bit saturating counter in each 

bank using a unique hashing function per bank (f1, f2 and f3).  The prediction is made 

according to a majority vote among the three banks.  If the prediction is incorrect, all 

three banks are updated.  If the prediction is correct, only the banks that made a correct 

prediction will be updated.  The reasoning behind partial updating is that if a bank gives a 

misprediction while the other two give correct predictions, the bank with the 

misprediction probably holds information which belongs to a different branch.  In order 

to maintain the accuracy of the other branch, this bank is not updated.  The skewed 

predictor stores each branch outcome in two or three banks.  This redundancy of 1/3 to 

2/3 of the PHT size creates capacity aliasing but eliminates much more conflict aliasing, 

resulting in a lower misprediction rate. 

2.11 Filtering and Branch Classification 

De-interference methods use a global predictor as the base predictor and then 

augment it to improve its accuracy.  Filtering methods try to cope with redundancy of 

allocated data in the hybrid predictor as well as with enabling smaller predictors.  

Filtering relies on classifying branches into different groups, where branches from each 

group are guided into a separate predictor structure tailored for that class of branches.  

The majority of the program branches are always taken or always not taken branches and 
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are easily predictable by the less costly bimodal predictor.  A significant number of 

branches are highly locally correlated such as loop branches.  

2.11.1  Counter and Bias-bit Based Filtering 

Chang et al.[15] present a filtering technique that uses a counter in the BTB as 

well as a bias bit.  The bias bit is set by the first branch outcome and is toggled every 

time the branch changes its outcome.  The counter is used as a bias bit confidence value.  

The counter is incremented every time a branch outcome complies with the bias bit.  If 

the counter is in saturation, a bias bit is used to predict the branch and the global predictor 

is not used nor updated.  If the branch is mispredicted, the counter is reset.  This way, the 

contention in the global predictor is reduced.   

This filter technique involves tight relations with the BTB, making it difficult to 

implement.  Moreover, by allowing the less accurate bias bit to predict the outcome until 

the counter is in saturation makes this approach less suitable for modern branch 

predictors. 

2.11.2  YAGS Predictor 

The YAGS predictor combines filtering and de-interference techniques [16].  It is 

based on the Bi-Mode predictor, but the NT.BHT and T.BHT tables are tagged in order to 

achieve a better filtering.  Both tables can allocate only the branches with outcomes that 

do not comply with a bimodal predictor.  The bimodal table is used as the selector 

between NT.BHT and T.BHT as well as the outcome predictor.  If the bimodal predictor 

is able to predict the branch correctly, NT.BHT and T.BHT tables are not updated. 



 

28 

2.11.3  Serial-BLG Predictor 

McFarling’s Serial-BLG predictor [7] uses multiple predictor stages, each of 

which passes its prediction onto the next stage.  Each stage overrides the prediction from 

the previous stage only if it can refine the current prediction.  The serial predictor 

significantly reduces size of each stage; each stage handles only those branches that are 

not predicted accurately by the previous stages.  All predictor stages allocate an entry for 

a particular branch as in the parallel hybrid predictor, but the stage does not update the 

replacement bits if it was unable to offer a better prediction than the previous stage.  This 

way redundant entry in later stages is going to be replaced sooner.  

The serial-BLG predictor implements three stages (see Figure 2.9) and handles 

four different classes of branches: (a) biased branches which are easily predictable with a 

bimodal predictor; (b) locally correlated branches which are predictable by a local 

predictor; (c) loop branches, predictable by a local loop predictor; and (d) all other 

branches that are handled by a global predictor.  

The serial-BLG successfully copes with negative interferences and offers an 

excellent way for branch classification.  Three predictors use relatively separated stages 

where each can be designed separately with well defined interfaces that connect them.   
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Figure 2.9  Serial-BLG predictor organization 
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2.11.4   Loop Predictor 

The loop predictor is a cache structure used to recognize and predict loop 

branches.  The loop predictor is trained to recognize the maximum loop count.  It 

provides the opposite prediction when the current iteration counter reaches the maximum 

loop count.  The Intel Pentium M’s loop branch predictor unit uses a 2-counter scheme as 

shown in Figure 2.10.   The first counter tracks current loop branch iteration and the 

second counter keeps the maximum loop value determined during previous loop runs.  

When counters match, a prediction provided by the loop predictor flips from the default 

prediction. 
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Figure 2.10  Loop predictor counters in Pentium M (as presented in [2])  

2.12 Perceptron 

Perceptrons are learning elements introduced in 60’s in theory of neural networks. 

Neural branch prediction is first proposed by Vintan [17].  Vintan considers branch 

prediction as a particular problem in a broader class of pattern recognition problems that 
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can be solved by neural networks.  The neural predictor has ability to exploit long 

histories at the cost of a linear resource growth. Classical predictors impose an 

exponential resource growth.  Further development of the perceptron predictor was taken 

by D. Jimenez.  Jimenez [18] presents a hybrid predictor similar to the GShare predictor 

[11], but with significant improvements in accuracy.  The main disadvantage of the 

perceptron predictor is its high latency.  Fast-path neural predictor presented by the same 

author [19] is a predictor with latency comparable to the state-of-the-art predictors used 

in industry.  However, the perceptron prediction relies on arithmetic functions (add) that 

increase the predictor’s latency. 

Inputs to the perceptron are branch outcome histories just like in the two-level 

adaptive branch prediction.  The output of the perceptron is non-negative (branch 

predicted taken) and negative (branch predicted not taken). One perceptron element is 

shown in Figure 2.11.   

The inputs (x’s) come from the branch history and they are equal to -1 or +1.  The 

output (y) is a product of x’s and w’s.  A training mechanism finds correlations between 

the history and the outcome (w factors).  The bias weight, w0, is proportional to the 

probability that the branch is taken.   

 

 



 

31 

1 X 1 X 2 X n...

y

W 0 W 1 W 2 W n

y =  W 0 + XiW i

 

Figure 2.11  Perceptron basic element 

2.13 Confidence Value 

Confidence is the measure of accuracy of the branch prediction.  A basic 

confidence value is for example Strongly-Taken and Weakly-Taken branch prediction 

states in the bimodal predictor.  The hybrid predictor’s chooser may use the confidence 

value in selecting the prediction from a predictor with the highest confidence value.  It 

can also be used in performance-power trade-offs.  For example, we may opt not to 

speculatively pursue a program path as indicated by the prediction if the confidence in 

that prediction is low.  Even though this approach may result in performance degradation, 

it could be beneficial for power consumption. 

Jacobsen et al. [20] propose a hardware mechanism that partitions conditional 

branch predictions into two sets: those that are predominantly accurate and those that are 

less accurate.  The objective is to concentrate as many of the mispredictions as practical 

into a relatively small set of low confidence dynamic branches.  Confidence value can be 

used to allow threads, predicted with a high confidence, to have priority over those with 

low confidence.  This research indicates that a relatively simple confidence mechanism 

can isolate 89% of the mispredictions into a set containing 20% of the dynamic branches. 
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CHAPTER 3 

 

 

INDUSTRIAL IMPEMENTATIONS OF THE BRANCH 

PREDICTORS 

 

 

This section presents an overview of known branch predictors’ implementations 

in commercial processors, with an emphasis on the branch predictor unit found in the 

Intel’s P6 architecture.  

3.1 Branch Prediction Unit in Intel’s P6 Architecture  

Several details about the branch predictor unit found in Intel’s P6 architecture 

have emerged.  Some of these details are implied in the Intel’s software optimization 

manual for P6 architecture [21]; for example, the manual indicates the existence of a 

local predictor with a 4-bit long branch history register.  More details have emerged from 

an early reverse engineering effort by Milenkovic et al. [3]. They found the following: 

The P6 architecture has a BTB organized in a cache structure with 128 sets and 4 ways 

(the total number of entries is 512).  Address bits IP[10:4] are used as thr BTB index.  

The outcome predictor includes only a local predictor with 4-bit long BHR with no global 
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component.  The findings from [3] are later confirmed by chief architects of P6 

architecture in the book by Shen and Lipasti [22]. 

More details about the P6 branch predictor unit emerge in an Intel patent [23].  

This patent presents a detailed BTB organization identical to the one found in [22]. The 

patent also describes the place of the branch predictor unit (BPU) in the pipeline and its 

interaction with other units in the processor’s front-end (see Figure 3.1).   
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Figure 3.1  Pentium P6 Front-End and its branch predictor unit (as presented in [23]) 

The instruction fetch unit (IFU) sends the instruction pointer IP to the BTB.  The 

BTB uses a portion of the instruction pointer to select a set in the BTB.  The tag field of 

the incoming instruction pointer is compared to the tag fields of 4 entries in the selected 

set (see Figure 3.2).  If a matching entry is found, the offset field is used to determine 
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whether hit will be reported or not.  The offset field is used to select a right entry if 

multiple entries in the selected BTB set have matching tags.  If there are multiple hits in 

the BTB, an entry with the lowest offset that is still larger than or equal to the instruction 

pointer is selected.  The BTB tag is 9 bit long and 7 bits are obtained by compressing 

address bits IP[29:11]. Two most significant tag bits are address bits IP[31:30] to allow 

better detection of the jumps to the operating system service routines. If the incoming tag 

does not match, a new entry is allocated.  The replacement policy bits (LRR bits) select 

an entry for allocation.   
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Figure 3.2  Organization of the BTB and layout of one BTB entry (as presented in [23]) 

The BAC unit provides the target address to be stored in the selected BTB entry 

in case of a BTB miss or in the case that the provided target address is incorrect (BTB hit, 

but the target address is mispredicted). 
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In addition, if we have a BTB hit that comes from a non-branch instruction (a 

bogus branch), the selected BTB entry is invalidated.  This early BTB update is desirable 

due to superscalar execution.  If the branch has a mispredicted outcome, the branch 

history table needs to be updated with the new outcome. 

Multiple branches exist at any point in different pipeline stages.  An incoming 

branch may not see its prehistory retired yet, and therefore the outcome history for that 

branch may have entries related to more distant branches. This is a reason why the BTB 

along with the outcome history employs a speculative outcome history.  If it is accurate, a 

speculative bit will be set to inform internal logic to take a speculative history as a valid 

one.  Otherwise a real branch history (outcome of retired instructions) is used. 

Figure 3.3 shows the organization of instruction fetch lines in Intel’s P6 

architecture.  If a branch instruction spans multiple 16-byte lines (as illustrated in  

Figure 3.3), the BTB will handle that branch (tag, index, and offset) based on the address 

of the last byte of that instruction. Consequently, the offset field will be 1h, and index 

field will be 2h. 
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Figure 3.3  Fetch line in P6 architecture (as presented in [23]) 
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3.2 Branch Prediction Unit in Intel’s NetBurst Architecture  

Starting with the Pentium 4, Intel claims significant improvements in the branch 

prediction accuracy [24].  Milenkovic et al. [3] showed that NetBurst architecture 

(Northwood core) uses a global predictor decoupled from the BTB.  The BTB is a 4-way 

structure organized in 1024 sets (the total number of entries is 4096).  Address bits 

IP[13:4] are used as the BTB index.  The global predictor is addressed by a single BHR 

which is 16-bit long.  The internal organization of the global predictor is unknown, but it 

is indicated that it has 4096 entries.  Intel specifically refers to the global predictor as a 

proven to be better than the GShare predictor. NetBurst architecture uses static prediction 

mechanism if the branch is not found in the BTB.   

3.3 Branch Prediction Unit in Intel’s Pentium M  

Intel technology journal [2] describes the Pentium M branch prediction as the 

same one used in the NetBurst architecture with addition of a loop and an indirect 

predictor.  The loop predictor uses two counters as described in Section 2.11.4. The 

indirect target predictor is presented as a separate entry.  The indirect branch prediction 

from the indirect predictor is conditional upon the BTB hit.  If the indirect predictor 

misses, the BTB provides the target prediction (see Figure 2.3). The Intel technology 

journal [25] indicates that the outcome predictor is designed from scratch.  The 

optimization manual indicates that all branches are predicted dynamically, which likely 

means that the outcome predictor includes a bimodal table, in addition to a global 

predictor.  This is a starting assumption in our investigation.  
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3.4 AMD K6 and K7 

The AMD K6 line of microprocessors features a highly accurate 8K-entry GAs 

branch predictor; however, the K7 AMD Athlon microprocessor has scaled-back to the 

2K-entry predictor [26].  The predictor does include a few simple but proprietary 

enhancements to improve its behavior in important special cases.  It seems that power 

consumption constraints and branch predictor latency drive designs toward smaller, but 

more sophisticated branch predictors with support for de-interference and classification. 

Athlon K7 predicts branch target addresses using a 2K-entry branch target address cache. 

3.5 Alpha 21264 

Alpha 21264 processor implements a tournament predictor consisted of one GAg 

predictor and one PAg predictor [27]. The GAg predictor has a 12-bit BHR and a  

4K-entry BHT with 2 bit counters.  The PAg has a 10 bit BHR and 1K-entry with 3-bit 

counters.  

3.6 Sun UltraSPARC-IIIi 

Sun UltraSPARC-IIIi processor uses 16K-entry GShare predictor with two bit 

counters [22]. Bimodal predictor is also implemented and it XOR address bits with global 

history register (except 3 lower order bits) to reduce aliasing. 
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CHAPTER 4 

 

 

EXPERIMENTAL ENVIRONMENT 

 

 

This section describes an approach used in reverse engineering of branch 

predictor units.  We give a brief description of performance monitoring registers and a 

list of branch-related events that can be monitored in Pentium M processors. We also 

give a short description of Intel’s VTune, a performance-tuning tool we used to run 

microbenchmarks and perform measurements of interest.  

4.1 Reverse Engineering Flow 

Figure 4.1 shows a generalized experiment flow of the reverse engineering 

process.  In Step 1, a reverse engineer makes a hypothesis on a particular predictor 

structure or a mechanism and assesses a testing space that will cover all design structure 

details.  In Step 2, a microbenchmark (or a series of microbenchmarks) is developed in C 

and/or assembly language.  The microbenchmark has to (a) identify and isolate 

parameters/mechanisms for hypothesis testing (b) amplify the parameters/mechanisms of 

interests so they can be easily measured or observed, and (c) mask out effects of all other 
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microarchitectural parameters/mechanisms.  The reverse engineer also needs to select a 

list of observable events on the given architecture of interest for the 

mechanisms/parameters tested in the hypothesis.  This step ends with the reverse 

engineer making a simulation by hand and establishing expectations for the given 

hypothesis.   
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Figure 4.1  Reverse engineering flow 

In Step 3, microbenchmarks are executed and microarchitectural events are 

collected using a performance monitoring tool (Intel’s VTune in this thesis).  In Step 4, 

collected microarchitectural events are analyzed and compared with the expectations 

made in Step 1.  In Step 5, we decide whether the hypothesis is confirmed or not.  If the 
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hypothesis fails, we modify the hypothesis and accordingly the microbenchmark.  In  

Step 6, after the hypothesis is possibly confirmed, the reverse engineer can try to find a 

slightly different experiment to re-confirm the hypothesis (for example, a number of 

different experiments can be used to find the number of ways in a set-associative cache 

structure).  

4.2 Performance Monitoring Registers  

Modern processors include performance monitoring counters and corresponding 

logic that allows programmers to specify one or more microarchitectural events that can 

be monitored (measured) in real-time.  For example, programmers can measure the 

number of clock cycles a program or a part of the program takes to execute, they can 

monitor the number of cache misses, the number of branch instructions, and the number 

of mispredicted branches, to name just a few hardware events.  Insights gained in this 

process can be used for manual or guided program optimization.  For example, a 

significant number of data misses can be reduced by changing the data layout in memory 

or by dividing program data sets into smaller pieces that better fit the memory hierarchy 

in a given processor.  When a performance monitoring counter overflows, the 

corresponding logic triggers an exception, so the exception service routine can keep the 

track of the number of events.  

4.3 Branch related microarchitectural events 

Here we describe branch-related events specific for the Pentium M processors 

which are used in our reverse engineering effort.  Table 4.1 shows the branch related 

events in Pentium M and the description provided from the Intel’s VTune.   
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Table 4.1  Branch related microarchitectural events in Pentium M processor 

Event name Event description 
Branch Instructions 
Decoded 

Event indicates the number of branch instructions decoded. 

Branch Instructions 
Executed 

Event counts all executed branches (not necessarily retired). 
This includes only macro instructions and not micro branches.  

Branch Instructions 
Retired  

Event indicates all retired branches. This includes only macro 
instructions and not micro branches. 

Branch 
Mispredictions 
Retired  

Event measures all retired executed to completion branch 
mispredictions. This includes:  Branches that were incorrectly 
predicted as "taken" and were discovered to be "not taken" 
only after retirement, Branches that were incorrectly predicted 
as not taken and were discovered to be taken after retirement. 

BACLEARS 
Asserted 

Event indicates branch mispredictions, where the branch 
decoder decides to make a branch prediction because the BTB 
did not, or, rarely, tries to override the BTB's prediction. Each 
branch misprediction of this type costs approximately 5 cycles 
of instruction fetches. The effect on total execution time 
depends on the surrounding code 

Mispredicted Branch 
Instructions 
(Mispredicted at 
Decoding)  

Event counts the number of branch instructions that were 
mispredicted at decoding. 

Mispredicted Branch 
Instructions 
(Mispredicted at 
Execution)  

Event counts the number of branch instruction mispredicted at 
execution.  

 

Mispredicted 
Conditional Branch 
Instructions Executed 

Event counts the number of mispredicted conditional branch 
instructions that were executed. 

 
Mispredicted Indirect 
Branch Instructions 
Executed 

Event counts the number of mispredicted indirect branch 
instructions that were executed. 

 
Taken Branch 
Mispredictions 

Event, the VTune Performance Analyzer counts those 
branches that were incorrectly predicted as taken and were 
discovered to be not taken only after retirement. 

Taken Branch Retired Event, the VTune Performance Analyzer counts the number of 
taken branches that are retired or completed. 
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It should be noted that the available literature often gives very vague description 

of certain events, so their exact nature is somewhat open for interpretation. For example, 

Mispredicted Branch Instructions (Mispredicted at Decoding) is described as “Event 

counts the number of branch instructions that were mispredicted at decoding.” This 

makes the event difficult to associate with the parameters of our interest – it could be a 

BTB miss (the tag does not match) or it could a BTB hit with mispredicted branch target.   

The following branch related events are of great interest for the effort presented in 

this thesis: (a) Mispredicted Branch Instructions (Mispredicted at Decoding) MBI_DEC, 

(b) Mispredicted Branch Instructions (Mispredicted at Execution) MBI_EXEC, and (c) 

the Mispredicted Indirect Branch Instructions Executed (MBIE).   

Our experiments indicate that the event MBI_DEC counts both the number of 

BTB misses and the number of BTB target mispredictions when the outcome predictor 

predicts branches as taken.  If the MBI_DEC event count is high and the MBI_EXEC 

event is low, we consider this as an indication that after decoding, branch target was 

known and the misprediction does not propagate further in the pipeline to execution 

stages.  We relate the MBI_EXEC event to the branch outcome misprediction.  The 

MIBIE event in experiments related to the indirect branch predictor in the Pentium M and 

can also expedite the experimental flow used in determining organization of the global 

predictor. 

4.4 VTune - Tool for Collection and Selecting Hardware Events 

VTune is a performance tuning environment for Windows and Linux developers 

from Intel [28].  VTune provides more capabilities than just an observation of the 

hardware events.  VTune monitors the performance of all active software and is able to 
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identify “HotSpots” or bottlenecks in a program and analyze program performance as it 

executes on an Intel microprocessor platform.  VTune can examine each instruction and 

uncover problems at machine code level including optimization of the code using 

context-sensitive on-line tuning suggestions. 

We use the VTune just as a tool to collect microarchitectural events related to 

branch instructions in order to determine the branch predictor unit hardware organization. 
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CHAPTER 5 

 

 

MICROBENCHMARKS FOR THE REVERSE ENGINEERING 

OF THE BRANCH TARGET BUFFER 

 

 

5.1 Objectives 

The goal of this section is to develop an experimental flow and a set of 

microbenchmarks that will help us determine the size and organization of the branch 

target buffer.  We expect the branch target buffer to have a cache-like structure and we 

want to determine the branch target buffer cache parameters (size, sets, ways, index, tag, 

replacement policy).   

5.2 Contributions 

We developed an experimental flow and a set of microbenchmarks for 

determining organization of the branch target buffer.  The experimental flow and 

microbenchmarks applied on a Pentium M processor provide the following insights.   
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1) The BTB is decoupled from the outcome predictor and always not taken branches 

are not allocated in the BTB. 

2) The BTB number of ways is a 4-way structure with 512 sets. 

3) The BTB index bits are instructions pointer bits [12:4]. 

4) The BTB tag bits are instructions pointer bits [21:13]. 

5) The BTB replacement policy is based on the LRU policy but this policy is 

reinforced only on branches that at least once hit in the BTB. 

6) BTB can allocate multiple branches with the identical tag in the same set. Each 

BTB entry includes offset field to achieve this functionality. The offset field is 

equal to the last four bits of the branch instruction pointer. Therefore, multiple 

hits are possible. Among all BTB hits, the offset mechanism selects the entry with 

the smallest offset yet not smaller that the instruction pointer. 

False hit in the BTB (a bogus branch) causes eviction of the whole BTB set. 

5.3 Background 

The BTB is typically implemented as a set-associative cache structure (Figure 5.1), 

with each entry storing critical information about the branch: the full branch target 

address, the branch type (for example, direct or indirect), the branch offset, and the tag. 

The BTB can be indexed by a portion of the branch address. An alternative 

implementation may combine a portion of the branch address with a path history register 

(e.g., the index is an exclusive-or function of a portion of the branch address and the path 

history register).  The tag field can be another portion of the branch address or a 

compressed version of remaining 21 address bits, rather than a full address tag.   
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Figure 5.1  Branch Target Buffer 

In reverse engineering of a BTB the following information is sought: 

1) BTB organization; 

BTB size (number of entries) 

Number of ways 

Number of sets 

INDEX bits, TAG bits 

2) Replacement policy (Way replacement) 

3) Allocation/Eviction policy 

 
Before going into details about branch target buffer experiments, we shall introduce 

several assumptions related to Intel architectures.  The instruction fetch unit is fetching 

16-byte instructions lines; branch instructions that are never taken do not allocate an 

entry in the BTB; and the branch address of an instruction that spans two 16-byte 

instruction lines is determined by the address of the last byte in that instruction and it 

belongs to the second 16-byte line.  All these assumptions could be easily verified with a 

set of specific microbenchmarks that can be applied in a later stage once more details 

become available.  
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5.4 BTB Organization Tests 

In determining BTB organization we start with an experimental flow first 

introduced by Milenkovic et al. [3].  A so called BTB-capacity test stresses the BTB 

structure trying to find the maximum number of branches that can fit in the BTB.  A so 

called BTB-set test stresses the BTB structure trying to find the maximum number of 

branches that can fit in a single BTB set.  

5.4.1 BTB-capacity Tests 

A number of conditional taken branches (or unconditional direct or indirect taken 

branches), B, are placed at equidistant addresses in memory with distance D (see  

Figure 5.2). By varying the parameters B and D, we can, under certain conditions, 

determine the BTB size.  For example, let us assume a BTB with 512 entries, organized 

in a 4-way cache structure, where branch address bits IP [10:4] are used as the BTB 

index.  By varying B=128, 256, 512, 1024, 2048 and D=2, 4, 8, 16, 32, 64 and measuring 

the misprediction rate for the branches mispredicted at decoding, we expect the results as 

shown in Figure 5.3.  When the number of branches is equal to the number of entries in 

the BTB, there exists 3 “fitting” distances D (D=4, 8, 16) that result in a very low 

misprediction rate. When the number of branches exceeds the number of entries in the 

BTB, the mispredictions rate is high (close to 100%).  By lowering the number of 

branches, the number of fitting distances increases; for example, we have 4 fitting 

distances for B=256 (D=4, 8, 16, 32) and 5 fitting distances (D=4, 8, 16, 32, 64) for 

B=128.  
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Address Code 
 void main(void) { 

  int long unsigned i; 

  int long unsigned liter = 1000000; 

  for(i=0;i<liter;i++){ 

  _asm {  

    // dummy non-branch instructions 

@A    jle l0     // always taken 

    // dummy non-branch instructions 

@A+D   l0: jle l1  // always taken  

    // dummy non-branch instructions 

@A+2D   l1: jle l2 

    ... 

@A+4094D   l4093: jle l4094  // always taken 

    // dummy non-branch instructions 

  } 

@A+4095D   }                    // always taken 

 } 

Figure 5.2  BTB-capacity microbenchmark example for B=4096 
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Figure 5.3  Expected misprediction rate as a function of the number of branches B, and 
the distance between branches, D for a BTB organized in 128x4 cache structure 
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In the general case, when the BTB-capacity test with B = NBTB spy branches gives 

m “fitting” distances, the number of ways in the BTB is NBTBWAYS = 2m-1 and the index 

bits used are IP[i+j-m:i], where the maximum fitting distance DMAX = 2i, and j=log2NBTB.  

A generalized equation used in the BTB-capacity test analysis is shown in Equation (5.1) 
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(5.1) 

 

It should be noted that this reasoning can be applied only if certain conditions are 

satisfied: (a) a portion of the branch address is used as the BTB index, (b) address bits 

above the index field are used as the tag in the BTB, (c) branch address offset bits are 

stored in the BTB, and (d) replacement policy is the round-robin, the least recently used 

or one of its derivatives.   

We measure the number of branches mispredicted at decoding (MBI_DEC). 

Figure 5.4 shows the misprediction rate calculated as the MBI_DEC divided with the 

number of spy branches as a function of B (B=512−4096) and D (D =2−128).   

When B=1024, there exists 3 values for D (D = 4, 8, 16) with no mispredictions.  

This result indicates a BTB organized as a 4-way cache structure with 1024 entries.  

When B=2048, there exists only one value D (D=4) with no mispredictions.  If we 

assume that the BTB size is 1024 entries, the expected misprediction rate should be high 

for all distances with B=2048. One possible explanation for this anomaly is that the 

branch predictor unit does not allocate an entry in the BTB for every branch instruction 

because three out of four branches have targets in the same 16-byte fetch line.  This 

assumption does not hold because a similar reasoning should apply when B=4096 and 
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D=4 as well as for all experiments with D=2.  However, the misprediction rate in those 

cases is relatively high, though not close to 100%.  Another possible explanation is that 

the BTB is a 2-way structure with 1024 entries.  However, this assumption does not hold 

either, because in that case we should see a high misprediction rate for B=1024 and D=4 

(4 branches with the same tag would miss in a 2-way structure).  Rather, we see a low 

misprediction rate.  Yet another possible explanation is that the BTB is a 4-way structure 

with 2048 entries, but the BTB allocation policy and/or replacement policy are a source 

of “unexpected” behavior when B=2048 and D=8 and D=16 (we observe relatively high 

misprediction rate of 60% for D=8, though we expect no mispredictions under these 

conditions).  Consequently, we conclude that the BTB-capacity tests alone is not enough 

to decisively determine the size and organization of the BTB and more experiments that 

will stress a BTB set and BTB allocation/replacement policy are required.  
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Figure 5.4  BTB-capacity test results for B=512−4096 and D=2−128 
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5.4.2 BTB-set Test 

Instead of finding the number of branches B that fills the whole BTB, an 

alternative experiment finds the number of branches that fills a BTB set, and a distance 

DS such that those branches map into the same set (see Figure 5.5).  These types of 

experiments are called BTB-set tests. We analyze the misprediction rate as a function of 

the distance DS and the number of branches B.  When the distance between branches 

exceeds 2MSB(Index) bytes (DS>2MSB(Index)), the curve knee point for the misprediction rate 

is when B becomes equal to the (number of ways +1), and it does not depend on DS.  

When DS ≤ 2MSB(Index), the curve knee point for the misprediction rate is a function of both 

B and DS.  When  DS>2MSB(Tag), the curve knee point for the misprediction rate is when 

B=2.  The corresponding microbenchmark is similar to the BTB-capacity test, but we 

deal with a smaller number of branches B placed at equidistant locations with larger 

distances DS.   

 

 
Address Code 
 int long unsigned i, a=1, liter = 1000000; 

 do { 

@A  if(a==0){ // dummy non-branch instructions (skipped) 

  } 

@A+x  // dummy non-branch instructions (executed) 

@A+DS  if(a==0){ // dummy non-branch instructions (skipped) 

  } 

@A+DS+x  // dummy non-branch instructions (executed) 

@A+2DS  if(a==0){ // dummy non-branch instructions (skipped) 

  } 

@A+2DS+x  // dummy non-branch instructions (executed) 

@A+3DS  if(a==0){ // dummy non-branch instructions (skipped) 

@A+3DS+x  // dummy non-branch instructions (executed)  

    liter--; 

 } while(liter>0); 

Figure 5.5  BTB-set microbenchmark 
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The microbenchmark shown in Figure 5.5 includes 4 spy conditional branches 

placed at equidistant locations.  It should be noted that a number of non-branch dummy 

instructions is executed between two spy branches; this way we ensure that occurrences 

of the spy branches are separated in time, giving each branch instruction enough time to 

update the BTB before the next one is executed.  However, time separation is not 

possible in the experiments with rather small distances DS.  

In the BTB example described above (128 sets, 4 ways, with index bits IP [10:4]) 

B=4 spy branches placed at distance D=2 Kbytes map in the same BTB set.  They all fit 

in the BTB producing no mispredictions if their tags are unique (for example, let us 

assume a 9-bit tag, Tag=IP [19:11]).  If we try to map 5 branches with the same distance, 

we should see an increase in the misprediction rate.  The actual misprediction rate 

depends on the replacement policy and should be close to 100% if the round-robin or the 

LRU replacement policy is implemented.  A further increase in the number of branches 

mapped in the same BTB set will result in high misprediction rate.  

A set of BTB-set microbenchmarks can be used not only to verify findings of the 

BTB-capacity test (e.g., the number of sets, the number of ways, index bits, and offset 

bits), but also in determining address bits used for the tag field in the BTB.  A 

generalized experimental flow is shown in Figure 5.6. Appendix B shows the BTB-set 

algorithm flow applied to the 4-way BTB with 512 entries, where branch address bits 

IP[10:4] are used as the BTB index and branch address bits IP[10:4] are used as the BTB 

tag. 
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Figure 5.6  Searching for tag and index bits using the BTB-set test 

We measure the number of branches mispredicted at decoding (MBI_DEC). 

Figure 5.7 shows the misprediction rate calculated as the MBI_DEC divided with the 

number of spy branches as a function of B (B = 2…9) and D (D=800h−4000h).  These 

results are only a subset of the results collected for the generalized experimental flow 

shown in Figure 5.6, but they are found sufficient for further analysis.   
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Figure 5.7  BTB-set test results 

For D=2000h and up we observe no mispredictions when B = 2 and an increase in 

the misprediction rate when B=3. According to BTB-set algorithm, we choose pair 

(Bi, Di) = (2, 1000h).  This indicates a 2-way BTB with address bit IP[12] being the most 

significant bit of the index field. The misprediction rate for B=3 is approximately 20%.  

An ideal replacement policy in a 2-way structure would be able to recognize that  

3 branches compete for 2 slots in a set, so the third branch would never be allocated, 

leading to a misprediction rate of 33%.  However, the misprediction rate in this 

experiment actually varies among different microbenchmark runs in the range between 

10% and 80%.  This is another indication that the BTB replacement/allocation policies 

are not conventional ones (LRU, allocate on first miss).  Consequently, additional tests 

are required to determine the number of ways and the index bits.   

Alternatively, if we assume that IP[12] is the index MSB bit (D=2000h) and a    

4-way BTB, then the allocation and replacement policy are likely causes of 
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mispredictions even when B<5.  The motivation for such unconventional 

replacement/allocation policy could come from BTB design trade-offs (runtime 

resizing/power savings/speed).  This assumption does not conflict with results for 

D=1000h.  

Determining Tag Bits 

To determine tag bits, we use the BTB-set test with B=2 while varying the 

distance DS.  Figure 5.8 shows the misprediction rate, calculated as the MBI_DEC 

divided with the number of spy branches, as a function of DS (DS =2000h–800000h).  The 

results indicate that the IP address bits [21:13] are used for the BTB tag match. 

According to analysis in Section 3.1, we may expect more than 9 bits to be used (IP 

address bits [31:30] possibly included), but the test cannot be performed for this IP 

address bits. 
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Figure 5.8  BTB-set tag testing results 
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Determining Index LSB Bit 

The last portion of the BTB-Set test focuses on determining the least significant 

bit of the index field.  We start from the test with DS=2000h and B=3 because it incurs a 

certain number of mispredictions.  The distance between the second and third branch D’ 

is increased (D’−DS = 1, 2, 4, 8, …) until mispredictions disappear.  The value of D’−DS 

that produces low misprediction rate is the index LSB distance; Index LSB=log2(D’−DS).  

Figure 5.9 shows the misprediction rate, calculated as the MBI_DEC divided with 

the number of spy branches, as a function of the difference between IP addresses of the 

2nd and 3rd branch instruction.  When the difference reaches 11 bytes, we observe no 

mispredictions.  The difference of 11 bytes is equivalent to the difference of 16 bytes in 

the branch instruction addresses (the instruction length is 6 bytes).  As noted before, the 

branch address of a branch instruction that spans two 16-byte blocks is determined as the 

IP address of the last byte of that instruction.  The results indicate that the Index LSB bit 

is IP[4].  
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Figure 5.9  BTB-set Index LSB testing results 
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5.5 Modified BTB-capacity Test 

The original BTB-capacity and BTB-set tests indicate that the BTB size is either 

1024 or 2048 entries.  Here, we want to further investigate the size of the BTB.  Let us 

consider the following examples first.  

Example #1.  We assume the following BTB organization: 2048 entries organized 

in 512 sets and 4 ways, Index=IP [12:4], the LRU replacement policy, and allocate on 

first miss allocation policy.  Let us consider an execution of the BTB-capacity test with 

B=1280 and D=8.  Two consecutive branches reside in a single 16-byte instruction block.  

An execution of the BTB-capacity test will result in the following execution trace. 

o Branches 0-511 (512) map into the 1st and 2nd way of the BTB lower half. 

o Branches 512-1023 (512) map into the 1st and 2nd way of the BTB higher half. 

o Branches 1024-1280 (256) map into the 3rd and 4th way of the BTB lowest quarter. 

We see that four branches map into each set in the lowest BTB quarter and two 

branches map into each set in the other 3 quarters of the BTB.  The expected number of 

mispredictions should be close to zero. 

Example #2.  Let us assume that the BTB size is 1024 entries, organized in 256 sets 

and 4 ways, Index=IP[11:4], the LRU replacement policy, and allocation is done on each 

BTB miss.  Consider the same BTB-capacity test as the one described in Example #1.  

The number of branches in this test exceeds the number of entries in the BTB, so we 

should see an increased number of mispredictions.  

Our next step is to design a new microbenchmark, here called CapMod.  In creating 

this microbenchmark, we start from the BTB-capacity test with B=1280, D=8.  The 

corresponding CapMod test is created by preserving the BTB-capacity benchmark layout, 
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but all branch instructions are removed except the first 256 branches (0-255) and the last 

256 branches (1024-1279).  

Example #3. If the BTB size is 2048 entries (512x4) and four branches that target 

the same set cause mispredictions, the number of mispredictions for the CapMod test will 

be the same as in the original BTB-capacity test with B=1280 and D=8 since we removed 

only branches that were two per set (do not add to the number of mispredictions). 

Example #4. If the BTB size is 1024 entries, CapMod will not produce 

mispredictions because CapMod has only 512 branches. 

According to these examples, we create two tests, CapMod1 and CapMod2. 

CapMod1 is based on the BTB-capacity test with B=1280 and D=8 -- it preserves first 

256 branches and the last 256 branches (the total B is B=512).  CapMod2 is based on the 

BTB-capacity test with D=1152 and D=16 -- it preserves the first 128 and the last  

128 branches and the branches 512-768 ( B=378).  

Figure 5.10 shows the number of branches mispredicted at decoding (MBI_DEC) 

per one program iteration. According to the assumption in Example #3, the results 

indicate that that the four branches that target the same set in the 4-way BTB with  

2048 entries cause the mispredictions. We conclude that the BTB has unconventional 

allocation/replacement policies. 
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Figure 5.10  Modified BTB-capacity tests results 

5.6 Cache-hit BTB-set Test 

The results of the BTB-capacity and BTB-set tests were inconclusive and we were 

unable to determine the BTB size.  The previous CapMod tests indicate a BTB of  

2048 entries, but obviously the replacement policy and/or BTB allocation policy are not 

conventional ones, making our experimental flow insufficient in determining BTB 

organization.  Consequently, our next step is to develop a microbenchmark that will 

stress the allocation policy. 

In the BTB-set tests, the execution pattern for spy branches in one iteration of the 

benchmark main loop is as follows: J1, J2,…, JB.  If allocation/replacement policy 

considers the number of times a BTB entry is accessed before eviction, this pattern will 

be insufficient in determining BTB organization.  Consequently, the microbenchmark is 

modified to exhibit the following execution pattern: J1, J1, J2, J2, J3, J3,…, JB, JB.  Here, 

each branch is executed twice before going to the next branch in sequence.   

The microbenchmark source code fragment is shown in Figure 5.11. We use an 

indirect branch as a setup branch to achieve execution of each spy branch twice 

consecutively.  The rest of the source code can be found in Appendix B. 
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  int long unsigned liter = 100000000; 
  for (i=0; i<liter; ++i){ 
     jmp  dword ptr [ebx] // setup indirect branch 
     ... 
     l0:   jmp edx // branch 0, “edx” stores _Exit IP  
     // dummy code to set distance D 
           jmp edx  // branch 1 
     // dummy code to set distance D 
     ... 
     // dummy code to set distance D 
           jmp edx  // branch B 
   _Exit: clc 
  }  

Figure 5.11  Cache-hit test source code fragment 

We measure the number of branches mispredicted at decoding (MBI_DEC).  

Figure 5.12 shows the misprediction rate calculated as the MBI_DEC divided with the 

number of spy branches as a function of B (B=2…17) for D=800h−4000h.  
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Figure 5.12  Cache-hit BTB-set test results 
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The results indicate that a 4-way structure is used with set size of 512 entries.  

When all branches target a single BTB set, the misprediction rate is 50%, indicating the 

LRU replacement policy; and allocate-on-first miss allocation policy. The branches that 

are just allocated can be evicted from the cache if they have not been touched again in the 

program execution.  This explains why 3 branches in the BTB-Set test can cause some 

mispredictions. 

5.7 Cache-hit BTB-capacity Test 

The next step in the experimental flow is to confirm our findings about replacement 

policy.  The Cache-hit BTB-set approach is applied to the BTB-capacity test, where we 

try to fit as many branches in the BTB as possible with no BTB mispredictions. The base 

implementation ensures that each spy branch is executed twice consecutively, before any 

other branch that maps in the same set.  We call this microbenchmark Cache-hit BTB-

capacity test.  

We measure the number of branches mispredicted at decoding (MBI_DEC).  

Figure 5.13 shows the misprediction rate, calculated as the MBI_DEC divided with the 

number of spy branches, as a function of B (B=512−4096) and D (D=2−128).  The results 

indicate that the BTB size is 2048 entries.  The misprediction rate for non-fitting distance 

is 50% rather than 100%.  This is can be explained as follows.  Each branch misses in the 

BTB on its first occurrence, and its second occurrence results in a BTB hit.  The BTB hit 

“verifies” the corresponding BTB entry and the LRU replacement policy is used in 

selecting a victim entry in the BTB set.  
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Figure 5.13  Cache-hit capacity test results 

5.8 Other Issues  

In this subsection we explore several issues related to the BTB operation.  The first 

issue is related to bogus branches and their influence on the BTB.  We have already 

concluded that the BTB uses specific allocation and replacement policies.  These policies 

and their relations are partially revealed.  This section presents some of the BTB 

evictions and allocation policies mainly related to the patent [23].  The intent is to show 

that the BTB is behaving close to the BTB design presented in [23].  We test following 

situations:   

1) BTB hit/ misprediction 

2) BTB hit/ bogus branch detected 

3) Offset algorithm 



 

63 

5.8.1 BTB Hit/ misprediction 

This situation refers to the occurrence of the branch that has the same index, 

offset and tag fields as a branch allocated in the BTB but has different target. This 

situation is observed during tag bits testing in Section 5.4.2 where test employed had a 

distance D=400000h. We observed that two branches evict each other. In this situation, 

the BTB updates the entry with the new branch target. 

5.8.2 BTB Hit/ bogus Branch Detected 

A bogus branch refers to a BTB hit event caused by a non-branch instruction that 

has the same tag and index fields as an allocated branch.  When a bogus branch is 

executed, the original BTB entry may be left intact or it may be discarded in order to 

avoid pursuing false paths in the program execution.  According to an Intel’s patent [23], 

a bogus branch causes eviction of the corresponding branch from the BTB.  Here, we 

design a microbenchmark that verifies the BTB’s behavior related to bogus branches.  

The microbenchmark is shown in Figure 5.14.   

 

 

Address Code 
 int long unsigned liter = 1000000; 

 int a=1; 

 do { 

@A  if(a==0){ // dummy non-branch instructions (skipped) 

  } 

@A+x   // a dummy non-branch instructions 

@A+400000h   // a dummy non-branch instructions(a bogus branch) 

   liter--; 

@A+400000h+y;y<x } while(liter>0); 

Figure 5.14  Bogus branch test source code 
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The program’s main loop encompasses an always taken spy branch.  The target 

address of the spy branch is tuned to move the program control flow so that IP(Spy 

Target) - IP (Spy address) < 2MSB(TAG).  An instruction that follows the spy branch target 

instruction will have the same tag and index fields as the spy branch – i.e., the instruction 

acts as a bogus branch.  If the bogus branch evicts the spy branch, we should see a high 

misprediction rate.   

The measurements show that the spy branch is always mispredicted. 

Consequently, we confirm that a bogus branch evicts entries the BTB entry. 

5.8.3 Offset Algorithm 

The BTB may provide more than one hit for the fetched 16-byte block since the 

BTB design allows that multiple branches in a single BTB set have the same tag.  The 

experiments in Section 5.4.1 for distances D=4 and D=8 confirm the previous statement.  

We could have four consecutive branches that map in a single BTB set, all having the 

same BTB tag field and all are predicted correctly. 

Once a new 16-byte block is fetched from the memory, BTB provides multiple 

hits [23].  Then, an algorithm selects the correct target. The algorithm selects the target 

with the smallest offset value yet not smaller than the current instruction IP address.  

In this test we want to observe a situation when two branches from the different 

16-byte blocks have the same index and tag but different offset and therefore BTB 

provides two hits, but actually one branch will be detected. 

Two situations are observed: (a) Double hit – two 16-byte blocks with each 

having one spy branch that match by both tag and index are entered from the lowest byte 

in the block and therefore, whenever BTB has two branches allocated, one will be a false 
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hit or a bogus branch. (b) Single hit – Second 16-bytes block is entered with the IP value 

that is in between offsets of the observed two branches that matched. In this case, upon 

second 16-byte block being entered, only one BTB hit is provided; upon first 16-byte 

block being entered, two BTB hits are provided if the both branches are allocated at the 

moment. 

Double hit 

The microbenchmark source code reuses the source code of the BTB-set test with 

D=400000h and B=2 with second, Spy2 branch moved slightly to have the different 

offset fields within the same set as shown in Figure 5.15.   

The test is executed with changing of the Spy2 offset while keeping Spy1 and 

Spy2 to target the same set. The test reports the misprediction rate of 100% which is an 

indication that both branches are mispredicted.  There was a possibility that Spy1was  

always predicted correctly because when the 16-byte block is entered, the BTB logic 

actually selects the BTB entry for the Spy1 branch. Consequently we conclude that the 

false hit evicts all branches within the set. 

 

 
Address Code 
 int long unsigned liter = 1000000; 

 int a=1; 

 do { 

@A  if(a==0){    // Spy1 

   // dummy non-branch instructions (skipped) 

  } 

@A+x   // a dummy non-branch instructions 

@A+400000h+z;z-x<16  if(a==0){    // Spy2 

   // dummy non-branch instructions (skipped) 

  } 

   liter--; 

@A+400000h+y;y<x } while(liter>0); 

Figure 5.15  Double hit test source code 
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Single hit 

The microbenchmark source code is shown in Figure 5.16. The 16-byte block that 

has Spy2 within it is entered from a jump instruction and the entry point is in between 

Spy1 and Spy2 offsets.  

The test performed did not produce any mispredictions. The correct prediction for 

the second 16-byte block with Spy2 indicates that the offset algorithm did not consider 

the BTB hit from Spy1, as the Spy1 offset was smaller from the instruction pointer. 

Correct prediction for the first 16-byte block indicates that the offset algorithm exists and 

the purpose is to select the entry with the smallest offset among multiple BTB hits. 

 

 

Address Code 
 int a=1; 

 int long unsigned liter = 1000000; 

 do { 

@A  jmp l1        // Spy1 

  // dummy non-branch instructions (skipped) 

l1  // a dummy non-branch instructions 

@l1+x   jmp l2         

     // dummy non-branch instructions (skipped) 

l1=@A+400000h+z;z-x<16  if(a==0) a=1  // Spy2 

   liter--; 

@A+400000h+y;y<x } while(liter>0); 

Figure 5.16  Single hit test source code 



 

67 

 

 

CHAPTER 6 

 

 

MICROBENCHMARKS FOR THE REVERSE ENGINEERING 

OF LOOP PREDICTORS 

 

 

6.1 Objectives 

The goal of this section is to develop an experimental flow and a set of 

microbenchmarks that will help us determine the structure of the loop predictor.  We 

expect a loop predictor with a cache-like structure and we want to determine the loop 

predictor’s cache parameters (size, sets, ways, index, tag and replacement policy), an 

algorithm used to recognize a loop branch type behavior, and the counter based algorithm 

used for the loop-branch outcome prediction.  We also want to determine relationship 

between the loop predictor and the BTB and test for existence of other local predictors. 

6.2 Contributions 

We developed an experimental flow and a set of microbenchmarks for 

determining organization of the advanced loop predictor.  The experimental flow and 

microbenchmarks applied on a Pentium M processor provide the following insights.   
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1) The loop predictor main part is a two-way cache structure named the loop 

branch prediction buffer, the loop BPB. The loop BPB is organized in 64 sets 

(total size is 128 entries).  The loop BPB index field is IP [9:4].  The loop BPB 

tag field is IP [15:10].  The loop BPB employs the LRU replacement policy.  

2) Each loop branch prediction buffer entry has two 6-bit counters.  One counter 

counts the current loop iteration number and the other stores the maximum loop 

count.  When the two values match, the predictor provides an opposite outcome 

prediction.  

3) A branch is allocated in the loop branch prediction buffer when the opposite 

outcome of the branch is observed. 

4) Once a branch is allocated in the loop BPB, the whole loop pattern is used to 

train the loop maximum counter value in the loop BPB. 

5) A loop BPB hit is filtered with a regular BTB hit. 

6) The branch prediction mechanism does not employ other local predictors. 

6.3 Background 

Loop predictor is a local predictor specialized for branch instructions that exhibit 

loop behavior.  A branch exhibits loop behavior if it moves in one direction for a certain 

number of times interspersed with one outcome in the opposite direction. For example, a 

branch with a repeating outcome pattern, 10 times taken and 1 time not taken, can be 

marked as {{T}10, NT}k.  A loop predictor should accurately predict branch outcomes 

when the outcome pattern length exceeds the size of the branch history buffer attached to 

a global branch predictor.  The available information on the loop predictor indicates that 

once loop behavior of a branch is detected, a set of counters is allocated, without further 
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details about the loop predictor organization [2].  A number of questions arise from this 

scarce description.  The first question is how to recognize a reoccurrence of the branch 

that exhibits loop behavior? We assume that a cache-like structure is used in the loop 

predictor, named a loop branch prediction buffer, the loop BPB.  Similarly to the regular 

BTB, the loop BPB provides a hit if a particular IP address matches the tag in the loop 

BPB.  In contrast to the regular BTB, the loop BPB keeps resources needed to carry out 

the correct outcome prediction.  To detect loop behavior, two counters are assigned to 

each loop BPB entry [2] – the maximum counter and the iteration counter.  The 

maximum counter gets trained by the pattern length to indicate the opposite branch 

outcome, and the iteration counter is incremented on each branch execution.  When the 

iteration counter reaches the maximum counter, an opposite branch outcome is returned 

as a branch prediction, and the counter is cleared.  This way, each branch outcome is 

predicted correctly.  A loop BPB entry can also keep the target branch address, but 

reusing a BTB target addresses is a more likely option.  Prior to allocation of an entry in 

the loop BPB, we would like to know if the particular branch has a loop-like behavior.  

This raises the question of the loop predictor training.  

Consequently, in reverse engineering of the loop predictor, we would like to 

answer to the following questions: 

1. What is the maximum counter length? 

2. What is the loop BTB organization? 

3. How the loop predictor is trained? 

4. What is loop predictor allocation policy? 

5. What is relationship of the loop predictor with the regular branch target buffer? 
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6.4 Maximum Counter Length 

In determining counter length, we use a ‘spy’ branch that exhibits loop behavior.  

For example, the spy branch is executed many times, and it repeatedly goes through the 

following pattern: {{T}L-1, nT} – taken (L-1) times, and not taken once.  The 

corresponding microbenchmark is shown in Figure 6.1. 

 

 

 

#define L 65 /* pattern length */ 
void main(void){  
   int long unsigned I;       /* loop index */ 
   int long unsigned I = 100000000;  /* number of iterations */ 
   for (i=0; i<I; ++i){ 
      if ((i%L) == 0) a=0;      /* spy branch */ 
   } 

} 
 

Figure 6.1  Microbenchmark for determining maximum counter length 

We increase the parameter L, starting from Lmin, where Lmin is determined by 

the length of the global branch history register, i.e., Lmin ≥ length(BHR).  The expected 

number of retired mispredictions in this microbenchmark is shown in Equation (6.1), 

where N is the length of loop counters.  As long as the pattern can be caught by the loop 

counters, the number of mispredictions should be close to zero.  Once the pattern length 

exceeds the size of loop counters, the number of mispredictions should be equal to I/L, 

where I is the number of the outer loop iterations.   
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We measure the number of branches mispredicted at execution (MBI_EXEC).  

Figure 6.2 shows the misprediction rate, calculated as the MBI_EXEC divided with the 

number of spy branches, as a function of L (L=8–128).  The results indicate that pattern 

lengths of L≤64 can be successfully predicted, and when L=65, the number of 

mispredictions is equal to I/65. Consequently, the loop counters are 6 bits long.   
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Figure 6.2  Maximum counter length test results 

6.5 Loop BPB Organization 

In determining loop BPB organization, we start from the BTB-capacity and BTB-

set tests used in the experimental flow for determining regular BTB organization.  We 

hypothesize that the loop BPB is organized as a cache-like structure that keeps relevant 

information about branches that exhibit loop-like behavior.  Each entry is accessed using 

a portion of the branch address, has its own tag and two counters [2]. Each counter is  

6 bits in length. We also assume that the target address is retrieved from the regular BTB.  
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Two microbenchmarks are used. A so called Loop-capacity test stresses the loop 

BPB structure trying to find the maximum number of branches that can fit in the loop 

BPB.  A so called Loop-set test stresses the loop BPB structure trying to find the 

maximum number of branches that can fit in a single loop BPB set.  

6.5.1 Loop-capacity Tests 

A Loop-capacity microbenchmark reuses the algorithm used in the BTB-capacity 

tests.  The Loop-capacity tests features B branches that exhibit loop behavior placed at 

equidistant memory locations with distance D.  The microbenchmark layout is illustrated 

in Figure 6.3.   

The microbenchmark source code is shown in Figure 6.4. A compiled code for a 

single loop from Figure 6.4 takes more space in memory than a simple branch used in the 

BTB-capacity test (3 instructions per loop).  Consequently, the smallest distance between 

loops DMIN will be larger than DMIN in the BTB-capacity test (DMIN=2). Here, DMIN=8.  

To avoid a correct prediction coming from a global branch predictor, loop branches have 

pattern lengths of 64 (the branch is taken 63 times, not taken one time).  The 

microbenchmark uses the highest possible count modulo because of the following reason; 

Due to speculative execution and pipelining, the global predictor’s access shift register in 

the first level may not be updated by the loop branch outcome as fast as the loop code is 

fetched and decoded. It may happen that the one program loop is over before its 

outcomes are reflected in the global predictor. This may cause the global predictor to 

affect the prediction. 
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Figure 6.3  Layout of the Loop-capacity test 

Address Code 
 int long unsigned liter = 1000000, modulo = 64; 

 do { 

  temp = modulo; 

  _asm{ 

       mov al, temp 

      l0: sub al,1 

       cmp al, 0 

@A      jne l0           // 1st spy loop branch 

       // dummy non-branch instructions 

       mov al, temp 

     l1: sub al,1 

       cmp al, 0 

@A + Ds      jne l1          // 2nd spy loop branch 

       // dummy non-branch instructions 

       mov al, temp 

    lBm1: sub al,1 

       cmp al, 0 

@A + B*Ds      jne lBm1        // (B-1)th spy loop branch 

  } liter--; 

 } while(liter>0); 

Figure 6.4  Loop-capacity test source code 
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 We measure the number of branches mispredicted at execution (MBI_EXEC).  

Figure 6.5 shows the loop misprediction rate, calculated as the MBI_EXEC normalized to 

the total number of program loops, as a function of the number of the executed loops B 

(B= 32–256) for D=8–64 respectively.   

For tests with D=8 and D=16, mispredictions occur for B larger than 128 and for 

B=256, all loop are mispredicted. This indicates the loop BPB size of 128 entries.  For 

tests with D=32, mispredictions occur for B=128. This is an indication that the distance 

becomes large enough and that every second set is jumped over.  The tests for D=64 

confirm this conclusion.  Consequently, we conclude that the branch IP address bits [3:0] 

are not used to access the loop BPB.  
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Figure 6.5  Loop-capacity test results 
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We cannot determine the number of ways in the loop BPB because of missing 

Loop-capacity tests for small distances (D=2 and D=4).  The results for D=8 and D=16 

report the same maximum number of branches B that cause no mispredictions, B=128. 

This is an indication that the minimum number of ways is two. 

6.5.2 Loop-set Tests 

In order to determine the loop BPB organization further, we develop a so-called 

Loop-set test.  This microbenchmark is very similar to the BTB-set microbenchmark (see 

Figure 5.6).  The microbenchmark includes loops instead of always taken branches and 

the loop branches are placed at larger distances DS (see Figure 6.6).   

 

 

Address Code 
 int long unsigned modulo = 64; 

 do { 

   temp1 = modulo-1; 

   temp2 = modulo-2; 

   ... 

   tempB = modulo-B; 

  _asm{ 

       mov al, temp1 

      l0: sub al,1 

       cmp al, 0 

@A      jne l0           // 1st spy loop branch 

       // dummy non-branch instructions 

       mov al, temp2 

     l1: sub al,1 

       cmp al, 0 

@A+ Ds      jne l1          // 2nd spy loop branch 

       // dummy non-branch instructions 

       mov al, tempB 

    lBm1: sub al,1 

       cmp al, 0 

@A+ B*Ds      jne lBm1        // (B-1)th spy loop branch 

  } liter--; 

 } while(liter>0); 

Figure 6.6  Loop-BTB-Set test source code 
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For the part of the Loop-set algorithm used for the tag MSB testing, two branches 

that match both the index and the tag must have different loop modulus.  Otherwise the 

loop predictor will predict them correctly as it sees them as the one loop branch.  To 

avoid such a situation, the microbenchmark features loops with different modulus. 

We measure the number of branches mispredicted at execution (MBI_EXEC). 

Figure 6.7 shows the loop misprediction rate, calculated as the MBI_EXEC 

normalized to the total number of program loops, as a function of the distance between 

branches D (D=80h–10000h) for B=2. According to the BTB-set algorithm, the tag MSB 

bit is the IP address bit 15. 

Figure 6.8 shows the loop misprediction rate, calculated as the MBI_EXEC 

normalized to the total number of program loops, as a function of the distance between 

branches D (D=80h–1000h) for B=3.  The test indicates that the index MSB bit is the IP 

address bit 9 and the loop BPB is a two-way cache structure. 
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Figure 6.7  Loop-set test results for B=2 
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Figure 6.8  Loop-set Index MSB testing results 

Figure 6.9 shows the loop misprediction rate, calculated as the MBI_EXEC 

normalized to the total number of program loops, as a function of the difference between 

memory addresses of the starting bytes of the 2nd and 3rd branch instruction.  The test 

indicates that the Index LSB bit is the address bit IP[4].   

According to the Loop-capacity and Loop-set tests, we conclude that the loop 

BPB is a 2-way cache structure with 128 entries, indexed by the IP[9:4] and tagged by 

the IP[15:10]. 
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Figure 6.9  Loop-set Index LSB testing results 
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6.6 Loop Predictor Training Logic 

The loop predictor must act upon the program branches and decide whether the 

branch is a potential loop branch.  After the branch becomes the candidate for a loop 

branch, the loop predictor must set the loop counter maximum value before the loop 

reoccurrence may be monitored. We refer to this as the loop training process. After a 

branch becomes a candidate for a loop, the training process may take place in the loop 

BPB or in the separate training logic.  A benefit from the separate training logic would be 

from saving the BTB entries from eviction in the case that a currently trained branch 

comes out not to be a loop.  If a separate training logic is used, we expect that, upon 

training being done, new loop branch is transferred to the loop BPB. We expect that 

separate training logic is similar to the loop BPB but is a much smaller structure since we 

expect that only part of the program loop branches are in training at once.  

A microbenchmark is developed to stress the training logic.  It reuses BTB-

capacity and BTB-set algorithms used for the regular BTB experiments (Equation .

 (6.1) and Figure 5.6).  The algorithm used here changes always taken branches 

from the original algorithm to the loop branches.  In contrast to the loop BPB 

organization test (see Figure 6.3), the test loops are not executed consecutively, rather we 

execute each loop iteration consecutively.  Therefore, all program loops are in the 

training phase at once.  If the number of branches B is larger than the training logic size, 

mispredictions exist.  To avoid correct predictions from the global predictor, the 

microbenchmark employs loop branches with different pattern lengths.  Otherwise, all 

branches would change their outcome at the same time, at the counter maximum value, 
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making them predictable with the global predictor.  The number of branches B is varied 

to determine the number of branches that can be trained consecutively.   

Figure 6.10 shows a source code for one possible implementation of the 

microbenchmark for B=256 and 16 different pattern lengths assigned in round-robin 

fashion. Distance between branches is set to D=16 as we prove that D=16 allows for each 

branch to have its own loop BPB entry if the number of branches B is smaller than 128. 

 

 

Address Code 
 int long unsigned modulo = 4; 

 int long unsigned liter = 1000000; 

 do { 

   temp1 = liter%modulo;         // 1st branch modulo=4 

   temp2 = liter%(modulo+1);     // 2nd branch modulo=5 

   ... 

   temp16 = liter%(modulo+15);   // 16th  branch modulo=19 

  _asm{ 

       mov eax, temp1 

      l0: sub eax,1 

       cmp eax, 0 

@A      jg l0           // 1st spy loop branch 

       // dummy non-branch instructions 

       mov eax, temp2 

     l1: sub eax,1 

       cmp eax, 0 

@A + 10h      jg l1          // 2nd spy loop branch 

       // dummy non-branch instructions 

       mov eax, temp16 

    l255: sub eax,1 

       cmp eax, 0 

@A + 255*10h      jg l255        // Bth spy loop branch 

   } liter--; 

 } while(liter>0); 

Figure 6.10  Loop training logic test source code example for D=16 and B=256 
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We measure the number of branches mispredicted at execution (MBI_EXEC).  

Test results are normalized to the total number of program loops MPRMAX.  Let us 

consider a microbenchmark with B=32 and MOD=8 (loops modulus used are 4…11).   

Equation .
 

(6.2) shows the MPRMAX value calculation for a given example. 
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(6.2)

 

 

Figure 6.11 shows the loop misprediction rate, calculated as the MBI_EXEC 

normalized to the MPRMAX value, as a function of the number of total branches B (B=64, 

128, 256) for D=16 and MOD=16.  Results indicate that the 128 branches can be trained 

at once. The results for B=192 and B=256 are similar to those shown in Figure 6.5 (upper 

left). We don’t expect that the training logic for 128 entries is implemented separately 

from the loop BPB. Consequently, we conclude that the training of counters is carried out 

in the loop BPB after an entry in the loop BPB is allocated. 
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Figure 6.11  Loop training logic test results 



 

81 

6.7 Loop Predictor Allocation Policy 

To allocate a loop BPB entry, we need to know if a branch exhibits loop behavior.   

We could expect two possible allocation approaches depending on the moment 

when a branch is identified to have a loop behavior.  With one approach, the allocation 

logic tags a branch as a loop branch as soon as the branch outcome moves in an opposite 

direction for the first time.  For example, if a branch has a repeating outcome pattern 

k{T}.NT, the branch is marked as a loop branch after the (k+1)th occurrence of the 

branch.  Once an entry in the loop-BPB is allocated, the maximum counter will get 

trained. We refer to this approach as allocate on opposite outcome detection.   With the 

second approach, the allocation logic would wait for the branch to have confirmed loop 

behavior.  For example, the earlier branch is tagged as a branch after the (k+2) th 

occurrence of the branch and only if the (k+2) th branch outcome is the taken one. We 

refer to this approach as allocate on loop detection. 

The microbenchmark employs a branch that has a certain outcome pattern. The 

branch outcome pattern is set to make the branch allocated in the loop BPB if allocate on 

opposite outcome detection is implemented and not to be allocated in the loop BPB if the 

allocate on loop detection is implemented. We choose the branch with the outcome 

pattern {3* T, 2* nT} (3 times taken, two times not taken).  The branch is named the 

LoopLike.  The LoopLike branch is set to target the same loop BPB set as the two real 

loops (Loop1 and Loop2).  

If the LoopLike branch does not consume the loop BPB entry, mispredictions 

come only from the LoopLike branch and will be the same regardless of the Loop1 and 

the Loop2 count modulo. If the LoopLike branch does consume the loop BPB entry, 
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mispredictions come from the LoopLike branch, the Loop1 branch, and the Loop2 branch. 

The number of mispredicted branches will change with the change of the Loop1 and the 

Loop2 count modulo. The algorithm changes the Loop1 and the Loop2 branch modules. 

Change in the misprediction rate is an indication that the LoopLike branch consumes the 

loop BPB entry. The microbenchmark source code is shown in Figure 6.12. The Loop1 

count modulo is named MOD1. The Loop2 count modulo is named MOD2.  

 

 

Address Code 
 int long unsigned liter = 1000000; 

 do { 

   temp1 = liter%MOD1;       // Loop1 modulo 

   temp2 = liter%MOD2;       // Loop2 modulo 

   temp3 = (liter%5)& 0xFE   // LoopLike outcome pattern 

@A   8 x if(a==0) a=1; 

   // dummy instructions to allow outcomes update 

@B   if(temp1==0) a=1;   // Loop1 

   // dummy code to control the distance 

@A+ 400h   8 x if(a==0) a=1; 

   // dummy instructions to allow outcomes update 

@B+ 400h   if(temp2==0) a=1;   // Loop2 

   // dummy code to control the distance 

@A+ 800h   8 x if(a==0) a=1; 

   // dummy instructions to allow outcomes update 

   if(temp3==0) a=1;   // LoopLike 

@B+ 800h   liter--; 

 } while(liter>0); 

Figure 6.12  Source code for the loop allocation policy test 

Figure 6.13 shows the number of mispredicted branches (MBI_EXEC) per 

program iteration as a function of Loop1 and Loop2 count modulus (MOD1 and MOD2).  

For MOD1=MOD2= 1, Loop1 and Loop2 branches are always taken and mispredictions 

come from the LoopLike branch only. The number of mispredictions per iteration is 0.6.  
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For MOD1=3 and MOD2=4, the maximum possible number of mispredictions per 

iteration is 0.6 + 1/4 + 1/3 = 1.83 mispredictions per iteration.  Test results are 

approximately the same (1.08 mispredictions per iteration). For MOD1=15 and 

MOD2=16, the maximum possible number of mispredictions per iteration is 0.6 + 1/15  

+ 1/16 mispredictions per iteration. Test results are approximately the same  

(0.76 mispredictions per iteration). 

Changes in MOD1 and MOD2 result in changing of the number of mispredictions.  

Therefore, the branch is allocated in the loop BPB immediately after detection of a 

branch opposite outcome. 
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Figure 6.13  Loop predictor allocation policy differential test 

6.8 Loop Predictor Relations with the BTB 

Microbenchmark tries to find whether the loop BPB hit is conditional upon the 

BTB hit. The idea for such a test comes from the patent [23] related to the indirect 

predictor. The patent describes indirect predictor target address cache hit that is 
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conditional upon the BTB hit. The same logic can be applied here; if the loop BPB 

provides hit but BTB provides miss, the loop predictor prediction may be ignored. 

Conditioning with the BTB hit is useful because BTB uses more tag bits (at least 9) and 

is able to better identify the particular branch. 

The microbenchmark puts many always taken branches in the same BTB set with 

the loop branch. Since always taken branches do not consume the loop BPB entries, the 

loop predictor will be able to provide the correct prediction for such a loop unless the 

loop predictor hit is conditional upon the BTB hit. Consequently, we expect 

mispredictions to exist if the BTB filtering is used. In this case, the expected 

misprediction rate is proportional to the number of program loops.  The microbenchmark 

source code is shown in Figure 6.14.  Four always taken branches are used, as it is 

enough to make the BTB miss for the spy loop branch. 

 

 
Address Code 
 int long unsigned liter = 1000000; 

 int a=1; 

 do { 

   temp = liter%MOD; 

@A  if(a==0) a=1;  // Always Taken 

  // dummy non-branch instructions 

@A + 2000h  if(a==0) a=1;  // Always Taken 

  // dummy non-branch instructions 

@A + 4000h  if(a==0) a=1;  // always Taken 

  // dummy non-branch instructions 

@A + 6000h  if(a==0) a=1;  // always Taken 

  // dummy non-branch instructions 

@A + 8000h  if(temp==0) a=1;  // Spy loop 

   liter--; 

 } while(liter>0); 

Figure 6.14  BTB filtering test source code 
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We measure the number of branches mispredicted at execution (MBI_EXEC). 

Figure 6.15 shows the misprediction rate calculated as the MBI_EXEC 

normalized to the total number of program loops (Loop misprediction rate). 

The test is performed for three MOD values, MOD = 3, 5, 10. We observe that the 

loop misprediction rate is proportional to the number of program loops; thus, the final 

conclusion is that the BTB hit does filter the loop BPB hit 
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Figure 6.15  BTB filtering test results 

6.9 Loop-BPB Replacement Policy 

The loop-BPB is organized as a 2-way cache-like structure.  This brings us to the 

question of the loop-BPB replacement policy.  It could be random, First-In-First-Out 

(FIFO), or Least Recently Used (LRU).  For both FIFO and LRU, one bit is needed per 

loop BPB set to point to an entry in the set that needs to be replaced next.  This bit is 

updated on each miss in that BTB set for the FIFO policy, or on each miss and hit for the 

LRU replacement policy.  
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A microbenchmark is used to stress the loop BPB replacement policy.  The 

microbenchmark encompasses three branches, here referred to as A, B, C.  These 

branches are laid out in memory in such a way as to compete for one set in the loop BPB 

(similar to the Loop-set microbenchmark shown in Figure 6.6).   

Three branches A, B, C have occurrence pattern {A, B, A, C} (see Figure 6.16).   

If a hit affects the replacement bit, the branch A should always hit and branches B 

and C will compete for the remaining entry in the selected loop BPB set, and the 

expected misprediction rate is around 50%.  If a hit does not affect the replacement bit, 

we should observe a misprediction rate close to 100%.  

The code from Figure 6.16 produces a misprediction rate of 50%.  Consequently, 

we conclude that the loop BPB employs the LRU replacement policy.  

 

 

Address Code 
 int long unsigned liter = k, 1000000; 

 do { 

   k = liter%4; 

   temp1 = liter%MOD1;       // A modulo 

   temp2 = liter%MOD2;       // B modulo 

   temp3 = liter%MOD3;       // C modulo 

@A   if((k==0)|| (k==1))    

@B       if(temp1==0) a=1;   // A 

   // dummy code to control the distance 

@A – 10h   if(k==2)    

@B+ 400h       if(temp2==0) a=1;   // B 

   // dummy code to control the distance 

@A – 20h   if(k==3)    

@B+ 800h       if(temp3 == 0) a=1; // C 

   liter--; 

 } while(liter>0); 

Figure 6.16  Loop BPB replacement policy source code 
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6.10 Local Predictor 

This section verifies the non-existence of any other type of local predictor.  We 

assume that the local predictor would be a two-level predictor where the first stage, a 

shift history register, is accessed by the branch IP address. The detailed algorithm is not 

developed here due to certain observations; the smallest possible local predictor should 

have the first stage of length 4, consequently making the branch with the outcome pattern 

{T, T, nT, nT} predictable. Any smaller pattern (3 bits) is already predictable by the loop 

predictor.  

The microbenchmark uses a branch with the outcome pattern {T, T, nT, nT} 

preceded by the number of conditional taken branches. Consequently, not all branch 

outcomes are predictable by the global predictor.  Microbenchmark source code is shown 

in Figure 6.17.   

The microbenchmark produces a certain misprediction rate. The existence of the 

misprediction rate indicates that the branch predictor does not employ any other local 

predictor than the loop predictor. 

 

 
 

int L,a=1; 
int long unsigned liter = 1000000; 
 do{ 
   L = (liter%4) >>1;     // pattern {T,T,nT,nT} 
   16 x if(a==0) a=1;     // repeat 16 times 
   // dummy code to allow branches to retire 
   if (L==0) a=1;a=1; 
   liter--;  
 } while (liter >0);  
 

Figure 6.17  Source code for detection of the local predictor 
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CHAPTER 7 

 

 

MICROBENCHMARKS FOR THE REVERSE ENGINEERING 

OF THE INDIRECT PREDICTOR  

 

 

7.1 Objectives 

The goal of this section is to develop an experimental flow and a set of 

microbenchmarks that will help us determine the organization of the indirect predictor.  

We expect the indirect predictor organized in a cache-like structure, with each entry 

keeping an indirect branch target address (we call such a structure Indirect Branch Target 

Buffer or iBTB).  We want to determine iBTB parameters (size, sets, ways, index, tag) 

and we would like to determine relationship between the indirect BTB and the regular 

BTB.  

7.2 Contributions 

We developed an experimental flow and a set of microbenchmarks for 

determining indirect predictor organization and its associated logic.  The experimental 
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flow and microbenchmarks applied on a Pentium M processor provide the following 

insights.   

1. The indirect branch target buffer (iBTB) is organized as a direct-mapped cache 

structure with 256 entries.  Each entry has a tag field and the target address.  

2. The iBTB does not allocate entry for the branches predictable by the regular BTB. 

3. The iBTB entry is updated on iBTB hit if the target address was mispredicted. 

4. The iBTB entry is allocated on iBTB miss if the target address was mispredicted. 

5. The replacement policy works together with the replacement policy in the BTB and 

interdependencies are not revealed in this thesis. 

6. The index and tag fields for accessing the indirect predictor are taken from a path 

information register (PIR) .  We determined the size, update policy, type of branches 

that affect the PIR, and the branch address bits that affect the PIR.  

• The PIR width is 15 bits. 

• The PIR is updated as follows.  

a.  Conditional taken branch address bits IP[18:4] are XOR-ed with the 

original PIR shifted by 2 bit positions to the left. 

b. Indirect branch address bits IP[18:10] and target address bits TA[5:0] are 

concatenated and XOR-ed with the original PIR shifted by 2 bit positions 

to the left. 

c.  Conditional not taken branches, unconditional branches, branch outcomes, 

calls and returns do not affect the PIR. 

7. The indirect predictor hash function is an XOR between the PIR and the indirect 

branch IP.  Indirect branch address bits IP[18:4] are XOR-ed with the PIR bits 
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PIR[14:0].  The lower 6 bits of the hash function [5:0] and the highest bit [14] make a 

tag used in the iBTB lookup.  The hash function result bits [13:6] are used as the 

index in the iBTB. 

7.3 Background 

An indirect predictor is a hardware structure in branch predictor units dedicated to 

handling indirect branches.  Several academic proposals and patents from industry share 

a common approach in implementing the indirect predictor [29], [30], [31], [2] . The 

indirect predictor is a cache structure separated from the regular BTB, called iBTB 

(Indirect Branch Target Buffer).  The iBTB stores target addresses of indirect branch 

instructions.  The iBTB can be indexed either by a portion of a path information register 

(PIR) or by a hash of a portion of the PIR and the indirect branch instruction pointer, as 

illustrated in Figure 7.1.   
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Figure 7.1  Indirect branch target buffer organization 
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The iBTB can be a direct-mapped or a set-associative cache structure.  On an 

iBTB lookup, the index field is used to select an iBTB entry and the tag field stored in the 

selected entry is compared with the tag field calculated by a hash function.  If we have an 

iBTB hit, the target address is read from the selected iBTB entry.   

The PIR register keeps information about the program path.  The PIR can be 

affected by all branch instructions or by branch instruction of certain types (e.g., 

conditional taken and indirect branches) and can combine a portion of branch addresses, 

branch targets, and branch outcomes, or some combination of these elements.  Chang 

[30] and Driesen [29] introduce a PIR that combines branch address or targets bits, but do 

not include branch outcomes.  The PIR is updated as follows: first, the current PIR is 

shifted for N bits to the left and an N-bit field from the branch address is shifted in.  An 

alternative approach with interleaved shifting and insertion of new bits is used (see 

Figure 7.3) to achieve deeper history (more branches will influence the index).  An Intel 

patent [31] uses an XOR function of the current PIR and the branch address and/or the 

branch target address of the current branch.  This allows for more branch bits to be used. 

Three possible PIR update policies have been proposed so far: Shift and add [30], Shift 

and add with interleave [29]  and Shift and xor [31]. 

PIR update policy: Shift and add.  With this update policy, a portion (N-bits) of 

the branch IP or the branch target address is inserted into the PIR.  The PIR keeps 

information about M most recently executed branch instructions that affect the PIR, so 

the total PIR width is N*M bits (see Figure 7.2).  A portion of the PIR can be used as the 

tag and another portion can be used as the index field for the iBTB.  Sometimes the PIR 

can be compressed (the number of bits is reduced) before using the tag and index fields.  
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Figure 7.2  Shift and add PIR layout with M=4 and N=4 

PIR update policy: Shift and add with interleaving.  The Shift and add policy 

suffers from a relatively short history in the index and tag fields.  For example, if the PIR 

from Figure 7.2 is divided into two halves with 8 bits each, and the upper one is used for 

the index to the iBTB, only two branches, branch 3 and branch 4, will have an effect on 

the index field.  This can be insufficient for a good indexing function.  To cope with this 

problem, an interleaved structure is used (see Figure 7.3). We can see that the previous M 

(M=4 in our example) branches have an effect on the index to the iBTB. 
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Figure 7.3  Shift and add with interleaving PIR layout with M=4 and N=4 

PIR update policy: Shift and xor.  With this policy, an incoming branch IP or its 

target address is XOR-ed with the current PIR.  In this way, more bits from the branch 

address are affecting the PIR. Prior to XORing, the PIR is shifted left/right for a certain 
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number of bits (shift count). The PIR may be of the same width as the number of branch 

bits used for the XOR operation or it may be larger. Figure 7.4 shows the PIR of the same 

width as the number of branch bits used for the PIR. 
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Figure 7.4  Shift and xor PIR layout 

One important question related to the iBTB is its relationship with the regular BTB.  

A 16-byte instruction block fetched from memory triggers a lookup in the regular BTB 

and concurrently a lookup in the iBTB.  If we have a BTB hit (selected entry is tagged as 

an “indirect” branch and tag field matches) and an iBTB hit, the branch target address can 

be provided by either the BTB or the iBTB.  Gochman et al. [2] and an Intel patent [31] 

describe a BTB filtering methodology as a situation where the iBTB hit is conditional 

upon a BTB hit.  We can have a hit or a miss in the BTB and iBTB, and in the case of 

hits, the BTBs can give a correct or an incorrect branch target.  For each combination, the 

predictor may perform different update policies such as 

• BTB hit/iBTB hit – The iBTB gives prediction; if the target is mispredicted, update 

the selected entry in the iBTB; the selected entry in the BTB can be updated or left 

unchanged. 
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• BTB hit/iBTB miss – The BTB gives prediction; if the target is mispredicted, 

allocate a new entry in the iBTB; the BTB can be updated or left unchanged. If the 

BTB gives correct prediction, there will be no allocation in the iBTB. 

• BTB miss/iBTB miss or hit – there is no prediction; allocate a new entry in the 

BTB; a new entry in the iBTB may or may not be allocated.  

Based on this preliminary discussion, our goal is to develop an experimental flow 

and microbenchmarks that uncover details about the indirect branch predictor.  We strive 

to answer the following questions related to indirect branch predictor organization and 

functioning.  

1. iBTB organization  

• Number of entries  

• Number of ways  

• Number of TAG bits 

2. PIR organization 

• Width (number of bits) 

• PIR update policy 

• Type of branches affecting PIR 

• Type of information used for PIR: Branch target and/or branch IP 

• Bits of used branch information affecting PIR 

• Bits insertion into PIR (adding, interleaving, xoring) 

• Shifting (direction and size) 

• Prehistory length (how many branches are seen in prehistory of ind. br) 

3. Hash function to access iBTB 

• How is PIR related to the indirect branch to make an Index and TAG 

• What bits of indirect branches are used for hashing function? 

4. Allocation policy 

• Relationships with the BTB 

• iBTB hit/miss/mispredicted, BTB hit/miss/mispredicted 
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7.4 PIR Organization – Pattern/path Based PIR 

The PIR may be affected by either a branch address, referred to as a pattern-based 

PIR, or by a branch instruction target, referred to as a path-based PIR.  

A microbenchmark template used in determining whether the PIR is path- or 

pattern-based is illustrated in Figure 7.5.  The microbenchmark has a spy indirect branch 

that alternates between two targets, Target1 and Target2. Each target is reached through a 

unique path.  When the program traverses Path1, the spy indirect branch target is 

Target1. When the program traverses Path2, the spy indirect branch target is Target2.  

Each path consists of N conditional taken branches.  

 

 

Spy Indirect branch

Target 1 Target 2

Setup1 targ et

Setup1 branch

Setup2 target

Setup2 branch

(N-1) Cond. branches

Path 2

Path 2

Path 1

Path 1

(N-1) Cond. branches

 

Figure 7.5  Microbenchmark for determining whether the PIR is path-based or pattern-
based 

The branch instructions are laid in the microbenchmark in such a way that the 

path-based PIR for Path1 is equal to the path-based PIR for Path2.  This is done by 
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setting branch addresses as follows: IP(Path1.Bi)=IP(Path2.Bi) + Offset, where 

Offset≥2k and k is the number of bits of the branch address used in calculating the PIR.  

For example, if we assume that the address bits IP[31:20] are not used in calculating the 

PIR, the minimum Offset=100000h.  The number of branches in the paths, N, must be 

determined in such a way that N should be greater than or equal to the number of 

branches affecting PIR.  In this way, the indirect branch targets will collide in the same 

entry in the iBTB.  Consequently, this microbenchmark is forcing iBTB mispredictions. 

The next step is to slightly modify the initial microbenchmark so that the path-

based PIRs for Path1 and Path2 differ.  This is accomplished by setting Setup2 

conditional branch in Path2 to differ from Setup1 conditional branch in Path1.  The 

difference is achieved by changing either Setup2 lower target bits or Setup2 lower IP bits.  

As we do not know exactly which lower address bits are used for the PIR, we change for 

example lower 15 bits of the Setup2 IP address or the target address.  If Setup2 differs 

from Setup1 in IP address bits and the test produces no misprediction, then the PIR is 

pattern-based.  If Setup2 differs from Setup1 in target address bits and the test produces 

no mispredictions, the PIR is path-based. 

The microbenchmark source code is shown in Figure 7.6.  It should be noted that 

the microbenchmark implementation requires one unconditional branch in Path1 to jump 

over the else portion of the code.  Consequently, this microbenchmark will work only if 

the assumption that unconditional branches do not affect the PIR is correct.   

The path-based history test is performed first.  The test produces one 

misprediction per iteration.  This is an indication that the branch target bits do not affect 

the PIR. 
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Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 do{ 

   L = liter%2; 

   if (L==0){           // execute one path per iteration    
@A    8x if(a==0)a=1;    // Repeat the statement 8 times 

@B,B[14:0]=“0”    if(a==0) a=1;      // Setup1 

 }                    // Unconditional jump 

   else{ // dummy non-branch instructions 

@A + Offset     8x if(a==0)a=1;      

@B,B[14:0]=“1”     if(a==0) a=1;     // Setup2 

   } 

   jmp dword ptr [ebx]   // Spy branch 

   Target1: clc         // ind. target for L==0 

   Target2: clc         // ind. target for L==1 

   liter --; 

 } while (liter >0); 

Figure 7.6  Source code of the microbenchmark for determining  
whether the PIR is path- or pattern-based 

  The pattern-based test is performed by setting Setup2’s 15 lower address bits 

(IP[14:0]) to differ from the 15 lower address bits (IP[14:0]) of Setup1. We observe no 

mispredictions; hence, we conclude that the pattern-based PIR is used. 

Note: Several assumptions are made in this test. If any of them was not correct, 

we would expect to see a low number of mispredictions in the pattern-based history test 

because Path2 would be different from Path1 even if Setup1 and Setup2 target addresses 

are the same. Therefore, assumptions are hence validated. 

7.5 PIR Organization – Conditional Branch IP Address Effect on PIR 

This test tries to find (a) branch address bits used for the PIR, (b) the PIR shift 

count, (c) the PIR history length (PIR.HL) -- the maximum number of branches, prior to 
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an indirect branch, affecting the PIR, and (d) the PIR width (the number of bits in the 

path information register).  

The branch address bits used for the PIR are found using a test similar to the one 

used in the pattern-based history test (see Figure 7.5).  The algorithm used in Figure 7.5 

indicates usage of an unknown number of lower IP bits by setting 15 lower bits of the 

Setup2 branch address to differ from the 15 lower bits in the Setup1 branch address.  

Here, the algorithm advances by setting just one bit in the Setup2 branch address to differ 

from the corresponding bit in Setup1 branch address (bit k in the Setup1 branch address is 

set to 0).  The particular bit is referred to as k (k=0, 1, … log2Offset-1), and displacement 

D is defined as D=2k.  Therefore, IP(Setup2) = IP(Setup1) + D + Offset.  Consequently, 

if bit k does not affect PIR, this microbenchmark is causing mispredictions in the iBTB.   

A similar approach is used for testing the PIR shift count.  We assume the shift 

and xor update policy.  The algorithm is modified by inserting H conditional branches 

between the Spy and the Setup1 (or Setup2) branches (see Figure 7.7).   

 

 

Spy Indirect branch

Target 1 Target 2

Setup 1 branch Setup 2 branch

Path 2

Path 2

Path 1

Path 1

H Conditional branches

Cond. Branches Cond. Branches

 

Figure 7.7  Layout of the microbenchmark for determining conditional branch address 
bits that affect PIR, PIR shifting policy, and PIR history length 
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These H branches are executed in both Path1 and Path2; therefore, they influence 

the Path1 PIR and the Path2 PIR in the same way, that is, the Path1 PIR and the Path2 

PIR will differ only if Setup1 and Setup2 differ.  By increasing H, PIR bits shifted in by 

Setup1 or Setup2 branches are moved further down in the PIR history. The following 

examples explain the PIR shifting policy in terms of D and H.   

Example 1. Let us make the following assumptions: the shift and xor update 

policy is used; the branch address bits IP [11:4] affect the PIR; the PIR width is 8 bits and 

the PIR shift count is 1. 

If H = 0, Setup2’s address bits IP[11:4] influence the Path2 PIR prior to the 

execution of the spy branch.  

If H = 1, Setup2’s address bits IP[10:4] influence the Path2 PIR  prior to the 

execution of the spy branch.  

Example 2. We use the same assumptions as in Example 1, except the PIR shift 

count which is 2.   

If H = 0, Setup2’s address bits IP[11:4] influence the Path2 PIR  prior to the 

execution of the spy branch. 

If H = 1, Setup2’s address bits IP[9:4] influence the Path2 PI R prior to the 

execution of the spy branch. 

In determining the shift count, we can observe from the examples above that it is 

equal to the difference between the number of address bits of the Setup2 branch that do 

affect the PIR when H=0 and H=1.  The PIR history length (PIR.HL) is equal to the 

minimum H for which misprediction is high regardless of parameter D.  The following 

examples explain a process for determining the PIR width. 

Example 3.  We assume the following: branch address bits used for the PIR are 

IP[11:4]; the PIR width is 8 bits and the PIR shift count is 1.  
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• If D = 211, IP(Setup2) [11] (11th bit of the Setup2 branch address) is XOR-ed 

with the MSB bit of the PIR.  If H = 1, this bit does not influence the Path2 

PIR because it is shifted out by the H1 branch.  

• If D = 24, IP(Setup2) f, this bit will still influence the Path2 PIR.  When H = 

8, the considered bit will be shifted out of the Path2 PIR. 

Example 4.  We use the same assumptions as the ones in Example 2, except that 

the shift count is equal to 2.   

• If D = 211 or D = 210, the relevant PIR bits will be shifted out after one branch 

in the H block (H=1). 

• D = 24 or D = 25, the relevant PIR bits will be shifted out after 4 branches in 

the H block (H=4).  

Based on the examples above, it is clear that the PIR width can be determined by 

Equation (7.1). 

 

(shift count) ∗PIR.HL – (shift count) < PIR Width ≤ (shift count) ∗PIR.HL.     (7.1) 

 

All four questions require observation of the number of mispredictions as a 

function of parameters H and D.  There is one exception where the described test will 

fail.  Let us assume a direct-mapped iBTB and a displacement D affecting only a portion 

of the PIR used for the iBTB tag.  In this case, both indirect branch targets will collide in 

the same iBTB entry making mispredictions, even though the bit k is used for the PIR.  

The number of mispredictions observed will depend on the iBTB update policy for iBTB 

miss/misprediction scenario.  If bit k is not used for the PIR, the number of observed 
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mispredictions will depend on the iBTB update policy for the iBTB hit/misprediction 

scenario.  These two update policies (iBTB hit/mispredictions and iBTB 

miss/mispredictions) may differ; in this case, it could be used to make a conclusion about 

the stated questions.  The microbenchmark’s source code is shown in Figure 7.8 

 

 

Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 do{ 

   L = liter%2; 

   if (L==0){           // execute one path per iteration    
    8x if(a==0)a=1;    // Repeat the statement 8 times 

@A    if(a==0) a=1;      // Setup1 

   }                    // Unconditional jump 

   else{ // dummy non-branch instructions 

     8x if(a==0)a=1;      

@A + Offset + D     if(a==0) a=1;        // Setup2 

   } 

   H x if(a==0)a=1;       // The H block 

   jmp dword ptr [ebx]    // Spy branch 

   Target1: clc           // Spy target for L==0 

   Target2: clc           // Spy target for L==1 

   liter --; 

 } while (liter >0); 

Figure 7.8  Source code of the microbenchmark for determining whether conditional 
branch address bits affect the PIR 

We measure the number of mispredicted indirect branches (MIBIE).   

Figure 7.9 shows the misprediction rate, calculated as the MIBIE divided with the 

number of indirect branches, as a function of the parameter D (D=1h–80000h) when 

H=0.  For distances D=400h–20000h, the misprediction rate is zero, indicating that 

branch address bits IP [18:10] are used for the PIR. For distances 10h–200h and distance 

40000h, the misprediction rate is approximately 40%.  This is an indication that the 
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branch address bits IP [9:4] are used for the PIR and that iBTB is a direct-mapped 

structure; if they are used as an index, each target would have its own iBTB entry and 

there would be no mispredictions.  Finally, if they are not used for the tag and index 

fields in the iBTB, we would have a misprediction rate of 100%.  It is also expected to 

have tag bits sourced from the lower bits of the PIR as presented in patent [7].  There is 

not a good explanation for the misprediction rate of 40%.  Most likely this number is a 

consequence of a complex interplay between the regular BTB and the iBTB; therefore, 

we can expect to have different allocation polices for iBTB hit/misprediction and iBTB 

miss/misprediction scenarios.  

 

 

 

Figure 7.9  Results for detection of conditional branch IP bits effect on PIR test for H=0 

Figure 7.10 shows the misprediction rate, calculated as the MIBIE divided with 

the number of indirect branches, as a function of the parameter D (D=1h–80000h), when 

H=1. For distances D=100h–8000h, the misprediction rate is zero.  When compared to 

the results for H=0 (Figure 7.9), we see that displacements D producing no 

mispredictions are shifted to the left for the 2 bit positions. This indicates that  

shift count = 2.  
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Figure 7.10  Results for detection of conditional branch IP bits effect on PIR test for H=1 

Figure 7.11 shows the misprediction rate, calculated as the MIBIE divided with 

the number of indirect branches, as a function of the parameter D (D=1h–80000h), when 

H=2…8.  The results confirm the previous observation regarding shift count and shift 

direction. The PIR history length is 8 (for H = 8 for all distances, the number of 

mispredictions is high). 

PIR width. In determining the PIR width, we compare misprediction rates for 

two (H, D) pairs, when H=7, D=24 and when H=7, D=25.  The latter results in a 

misprediction rate of 100%, indicating that the PIR is 15 bits long; a 16-bit long PIR 

would not result in a misprediction rate for D=25.   

 

 

 

Figure 7.11  Results for detection of conditional branch IP bits effect on PIR test for 
H=2…8 
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Figure 7.11 (Continued) 
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It should be noted that the findings about the branch address bits used in the PIR 

would hold even if our initial assumption about the shift-and-xor PIR is not correct.  For 

example, with the shift-and-add policy, when H=0, we would observe results equivalent 

to those shown in Figure 7.9.  There, 15 branch address bits IP [18:4] would be 

compressed to only 2 bits and then they would be shifted into the PIR.  However, this 

policy does not appear to be practical -- there is a very little or no benefit in using  

15 address bits that will be compressed to only 2 bits.  Consequently, we stay with the 

original assumption about the shift-and-xor PIR.   

Further experiments are carried out under the assumption that the PIR update 

policy is shift and xor, but we don’t consider this assumption proven yet.  Note: The 

performed test confirms that the number of branch address bits IP[18:4] and the PIR 

width are the same (15-bit long).  Consequently, we can achieve full control over any bit 

of the PIR in our microbenchmark by controlling the difference between Setup1 and 

Setup2 branch addresses.  

7.6 PIR Organization – Type of Branches Used 

The goal of this test is to determine which types of branch instructions affect the 

PIR, apart from the conditional taken branches.  We test the following branch types:  

(a) conditional not taken branches, (b) unconditional branches and (c) call and return 

jumps.  

The test uses a slight modification of the microbenchmark shown in Figure 7.7.  

The H-block is modified to include a number of conditional taken branches (HC, HC < 

PIR.HL), followed by a number of branches of other types.  A number of branches of 

other types, HO is set to HO=PIR.HL –HC (see Figure 7.12).  
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Spy Indirect branch

Target 1 Target 2

Setup 1 branch Setup 2 branch

Cond. branches

Path 2

Path 2

Path 1

Path 1

Hc Conditional Taken branches

 Cond. b ranches

Ho branches of different type

 

Figure 7.12  Algorithm for determining branch types affecting the PIR test 

Path2 and Path1 are set to be unique in the same way as in the benchmark shown 

in Figure 7.7, by placing Setup2 at distance D from Setup1, where bit k=log2(D).  If the 

HO branches do affect the PIR, Path2 will be the same as Path1, consequently producing 

indirect mispredictions.  If the HO branches do not affect the PIR, the misprediction rate 

will be zero. 

Not taken direct conditional branches.  Figure 7.13 shows a code snippet for 

the HC and HO branches for the microbenchmark described in Figure 7.7 when testing 

whether always not taken conditional branches influence the PIR.  

Unconditional jumps.  Figure 7.14 shows a code snippet for the HC and HO 

branches for the microbenchmark described in Figure 7.7 when testing whether 

unconditional taken branches influence the PIR.  
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Call/returns.  Figure 7.15 shows a code snippet for the HC and HO branches for 

the microbenchmark described in Figure 7.7 when testing whether call/return branches 

influence the PIR. 
 

  

  a=1; 
  ... 
  6 x if(a==0) a=1;a=1; // Hc = 6 
  2 x if(a==1) a=1;a=1; // Not taken branches, Ho=2 
  ... 
  jmp   dword ptr [ebx] //spy indirect  branch 
 

Figure 7.13  Source code fragment for testing of NT conditional branches effect on PIR  

 

6 x if(a==0) a=1;a=1; //Hc = 6 
_asm{jmp l1           //unconditional jumps 
     l1: clc 
     jmp l2 
     l2: clc 
 } 
 jmp   dword ptr [ebx] //spy indirect branch 
 

Figure 7.14  Source code fragment for testing of unconditional branches effect on PIR  

 

_asm{ 
    jmp lcc 
   _doit1:  mov ebx, 10 
   _doit2:  mov ebx, 10 
     ret 
   lcc: clc 
}  
do{ 
   6 x if(a==0) a=1;a=1; //Hc=6 
  _asm{                  //call/ret. Branches, Ho=2 
   call    _doit1 
   call    _doit2 
  }   
  jmp   dword ptr [ebx] //spy indirect branch 
} while(liter>0); 
 

Figure 7.15  Source code fragment for testing of call and return branches effect on PIR  
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All tests produce a misprediction rate of zero, indicating that always not taken 

conditional, unconditional, and call/return branches do not affect the PIR. 

7.7 PIR Organization – Branch Outcome Effect on PIR 

An important question regarding the PIR update policy is whether the branch 

outcomes affect the PIR.  In answering this question, we develop a microbenchmark 

shown in Figure 7.16.  The microbenchmark sets two paths to two spy indirect branch 

targets.  Path1 differs from Path2 in the Switch branch behavior.  The Switch branch 

outcome is “taken” for Path1 and “not taken” for Path2.  The Switch branch address bits 

do not affect the Path2 PIR since it is a not taken branch.  The Switch branch address bits 

do affect the Path1 PIR since it is a “taken” branch.  Consequently, Path1 based PIR is 

affected by the following branches: <Taken branch 8, Switch branch, Taken branch 7 – 

Taken branch 2>.  Path2 based PIR is affected by the following branches: <Taken 

branch 8 – Taken branch 1>. 

 

 

Taken branch 1

Taken branch 2

Taken branch 8

D = Offset

Switch branch

Taken branch 7

Spy Indirect branch

Target 1 Target 2
Path 2Path 1

D = Offset

D = Offset

 

Figure 7.16  Layout of a microbenchmark for determining branch outcome effect on PIR  
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The microbenchmark sets the Path2 PIR to be affected by the same branch 

address bits as the Path1 PIR, regardless of the different branches’ history.  This is 

achieved by placing all branches at the distance Offset.  Consequently, Path2 based PIR 

will differ from the Path1 based PIR only if the Switch branch outcome affects the PIR.  

We expect the number of mispredictions to be high if branch outcome does not affect the 

PIR.  The microbenchmark’s source code is shown in Figure 7.17. The Offset value is set 

to D=80000h.  

The test produces a high misprediction rate, indicating that the branch outcome 

does not affect PIR. 

 

 

Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 do{ 

@A    if(a==0)a=1;    // Taken branch 1 

    // dummy non-branch instructions 

    ... 

@A + 6*Offset  if(a==0)a=1;    // Taken branch 7 

  // dummy non-branch instructions 

@A + 7*Offset  if(L==0)a=1;    // Switch branch 

  // dummy non-branch instructions 

@A + 8*Offset  if(a==0)a=1;    // Taken branch 8 

  // dummy code to allow branches retirement 

  jmp dword ptr [ebx]    // Spy branch 

    Target1: clc           // Spy target for L==0 

    Target2: clc           // Spy target for L==1 

    liter --; 

 } while (liter >0); 

Figure 7.17  Source code for determining branch outcome effect on PIR 
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7.8 PIR Organization – Indirect Branch Target Effect on PIR 

We have developed a separate microbenchmark for determining whether the 

indirect branch target address affects the PIR.  The microbenchmark reuses the pattern-

based PIR test shown in Figure 7.5.  The branches Setup1 and Setup2, which were used 

to make the Path1 PIR differ from the Path2 PIR, are replaced with the indirect branches 

Indirect1 and Indirect2 (see Figure 7.18). 

Indirect2 and Indirect1 have target addresses that differ in only one address bit at 

position k.  Consequently, if indirect branch target address bit k affects the PIR, the Path2 

PIR will differ from the Path1 PIR and the benchmark will produce a low misprediction 

rate. To avoid possible indirect branch IP address affecting the PIR, the Setup2 IP address 

is set to Offset distance from the Setup1 IP address where Offset=80000h.  The 

microbenchmark has the H block introduced in Figure 7.7 to test for target bits shifting 

through the PIR. 
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Figure 7.18  Indirect branch target bits effect on PIR test microbenchmark layout 
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The microbenchmark has two variables, D and H, where D is the difference 

between Target1 and Target2 addresses and H is the number of branches in between the 

spy indirect branch and Target1 or Target2.  The information about target bits is 

determined from experiments varying D and H similarly to the experiments described in 

Section 7.5.  Indirect1 and Indirect2 are made to be always mispredicted; therefore, the 

misprediction rate of 50% means no mispredictions for the spy indirect branch. The 

microbenchmark’s source code is shown in Figure 7.19.  

 

 

Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 do{ 

   L = liter%2;         // Setup for indirect br. pattern 

   8x if(a==0)a=1;      // Repeat the statement 8 times 

   jmp dword ptr [ebx]  // Setup branch 

@A   Target1: clc         // Target1 (exec. when L=0) 

@A + D   Target2: clc         // Target2 (exec. when L=1) 

   // dummy non-branch instructions 

   H x if(a==0)a=1;       // The H block 

   jmp dword ptr [ebx]    // Spy branch 

   Target3: clc           // Target3 (exec. when L=0) 

   Target4: clc           // Target4 (exec. when L=1) 

   liter --; 

 } while (liter >0); 

Figure 7.19  Indirect branch target bits effect on PIR test source code 

We measure the number of mispredicted indirect branches (MIBIE).   

Figure 7.20 shows the misprediction rat, calculated as the MIBIE divided with the 

number of indirect branches, as a function of the parameter D (D=1h–800h), when H=0.  

For distances D=1h–20h, the misprediction rate is ~65% indicating that the indirect 
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branch target bits [5:0] are used for the PIR.  We assume that these bits are XOR-ed with 

the PIR bits [5:0] and are used for the iBTB tag 

 

 

 

Figure 7.20  Indirect branch target bits effect on PIR test for H=0 

Figure 7.21 shows the misprediction rate, calculated as the MIBIE divided by the 

number of indirect branches, as a function of the parameter D (D=1h–800h), when H=1.  

For distances D=1h–8h, the number of normalized mispredictions is ~0.65. For distances 

D=10h–20h, the spy branch produces no mispredictions.  The results confirm the 

previous observation about XORing the indirect target address bits [5:0] with PIR bits 

[5:0]; target address bits [5:0] for H=1 are moved to the PIR positions [7:2]. PIR bits 

[7:6] produce no misprediction which is the situation we observed in Section 7.5. We 

prove the assumption about XORing indirect target address bits [5:0] with the PIR bits 

[5:0]. 
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Figure 7.21  Indirect branch target bits effect on PIR test results for H=1 

Figure 7.22 shows the misprediction rate, calculated as the MIBIE divided by the 

number of indirect branches, as a function of the parameter D (D=1h–800h), when 

H=2…8.  The results confirm the previous observation about XORing the indirect target 

bits [5:0] with PIR bits [5:0]; for each increment of H, we see a shift of two bits through 

the PIR until for H=8, where all bits are shifted out of the PIR and all branches are 

mispredicted. As expected, we can see that for H=5, bit 4 reached the PIR highest bit 

which is assumed to be used for tag match and therefore mispredictions exist. 

 

 

 

Figure 7.22  Indirect branch target bits effect on PIR test results for H=2…8 
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Figure 7.22 (Continued) 
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7.9 PIR organization – Indirect Branch IP Address Effect on PIR 

Another question regarding the PIR update policy is whether addresses of indirect 

branches affect the PIR.  In answering this question we will slightly modify a 

microbenchmark shown in Figure 7.18.  Instead of having indirect branch target Target1 

and Target2 differ at a particular address bit, Indirect2 is set to have IP address bit k 

different from the address bit k of the Indirect1 branch.  Consequently, if address bits of 

indirect branches affect the PIR, the Path2 PIR will differ from the Path1 PIR and the 

test will have a low number of mispredictions.  Bit k is set as follows: IP(Indirect2) = D 

+ Offset + IP(Indirect1), where D =2k  and Offset=80000h.  The target addresses 

Indirect2 and Indirect1 are set to have lower 6 bits equal to avoid indirect branch target 

addresses to influence the PIR.  The block H is removed and the layout of the 

microbenchmark is shown in Figure 7.23. The microbenchmark’s source code is shown 

in Figure 7.24. 
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Figure 7.23  Layout of a microbenchmark for determining whether indirect branch  
address bits affect the PIR 
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Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 do{ 

   L = liter%2;    // Setup for indirect br. pattern 

   if (L==0){ 

    8x if(a==0)a=1;     // Repeat the statement 8 times 

@A   jmp dword ptr [ebx] // Indirect1  

@B      Target: clc         // Target 

   }  

   else{ // dummy non-branch instructions 

    8x if(a==0)a=1;     // Repeat the statement 8 times 

@A + Offset + D   jmp dword ptr [ebx] // Indirect2  

@B + Offset   Target: clc         // Target 

   } 

   jmp dword ptr [ebx]  // Spy 

   Target1: clc         // Target1 (exec. when L=0) 

   Target2: clc         // Target2 (exec. when L=1) 

   liter --; 

 } while (liter >0}; 

Figure 7.24  Source code of a microbenchmark for determining which indirect branch 
address bits affect the PIR 

We measure the number of mispredicted indirect branches (MIBIE).  Figure 7.25  

shows the misprediction rate, calculated as the MIBIE divided by the number of indirect 

branches, as a function of the distance D (D=10h–80000h).  The results indicate that the 

indirect branch IP address bits [18:10] are affecting the PIR.  In Section 7.8 we observed 

that the indirect branch target bits [5:0] are affecting the PIR.  The number of 

mispredictions in both cases allows us to implicitly conclude that the indirect branch IP 

address bits [18:10] are concatenated with the indirect branch target bits [5:0] and XOR-

ed with the PIR due to the similarity to the results in Section 7.5.  For the same reason, 

the block H and appropriate testing is considered redundant and is not included here. 
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Figure 7.25  Results for detection of indirect branch IP bits effect on PIR test 

7.10  PIR Organization – Update Policy 

We have mentioned several PIR update policies, such as shift and add, shift and 

add with interleaving and shift and xor.  Section 7.5 indicates that likely the shift and xor 

policy is used in Pentium M.  Here we verify this assumption in a different way, using an 

alternative approach and developing a new microbenchmark.  Before describing the 

experimental approach, let us walk through the following example.   

Example. Assume an 8-bit PIR that uses branch address bits IP[11:4], and the 

shift count is 1. 

• After Branch1 is executed: PIR = IP(Branch1) [11:4].  

• Prior to Branch2 PIR is shifted first: PIR = IP( [Branch1] [10:4, ‘0’].  

• After Branch2 is executed: PIR = [IP(Branch1) [10]: IP(Branch1) [4], ‘0’] 

xor [IP(Branch2) [11]: IP(Branch2) [5],  IP( Branch2) [5]] 

Effectively, we consider that IP(Branch1)[4] and IP(Branch2) [5] are XOR-ed. 

The microbenchmark shown in Figure 7.26 reuses the pattern-based 

microbenchmark from Figure 7.5.  It includes two new branches, Setup3 and Setup4 that 

precede Setup1 and Setup2 from the pattern-based algorithm. 
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Following Example 1, we set the conditions for the test: 

• If Setup1[4] = Setup3[5] =‘1’, after both branches are executed, PIR[1] =‘0’. 

• If Setup2[4] = Setup3[4] =‘1’, after both branches are executed, PIR[1] =‘0’. 

The test results in the Path2’s PIR are the same as the Path1’s PIR, and 

consequently produces mispredictions, but the conditional branches affecting the PIR are 

different.  
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Figure 7.26  Layout of a microbenchmark for determining PIR update policy 

The microbenchmark is designed to work with any shift count even though we 

have found that shift count = 2. Two variables are introduced as follows: 

 N1;    N1 = Setup3 – Setup1 

N2;    N2 = Setup4 – Setup2 

By changing N2 and N1, we match the Path2’s PIR to be equal to the Path1’s PIR.  

The microbenchmark source code is shown in Figure 7.27.   
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Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 for(i=0;i<liter;i++){ 

   L=i%2; 

   if(L==0){      

@A    6x if(a==0)a=1;     // Repeat the statement 6 times 

@B    if(a==0)a=1;        // Setup3 

@C      if(a==0)a=1;        // Setup1 

   } else { // dummy non-branch instructions 

@A + Offset    6x if(a==0)a=1;     // Repeat the statement 6 times 

@B + Offset    if(a==0)a=1;        // Setup4 

@C + Offset      if(a==0)a=1;        // Setup2 

   }  

   // dummy non-branch instructions 

   jmp dword ptr [ebx]  // Spy 

   _0: clc         // Target1 (exec. when L=0) 

   _1: clc         // Target2 (exec. when L=1) 

 } 

Figure 7.27  Source code of the microbenchmark for determining PIR update policy 

We measure the number of mispredicted indirect branches (MIBIE).  Figure 7.28  

shows the misprediction rate, calculated as the MIBIE divided by the number of indirect 

branches, as a function of the parameters N1 and N2.  Both tests verify our assumptions: 

the PIR update policy is shift and xor and the shift count = 2. 

 

 

 

Figure 7.28  PIR shift and XOR update logic test results for N1=10h, 30h 
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7.11 Indirect Branch IP Effect on iBTB Access Hash Function 

The index and tag fields for an iBTB lookup are a hash function of the indirect 

branch address bits and the current PIR register.  Here we want to verify a hypothesis that 

the index and tag fields are determined by XORing the branch address and the PIR.  First, 

we use a microbenchmark that tries to determine what address bits of an indirect branch 

are used for the iBTB access hash function.  The microbenchmark includes two indirect 

spy branches, called Spy1 and Spy2.  We ensure that the PIR seen by Spy1 is equal to the 

PIR seen by Spy2.  Consequently, the hash functions for Spy1 and Spy2 will depend on 

the branch address of these two spy branches only (see Figure 7.29).   

 

 

Cond. Branches 1-7

Spy indirect branch 1

IPs differs at
particular bit

Spy indirect branch 2

Target 2_1 Target 2_2

Target 1_1 Target 1_2

Unique branch 1_1 Unique branch 1_2

Cond. Branches 8-15

Unique branch 2_1 Unique branch 2_2

Path 1

Path 1 Path 2

Path 2

Path 1 Path 2

 

Figure 7.29  Layout of microbenchmark for determining Indirect branch IP address 
effects on hash function 
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It should be noted that Spy1 and Spy2 must have two targets if we want to cause 

collisions in the iBTB.  Otherwise, the regular BTB will correctly predict both Spy1 and 

Spy2 target addresses.  Spy1 target addresses are Target1_1 and Target1_2. Spy2 target 

addresses are Target2_1 and Target2_2. 

The microbenchmark must ensure that Spy1 sees two unique values in the PIR, 

depending on the execution path, one for Path1 (the target address is Target1_1) and one 

for Path2 (the target address is Target1_2).  The same requirement must be satisfied for 

Spy2.  The microbenchmark relies on placing unique branches Unique1_1, Unique1_2, 

Unique2_1 and Unique2_2 at such addresses to ensure unique PIRs for each path.  The 

placement of unique branches must be such to satisfy the following requirements: the PIR 

seen by Spy1 in Path1 must be the same as the PIR seen by Spy2 in Path1 and the PIR 

seen by Spy1 in Path2 must be the same as the PIR seen by Spy2 in Path2.  This can be 

achieved with the following branch placement. 

IP(Unique2_1) = IP(Unique1_1) + Offset; Offset = 800000h; 

IP(Unique2_2) = IP(Unique1_2) + Offset; Offset = 800000h. 

The next step in the setup is to place the spy indirect branches at a controlled 

distance: IP(Spy2) = IP(Spy1) + D, where D=2k, and bit k is cleared in Spy1 address.  If 

the bit k of the Spy2 branch is used for the hashing function, we should observe no 

mispredictions, and for the opposite, if bit k is not used for the hashing function, we 

should observe a high number of mispredictions.  The microbenchmark source code is 

shown in Figure 7.30.  
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Address Code 
 int long unsigned L,liter = 1000000; 

 int a=1; 

 do{ 

       L = liter%2; 
  7x if(a==0)a=1;  

  if(L==0)a=1;            // make Unique1_1 & Unique1_2 

@A  if(a==0)a=1;             // Unique1_1 & Unique1_2 

@B  jmp dword ptr [ebx]     // Spy1 

  _111: clc               // Target1_1 

  _112: clc               // Target1_2 

    // dummy non-branch instructions 

  7x if(a==0)a=1;  

  if(L==0)a=1;         // make Unique2_1 & Unique2_2 

@A + Offset + D    if(a==0)a=1;  // Unique2_1 & Unique2_2 

@B + Offset  jmp dword ptr [ebx]     // Spy2 

  _121: clc               // Target2_1 

  _122: clc               // Target2_2 

   liter --; 

 } while (liter >0); 

Figure 7.30  Indirect branch IP effect on hash function test source code 

We measure the number of mispredicted indirect branches (MIBIE).  Figure 7.31  

shows the misprediction rate, calculated as the MIBIE divided by the number of indirect 

branches, as a function of the parameter D (D=1h-80000h). The results indicate that 14 

indirect branch IP address bits are affecting the hash function.  

 

 

 

Figure 7.31  Indirect branch IP effect on hash function test results 
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For D = 10h–800h the test produces no mispredictions. This is an indication that 

particular bits are used as the index bits to the iBTB according to the observation made 

for the PIR bits in Section 7.5.  For D = 2000h–40000h, the misprediction rate is ~60%.  

This is an indication that particular bits are used as the tag bits to the iBTB according to 

the observation made for the PIR bits in Section 7.5.  For D = 1000h, the misprediction 

rate is 100%.  Due to similarity to the PIR bits, we expect this bit to be only a part of the 

tag field or unused at all.  

7.12 iBTB Access Hash Function 

The iBTB access function is usually a XOR between the PIR and the part of the 

indirect branch IP address.  We have determined the size and update policy for the PIR 

and indirect branch address bits used in the hash function.  The goal here is to develop a 

microbenchmark that will help determine the hash function.  The PIR and address bits 

can be XOR-ed without folding (e.g., PIR[14:0] is combined with IP[18:4]) or with 

folding (PIR[14] is combined with IP[4], etc.).  The challenge is to find the hash function 

without a direct control over the PIR.  Rather, the PIR is controlled through employment 

of a number of branches as explained earlier.   

The microbenchmark is based on the microbenchmark shown in Figure 7.29 and 

is shown in Figure 7.32.  A parameter in this benchmark is the distance DIP between Spy1 

and Spy2 indirect branches, DIP = IP(Spy2) – IP(Spy1).  Another parameter is the distance 

between the branches Unique1_2 and Unique2_2 or Unique1_1 and Unique2_1 DPIR = 

IP(Unique2_X) – IP(Unique1_X). kIP = log2(DIP) and kPIR = log2(DPIR). 
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Figure 7.32  Layout of microbenchmark for determining iBTB hash access function 

The following example illustrates the intricacies of the microbenchmark.   

Example.  Let us assume that PIR[1] is XOR-ed with the indirect branch address 

IP [4] to make a portion of either the tag or index field for the iBTB. IP(UniqueX_X)[4] is 

XOR-ed with the PIR[1].  The PIR values are the same in Path2 and Path1 prior to 

execution of Unique1_2 and Unique2_2: 

IP(Unique1_2) [4]  =’0’;  

IP(Spy1) [4]  =’0’  

Produced hash function bit 1 for Path2 is ‘0’. 

IP(Unique2_2)[4]  =’1’;  

IP(Spy2)[4]  =’1’ 

Produced hash function bit 4 for Path2 is ‘0’. 
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Although the Path2’s PIR differs from the Path1’s PIR and the indirect branch IP 

address for Path1 differs from the indirect branch IP address for Path2, the hash function 

for both Path1 and Path2 will target the same iBTB entry resulting in mispredictions.  

 The microbenchmark finds the misprediction rate as a function of DIP and DPIR, 

where DIP and DPIR are distances of the changed bits kIP and kPIR : 

IP(Unique2_X) = IP(Unique1_X) + DPIR+ Offset; Offset = 80000h,  kPIR= log2 (DPIR) 

IP(Spy2) = IP(Spy1)+ DIP + Offset; Offset = 80000h, kIP= log2 (DIP). 

If the misprediction rate is high, the PIR bit kPIR is XOR-ed with the indirect 

branch address bit kIP.   

The microbenchmark’s source code is shown in Figure 7.33. 

  

 

Address Code 
 int long unsigned i,k,l, liter = 1000000; 

 int a=1; 

 for(i=0;i<liter;i++){ 

        L = i%2; 
    k =  (i%(2*N))>>1; // execute 2x one spy branch consecutively 
  if (k==0){ // execute one target per iteration    
@A      7x if(a==0)a=1;  

      if(L==0)a=1;          // make Unique1_1 & Unique1_2 

@B      if(a==0)a=1;          // Unique1_1 & Unique1_2 

@C     jmp dword ptr [ebx]   // Spy1 

     _111: clc             // Target1_1 

     _112: clc             // Target1_2 

  } 

  else if (k==N){  
@A + Offset      7x if(a==0)a=1;  

      if(l==0)a=1;          // make Unique2_1 & Unique2_2 

@B + DPIR      if(a==0)a=1;          // Unique2_1 & Unique2_2 

@C + DIP     jmp dword ptr [ebx]   // Spy2 

     _l21: clc             // Target2_1 

     _l22: clc             // Target2_2 

    } 

 } 

Figure 7.33  Source code of the microbenchmark for determining iBTB hash function 
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Table 7.1 shows values of DPIR and DIP that matched, consequently producing a 

misprediction rate of 100%.  The iBTB access function is illustrated in Figure 7.34 

Table 7.1  PIR bits and indirect branch IP bits that XOR in iBTB hash access function 

DPIR DIP Misprediction Rate 
10h 2000h 100% 
20h 4000h 100% 
40h 8000h 100% 
80h 10000h 100% 
100h 20000h 100% 
200h 40000h 100% 
400h 10h 100% 
800h 20h 100% 
1000h 40h 100% 
2000h 80h 100% 
4000h 100h 100% 
8000h 200h 100% 
10000h 400h 100% 
20000h 800h 100% 
40000h 1000h 100% 
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Figure 7.34  PIR bits and indirect branch IP bits that XOR in iBTB hash access function 
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7.13 iBTB Organization 

This test tries to find which bits of the hash function are used for the tag and 

which for the index to the iBTB and provides an indication about the number of iBTB 

ways and sets.  The approach is similar as in the pattern-based test (see Figure 7.5). 

There, the microbenchmark employs two indirect branch targets. By setting the spy 

indirect branch to have two PIR values prior to execution of each target, targets will be 

allocated in different iBTB entries. 

The spy indirect branch in this microbenchmark must include N targets (N>2).  

Each of the N targets will target a different iBTB entry. The total number of targets that 

should be used will be different in different phases of the algorithm and will go up to the 

total number of the iBTB entries. To target a different iBTB entry, a similar idea is used 

as in Figure 7.5; each of the N targets must have a different PIR value prior to execution 

of the spy indirect branch.  

The algorithm source code implementation is problematic. The microbenchmark 

in Figure 7.5 is implemented by shifting Path2 from Path1 at distance Offset. 

Consequently, the microbenchmark here would have to use N-1 offsets, which are not 

feasible to implement.  To remedy this problem, two indirect branches are introduced. 

Setup indirect branch, Setup, serves to make N different paths; Setup has N targets and 

each target has one conditional branch within its target. These conditional branches are 

named Unique0 – UniqueN (see Figure 7.35). Unique0-UniqueN help to achieve different 

N paths in the same way Unique0 –Unique2 did in Figure 7.5. Each of Unique0 –

UniqueN sets the PIR value to be different prior to execution of the spy indirect branch 

by setting Unique0-UniqueN at distance D from each other; consequently, D = 2k. 
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Figure 7.35  Layout of the microbenchmark for detection of iBTB organization 

The setup indirect branch should consume only one iBTB entry. Therefore, Setup 

is preceded with the number of always taken branches. The iBTB entry reserved for the 

setup indirect branch may cause a collision with targets of the spy indirect branch, 

producing unwanted misprediction.  During result analysis, we will identify and isolate 

these mispredictions.  

We observe the misprediction rate as a function of D and N to make a conclusion 

on the iBTB number of sets and ways and the index bits and tag bits. The following 

example explains details:  

• 4-way iBTB uses 7 lower PIR bits for the index, 6 consecutive for the tag: 

o For D = 10h (lowest PIR bit used for the index), N up to 4*27 will not produce 

mispredictions. 

o For D = 20h, N up to 4*26 will not produce mispredictions. 
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• 4-way iBTB uses 6 lower PIR bits for the tag, 7 consecutive for the index: 

o For D= 10h (lowest PIR bit used for the index), N up to 4 will not produce 

mispredictions 

o For D= 210, N up to 27 will not produce mispredictions. 

o For D = 29, N up to 2* 27 will not produce mispredictions. 

o For D = 28, N up to 4* 27 will not produce mispredictions. 

By observing the misprediction rate as a function of D and N, index and tag bits 

can be determined. Generalization of the example is not given and details will be 

explained during results analysis.  

The microbenchmark source code is shown in Figure 7.36. 

 

 

Address Code 
 int long unsigned L,liter = 1000000; 

 int a=1; 

 do{ 

            L = liter%N; 
    8x if(a==0)a=1;  

   jmp dword ptr [ebx] // Setup branch 

@A   _101:              // Target0_1 (exec. when L=0) 

@B         jne l1;        // Unique0 

@A+ 40h(80h,100h,…)   _102: clc          // Target0_2 (exec. when L=1) 

@B + D         jne l1;        // Unique1 

     ... 

@A+ 40h(80h,100h,…)     _10N:              // Target0_N (exec. when L=N) 

@B + (N-1)*D         jne l1;        // UniqueN 

    l1: clc  

   jmp dword ptr [ebx] // Spy 

   _111: clc          // Target1_1 (exec. when L=0) 

   _112: clc          // Target1_2 (exec. when L=1) 

     ... 

     _11N: clc          // Target1_N (exec. when L=N) 

     liter --; 

 } while (liter >0) 

Figure 7.36  Source code of the microbenchmark for detection of iBTB organization 
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NOTE: The source code is unable to test for D = 40h and lower due to the fact 

that the target bits of the setup branch must be at D=40h as the minimum distance. 

Fortunately, for a small number of branches such as B=2 and B=3, code can be adjusted 

to achieve small D values, and, moreover, B=2, 3 will be enough to make conclusions. 

We measure the number of mispredicted indirect branches (MIBIE).   

Figure 7.37 shows the misprediction rate, calculated as the MIBIE divided by the 

number of indirect branches, as a function of the parameter D (D=10h–80000h) for B=2. 

Since B=2, these results are the same as results shown in Figure 7.9 and are discussed 

again as assumptions are made for further analysis.  For D=400h–20000h, the spy branch 

produces no misprediction; this is an indication that the PIR bits [13:6] are the index bits 

in the iBTB. For D=10h–200h and D=40000h, the spy branch produces mispredictions, 

this is an indication that the PIR bits [5:0] are the tag bits in the iBTB. 

 

 

 

Figure 7.37  Results for detection of iBTB organization test for B=2 
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Figure 7.38 shows the misprediction rate, calculated as the MIBIE divided by the 

number of indirect branches, as a function of the parameter D (D=10h–80000h) for B=3.   

For assumed PIR index bits PIR[13:6], the spy branch produces no mispredictions 

(D=400h–10000h) as expected. Note: For D=20000h and D=40000h, the spy branch 

produces the mispredictions because the 3rd spy target is effectively on distances 

D=40000h (assumed tag) and D=80000h (not used) respectively.  

For assumed PIR tag bits PIR[5:0] (D=10h–200h), the spy branch is always 

mispredicted. This is an indication that the iBTB or/and the BTB update policy is based 

on Allocate on 2nd misprediction policy. Allocate on 2nd misprediction policy allows for 

two misprediction before the mispredicted entry updated and in the case of three 

mispredictions in a round robin manner, each target is mispredicted. 

Results for tests where B>3 are not necessary for D<400h since Figure 7.38 

shows that the misprediction rate is already 100% for B=3 and D<400h.  

 

 

 

Figure 7.38  Results for detection of iBTB organization test for B=3 
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Figure 7.39 shows the misprediction rate calculated as the MIBIE divided by the 

number of spy branches as a function of the parameter B (B= 2–260) for D=400h. Results 

indicate that the iBTB can fit 256 branches per set. Since a direct-mapped structure is 

likely to be used, final indication is that the iBTB size is 256 entries. 
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Figure 7.39  Results for detection of iBTB organization test for D=400h 

NOTE: For B=192, the number of mispredictions is higher than expected. This is 

caused by the contention of one of the spy branch targets with the setup indirect branch 

entry since detailed calculation shows that mispredictions overhead are caused by two 

branches. Also, for B=256, this overhead is still proportional to the value of 2 branches. 

7.14 iBTB Relations with the BTB 

Indirect branch prediction from the BTB.  First, we verify the assumption 

taken at the very beginning that the BTB provides the prediction for the monotonic 

indirect branch. The microbenchmark in Figure 7.31 is reused. Two indirect branches are 

set to have two different targets. A test is set to have Path1 and Path2 the same, 



 

133 

consequently producing mispredictions.  A setup for each spy branch is changed to 

execute one target only. New microbenchmarks still produce contentions in the iBTB. 

The microbenchmark did not produce mispredictions, indicating that the BTB is used for 

the prediction of the monotonic indirect branches  

iBTB miss/ misprediction. In Section 7.5 we concluded that the particular bits of 

the PIR are used as the tag in the iBTB. We made the assumption that the situation iBTB 

miss/ misprediction has a specific allocate policy based on an allocate on iBTB on 2nd 

misprediction policy basis. We further investigate this case. A new test reuses the 

algorithm from Section 7.5 with H=0 and D=2 with the test changed to execute the first 

target multiple times and the second target once.  

We set pattern to execute the first target three times and the second target once. 

We observe a misprediction rate of 50%.  It is obvious that the both second target and the 

very next first target occurrence is mispredicted. We conclude that the iBTB allocate on 

2nd misprediction policy is not used. Consequently, we conclude that the both iBTB miss 

and the BTB have the allocate on first misprediction allocation policy. 

The reason for the normalized number of mispredictions of 0.4 in Section 7.5 is 

seen in the specific iBTB dependencies to BTB. For example, if the 

allocation/replacement polices for the BTB and the iBTB direct each structure to update 

their entries, one of them may skip its update since the other structure will possibly 

predict correctly after an update. Consequently, there is a reduction in the number of 

mispredictions. We don’t investigate this case further.
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CHAPTER 8 

 

 

MICROBENCHMARKS FOR THE REVERSE ENGINEERING 

OF THE GLOBAL PREDICTOR  

 

 

8.1 Objectives 

The goal of this section is to develop an experimental flow and a set of 

microbenchmarks that will help us determine the organization of the global and bimodal 

outcome predictors.   

8.2 Contributions and Findings 

We have developed an experimental flow and a set of microbenchmarks for 

determining the organization of the global and bimodal predictors.  The experimental 

flow and microbenchmarks applied on a Pentium M processor provide the following 

insights.  The outcome predictor is a multi-layer structure encompassing a global 

predictor and a bimodal predictor.  The global predictor is organized as a cache-like 

structure, indexed by a portion of the path information register.  More specifically, we 

have made the following findings.   
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1. The index and tag fields used for access to the global outcome predictor are based on 

the path information register (PIR), described in Section 7.2. The size and the update 

policy of the PIR are verified using a new set of microbenchmarks that feature only 

conditional branches.  These experiments confirm the previous findings. 

• The PIR width is 15 bits. 

• The PIR is updated as follows.  

• Conditional taken branch address bits IP [18:4] are XOR-ed with the 

original PIR shifted by 2 bit positions to the left. 

• Indirect branch address bits IP[18:10] and target address bits TA[5:0] 

(total of 15 bits) are XOR-ed with the original PIR shifted by 2 bit 

positions to the left. 

2. The global outcome predictor hash function is an XOR between the PIR and the 

conditional branch IP.  Conditional branch IP bits [18:4] are XOR-ed with the PIR 

bits [14:0].  The lower 6 bits of the result are used as the tag.  The higher 9 bits of the 

result are the index for the global predictor. 

3. The global predictor is a 4-way structure organized into 512 sets.  

4. Global predictor uses an LRU-like replacement policy with an unknown allocation 

policy.  It is likely that a branch allocated to the predictor needs “verification” (that is, 

the branch is encountered at least twice).  In the meanwhile, the branch may still be 

evicted by the other branches that target the same set, even if other entries in the 

particular set may be free. 

5. The Bimodal outcome predictor is a flat structure of two-bit counters indexed by the 

instruction IP bits [11:0] with size of 4096 entries. 
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8.3 Background 

Global outcome predictors have long been a focus of many research efforts in 

academia and industry striving to come up with a very accurate outcome prediction with 

small hardware complexity and small latency.  Improving the predictor accuracy by 

increasing the predictor’s size has become a non adequate solution. It has been shown 

that the negative interference in the predictors is a larger source of mispredictions than 

the capacity misses caused by a smaller outcome predictor.  

An increase in the branch predictor size often leads to unacceptable predictor 

latency.  The instruction fetch unit and consequently the branch predictor unit is on the 

critical path to sustain high issue rates.  To reduce the predictor delay, the predictor size 

must be reduced. Jimenez [32] shows a benefit from a cascading predictor where a slower 

more accurate predictor may overrule the prediction coming from a faster and less 

accurate predictor.  

To remedy the problem of predictor size and interference, researchers have 

offered many sophisticated solutions, and over time, outcome predictors have become 

multi-layer complex structures, mainly consisting of many best up-to-date outcome 

predictors that are closely coupled to each other.  However, complex structures often 

impose a significant verification effort during predictor design, and this in turn affects 

ever tightening time-to-market.   

We expect that the modern branch outcome predictor implementations are based 

on the GShare with additional structures to address issues such as filtering (branch 

classification) and negative interference. 
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8.3.1 Negative Interference 

Negative interference occurs when two branches with opposite outcomes compete 

for the same entry in the global predictor, consequently making one or both outcomes 

mispredicted. 

A number of research efforts have addressed the issue of negative interference.  

Here we focus our attention on the Bi-mode predictor [13] to set the background for 

expectations on resolving the negative interference problem in modern predictors.   

With Bi-mode, the global predictor is divided into two parts, not taken and taken branch 

history tables (NT.PHT and T.PHT).  A third structure, a bimodal table is used to select 

which table, NT.PHT or T.PHT should provide an outcome prediction.  This way, the 

global predictor will predict incorrectly only when two branches with opposite outcomes, 

have the same global predictor access function and the bimodal table gives an incorrect 

prediction selecting the opposite history table.  The main flaw in the Bi-mode predictor is  

the non-existence of filtering.  Branches that are always taken or not taken are also 

predicted by the global predictor although the bimodal predictor may predict this branch 

with fewer resources. 

8.3.2 Branch Filtering 

Branch filtering or branch classification is a technique where a specialized branch 

predictor structure is used to predict certain types of branches.  

Specialized predictors introduce tags to be able to distinguish the occurrence of 

the certain branch type.  We have already seen that the loop predictor is a cache structure 

where tags are used to identify the loop branches.  We expect a similar approach in the 

implementation of the global predictor.  The tagged global predictor may handle only 
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those branches that are not predicted correctly by both the loop predictor and the bimodal 

predictor.  Our focus is on two academically proposed predictors, McFarling’s Serial-

BLG [7] and YAGS predictor [16].  

YAGS Predictor 

The YAGS predictor is based on the Bi-mode predictor with two global predictor 

tables, T.PHT and NT.PHT, but these tables are tagged in order to ensure filtering.  

However, it should be noted that tagging reduces positive and neutral interference 

potential of the Bi-mode predictor.  For example, if two not taken branches compete for 

the same entry in T.PHT, they will evict each other if they have different tags.  In a Bi-

mode predictor, neutral interference would occur.   

On the other hand, selection of the T.PHT and NT.PHT based on the bimodal 

predictor may reduce the filtering capabilities. For example, an entry in the global 

predictor may have a lookup hit, but the entry will not be considered if the bimodal table 

did not select a particular table the hit belongs to. Also, one table of the Global predictor 

may be more overloaded than the other table, resulting in unnecessary wasting of 

resources  

Finally, we consider the YAGS scheme as a cache-like global predictor that 

works in tandem with the bimodal predictor with questionable global predictor way-

selection function.  This observation leads us to the Serial-BLG predictor [7]. 

Serial-BLG Predictor 

The serial-BLG predictor consists of three stages (predictors), Bimodal, Local and 

Global. The bimodal is the default predictor.  If the branch is detected to have a local 

behavior and cannot be successfully predicted by the bimodal predictor, the bimodal 
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prediction may be overridden in the local predictor.  If the branch is detected to have a 

global behavior and cannot be successfully predicted by either the bimodal or the loop 

predictor, a prediction given by the bimodal predictor or the local predictor may be 

overridden by the global predictor.  This way, the local and the global predictor may have 

much smaller sizes since the bimodal predictor handles the majority of the program 

branches.  Therefore, filtering exists as in the YAGS predictor except that the global 

predictor access function is not related to the bimodal predictor.  This fact allows for 

easier branch predictor development and verification.   

8.3.3 Expectations 

We expect the global predictor to be a multi-way cache structure.  By introducing 

the tags, the number of global predictor entries may be significantly reduced compared to 

the version without tags.  The global predictor needs to predict only branches that are 

unpredictable by the bimodal and loop predictors.  A much smaller number of entries 

successfully compensates for an additional hardware overhead due to tags.  Additionally, 

the reduced predictor size results in lower predictor latency, an equally important 

parameter in the design of modern branch predictor units.  

A tagged structure also helps with the negative interference.  The tags cannot 

remove negative interface but can identify it.  For example, two branches that hit in the 

same global predictor entry with different tags, will still evict each other but, due to 

different tags, global predictors will not provide a hit, avoiding possible misprediction.  

Final prediction will rely on the bimodal predictor that can still give a correct prediction.   
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We expect first level of the global predictor to be a shift register containing 

branch history register, BHR.  The BHR may be affected by different types of branches 

and branch information such as address bits, target bits or the branch outcome.  

8.4 BHR Organization – Conditional Branch IP Address Bits used for 

BHR 

We assume that the BHR is affected by the IP address of the last byte of a 

conditional branch, rather than by the branch target address.  The BHR serves the same 

purpose as the PIR for the indirect branch predictor.  Consequently, we assume that the 

BHR organization is a similar one to the PIR organization. 

We develop a microbenchmark that tries to find the following: (a) branch address 

bits used for the BHR, (b) the BHR shift count, (c) the BHR history length (BHR.HL) -- 

the maximum number of branches, prior to a conditional branch, affecting the BHR, and 

(d) the BHR width (the number of bits in the branch history register).  

The branch address bits used for the BHR are found using an algorithm similar to 

the one used in Figure 7.7 to find conditional branch IP bits that affect the PIR.  The only 

change is that we replace the indirect spy branch with a conditional spy branch (see 

Figure 8.1).  The spy conditional branch has two outcomes; the nT outcome and the T 

outcome. Path1 is the path taken to reach the spy branch T outcome and Path2 is the path 

taken to reach the spy branch nT outcome.  To achieve different paths to work in the way 

described, a setup branch is introduced.  The setup branch has the same outcome pattern 

as the spy branch.  The setup branch is made to always be mispredicted by introducing a 

number of conditional taken branches before it.  Consequently, the total misprediction 

rate of 50% means that the spy branch misprediction rate is 0%. 
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Figure 8.1  Conditional branch IP bits that affect BHR, BHR shifting policy and BHR 
history length microbenchmark layout 

The spy branch must have the outcome pattern unrecognizable by the loop, the 

bimodal or any other local predictor.  Since we know that the loop predictor has the 

maximum counter length of 64, a loop branch with the counter modulo larger than 64 can 

be used. 

We choose a more generalized pattern: The spy branch will have pattern 

{N*Taken, N*Not Taken}, with N large enough to avoid any local predictor.  This way 

we do not consider relations of the global predictor with any other predictor.  A problem 

with this approach is the unknown expected number of mispredictions.  However, when 

the spy branch starts to be mispredicted, we expect the total number of mispredictions to 

be twice what it is without the spy branch mispredictions, since the spy and the setup 

branches contribute equally to the total number of mispredictions. 
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The algorithm sets one bit in the Setup2 branch address to differ from the Setup1 

branch address.  The particular bit is referred to as k (k=0, 1, …log2Offset-1), and 

displacement D is defined as D=2k.  Therefore, IP(Setup2) = D + IP(Setup1) + Offset.  

Consequently, if bit k does not affect the BHR, the microbenchmark produces 

mispredictions in the global predictor.  IP(Setup1) bit k must be set to zero for proper 

testing. 

A similar approach is used for testing the BHR shift policy.  The algorithm is 

modified by insertion of H conditional branches between the spy branch and Setup1 (and 

Setup2) branches.  These H branches are executed in both Path1 and Path2; therefore, 

they influence the Path1 based BHR in the same way as the Path2 based BHR. 

Consequently, Path1 based BHR and the Path2 based BHR will differ only if Setup1 and 

Setup2 differ.  By increasing H, BHR bits shifted in by Setup1 or Setup2 branches are 

moved further in the BHR history.  

To find the BHR shift count, the same reasoning is used as in finding the PIR shift 

count (see Equation (7.1)) as shown in Equation (8.1). 

 

(shift count)∗BHR.HL - (shift count) < BHR Width ≤ (shift count) ∗BHR.HL. (8.1) 

 

BHR history length is found in the same way as the PIR history length; BHR.HL 

is equal to the minimum H for which the number of mispredictions is high regardless of 

the parameter D.  The microbenchmark source code is shown in Figure 8.2. 
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Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 do{ 

   L = (liter%32)>>4;    // pattern 16*T, 16*nT 

   if (L==0){            // execute one path per iteration   
@A    8x if(a==0)a=1;    // Repeat the statement 8 times 

@B,B[14:0]=“0”    if(a==0) a=1;      // Setup1 

   }                    // Unconditional jump 

   else{ // dummy non-branch instructions 

@A + Offset     8x if(a==0)a=1;      

@B,B[14:0]= “1”     if(a==0) a=1;     // Setup2 

   } 

   if(L==0) a=1;        // Spy branch 

   liter --; 

 } while (liter >0); 

Figure 8.2  Conditional branch IP bits effect on BHR test source code 

We measure the number of branches mispredicted at execution (MBI_EXEC). 

Misprediction rate is calculated as the MBI_EXEC divided by the number of spy 

branches. 

Figure 8.3 shows the misprediction rate as a function of the parameter D (D=1h–

80000h), when H=0.  For distances D=10h–40000h,  the spy branch does not produce 

mispredictions, indicating that branch address bits IP [18:4] are used for the BHR. 

Figure 8.4 shows the misprediction rate as a function of the parameter D (D=1h–

80000h), when H=1.  For distances D=10h–10000h, the spy branch does not produce 

mispredictions. According to analysis in Section 7.5, we conclude that the BHR shift 

count is two.  

Figure 8.5 shows the misprediction rate as a function of the parameter D (D=1h–

80000h), when H=7, 8.  Not all H values are tested since the similarity with the PIR is 

obvious enough to consider results sufficient. 
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Figure 8.3  Conditional branch IP bits effect on BHR test results for H=0 

 

Figure 8.4  Conditional branch IP bits effect on BHR test results for H=1. 

 

 

Figure 8.5  Conditional branch IP bits effect on BHR test results for H=7,8 
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8.5 BHR Organization – Type of Branches Used 

The microbenchmark has been developed which determines which types of 

branch instructions affect the BHR, apart from conditional taken branches.  We test the 

following branch types: (a) conditional not taken branches, (b) unconditional branches, 

(c) call and return jumps.   

The microbenchmark uses a slightly modified approach presented in Figure 8.1. 

The H-block is modified to include a number of conditional taken branches (HC, HC < 

BHR.HL), followed by a number of branches of other types HO (see Figure 8.6).  
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Figure 8.6  Branch types affecting the BHR microbenchmark layout 

A number of branches of other types, HO is set to the value HO = BHR.HL–HC.  

Path2 and Path1 are set to be unique in the same way as in the algorithm in Figure 8.6, 
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by setting the branch IP address of Setup2 branch to be different from the branch IP 

address of Setup1.  If the branches of other types do affect the BHR, Path2 will be the 

same as Path1, consequently producing mispredictions.  If the branches of other types do 

not affect the BHR, the total number of mispredictions should be zero. 

Not taken direct conditional branches.  Figure 8.7 shows the code snippet for 

Hc and Ho blocks for the microbenchmark described in Figure 8.6. The Ho block features 

direct conditional not taken branches. 

Unconditional jumps.  Figure 8.8 shows the code snippet for Hc and Ho blocks 

for the microbenchmark described in Figure 8.6. The Ho block features unconditionally 

taken branches. 

 

 
 

    

  a=1; 
  ... 
  6 x if(a==0) a=1;a=1;    // Hc = 6 
  2 x if(a==1) a=1;a=1;    // Not taken branches, Ho=2 
  ... 
  if(L==0)a=1;a=1;      //spy conditional branch 
 

Figure 8.7  Source code fragment for testing of NT conditional branches effect on BHR 

 

 6 x if(a==0) a=1;a=1;    //Hc = 6 
 _asm{jmp l1             //unconditional jumps, Ho=2 
     l1: clc 
     jmp l2 
     l2: clc 
 } 
 if(L==0)a=1;a=1;      //spy conditional branch 
 

Figure 8.8  Source code fragment for testing of unconditional branches effect on BHR 
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Call/returns.  Figure 8.9 shows the code snippet for Hc and Ho blocks for the 

microbenchmark described in Figure 8.6. The Ho block features Call/return branches. 

All the tests produce no mispredictions, meaning that none of the tested branches, 

direct conditional not taken, unconditional, and call/returns are affecting the BHR.  

 

 
 

_asm{ 
    jmp lcc 
   _doit1:  mov ebx, 10 
   _doit2:  mov ebx, 10 
     ret 
   lcc: clc 
}  
do{ 
   6 x if(a==0) a=1;a=1; // Hc=6 
  _asm{                  // call & returns, Ho=2 
     call    _doit1 
     call    _doit2 
  }   
  if(L==0)a=1;a=1;      //Spy conditional branch 
} 
while(liter>0); 
 

Figure 8.9  Source code fragment for testing of call and return branches effect on BHR 

8.6 BHR Organization – Branch Outcome Effect on BHR 

We develop a microbenchmark that reuses the algorithm shown in Figure 7.16.  

The switch branch and the spy indirect branch are replaced with two conditional branches 

with the same outcome pattern as shown in Figure 8.10.  Consequently, we set different 

outcome histories values for two outcomes of the spy branches: 

Spy taken outcome history:  <Taken branch 8, Switch, Taken branches 7–2>. 

Spy not taken outcome history:  <Taken branches 8–1>. 
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To make both path histories dependant only on the switch branch outcome, the 

taken branches 8–1 and the Switch branch have the same lower bits, so they influence the 

BHR in the same way. The microbenchmark source code is shown in Figure 8.10. 

The test doubles the number of mispredictions compared to the test when the 

Switch branch is simply replaced with the always taken branch.  The Switch branch is 

crafted to produce mispredictions due to the same history for both its outcomes.  

Consequently, we conclude that the spy branch produces mispredictions because the 

outcome of the Switch branch did not affect the BHR. 

 

 

Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 do{ 

   L = (liter%32) >> 4; // pattern 16*T, 16*nT 

@A   if(a==0)a=1;    // Taken branch 1 

   // dummy non-branch instructions 

   ... 

@A + 6*Offset   if(a==0)a=1;    // Taken branch 7 

   // dummy non-branch instructions 

@A + 7*Offset   if(L==0)a=1;    // Switch branch 

   // dummy non-branch instructions 

@A + 8*Offset   if(a==0)a=1;    // Taken branch 8 

   // dummy code to allow branches retirement 

   if(L==0)a=1;    // Spy branch 

   liter--; 

 } while (liter >0); 

Figure 8.10  Detection of branch types affecting the BHR source code 

8.7 BHR Organization – Indirect Branch Effect on BHR 

A new microbenchmark is designed to test whether both indirect branch address 

and indirect branch target affect the BHR.  The algorithm reuses the approach illustrated 
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in Figure 8.1.  The new algorithm (see Figure 8.11) replaces the conditional branches 

Setup1 and Setup2 with indirect branches ISetup1 and ISetup2.  The indirect branches 

have targets, Target1 and Target2. 
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Figure 8.11  Detection of indirect branch effect on BHR microbenchmark layout 

To test for the indirect branch target address impact on the BHR, ISetup2 branch 

IP address is changed to have different target address bit k from the ISetup1 branch IP 

address.  Consequently, if indirect branch target address bit k affects the BHR, the 

misprediction rate should be close to zero.  ISetup1 and ISetup2 are set at distance Offset 

not to affect the BHR.  The difference at bit k is achieved by setting the ISetup2 target 

address at distance D + Offset from the Setup1 target address where D = 2k and Offset = 

80000h.  The microbenchmark source code is shown in Figure 8.12.   
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Address Code 
 int long unsigned i,k,l, liter = 1000000; 

 int a=1; 

 do{                  

  L = (liter%32)>>4;    // Pattern 16x Taken, 16x Not taken 

  8x if(a==0)a=1;       // make setup branch mispredicted 

  if (L==0){           // execute one target per iteration   

@A    7x if(a==0)a=1;    // Repeat the statement 7 times 

@B    jmp dword ptr [ebx]  // ISetup1 

@C, C[14:0] = 0    _0: clc              // Target1 

  } 

    else{// dummy non-branch instructions 

@A + Offset    7x if(a==0)a=1;  

@B + Offset    jmp dword ptr [ebx]  // ISetup2 

@C + Offset + D    _1: clc              // Target2 

    } 

  if(L==0) a=1;a=1;  // Spy branch 

  liter--; 

 } while (liter>0); 

Figure 8.12  Indirect branch target address bits effect on BHR test source code 

We measure the number of branches mispredicted at execution (MBI_EXEC).   

Figure 8.13 shows the misprediction rate, calculated as the MBI_EXEC divided 

by the number of spy branches, as a function of the parameter D (D=1h–80h).  The 

results are the same as the one for the PIR; BHR is affected by the indirect branch target 

address bits [5:0]. 

To test for the indirect branch IP address impact on the BHR, ISetup2 is changed 

to have a different IP address bit k from the ISetup1 branch IP address.  Consequently, if 

the indirect branch IP address bit k affects the BHR, the induced number of 

mispredictions will be zero.  Target1 address and Target2 are set at the distance D=40h 

not to affect the BHR. The difference at bit k is achieved by setting the ISetup2 IP address 

at distance D + Offset from the ISetup1 IP address, where D=2k and Offset = 80000h. 

The microbenchmark source code is shown in Figure 8.14.  
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Figure 8.13  Indirect branch target address bits effect on BHR test results 

Address Code 
 int long unsigned i,k,l,liter = 1000000; 

 int a=1; 

 do{                  

        L = (liter%32)>>4; // Pattern 16x Taken, 16x Not taken 
    8x if(a==0)a=1;    // make setup branch mispredicted 

    if (L==0){        // execute one target per iteration    
@A     7x if(a==0)a=1; // Repeat the statement 7 times 

@B, B[14:0] = 0    jmp dword ptr [ebx]  // Indirect1 

@C     _0: clc              // Target1 

  } 

    else{// dummy non-branch instructions 

@A + Offset     7x if(a==0)a=1;  

@B + Offset + D    jmp dword ptr [ebx]  // Indirect2 

@C + 40h    _1: clc              // Target2 

  } 

    if(L==0) a=1;a=1;  // Spy branch 

    liter--; 

 } while (liter>0); 

Figure 8.14  Indirect branch IP bits effect on BHR source code 

Figure 8.15 shows the misprediction rate, calculated as the MBI_EXEC divided 

by the number of spy branches, as a function of parameter D (D=10h–80000h).  The 

results are the same as the one for the PIR; BHR is affected by the indirect branch IP bits 

[18:10]. 
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Figure 8.15  Indirect branch IP bits effect on BHR test results 

We do not examine the effect of the indirect branch IP address or indirect branch 

target address with the “H block” as in Section 8.1 as we assume that the similarity with 

the PIR is sufficient to make conclusions even without additional testing. 

NOTE: We are able to examine the BHR and conclude that the BHR has the same 

organization and behavior as the PIR.  We conclude that the BHR is in fact the PIR; the 

branch predictor employs one shift register, the PIR, used to access both the global 

predictor and the indirect predictor. 

8.8 Global Predictor Access Function 

We assume that part of the conditional branch IP address is XOR-ed with the 

BHR to access the global predictor.  A part of the XOR result is used as the index and 

another part as the tag in the global predictor. 

Here we wanted to find conditional branch bits used for the hash function in the 

same way we did for the iBTB hash function in Section 7.5 and we wanted to find the 

hash access function in the same way as in Section 7.12.  However, we cannot use an 

identical approach because of the bimodal predictor influence.  A similar algorithm 
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would use two conditional branches, Spy1 and Spy2, with the same histories in the BHR 

and change a particular Spy2 IP address bit.  This change involves changing of the 

bimodal entry for Spy2, making the misprediction rate impossible to analyze. 

Moreover, we are assuming the possibility of the existence of two global predictor 

tables selected by the bimodal predictor as in the Bi-mode predictor.  This requires us to 

exactly know the current state of the bimodal predictor and to keep it in one direction 

during the global predictor testing.  Otherwise, two global predictor tables would make 

results analysis a challenging if not impossible task.  

We develop an algorithm that relies on one of the basic properties of the two-bit 

counters.  For the branch with outcome pattern {3*T, 2*nT}, a two-bit counter will 

incorrectly predict both not taken outcomes and one taken outcome that come just after 

the nT outcomes.  If such branch outcomes all target the same bimodal predictor entry 

and the same global predictor entry, we analyze two cases. First, if the bimodal predictor 

does not choose between two tables then the misprediction rate is 60% as the two-bit 

counters were behaving the same as described. Second, if the bimodal predictor chooses 

between the two tables then the misprediction rate is smaller than 60%, because taken 

and not taken outcomes will be allocated in two different entries. Figure 6.13 already 

showed that the branch with the described pattern and targeting the same bimodal and 

global entry has a misprediction rate of 60%.  Therefore, we conclude that there are not 

two global predictor tables.  The algorithm used here (see Figure 8.16) uses two loops 

Spy1 and Spy2 with the same modulo MOD and both switch their outcomes at the same 

time.   
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Figure 8.16  Global predictor access function microbenchmark layout 

The Spy2 IP address is changed at particular bit kIP and therefore we expect Spy2 

to target a different global predictor entry, consequently making the total misprediction 

rate of 2/MOD. The distance DIP = 2kIP. 

Now, Setup2 that precedes the Spy2 is changed to differ from the Setup1 branch at 

a particular bit kPIR.  The idea is to perform the same algorithm as in Section 7.12. If bits 

kIP and kPIR  are XOR -ed in the hashing function, both Spy1 and Spy2 target the same 

entry in the global predictor, making the effective outcome pattern {N*T, 2*nT} and the 

expected misprediction rate is 3/MOD regardless of the bimodal predictor. 

The microbenchmark source code is shown in Figure 8.17. 

Table 8.2 shows values of DPIR and DIP that matched and consequently produced a 

misprediction rate of 3/MOD with MOD=65 in the performed test.  The global predictor 

access function is illustrated in Figure 8.18. 
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Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 do{ 

        L = temp%65;             
    7x if(a==0)a=1;      // repeat the statement 7 times 

@A, A[kPIR] = 0    if(a==0)a=1;         // Setup1 

    // dummy code to allow previous branches to retire 

@B, B[kIP] = 0    if(L==0)a=1;  // Spy1 

    // dummy non-branch instructions 

  7x if(a==0)a=1;        

@A+ 80000h+ DPIR  if(a==0)a=1;         // Setup2 

    // dummy code to allow previous branches to retire 

@B+ 80000h+ DIP  if(L==0)a=1;         // Spy2 

    liter--; 

 } while(liter>0); 

Figure 8.17  Global predictor access function source code 

Table 8.1 BHR bits and conditional branch IP address bits that are XOR-ed to create the 
global predictor access function 

DPIR DIP MBI_EXEC misprediction rate 
10h 2000h 3/MOD 
20h 4000h 3/MOD 
40h 8000h 3/MOD 
80h 10000h 3/MOD 
100h 20000h 3/MOD 
200h 40000h 3/MOD 
400h 10h 3/MOD 
800h 20h 3/MOD 
1000h 40h 3/MOD 
2000h 80h 3/MOD 
4000h 100h 3/MOD 
`8000h 200h 3/MOD 
10000h 400h 3/MOD 
20000h 800h 3/MOD 
40000h 1000h 3/MOD 

 

 



 

156 

5                        0                                     6

PIR

3               012                                        4

NOT
USED Cond. Branch IP

18                        13

14

XORXOR

 

Figure 8.18  Global predictor access function 

8.9  Global Predictor Organization 

We expect the global predictor to be a multi-way cache.  According to the results 

from the iBTB hash access function, we expect the lower part of hash function to be used 

as the index and higher bits as the tag in the global predictor. 

In determining organization of the global predictor, we use a similar approach to 

the one used in determining organization of the iBTB (see Section 7.13).  However, the 

problem here is somewhat more challenging.  In crafting microbenchmarks, we need to 

neutralize the influence of the loop and the bimodal predictors.  A new approach is 

needed that will ensure that spy branch behavior is tractable and dependable on the global 

predictor only. In the case of iBTB, the cached content was a unique target address.  With 

the global predictor, an entry is likely a 2-bit saturating counter and interference is 

challenging.   

We use an algorithm that considers N branches with unique tags competing for 

the same set in the global predictor with N-1 ways.  Because the global predictor access 

causes misses, the branches will rely on the bimodal predictor that is set to give wrong 

predictions.  This way we are able to test for the number of ways and the index and tag 

bits as will be explained below. 
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The microbenchmark has two spy branches -- an always taken SpyT and an 

always not taken SpyN (see Figure 8.19).  The branches are placed at the distance Offset.  

Offset is large enough to ensure that the spy branches compete for a single entry in the 

global and the bimodal predictor.  The SpyN branch is reached by N paths PathN1 – 

PathNN, while SpyT is reached by one path PathT.  The program execution pattern is as 

follows:  {T*PathT, PathN1, T*PathT PathN2, …, T*PathT, PathNN,  T*PathT}. 

Each SpyN occurrence must rely on the global predictor for the correct prediction 

as the bimodal predictor is always in the taken state set by the SpyT. 
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Figure 8.19  Global predictor organization microbenchmark layout 

The parameter T should be large enough to avoid interference from the loop 

predictor.  An alternative approach is to use a smaller value of T because larger T requires 

a high number of program iterations in order to observe results that are not statistical 

error (hardware performance counters count events imprecisely).  We set T =4.  To avoid 
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interference with the loop predictor, we insert another always not taken branch SpyNH 

that follows the occurrence of the SpyN.  SpyNH is placed at a loop BPB tag distance 

from SpyT. The loop predictor sees SpyN, SpyT and the SpyNH as a one non-loop branch. 

The microbenchmark sets PathN1 – PathNN to differ in the same way as it is done 

in Section 8.1.  SetupNi and SetupNi-1 branches are at the distance DG + Offset from each 

other where DG=2k.  Therefore, the path based BHRs for each of the paths, PathN1 – 

PathNN , are set to be different from each other.  The SpyN branch has N different values 

in the BHR, consequently occupying N different entries in the global predictor.  If the 

distance DG is set in the way that the BHR value for paths PathN1 – PathNN differ only at 

the tag bits, subsequent SpyN occurrences will produce misses in the global predictor and 

mispredictions from the bimodal predictor.  

The misprediction rate as a function of DG and N gives us insight into the global 

predictor organization.  The following example explains details about finding the global 

predictor organization:  

• 4-way global predictor uses BHR[5:0] for the index, BHR[13:6] for the tag. 

o For DG = 10h (lowest BHR bit used for the index), N up to 4*26 will not 

produce mispredictions. 

o For DG = 20h, N up to 4*25 will not produce mispredictions. 

• 4-way global predictor uses BHR bits [5:0] for the tag and BHR[12:6] for the index: 

o For DG = 10h, N up to 4 will not produce mispredictions. 

o For DG = 27, N up to 27 will not produce mispredictions. 

o For DG = 26, N up to 2* 27 will not produce mispredictions. 

o For DG = 25, N up to 4* 27 will not produce mispredictions. 

The microbenchmark source code is shown in Figure 8.20.  The program 

execution pattern is controlled by the Setup indirect branch.  The indirect branch will 
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produce a known number of mispredictions due to a number of conditional taken 

branches that precede it.  The Pentium M performance counters can count an event 

related to mispredictions on indirect branches exclusively.  Furthermore, it is much easier 

to distinguish mispredictions that are from the spy branch only as a total number of 

mispredictions minus the number of indirect branch mispredictions.  

 

 

Address Code 
 int long unsigned L, liter = 1000000; 

 int a=1; 

 do{ 

        jmp dword ptr [ebx] 
@PathN0   7x if(a==0)a=1;      // repeat the statement 7 times 

@A     if(a==0)a=1;         // SetupN0 

   jmp _SpyN 

     // dummy non-branch instructions(skipped) 

@PathN1   7x if(a==0)a=1;        

@A+ Offset+ D     if(a==0)a=1;         // SetupN1 

   jmp _SpyN 

     // dummy non-branch instructions(skipped) 

@PathNN   7x if(a==0)a=1;        

@A+ N*Offset+ N*D     if(a==0)a=1;         // SetupN1 

@ _SpyN   // dummy code to allow previous branches to retire 

     if(a==1)a=1;   // SpyN 

@PathT   7x if(a==0)a=1;        

@A+ (N+1)*Offset+ 
10101010101b 

    if(a==0)a=1;         // SetupT 

   // dummy code to allow previous branches to retire 

@ _SpyN + Offset     if(a==0)a=1;   // SpyT 

     liter--; 

 } while(liter>0); 

Figure 8.20  Global predictor organization test source code 

During the test implementation, we find obstacles.  The number of mispredictions 

(MBI_EXEC) is unexplainable in the same way it was for the BTB-capacity tests.  For 

N=3, and DG set to have all 3 branches changed only at the lower 6 BHR bits (assumed 
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tag bits), we observe that less than one branch is missed per iteration.  For N=4 and DG 

set to have all 3 branches changed only at the lower 6 BHR bits (assumed tag bits), we 

observe that approximately 3 branches are mispredicted per iteration. For DG values large 

enough to make the SetupNi branches target the upper BHR bits to be different, we 

observe no mispredictions.   

To cope with this issue, we use the same approach used in the BTB tests.  Each of 

not taken paths PathNi is executed twice consecutively before starting with the new path.  

An indentical layout of the algorithm is used as in Figure 8.19, but the new program 

pattern is as follows:  

T*PathT, PathN1, T*PathT, PathN1, T*PathT, PathN2, T*PathT, PathN2,  ... , 

T*PathT, PathNN, T*PathT, PathNN.  

Setup indirect branch must use an appropriate pattern to achieve such a program pattern.  

We measure the number of mispredicted indirect branches (MIBIE) and the 

number of branches mispredicted at execution (MBI_EXEC).  The misprediction rate is 

calculated as the (MBI_EXEC– MIBIE) divided by the number of SpyN branches. 

Figure 8.21 shows the misprediction rate as a function of DG (DG =10h–1000h) 

and N=5. For N=3, 4 results are not presented, as the test did not produce any 

mispredictions.  For N=5 we observe mispredictions at the DG < 80h.  For DG =80h, the 

5th branch bit set is the IP bit 10 (Effective distance is 400h – BHR bit 7).  We conclude 

that the index LSB bit is the hash function bit 7 and the global predictor is a 4-way 

structure.  
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Figure 8.21  Global predictor organization tag test results 

The logical way for the algorithm to advance the examination would be to set DG 

at the lowest distance that produces no mispredictions for N=5 (DG= 80h) and to increase 

N until mispredictions appear.  This would mean that we are targeting each SpyN 

occurrence to occupy a different BTB entry.  We are unable to create such a 

microbenchmark for N larger than ~10 and therefore another approach is used. 

The microbenchmark reuses the source code shown in Figure 8.20 and sets N=5 

and D=20h, so that mispredictions exist.  Now, a particular bit of the SetupN0 is changed 

by setting the SetupN0 branch address at the distance D from its previous position. 

SetupN0 IP address was a reference point for distance DG and a new distance D is 

reflected as the distance that sets bits k = log2(D).  Distance D is increased to test for all 

higher BHR bits.  The new distance is named DI.  Low misprediction on particular bit ki 

set by the distance DI, means that the bit ki is the part of the index in the global predictor. 

The microbenchmark’s source code is similar to the one in Figure 8.20 except that 

the SetupN0 IP address is changed from “@A” to “@A+ DI”. 

We measure the number of mispredicted indirect branches (MIBIE) and the 

number of branches mispredicted at execution (MBI_EXEC).  The misprediction rate is 

calculated as the (MBI_EXEC– MIBIE) divided by the number of SpyN branches.   
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Figure 8.22 shows the misprediction rate as a function of DI (DI =100h–40000h) 

and N=5. We observe that the bits [18:10] are used for the index and therefore the global 

predictor set size is 512 entries. Consequently, the total size is 2048 entries. 
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Figure 8.22  Global predictor organization index test results 

8.10 Bimodal Predictor Organization 

We expect the bimodal predictor to be a flat structure without tags and addressed 

by the branch IP address bits only.  Until now, we have been able to see that the branch 

prediction mechanism relies on the bimodal predictor if the global predictor has a miss 

for a given branch. 

In the previous experiment, we used one always taken branch to make one 

bimodal entry to be always in a taken state. The SpyN branch, which misses in the global 

predictor, is predicted by the same bimodal entry that was in the taken state, consequently 

causing mispredictions.  Here we reuse the microbenchmark shown in Figure 8.19.  A 

new version increases distances between SpyN and the SpyT branches: SpyT = SpyN + DG 

+ Offset; DG=2k.   If the branch IP bit k is used to address the bimodal predictor, each 
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SpyN occurrence that misses in the global predictor will rely on a bimodal predictor entry 

that is in a not taken state.  Consequently, no mispredictions exist. 

The microbenchmark sets collisions in the global predictor by setting appropriate 

parameters D and N as shown in Figure 8.20.  We set D=10h as we have proven that all 

SpyN occurrences target the same global predictor set and N=5 as we have proven that 

the global predictor is a 4-way structure.  The microbenchmark finds the number of 

mispredictions as a function of the DG.  We expect that the low number of mispredictions 

is an indication that the branch IP address bit k is used for the index in the bimodal 

predictor. The microbenchmark is not shown here as it is almost identical to the one 

shown in Figure 8.20.  SpyT branch has to be moved for offset DG to test for the bit k 

effect on the bimodal predictor. 

We measure the number of mispredicted indirect branches (MIBIE) and the 

number of branches mispredicted at execution (MBI_EXEC).  The misprediction rate is 

calculated as the (MBI_EXEC– MIBIE) divided by the number of SpyN branches. 

Figure 8.23 shows the misprediction rate. The results indicate that the bimodal 

predictor is addressed by the IP address bits [11:0].  Consequently, we conclude that the 

bimodal predictor size is 4K entries. 
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Figure 8.23  Bimodal predictor bits detection test results 

We are able to see the bimodal predictor that works as a stage before the global 

predictor.  Moreover, the bimodal predictor is not a cache structure. This leads us to the 

conclusion that the branch prediction unit does not use a static branch prediction 

mechanism (this is what we knew from documentation).  The bimodal predictor always 

gives outcome prediction. On a BTB miss and with outcome prediction “taken,” the 

decoder stages decide about the branch target address. 

8.11 Global-Loop Predictors Relations 

In this section we test whether a global predictor hit overrides a loop predictor hit.  

We develop a microbenchmark that uses a specific branch outcome pattern where one of 

the outcomes hits in both the loop BPB and the global predictor, but just one of the 

predictors predicts the outcome correctly.  We set the loop predictor to predict the 

outcome incorrectly and the global predictor to predict it correctly.  If a global predictor 

hit overrides a hit in the loop predictor, the branch outcome will not be mispredicted, 

otherwise the outcome is mispredicted.  The microbenchmark uses the branch with the 

pattern shown in Table 8.2. 
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At iteration number 13, a branch has a “Not taken” outcome. Due to previous 

branch behavior, the branch is allocated in the loop BPB; therefore, the loop predictor 

provides a loop BPB hit and it is a misprediction.  The same outcome is correctly 

predicted with the global predictor by reusing the microbenchmark source code from 

Figure 8.20 with N=1 and SpyNH removed.  The indirect setup branch is set to produce 

the pattern in Table 8.2. 

The test results in no mispredictions, indicating that indeed the global predictor 

sits on the top and overrides the prediction from the global predictor. 

 

 

Table 8.2  Outcome pattern for the testing of Global hit priority over Loop hit 

Iteration number 1 2 3 4 5 6 7 8 9 10 11 12 13 
Branch outcome T T T nT T T T nT T T T nT nT 
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CHAPTER 9 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

Branch predictor units are one of the crucial resources that ensure a full 

exploitation of potential performance benefits promised by deeply pipelined and wide-

issue processors.  They have been a focus of many research efforts in industry and 

academia. Unfortunately, the commercial implementations are rarely publicly disclosed. 

However, it has been demonstrated that the knowledge about exact branch predictor 

optimization can be used by optimizing compilers to improve overall performance.   

In this thesis we present a systematic approach to reverse engineering of modern 

branch predictor units. We have developed a set of microbenchmarks and experimental 

flows that target various structures found in modern branch predictor units. The 

microbenchmark and experimental flows have been applied in reverse engineering of one 

of the most sophisticated commercial branch predictor units, the Pentium M branch 

predictor unit. We have found that the Pentium M's branch predictor unit encompasses 

the following resources. For speculative prediction of target addresses, we have a branch 

target buffer (BTB) and an indirect branch target buffer (iBTB).  For speculative 
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prediction of branch outcome, a cascaded predictor is used that encompasses (a) a 

bimodal predictor, (b) a loop branch predictor buffer, and (c) a tagged global predictor.  

For each resource, we have found its size and organization, as well as update and 

allocation policies.  

The presented framework can benefit not only future architecture-aware 

compilers, but also can be a valuable tool to branch predictor designers in their 

verification efforts.  Last, but not least, unveiling a sophisticated commercial predictor 

unit can help future research efforts and contribute to a better understanding of modern 

branch predictors.  

In the future the proposed framework can be tested and possibly extended to other 

modern processors.  Eventually, software tools for architectural exploration can be 

implemented that will automatically generate microbenchmarks and process the results. 
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Appendix A  

 

BTB-set Flow Example 

 

 

Assumed BTB architecture: 4-way, Index = IP[10:4], Tag = IP[16:11],  

Offset = IP[3:0]. 

Step 1:  B=2: 

 D=10h:  different set => No MPR → Increase D: 

 D=20h:  different set => No MPR → Increase D: 

 D=40h:  different set => No MPR → Increase D: 

 D=80h:  different set => No MPR → Increase D: 

 D=100h:  different set => No MPR → Increase D: 

 D=200h:  different set => No MPR → Increase D: 

 D=400h:  different set => No MPR → Increase D: 

D=800h:    same set, diff. tag => No MPR → Increase D: 

D=1000h:   same set, diff. tag => No MPR → Increase D: 

D=2000h:    same set, diff. tag => No MPR → Increase D: 

D=4000h:    same set, diff. tag => No MPR → Increase D: 

D=8000h:    same set, diff. tag => No MPR → Increase D: 

D=10000h:  same set, diff. tag => No MPR → Increase D: 

D=20000h:  same set, same tag => MPR high!  → Stop 

Remember (Di, Bi) pair (20000h, B=2) 

Step 2: B=3: 

 D=10h:         all three diff. sets => No MPR → Increase D: 

 D=20h:        all three diff. sets => No MPR → Increase D;   
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D=40h:  all three diff. sets => No MPR → Increase D; 

 D=80h:         all three diff. sets => No MPR → Increase D; 

 D=100h:      all three diff. sets => No MPR → Increase D; 

 D=200h:      all three diff. sets => No MPR → Increase D; 

D=400h:      1st & 3rd same set, 2nd other set => No MPR → Increase D; 

D=800h:      all three same sets, diff. tags => No MPR → Increase D; 

D=1000h:     all three same sets, diff. tags => No MPR → Increase D; 

D=2000h:     all three same sets, diff. tags => No MPR → Increase D; 

D=4000h:    all three same sets, diff. tags => No MPR → Increase D; 

D=8000h:    all three same sets, diff. tags => No MPR → Increase D; 

D=10000h:    two with same tags same set => MPR high → Stop 

Remember (Di, Bi) pair (10000h, B=3) 

Step 3: B=4: 

 D=10h:  all four diff. sets => No MPR → Increase D; 

 D=20h: all four diff. sets => No MPR → Increase D;  

D=40h:         all four diff. sets => No MPR → Increase D; 

 D=80h:         all four diff. sets => No MPR → Increase D; 

 D=100h:       all four diff. sets => No MPR → Increase D; 

 D=200h:       all four diff. sets => No MPR → Increase D; 

D=400h:        1st, 3rd same set, 2nd, 4th same set => No MPR    → Increase D; 

D=800h:        all four same set, diff. tags => No MPR → Increase D; 

D=1000h:      all four same set, diff. tags => No MPR → Increase D; 

D=2000h:      all four same set, diff. tags => No MPR → Increase D; 

D=4000h:     all four same set, diff. tags => No MPR → Increase D; 

D=8000h:     two with same tags same set => No MPR → Increase D; 

Remember (Di, Bi) pair = (8000h, B=4) 

Step 4: B=5: 

 D=10h;  all five diff. sets => No MPR → Increase D; 

 D=20h:  all five diff. sets => No MPR → Increase D; 

D=40h:     all five diff. sets => No MPR → Increase D; 
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 D=80h:     all five diff. sets => No MPR → Increase D; 

 D=100h:   all five diff. sets => No MPR → Increase D; 

 D=200h:   1st, 5th same set, diff. tags => No MPR → Increase D; 

 D=400h:    1st, 3rd, 5th same set, 2nd, 4th same set => No MPR → Increase D; 

D=800h:    5x same set, diff. tag => MPR high → Stop. 

Remember (Di, Bi) pair (800h, B=5) 

For Bi=2, Di =20000h, Di-1 =10000h   => Tag MSB = IP [16] 

Smallest D is Di =800h, Di-1 =400h     => Index MSB = IP [10] 

For smallest Di =3, Bi = 5, Bi-1 = 4      => Number of ways is 4  

Step 5: Index LSB detection; pick (Di, Bi) = (1000h, 5)  

D (4th, 5th) = 1000h:    all five same set => MPR high → Increase D (4th, 5th); 

D (4th, 5th) = 1001h:    all five same set=> MPR high → Increase D (4th, 5th); 

D (4th, 5th) = 1002h:    all five same set=> MPR high → Increase D (4th, 5th); 

D (4th, 5th) = 1004h:    all five same set=> MPR high → Increase D (4th, 5th); 

D (4th, 5th) = 1008h:    all five same set=> MPR high → Increase D (4th, 5th); 

D (4th, 5th) = 1010h:    four to same set=> No MPR  → Stop. 

Index LSB bit = log2 [D (4th, 5th) – D] = IP [4]. 
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Appendix B 

 

Setup Code for Cache-hit BTB-set Test 

 

 

 
void main(void) {  
int long unsigned liter = 100000000; 
int long unsigned offset1;     // setup indirect branch offset 
int long unsigned i,a; 
int long unsigned temp_i1,temp_i2; 
 
int Dist = 128;                 // Dist = D 
int Branches = 4096;            // Dist = B 
 
_asm{sub   esp, 4014H}         // free stack space 
for (i=0; i<Branches; ++i){    // allocate all ind. br targets in stack 
  temp_i1 = 4*i;               // pointer to the current indirect target stack 
                               // position, target is 4 bytes long 
  temp_i2 = Dist*i;            // indirect target position in the code 
  _asm {  
    mov   eax,  l0  
    add   eax,  temp_i2         //  prepare current target 
    mov   ecx,  temp_i1 
    add  ecx,  esp         
    mov   dword ptr [ecx], eax  // allocate current target on the stack 
  } 
} 
 
for (i=0; i<liter; ++i){ 
  offset1 = (i%(2*Branches))>>1;  // prepare offset, jump to each target twice 
  offset1 =  offset1*4;           // target is 4 bytes long 
  _asm { 
    mov     edx, _Exit  
    mov     ebx, offset1  
    add     ebx, esp           // add offset to the value of the stack pointer 
    jmp     dword ptr [ebx]    // jump to the target 
   // final part of code already presented 

Figure B.1  Indirect branch pattern for the Cache-hit BTB-capacity test in Section 5.7. 
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