

MICROBENCHMARKS AND MECHANISMS FOR REVERSE
ENGINEERING OF MODERN BRANCH PREDICTOR UNITS

by

VLADIMIR UZELAC

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Engineering

in
The Department of Electrical & Computer Engineering

to
The School of Graduate Studies

of
The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2008

 ii

In presenting this thesis in partial fulfillment of the requirements for a master's degree
from The University of Alabama in Huntsville, I agree that the Library of this University
shall make it freely available for inspection. I further agree that permission for extensive
copying for scholarly purposes may be granted by my advisor or, in his/her absence, by
the Chair of the Department or the Dean of the School of Graduate Studies. It is also
understood that due recognition shall be given to me and to The University of Alabama in
Huntsville in any scholarly use which may be made of any material in this thesis.

____________________________ ___________
(student signature) (date)

 iii

THESIS APPROVAL FORM

Submitted by Vladimir Uzelac in partial fulfillment of the requirements for the degree of Master
of Science in Engineering in Computer Engineering and accepted on behalf of the Faculty of the
School of Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama in
Huntsville, certify that we have advised and/or supervised the candidate on the work described in
this thesis. We further certify that we have reviewed the thesis manuscript and approve it in
partial fulfillment of the requirements for the degree of Master of Science in Engineering in
Computer Engineering.

__ Committee Chair

(Date)

__

__

__

__ Department Chair

__ College Dean

__ Graduate Dean

 iv

ABSTRACT

The School of Graduate Studies
The University of Alabama in Huntsville

Degree Master of Science in Engineering College/Dept. Engineering/Electrical &
 Computer Engineering

Name of Candidate Vladimir Uzelac
Title Microbenchmarks and Mechanisms for Reverse Engineering of Modern Processor
Branch Predictor Units

 Modern mid- and high-end microprocessors employ deeper and wider pipelines. With

deeper pipelines, the penalties incurred for branch instruction resolution have become much

larger, limiting potential performance gains. To mitigate the negative impacts of increased

branch penalties, branch predictor units are employed to speculate on both branch target and

branch outcomes. Branch prediction techniques have been a very active area of research in both

academia and industry. It has been shown that knowledge of exact branch predictor organization

can be used in compiler optimization to improve performance. However, exact predictor

organizations of commercial processors are rarely made public. In this thesis we introduce a

framework for reverse engineering of modern branch predictor units, encompassing a set of

mechanisms and microbenchmarks. We demonstrate the use of this framework in reverse

engineering of the Pentium M's branch predictor unit -- one of the most sophisticated commercial

branch predictor units ever developed. With this framework we have been able to uncover size,

organization, internal functioning, and interactions between various hardware structures used in

the Pentium M's branch predictor unit, such as branch target buffer, indirect branch target buffer,

loop branch predictor buffer, global predictor, and bimodal predictor.

Abstract Approval: Committee Chair _______________________________________

Department Chair _______________________________________

Graduate Dean _______________________________________

v

ACKNOWLEDGMENTS

The work presented in this thesis would not have been possible without the

assistance of a number of people who deserve special mention.

First, I would like to thank my advisor, Dr. Aleksandar Milenkovic, for

introducing a problem of reverse engineering of branch predictors to me and for his

continual support and guidance throughout all the stages of the work. Second, I would

like to thank my committee members, Dr. Jeffrey Kulick and Dr. Earl Wells, for their

invaluable insights and feedback in shaping this work. I am also grateful to Dr. Reza

Adhami, Chair of the Electrical and Computer Engineering Department, for his support.

I would also like to acknowledge support from my fellow students in the LaCASA

Laboratory: Mr. Austin Rogers, Mr. Joel Wilder, and Mr. Richard Tuggle.

Last but not least, I would like to thank Tijana, my wife. Without her love and

encouragement this work would have not been possible. Finally, I am grateful to my

parents, Vukolaja and Nada Uzelac, who have always encouraged and supported me in

my pursuit of education.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES.. xvii

CHAPTER

1 INTRODUCTION .. 1

1.1 Background... 1

1.2 Motivation... 3

1.2.1 Architecture-aware Compilers ... 4

1.2.2 Hardware Design Verification ... 4

1.2.3 Bridging the Gap between Industry and Academia 5

1.3 Thesis Outline ... 6

1.4 Contributions... 6

2 BRANCH PREDICTION TECHNIQUES... 12

2.1 Pipelining and the Speculative Execution... 12

2.2 Branch Types .. 15

2.3 Branch Target Prediction .. 16

2.4 Static Branch Outcome Prediction.. 18

2.5 1–Bit Outcome Predictor .. 19

2.6 2–Bit Outcome Predictor .. 19

vii

2.7 Two-level Predictors... 20

2.8 GShare Predictor... 22

2.9 Hybrid Predictors .. 23

2.10 De-interference Techniques .. 24

2.10.1 Agree Predictor .. 24

2.10.2 Bi-mode Predictor.. 25

2.10.3 Skewed Predictor ... 26

2.11 Filtering and Branch Classification .. 26

2.11.1 Counter and Bias-bit Based Filtering... 27

2.11.2 YAGS Predictor ... 27

2.11.3 Serial-BLG Predictor ... 28

2.11.4 Loop Predictor ... 29

2.12 Perceptron ... 29

2.13 Confidence Value.. 31

3 INDUSTRIAL IMPEMENTATIONS OF THE BRANCH PREDICTORS.............. 32

3.1 Branch Prediction Unit in Intel’s P6 Architecture.. 32

3.2 Branch Prediction Unit in Intel’s NetBurst Architecture................................ 36

3.3 Branch Prediction Unit in Intel’s Pentium M ... 36

3.4 AMD K6 and K7... 37

3.5 Alpha 21264.. 37

3.6 Sun UltraSPARC-IIIi .. 37

4 EXPERIMENTAL ENVIRONMENT.. 38

4.1 Reverse Engineering Flow.. 38

4.2 Performance Monitoring Registers ... 40

viii

4.3 Branch Related Microarchitectural Events ... 40

4.4 VTune - Tool for Collection and Selecting Hardware Events........................ 42

5 MICROBENCHMARKS FOR THE REVERSE ENGINEERING OF THE BRANCH
TARGET BUFFER... 44

5.1 Objectives ... 44

5.2 Contributions... 44

5.3 Background... 45

5.4 BTB Organization Tests ... 47

5.4.1 BTB-capacity Tests.. 47

5.4.2 BTB-set Test .. 51

5.5 Modified BTB-capacity Test .. 57

5.6 Cache-hit BTB-set Test... 59

5.7 Cache-hit BTB-capacity Test.. 61

5.8 Other Issues... 62

5.8.1 BTB Hit/ misprediction.. 63

5.8.2 BTB Hit/ bogus Branch Detected .. 63

5.8.3 Offset Algorithm.. 64

6 MICROBENCHMARKS FOR THE REVERSE ENGINEERING OF LOOP
PREDICTORS .. 67

6.1 Objectives ... 67

6.2 Contributions... 67

6.3 Background... 68

6.4 Maximum Counter Length.. 70

6.5 Loop BPB Organization.. 71

6.5.1 Loop-capacity Tests ... 72

ix

6.5.2 Loop-set Tests.. 75

6.6 Loop predictor Training Logic.. 78

6.7 Loop predictor Allocation Policy.. 81

6.8 Loop predictor Relations with the BTB.. 83

6.9 Loop-BPB Replacement Policy .. 85

6.10 Local Predictor.. 87

7 MICROBENCHMARKS FOR THE REVERSE ENGINEERING OF THE
INDIRECT PREDICTOR... 88

7.1 Objectives ... 88

7.2 Contributions... 88

7.3 Background... 90

7.4 PIR Organization – Pattern/path Based PIR ... 95

7.5 PIR Organization – Conditional Branch IP Address Effect on PIR 97

7.6 PIR Organization – Type of Branches Used... 105

7.7 PIR Organization – Branch Outcome Effect on PIR 108

7.8 PIR Organization – Indirect Branch Target Effect on PIR........................... 110

7.9 PIR Organization – Indirect Branch IP Address Effect on PIR.................... 115

7.10 PIR Organization – Update Policy.. 117

7.11 Indirect Branch IP Effect on iBTB Access Hash Function........................... 120

7.12 iBTB Access Hash Function... 123

7.13 iBTB Organization.. 127

7.14 iBTB Relations with the BTB... 132

8 MICROBENCHMARKS FOR THE REVERSE ENGINEERING OF THE GLOBAL
PREDICTOR .. 134

8.1 Objectives ... 134

x

8.2 Contributions and Findings... 134

8.3 Background... 136

8.3.1 Negative Interference... 137

8.3.2 Branch Filtering ... 137

8.3.3 Expectations... 139

8.4 BHR Organization – Conditional Branch IP Address Bits used for BHR.... 140

8.5 BHR Organization – Type of Branches Used... 145

8.6 BHR Organization – Branch Outcome Effect on BHR 147

8.7 BHR Organization – Indirect Branch Effect on BHR 148

8.8 Global Predictor Access Function .. 152

8.9 Global Predictor Organization .. 156

8.10 Bimodal Predictor Organization ... 162

8.11 Global-Loop Predictors Relations... 164

9 CONCLUSIONS AND FUTURE WORK ... 166

APPENDIX A: BTB-set Flow Example.. 169

APPENDIX B: Setup Code for Cache-hit BTB-set Test... 172

REFERENCES ... 173

xi

LIST OF FIGURES

Figure Page

1.1 Pentium M branch predictor .. 11

2.1 Pipeline example.. 16

2.2 Branch-target buffer... 17

2.3 Indirect branch target address prediction in Pentium M (as presented in [2])........... 18

2.4 Bimodal saturating counter .. 20

2.5 PA two-level schemes as presented in [8] ... 21

2.6 GAg two-level scheme... 22

2.7 Hybrid predictor... 23

2.8 Bi-mode predictor .. 25

2.9 Serial-BLG predictor organization .. 28

2.10 Loop predictor counters in Pentium M (as presented in [2]) 29

2.11 Perceptron basic element ... 31

3.1 Pentium P6 Front-End and its branch predictor unit (as presented in [23]) 33

3.2 Organization of the BTB and layout of one BTB entry (as presented in [23]).......... 34

3.3 Fetch line in P6 architecture (as presented in [23]) ... 35

4.1 Reverse engineering flow .. 39

5.1 Branch Target Buffer ... 46

xii

5.2 BTB-capacity microbenchmark example for B=4096... 48

5.3 Expected misprediction rate as a function of the number of branches B, and the
distance between branches, D for a BTB organized in 128x4 cache structure................. 48

5.4 BTB-capacity test results for B=512−4096 and D=2−128 .. 50

5.5 BTB-set microbenchmark.. 51

5.6 Searching for tag and index bits using the BTB-set test .. 53

5.7 BTB-set test results .. 54

5.8 BTB-set tag testing results ... 55

5.9 BTB-set Index LSB testing results .. 56

5.10 Modified BTB-capacity tests results.. 59

5.11 Cache-hit test source code fragment .. 60

5.12 Cache-hit BTB-set test results ... 60

5.13 Cache-hit capacity test results.. 62

5.14 Bogus branch test source code... 63

5.15 Double hit test source code .. 65

5.16 Single hit test source code.. 66

6.1 Microbenchmark for determining maximum counter length..................................... 70

6.2 Maximum counter length test results... 71

6.3 Layout of the Loop-capacity test ... 73

6.4 Loop-capacity test source code.. 73

6.5 Loop-capacity test results .. 74

6.6 Loop-BTB-Set test source code ... 75

6.7 Loop-set test results for B=2.. 76

6.8 Loop-set Index MSB testing results... 77

xiii

6.9 Loop-set Index LSB testing results.. 77

6.10 Loop training logic test source code example for D=16 and B=256 79

6.11 Loop training logic test results... 80

6.12 Source code for the loop allocation policy test .. 82

6.13 Loop predictor allocation policy differential test... 83

6.14 BTB filtering test source code ... 84

6.15 BTB filtering test results.. 85

6.16 Loop BPB replacement policy source code ... 86

6.17 Source code for detection of the local predictor .. 87

7.1 Indirect branch target buffer organization ... 90

7.2 Shift and add PIR layout with M=4 and N=4 .. 92

7.3 Shift and add with interleaving PIR layout with M=4 and N=4................................ 92

7.4 Shift and xor PIR layout .. 93

7.5 Microbenchmark for determining whether the PIR is path-based or pattern-based .. 95

7.6 Source code of the microbenchmark for determining whether the PIR is path- or
pattern-based ... 97

7.7 Layout of the microbenchmark for determining conditional branch address bits that
affect PIR, PIR shifting policy, and PIR history length.. 98

7.8 Source code of the microbenchmark for determining whether conditional branch
address bits affect the PIR... 101

7.9 Results for detection of conditional branch IP bits effect on PIR test for H=0 102

7.10 Results for detection of conditional branch IP bits effect on PIR test for H=1 103

7.11 Results for detection of conditional branch IP bits effect on PIR test for H=2…8
... 103

7.12 Algorithm for determining branch types affecting the PIR test............................. 106

xiv

7.13 Source code fragment for testing of NT conditional branches effect on PIR........ 107

7.14 Source code fragment for testing of unconditional branches effect on PIR 107

7.15 Source code fragment for testing of call and return branches effect on PIR 107

7.16 Layout of a microbenchmark for determining branch outcome effect on PIR 108

7.17 Source code for determining branch outcome effect on PIR................................. 109

7.18 Indirect branch target bits effect on PIR test microbenchmark layout 110

7.19 Indirect branch target bits effect on PIR test source code 111

7.20 Indirect branch target bits effect on PIR test for H=0.. 112

7.21 Indirect branch target bits effect on PIR test results for H=1 113

7.22 Indirect branch target bits effect on PIR test results for H=2…8 113

7.23 Layout of a microbenchmark for determining whether indirect branch address bits
affect the PIR .. 115

7.24 Source code of a microbenchmark for determining which indirect branch address
bits affect the PIR.. 116

7.25 Results for detection of indirect branch IP bits effect on PIR test......................... 117

7.26 Layout of a microbenchmark for determining PIR update policy 118

7.27 Source code of the microbenchmark for determining PIR update policy.............. 119

7.28 PIR shift and XOR update logic test results for N1=10h, 30h 119

7.29 Layout of microbenchmark for determining Indirect branch IP address effects on
hash function... 120

7.30 Indirect branch IP effect on hash function test source code 122

7.31 Indirect branch IP effect on hash function test results... 122

7.32 Layout of microbenchmark for determining iBTB hash access function 124

7.33 Source code of the microbenchmark for determining iBTB hash function 125

7.34 PIR bits and indirect branch IP bits that XOR in iBTB hash access function 126

xv

7.35 Layout of the microbenchmark for detection of iBTB organization 128

7.36 Source code of the microbenchmark for detection of iBTB organization 129

7.37 Results for detection of iBTB organization test for B=2 130

7.38 Results for detection of iBTB organization test for B=3 131

7.39 Results for detection of iBTB organization test for D=400h................................. 132

8.1 Conditional branch IP bits that affect BHR, BHR shifting policy and BHR history
length microbenchmark layout ... 141

8.2 Conditional branch IP bits effect on BHR test source code..................................... 143

8.3 Conditional branch IP bits effect on BHR test results for H=0 144

8.4 Conditional branch IP bits effect on BHR test results for H=1. 144

8.5 Conditional branch IP bits effect on BHR test results for H=7,8 144

8.6 Branch types affecting the BHR microbenchmark layout 145

8.7 Source code fragment for testing of NT conditional branches effect on BHR........ 146

8.8 Source code fragment for testing of unconditional branches effect on BHR 146

8.9 Source code fragment for testing of call and return branches effect on BHR 147

8.10 Detection of branch types affecting the BHR source code 148

8.11 Detection of indirect branch effect on BHR microbenchmark layout 149

8.12 Indirect branch target address bits effect on BHR test source code 150

8.13 Indirect branch target address bits effect on BHR test results 151

8.14 Indirect branch IP bits effect on BHR source code.. 151

8.15 Indirect branch IP bits effect on BHR test results.. 152

8.16 Global predictor access function microbenchmark layout..................................... 154

8.17 Global predictor access function source code.. 155

8.18 Global predictor access function.. 156

xvi

8.19 Global predictor organization microbenchmark layout ... 157

8.20 Global predictor organization test source code.. 159

8.21 Global predictor organization tag test results .. 161

8.22 Global predictor organization index test results .. 162

8.23 Bimodal predictor bits detection test results.. 164

B.1 Indirect branch pattern for the Cache-hit BTB-capacity test in Section 5.7. 172

xvii

LIST OF TABLES

Table Page

4.1 Branch related microarchitectural events in Pentium M processor 41

7.1 PIR bits and indirect branch IP bits that XOR in iBTB hash access function. 126

8.1 BHR bits and conditional branch IP address bits that are XOR-ed to create the global
predictor access function... 155

8.2 Outcome pattern for the testing of Global hit priority over Loop hit. 165

1

CHAPTER 1

INTRODUCTION

1.1 Background

Instructions that control program flow encompass branches, jumps, procedure

calls and returns, and traps. A successful and timely branch resolution is critical for

improving performance of all modern processors with pipelined execution. A conditional

branch is resolved once we know a branch outcome (taken or not taken) and the target

address (the address of the next instruction if the branch is taken). Branches are typically

resolved in late stages of the pipeline; in the meantime all the instructions following a

branch instruction must wait for the branch resolution. This degrades performance

significantly and the problem is exacerbated in superscalar processors that fetch and

execute multiple instructions each clock cycle. A common solution to this problem is

speculative execution where the branch outcome and target address are dynamically or

statically predicted, so the execution can go on without stalling. If the prediction is

correct, no processor clock cycles are wasted. Otherwise, the instructions that entered the

pipeline speculatively are flushed, and the program execution resumes from the real

2

target. While static prediction is effective, it is insufficient in modern processors with

deep pipelines and hundreds of instructions on-the-fly in various stages of the pipeline.

Hence, modern processors rely on branch predictor units to speculatively predict

outcomes and target addresses of incoming branch instructions.

To illustrate the importance of branch predictor units, let us consider a single-

issue superscalar processor with ideal Cycles per Instruction (CPI), CPI = 1. Let us

assume that the branch penalty is 20 clock cycles. Branch instructions make around 20%

of all instructions [1]. With pipeline stalling the CPI = 1 + 0.2×20 = 5, a fivefold increase

in program execution time. To remedy this, let us introduce a branch predictor unit with

a misprediction rate of 10% (9 out of 10 branches will be predicted correctly and one will

be mispredicted resulting in a 20 clock cycle penalty). The new CPI = 1 + 0.2×0.1×20 =

1.4, which is still 40% of slowdown. Let us add an improvement in the branch predictor

unit to achieve a misprediction rate of 5%; the CPI = 1.2, a significant improvement in

performance. Though based on many simplifications, this example fairly illustrates the

importance of having branch predictor units with very low misprediction rates. As

branch predictors reside on the critical path of processor front-ends, it is also very

important that a correct prediction and a target address are available with minimal

latency. Finally, the importance of good branch predictors is further underscored with

the proliferation of mobile battery-operated platforms. Mispredictions tend to be costly

in terms of energy – pursuing wrong paths in program execution wastes limited energy

resources.

3

1.2 Motivation

This thesis introduces a set of microbenchmarks and mechanisms for reverse

engineering of modern branch predictor units. The microbenchmarks and experimental

flows are applied for reverse engineering of a branch predictor unit found in Intel’s

Pentium M processors (Dothan core), one of the most advanced branch predictor units

ever developed in commercial processors [2]. Intel does not disclose information about

the exact branch predictor organization, but it claims that this predictor significantly

outperforms previous generation branch predictor designs by 20%.

This work builds on an initial effort in reverse engineering of branch predictor

units done by Milenkovic et al. [3] where an experimental flow and a set of

microbenchmarks are developed and applied to Intel’s P6 and NetBurst architectures. A

set of carefully crafted “spy” microbenchmarks is applied on a real machine to verify

various hypotheses related to branch predictor unit organization. Processor behavior is

measured during execution of the spy microbenchmarks using on-chip performance

monitoring registers. Based on these results, we have been able to obtain insights into the

complete organization of the branch predictor unit in Pentium M processors.

The developed experimental flows and microbenchmarks have potential to greatly

benefit academia and industry by allowing for (a) better code optimization techniques

either through manual or automatic optimization using architecture-aware compilers, (b)

a systematic approach in architectural analysis that can be used for targeted system

verification and design space exploration in early or late design stages, and (c) bridging

the gap between academia and industry. Each of these three potential benefits is

discussed below.

4

1.2.1 Architecture-aware Compilers

Processors complexity grows in each generation. Instruction-level parallelism,

branch prediction mechanisms, multiple-level cache hierarchy, and hardware prefetchers

are just a few of processors complex structures that greatly influence program execution

time. Compliers typically offer several optimization parameters for a given architecture.

However, these optimizations are often limited and do not exploit specific characteristics

of the processor the program is running on. To take advantage of specific processor

features, a more architecture-aware compiler is desirable.

It has been shown that making compilers aware of the underlying architecture can

result in significant performance improvements [4-6]. Architecture aware compliers will

become even more important with proliferation of new multi-core processors. For

example, a set of programs for automated extraction of the memory hierarchy [4] can be

used to guide a manual or automatic program optimization. Gurumani and Milenkovic

show that Intel’s C++ compiler outperforms Microsoft’s Visual C++ compiler on the

SPEC CPU 2000 benchmark suite [5]. Jimenez starts with microbenchmarks for

determining branch predictor organization in NetBurst architecture [3] and introduces the

Camino C compiler that performs code reorganization in order to reduce the number of

branch mispredictions [6]. Unfortunately, the details about the underlying architecture are

rarely disclosed. Consequently, we need a systematic approach for extracting these

secrets from modern processors.

1.2.2 Hardware Design Verification

Ever growing processor complexity and tightening time-to-market make hardware

design verification a critical step during the design process. However, often late in the

5

design process architects introduce changes to the original design in order to achieve

performance improvements, reduce cost and power consumption. Full verification that

usually assumes running an operating system on the top of a HDL model of the processor

is very expensive in time and resources. Obviously, these changes cannot be fully

verified using conventional approaches. In addition, it is often very difficult to assess an

impact of the introduced changes as the total performance depends on many different

structures with very complex interactions between each other. Hence, there is a great

need for microbenchmarks -- small programs that target a single structure or a specific

functionality. Their small sizes allow designers to manually trace the microbenchmark

execution or to completely predict their behavior. The microbenchmarks hence provide a

useful tool in the design-phase for architectural analysis and rapid design-space

exploration and verification.

1.2.3 Bridging the Gap between Industry and Academia

Research efforts in academia typically focus more on improving branch predictor

accuracy and rarely on area and timing constraints imposed by chip economics and

design specifications. On the other hand, branch predictor designs in industry strive to

achieve the best prediction accuracy within given design constraints, such as timing

constraints and hardware budget. In conditions where manufacturers conceal details

about actual branch predictor implementations, these opposite approaches lead to an

increase in the gap between branch predictors developed in industry and academia.

The experimental flow discussed in this thesis is hand-crafted for the branch

predictor unit found in Intel’s Pentium M processor. However, we believe that the

systematic approach and methodology can be adapted for reverse engineering of all other

6

modern branch predictor units. The knowledge gained through this effort can be very

useful for future research efforts in academia as it can serve as a solid starting point.

1.3 Thesis Outline

The thesis is organized in nine chapters as follows. Chapter 1 gives an

introduction, stressing the importance of the thesis topic and listing the main

contributions of this work. Chapter 2 surveys historical development of branch predictor

units and discusses requirements and design-space constraints in designing a branch

predictor unit. Chapter 3 describes relevant industrial branch predictor unit

implementations. Chapter 4 describes the experimental environment, including

microbenchmark development, microbenchmark deployment, and actual testing and

measurement. Chapter 5 introduces experimental flows and microbenchmarks for

determining organization of a regular branch target buffer. Chapter 6 introduces

experimental flows and microbenchmarks for determining organization of a loop

predictor. Chapter 7 introduces experimental flow and microbenchmarks used in

determining organization of an indirect branch predictor, while Chapter 8 focuses on a

global branch outcome predictor. Chapter 9 concludes the thesis and discusses future

work.

1.4 Contributions

The main contribution of this thesis is a set of experimental flows and

microbenchmarks for determining organization of modern branch predictor units. The

experimental flows and microbenchmarks are employed on Intel’s Pentium M processor

(Dothan core) giving the following insights into the branch predictor organization.

7

The Intel Pentium M branch predictor unit consists of five main parts as follows:

• Branch target buffer (BTB). The BTB caches target addresses for most the frequently

used conditional and unconditional branches.

• Indirect Branch target buffer (iBTB). The iBTB caches the most frequently used

target addresses of indirect branches.

• Bimodal predictor. The bimodal predictor is a simple outcome predictor that gives a

first level outcome prediction for all conditional branches.

• Loop predictor. The loop predictor is a specialized predictor used to provide the

second level outcome prediction for conditional branches with loop behavior.

• Global predictor. The global predictor is a specialized predictor used to provide the

third level outcome prediction for conditional branches.

Branch Target Buffer

The BTB is a 4-way cache organized in 512 ways (the total size is 2048 entries).

The BTB is accessed by a 16-byte instruction block address and it is indexed by the

branch address bits IP[12:4]. Tag bits are branch address bits IP[21:13]. Branch

addresses are determined as follows: it is the address of the first byte of the branch

instruction in memory if that instruction belongs to a single 16-byte block; it is the

address of the last byte in memory if the branch instruction spans multiple 16-byte

blocks. A BTB set can store multiple entries with the same tag bits, thanks to an offset

field in the BTB (Offset field are IP address bits [3:0]) and a so called offset mechanism.

The offset mechanism selects a target address by selecting an entry with the lowest offset

which is not smaller than the current instruction pointer.

8

In case of a BTB miss or incorrect target address on a BTB hit, the instruction

decoder supplies a true target at the end of instruction decoding, assuming that outcome

prediction is correct. The BTB may give a BTB hit for a non branch instruction due to

partial tag fields. In this case, the instruction decoder evicts the selected entry in the

BTB. The BTB employs a specific allocation/replacement policy. The replacement

policy is “least recently used” (LRU) –based, but there is an indication that a branch

needs to occur at least twice before this policy is reinforced.

Indirect Target Buffer

The indirect branch target buffer (iBTB) is a direct–mapped cache organized in

256 sets. Each iBTB entry keeps a target address of an indirect branch. The iBTB access

is controlled by an index and a tag field. The index and tag are calculated as a hash

between a path information register (PIR) and the indirect branch address.

The PIR is a 15-bit long shift register that keeps path history for the last 8 relevant

branch instructions. Only conditional taken branches and indirect branches affect the

PIR. The PIR register is updated as follows. When a new branch is encountered, the PIR

is shifted to the left for two bits and 15 bits of the branch IP address or the branch target

address are XOR-ed with the PIR. For a conditional taken branch, the branch address

bits IP[18:4] are XOR-ed with the PIR. For an indirect branch, the branch target address

bits TA[5:0] are XOR-ed with the PIR bits PIR[5:0], and the address bits IP[18:10] are

XOR-ed with the PIR bits PIR[14:6].

The iBTB is indexed by the hash function represented by the XOR between the

PIR and the indirect branch IP as follows. The PIR bits PIR[13:6] are XOR-ed with the

indirect branch address bits IP[11:4] to provide the index for the iBTB. The PIR bits

9

[14,5:0] are XOR-ed with the indirect branch IP bits [18:12] to provide the tag for the

iBTB.

The direct-mapped organization of the iBTB indicates that the iBTB lookup is

serialized with the corresponding BTB lookup. The iBTB lookup is performed only if the

BTB indicated an indirect branch. This serialization incurs additional delay, but it saves

energy. The increased latency is reduced by using a direct–mapped cache for the iBTB.

If the BTB gives a hit and the iBTB gives a miss, the BTB will provide the target address.

Loop Predictor

The loop predictor is a two-way cache structure with 64 sets (the total size is

128 entries). The loop predictor is indexed by the branch address bits IP [9:4]. The tag

bits are the IP[15:10]. Each entry in the loop predictor has two 6-bit counters. The first

counter keeps the current iteration number for the allocated branch with loop behavior.

The second counter keeps the maximum counter value for the allocated branch. A loop

predictor hit is conditional upon a BTB hit. The regular BTB has a longer tag field

providing more accurate branch identification.

Global Predictor

The global predictor is a 4-way cache structure with 512 sets (total of

2048 entries). Entries in the global predictor are two bit-saturating counters. The global

predictor is indexed by a hash function — an XOR between the path information register

(PIR) and the conditional branch address. The PIR bits PIR[14:6] are XOR-ed with the

branch address bits IP[12:4] to provide the index for the global predictor cache. The PIR

bits PIR[5:0] are XOR-ed with the conditional branch address bit IP[18:13] to provide the

10

tag for the global predictor cache. The global predictor overrides the prediction from the

loop predictor.

Bimodal Predictor

The bimodal predictor is a flat structure with 4096 entries. An entry in the

bimodal predictor is a two-bit saturating counter. The bimodal predictor is indexed by

branch address bits IP[11:0]. The bimodal predictor always gives the prediction; hence,

no static prediction mechanism is used.

Putting It All Together

The branch predictor unit in the Pentium M is very similar to McFarling’s patent

[7] and combines the best efforts in achieving the best possible prediction rate at minimal

cost. Based on our reverse engineering effort, we calculate that the Intel’s Pentium M

(Dothan Core) predictor size is approximately 135 Kbits. Figure 1.1 shows a complete

schematic of the Pentium M branch predictor unit.

11

Offset = IP [3:0]
 Index = IP [12:4]

 Tag = IP [21+:13]

Way 0
Way 3

Branch target buffer (BTB)
0

511

Target
(32 bit)

BTB hit BTB target

Counter max.
value (6 bits)

Counter current
value (6 bits)

Way 0

Way 1

Loop BPB hit

 BTB hit

Loop
predictor hit

Loop branch predictor buffer (Loop BPB)

Index = IP [9:4]
 Tag = IP [15:10]

Indirect target cache (iBTB)

Target (32 bit)
Tag = HASH [14,5:0] 0

255

Index = HASH [13:6]

iBTB hit

Way 0
Way 3

Global predictor

0

511

Two-bit counter

Global
predictor hit

Index = HASH[14:6]
Tag = HASH[5:0]

Bimodal
Table

Two-bit counter
Index = IP[11:0]

Bimodal
outcome prediction

Loop
outcome prediction

Global
outcome prediction

Global
outcome prediction

Outcome prediction == Taken

Instruction
Fetch
Unit

Outcome prediction

iBTB target

Loop
outcome prediction

Fetch
New target

0

63

Path Information register
PIRCurrent Instruction

IP address

Branch detected
Update PIR

XOR Hash access function
HASH

15 bits
14 0

14 0

BTB type = Uncoditional
BTB hit

BTB hit
iBTB hit

iBTB target

BTB target
Predicted

target

Type
(2-3 bits)

Tag
(9+ bits)

BTB type

Tag
(6 bits)

Tag (7 bits)

Tag (6 bits)

New target

Direct branch target from decoder

BTB hit/ target mispredicted

BTB miss
Outcome prediction == Taken

Direct branch detected in decoder
DECODER

Offset
(4 bits)

0

4095

BTB type == indirect

Figure 1.1 Pentium M branch predictor

12

CHAPTER 2

BRANCH PREDICTION TECHNIQUES

Modern branch predictor designs converge to a general organization consisting of a

branch target buffer (BTB) and a branch outcome predictor. The branch outcome

predictor can be coupled with or decoupled from the BTB. When the outcome predictor

and the BTB are coupled, only branches that hit in the BTB are predicted, while a static

prediction algorithm is used on a BTB miss. When the outcome predictor and the BTB

are decoupled, all branch outcomes are predicted using the outcome predictor.

This chapter discusses pipelining and speculative execution in modern processors

and surveys the historical development of branch prediction techniques, from basic

concepts to the most advanced concepts. We also discuss two important issues in

achieving higher accuracy of branch predictors at minimal cost, branch de-interference

and branch classification or filtering.

2.1 Pipelining and the Speculative Execution

Pipelining is an execution technique where multiple instructions are overlapped in

execution, taking advantage of parallelism that exists among the actions needed to

13

execute an instruction. Today, pipelining is a key technique used to make fast

processors. Modern processors mainly operate as reduced instruction set computer

(RISC) machines. A classical RISC implementation of an instruction execution

encompasses five pipeline stages.

IF – Instruction Fetch. A new instruction is fetched from instruction memory and the

program counter is updated.

ID – Instruction Decoding. The instruction is decoded and operands are read from the

specified general purpose registers.

EX – Execution. A functional unit performs the specified operation on the operands

prepared in the ID stage (arithmetic logic operation, or effective address calculation, or a

branch target calculation).

MEM – Memory Access. If the instruction is a load or a store, a memory read or write

is performed.

WB – Write Back. The result is written back to the register file.

Hazards are events that prevent execution of the next instruction in the pipeline

stream in its designated clock cycle. There are 3 types of hazards: structural, data and

control. Structural hazards arise from resource conflicts when 2 or more instructions

compete for a single resource. Data hazards arise when an instruction depends on the

results of a preceding instruction, and control hazards arise from instructions that change

the program flow.

Control or branch hazards can cause a significant performance loss. When a

branch is executed, it may change the Program Counter (PC) to its target address; it is a

taken branch. When a branch falls through, it is not taken. The outcome and the target

14

address of a branch are typically known in execution stages of the pipeline. By the time

they are known, the pipeline already fetched a certain number of following instructions.

If the branch is taken, these instructions need to be flushed, and the pipeline starts

fetching instruction from the branch target address. In this case, a number of clock cycles

is wasted.

To handle control hazards, we can freeze the pipeline when a branch instruction is

detected or we can assume predict-not-taken (treat each branch as not taken initially and

correct it otherwise) or predict-taken (treat each branch as taken and correct it otherwise)

approaches. An alternative approach is to rely on compiler (static) techniques – a very

effective approach when branches have behavior predictable at compile time [1]. With

dynamic branch prediction branches are predicted dynamically by the hardware at

execution time. Almost all modern processors have a hardware resource – a branch

predictor unit, responsible for handling branch prediction. The branch predictor unit is

placed in the instruction fetch stages and needs to recognize an incoming branch

instruction and give a correct prediction about the branch outcome (taken or not taken)

and the branch target if the predicted outcome is taken. If the branch is taken and the

predictor gives correct prediction, the processor front-end will start fetching instructions

from the branch target address without stalling the pipeline.

Modern processors require highly accurate branch predictors, yet their complexity

should be relatively small to ensure low latency and ease of verification during the design

phase. The task of an architect is to carefully examine the design trade-offs and to

achieve the best possible predictor accuracy with minimal cost, latency, and power

consumption.

15

2.2 Branch Types

Branch instructions can be classified based on branch outcome to conditional

(branch outcome can be taken or not taken) and unconditional (the branch is always

taken). Branch instructions can be further classified based on the branch target into direct

(the branch target is known in compile time) and indirect (the target is not known in

compile time). Bellow we analyze various branch types and corresponding branch

penalties using an example pipeline illustrated in Figure 2.1. The pipeline has 10 stages

and the branch target is calculated in stage D2 for direct branches and in stage E3 for

indirect branches. The branch outcome is resolved in stage E3. We assume that branch

prediction is performed in the first pipeline stage.

Branch outcome penalties:

1. Conditional – Direction of the branch has to be determined during execution

stages. Prediction is needed for the branch direction and branch target. Seven

instructions that follow the branch are flushed from the pipeline in case of

taken branch outcome misprediction (Figure 2.1).

2. Unconditional – Direction of the branch is always taken. Prediction is needed

for the branch target. Three instructions that follow the branch are flushed

from the pipeline in case of a branch outcome misprediction (Figure 2.1).

16

F1 F2
Instruction

flow

Branch
prediction

D1 D2 D3 E1 E2 E3

EXECUTION STAGESDECODING STAGESFETCHING STAGES

Target resolved
(for direct branches)

Outcome resolved
Indirect target resolved

R1 R2

Instruction i Instruction i+9

RETIREMENT STAGES

Figure 2.1 Pipeline example

Branch target address penalties:

1. Direct – Branch target address is specified within the branch instruction and it

is known at compile time. Three instructions that follow the branch are

flushed from the pipeline in case of a branch target misprediction (Figure 2.1).

2. Indirect – Branch target address is not known at compile time, rather it is

determined during instruction execution. Seven instructions that follow the

branch are flushed from the pipeline in case of a branch target misprediction

(Figure 2.1).

Consequently, the prediction of the conditional branch outcome and indirect

branch targets are more weighted because they incur higher penalties.

2.3 Branch Target Prediction

The target of a branch is usually predicted by a Branch Target Buffer (BTB). The

BTB is a cache-like structure that keeps branch target addresses as its entries. The BTB

is indexed by a portion of the branch instruction address. Each BTB entry typically

includes the tag field, the valid bit, and the replacement bits for multi-way BTBs (see

Figure 2.2).

17

Valid
(1 bit)

Tag
m bits

 Target Address
32 bits

2n-1

0

 0K+n-1 KT+m-1 T

Tag

Index

WAY 0

LRU
bits

WAY N

BTBInstruction Pointer

BTB hit

Branch Target
Prediction

Figure 2.2 Branch-target buffer

The tag field includes another portion of the branch address or a compressed

version of the remaining address bits. This reduces the size of the tag field (and

consequently the number of transistors needed to implement the BTB) with minimal or

no negative influence on prediction accuracy. If the branch target provided by the BTB

turns out to be incorrect (mispredicted target address), the corresponding BTB entry is

updated with a new branch target address after the branch is resolved.

An indirect branch can have multiple branch targets. The BTB is addressed by

the branch IP address only, allowing only for one branch target address to be successfully

predicted. Once, the target is changed, the BTB makes misprediction. A separate

hardware structure named an indirect branch target buffer (iBTB) can be employed to

handle multiple target address of indirect branches. The iBTB can override the target

address coming from the BTB.

The target of an indirect branch correlates to a program path taken to reach the

particular indirect branch target. In hardware, the path can be represented by a shift

register containing different branch information (for example address bits, and branch

18

outcome). This information can be used to address the iBTB. The Pentium M processor

includes an indirect branch predictor with an entry as shown in Figure 2.3. If a branch is

marked as an indirect one, an iBTB lookup is performed in order to retrieve a correct

target address.

Target type hit Target hit

TargetHit

Instruction
pointer Global history

BTB Entry Indirect predictor entry

Figure 2.3 Indirect branch target address prediction in Pentium M (as presented in [2])

2.4 Static Branch Outcome Prediction

The static prediction mechanism is a simple decision on outcome based on the

branch type and displacement. For example, backward branches can be statically

predicted as taken, because they tend to be taken more often than not taken, for example

in loops. Similarly, forward branches can be statically predicted as not taken. Behavior

of program branches can be observed using program profiling, and special compiler hints

or instructions can be used to enforce favorable prediction for a particular branch.

However, to statically predict a branch, the prediction mechanism waits for the branch to

19

be decoded resulting in pipeline stalls. Static prediction techniques are sometimes used

in modern processors when the dynamic prediction is not available for a given branch.

2.5 1–Bit Outcome Predictor

Branch outcomes can be dynamically predicted using a table where each table

entry contains a bit that says whether the branch was recently taken or not. A table of

1-bit predictors is usually addressed by a part of the branch address. Consequently, the

branch outcome prediction is the same as the outcome of the last branch that addressed

the same entry.

2.6 2–Bit Outcome Predictor

The main disadvantage of the 1-bit predictor is its inability to accurately predict

loop branches. Each loop branch has two mispredictions per loop: the loop exit and the

first loop iteration. A 2-bit saturating counter allows the outcome to change its direction

once before the prediction gets changed. The two-bit saturating counter (bimodal) is a

four state finite state machine. The states are “Strongly Taken” (ST), “Weakly Taken”

(WT), “Strongly Not Taken” (NT), “Weakly Not Taken” (WN). The transitions between

states are controlled by the branch outcomes (T or NT). There have been many different

implementations of the transitions between the states and the most frequently used one is

shown in Figure 2.4. The bimodal counter’s MSB bit determines the outcome prediction.

During execution of the program code, the counter is decremented or incremented

according to the branch outcome.

20

ST WT

WN SN

NT

NT

NT

T
T

T

T

NT

Figure 2.4 Bimodal saturating counter

2.7 Two-level Predictors

Two-level adaptive predictors are considered as a basic point for development of

the modern branch prediction units. The first two-level adaptive predictor was

introduced by Yeh and Patt [8]. The same authors present thorough analyses of different

two-level predictor schemes and their accuracy in different applications [9] [10].

The two-level predictor has two major structures: the branch history register

(BHR) and the branch history table (BHT). The branch history register is a shift register

containing the outcomes of the recent program branches. A branch predictor may use an

array of individual BHR registers, each tracking a local history of a branch; this array of

BHRs is known as a history register table (HRT). The BHR is used as an index to the

BHT to select a bimodal entry that will provide the prediction. Depending on the number

of BHR registers, three main classes of 2-level predictors are developed as follows.

• Per-address schemes (PA) select an appropriate BHR in the HRT table by a

part of the branch address. If N address bits are used to address the HRT,

there are 2N BHR registers.

21

• Per-set schemes (SA) select an appropriate BHR in the HRT table by a set

address obtained from the branch IP address. Consequently, the number of

BHRs is smaller than in the PA schemes.

• Global schemes (GA) use one BHR register for all program branches.

Each of the three classes of schemes can be further divided into sub-schemes

according to the number of BHT tables. Figure 2.5 shows three sub-schemes of the PA

scheme. Figure 2.5(A) shows the Per-Address Global scheme (PAg). This scheme uses

one BHT table. Figure 2.5(B) shows the Per-Address address scheme (PAp). This

scheme uses 2k BHT tables, where k is the number of address bits used to access the

BHT. Figure 2.5(C) shows the Per-Address per-set scheme (PAs). This scheme divides

a number of address bits used to access the BHT tables into S sets to lower the number of

BHT tables.

In d e x
H R T (B H R s) B H T

In d e x

P A pP A g

H R T (B H R s) B H T s

P A s

H R T (B H R s) B H T s
S e tA (B r .)A d d re ss(B r .) A d d re ss(B r .)

A d d re ss(B r .)

(A) (B) (C)

P red ic to r
P red ic to r

P red ic to r

P red ic to r
P red ic to r

P red ic to r P red ic to r

P red ic to r
P red ic to r

Figure 2.5 PA two-level schemes as presented in [8]

22

Figure 2.6 shows the Global-Address global scheme (GAg). The GAg scheme

uses one BHR and one BHT table. The GAg predictor is a basis for the majority of

modern branch prediction units. Predictors described further are all two-level predictors

with one BHR and one BHT, although the BHR may be combined with other branch

information to access the BHT and BHT and may be divided into several tables to look

closely to GAs scheme.

BHT

BHR

Predictor
Predictor

Predictor

Figure 2.6 GAg two-level scheme

2.8 GShare Predictor

In the GAg scheme, indexing in the BHT is based solely on the BHR, which is

affected by the last N outcomes of the program branches. McFarling proposed a so called

GShare predictor [11]. The original GAg scheme is changed and the BHR is XOR-ed

with a part of the branch address to create a hash function to access the BHT. This

approach proved to be more accurate than the other existing schemes.

23

With the introduction of the GShare, two-level predictors become focused on the

GAg scheme rather than on the PA schemes. GShare is still widely used in commercial

processors and many processor simulators include the GShare as the outcome predictor.

2.9 Hybrid Predictors

McFarling [11] introduced a hybrid predictor. The bimodal predictor augments the

Gshare predictor (see Figure 2.7). The bimodal predictor is used for highly biased

branches where constant decision on NT or T outcome is enough for accurate prediction.

Chooser is logic needed to make the final prediction from two outcome predictions

coming from the bimodal and the GShare predictor. This logic can be as simple as a

2-bit saturating counter table (the same one used for bimodal table). The chooser

counter’s MSB bit selects the final prediction between the two provided.

IP
M+n-1 M31

BHR

N 0

XOR
.
.
.

.

.

.

0

2 -1n

0

n

n

n

NT T T
WT

WN SN

ST

WT

WN SN

ST

.

.

.

.

.

.

WT

WN SN

ST

WT

WN SN

ST

GShare

Bimodal Table

Prediction

Prediction
Chooser
Bimodal
Table

Prediction

2 -1n

0

Figure 2.7 Hybrid predictor

24

The tournament predictor is a hybrid predictor, where GShare (the global predictor)

is working in parallel with a local predictor instead of the bimodal predictor [1]. The

tournament predictors are accurate since they cover two sides of branch correlations

(local and global), but they are not cost-effective, because local and global correlations

are just partially orthogonal. This leads to having redundant information in the local and

global predictors.

2.10 De-interference Techniques

Negative interferences occur when two branches with opposite outcomes compete

for the same predictor’s entry. One or both outcomes are mispredicted. Interference

misses are shown to be a more important limitation in achieving higher prediction rates

than the predictor size. Here we give a brief description of 3 of most influential de-

interference techniques: (a) Agree predictor, (b) Bi-mode predictor, and (c) Skewed

predictor.

2.10.1 Agree Predictor

The Agree predictor [12] is one of the first predictors to try and cope with

negative interferences. The Agree predictor introduces a bias bit dedicated for each

branch. It assumes that two branches with opposite outcomes that compete for the same

predictor’s entry may have correct bias bit. The bias bit is usually allocated in the BTB

and reflects the first occurrence of a branch that is usually a dominant one during the

program execution.

Instead of providing prediction for a particular branch, the saturating counter

provides information on whether the predictor agrees or disagrees with the bias bit. If we

25

assume that two branches with opposite outcomes have correct bias bits, the global

predictor may provide the same information for both branches, e.g., “agree,” and both

branches will be correctly predicted. The Agree predictor suffers from the bias bit

implementation issues and moreover, in modern predictors, the bias bit is not considered

accurate enough to have prediction relying on it.

2.10.2 Bi-mode Predictor

The Bi-mode predictor [13] introduces two BHT tables, a not taken table

(NT.BHT) and a taken table (T.BHT). Each table stores only one type of outcome. A

bimodal table is used to select between T.BHT and NT.BHT. An index hash function is

used to access the selected table (see Figure 2.8).

The Bi-mode predictor translates a significant amount of negative interferences

into neutral interferences. As long as the bimodal table selects the correct table, negative

interferences are not possible.

IP

HASH

T
BHT

NT
BHTChoice

BHT

Index

BHR

Prediction Prediction

Prediction

Index Index

Figure 2.8 Bi-mode predictor

26

2.10.3 Skewed Predictor

The skewed predictor [14] resolves a source of collision by trying to increase

associativity of the BHT. Since a tagged BHT is too expensive to implement, a special

function named Skew function emulates a tag. The skewed branch predictor splits the

PHT into three even banks and hashes each index to a 2-bit saturating counter in each

bank using a unique hashing function per bank (f1, f2 and f3). The prediction is made

according to a majority vote among the three banks. If the prediction is incorrect, all

three banks are updated. If the prediction is correct, only the banks that made a correct

prediction will be updated. The reasoning behind partial updating is that if a bank gives a

misprediction while the other two give correct predictions, the bank with the

misprediction probably holds information which belongs to a different branch. In order

to maintain the accuracy of the other branch, this bank is not updated. The skewed

predictor stores each branch outcome in two or three banks. This redundancy of 1/3 to

2/3 of the PHT size creates capacity aliasing but eliminates much more conflict aliasing,

resulting in a lower misprediction rate.

2.11 Filtering and Branch Classification

De-interference methods use a global predictor as the base predictor and then

augment it to improve its accuracy. Filtering methods try to cope with redundancy of

allocated data in the hybrid predictor as well as with enabling smaller predictors.

Filtering relies on classifying branches into different groups, where branches from each

group are guided into a separate predictor structure tailored for that class of branches.

The majority of the program branches are always taken or always not taken branches and

27

are easily predictable by the less costly bimodal predictor. A significant number of

branches are highly locally correlated such as loop branches.

2.11.1 Counter and Bias-bit Based Filtering

Chang et al.[15] present a filtering technique that uses a counter in the BTB as

well as a bias bit. The bias bit is set by the first branch outcome and is toggled every

time the branch changes its outcome. The counter is used as a bias bit confidence value.

The counter is incremented every time a branch outcome complies with the bias bit. If

the counter is in saturation, a bias bit is used to predict the branch and the global predictor

is not used nor updated. If the branch is mispredicted, the counter is reset. This way, the

contention in the global predictor is reduced.

This filter technique involves tight relations with the BTB, making it difficult to

implement. Moreover, by allowing the less accurate bias bit to predict the outcome until

the counter is in saturation makes this approach less suitable for modern branch

predictors.

2.11.2 YAGS Predictor

The YAGS predictor combines filtering and de-interference techniques [16]. It is

based on the Bi-Mode predictor, but the NT.BHT and T.BHT tables are tagged in order to

achieve a better filtering. Both tables can allocate only the branches with outcomes that

do not comply with a bimodal predictor. The bimodal table is used as the selector

between NT.BHT and T.BHT as well as the outcome predictor. If the bimodal predictor

is able to predict the branch correctly, NT.BHT and T.BHT tables are not updated.

28

2.11.3 Serial-BLG Predictor

McFarling’s Serial-BLG predictor [7] uses multiple predictor stages, each of

which passes its prediction onto the next stage. Each stage overrides the prediction from

the previous stage only if it can refine the current prediction. The serial predictor

significantly reduces size of each stage; each stage handles only those branches that are

not predicted accurately by the previous stages. All predictor stages allocate an entry for

a particular branch as in the parallel hybrid predictor, but the stage does not update the

replacement bits if it was unable to offer a better prediction than the previous stage. This

way redundant entry in later stages is going to be replaced sooner.

The serial-BLG predictor implements three stages (see Figure 2.9) and handles

four different classes of branches: (a) biased branches which are easily predictable with a

bimodal predictor; (b) locally correlated branches which are predictable by a local

predictor; (c) loop branches, predictable by a local loop predictor; and (d) all other

branches that are handled by a global predictor.

The serial-BLG successfully copes with negative interferences and offers an

excellent way for branch classification. Three predictors use relatively separated stages

where each can be designed separately with well defined interfaces that connect them.

Bimodal
predictor

Local
(Loop)

predictor
cache

Prediction Global
predictor

cache

Hit

Prediction

Hit

Prediction

Figure 2.9 Serial-BLG predictor organization

29

2.11.4 Loop Predictor

The loop predictor is a cache structure used to recognize and predict loop

branches. The loop predictor is trained to recognize the maximum loop count. It

provides the opposite prediction when the current iteration counter reaches the maximum

loop count. The Intel Pentium M’s loop branch predictor unit uses a 2-counter scheme as

shown in Figure 2.10. The first counter tracks current loop branch iteration and the

second counter keeps the maximum loop value determined during previous loop runs.

When counters match, a prediction provided by the loop predictor flips from the default

prediction.

CURR_VAL

=

+1

0

MAX_VAL Prediction

Figure 2.10 Loop predictor counters in Pentium M (as presented in [2])

2.12 Perceptron

Perceptrons are learning elements introduced in 60’s in theory of neural networks.

Neural branch prediction is first proposed by Vintan [17]. Vintan considers branch

prediction as a particular problem in a broader class of pattern recognition problems that

30

can be solved by neural networks. The neural predictor has ability to exploit long

histories at the cost of a linear resource growth. Classical predictors impose an

exponential resource growth. Further development of the perceptron predictor was taken

by D. Jimenez. Jimenez [18] presents a hybrid predictor similar to the GShare predictor

[11], but with significant improvements in accuracy. The main disadvantage of the

perceptron predictor is its high latency. Fast-path neural predictor presented by the same

author [19] is a predictor with latency comparable to the state-of-the-art predictors used

in industry. However, the perceptron prediction relies on arithmetic functions (add) that

increase the predictor’s latency.

Inputs to the perceptron are branch outcome histories just like in the two-level

adaptive branch prediction. The output of the perceptron is non-negative (branch

predicted taken) and negative (branch predicted not taken). One perceptron element is

shown in Figure 2.11.

The inputs (x’s) come from the branch history and they are equal to -1 or +1. The

output (y) is a product of x’s and w’s. A training mechanism finds correlations between

the history and the outcome (w factors). The bias weight, w0, is proportional to the

probability that the branch is taken.

31

1 X 1 X 2 X n...

y

W 0 W 1 W 2 W n

y = W 0 + XiW i

Figure 2.11 Perceptron basic element

2.13 Confidence Value

Confidence is the measure of accuracy of the branch prediction. A basic

confidence value is for example Strongly-Taken and Weakly-Taken branch prediction

states in the bimodal predictor. The hybrid predictor’s chooser may use the confidence

value in selecting the prediction from a predictor with the highest confidence value. It

can also be used in performance-power trade-offs. For example, we may opt not to

speculatively pursue a program path as indicated by the prediction if the confidence in

that prediction is low. Even though this approach may result in performance degradation,

it could be beneficial for power consumption.

Jacobsen et al. [20] propose a hardware mechanism that partitions conditional

branch predictions into two sets: those that are predominantly accurate and those that are

less accurate. The objective is to concentrate as many of the mispredictions as practical

into a relatively small set of low confidence dynamic branches. Confidence value can be

used to allow threads, predicted with a high confidence, to have priority over those with

low confidence. This research indicates that a relatively simple confidence mechanism

can isolate 89% of the mispredictions into a set containing 20% of the dynamic branches.

32

CHAPTER 3

INDUSTRIAL IMPEMENTATIONS OF THE BRANCH

PREDICTORS

This section presents an overview of known branch predictors’ implementations

in commercial processors, with an emphasis on the branch predictor unit found in the

Intel’s P6 architecture.

3.1 Branch Prediction Unit in Intel’s P6 Architecture

Several details about the branch predictor unit found in Intel’s P6 architecture

have emerged. Some of these details are implied in the Intel’s software optimization

manual for P6 architecture [21]; for example, the manual indicates the existence of a

local predictor with a 4-bit long branch history register. More details have emerged from

an early reverse engineering effort by Milenkovic et al. [3]. They found the following:

The P6 architecture has a BTB organized in a cache structure with 128 sets and 4 ways

(the total number of entries is 512). Address bits IP[10:4] are used as thr BTB index.

The outcome predictor includes only a local predictor with 4-bit long BHR with no global

33

component. The findings from [3] are later confirmed by chief architects of P6

architecture in the book by Shen and Lipasti [22].

More details about the P6 branch predictor unit emerge in an Intel patent [23].

This patent presents a detailed BTB organization identical to the one found in [22]. The

patent also describes the place of the branch predictor unit (BPU) in the pipeline and its

interaction with other units in the processor’s front-end (see Figure 3.1).

INS TR U C TIO N
FE TC H U N IT

(IFU)
B TB C A C HE B IT

B RA N C H TA R G E T
B U FFE R (B TB)

IN S TRU C TIO N
P O IN TE R

B R A N CH
P R E D IC TIO N

IN S TRU C TIO N
D E CO D E R

(ID U)

B R A NC H
A D D R E S S

CA L C U L A TO R
(B A C)

B RA N C H
IN FO

P R O C E S S E D
 B RA N CH INFO

D E -A L L O CA TIO N
IN FO R M A TIO N

C A L L /R E TUR N
IN FO .

A L L O CA TO R

R E S E R V A TIO N
S TA TIO N

B R A NC H
E X E C U TIO N UN IT

pDs t O F B RA NCH (IS S UE)

pDst O F B RA NCH (RE S O LV E)

B RA NCH RE S O LV E INFO RMA TIO N

FRO NT E ND

Figure 3.1 Pentium P6 Front-End and its branch predictor unit (as presented in [23])

The instruction fetch unit (IFU) sends the instruction pointer IP to the BTB. The

BTB uses a portion of the instruction pointer to select a set in the BTB. The tag field of

the incoming instruction pointer is compared to the tag fields of 4 entries in the selected

set (see Figure 3.2). If a matching entry is found, the offset field is used to determine

34

whether hit will be reported or not. The offset field is used to select a right entry if

multiple entries in the selected BTB set have matching tags. If there are multiple hits in

the BTB, an entry with the lowest offset that is still larger than or equal to the instruction

pointer is selected. The BTB tag is 9 bit long and 7 bits are obtained by compressing

address bits IP[29:11]. Two most significant tag bits are address bits IP[31:30] to allow

better detection of the jumps to the operating system service routines. If the incoming tag

does not match, a new entry is allocated. The replacement policy bits (LRR bits) select

an entry for allocation.

BRANCH
ENTRY 0

BRANCH
ENTRY 1

BRANCH
ENTRY 2

BRANCH
ENTRY 3

BRANCH PATTERN
SET TABLE

LRR
BITS

0

1

127

HASHED TAG
(9 bits)

BLOCK
OFFSET
(4 bits)

BRANCH
TYPE
(2 bits)

TRUE
HISTORY

(4 bits)

SPEC.
HISTORY

(4 bits)

VALID
1 bit

BRANCH TARGET
ADDRESS (32 bits)

SET
INDEX

Figure 3.2 Organization of the BTB and layout of one BTB entry (as presented in [23])

The BAC unit provides the target address to be stored in the selected BTB entry

in case of a BTB miss or in the case that the provided target address is incorrect (BTB hit,

but the target address is mispredicted).

35

In addition, if we have a BTB hit that comes from a non-branch instruction (a

bogus branch), the selected BTB entry is invalidated. This early BTB update is desirable

due to superscalar execution. If the branch has a mispredicted outcome, the branch

history table needs to be updated with the new outcome.

Multiple branches exist at any point in different pipeline stages. An incoming

branch may not see its prehistory retired yet, and therefore the outcome history for that

branch may have entries related to more distant branches. This is a reason why the BTB

along with the outcome history employs a speculative outcome history. If it is accurate, a

speculative bit will be set to inform internal logic to take a speculative history as a valid

one. Otherwise a real branch history (outcome of retired instructions) is used.

Figure 3.3 shows the organization of instruction fetch lines in Intel’s P6

architecture. If a branch instruction spans multiple 16-byte lines (as illustrated in

Figure 3.3), the BTB will handle that branch (tag, index, and offset) based on the address

of the last byte of that instruction. Consequently, the offset field will be 1h, and index

field will be 2h.

16 BYTE BLOCK

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 000X

BRANCH

INSTRUCTION

0000 001X

0000 002X

FFFF FFFX

X=

Figure 3.3 Fetch line in P6 architecture (as presented in [23])

36

3.2 Branch Prediction Unit in Intel’s NetBurst Architecture

Starting with the Pentium 4, Intel claims significant improvements in the branch

prediction accuracy [24]. Milenkovic et al. [3] showed that NetBurst architecture

(Northwood core) uses a global predictor decoupled from the BTB. The BTB is a 4-way

structure organized in 1024 sets (the total number of entries is 4096). Address bits

IP[13:4] are used as the BTB index. The global predictor is addressed by a single BHR

which is 16-bit long. The internal organization of the global predictor is unknown, but it

is indicated that it has 4096 entries. Intel specifically refers to the global predictor as a

proven to be better than the GShare predictor. NetBurst architecture uses static prediction

mechanism if the branch is not found in the BTB.

3.3 Branch Prediction Unit in Intel’s Pentium M

Intel technology journal [2] describes the Pentium M branch prediction as the

same one used in the NetBurst architecture with addition of a loop and an indirect

predictor. The loop predictor uses two counters as described in Section 2.11.4. The

indirect target predictor is presented as a separate entry. The indirect branch prediction

from the indirect predictor is conditional upon the BTB hit. If the indirect predictor

misses, the BTB provides the target prediction (see Figure 2.3). The Intel technology

journal [25] indicates that the outcome predictor is designed from scratch. The

optimization manual indicates that all branches are predicted dynamically, which likely

means that the outcome predictor includes a bimodal table, in addition to a global

predictor. This is a starting assumption in our investigation.

37

3.4 AMD K6 and K7

The AMD K6 line of microprocessors features a highly accurate 8K-entry GAs

branch predictor; however, the K7 AMD Athlon microprocessor has scaled-back to the

2K-entry predictor [26]. The predictor does include a few simple but proprietary

enhancements to improve its behavior in important special cases. It seems that power

consumption constraints and branch predictor latency drive designs toward smaller, but

more sophisticated branch predictors with support for de-interference and classification.

Athlon K7 predicts branch target addresses using a 2K-entry branch target address cache.

3.5 Alpha 21264

Alpha 21264 processor implements a tournament predictor consisted of one GAg

predictor and one PAg predictor [27]. The GAg predictor has a 12-bit BHR and a

4K-entry BHT with 2 bit counters. The PAg has a 10 bit BHR and 1K-entry with 3-bit

counters.

3.6 Sun UltraSPARC-IIIi

Sun UltraSPARC-IIIi processor uses 16K-entry GShare predictor with two bit

counters [22]. Bimodal predictor is also implemented and it XOR address bits with global

history register (except 3 lower order bits) to reduce aliasing.

38

CHAPTER 4

EXPERIMENTAL ENVIRONMENT

This section describes an approach used in reverse engineering of branch

predictor units. We give a brief description of performance monitoring registers and a

list of branch-related events that can be monitored in Pentium M processors. We also

give a short description of Intel’s VTune, a performance-tuning tool we used to run

microbenchmarks and perform measurements of interest.

4.1 Reverse Engineering Flow

Figure 4.1 shows a generalized experiment flow of the reverse engineering

process. In Step 1, a reverse engineer makes a hypothesis on a particular predictor

structure or a mechanism and assesses a testing space that will cover all design structure

details. In Step 2, a microbenchmark (or a series of microbenchmarks) is developed in C

and/or assembly language. The microbenchmark has to (a) identify and isolate

parameters/mechanisms for hypothesis testing (b) amplify the parameters/mechanisms of

interests so they can be easily measured or observed, and (c) mask out effects of all other

39

microarchitectural parameters/mechanisms. The reverse engineer also needs to select a

list of observable events on the given architecture of interest for the

mechanisms/parameters tested in the hypothesis. This step ends with the reverse

engineer making a simulation by hand and establishing expectations for the given

hypothesis.

Step 1:
Make a Hypothesis

Step 2:
Create a microbenhmark

Step 3:
Execute and collect statistics

Events
Selection

Step 4:
Analysis

Step 5:
Does expectations

meet results?

Step 6:
Microarhitectural

parameters

Yes

No
Modify

Hypothesis

Expectations

Verify the hypothesis
in different way

Figure 4.1 Reverse engineering flow

In Step 3, microbenchmarks are executed and microarchitectural events are

collected using a performance monitoring tool (Intel’s VTune in this thesis). In Step 4,

collected microarchitectural events are analyzed and compared with the expectations

made in Step 1. In Step 5, we decide whether the hypothesis is confirmed or not. If the

40

hypothesis fails, we modify the hypothesis and accordingly the microbenchmark. In

Step 6, after the hypothesis is possibly confirmed, the reverse engineer can try to find a

slightly different experiment to re-confirm the hypothesis (for example, a number of

different experiments can be used to find the number of ways in a set-associative cache

structure).

4.2 Performance Monitoring Registers

Modern processors include performance monitoring counters and corresponding

logic that allows programmers to specify one or more microarchitectural events that can

be monitored (measured) in real-time. For example, programmers can measure the

number of clock cycles a program or a part of the program takes to execute, they can

monitor the number of cache misses, the number of branch instructions, and the number

of mispredicted branches, to name just a few hardware events. Insights gained in this

process can be used for manual or guided program optimization. For example, a

significant number of data misses can be reduced by changing the data layout in memory

or by dividing program data sets into smaller pieces that better fit the memory hierarchy

in a given processor. When a performance monitoring counter overflows, the

corresponding logic triggers an exception, so the exception service routine can keep the

track of the number of events.

4.3 Branch related microarchitectural events

Here we describe branch-related events specific for the Pentium M processors

which are used in our reverse engineering effort. Table 4.1 shows the branch related

events in Pentium M and the description provided from the Intel’s VTune.

41

Table 4.1 Branch related microarchitectural events in Pentium M processor

Event name Event description
Branch Instructions
Decoded

Event indicates the number of branch instructions decoded.

Branch Instructions
Executed

Event counts all executed branches (not necessarily retired).
This includes only macro instructions and not micro branches.

Branch Instructions
Retired

Event indicates all retired branches. This includes only macro
instructions and not micro branches.

Branch
Mispredictions
Retired

Event measures all retired executed to completion branch
mispredictions. This includes: Branches that were incorrectly
predicted as "taken" and were discovered to be "not taken"
only after retirement, Branches that were incorrectly predicted
as not taken and were discovered to be taken after retirement.

BACLEARS
Asserted

Event indicates branch mispredictions, where the branch
decoder decides to make a branch prediction because the BTB
did not, or, rarely, tries to override the BTB's prediction. Each
branch misprediction of this type costs approximately 5 cycles
of instruction fetches. The effect on total execution time
depends on the surrounding code

Mispredicted Branch
Instructions
(Mispredicted at
Decoding)

Event counts the number of branch instructions that were
mispredicted at decoding.

Mispredicted Branch
Instructions
(Mispredicted at
Execution)

Event counts the number of branch instruction mispredicted at
execution.

Mispredicted
Conditional Branch
Instructions Executed

Event counts the number of mispredicted conditional branch
instructions that were executed.

Mispredicted Indirect
Branch Instructions
Executed

Event counts the number of mispredicted indirect branch
instructions that were executed.

Taken Branch
Mispredictions

Event, the VTune Performance Analyzer counts those
branches that were incorrectly predicted as taken and were
discovered to be not taken only after retirement.

Taken Branch Retired Event, the VTune Performance Analyzer counts the number of
taken branches that are retired or completed.

42

It should be noted that the available literature often gives very vague description

of certain events, so their exact nature is somewhat open for interpretation. For example,

Mispredicted Branch Instructions (Mispredicted at Decoding) is described as “Event

counts the number of branch instructions that were mispredicted at decoding.” This

makes the event difficult to associate with the parameters of our interest – it could be a

BTB miss (the tag does not match) or it could a BTB hit with mispredicted branch target.

The following branch related events are of great interest for the effort presented in

this thesis: (a) Mispredicted Branch Instructions (Mispredicted at Decoding) MBI_DEC,

(b) Mispredicted Branch Instructions (Mispredicted at Execution) MBI_EXEC, and (c)

the Mispredicted Indirect Branch Instructions Executed (MBIE).

Our experiments indicate that the event MBI_DEC counts both the number of

BTB misses and the number of BTB target mispredictions when the outcome predictor

predicts branches as taken. If the MBI_DEC event count is high and the MBI_EXEC

event is low, we consider this as an indication that after decoding, branch target was

known and the misprediction does not propagate further in the pipeline to execution

stages. We relate the MBI_EXEC event to the branch outcome misprediction. The

MIBIE event in experiments related to the indirect branch predictor in the Pentium M and

can also expedite the experimental flow used in determining organization of the global

predictor.

4.4 VTune - Tool for Collection and Selecting Hardware Events

VTune is a performance tuning environment for Windows and Linux developers

from Intel [28]. VTune provides more capabilities than just an observation of the

hardware events. VTune monitors the performance of all active software and is able to

43

identify “HotSpots” or bottlenecks in a program and analyze program performance as it

executes on an Intel microprocessor platform. VTune can examine each instruction and

uncover problems at machine code level including optimization of the code using

context-sensitive on-line tuning suggestions.

We use the VTune just as a tool to collect microarchitectural events related to

branch instructions in order to determine the branch predictor unit hardware organization.

44

CHAPTER 5

MICROBENCHMARKS FOR THE REVERSE ENGINEERING

OF THE BRANCH TARGET BUFFER

5.1 Objectives

The goal of this section is to develop an experimental flow and a set of

microbenchmarks that will help us determine the size and organization of the branch

target buffer. We expect the branch target buffer to have a cache-like structure and we

want to determine the branch target buffer cache parameters (size, sets, ways, index, tag,

replacement policy).

5.2 Contributions

We developed an experimental flow and a set of microbenchmarks for

determining organization of the branch target buffer. The experimental flow and

microbenchmarks applied on a Pentium M processor provide the following insights.

45

1) The BTB is decoupled from the outcome predictor and always not taken branches

are not allocated in the BTB.

2) The BTB number of ways is a 4-way structure with 512 sets.

3) The BTB index bits are instructions pointer bits [12:4].

4) The BTB tag bits are instructions pointer bits [21:13].

5) The BTB replacement policy is based on the LRU policy but this policy is

reinforced only on branches that at least once hit in the BTB.

6) BTB can allocate multiple branches with the identical tag in the same set. Each

BTB entry includes offset field to achieve this functionality. The offset field is

equal to the last four bits of the branch instruction pointer. Therefore, multiple

hits are possible. Among all BTB hits, the offset mechanism selects the entry with

the smallest offset yet not smaller that the instruction pointer.

False hit in the BTB (a bogus branch) causes eviction of the whole BTB set.

5.3 Background

The BTB is typically implemented as a set-associative cache structure (Figure 5.1),

with each entry storing critical information about the branch: the full branch target

address, the branch type (for example, direct or indirect), the branch offset, and the tag.

The BTB can be indexed by a portion of the branch address. An alternative

implementation may combine a portion of the branch address with a path history register

(e.g., the index is an exclusive-or function of a portion of the branch address and the path

history register). The tag field can be another portion of the branch address or a

compressed version of remaining 21 address bits, rather than a full address tag.

46

0

0

NSET-1

Instruction Pointer

Tag Index Offset

V T Tag TargetOffset

NWAY-1

Figure 5.1 Branch Target Buffer

In reverse engineering of a BTB the following information is sought:

1) BTB organization;

BTB size (number of entries)

Number of ways

Number of sets

INDEX bits, TAG bits

2) Replacement policy (Way replacement)

3) Allocation/Eviction policy

Before going into details about branch target buffer experiments, we shall introduce

several assumptions related to Intel architectures. The instruction fetch unit is fetching

16-byte instructions lines; branch instructions that are never taken do not allocate an

entry in the BTB; and the branch address of an instruction that spans two 16-byte

instruction lines is determined by the address of the last byte in that instruction and it

belongs to the second 16-byte line. All these assumptions could be easily verified with a

set of specific microbenchmarks that can be applied in a later stage once more details

become available.

47

5.4 BTB Organization Tests

In determining BTB organization we start with an experimental flow first

introduced by Milenkovic et al. [3]. A so called BTB-capacity test stresses the BTB

structure trying to find the maximum number of branches that can fit in the BTB. A so

called BTB-set test stresses the BTB structure trying to find the maximum number of

branches that can fit in a single BTB set.

5.4.1 BTB-capacity Tests

A number of conditional taken branches (or unconditional direct or indirect taken

branches), B, are placed at equidistant addresses in memory with distance D (see

Figure 5.2). By varying the parameters B and D, we can, under certain conditions,

determine the BTB size. For example, let us assume a BTB with 512 entries, organized

in a 4-way cache structure, where branch address bits IP [10:4] are used as the BTB

index. By varying B=128, 256, 512, 1024, 2048 and D=2, 4, 8, 16, 32, 64 and measuring

the misprediction rate for the branches mispredicted at decoding, we expect the results as

shown in Figure 5.3. When the number of branches is equal to the number of entries in

the BTB, there exists 3 “fitting” distances D (D=4, 8, 16) that result in a very low

misprediction rate. When the number of branches exceeds the number of entries in the

BTB, the mispredictions rate is high (close to 100%). By lowering the number of

branches, the number of fitting distances increases; for example, we have 4 fitting

distances for B=256 (D=4, 8, 16, 32) and 5 fitting distances (D=4, 8, 16, 32, 64) for

B=128.

48

Address Code
 void main(void) {

 int long unsigned i;

 int long unsigned liter = 1000000;

 for(i=0;i<liter;i++){

 _asm {

 // dummy non-branch instructions

@A jle l0 // always taken

 // dummy non-branch instructions

@A+D l0: jle l1 // always taken

 // dummy non-branch instructions

@A+2D l1: jle l2

 ...

@A+4094D l4093: jle l4094 // always taken

 // dummy non-branch instructions

 }

@A+4095D } // always taken

 }

Figure 5.2 BTB-capacity microbenchmark example for B=4096

2 4
8 16

32
64

128

256
512

1024
2048

0

10

20

30

40

50

60

70

80

90

100

Misprediction rate [%]

Distance, D [Bytes]

Branches, B

Figure 5.3 Expected misprediction rate as a function of the number of branches B, and
the distance between branches, D for a BTB organized in 128x4 cache structure

49

In the general case, when the BTB-capacity test with B = NBTB spy branches gives

m “fitting” distances, the number of ways in the BTB is NBTBWAYS = 2m-1 and the index

bits used are IP[i+j-m:i], where the maximum fitting distance DMAX = 2i, and j=log2NBTB.

A generalized equation used in the BTB-capacity test analysis is shown in Equation (5.1)

kl DB
NB

ljikmiandNB
decMB 2,2 ,

 %,100
 ,0

@
BTB

BTB
==

⎭
⎬
⎫

⎩
⎨
⎧

>
−+≤≤−≤

≈ .

(5.1)

It should be noted that this reasoning can be applied only if certain conditions are

satisfied: (a) a portion of the branch address is used as the BTB index, (b) address bits

above the index field are used as the tag in the BTB, (c) branch address offset bits are

stored in the BTB, and (d) replacement policy is the round-robin, the least recently used

or one of its derivatives.

We measure the number of branches mispredicted at decoding (MBI_DEC).

Figure 5.4 shows the misprediction rate calculated as the MBI_DEC divided with the

number of spy branches as a function of B (B=512−4096) and D (D =2−128).

When B=1024, there exists 3 values for D (D = 4, 8, 16) with no mispredictions.

This result indicates a BTB organized as a 4-way cache structure with 1024 entries.

When B=2048, there exists only one value D (D=4) with no mispredictions. If we

assume that the BTB size is 1024 entries, the expected misprediction rate should be high

for all distances with B=2048. One possible explanation for this anomaly is that the

branch predictor unit does not allocate an entry in the BTB for every branch instruction

because three out of four branches have targets in the same 16-byte fetch line. This

assumption does not hold because a similar reasoning should apply when B=4096 and

50

D=4 as well as for all experiments with D=2. However, the misprediction rate in those

cases is relatively high, though not close to 100%. Another possible explanation is that

the BTB is a 2-way structure with 1024 entries. However, this assumption does not hold

either, because in that case we should see a high misprediction rate for B=1024 and D=4

(4 branches with the same tag would miss in a 2-way structure). Rather, we see a low

misprediction rate. Yet another possible explanation is that the BTB is a 4-way structure

with 2048 entries, but the BTB allocation policy and/or replacement policy are a source

of “unexpected” behavior when B=2048 and D=8 and D=16 (we observe relatively high

misprediction rate of 60% for D=8, though we expect no mispredictions under these

conditions). Consequently, we conclude that the BTB-capacity tests alone is not enough

to decisively determine the size and organization of the BTB and more experiments that

will stress a BTB set and BTB allocation/replacement policy are required.

0
20
40
60
80

100

2 4 8 16 32 64 128

D

B=512

0
20
40
60
80

100

2 4 8 16 32 64 128

D

B=1024

0
20
40
60
80

100

2 4 8 16 32 64 128

D

B=2048

0
20
40
60
80

100

2 4 8 16 32 64 128

D

B=4096

Figure 5.4 BTB-capacity test results for B=512−4096 and D=2−128

51

5.4.2 BTB-set Test

Instead of finding the number of branches B that fills the whole BTB, an

alternative experiment finds the number of branches that fills a BTB set, and a distance

DS such that those branches map into the same set (see Figure 5.5). These types of

experiments are called BTB-set tests. We analyze the misprediction rate as a function of

the distance DS and the number of branches B. When the distance between branches

exceeds 2MSB(Index) bytes (DS>2MSB(Index)), the curve knee point for the misprediction rate

is when B becomes equal to the (number of ways +1), and it does not depend on DS.

When DS ≤ 2MSB(Index), the curve knee point for the misprediction rate is a function of both

B and DS. When DS>2MSB(Tag), the curve knee point for the misprediction rate is when

B=2. The corresponding microbenchmark is similar to the BTB-capacity test, but we

deal with a smaller number of branches B placed at equidistant locations with larger

distances DS.

Address Code
 int long unsigned i, a=1, liter = 1000000;

 do {

@A if(a==0){ // dummy non-branch instructions (skipped)

 }

@A+x // dummy non-branch instructions (executed)

@A+DS if(a==0){ // dummy non-branch instructions (skipped)

 }

@A+DS+x // dummy non-branch instructions (executed)

@A+2DS if(a==0){ // dummy non-branch instructions (skipped)

 }

@A+2DS+x // dummy non-branch instructions (executed)

@A+3DS if(a==0){ // dummy non-branch instructions (skipped)

@A+3DS+x // dummy non-branch instructions (executed)

 liter--;

 } while(liter>0);

Figure 5.5 BTB-set microbenchmark

52

The microbenchmark shown in Figure 5.5 includes 4 spy conditional branches

placed at equidistant locations. It should be noted that a number of non-branch dummy

instructions is executed between two spy branches; this way we ensure that occurrences

of the spy branches are separated in time, giving each branch instruction enough time to

update the BTB before the next one is executed. However, time separation is not

possible in the experiments with rather small distances DS.

In the BTB example described above (128 sets, 4 ways, with index bits IP [10:4])

B=4 spy branches placed at distance D=2 Kbytes map in the same BTB set. They all fit

in the BTB producing no mispredictions if their tags are unique (for example, let us

assume a 9-bit tag, Tag=IP [19:11]). If we try to map 5 branches with the same distance,

we should see an increase in the misprediction rate. The actual misprediction rate

depends on the replacement policy and should be close to 100% if the round-robin or the

LRU replacement policy is implemented. A further increase in the number of branches

mapped in the same BTB set will result in high misprediction rate.

A set of BTB-set microbenchmarks can be used not only to verify findings of the

BTB-capacity test (e.g., the number of sets, the number of ways, index bits, and offset

bits), but also in determining address bits used for the tag field in the BTB. A

generalized experimental flow is shown in Figure 5.6. Appendix B shows the BTB-set

algorithm flow applied to the 4-way BTB with 512 entries, where branch address bits

IP[10:4] are used as the BTB index and branch address bits IP[10:4] are used as the BTB

tag.

53

 Set B=2
Pick arbitrary D that produce no mispredictions

i=0

Increase B

No

Remember (Di,Bi) pair

Yes Set B=2
Increase D

i++;

No

YesNumber of ways = Bi-1 -1
Index MSB= log 2 (Di-1)

Increase distance between
last two branches (Dn)

Index LSB= log2 (Dn - Di)

Increase D

No MPR ?

Yes

Tag MSB= log2 D

 MPR ?

Bi = Bi-1

No
 MPR ?

Yes

Figure 5.6 Searching for tag and index bits using the BTB-set test

We measure the number of branches mispredicted at decoding (MBI_DEC).

Figure 5.7 shows the misprediction rate calculated as the MBI_DEC divided with the

number of spy branches as a function of B (B = 2…9) and D (D=800h−4000h). These

results are only a subset of the results collected for the generalized experimental flow

shown in Figure 5.6, but they are found sufficient for further analysis.

54

0
2
4
6
8

10

4 5 6 7 8 9
B

D=800h

0
20
40
60
80

100

4 5 6 7 8 9
B

D=1000h

0
20
40
60
80

100

2 3 4 5 6 7
B

D=2000h

0
20
40
60
80

100

2 3 4 5 6 7
B

D=4000h

Figure 5.7 BTB-set test results

For D=2000h and up we observe no mispredictions when B = 2 and an increase in

the misprediction rate when B=3. According to BTB-set algorithm, we choose pair

(Bi, Di) = (2, 1000h). This indicates a 2-way BTB with address bit IP[12] being the most

significant bit of the index field. The misprediction rate for B=3 is approximately 20%.

An ideal replacement policy in a 2-way structure would be able to recognize that

3 branches compete for 2 slots in a set, so the third branch would never be allocated,

leading to a misprediction rate of 33%. However, the misprediction rate in this

experiment actually varies among different microbenchmark runs in the range between

10% and 80%. This is another indication that the BTB replacement/allocation policies

are not conventional ones (LRU, allocate on first miss). Consequently, additional tests

are required to determine the number of ways and the index bits.

Alternatively, if we assume that IP[12] is the index MSB bit (D=2000h) and a

4-way BTB, then the allocation and replacement policy are likely causes of

55

mispredictions even when B<5. The motivation for such unconventional

replacement/allocation policy could come from BTB design trade-offs (runtime

resizing/power savings/speed). This assumption does not conflict with results for

D=1000h.

Determining Tag Bits

To determine tag bits, we use the BTB-set test with B=2 while varying the

distance DS. Figure 5.8 shows the misprediction rate, calculated as the MBI_DEC

divided with the number of spy branches, as a function of DS (DS =2000h–800000h). The

results indicate that the IP address bits [21:13] are used for the BTB tag match.

According to analysis in Section 3.1, we may expect more than 9 bits to be used (IP

address bits [31:30] possibly included), but the test cannot be performed for this IP

address bits.

0

20

40

60

80

100

2000h 4000h 8000h a000h c000h e000h 10000h 40000h 100000h 200000h 400000h 800000h

DS

Figure 5.8 BTB-set tag testing results

56

Determining Index LSB Bit

The last portion of the BTB-Set test focuses on determining the least significant

bit of the index field. We start from the test with DS=2000h and B=3 because it incurs a

certain number of mispredictions. The distance between the second and third branch D’

is increased (D’−DS = 1, 2, 4, 8, …) until mispredictions disappear. The value of D’−DS

that produces low misprediction rate is the index LSB distance; Index LSB=log2(D’−DS).

Figure 5.9 shows the misprediction rate, calculated as the MBI_DEC divided with

the number of spy branches, as a function of the difference between IP addresses of the

2nd and 3rd branch instruction. When the difference reaches 11 bytes, we observe no

mispredictions. The difference of 11 bytes is equivalent to the difference of 16 bytes in

the branch instruction addresses (the instruction length is 6 bytes). As noted before, the

branch address of a branch instruction that spans two 16-byte blocks is determined as the

IP address of the last byte of that instruction. The results indicate that the Index LSB bit

is IP[4].

0
5

10
15
20
25

1 2 4 8 11 16
D'-D (3rd branch offset), branch length =6 bytes

D=2000h, B=3

Figure 5.9 BTB-set Index LSB testing results

57

5.5 Modified BTB-capacity Test

The original BTB-capacity and BTB-set tests indicate that the BTB size is either

1024 or 2048 entries. Here, we want to further investigate the size of the BTB. Let us

consider the following examples first.

Example #1. We assume the following BTB organization: 2048 entries organized

in 512 sets and 4 ways, Index=IP [12:4], the LRU replacement policy, and allocate on

first miss allocation policy. Let us consider an execution of the BTB-capacity test with

B=1280 and D=8. Two consecutive branches reside in a single 16-byte instruction block.

An execution of the BTB-capacity test will result in the following execution trace.

o Branches 0-511 (512) map into the 1st and 2nd way of the BTB lower half.

o Branches 512-1023 (512) map into the 1st and 2nd way of the BTB higher half.

o Branches 1024-1280 (256) map into the 3rd and 4th way of the BTB lowest quarter.

We see that four branches map into each set in the lowest BTB quarter and two

branches map into each set in the other 3 quarters of the BTB. The expected number of

mispredictions should be close to zero.

Example #2. Let us assume that the BTB size is 1024 entries, organized in 256 sets

and 4 ways, Index=IP[11:4], the LRU replacement policy, and allocation is done on each

BTB miss. Consider the same BTB-capacity test as the one described in Example #1.

The number of branches in this test exceeds the number of entries in the BTB, so we

should see an increased number of mispredictions.

Our next step is to design a new microbenchmark, here called CapMod. In creating

this microbenchmark, we start from the BTB-capacity test with B=1280, D=8. The

corresponding CapMod test is created by preserving the BTB-capacity benchmark layout,

58

but all branch instructions are removed except the first 256 branches (0-255) and the last

256 branches (1024-1279).

Example #3. If the BTB size is 2048 entries (512x4) and four branches that target

the same set cause mispredictions, the number of mispredictions for the CapMod test will

be the same as in the original BTB-capacity test with B=1280 and D=8 since we removed

only branches that were two per set (do not add to the number of mispredictions).

Example #4. If the BTB size is 1024 entries, CapMod will not produce

mispredictions because CapMod has only 512 branches.

According to these examples, we create two tests, CapMod1 and CapMod2.

CapMod1 is based on the BTB-capacity test with B=1280 and D=8 -- it preserves first

256 branches and the last 256 branches (the total B is B=512). CapMod2 is based on the

BTB-capacity test with D=1152 and D=16 -- it preserves the first 128 and the last

128 branches and the branches 512-768 (B=378).

Figure 5.10 shows the number of branches mispredicted at decoding (MBI_DEC)

per one program iteration. According to the assumption in Example #3, the results

indicate that that the four branches that target the same set in the 4-way BTB with

2048 entries cause the mispredictions. We conclude that the BTB has unconventional

allocation/replacement policies.

59

0
100
200
300
400
500

CapMod1 1280
B

D=8

0
100
200
300
400
500

CapMod2 1152
B

D=16

Figure 5.10 Modified BTB-capacity tests results

5.6 Cache-hit BTB-set Test

The results of the BTB-capacity and BTB-set tests were inconclusive and we were

unable to determine the BTB size. The previous CapMod tests indicate a BTB of

2048 entries, but obviously the replacement policy and/or BTB allocation policy are not

conventional ones, making our experimental flow insufficient in determining BTB

organization. Consequently, our next step is to develop a microbenchmark that will

stress the allocation policy.

In the BTB-set tests, the execution pattern for spy branches in one iteration of the

benchmark main loop is as follows: J1, J2,…, JB. If allocation/replacement policy

considers the number of times a BTB entry is accessed before eviction, this pattern will

be insufficient in determining BTB organization. Consequently, the microbenchmark is

modified to exhibit the following execution pattern: J1, J1, J2, J2, J3, J3,…, JB, JB. Here,

each branch is executed twice before going to the next branch in sequence.

The microbenchmark source code fragment is shown in Figure 5.11. We use an

indirect branch as a setup branch to achieve execution of each spy branch twice

consecutively. The rest of the source code can be found in Appendix B.

60

 int long unsigned liter = 100000000;
 for (i=0; i<liter; ++i){
 jmp dword ptr [ebx] // setup indirect branch
 ...
 l0: jmp edx // branch 0, “edx” stores _Exit IP
 // dummy code to set distance D
 jmp edx // branch 1
 // dummy code to set distance D
 ...
 // dummy code to set distance D
 jmp edx // branch B
 _Exit: clc
 }

Figure 5.11 Cache-hit test source code fragment

We measure the number of branches mispredicted at decoding (MBI_DEC).

Figure 5.12 shows the misprediction rate calculated as the MBI_DEC divided with the

number of spy branches as a function of B (B=2…17) for D=800h−4000h.

0
2
4
6
8

10
12
14
16

2 3 4 5 6 7 8 9 … 16 17
B

D=800h

0
10
20
30

40
50
60

2 3 4 5 6 7 8 9 … 16 17
B

D=1000h

0
10
20

30
40
50
60

2 3 4 5 6 7 8 9 … 16 17
B

D=2000h

0

10
20
30
40

50
60

2 3 4 5 6 7 8 9 … 16 17
B

D=4000h

Figure 5.12 Cache-hit BTB-set test results

61

The results indicate that a 4-way structure is used with set size of 512 entries.

When all branches target a single BTB set, the misprediction rate is 50%, indicating the

LRU replacement policy; and allocate-on-first miss allocation policy. The branches that

are just allocated can be evicted from the cache if they have not been touched again in the

program execution. This explains why 3 branches in the BTB-Set test can cause some

mispredictions.

5.7 Cache-hit BTB-capacity Test

The next step in the experimental flow is to confirm our findings about replacement

policy. The Cache-hit BTB-set approach is applied to the BTB-capacity test, where we

try to fit as many branches in the BTB as possible with no BTB mispredictions. The base

implementation ensures that each spy branch is executed twice consecutively, before any

other branch that maps in the same set. We call this microbenchmark Cache-hit BTB-

capacity test.

We measure the number of branches mispredicted at decoding (MBI_DEC).

Figure 5.13 shows the misprediction rate, calculated as the MBI_DEC divided with the

number of spy branches, as a function of B (B=512−4096) and D (D=2−128). The results

indicate that the BTB size is 2048 entries. The misprediction rate for non-fitting distance

is 50% rather than 100%. This is can be explained as follows. Each branch misses in the

BTB on its first occurrence, and its second occurrence results in a BTB hit. The BTB hit

“verifies” the corresponding BTB entry and the LRU replacement policy is used in

selecting a victim entry in the BTB set.

62

0
10
20
30
40
50
60
70
80

2 4 8 16 32 64 128
D

B=512

0
10
20
30
40
50
60
70
80

2 4 8 16 32 64 128
D

B=1024

0
10
20
30
40
50
60
70
80

2 4 8 16 32 64 128
D

B=2048

0
10
20
30
40
50
60
70
80

2 4 8 16 32 64 128
D

B=4096

Figure 5.13 Cache-hit capacity test results

5.8 Other Issues

In this subsection we explore several issues related to the BTB operation. The first

issue is related to bogus branches and their influence on the BTB. We have already

concluded that the BTB uses specific allocation and replacement policies. These policies

and their relations are partially revealed. This section presents some of the BTB

evictions and allocation policies mainly related to the patent [23]. The intent is to show

that the BTB is behaving close to the BTB design presented in [23]. We test following

situations:

1) BTB hit/ misprediction

2) BTB hit/ bogus branch detected

3) Offset algorithm

63

5.8.1 BTB Hit/ misprediction

This situation refers to the occurrence of the branch that has the same index,

offset and tag fields as a branch allocated in the BTB but has different target. This

situation is observed during tag bits testing in Section 5.4.2 where test employed had a

distance D=400000h. We observed that two branches evict each other. In this situation,

the BTB updates the entry with the new branch target.

5.8.2 BTB Hit/ bogus Branch Detected

A bogus branch refers to a BTB hit event caused by a non-branch instruction that

has the same tag and index fields as an allocated branch. When a bogus branch is

executed, the original BTB entry may be left intact or it may be discarded in order to

avoid pursuing false paths in the program execution. According to an Intel’s patent [23],

a bogus branch causes eviction of the corresponding branch from the BTB. Here, we

design a microbenchmark that verifies the BTB’s behavior related to bogus branches.

The microbenchmark is shown in Figure 5.14.

Address Code
 int long unsigned liter = 1000000;

 int a=1;

 do {

@A if(a==0){ // dummy non-branch instructions (skipped)

 }

@A+x // a dummy non-branch instructions

@A+400000h // a dummy non-branch instructions(a bogus branch)

 liter--;

@A+400000h+y;y<x } while(liter>0);

Figure 5.14 Bogus branch test source code

64

The program’s main loop encompasses an always taken spy branch. The target

address of the spy branch is tuned to move the program control flow so that IP(Spy

Target) - IP (Spy address) < 2MSB(TAG). An instruction that follows the spy branch target

instruction will have the same tag and index fields as the spy branch – i.e., the instruction

acts as a bogus branch. If the bogus branch evicts the spy branch, we should see a high

misprediction rate.

The measurements show that the spy branch is always mispredicted.

Consequently, we confirm that a bogus branch evicts entries the BTB entry.

5.8.3 Offset Algorithm

The BTB may provide more than one hit for the fetched 16-byte block since the

BTB design allows that multiple branches in a single BTB set have the same tag. The

experiments in Section 5.4.1 for distances D=4 and D=8 confirm the previous statement.

We could have four consecutive branches that map in a single BTB set, all having the

same BTB tag field and all are predicted correctly.

Once a new 16-byte block is fetched from the memory, BTB provides multiple

hits [23]. Then, an algorithm selects the correct target. The algorithm selects the target

with the smallest offset value yet not smaller than the current instruction IP address.

In this test we want to observe a situation when two branches from the different

16-byte blocks have the same index and tag but different offset and therefore BTB

provides two hits, but actually one branch will be detected.

Two situations are observed: (a) Double hit – two 16-byte blocks with each

having one spy branch that match by both tag and index are entered from the lowest byte

in the block and therefore, whenever BTB has two branches allocated, one will be a false

65

hit or a bogus branch. (b) Single hit – Second 16-bytes block is entered with the IP value

that is in between offsets of the observed two branches that matched. In this case, upon

second 16-byte block being entered, only one BTB hit is provided; upon first 16-byte

block being entered, two BTB hits are provided if the both branches are allocated at the

moment.

Double hit

The microbenchmark source code reuses the source code of the BTB-set test with

D=400000h and B=2 with second, Spy2 branch moved slightly to have the different

offset fields within the same set as shown in Figure 5.15.

The test is executed with changing of the Spy2 offset while keeping Spy1 and

Spy2 to target the same set. The test reports the misprediction rate of 100% which is an

indication that both branches are mispredicted. There was a possibility that Spy1was

always predicted correctly because when the 16-byte block is entered, the BTB logic

actually selects the BTB entry for the Spy1 branch. Consequently we conclude that the

false hit evicts all branches within the set.

Address Code
 int long unsigned liter = 1000000;

 int a=1;

 do {

@A if(a==0){ // Spy1

 // dummy non-branch instructions (skipped)

 }

@A+x // a dummy non-branch instructions

@A+400000h+z;z-x<16 if(a==0){ // Spy2

 // dummy non-branch instructions (skipped)

 }

 liter--;

@A+400000h+y;y<x } while(liter>0);

Figure 5.15 Double hit test source code

66

Single hit

The microbenchmark source code is shown in Figure 5.16. The 16-byte block that

has Spy2 within it is entered from a jump instruction and the entry point is in between

Spy1 and Spy2 offsets.

The test performed did not produce any mispredictions. The correct prediction for

the second 16-byte block with Spy2 indicates that the offset algorithm did not consider

the BTB hit from Spy1, as the Spy1 offset was smaller from the instruction pointer.

Correct prediction for the first 16-byte block indicates that the offset algorithm exists and

the purpose is to select the entry with the smallest offset among multiple BTB hits.

Address Code
 int a=1;

 int long unsigned liter = 1000000;

 do {

@A jmp l1 // Spy1

 // dummy non-branch instructions (skipped)

l1 // a dummy non-branch instructions

@l1+x jmp l2

 // dummy non-branch instructions (skipped)

l1=@A+400000h+z;z-x<16 if(a==0) a=1 // Spy2

 liter--;

@A+400000h+y;y<x } while(liter>0);

Figure 5.16 Single hit test source code

67

CHAPTER 6

MICROBENCHMARKS FOR THE REVERSE ENGINEERING

OF LOOP PREDICTORS

6.1 Objectives

The goal of this section is to develop an experimental flow and a set of

microbenchmarks that will help us determine the structure of the loop predictor. We

expect a loop predictor with a cache-like structure and we want to determine the loop

predictor’s cache parameters (size, sets, ways, index, tag and replacement policy), an

algorithm used to recognize a loop branch type behavior, and the counter based algorithm

used for the loop-branch outcome prediction. We also want to determine relationship

between the loop predictor and the BTB and test for existence of other local predictors.

6.2 Contributions

We developed an experimental flow and a set of microbenchmarks for

determining organization of the advanced loop predictor. The experimental flow and

microbenchmarks applied on a Pentium M processor provide the following insights.

68

1) The loop predictor main part is a two-way cache structure named the loop

branch prediction buffer, the loop BPB. The loop BPB is organized in 64 sets

(total size is 128 entries). The loop BPB index field is IP [9:4]. The loop BPB

tag field is IP [15:10]. The loop BPB employs the LRU replacement policy.

2) Each loop branch prediction buffer entry has two 6-bit counters. One counter

counts the current loop iteration number and the other stores the maximum loop

count. When the two values match, the predictor provides an opposite outcome

prediction.

3) A branch is allocated in the loop branch prediction buffer when the opposite

outcome of the branch is observed.

4) Once a branch is allocated in the loop BPB, the whole loop pattern is used to

train the loop maximum counter value in the loop BPB.

5) A loop BPB hit is filtered with a regular BTB hit.

6) The branch prediction mechanism does not employ other local predictors.

6.3 Background

Loop predictor is a local predictor specialized for branch instructions that exhibit

loop behavior. A branch exhibits loop behavior if it moves in one direction for a certain

number of times interspersed with one outcome in the opposite direction. For example, a

branch with a repeating outcome pattern, 10 times taken and 1 time not taken, can be

marked as {{T}10, NT}k. A loop predictor should accurately predict branch outcomes

when the outcome pattern length exceeds the size of the branch history buffer attached to

a global branch predictor. The available information on the loop predictor indicates that

once loop behavior of a branch is detected, a set of counters is allocated, without further

69

details about the loop predictor organization [2]. A number of questions arise from this

scarce description. The first question is how to recognize a reoccurrence of the branch

that exhibits loop behavior? We assume that a cache-like structure is used in the loop

predictor, named a loop branch prediction buffer, the loop BPB. Similarly to the regular

BTB, the loop BPB provides a hit if a particular IP address matches the tag in the loop

BPB. In contrast to the regular BTB, the loop BPB keeps resources needed to carry out

the correct outcome prediction. To detect loop behavior, two counters are assigned to

each loop BPB entry [2] – the maximum counter and the iteration counter. The

maximum counter gets trained by the pattern length to indicate the opposite branch

outcome, and the iteration counter is incremented on each branch execution. When the

iteration counter reaches the maximum counter, an opposite branch outcome is returned

as a branch prediction, and the counter is cleared. This way, each branch outcome is

predicted correctly. A loop BPB entry can also keep the target branch address, but

reusing a BTB target addresses is a more likely option. Prior to allocation of an entry in

the loop BPB, we would like to know if the particular branch has a loop-like behavior.

This raises the question of the loop predictor training.

Consequently, in reverse engineering of the loop predictor, we would like to

answer to the following questions:

1. What is the maximum counter length?

2. What is the loop BTB organization?

3. How the loop predictor is trained?

4. What is loop predictor allocation policy?

5. What is relationship of the loop predictor with the regular branch target buffer?

70

6.4 Maximum Counter Length

In determining counter length, we use a ‘spy’ branch that exhibits loop behavior.

For example, the spy branch is executed many times, and it repeatedly goes through the

following pattern: {{T}L-1, nT} – taken (L-1) times, and not taken once. The

corresponding microbenchmark is shown in Figure 6.1.

#define L 65 /* pattern length */
void main(void){
 int long unsigned I; /* loop index */
 int long unsigned I = 100000000; /* number of iterations */
 for (i=0; i<I; ++i){
 if ((i%L) == 0) a=0; /* spy branch */
 }

}

Figure 6.1 Microbenchmark for determining maximum counter length

We increase the parameter L, starting from Lmin, where Lmin is determined by

the length of the global branch history register, i.e., Lmin ≥ length(BHR). The expected

number of retired mispredictions in this microbenchmark is shown in Equation (6.1),

where N is the length of loop counters. As long as the pattern can be caught by the loop

counters, the number of mispredictions should be close to zero. Once the pattern length

exceeds the size of loop counters, the number of mispredictions should be equal to I/L,

where I is the number of the outer loop iterations.

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

>

≤
≈ N

N

L
L
I

L
MBI

2,

2,0
. (6.1)

71

We measure the number of branches mispredicted at execution (MBI_EXEC).

Figure 6.2 shows the misprediction rate, calculated as the MBI_EXEC divided with the

number of spy branches, as a function of L (L=8–128). The results indicate that pattern

lengths of L≤64 can be successfully predicted, and when L=65, the number of

mispredictions is equal to I/65. Consequently, the loop counters are 6 bits long.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

8 16 32 62 63 64 65 66 67 70 73 76 79 … 128
L

Figure 6.2 Maximum counter length test results

6.5 Loop BPB Organization

In determining loop BPB organization, we start from the BTB-capacity and BTB-

set tests used in the experimental flow for determining regular BTB organization. We

hypothesize that the loop BPB is organized as a cache-like structure that keeps relevant

information about branches that exhibit loop-like behavior. Each entry is accessed using

a portion of the branch address, has its own tag and two counters [2]. Each counter is

6 bits in length. We also assume that the target address is retrieved from the regular BTB.

72

Two microbenchmarks are used. A so called Loop-capacity test stresses the loop

BPB structure trying to find the maximum number of branches that can fit in the loop

BPB. A so called Loop-set test stresses the loop BPB structure trying to find the

maximum number of branches that can fit in a single loop BPB set.

6.5.1 Loop-capacity Tests

A Loop-capacity microbenchmark reuses the algorithm used in the BTB-capacity

tests. The Loop-capacity tests features B branches that exhibit loop behavior placed at

equidistant memory locations with distance D. The microbenchmark layout is illustrated

in Figure 6.3.

The microbenchmark source code is shown in Figure 6.4. A compiled code for a

single loop from Figure 6.4 takes more space in memory than a simple branch used in the

BTB-capacity test (3 instructions per loop). Consequently, the smallest distance between

loops DMIN will be larger than DMIN in the BTB-capacity test (DMIN=2). Here, DMIN=8.

To avoid a correct prediction coming from a global branch predictor, loop branches have

pattern lengths of 64 (the branch is taken 63 times, not taken one time). The

microbenchmark uses the highest possible count modulo because of the following reason;

Due to speculative execution and pipelining, the global predictor’s access shift register in

the first level may not be updated by the loop branch outcome as fast as the loop code is

fetched and decoded. It may happen that the one program loop is over before its

outcomes are reflected in the global predictor. This may cause the global predictor to

affect the prediction.

73

INCREASE COUNTER

COUNTER =
COUNTER MAXIMUM

LOOP 1

INCREASE COUNTER

COUNTER =
COUNTER MAXIMUM

LOOP 2

INCREASE COUNTER

COUNTER =
COUNTER MAXIMUM

LOOP B

~~

D

Figure 6.3 Layout of the Loop-capacity test

Address Code
 int long unsigned liter = 1000000, modulo = 64;

 do {

 temp = modulo;

 _asm{

 mov al, temp

 l0: sub al,1

 cmp al, 0

@A jne l0 // 1st spy loop branch

 // dummy non-branch instructions

 mov al, temp

 l1: sub al,1

 cmp al, 0

@A + Ds jne l1 // 2nd spy loop branch

 // dummy non-branch instructions

 mov al, temp

 lBm1: sub al,1

 cmp al, 0

@A + B*Ds jne lBm1 // (B-1)th spy loop branch

 } liter--;

 } while(liter>0);

Figure 6.4 Loop-capacity test source code

74

 We measure the number of branches mispredicted at execution (MBI_EXEC).

Figure 6.5 shows the loop misprediction rate, calculated as the MBI_EXEC normalized to

the total number of program loops, as a function of the number of the executed loops B

(B= 32–256) for D=8–64 respectively.

For tests with D=8 and D=16, mispredictions occur for B larger than 128 and for

B=256, all loop are mispredicted. This indicates the loop BPB size of 128 entries. For

tests with D=32, mispredictions occur for B=128. This is an indication that the distance

becomes large enough and that every second set is jumped over. The tests for D=64

confirm this conclusion. Consequently, we conclude that the branch IP address bits [3:0]

are not used to access the loop BPB.

0
20
40
60
80

100

32 64 128 192 256
B (Number of loops)

D=8

0
20
40
60
80

100

32 64 128 192 256
B (Number of loops)

D=16

0
20
40
60
80

100

32 64 128 192 256
B (Number of loops)

D=32

0
20
40
60
80

100

32 64 128 192 256
B (Number of loops)

D=64

Figure 6.5 Loop-capacity test results

75

We cannot determine the number of ways in the loop BPB because of missing

Loop-capacity tests for small distances (D=2 and D=4). The results for D=8 and D=16

report the same maximum number of branches B that cause no mispredictions, B=128.

This is an indication that the minimum number of ways is two.

6.5.2 Loop-set Tests

In order to determine the loop BPB organization further, we develop a so-called

Loop-set test. This microbenchmark is very similar to the BTB-set microbenchmark (see

Figure 5.6). The microbenchmark includes loops instead of always taken branches and

the loop branches are placed at larger distances DS (see Figure 6.6).

Address Code
 int long unsigned modulo = 64;

 do {

 temp1 = modulo-1;

 temp2 = modulo-2;

 ...

 tempB = modulo-B;

 _asm{

 mov al, temp1

 l0: sub al,1

 cmp al, 0

@A jne l0 // 1st spy loop branch

 // dummy non-branch instructions

 mov al, temp2

 l1: sub al,1

 cmp al, 0

@A+ Ds jne l1 // 2nd spy loop branch

 // dummy non-branch instructions

 mov al, tempB

 lBm1: sub al,1

 cmp al, 0

@A+ B*Ds jne lBm1 // (B-1)th spy loop branch

 } liter--;

 } while(liter>0);

Figure 6.6 Loop-BTB-Set test source code

76

For the part of the Loop-set algorithm used for the tag MSB testing, two branches

that match both the index and the tag must have different loop modulus. Otherwise the

loop predictor will predict them correctly as it sees them as the one loop branch. To

avoid such a situation, the microbenchmark features loops with different modulus.

We measure the number of branches mispredicted at execution (MBI_EXEC).

Figure 6.7 shows the loop misprediction rate, calculated as the MBI_EXEC

normalized to the total number of program loops, as a function of the distance between

branches D (D=80h–10000h) for B=2. According to the BTB-set algorithm, the tag MSB

bit is the IP address bit 15.

Figure 6.8 shows the loop misprediction rate, calculated as the MBI_EXEC

normalized to the total number of program loops, as a function of the distance between

branches D (D=80h–1000h) for B=3. The test indicates that the index MSB bit is the IP

address bit 9 and the loop BPB is a two-way cache structure.

0
20
40

60
80

100

80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h
D

B=2

Figure 6.7 Loop-set test results for B=2

77

0
20
40
60
80

100

80h 100h 200h 400h 800h
D

B=3

Figure 6.8 Loop-set Index MSB testing results

Figure 6.9 shows the loop misprediction rate, calculated as the MBI_EXEC

normalized to the total number of program loops, as a function of the difference between

memory addresses of the starting bytes of the 2nd and 3rd branch instruction. The test

indicates that the Index LSB bit is the address bit IP[4].

According to the Loop-capacity and Loop-set tests, we conclude that the loop

BPB is a 2-way cache structure with 128 entries, indexed by the IP[9:4] and tagged by

the IP[15:10].

0
20
40
60
80

100

0 1 2 4 8 16
D' - Ds

B=3

Figure 6.9 Loop-set Index LSB testing results

78

6.6 Loop Predictor Training Logic

The loop predictor must act upon the program branches and decide whether the

branch is a potential loop branch. After the branch becomes the candidate for a loop

branch, the loop predictor must set the loop counter maximum value before the loop

reoccurrence may be monitored. We refer to this as the loop training process. After a

branch becomes a candidate for a loop, the training process may take place in the loop

BPB or in the separate training logic. A benefit from the separate training logic would be

from saving the BTB entries from eviction in the case that a currently trained branch

comes out not to be a loop. If a separate training logic is used, we expect that, upon

training being done, new loop branch is transferred to the loop BPB. We expect that

separate training logic is similar to the loop BPB but is a much smaller structure since we

expect that only part of the program loop branches are in training at once.

A microbenchmark is developed to stress the training logic. It reuses BTB-

capacity and BTB-set algorithms used for the regular BTB experiments (Equation .

 (6.1) and Figure 5.6). The algorithm used here changes always taken branches

from the original algorithm to the loop branches. In contrast to the loop BPB

organization test (see Figure 6.3), the test loops are not executed consecutively, rather we

execute each loop iteration consecutively. Therefore, all program loops are in the

training phase at once. If the number of branches B is larger than the training logic size,

mispredictions exist. To avoid correct predictions from the global predictor, the

microbenchmark employs loop branches with different pattern lengths. Otherwise, all

branches would change their outcome at the same time, at the counter maximum value,

79

making them predictable with the global predictor. The number of branches B is varied

to determine the number of branches that can be trained consecutively.

Figure 6.10 shows a source code for one possible implementation of the

microbenchmark for B=256 and 16 different pattern lengths assigned in round-robin

fashion. Distance between branches is set to D=16 as we prove that D=16 allows for each

branch to have its own loop BPB entry if the number of branches B is smaller than 128.

Address Code
 int long unsigned modulo = 4;

 int long unsigned liter = 1000000;

 do {

 temp1 = liter%modulo; // 1st branch modulo=4

 temp2 = liter%(modulo+1); // 2nd branch modulo=5

 ...

 temp16 = liter%(modulo+15); // 16th branch modulo=19

 _asm{

 mov eax, temp1

 l0: sub eax,1

 cmp eax, 0

@A jg l0 // 1st spy loop branch

 // dummy non-branch instructions

 mov eax, temp2

 l1: sub eax,1

 cmp eax, 0

@A + 10h jg l1 // 2nd spy loop branch

 // dummy non-branch instructions

 mov eax, temp16

 l255: sub eax,1

 cmp eax, 0

@A + 255*10h jg l255 // Bth spy loop branch

 } liter--;

 } while(liter>0);

Figure 6.10 Loop training logic test source code example for D=16 and B=256

80

We measure the number of branches mispredicted at execution (MBI_EXEC).

Test results are normalized to the total number of program loops MPRMAX. Let us

consider a microbenchmark with B=32 and MOD=8 (loops modulus used are 4…11).

Equation .

(6.2) shows the MPRMAX value calculation for a given example.

MOD
liter

∗⎟
⎠
⎞

⎜
⎝
⎛ +++++++

11
1

10
1

9
1

8
1

7
1

6
1

5
1

4
1 .

(6.2)

Figure 6.11 shows the loop misprediction rate, calculated as the MBI_EXEC

normalized to the MPRMAX value, as a function of the number of total branches B (B=64,

128, 256) for D=16 and MOD=16. Results indicate that the 128 branches can be trained

at once. The results for B=192 and B=256 are similar to those shown in Figure 6.5 (upper

left). We don’t expect that the training logic for 128 entries is implemented separately

from the loop BPB. Consequently, we conclude that the training of counters is carried out

in the loop BPB after an entry in the loop BPB is allocated.

0
20
40
60
80

100
120

32 64 128 192 256
B

D=16, MOD=16

Figure 6.11 Loop training logic test results

81

6.7 Loop Predictor Allocation Policy

To allocate a loop BPB entry, we need to know if a branch exhibits loop behavior.

We could expect two possible allocation approaches depending on the moment

when a branch is identified to have a loop behavior. With one approach, the allocation

logic tags a branch as a loop branch as soon as the branch outcome moves in an opposite

direction for the first time. For example, if a branch has a repeating outcome pattern

k{T}.NT, the branch is marked as a loop branch after the (k+1)th occurrence of the

branch. Once an entry in the loop-BPB is allocated, the maximum counter will get

trained. We refer to this approach as allocate on opposite outcome detection. With the

second approach, the allocation logic would wait for the branch to have confirmed loop

behavior. For example, the earlier branch is tagged as a branch after the (k+2) th

occurrence of the branch and only if the (k+2) th branch outcome is the taken one. We

refer to this approach as allocate on loop detection.

The microbenchmark employs a branch that has a certain outcome pattern. The

branch outcome pattern is set to make the branch allocated in the loop BPB if allocate on

opposite outcome detection is implemented and not to be allocated in the loop BPB if the

allocate on loop detection is implemented. We choose the branch with the outcome

pattern {3* T, 2* nT} (3 times taken, two times not taken). The branch is named the

LoopLike. The LoopLike branch is set to target the same loop BPB set as the two real

loops (Loop1 and Loop2).

If the LoopLike branch does not consume the loop BPB entry, mispredictions

come only from the LoopLike branch and will be the same regardless of the Loop1 and

the Loop2 count modulo. If the LoopLike branch does consume the loop BPB entry,

82

mispredictions come from the LoopLike branch, the Loop1 branch, and the Loop2 branch.

The number of mispredicted branches will change with the change of the Loop1 and the

Loop2 count modulo. The algorithm changes the Loop1 and the Loop2 branch modules.

Change in the misprediction rate is an indication that the LoopLike branch consumes the

loop BPB entry. The microbenchmark source code is shown in Figure 6.12. The Loop1

count modulo is named MOD1. The Loop2 count modulo is named MOD2.

Address Code
 int long unsigned liter = 1000000;

 do {

 temp1 = liter%MOD1; // Loop1 modulo

 temp2 = liter%MOD2; // Loop2 modulo

 temp3 = (liter%5)& 0xFE // LoopLike outcome pattern

@A 8 x if(a==0) a=1;

 // dummy instructions to allow outcomes update

@B if(temp1==0) a=1; // Loop1

 // dummy code to control the distance

@A+ 400h 8 x if(a==0) a=1;

 // dummy instructions to allow outcomes update

@B+ 400h if(temp2==0) a=1; // Loop2

 // dummy code to control the distance

@A+ 800h 8 x if(a==0) a=1;

 // dummy instructions to allow outcomes update

 if(temp3==0) a=1; // LoopLike

@B+ 800h liter--;

 } while(liter>0);

Figure 6.12 Source code for the loop allocation policy test

Figure 6.13 shows the number of mispredicted branches (MBI_EXEC) per

program iteration as a function of Loop1 and Loop2 count modulus (MOD1 and MOD2).

For MOD1=MOD2= 1, Loop1 and Loop2 branches are always taken and mispredictions

come from the LoopLike branch only. The number of mispredictions per iteration is 0.6.

83

For MOD1=3 and MOD2=4, the maximum possible number of mispredictions per

iteration is 0.6 + 1/4 + 1/3 = 1.83 mispredictions per iteration. Test results are

approximately the same (1.08 mispredictions per iteration). For MOD1=15 and

MOD2=16, the maximum possible number of mispredictions per iteration is 0.6 + 1/15

+ 1/16 mispredictions per iteration. Test results are approximately the same

(0.76 mispredictions per iteration).

Changes in MOD1 and MOD2 result in changing of the number of mispredictions.

Therefore, the branch is allocated in the loop BPB immediately after detection of a

branch opposite outcome.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

4 5 6 8 9 11 16 1

3 4 5 7 8 10 15 1

MOD1

MOD2

Figure 6.13 Loop predictor allocation policy differential test

6.8 Loop Predictor Relations with the BTB

Microbenchmark tries to find whether the loop BPB hit is conditional upon the

BTB hit. The idea for such a test comes from the patent [23] related to the indirect

predictor. The patent describes indirect predictor target address cache hit that is

84

conditional upon the BTB hit. The same logic can be applied here; if the loop BPB

provides hit but BTB provides miss, the loop predictor prediction may be ignored.

Conditioning with the BTB hit is useful because BTB uses more tag bits (at least 9) and

is able to better identify the particular branch.

The microbenchmark puts many always taken branches in the same BTB set with

the loop branch. Since always taken branches do not consume the loop BPB entries, the

loop predictor will be able to provide the correct prediction for such a loop unless the

loop predictor hit is conditional upon the BTB hit. Consequently, we expect

mispredictions to exist if the BTB filtering is used. In this case, the expected

misprediction rate is proportional to the number of program loops. The microbenchmark

source code is shown in Figure 6.14. Four always taken branches are used, as it is

enough to make the BTB miss for the spy loop branch.

Address Code
 int long unsigned liter = 1000000;

 int a=1;

 do {

 temp = liter%MOD;

@A if(a==0) a=1; // Always Taken

 // dummy non-branch instructions

@A + 2000h if(a==0) a=1; // Always Taken

 // dummy non-branch instructions

@A + 4000h if(a==0) a=1; // always Taken

 // dummy non-branch instructions

@A + 6000h if(a==0) a=1; // always Taken

 // dummy non-branch instructions

@A + 8000h if(temp==0) a=1; // Spy loop

 liter--;

 } while(liter>0);

Figure 6.14 BTB filtering test source code

85

We measure the number of branches mispredicted at execution (MBI_EXEC).

Figure 6.15 shows the misprediction rate calculated as the MBI_EXEC

normalized to the total number of program loops (Loop misprediction rate).

The test is performed for three MOD values, MOD = 3, 5, 10. We observe that the

loop misprediction rate is proportional to the number of program loops; thus, the final

conclusion is that the BTB hit does filter the loop BPB hit

0
5

10
15
20
25
30
35

3 5 10
MOD

Figure 6.15 BTB filtering test results

6.9 Loop-BPB Replacement Policy

The loop-BPB is organized as a 2-way cache-like structure. This brings us to the

question of the loop-BPB replacement policy. It could be random, First-In-First-Out

(FIFO), or Least Recently Used (LRU). For both FIFO and LRU, one bit is needed per

loop BPB set to point to an entry in the set that needs to be replaced next. This bit is

updated on each miss in that BTB set for the FIFO policy, or on each miss and hit for the

LRU replacement policy.

86

A microbenchmark is used to stress the loop BPB replacement policy. The

microbenchmark encompasses three branches, here referred to as A, B, C. These

branches are laid out in memory in such a way as to compete for one set in the loop BPB

(similar to the Loop-set microbenchmark shown in Figure 6.6).

Three branches A, B, C have occurrence pattern {A, B, A, C} (see Figure 6.16).

If a hit affects the replacement bit, the branch A should always hit and branches B

and C will compete for the remaining entry in the selected loop BPB set, and the

expected misprediction rate is around 50%. If a hit does not affect the replacement bit,

we should observe a misprediction rate close to 100%.

The code from Figure 6.16 produces a misprediction rate of 50%. Consequently,

we conclude that the loop BPB employs the LRU replacement policy.

Address Code
 int long unsigned liter = k, 1000000;

 do {

 k = liter%4;

 temp1 = liter%MOD1; // A modulo

 temp2 = liter%MOD2; // B modulo

 temp3 = liter%MOD3; // C modulo

@A if((k==0)|| (k==1))

@B if(temp1==0) a=1; // A

 // dummy code to control the distance

@A – 10h if(k==2)

@B+ 400h if(temp2==0) a=1; // B

 // dummy code to control the distance

@A – 20h if(k==3)

@B+ 800h if(temp3 == 0) a=1; // C

 liter--;

 } while(liter>0);

Figure 6.16 Loop BPB replacement policy source code

87

6.10 Local Predictor

This section verifies the non-existence of any other type of local predictor. We

assume that the local predictor would be a two-level predictor where the first stage, a

shift history register, is accessed by the branch IP address. The detailed algorithm is not

developed here due to certain observations; the smallest possible local predictor should

have the first stage of length 4, consequently making the branch with the outcome pattern

{T, T, nT, nT} predictable. Any smaller pattern (3 bits) is already predictable by the loop

predictor.

The microbenchmark uses a branch with the outcome pattern {T, T, nT, nT}

preceded by the number of conditional taken branches. Consequently, not all branch

outcomes are predictable by the global predictor. Microbenchmark source code is shown

in Figure 6.17.

The microbenchmark produces a certain misprediction rate. The existence of the

misprediction rate indicates that the branch predictor does not employ any other local

predictor than the loop predictor.

int L,a=1;
int long unsigned liter = 1000000;
 do{
 L = (liter%4) >>1; // pattern {T,T,nT,nT}
 16 x if(a==0) a=1; // repeat 16 times
 // dummy code to allow branches to retire
 if (L==0) a=1;a=1;
 liter--;
 } while (liter >0);

Figure 6.17 Source code for detection of the local predictor

88

CHAPTER 7

MICROBENCHMARKS FOR THE REVERSE ENGINEERING

OF THE INDIRECT PREDICTOR

7.1 Objectives

The goal of this section is to develop an experimental flow and a set of

microbenchmarks that will help us determine the organization of the indirect predictor.

We expect the indirect predictor organized in a cache-like structure, with each entry

keeping an indirect branch target address (we call such a structure Indirect Branch Target

Buffer or iBTB). We want to determine iBTB parameters (size, sets, ways, index, tag)

and we would like to determine relationship between the indirect BTB and the regular

BTB.

7.2 Contributions

We developed an experimental flow and a set of microbenchmarks for

determining indirect predictor organization and its associated logic. The experimental

89

flow and microbenchmarks applied on a Pentium M processor provide the following

insights.

1. The indirect branch target buffer (iBTB) is organized as a direct-mapped cache

structure with 256 entries. Each entry has a tag field and the target address.

2. The iBTB does not allocate entry for the branches predictable by the regular BTB.

3. The iBTB entry is updated on iBTB hit if the target address was mispredicted.

4. The iBTB entry is allocated on iBTB miss if the target address was mispredicted.

5. The replacement policy works together with the replacement policy in the BTB and

interdependencies are not revealed in this thesis.

6. The index and tag fields for accessing the indirect predictor are taken from a path

information register (PIR) . We determined the size, update policy, type of branches

that affect the PIR, and the branch address bits that affect the PIR.

• The PIR width is 15 bits.

• The PIR is updated as follows.

a. Conditional taken branch address bits IP[18:4] are XOR-ed with the

original PIR shifted by 2 bit positions to the left.

b. Indirect branch address bits IP[18:10] and target address bits TA[5:0] are

concatenated and XOR-ed with the original PIR shifted by 2 bit positions

to the left.

c. Conditional not taken branches, unconditional branches, branch outcomes,

calls and returns do not affect the PIR.

7. The indirect predictor hash function is an XOR between the PIR and the indirect

branch IP. Indirect branch address bits IP[18:4] are XOR-ed with the PIR bits

90

PIR[14:0]. The lower 6 bits of the hash function [5:0] and the highest bit [14] make a

tag used in the iBTB lookup. The hash function result bits [13:6] are used as the

index in the iBTB.

7.3 Background

An indirect predictor is a hardware structure in branch predictor units dedicated to

handling indirect branches. Several academic proposals and patents from industry share

a common approach in implementing the indirect predictor [29], [30], [31], [2] . The

indirect predictor is a cache structure separated from the regular BTB, called iBTB

(Indirect Branch Target Buffer). The iBTB stores target addresses of indirect branch

instructions. The iBTB can be indexed either by a portion of a path information register

(PIR) or by a hash of a portion of the PIR and the indirect branch instruction pointer, as

illustrated in Figure 7.1.

PIR

BRANCH IP

.

.

.

INDIRECT
TARGET CACHE

TAG INDEXHash
(XOR)

TAG Target Addr

Figure 7.1 Indirect branch target buffer organization

91

The iBTB can be a direct-mapped or a set-associative cache structure. On an

iBTB lookup, the index field is used to select an iBTB entry and the tag field stored in the

selected entry is compared with the tag field calculated by a hash function. If we have an

iBTB hit, the target address is read from the selected iBTB entry.

The PIR register keeps information about the program path. The PIR can be

affected by all branch instructions or by branch instruction of certain types (e.g.,

conditional taken and indirect branches) and can combine a portion of branch addresses,

branch targets, and branch outcomes, or some combination of these elements. Chang

[30] and Driesen [29] introduce a PIR that combines branch address or targets bits, but do

not include branch outcomes. The PIR is updated as follows: first, the current PIR is

shifted for N bits to the left and an N-bit field from the branch address is shifted in. An

alternative approach with interleaved shifting and insertion of new bits is used (see

Figure 7.3) to achieve deeper history (more branches will influence the index). An Intel

patent [31] uses an XOR function of the current PIR and the branch address and/or the

branch target address of the current branch. This allows for more branch bits to be used.

Three possible PIR update policies have been proposed so far: Shift and add [30], Shift

and add with interleave [29] and Shift and xor [31].

PIR update policy: Shift and add. With this update policy, a portion (N-bits) of

the branch IP or the branch target address is inserted into the PIR. The PIR keeps

information about M most recently executed branch instructions that affect the PIR, so

the total PIR width is N*M bits (see Figure 7.2). A portion of the PIR can be used as the

tag and another portion can be used as the index field for the iBTB. Sometimes the PIR

can be compressed (the number of bits is reduced) before using the tag and index fields.

92

Branch 1

Branch 2

Branch 3

Branch 4 PIR

Figure 7.2 Shift and add PIR layout with M=4 and N=4

PIR update policy: Shift and add with interleaving. The Shift and add policy

suffers from a relatively short history in the index and tag fields. For example, if the PIR

from Figure 7.2 is divided into two halves with 8 bits each, and the upper one is used for

the index to the iBTB, only two branches, branch 3 and branch 4, will have an effect on

the index field. This can be insufficient for a good indexing function. To cope with this

problem, an interleaved structure is used (see Figure 7.3). We can see that the previous M

(M=4 in our example) branches have an effect on the index to the iBTB.

Branch 1

Branch 2

Branch 3

Branch 4 PIR

Figure 7.3 Shift and add with interleaving PIR layout with M=4 and N=4

PIR update policy: Shift and xor. With this policy, an incoming branch IP or its

target address is XOR-ed with the current PIR. In this way, more bits from the branch

address are affecting the PIR. Prior to XORing, the PIR is shifted left/right for a certain

93

number of bits (shift count). The PIR may be of the same width as the number of branch

bits used for the XOR operation or it may be larger. Figure 7.4 shows the PIR of the same

width as the number of branch bits used for the PIR.

PIR
Shift count = 2

 0 0

BRANCH BITS

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R ...

Figure 7.4 Shift and xor PIR layout

One important question related to the iBTB is its relationship with the regular BTB.

A 16-byte instruction block fetched from memory triggers a lookup in the regular BTB

and concurrently a lookup in the iBTB. If we have a BTB hit (selected entry is tagged as

an “indirect” branch and tag field matches) and an iBTB hit, the branch target address can

be provided by either the BTB or the iBTB. Gochman et al. [2] and an Intel patent [31]

describe a BTB filtering methodology as a situation where the iBTB hit is conditional

upon a BTB hit. We can have a hit or a miss in the BTB and iBTB, and in the case of

hits, the BTBs can give a correct or an incorrect branch target. For each combination, the

predictor may perform different update policies such as

• BTB hit/iBTB hit – The iBTB gives prediction; if the target is mispredicted, update

the selected entry in the iBTB; the selected entry in the BTB can be updated or left

unchanged.

94

• BTB hit/iBTB miss – The BTB gives prediction; if the target is mispredicted,

allocate a new entry in the iBTB; the BTB can be updated or left unchanged. If the

BTB gives correct prediction, there will be no allocation in the iBTB.

• BTB miss/iBTB miss or hit – there is no prediction; allocate a new entry in the

BTB; a new entry in the iBTB may or may not be allocated.

Based on this preliminary discussion, our goal is to develop an experimental flow

and microbenchmarks that uncover details about the indirect branch predictor. We strive

to answer the following questions related to indirect branch predictor organization and

functioning.

1. iBTB organization

• Number of entries

• Number of ways

• Number of TAG bits

2. PIR organization

• Width (number of bits)

• PIR update policy

• Type of branches affecting PIR

• Type of information used for PIR: Branch target and/or branch IP

• Bits of used branch information affecting PIR

• Bits insertion into PIR (adding, interleaving, xoring)

• Shifting (direction and size)

• Prehistory length (how many branches are seen in prehistory of ind. br)

3. Hash function to access iBTB

• How is PIR related to the indirect branch to make an Index and TAG

• What bits of indirect branches are used for hashing function?

4. Allocation policy

• Relationships with the BTB

• iBTB hit/miss/mispredicted, BTB hit/miss/mispredicted

95

7.4 PIR Organization – Pattern/path Based PIR

The PIR may be affected by either a branch address, referred to as a pattern-based

PIR, or by a branch instruction target, referred to as a path-based PIR.

A microbenchmark template used in determining whether the PIR is path- or

pattern-based is illustrated in Figure 7.5. The microbenchmark has a spy indirect branch

that alternates between two targets, Target1 and Target2. Each target is reached through a

unique path. When the program traverses Path1, the spy indirect branch target is

Target1. When the program traverses Path2, the spy indirect branch target is Target2.

Each path consists of N conditional taken branches.

Spy Indirect branch

Target 1 Target 2

Setup1 targ et

Setup1 branch

Setup2 target

Setup2 branch

(N-1) Cond. branches

Path 2

Path 2

Path 1

Path 1

(N-1) Cond. branches

Figure 7.5 Microbenchmark for determining whether the PIR is path-based or pattern-
based

The branch instructions are laid in the microbenchmark in such a way that the

path-based PIR for Path1 is equal to the path-based PIR for Path2. This is done by

96

setting branch addresses as follows: IP(Path1.Bi)=IP(Path2.Bi) + Offset, where

Offset≥2k and k is the number of bits of the branch address used in calculating the PIR.

For example, if we assume that the address bits IP[31:20] are not used in calculating the

PIR, the minimum Offset=100000h. The number of branches in the paths, N, must be

determined in such a way that N should be greater than or equal to the number of

branches affecting PIR. In this way, the indirect branch targets will collide in the same

entry in the iBTB. Consequently, this microbenchmark is forcing iBTB mispredictions.

The next step is to slightly modify the initial microbenchmark so that the path-

based PIRs for Path1 and Path2 differ. This is accomplished by setting Setup2

conditional branch in Path2 to differ from Setup1 conditional branch in Path1. The

difference is achieved by changing either Setup2 lower target bits or Setup2 lower IP bits.

As we do not know exactly which lower address bits are used for the PIR, we change for

example lower 15 bits of the Setup2 IP address or the target address. If Setup2 differs

from Setup1 in IP address bits and the test produces no misprediction, then the PIR is

pattern-based. If Setup2 differs from Setup1 in target address bits and the test produces

no mispredictions, the PIR is path-based.

The microbenchmark source code is shown in Figure 7.6. It should be noted that

the microbenchmark implementation requires one unconditional branch in Path1 to jump

over the else portion of the code. Consequently, this microbenchmark will work only if

the assumption that unconditional branches do not affect the PIR is correct.

The path-based history test is performed first. The test produces one

misprediction per iteration. This is an indication that the branch target bits do not affect

the PIR.

97

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 do{

 L = liter%2;

 if (L==0){ // execute one path per iteration
@A 8x if(a==0)a=1; // Repeat the statement 8 times

@B,B[14:0]=“0” if(a==0) a=1; // Setup1

 } // Unconditional jump

 else{ // dummy non-branch instructions

@A + Offset 8x if(a==0)a=1;

@B,B[14:0]=“1” if(a==0) a=1; // Setup2

 }

 jmp dword ptr [ebx] // Spy branch

 Target1: clc // ind. target for L==0

 Target2: clc // ind. target for L==1

 liter --;

 } while (liter >0);

Figure 7.6 Source code of the microbenchmark for determining
whether the PIR is path- or pattern-based

 The pattern-based test is performed by setting Setup2’s 15 lower address bits

(IP[14:0]) to differ from the 15 lower address bits (IP[14:0]) of Setup1. We observe no

mispredictions; hence, we conclude that the pattern-based PIR is used.

Note: Several assumptions are made in this test. If any of them was not correct,

we would expect to see a low number of mispredictions in the pattern-based history test

because Path2 would be different from Path1 even if Setup1 and Setup2 target addresses

are the same. Therefore, assumptions are hence validated.

7.5 PIR Organization – Conditional Branch IP Address Effect on PIR

This test tries to find (a) branch address bits used for the PIR, (b) the PIR shift

count, (c) the PIR history length (PIR.HL) -- the maximum number of branches, prior to

98

an indirect branch, affecting the PIR, and (d) the PIR width (the number of bits in the

path information register).

The branch address bits used for the PIR are found using a test similar to the one

used in the pattern-based history test (see Figure 7.5). The algorithm used in Figure 7.5

indicates usage of an unknown number of lower IP bits by setting 15 lower bits of the

Setup2 branch address to differ from the 15 lower bits in the Setup1 branch address.

Here, the algorithm advances by setting just one bit in the Setup2 branch address to differ

from the corresponding bit in Setup1 branch address (bit k in the Setup1 branch address is

set to 0). The particular bit is referred to as k (k=0, 1, … log2Offset-1), and displacement

D is defined as D=2k. Therefore, IP(Setup2) = IP(Setup1) + D + Offset. Consequently,

if bit k does not affect PIR, this microbenchmark is causing mispredictions in the iBTB.

A similar approach is used for testing the PIR shift count. We assume the shift

and xor update policy. The algorithm is modified by inserting H conditional branches

between the Spy and the Setup1 (or Setup2) branches (see Figure 7.7).

Spy Indirect branch

Target 1 Target 2

Setup 1 branch Setup 2 branch

Path 2

Path 2

Path 1

Path 1

H Conditional branches

Cond. Branches Cond. Branches

Figure 7.7 Layout of the microbenchmark for determining conditional branch address
bits that affect PIR, PIR shifting policy, and PIR history length

99

These H branches are executed in both Path1 and Path2; therefore, they influence

the Path1 PIR and the Path2 PIR in the same way, that is, the Path1 PIR and the Path2

PIR will differ only if Setup1 and Setup2 differ. By increasing H, PIR bits shifted in by

Setup1 or Setup2 branches are moved further down in the PIR history. The following

examples explain the PIR shifting policy in terms of D and H.

Example 1. Let us make the following assumptions: the shift and xor update

policy is used; the branch address bits IP [11:4] affect the PIR; the PIR width is 8 bits and

the PIR shift count is 1.

If H = 0, Setup2’s address bits IP[11:4] influence the Path2 PIR prior to the

execution of the spy branch.

If H = 1, Setup2’s address bits IP[10:4] influence the Path2 PIR prior to the

execution of the spy branch.

Example 2. We use the same assumptions as in Example 1, except the PIR shift

count which is 2.

If H = 0, Setup2’s address bits IP[11:4] influence the Path2 PIR prior to the

execution of the spy branch.

If H = 1, Setup2’s address bits IP[9:4] influence the Path2 PI R prior to the

execution of the spy branch.

In determining the shift count, we can observe from the examples above that it is

equal to the difference between the number of address bits of the Setup2 branch that do

affect the PIR when H=0 and H=1. The PIR history length (PIR.HL) is equal to the

minimum H for which misprediction is high regardless of parameter D. The following

examples explain a process for determining the PIR width.

Example 3. We assume the following: branch address bits used for the PIR are

IP[11:4]; the PIR width is 8 bits and the PIR shift count is 1.

100

• If D = 211, IP(Setup2) [11] (11th bit of the Setup2 branch address) is XOR-ed

with the MSB bit of the PIR. If H = 1, this bit does not influence the Path2

PIR because it is shifted out by the H1 branch.

• If D = 24, IP(Setup2) f, this bit will still influence the Path2 PIR. When H =

8, the considered bit will be shifted out of the Path2 PIR.

Example 4. We use the same assumptions as the ones in Example 2, except that

the shift count is equal to 2.

• If D = 211 or D = 210, the relevant PIR bits will be shifted out after one branch

in the H block (H=1).

• D = 24 or D = 25, the relevant PIR bits will be shifted out after 4 branches in

the H block (H=4).

Based on the examples above, it is clear that the PIR width can be determined by

Equation (7.1).

(shift count) ∗PIR.HL – (shift count) < PIR Width ≤ (shift count) ∗PIR.HL. (7.1)

All four questions require observation of the number of mispredictions as a

function of parameters H and D. There is one exception where the described test will

fail. Let us assume a direct-mapped iBTB and a displacement D affecting only a portion

of the PIR used for the iBTB tag. In this case, both indirect branch targets will collide in

the same iBTB entry making mispredictions, even though the bit k is used for the PIR.

The number of mispredictions observed will depend on the iBTB update policy for iBTB

miss/misprediction scenario. If bit k is not used for the PIR, the number of observed

101

mispredictions will depend on the iBTB update policy for the iBTB hit/misprediction

scenario. These two update policies (iBTB hit/mispredictions and iBTB

miss/mispredictions) may differ; in this case, it could be used to make a conclusion about

the stated questions. The microbenchmark’s source code is shown in Figure 7.8

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 do{

 L = liter%2;

 if (L==0){ // execute one path per iteration
 8x if(a==0)a=1; // Repeat the statement 8 times

@A if(a==0) a=1; // Setup1

 } // Unconditional jump

 else{ // dummy non-branch instructions

 8x if(a==0)a=1;

@A + Offset + D if(a==0) a=1; // Setup2

 }

 H x if(a==0)a=1; // The H block

 jmp dword ptr [ebx] // Spy branch

 Target1: clc // Spy target for L==0

 Target2: clc // Spy target for L==1

 liter --;

 } while (liter >0);

Figure 7.8 Source code of the microbenchmark for determining whether conditional
branch address bits affect the PIR

We measure the number of mispredicted indirect branches (MIBIE).

Figure 7.9 shows the misprediction rate, calculated as the MIBIE divided with the

number of indirect branches, as a function of the parameter D (D=1h–80000h) when

H=0. For distances D=400h–20000h, the misprediction rate is zero, indicating that

branch address bits IP [18:10] are used for the PIR. For distances 10h–200h and distance

40000h, the misprediction rate is approximately 40%. This is an indication that the

102

branch address bits IP [9:4] are used for the PIR and that iBTB is a direct-mapped

structure; if they are used as an index, each target would have its own iBTB entry and

there would be no mispredictions. Finally, if they are not used for the tag and index

fields in the iBTB, we would have a misprediction rate of 100%. It is also expected to

have tag bits sourced from the lower bits of the PIR as presented in patent [7]. There is

not a good explanation for the misprediction rate of 40%. Most likely this number is a

consequence of a complex interplay between the regular BTB and the iBTB; therefore,

we can expect to have different allocation polices for iBTB hit/misprediction and iBTB

miss/misprediction scenarios.

Figure 7.9 Results for detection of conditional branch IP bits effect on PIR test for H=0

Figure 7.10 shows the misprediction rate, calculated as the MIBIE divided with

the number of indirect branches, as a function of the parameter D (D=1h–80000h), when

H=1. For distances D=100h–8000h, the misprediction rate is zero. When compared to

the results for H=0 (Figure 7.9), we see that displacements D producing no

mispredictions are shifted to the left for the 2 bit positions. This indicates that

shift count = 2.

0
20
40
60
80

100

1 2 4 8 10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h20000h40000h80000h
D

H=0

103

Figure 7.10 Results for detection of conditional branch IP bits effect on PIR test for H=1

Figure 7.11 shows the misprediction rate, calculated as the MIBIE divided with

the number of indirect branches, as a function of the parameter D (D=1h–80000h), when

H=2…8. The results confirm the previous observation regarding shift count and shift

direction. The PIR history length is 8 (for H = 8 for all distances, the number of

mispredictions is high).

PIR width. In determining the PIR width, we compare misprediction rates for

two (H, D) pairs, when H=7, D=24 and when H=7, D=25. The latter results in a

misprediction rate of 100%, indicating that the PIR is 15 bits long; a 16-bit long PIR

would not result in a misprediction rate for D=25.

Figure 7.11 Results for detection of conditional branch IP bits effect on PIR test for
H=2…8

0
20
40
60
80

100

1 2 4 8 10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h40000h80000h
D

H=1

0
20
40
60
80

100

1 2 4 8 10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h20000h40000h80000h
D

H=2

104

Figure 7.11 (Continued)

0
20
40
60
80

100

1 2 4 8 10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h 80000h

D

H=3

0
20
40
60
80

100

1 2 4 8 10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h 80000h
D

H=4

0
20
40
60
80

100

1 2 4 8 10h 20h 40h 80h 100h 200h 400h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h
D

H=5

0
20
40
60
80

100

1 2 4 8 10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h 80000h
D

H=6

0
20
40
60
80

100

1 2 4 8 10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h 80000h
D

H=7

0
20
40
60
80

100

1 2 4 8 10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h 80000h
D

H=8

105

It should be noted that the findings about the branch address bits used in the PIR

would hold even if our initial assumption about the shift-and-xor PIR is not correct. For

example, with the shift-and-add policy, when H=0, we would observe results equivalent

to those shown in Figure 7.9. There, 15 branch address bits IP [18:4] would be

compressed to only 2 bits and then they would be shifted into the PIR. However, this

policy does not appear to be practical -- there is a very little or no benefit in using

15 address bits that will be compressed to only 2 bits. Consequently, we stay with the

original assumption about the shift-and-xor PIR.

Further experiments are carried out under the assumption that the PIR update

policy is shift and xor, but we don’t consider this assumption proven yet. Note: The

performed test confirms that the number of branch address bits IP[18:4] and the PIR

width are the same (15-bit long). Consequently, we can achieve full control over any bit

of the PIR in our microbenchmark by controlling the difference between Setup1 and

Setup2 branch addresses.

7.6 PIR Organization – Type of Branches Used

The goal of this test is to determine which types of branch instructions affect the

PIR, apart from the conditional taken branches. We test the following branch types:

(a) conditional not taken branches, (b) unconditional branches and (c) call and return

jumps.

The test uses a slight modification of the microbenchmark shown in Figure 7.7.

The H-block is modified to include a number of conditional taken branches (HC, HC <

PIR.HL), followed by a number of branches of other types. A number of branches of

other types, HO is set to HO=PIR.HL –HC (see Figure 7.12).

106

Spy Indirect branch

Target 1 Target 2

Setup 1 branch Setup 2 branch

Cond. branches

Path 2

Path 2

Path 1

Path 1

Hc Conditional Taken branches

 Cond. b ranches

Ho branches of different type

Figure 7.12 Algorithm for determining branch types affecting the PIR test

Path2 and Path1 are set to be unique in the same way as in the benchmark shown

in Figure 7.7, by placing Setup2 at distance D from Setup1, where bit k=log2(D). If the

HO branches do affect the PIR, Path2 will be the same as Path1, consequently producing

indirect mispredictions. If the HO branches do not affect the PIR, the misprediction rate

will be zero.

Not taken direct conditional branches. Figure 7.13 shows a code snippet for

the HC and HO branches for the microbenchmark described in Figure 7.7 when testing

whether always not taken conditional branches influence the PIR.

Unconditional jumps. Figure 7.14 shows a code snippet for the HC and HO

branches for the microbenchmark described in Figure 7.7 when testing whether

unconditional taken branches influence the PIR.

107

Call/returns. Figure 7.15 shows a code snippet for the HC and HO branches for

the microbenchmark described in Figure 7.7 when testing whether call/return branches

influence the PIR.

 a=1;
 ...
 6 x if(a==0) a=1;a=1; // Hc = 6
 2 x if(a==1) a=1;a=1; // Not taken branches, Ho=2
 ...
 jmp dword ptr [ebx] //spy indirect branch

Figure 7.13 Source code fragment for testing of NT conditional branches effect on PIR

6 x if(a==0) a=1;a=1; //Hc = 6
_asm{jmp l1 //unconditional jumps
 l1: clc
 jmp l2
 l2: clc
 }
 jmp dword ptr [ebx] //spy indirect branch

Figure 7.14 Source code fragment for testing of unconditional branches effect on PIR

_asm{
 jmp lcc
 _doit1: mov ebx, 10
 _doit2: mov ebx, 10
 ret
 lcc: clc
}
do{
 6 x if(a==0) a=1;a=1; //Hc=6
 _asm{ //call/ret. Branches, Ho=2
 call _doit1
 call _doit2
 }
 jmp dword ptr [ebx] //spy indirect branch
} while(liter>0);

Figure 7.15 Source code fragment for testing of call and return branches effect on PIR

108

All tests produce a misprediction rate of zero, indicating that always not taken

conditional, unconditional, and call/return branches do not affect the PIR.

7.7 PIR Organization – Branch Outcome Effect on PIR

An important question regarding the PIR update policy is whether the branch

outcomes affect the PIR. In answering this question, we develop a microbenchmark

shown in Figure 7.16. The microbenchmark sets two paths to two spy indirect branch

targets. Path1 differs from Path2 in the Switch branch behavior. The Switch branch

outcome is “taken” for Path1 and “not taken” for Path2. The Switch branch address bits

do not affect the Path2 PIR since it is a not taken branch. The Switch branch address bits

do affect the Path1 PIR since it is a “taken” branch. Consequently, Path1 based PIR is

affected by the following branches: <Taken branch 8, Switch branch, Taken branch 7 –

Taken branch 2>. Path2 based PIR is affected by the following branches: <Taken

branch 8 – Taken branch 1>.

Taken branch 1

Taken branch 2

Taken branch 8

D = Offset

Switch branch

Taken branch 7

Spy Indirect branch

Target 1 Target 2
Path 2Path 1

D = Offset

D = Offset

Figure 7.16 Layout of a microbenchmark for determining branch outcome effect on PIR

109

The microbenchmark sets the Path2 PIR to be affected by the same branch

address bits as the Path1 PIR, regardless of the different branches’ history. This is

achieved by placing all branches at the distance Offset. Consequently, Path2 based PIR

will differ from the Path1 based PIR only if the Switch branch outcome affects the PIR.

We expect the number of mispredictions to be high if branch outcome does not affect the

PIR. The microbenchmark’s source code is shown in Figure 7.17. The Offset value is set

to D=80000h.

The test produces a high misprediction rate, indicating that the branch outcome

does not affect PIR.

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 do{

@A if(a==0)a=1; // Taken branch 1

 // dummy non-branch instructions

 ...

@A + 6*Offset if(a==0)a=1; // Taken branch 7

 // dummy non-branch instructions

@A + 7*Offset if(L==0)a=1; // Switch branch

 // dummy non-branch instructions

@A + 8*Offset if(a==0)a=1; // Taken branch 8

 // dummy code to allow branches retirement

 jmp dword ptr [ebx] // Spy branch

 Target1: clc // Spy target for L==0

 Target2: clc // Spy target for L==1

 liter --;

 } while (liter >0);

Figure 7.17 Source code for determining branch outcome effect on PIR

110

7.8 PIR Organization – Indirect Branch Target Effect on PIR

We have developed a separate microbenchmark for determining whether the

indirect branch target address affects the PIR. The microbenchmark reuses the pattern-

based PIR test shown in Figure 7.5. The branches Setup1 and Setup2, which were used

to make the Path1 PIR differ from the Path2 PIR, are replaced with the indirect branches

Indirect1 and Indirect2 (see Figure 7.18).

Indirect2 and Indirect1 have target addresses that differ in only one address bit at

position k. Consequently, if indirect branch target address bit k affects the PIR, the Path2

PIR will differ from the Path1 PIR and the benchmark will produce a low misprediction

rate. To avoid possible indirect branch IP address affecting the PIR, the Setup2 IP address

is set to Offset distance from the Setup1 IP address where Offset=80000h. The

microbenchmark has the H block introduced in Figure 7.7 to test for target bits shifting

through the PIR.

Spy Indirect branch

Target 3 Target 4

Indirect1

Target1

Indirect2

Path 2

Path 1

Path 1

Target2

H Conditional branches

Path 2

Cond. BranchesCond. Branches

Figure 7.18 Indirect branch target bits effect on PIR test microbenchmark layout

111

The microbenchmark has two variables, D and H, where D is the difference

between Target1 and Target2 addresses and H is the number of branches in between the

spy indirect branch and Target1 or Target2. The information about target bits is

determined from experiments varying D and H similarly to the experiments described in

Section 7.5. Indirect1 and Indirect2 are made to be always mispredicted; therefore, the

misprediction rate of 50% means no mispredictions for the spy indirect branch. The

microbenchmark’s source code is shown in Figure 7.19.

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 do{

 L = liter%2; // Setup for indirect br. pattern

 8x if(a==0)a=1; // Repeat the statement 8 times

 jmp dword ptr [ebx] // Setup branch

@A Target1: clc // Target1 (exec. when L=0)

@A + D Target2: clc // Target2 (exec. when L=1)

 // dummy non-branch instructions

 H x if(a==0)a=1; // The H block

 jmp dword ptr [ebx] // Spy branch

 Target3: clc // Target3 (exec. when L=0)

 Target4: clc // Target4 (exec. when L=1)

 liter --;

 } while (liter >0);

Figure 7.19 Indirect branch target bits effect on PIR test source code

We measure the number of mispredicted indirect branches (MIBIE).

Figure 7.20 shows the misprediction rat, calculated as the MIBIE divided with the

number of indirect branches, as a function of the parameter D (D=1h–800h), when H=0.

For distances D=1h–20h, the misprediction rate is ~65% indicating that the indirect

112

branch target bits [5:0] are used for the PIR. We assume that these bits are XOR-ed with

the PIR bits [5:0] and are used for the iBTB tag

Figure 7.20 Indirect branch target bits effect on PIR test for H=0

Figure 7.21 shows the misprediction rate, calculated as the MIBIE divided by the

number of indirect branches, as a function of the parameter D (D=1h–800h), when H=1.

For distances D=1h–8h, the number of normalized mispredictions is ~0.65. For distances

D=10h–20h, the spy branch produces no mispredictions. The results confirm the

previous observation about XORing the indirect target address bits [5:0] with PIR bits

[5:0]; target address bits [5:0] for H=1 are moved to the PIR positions [7:2]. PIR bits

[7:6] produce no misprediction which is the situation we observed in Section 7.5. We

prove the assumption about XORing indirect target address bits [5:0] with the PIR bits

[5:0].

0
20
40
60
80

100

1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h
D

H=0

113

Figure 7.21 Indirect branch target bits effect on PIR test results for H=1

Figure 7.22 shows the misprediction rate, calculated as the MIBIE divided by the

number of indirect branches, as a function of the parameter D (D=1h–800h), when

H=2…8. The results confirm the previous observation about XORing the indirect target

bits [5:0] with PIR bits [5:0]; for each increment of H, we see a shift of two bits through

the PIR until for H=8, where all bits are shifted out of the PIR and all branches are

mispredicted. As expected, we can see that for H=5, bit 4 reached the PIR highest bit

which is assumed to be used for tag match and therefore mispredictions exist.

Figure 7.22 Indirect branch target bits effect on PIR test results for H=2…8

0
20
40
60
80

100

1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h
D

H=1

0
20
40
60
80

100

1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h
D

H=2

114

0
20
40
60
80

100

1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h
D

H=3

0
20
40
60
80

100

1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h
D

H=4

0
20
40
60
80

100

1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h
D

H=5

0
20
40
60
80

100

1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h
D

H=6

0
20
40
60
80

100

1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h
D

H=7

0
20
40
60
80

100

1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h
D

H=8

Figure 7.22 (Continued)

115

7.9 PIR organization – Indirect Branch IP Address Effect on PIR

Another question regarding the PIR update policy is whether addresses of indirect

branches affect the PIR. In answering this question we will slightly modify a

microbenchmark shown in Figure 7.18. Instead of having indirect branch target Target1

and Target2 differ at a particular address bit, Indirect2 is set to have IP address bit k

different from the address bit k of the Indirect1 branch. Consequently, if address bits of

indirect branches affect the PIR, the Path2 PIR will differ from the Path1 PIR and the

test will have a low number of mispredictions. Bit k is set as follows: IP(Indirect2) = D

+ Offset + IP(Indirect1), where D =2k and Offset=80000h. The target addresses

Indirect2 and Indirect1 are set to have lower 6 bits equal to avoid indirect branch target

addresses to influence the PIR. The block H is removed and the layout of the

microbenchmark is shown in Figure 7.23. The microbenchmark’s source code is shown

in Figure 7.24.

Spy Indirect branch

Target 1 Target 2

Indirect 1

Target

Indirect 2

Path 2

Path 2

Path 1

Path 1

Cond. BranchesCond. Branches

Figure 7.23 Layout of a microbenchmark for determining whether indirect branch
address bits affect the PIR

116

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 do{

 L = liter%2; // Setup for indirect br. pattern

 if (L==0){

 8x if(a==0)a=1; // Repeat the statement 8 times

@A jmp dword ptr [ebx] // Indirect1

@B Target: clc // Target

 }

 else{ // dummy non-branch instructions

 8x if(a==0)a=1; // Repeat the statement 8 times

@A + Offset + D jmp dword ptr [ebx] // Indirect2

@B + Offset Target: clc // Target

 }

 jmp dword ptr [ebx] // Spy

 Target1: clc // Target1 (exec. when L=0)

 Target2: clc // Target2 (exec. when L=1)

 liter --;

 } while (liter >0};

Figure 7.24 Source code of a microbenchmark for determining which indirect branch
address bits affect the PIR

We measure the number of mispredicted indirect branches (MIBIE). Figure 7.25

shows the misprediction rate, calculated as the MIBIE divided by the number of indirect

branches, as a function of the distance D (D=10h–80000h). The results indicate that the

indirect branch IP address bits [18:10] are affecting the PIR. In Section 7.8 we observed

that the indirect branch target bits [5:0] are affecting the PIR. The number of

mispredictions in both cases allows us to implicitly conclude that the indirect branch IP

address bits [18:10] are concatenated with the indirect branch target bits [5:0] and XOR-

ed with the PIR due to the similarity to the results in Section 7.5. For the same reason,

the block H and appropriate testing is considered redundant and is not included here.

117

Figure 7.25 Results for detection of indirect branch IP bits effect on PIR test

7.10 PIR Organization – Update Policy

We have mentioned several PIR update policies, such as shift and add, shift and

add with interleaving and shift and xor. Section 7.5 indicates that likely the shift and xor

policy is used in Pentium M. Here we verify this assumption in a different way, using an

alternative approach and developing a new microbenchmark. Before describing the

experimental approach, let us walk through the following example.

Example. Assume an 8-bit PIR that uses branch address bits IP[11:4], and the

shift count is 1.

• After Branch1 is executed: PIR = IP(Branch1) [11:4].

• Prior to Branch2 PIR is shifted first: PIR = IP([Branch1] [10:4, ‘0’].

• After Branch2 is executed: PIR = [IP(Branch1) [10]: IP(Branch1) [4], ‘0’]

xor [IP(Branch2) [11]: IP(Branch2) [5], IP(Branch2) [5]]

Effectively, we consider that IP(Branch1)[4] and IP(Branch2) [5] are XOR-ed.

The microbenchmark shown in Figure 7.26 reuses the pattern-based

microbenchmark from Figure 7.5. It includes two new branches, Setup3 and Setup4 that

precede Setup1 and Setup2 from the pattern-based algorithm.

0
20
40
60
80

100

10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h80000h

D

118

Following Example 1, we set the conditions for the test:

• If Setup1[4] = Setup3[5] =‘1’, after both branches are executed, PIR[1] =‘0’.

• If Setup2[4] = Setup3[4] =‘1’, after both branches are executed, PIR[1] =‘0’.

The test results in the Path2’s PIR are the same as the Path1’s PIR, and

consequently produces mispredictions, but the conditional branches affecting the PIR are

different.

Spy Indirect branch

Target 1 Target 2

Setup 1 Target

Setup 3 branch

Setup 2 branch

Setup 4 branch

Path 2

Path 2

Path 1

Path 1

Cond. Branches Cond. Branches

Figure 7.26 Layout of a microbenchmark for determining PIR update policy

The microbenchmark is designed to work with any shift count even though we

have found that shift count = 2. Two variables are introduced as follows:

 N1; N1 = Setup3 – Setup1

N2; N2 = Setup4 – Setup2

By changing N2 and N1, we match the Path2’s PIR to be equal to the Path1’s PIR.

The microbenchmark source code is shown in Figure 7.27.

119

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 for(i=0;i<liter;i++){

 L=i%2;

 if(L==0){

@A 6x if(a==0)a=1; // Repeat the statement 6 times

@B if(a==0)a=1; // Setup3

@C if(a==0)a=1; // Setup1

 } else { // dummy non-branch instructions

@A + Offset 6x if(a==0)a=1; // Repeat the statement 6 times

@B + Offset if(a==0)a=1; // Setup4

@C + Offset if(a==0)a=1; // Setup2

 }

 // dummy non-branch instructions

 jmp dword ptr [ebx] // Spy

 _0: clc // Target1 (exec. when L=0)

 _1: clc // Target2 (exec. when L=1)

 }

Figure 7.27 Source code of the microbenchmark for determining PIR update policy

We measure the number of mispredicted indirect branches (MIBIE). Figure 7.28

shows the misprediction rate, calculated as the MIBIE divided by the number of indirect

branches, as a function of the parameters N1 and N2. Both tests verify our assumptions:

the PIR update policy is shift and xor and the shift count = 2.

Figure 7.28 PIR shift and XOR update logic test results for N1=10h, 30h

0
20
40
60
80

100

10h 20h 30h 40h 50h
N2 (N1 = 10h)

0
20
40
60
80

100

A0h B0h C0h D0h
N2 (N1 = 30h)

120

7.11 Indirect Branch IP Effect on iBTB Access Hash Function

The index and tag fields for an iBTB lookup are a hash function of the indirect

branch address bits and the current PIR register. Here we want to verify a hypothesis that

the index and tag fields are determined by XORing the branch address and the PIR. First,

we use a microbenchmark that tries to determine what address bits of an indirect branch

are used for the iBTB access hash function. The microbenchmark includes two indirect

spy branches, called Spy1 and Spy2. We ensure that the PIR seen by Spy1 is equal to the

PIR seen by Spy2. Consequently, the hash functions for Spy1 and Spy2 will depend on

the branch address of these two spy branches only (see Figure 7.29).

Cond. Branches 1-7

Spy indirect branch 1

IPs differs at
particular bit

Spy indirect branch 2

Target 2_1 Target 2_2

Target 1_1 Target 1_2

Unique branch 1_1 Unique branch 1_2

Cond. Branches 8-15

Unique branch 2_1 Unique branch 2_2

Path 1

Path 1 Path 2

Path 2

Path 1 Path 2

Figure 7.29 Layout of microbenchmark for determining Indirect branch IP address
effects on hash function

121

It should be noted that Spy1 and Spy2 must have two targets if we want to cause

collisions in the iBTB. Otherwise, the regular BTB will correctly predict both Spy1 and

Spy2 target addresses. Spy1 target addresses are Target1_1 and Target1_2. Spy2 target

addresses are Target2_1 and Target2_2.

The microbenchmark must ensure that Spy1 sees two unique values in the PIR,

depending on the execution path, one for Path1 (the target address is Target1_1) and one

for Path2 (the target address is Target1_2). The same requirement must be satisfied for

Spy2. The microbenchmark relies on placing unique branches Unique1_1, Unique1_2,

Unique2_1 and Unique2_2 at such addresses to ensure unique PIRs for each path. The

placement of unique branches must be such to satisfy the following requirements: the PIR

seen by Spy1 in Path1 must be the same as the PIR seen by Spy2 in Path1 and the PIR

seen by Spy1 in Path2 must be the same as the PIR seen by Spy2 in Path2. This can be

achieved with the following branch placement.

IP(Unique2_1) = IP(Unique1_1) + Offset; Offset = 800000h;

IP(Unique2_2) = IP(Unique1_2) + Offset; Offset = 800000h.

The next step in the setup is to place the spy indirect branches at a controlled

distance: IP(Spy2) = IP(Spy1) + D, where D=2k, and bit k is cleared in Spy1 address. If

the bit k of the Spy2 branch is used for the hashing function, we should observe no

mispredictions, and for the opposite, if bit k is not used for the hashing function, we

should observe a high number of mispredictions. The microbenchmark source code is

shown in Figure 7.30.

122

Address Code
 int long unsigned L,liter = 1000000;

 int a=1;

 do{

 L = liter%2;
 7x if(a==0)a=1;

 if(L==0)a=1; // make Unique1_1 & Unique1_2

@A if(a==0)a=1; // Unique1_1 & Unique1_2

@B jmp dword ptr [ebx] // Spy1

 _111: clc // Target1_1

 _112: clc // Target1_2

 // dummy non-branch instructions

 7x if(a==0)a=1;

 if(L==0)a=1; // make Unique2_1 & Unique2_2

@A + Offset + D if(a==0)a=1; // Unique2_1 & Unique2_2

@B + Offset jmp dword ptr [ebx] // Spy2

 _121: clc // Target2_1

 _122: clc // Target2_2

 liter --;

 } while (liter >0);

Figure 7.30 Indirect branch IP effect on hash function test source code

We measure the number of mispredicted indirect branches (MIBIE). Figure 7.31

shows the misprediction rate, calculated as the MIBIE divided by the number of indirect

branches, as a function of the parameter D (D=1h-80000h). The results indicate that 14

indirect branch IP address bits are affecting the hash function.

Figure 7.31 Indirect branch IP effect on hash function test results

0
20
40
60
80

100

0h 1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h 80000h

D

123

For D = 10h–800h the test produces no mispredictions. This is an indication that

particular bits are used as the index bits to the iBTB according to the observation made

for the PIR bits in Section 7.5. For D = 2000h–40000h, the misprediction rate is ~60%.

This is an indication that particular bits are used as the tag bits to the iBTB according to

the observation made for the PIR bits in Section 7.5. For D = 1000h, the misprediction

rate is 100%. Due to similarity to the PIR bits, we expect this bit to be only a part of the

tag field or unused at all.

7.12 iBTB Access Hash Function

The iBTB access function is usually a XOR between the PIR and the part of the

indirect branch IP address. We have determined the size and update policy for the PIR

and indirect branch address bits used in the hash function. The goal here is to develop a

microbenchmark that will help determine the hash function. The PIR and address bits

can be XOR-ed without folding (e.g., PIR[14:0] is combined with IP[18:4]) or with

folding (PIR[14] is combined with IP[4], etc.). The challenge is to find the hash function

without a direct control over the PIR. Rather, the PIR is controlled through employment

of a number of branches as explained earlier.

The microbenchmark is based on the microbenchmark shown in Figure 7.29 and

is shown in Figure 7.32. A parameter in this benchmark is the distance DIP between Spy1

and Spy2 indirect branches, DIP = IP(Spy2) – IP(Spy1). Another parameter is the distance

between the branches Unique1_2 and Unique2_2 or Unique1_1 and Unique2_1 DPIR =

IP(Unique2_X) – IP(Unique1_X). kIP = log2(DIP) and kPIR = log2(DPIR).

124

Cond. Branches 1 -7

Spy indirect branch 1

DIP

Spy indirect branch 2

Target 2_1 Target 2_2

Target 1_1 Target 1_2

Unique branch 1_1 Unique branch 1_2

Cond. Branches 8-15

Unique branch 2_1 Unique branch 2_2

Path 1

Path 1 Path 2

Path 2

Path 1 Path 2

DPIR

Figure 7.32 Layout of microbenchmark for determining iBTB hash access function

The following example illustrates the intricacies of the microbenchmark.

Example. Let us assume that PIR[1] is XOR-ed with the indirect branch address

IP [4] to make a portion of either the tag or index field for the iBTB. IP(UniqueX_X)[4] is

XOR-ed with the PIR[1]. The PIR values are the same in Path2 and Path1 prior to

execution of Unique1_2 and Unique2_2:

IP(Unique1_2) [4] =’0’;

IP(Spy1) [4] =’0’

Produced hash function bit 1 for Path2 is ‘0’.

IP(Unique2_2)[4] =’1’;

IP(Spy2)[4] =’1’

Produced hash function bit 4 for Path2 is ‘0’.

125

Although the Path2’s PIR differs from the Path1’s PIR and the indirect branch IP

address for Path1 differs from the indirect branch IP address for Path2, the hash function

for both Path1 and Path2 will target the same iBTB entry resulting in mispredictions.

 The microbenchmark finds the misprediction rate as a function of DIP and DPIR,

where DIP and DPIR are distances of the changed bits kIP and kPIR :

IP(Unique2_X) = IP(Unique1_X) + DPIR+ Offset; Offset = 80000h, kPIR= log2 (DPIR)

IP(Spy2) = IP(Spy1)+ DIP + Offset; Offset = 80000h, kIP= log2 (DIP).

If the misprediction rate is high, the PIR bit kPIR is XOR-ed with the indirect

branch address bit kIP.

The microbenchmark’s source code is shown in Figure 7.33.

Address Code
 int long unsigned i,k,l, liter = 1000000;

 int a=1;

 for(i=0;i<liter;i++){

 L = i%2;
 k = (i%(2*N))>>1; // execute 2x one spy branch consecutively
 if (k==0){ // execute one target per iteration
@A 7x if(a==0)a=1;

 if(L==0)a=1; // make Unique1_1 & Unique1_2

@B if(a==0)a=1; // Unique1_1 & Unique1_2

@C jmp dword ptr [ebx] // Spy1

 _111: clc // Target1_1

 _112: clc // Target1_2

 }

 else if (k==N){
@A + Offset 7x if(a==0)a=1;

 if(l==0)a=1; // make Unique2_1 & Unique2_2

@B + DPIR if(a==0)a=1; // Unique2_1 & Unique2_2

@C + DIP jmp dword ptr [ebx] // Spy2

 _l21: clc // Target2_1

 _l22: clc // Target2_2

 }

 }

Figure 7.33 Source code of the microbenchmark for determining iBTB hash function

126

Table 7.1 shows values of DPIR and DIP that matched, consequently producing a

misprediction rate of 100%. The iBTB access function is illustrated in Figure 7.34

Table 7.1 PIR bits and indirect branch IP bits that XOR in iBTB hash access function

DPIR DIP Misprediction Rate
10h 2000h 100%
20h 4000h 100%
40h 8000h 100%
80h 10000h 100%
100h 20000h 100%
200h 40000h 100%
400h 10h 100%
800h 20h 100%
1000h 40h 100%
2000h 80h 100%
4000h 100h 100%
8000h 200h 100%
10000h 400h 100%
20000h 800h 100%
40000h 1000h 100%

 5 013 6

PIR

3 011 4

NOT
USED Indirect Branch IP

18 12

14

XOR

XOR

XOR

Figure 7.34 PIR bits and indirect branch IP bits that XOR in iBTB hash access function

127

7.13 iBTB Organization

This test tries to find which bits of the hash function are used for the tag and

which for the index to the iBTB and provides an indication about the number of iBTB

ways and sets. The approach is similar as in the pattern-based test (see Figure 7.5).

There, the microbenchmark employs two indirect branch targets. By setting the spy

indirect branch to have two PIR values prior to execution of each target, targets will be

allocated in different iBTB entries.

The spy indirect branch in this microbenchmark must include N targets (N>2).

Each of the N targets will target a different iBTB entry. The total number of targets that

should be used will be different in different phases of the algorithm and will go up to the

total number of the iBTB entries. To target a different iBTB entry, a similar idea is used

as in Figure 7.5; each of the N targets must have a different PIR value prior to execution

of the spy indirect branch.

The algorithm source code implementation is problematic. The microbenchmark

in Figure 7.5 is implemented by shifting Path2 from Path1 at distance Offset.

Consequently, the microbenchmark here would have to use N-1 offsets, which are not

feasible to implement. To remedy this problem, two indirect branches are introduced.

Setup indirect branch, Setup, serves to make N different paths; Setup has N targets and

each target has one conditional branch within its target. These conditional branches are

named Unique0 – UniqueN (see Figure 7.35). Unique0-UniqueN help to achieve different

N paths in the same way Unique0 –Unique2 did in Figure 7.5. Each of Unique0 –

UniqueN sets the PIR value to be different prior to execution of the spy indirect branch

by setting Unique0-UniqueN at distance D from each other; consequently, D = 2k.

128

 Cond. Branches 1-8

 Setup Indirect branch

Target 0_1 Target 0_2 Target 0_N

Branch:
Unique0

Branch:
Unique1

Branch:
UniqueN

Spy indirect branch

Target 1_1 Target 1_2 Target 0_N

Path 2

Path 2
Path NPath 1

Path 1

Path 1

Path 3
Path 2

Path 2 Path N-1 Path N

Path N

Path NPath 1

Figure 7.35 Layout of the microbenchmark for detection of iBTB organization

The setup indirect branch should consume only one iBTB entry. Therefore, Setup

is preceded with the number of always taken branches. The iBTB entry reserved for the

setup indirect branch may cause a collision with targets of the spy indirect branch,

producing unwanted misprediction. During result analysis, we will identify and isolate

these mispredictions.

We observe the misprediction rate as a function of D and N to make a conclusion

on the iBTB number of sets and ways and the index bits and tag bits. The following

example explains details:

• 4-way iBTB uses 7 lower PIR bits for the index, 6 consecutive for the tag:

o For D = 10h (lowest PIR bit used for the index), N up to 4*27 will not produce

mispredictions.

o For D = 20h, N up to 4*26 will not produce mispredictions.

129

• 4-way iBTB uses 6 lower PIR bits for the tag, 7 consecutive for the index:

o For D= 10h (lowest PIR bit used for the index), N up to 4 will not produce

mispredictions

o For D= 210, N up to 27 will not produce mispredictions.

o For D = 29, N up to 2* 27 will not produce mispredictions.

o For D = 28, N up to 4* 27 will not produce mispredictions.

By observing the misprediction rate as a function of D and N, index and tag bits

can be determined. Generalization of the example is not given and details will be

explained during results analysis.

The microbenchmark source code is shown in Figure 7.36.

Address Code
 int long unsigned L,liter = 1000000;

 int a=1;

 do{

 L = liter%N;
 8x if(a==0)a=1;

 jmp dword ptr [ebx] // Setup branch

@A _101: // Target0_1 (exec. when L=0)

@B jne l1; // Unique0

@A+ 40h(80h,100h,…) _102: clc // Target0_2 (exec. when L=1)

@B + D jne l1; // Unique1

 ...

@A+ 40h(80h,100h,…) _10N: // Target0_N (exec. when L=N)

@B + (N-1)*D jne l1; // UniqueN

 l1: clc

 jmp dword ptr [ebx] // Spy

 _111: clc // Target1_1 (exec. when L=0)

 _112: clc // Target1_2 (exec. when L=1)

 ...

 _11N: clc // Target1_N (exec. when L=N)

 liter --;

 } while (liter >0)

Figure 7.36 Source code of the microbenchmark for detection of iBTB organization

130

NOTE: The source code is unable to test for D = 40h and lower due to the fact

that the target bits of the setup branch must be at D=40h as the minimum distance.

Fortunately, for a small number of branches such as B=2 and B=3, code can be adjusted

to achieve small D values, and, moreover, B=2, 3 will be enough to make conclusions.

We measure the number of mispredicted indirect branches (MIBIE).

Figure 7.37 shows the misprediction rate, calculated as the MIBIE divided by the

number of indirect branches, as a function of the parameter D (D=10h–80000h) for B=2.

Since B=2, these results are the same as results shown in Figure 7.9 and are discussed

again as assumptions are made for further analysis. For D=400h–20000h, the spy branch

produces no misprediction; this is an indication that the PIR bits [13:6] are the index bits

in the iBTB. For D=10h–200h and D=40000h, the spy branch produces mispredictions,

this is an indication that the PIR bits [5:0] are the tag bits in the iBTB.

Figure 7.37 Results for detection of iBTB organization test for B=2

0
10
20
30
40
50
60
70
80
90

100

10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h 80000h
D

B=2

131

Figure 7.38 shows the misprediction rate, calculated as the MIBIE divided by the

number of indirect branches, as a function of the parameter D (D=10h–80000h) for B=3.

For assumed PIR index bits PIR[13:6], the spy branch produces no mispredictions

(D=400h–10000h) as expected. Note: For D=20000h and D=40000h, the spy branch

produces the mispredictions because the 3rd spy target is effectively on distances

D=40000h (assumed tag) and D=80000h (not used) respectively.

For assumed PIR tag bits PIR[5:0] (D=10h–200h), the spy branch is always

mispredicted. This is an indication that the iBTB or/and the BTB update policy is based

on Allocate on 2nd misprediction policy. Allocate on 2nd misprediction policy allows for

two misprediction before the mispredicted entry updated and in the case of three

mispredictions in a round robin manner, each target is mispredicted.

Results for tests where B>3 are not necessary for D<400h since Figure 7.38

shows that the misprediction rate is already 100% for B=3 and D<400h.

Figure 7.38 Results for detection of iBTB organization test for B=3

0
10
20
30
40
50
60
70
80
90

100

10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h 80000h

D

B=3

132

Figure 7.39 shows the misprediction rate calculated as the MIBIE divided by the

number of spy branches as a function of the parameter B (B= 2–260) for D=400h. Results

indicate that the iBTB can fit 256 branches per set. Since a direct-mapped structure is

likely to be used, final indication is that the iBTB size is 256 entries.

MIBIE misprediction rate [%]

49.00
49.50
50.00
50.50
51.00
51.50
52.00
52.50

2 3 4 32 64 128 192 256 260
B

D=400h

Figure 7.39 Results for detection of iBTB organization test for D=400h

NOTE: For B=192, the number of mispredictions is higher than expected. This is

caused by the contention of one of the spy branch targets with the setup indirect branch

entry since detailed calculation shows that mispredictions overhead are caused by two

branches. Also, for B=256, this overhead is still proportional to the value of 2 branches.

7.14 iBTB Relations with the BTB

Indirect branch prediction from the BTB. First, we verify the assumption

taken at the very beginning that the BTB provides the prediction for the monotonic

indirect branch. The microbenchmark in Figure 7.31 is reused. Two indirect branches are

set to have two different targets. A test is set to have Path1 and Path2 the same,

133

consequently producing mispredictions. A setup for each spy branch is changed to

execute one target only. New microbenchmarks still produce contentions in the iBTB.

The microbenchmark did not produce mispredictions, indicating that the BTB is used for

the prediction of the monotonic indirect branches

iBTB miss/ misprediction. In Section 7.5 we concluded that the particular bits of

the PIR are used as the tag in the iBTB. We made the assumption that the situation iBTB

miss/ misprediction has a specific allocate policy based on an allocate on iBTB on 2nd

misprediction policy basis. We further investigate this case. A new test reuses the

algorithm from Section 7.5 with H=0 and D=2 with the test changed to execute the first

target multiple times and the second target once.

We set pattern to execute the first target three times and the second target once.

We observe a misprediction rate of 50%. It is obvious that the both second target and the

very next first target occurrence is mispredicted. We conclude that the iBTB allocate on

2nd misprediction policy is not used. Consequently, we conclude that the both iBTB miss

and the BTB have the allocate on first misprediction allocation policy.

The reason for the normalized number of mispredictions of 0.4 in Section 7.5 is

seen in the specific iBTB dependencies to BTB. For example, if the

allocation/replacement polices for the BTB and the iBTB direct each structure to update

their entries, one of them may skip its update since the other structure will possibly

predict correctly after an update. Consequently, there is a reduction in the number of

mispredictions. We don’t investigate this case further.

134

CHAPTER 8

MICROBENCHMARKS FOR THE REVERSE ENGINEERING

OF THE GLOBAL PREDICTOR

8.1 Objectives

The goal of this section is to develop an experimental flow and a set of

microbenchmarks that will help us determine the organization of the global and bimodal

outcome predictors.

8.2 Contributions and Findings

We have developed an experimental flow and a set of microbenchmarks for

determining the organization of the global and bimodal predictors. The experimental

flow and microbenchmarks applied on a Pentium M processor provide the following

insights. The outcome predictor is a multi-layer structure encompassing a global

predictor and a bimodal predictor. The global predictor is organized as a cache-like

structure, indexed by a portion of the path information register. More specifically, we

have made the following findings.

135

1. The index and tag fields used for access to the global outcome predictor are based on

the path information register (PIR), described in Section 7.2. The size and the update

policy of the PIR are verified using a new set of microbenchmarks that feature only

conditional branches. These experiments confirm the previous findings.

• The PIR width is 15 bits.

• The PIR is updated as follows.

• Conditional taken branch address bits IP [18:4] are XOR-ed with the

original PIR shifted by 2 bit positions to the left.

• Indirect branch address bits IP[18:10] and target address bits TA[5:0]

(total of 15 bits) are XOR-ed with the original PIR shifted by 2 bit

positions to the left.

2. The global outcome predictor hash function is an XOR between the PIR and the

conditional branch IP. Conditional branch IP bits [18:4] are XOR-ed with the PIR

bits [14:0]. The lower 6 bits of the result are used as the tag. The higher 9 bits of the

result are the index for the global predictor.

3. The global predictor is a 4-way structure organized into 512 sets.

4. Global predictor uses an LRU-like replacement policy with an unknown allocation

policy. It is likely that a branch allocated to the predictor needs “verification” (that is,

the branch is encountered at least twice). In the meanwhile, the branch may still be

evicted by the other branches that target the same set, even if other entries in the

particular set may be free.

5. The Bimodal outcome predictor is a flat structure of two-bit counters indexed by the

instruction IP bits [11:0] with size of 4096 entries.

136

8.3 Background

Global outcome predictors have long been a focus of many research efforts in

academia and industry striving to come up with a very accurate outcome prediction with

small hardware complexity and small latency. Improving the predictor accuracy by

increasing the predictor’s size has become a non adequate solution. It has been shown

that the negative interference in the predictors is a larger source of mispredictions than

the capacity misses caused by a smaller outcome predictor.

An increase in the branch predictor size often leads to unacceptable predictor

latency. The instruction fetch unit and consequently the branch predictor unit is on the

critical path to sustain high issue rates. To reduce the predictor delay, the predictor size

must be reduced. Jimenez [32] shows a benefit from a cascading predictor where a slower

more accurate predictor may overrule the prediction coming from a faster and less

accurate predictor.

To remedy the problem of predictor size and interference, researchers have

offered many sophisticated solutions, and over time, outcome predictors have become

multi-layer complex structures, mainly consisting of many best up-to-date outcome

predictors that are closely coupled to each other. However, complex structures often

impose a significant verification effort during predictor design, and this in turn affects

ever tightening time-to-market.

We expect that the modern branch outcome predictor implementations are based

on the GShare with additional structures to address issues such as filtering (branch

classification) and negative interference.

137

8.3.1 Negative Interference

Negative interference occurs when two branches with opposite outcomes compete

for the same entry in the global predictor, consequently making one or both outcomes

mispredicted.

A number of research efforts have addressed the issue of negative interference.

Here we focus our attention on the Bi-mode predictor [13] to set the background for

expectations on resolving the negative interference problem in modern predictors.

With Bi-mode, the global predictor is divided into two parts, not taken and taken branch

history tables (NT.PHT and T.PHT). A third structure, a bimodal table is used to select

which table, NT.PHT or T.PHT should provide an outcome prediction. This way, the

global predictor will predict incorrectly only when two branches with opposite outcomes,

have the same global predictor access function and the bimodal table gives an incorrect

prediction selecting the opposite history table. The main flaw in the Bi-mode predictor is

the non-existence of filtering. Branches that are always taken or not taken are also

predicted by the global predictor although the bimodal predictor may predict this branch

with fewer resources.

8.3.2 Branch Filtering

Branch filtering or branch classification is a technique where a specialized branch

predictor structure is used to predict certain types of branches.

Specialized predictors introduce tags to be able to distinguish the occurrence of

the certain branch type. We have already seen that the loop predictor is a cache structure

where tags are used to identify the loop branches. We expect a similar approach in the

implementation of the global predictor. The tagged global predictor may handle only

138

those branches that are not predicted correctly by both the loop predictor and the bimodal

predictor. Our focus is on two academically proposed predictors, McFarling’s Serial-

BLG [7] and YAGS predictor [16].

YAGS Predictor

The YAGS predictor is based on the Bi-mode predictor with two global predictor

tables, T.PHT and NT.PHT, but these tables are tagged in order to ensure filtering.

However, it should be noted that tagging reduces positive and neutral interference

potential of the Bi-mode predictor. For example, if two not taken branches compete for

the same entry in T.PHT, they will evict each other if they have different tags. In a Bi-

mode predictor, neutral interference would occur.

On the other hand, selection of the T.PHT and NT.PHT based on the bimodal

predictor may reduce the filtering capabilities. For example, an entry in the global

predictor may have a lookup hit, but the entry will not be considered if the bimodal table

did not select a particular table the hit belongs to. Also, one table of the Global predictor

may be more overloaded than the other table, resulting in unnecessary wasting of

resources

Finally, we consider the YAGS scheme as a cache-like global predictor that

works in tandem with the bimodal predictor with questionable global predictor way-

selection function. This observation leads us to the Serial-BLG predictor [7].

Serial-BLG Predictor

The serial-BLG predictor consists of three stages (predictors), Bimodal, Local and

Global. The bimodal is the default predictor. If the branch is detected to have a local

behavior and cannot be successfully predicted by the bimodal predictor, the bimodal

139

prediction may be overridden in the local predictor. If the branch is detected to have a

global behavior and cannot be successfully predicted by either the bimodal or the loop

predictor, a prediction given by the bimodal predictor or the local predictor may be

overridden by the global predictor. This way, the local and the global predictor may have

much smaller sizes since the bimodal predictor handles the majority of the program

branches. Therefore, filtering exists as in the YAGS predictor except that the global

predictor access function is not related to the bimodal predictor. This fact allows for

easier branch predictor development and verification.

8.3.3 Expectations

We expect the global predictor to be a multi-way cache structure. By introducing

the tags, the number of global predictor entries may be significantly reduced compared to

the version without tags. The global predictor needs to predict only branches that are

unpredictable by the bimodal and loop predictors. A much smaller number of entries

successfully compensates for an additional hardware overhead due to tags. Additionally,

the reduced predictor size results in lower predictor latency, an equally important

parameter in the design of modern branch predictor units.

A tagged structure also helps with the negative interference. The tags cannot

remove negative interface but can identify it. For example, two branches that hit in the

same global predictor entry with different tags, will still evict each other but, due to

different tags, global predictors will not provide a hit, avoiding possible misprediction.

Final prediction will rely on the bimodal predictor that can still give a correct prediction.

140

We expect first level of the global predictor to be a shift register containing

branch history register, BHR. The BHR may be affected by different types of branches

and branch information such as address bits, target bits or the branch outcome.

8.4 BHR Organization – Conditional Branch IP Address Bits used for

BHR

We assume that the BHR is affected by the IP address of the last byte of a

conditional branch, rather than by the branch target address. The BHR serves the same

purpose as the PIR for the indirect branch predictor. Consequently, we assume that the

BHR organization is a similar one to the PIR organization.

We develop a microbenchmark that tries to find the following: (a) branch address

bits used for the BHR, (b) the BHR shift count, (c) the BHR history length (BHR.HL) --

the maximum number of branches, prior to a conditional branch, affecting the BHR, and

(d) the BHR width (the number of bits in the branch history register).

The branch address bits used for the BHR are found using an algorithm similar to

the one used in Figure 7.7 to find conditional branch IP bits that affect the PIR. The only

change is that we replace the indirect spy branch with a conditional spy branch (see

Figure 8.1). The spy conditional branch has two outcomes; the nT outcome and the T

outcome. Path1 is the path taken to reach the spy branch T outcome and Path2 is the path

taken to reach the spy branch nT outcome. To achieve different paths to work in the way

described, a setup branch is introduced. The setup branch has the same outcome pattern

as the spy branch. The setup branch is made to always be mispredicted by introducing a

number of conditional taken branches before it. Consequently, the total misprediction

rate of 50% means that the spy branch misprediction rate is 0%.

141

Spy conditional branch

Setup1
conditional branch

(N-1) Cond. branches

Path 1 Path 2

Setup2
conditional branch

(N-1) Cond. branch es

Setup conditional branch

Path 1
(Taken)

Path 2
(Not taken)

Instructions

Path 2

Path 1

H conditional branches

Figure 8.1 Conditional branch IP bits that affect BHR, BHR shifting policy and BHR
history length microbenchmark layout

The spy branch must have the outcome pattern unrecognizable by the loop, the

bimodal or any other local predictor. Since we know that the loop predictor has the

maximum counter length of 64, a loop branch with the counter modulo larger than 64 can

be used.

We choose a more generalized pattern: The spy branch will have pattern

{N*Taken, N*Not Taken}, with N large enough to avoid any local predictor. This way

we do not consider relations of the global predictor with any other predictor. A problem

with this approach is the unknown expected number of mispredictions. However, when

the spy branch starts to be mispredicted, we expect the total number of mispredictions to

be twice what it is without the spy branch mispredictions, since the spy and the setup

branches contribute equally to the total number of mispredictions.

142

The algorithm sets one bit in the Setup2 branch address to differ from the Setup1

branch address. The particular bit is referred to as k (k=0, 1, …log2Offset-1), and

displacement D is defined as D=2k. Therefore, IP(Setup2) = D + IP(Setup1) + Offset.

Consequently, if bit k does not affect the BHR, the microbenchmark produces

mispredictions in the global predictor. IP(Setup1) bit k must be set to zero for proper

testing.

A similar approach is used for testing the BHR shift policy. The algorithm is

modified by insertion of H conditional branches between the spy branch and Setup1 (and

Setup2) branches. These H branches are executed in both Path1 and Path2; therefore,

they influence the Path1 based BHR in the same way as the Path2 based BHR.

Consequently, Path1 based BHR and the Path2 based BHR will differ only if Setup1 and

Setup2 differ. By increasing H, BHR bits shifted in by Setup1 or Setup2 branches are

moved further in the BHR history.

To find the BHR shift count, the same reasoning is used as in finding the PIR shift

count (see Equation (7.1)) as shown in Equation (8.1).

(shift count)∗BHR.HL - (shift count) < BHR Width ≤ (shift count) ∗BHR.HL. (8.1)

BHR history length is found in the same way as the PIR history length; BHR.HL

is equal to the minimum H for which the number of mispredictions is high regardless of

the parameter D. The microbenchmark source code is shown in Figure 8.2.

143

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 do{

 L = (liter%32)>>4; // pattern 16*T, 16*nT

 if (L==0){ // execute one path per iteration
@A 8x if(a==0)a=1; // Repeat the statement 8 times

@B,B[14:0]=“0” if(a==0) a=1; // Setup1

 } // Unconditional jump

 else{ // dummy non-branch instructions

@A + Offset 8x if(a==0)a=1;

@B,B[14:0]= “1” if(a==0) a=1; // Setup2

 }

 if(L==0) a=1; // Spy branch

 liter --;

 } while (liter >0);

Figure 8.2 Conditional branch IP bits effect on BHR test source code

We measure the number of branches mispredicted at execution (MBI_EXEC).

Misprediction rate is calculated as the MBI_EXEC divided by the number of spy

branches.

Figure 8.3 shows the misprediction rate as a function of the parameter D (D=1h–

80000h), when H=0. For distances D=10h–40000h, the spy branch does not produce

mispredictions, indicating that branch address bits IP [18:4] are used for the BHR.

Figure 8.4 shows the misprediction rate as a function of the parameter D (D=1h–

80000h), when H=1. For distances D=10h–10000h, the spy branch does not produce

mispredictions. According to analysis in Section 7.5, we conclude that the BHR shift

count is two.

Figure 8.5 shows the misprediction rate as a function of the parameter D (D=1h–

80000h), when H=7, 8. Not all H values are tested since the similarity with the PIR is

obvious enough to consider results sufficient.

144

Figure 8.3 Conditional branch IP bits effect on BHR test results for H=0

Figure 8.4 Conditional branch IP bits effect on BHR test results for H=1.

Figure 8.5 Conditional branch IP bits effect on BHR test results for H=7,8

0
5

10
15
20
25
30

1h 2h 4h 8h 10h 20h 40h 80h 200h 400h 800h 1000h 2000h 4000h 10000h 20000h 40000h 80000h

D

H=0

0
5

10
15
20
25
30

1h 2h 4h 8h 10h 20h 40h 80h 200h 400h 800h 1000h 2000h 4000h 10000h 20000h 40000h 80000h

D

H=1

0
5

10
15
20
25
30

1h 2h 4h 8h 10h 20h 40h 80h 200h 400h 800h 1000h 2000h 4000h 10000h 20000h 40000h 80000h

D

H=7

0
5

10
15
20
25
30

1h 2h 4h 8h 10h 20h 40h 80h 200h 400h 800h 1000h 2000h 4000h 10000h 20000h 40000h 80000h

D

H=8

145

8.5 BHR Organization – Type of Branches Used

The microbenchmark has been developed which determines which types of

branch instructions affect the BHR, apart from conditional taken branches. We test the

following branch types: (a) conditional not taken branches, (b) unconditional branches,

(c) call and return jumps.

The microbenchmark uses a slightly modified approach presented in Figure 8.1.

The H-block is modified to include a number of conditional taken branches (HC, HC <

BHR.HL), followed by a number of branches of other types HO (see Figure 8.6).

Spy conditional branch

Setup1
conditional branch

Cond. branches

Path 1 Path 2

Setup2
conditional branch

Setup condition branch

Path 1
(Taken)

Path 2
(Not taken)

Instructions

Path 2
Path 1

Hc Conditional Taken branches

Ho branches of different type

Cond. branches

Figure 8.6 Branch types affecting the BHR microbenchmark layout

A number of branches of other types, HO is set to the value HO = BHR.HL–HC.

Path2 and Path1 are set to be unique in the same way as in the algorithm in Figure 8.6,

146

by setting the branch IP address of Setup2 branch to be different from the branch IP

address of Setup1. If the branches of other types do affect the BHR, Path2 will be the

same as Path1, consequently producing mispredictions. If the branches of other types do

not affect the BHR, the total number of mispredictions should be zero.

Not taken direct conditional branches. Figure 8.7 shows the code snippet for

Hc and Ho blocks for the microbenchmark described in Figure 8.6. The Ho block features

direct conditional not taken branches.

Unconditional jumps. Figure 8.8 shows the code snippet for Hc and Ho blocks

for the microbenchmark described in Figure 8.6. The Ho block features unconditionally

taken branches.

 a=1;
 ...
 6 x if(a==0) a=1;a=1; // Hc = 6
 2 x if(a==1) a=1;a=1; // Not taken branches, Ho=2
 ...
 if(L==0)a=1;a=1; //spy conditional branch

Figure 8.7 Source code fragment for testing of NT conditional branches effect on BHR

 6 x if(a==0) a=1;a=1; //Hc = 6
 _asm{jmp l1 //unconditional jumps, Ho=2
 l1: clc
 jmp l2
 l2: clc
 }
 if(L==0)a=1;a=1; //spy conditional branch

Figure 8.8 Source code fragment for testing of unconditional branches effect on BHR

147

Call/returns. Figure 8.9 shows the code snippet for Hc and Ho blocks for the

microbenchmark described in Figure 8.6. The Ho block features Call/return branches.

All the tests produce no mispredictions, meaning that none of the tested branches,

direct conditional not taken, unconditional, and call/returns are affecting the BHR.

_asm{
 jmp lcc
 _doit1: mov ebx, 10
 _doit2: mov ebx, 10
 ret
 lcc: clc
}
do{
 6 x if(a==0) a=1;a=1; // Hc=6
 _asm{ // call & returns, Ho=2
 call _doit1
 call _doit2
 }
 if(L==0)a=1;a=1; //Spy conditional branch
}
while(liter>0);

Figure 8.9 Source code fragment for testing of call and return branches effect on BHR

8.6 BHR Organization – Branch Outcome Effect on BHR

We develop a microbenchmark that reuses the algorithm shown in Figure 7.16.

The switch branch and the spy indirect branch are replaced with two conditional branches

with the same outcome pattern as shown in Figure 8.10. Consequently, we set different

outcome histories values for two outcomes of the spy branches:

Spy taken outcome history: <Taken branch 8, Switch, Taken branches 7–2>.

Spy not taken outcome history: <Taken branches 8–1>.

148

To make both path histories dependant only on the switch branch outcome, the

taken branches 8–1 and the Switch branch have the same lower bits, so they influence the

BHR in the same way. The microbenchmark source code is shown in Figure 8.10.

The test doubles the number of mispredictions compared to the test when the

Switch branch is simply replaced with the always taken branch. The Switch branch is

crafted to produce mispredictions due to the same history for both its outcomes.

Consequently, we conclude that the spy branch produces mispredictions because the

outcome of the Switch branch did not affect the BHR.

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 do{

 L = (liter%32) >> 4; // pattern 16*T, 16*nT

@A if(a==0)a=1; // Taken branch 1

 // dummy non-branch instructions

 ...

@A + 6*Offset if(a==0)a=1; // Taken branch 7

 // dummy non-branch instructions

@A + 7*Offset if(L==0)a=1; // Switch branch

 // dummy non-branch instructions

@A + 8*Offset if(a==0)a=1; // Taken branch 8

 // dummy code to allow branches retirement

 if(L==0)a=1; // Spy branch

 liter--;

 } while (liter >0);

Figure 8.10 Detection of branch types affecting the BHR source code

8.7 BHR Organization – Indirect Branch Effect on BHR

A new microbenchmark is designed to test whether both indirect branch address

and indirect branch target affect the BHR. The algorithm reuses the approach illustrated

149

in Figure 8.1. The new algorithm (see Figure 8.11) replaces the conditional branches

Setup1 and Setup2 with indirect branches ISetup1 and ISetup2. The indirect branches

have targets, Target1 and Target2.

Spy conditional branch

ISetup1
Indirect branch

Path 1 Path 2

ISetup2
Indirect branch

Setup conditional branch

Path 1
(Taken)

Path 2
(Not taken)

Instructions

Path 2

Path 1

Target1 Target2

Cond. branchesCond. branches

Figure 8.11 Detection of indirect branch effect on BHR microbenchmark layout

To test for the indirect branch target address impact on the BHR, ISetup2 branch

IP address is changed to have different target address bit k from the ISetup1 branch IP

address. Consequently, if indirect branch target address bit k affects the BHR, the

misprediction rate should be close to zero. ISetup1 and ISetup2 are set at distance Offset

not to affect the BHR. The difference at bit k is achieved by setting the ISetup2 target

address at distance D + Offset from the Setup1 target address where D = 2k and Offset =

80000h. The microbenchmark source code is shown in Figure 8.12.

150

Address Code
 int long unsigned i,k,l, liter = 1000000;

 int a=1;

 do{

 L = (liter%32)>>4; // Pattern 16x Taken, 16x Not taken

 8x if(a==0)a=1; // make setup branch mispredicted

 if (L==0){ // execute one target per iteration

@A 7x if(a==0)a=1; // Repeat the statement 7 times

@B jmp dword ptr [ebx] // ISetup1

@C, C[14:0] = 0 _0: clc // Target1

 }

 else{// dummy non-branch instructions

@A + Offset 7x if(a==0)a=1;

@B + Offset jmp dword ptr [ebx] // ISetup2

@C + Offset + D _1: clc // Target2

 }

 if(L==0) a=1;a=1; // Spy branch

 liter--;

 } while (liter>0);

Figure 8.12 Indirect branch target address bits effect on BHR test source code

We measure the number of branches mispredicted at execution (MBI_EXEC).

Figure 8.13 shows the misprediction rate, calculated as the MBI_EXEC divided

by the number of spy branches, as a function of the parameter D (D=1h–80h). The

results are the same as the one for the PIR; BHR is affected by the indirect branch target

address bits [5:0].

To test for the indirect branch IP address impact on the BHR, ISetup2 is changed

to have a different IP address bit k from the ISetup1 branch IP address. Consequently, if

the indirect branch IP address bit k affects the BHR, the induced number of

mispredictions will be zero. Target1 address and Target2 are set at the distance D=40h

not to affect the BHR. The difference at bit k is achieved by setting the ISetup2 IP address

at distance D + Offset from the ISetup1 IP address, where D=2k and Offset = 80000h.

The microbenchmark source code is shown in Figure 8.14.

151

0

10

20

30

1h 2h 4h 8h 10h 20h 40h 80h
D

TARGET TEST

Figure 8.13 Indirect branch target address bits effect on BHR test results

Address Code
 int long unsigned i,k,l,liter = 1000000;

 int a=1;

 do{

 L = (liter%32)>>4; // Pattern 16x Taken, 16x Not taken
 8x if(a==0)a=1; // make setup branch mispredicted

 if (L==0){ // execute one target per iteration
@A 7x if(a==0)a=1; // Repeat the statement 7 times

@B, B[14:0] = 0 jmp dword ptr [ebx] // Indirect1

@C _0: clc // Target1

 }

 else{// dummy non-branch instructions

@A + Offset 7x if(a==0)a=1;

@B + Offset + D jmp dword ptr [ebx] // Indirect2

@C + 40h _1: clc // Target2

 }

 if(L==0) a=1;a=1; // Spy branch

 liter--;

 } while (liter>0);

Figure 8.14 Indirect branch IP bits effect on BHR source code

Figure 8.15 shows the misprediction rate, calculated as the MBI_EXEC divided

by the number of spy branches, as a function of parameter D (D=10h–80000h). The

results are the same as the one for the PIR; BHR is affected by the indirect branch IP bits

[18:10].

152

0

5

10

15

20

25

30

10h 20h 40h 80h 100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h 80000h
D

IP TEST

Figure 8.15 Indirect branch IP bits effect on BHR test results

We do not examine the effect of the indirect branch IP address or indirect branch

target address with the “H block” as in Section 8.1 as we assume that the similarity with

the PIR is sufficient to make conclusions even without additional testing.

NOTE: We are able to examine the BHR and conclude that the BHR has the same

organization and behavior as the PIR. We conclude that the BHR is in fact the PIR; the

branch predictor employs one shift register, the PIR, used to access both the global

predictor and the indirect predictor.

8.8 Global Predictor Access Function

We assume that part of the conditional branch IP address is XOR-ed with the

BHR to access the global predictor. A part of the XOR result is used as the index and

another part as the tag in the global predictor.

Here we wanted to find conditional branch bits used for the hash function in the

same way we did for the iBTB hash function in Section 7.5 and we wanted to find the

hash access function in the same way as in Section 7.12. However, we cannot use an

identical approach because of the bimodal predictor influence. A similar algorithm

153

would use two conditional branches, Spy1 and Spy2, with the same histories in the BHR

and change a particular Spy2 IP address bit. This change involves changing of the

bimodal entry for Spy2, making the misprediction rate impossible to analyze.

Moreover, we are assuming the possibility of the existence of two global predictor

tables selected by the bimodal predictor as in the Bi-mode predictor. This requires us to

exactly know the current state of the bimodal predictor and to keep it in one direction

during the global predictor testing. Otherwise, two global predictor tables would make

results analysis a challenging if not impossible task.

We develop an algorithm that relies on one of the basic properties of the two-bit

counters. For the branch with outcome pattern {3*T, 2*nT}, a two-bit counter will

incorrectly predict both not taken outcomes and one taken outcome that come just after

the nT outcomes. If such branch outcomes all target the same bimodal predictor entry

and the same global predictor entry, we analyze two cases. First, if the bimodal predictor

does not choose between two tables then the misprediction rate is 60% as the two-bit

counters were behaving the same as described. Second, if the bimodal predictor chooses

between the two tables then the misprediction rate is smaller than 60%, because taken

and not taken outcomes will be allocated in two different entries. Figure 6.13 already

showed that the branch with the described pattern and targeting the same bimodal and

global entry has a misprediction rate of 60%. Therefore, we conclude that there are not

two global predictor tables. The algorithm used here (see Figure 8.16) uses two loops

Spy1 and Spy2 with the same modulo MOD and both switch their outcomes at the same

time.

154

Spy2 conditional branch

7 Cond. branches

Path 1

Instructions

Path 2

Path 1

Spy1 conditional branch

7 Cond. branches

Instructions

Path 2

DIP

Setup 1

Setup 2

DPIR

Figure 8.16 Global predictor access function microbenchmark layout

The Spy2 IP address is changed at particular bit kIP and therefore we expect Spy2

to target a different global predictor entry, consequently making the total misprediction

rate of 2/MOD. The distance DIP = 2kIP.

Now, Setup2 that precedes the Spy2 is changed to differ from the Setup1 branch at

a particular bit kPIR. The idea is to perform the same algorithm as in Section 7.12. If bits

kIP and kPIR are XOR -ed in the hashing function, both Spy1 and Spy2 target the same

entry in the global predictor, making the effective outcome pattern {N*T, 2*nT} and the

expected misprediction rate is 3/MOD regardless of the bimodal predictor.

The microbenchmark source code is shown in Figure 8.17.

Table 8.2 shows values of DPIR and DIP that matched and consequently produced a

misprediction rate of 3/MOD with MOD=65 in the performed test. The global predictor

access function is illustrated in Figure 8.18.

155

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 do{

 L = temp%65;
 7x if(a==0)a=1; // repeat the statement 7 times

@A, A[kPIR] = 0 if(a==0)a=1; // Setup1

 // dummy code to allow previous branches to retire

@B, B[kIP] = 0 if(L==0)a=1; // Spy1

 // dummy non-branch instructions

 7x if(a==0)a=1;

@A+ 80000h+ DPIR if(a==0)a=1; // Setup2

 // dummy code to allow previous branches to retire

@B+ 80000h+ DIP if(L==0)a=1; // Spy2

 liter--;

 } while(liter>0);

Figure 8.17 Global predictor access function source code

Table 8.1 BHR bits and conditional branch IP address bits that are XOR-ed to create the
global predictor access function

DPIR DIP MBI_EXEC misprediction rate
10h 2000h 3/MOD
20h 4000h 3/MOD
40h 8000h 3/MOD
80h 10000h 3/MOD
100h 20000h 3/MOD
200h 40000h 3/MOD
400h 10h 3/MOD
800h 20h 3/MOD
1000h 40h 3/MOD
2000h 80h 3/MOD
4000h 100h 3/MOD
`8000h 200h 3/MOD
10000h 400h 3/MOD
20000h 800h 3/MOD
40000h 1000h 3/MOD

156

5 0 6

PIR

3 012 4

NOT
USED Cond. Branch IP

18 13

14

XORXOR

Figure 8.18 Global predictor access function

8.9 Global Predictor Organization

We expect the global predictor to be a multi-way cache. According to the results

from the iBTB hash access function, we expect the lower part of hash function to be used

as the index and higher bits as the tag in the global predictor.

In determining organization of the global predictor, we use a similar approach to

the one used in determining organization of the iBTB (see Section 7.13). However, the

problem here is somewhat more challenging. In crafting microbenchmarks, we need to

neutralize the influence of the loop and the bimodal predictors. A new approach is

needed that will ensure that spy branch behavior is tractable and dependable on the global

predictor only. In the case of iBTB, the cached content was a unique target address. With

the global predictor, an entry is likely a 2-bit saturating counter and interference is

challenging.

We use an algorithm that considers N branches with unique tags competing for

the same set in the global predictor with N-1 ways. Because the global predictor access

causes misses, the branches will rely on the bimodal predictor that is set to give wrong

predictions. This way we are able to test for the number of ways and the index and tag

bits as will be explained below.

157

The microbenchmark has two spy branches -- an always taken SpyT and an

always not taken SpyN (see Figure 8.19). The branches are placed at the distance Offset.

Offset is large enough to ensure that the spy branches compete for a single entry in the

global and the bimodal predictor. The SpyN branch is reached by N paths PathN1 –

PathNN, while SpyT is reached by one path PathT. The program execution pattern is as

follows: {T*PathT, PathN1, T*PathT PathN2, …, T*PathT, PathNN, T*PathT}.

Each SpyN occurrence must rely on the global predictor for the correct prediction

as the bimodal predictor is always in the taken state set by the SpyT.

Setup indirect Branch

PathT

SpyT SpyN

PathNnPathN1

SpyNH

7 Cond.
branches

7 Cond.
branches

7 Cond.
branches

PathN2

7 Cond.
branches

SetupT SetupN1 SetupN2 SetupNn

Figure 8.19 Global predictor organization microbenchmark layout

The parameter T should be large enough to avoid interference from the loop

predictor. An alternative approach is to use a smaller value of T because larger T requires

a high number of program iterations in order to observe results that are not statistical

error (hardware performance counters count events imprecisely). We set T =4. To avoid

158

interference with the loop predictor, we insert another always not taken branch SpyNH

that follows the occurrence of the SpyN. SpyNH is placed at a loop BPB tag distance

from SpyT. The loop predictor sees SpyN, SpyT and the SpyNH as a one non-loop branch.

The microbenchmark sets PathN1 – PathNN to differ in the same way as it is done

in Section 8.1. SetupNi and SetupNi-1 branches are at the distance DG + Offset from each

other where DG=2k. Therefore, the path based BHRs for each of the paths, PathN1 –

PathNN , are set to be different from each other. The SpyN branch has N different values

in the BHR, consequently occupying N different entries in the global predictor. If the

distance DG is set in the way that the BHR value for paths PathN1 – PathNN differ only at

the tag bits, subsequent SpyN occurrences will produce misses in the global predictor and

mispredictions from the bimodal predictor.

The misprediction rate as a function of DG and N gives us insight into the global

predictor organization. The following example explains details about finding the global

predictor organization:

• 4-way global predictor uses BHR[5:0] for the index, BHR[13:6] for the tag.

o For DG = 10h (lowest BHR bit used for the index), N up to 4*26 will not

produce mispredictions.

o For DG = 20h, N up to 4*25 will not produce mispredictions.

• 4-way global predictor uses BHR bits [5:0] for the tag and BHR[12:6] for the index:

o For DG = 10h, N up to 4 will not produce mispredictions.

o For DG = 27, N up to 27 will not produce mispredictions.

o For DG = 26, N up to 2* 27 will not produce mispredictions.

o For DG = 25, N up to 4* 27 will not produce mispredictions.

The microbenchmark source code is shown in Figure 8.20. The program

execution pattern is controlled by the Setup indirect branch. The indirect branch will

159

produce a known number of mispredictions due to a number of conditional taken

branches that precede it. The Pentium M performance counters can count an event

related to mispredictions on indirect branches exclusively. Furthermore, it is much easier

to distinguish mispredictions that are from the spy branch only as a total number of

mispredictions minus the number of indirect branch mispredictions.

Address Code
 int long unsigned L, liter = 1000000;

 int a=1;

 do{

 jmp dword ptr [ebx]
@PathN0 7x if(a==0)a=1; // repeat the statement 7 times

@A if(a==0)a=1; // SetupN0

 jmp _SpyN

 // dummy non-branch instructions(skipped)

@PathN1 7x if(a==0)a=1;

@A+ Offset+ D if(a==0)a=1; // SetupN1

 jmp _SpyN

 // dummy non-branch instructions(skipped)

@PathNN 7x if(a==0)a=1;

@A+ N*Offset+ N*D if(a==0)a=1; // SetupN1

@ _SpyN // dummy code to allow previous branches to retire

 if(a==1)a=1; // SpyN

@PathT 7x if(a==0)a=1;

@A+ (N+1)*Offset+
10101010101b

 if(a==0)a=1; // SetupT

 // dummy code to allow previous branches to retire

@ _SpyN + Offset if(a==0)a=1; // SpyT

 liter--;

 } while(liter>0);

Figure 8.20 Global predictor organization test source code

During the test implementation, we find obstacles. The number of mispredictions

(MBI_EXEC) is unexplainable in the same way it was for the BTB-capacity tests. For

N=3, and DG set to have all 3 branches changed only at the lower 6 BHR bits (assumed

160

tag bits), we observe that less than one branch is missed per iteration. For N=4 and DG

set to have all 3 branches changed only at the lower 6 BHR bits (assumed tag bits), we

observe that approximately 3 branches are mispredicted per iteration. For DG values large

enough to make the SetupNi branches target the upper BHR bits to be different, we

observe no mispredictions.

To cope with this issue, we use the same approach used in the BTB tests. Each of

not taken paths PathNi is executed twice consecutively before starting with the new path.

An indentical layout of the algorithm is used as in Figure 8.19, but the new program

pattern is as follows:

T*PathT, PathN1, T*PathT, PathN1, T*PathT, PathN2, T*PathT, PathN2, ... ,

T*PathT, PathNN, T*PathT, PathNN.

Setup indirect branch must use an appropriate pattern to achieve such a program pattern.

We measure the number of mispredicted indirect branches (MIBIE) and the

number of branches mispredicted at execution (MBI_EXEC). The misprediction rate is

calculated as the (MBI_EXEC– MIBIE) divided by the number of SpyN branches.

Figure 8.21 shows the misprediction rate as a function of DG (DG =10h–1000h)

and N=5. For N=3, 4 results are not presented, as the test did not produce any

mispredictions. For N=5 we observe mispredictions at the DG < 80h. For DG =80h, the

5th branch bit set is the IP bit 10 (Effective distance is 400h – BHR bit 7). We conclude

that the index LSB bit is the hash function bit 7 and the global predictor is a 4-way

structure.

161

0

20

40

60

80

100

10h 20h 40h 80h 100h 200h 400h 800h 1000h
DG

N=5

Figure 8.21 Global predictor organization tag test results

The logical way for the algorithm to advance the examination would be to set DG

at the lowest distance that produces no mispredictions for N=5 (DG= 80h) and to increase

N until mispredictions appear. This would mean that we are targeting each SpyN

occurrence to occupy a different BTB entry. We are unable to create such a

microbenchmark for N larger than ~10 and therefore another approach is used.

The microbenchmark reuses the source code shown in Figure 8.20 and sets N=5

and D=20h, so that mispredictions exist. Now, a particular bit of the SetupN0 is changed

by setting the SetupN0 branch address at the distance D from its previous position.

SetupN0 IP address was a reference point for distance DG and a new distance D is

reflected as the distance that sets bits k = log2(D). Distance D is increased to test for all

higher BHR bits. The new distance is named DI. Low misprediction on particular bit ki

set by the distance DI, means that the bit ki is the part of the index in the global predictor.

The microbenchmark’s source code is similar to the one in Figure 8.20 except that

the SetupN0 IP address is changed from “@A” to “@A+ DI”.

We measure the number of mispredicted indirect branches (MIBIE) and the

number of branches mispredicted at execution (MBI_EXEC). The misprediction rate is

calculated as the (MBI_EXEC– MIBIE) divided by the number of SpyN branches.

162

Figure 8.22 shows the misprediction rate as a function of DI (DI =100h–40000h)

and N=5. We observe that the bits [18:10] are used for the index and therefore the global

predictor set size is 512 entries. Consequently, the total size is 2048 entries.

0
10
20
30
40
50
60

100h 200h 400h 800h 1000h 2000h 4000h 8000h 10000h 20000h 40000h

DI

N=5, D=20h

Figure 8.22 Global predictor organization index test results

8.10 Bimodal Predictor Organization

We expect the bimodal predictor to be a flat structure without tags and addressed

by the branch IP address bits only. Until now, we have been able to see that the branch

prediction mechanism relies on the bimodal predictor if the global predictor has a miss

for a given branch.

In the previous experiment, we used one always taken branch to make one

bimodal entry to be always in a taken state. The SpyN branch, which misses in the global

predictor, is predicted by the same bimodal entry that was in the taken state, consequently

causing mispredictions. Here we reuse the microbenchmark shown in Figure 8.19. A

new version increases distances between SpyN and the SpyT branches: SpyT = SpyN + DG

+ Offset; DG=2k. If the branch IP bit k is used to address the bimodal predictor, each

163

SpyN occurrence that misses in the global predictor will rely on a bimodal predictor entry

that is in a not taken state. Consequently, no mispredictions exist.

The microbenchmark sets collisions in the global predictor by setting appropriate

parameters D and N as shown in Figure 8.20. We set D=10h as we have proven that all

SpyN occurrences target the same global predictor set and N=5 as we have proven that

the global predictor is a 4-way structure. The microbenchmark finds the number of

mispredictions as a function of the DG. We expect that the low number of mispredictions

is an indication that the branch IP address bit k is used for the index in the bimodal

predictor. The microbenchmark is not shown here as it is almost identical to the one

shown in Figure 8.20. SpyT branch has to be moved for offset DG to test for the bit k

effect on the bimodal predictor.

We measure the number of mispredicted indirect branches (MIBIE) and the

number of branches mispredicted at execution (MBI_EXEC). The misprediction rate is

calculated as the (MBI_EXEC– MIBIE) divided by the number of SpyN branches.

Figure 8.23 shows the misprediction rate. The results indicate that the bimodal

predictor is addressed by the IP address bits [11:0]. Consequently, we conclude that the

bimodal predictor size is 4K entries.

164

Figure 8.23 Bimodal predictor bits detection test results

We are able to see the bimodal predictor that works as a stage before the global

predictor. Moreover, the bimodal predictor is not a cache structure. This leads us to the

conclusion that the branch prediction unit does not use a static branch prediction

mechanism (this is what we knew from documentation). The bimodal predictor always

gives outcome prediction. On a BTB miss and with outcome prediction “taken,” the

decoder stages decide about the branch target address.

8.11 Global-Loop Predictors Relations

In this section we test whether a global predictor hit overrides a loop predictor hit.

We develop a microbenchmark that uses a specific branch outcome pattern where one of

the outcomes hits in both the loop BPB and the global predictor, but just one of the

predictors predicts the outcome correctly. We set the loop predictor to predict the

outcome incorrectly and the global predictor to predict it correctly. If a global predictor

hit overrides a hit in the loop predictor, the branch outcome will not be mispredicted,

otherwise the outcome is mispredicted. The microbenchmark uses the branch with the

pattern shown in Table 8.2.

0
20
40
60
80

100

0h 1h 2h 4h 8h 10h 20h 40h 80h 100h 200h 400h 8000h 1000h 2000h

DG

N=5, D=10h

165

At iteration number 13, a branch has a “Not taken” outcome. Due to previous

branch behavior, the branch is allocated in the loop BPB; therefore, the loop predictor

provides a loop BPB hit and it is a misprediction. The same outcome is correctly

predicted with the global predictor by reusing the microbenchmark source code from

Figure 8.20 with N=1 and SpyNH removed. The indirect setup branch is set to produce

the pattern in Table 8.2.

The test results in no mispredictions, indicating that indeed the global predictor

sits on the top and overrides the prediction from the global predictor.

Table 8.2 Outcome pattern for the testing of Global hit priority over Loop hit

Iteration number 1 2 3 4 5 6 7 8 9 10 11 12 13
Branch outcome T T T nT T T T nT T T T nT nT

166

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

Branch predictor units are one of the crucial resources that ensure a full

exploitation of potential performance benefits promised by deeply pipelined and wide-

issue processors. They have been a focus of many research efforts in industry and

academia. Unfortunately, the commercial implementations are rarely publicly disclosed.

However, it has been demonstrated that the knowledge about exact branch predictor

optimization can be used by optimizing compilers to improve overall performance.

In this thesis we present a systematic approach to reverse engineering of modern

branch predictor units. We have developed a set of microbenchmarks and experimental

flows that target various structures found in modern branch predictor units. The

microbenchmark and experimental flows have been applied in reverse engineering of one

of the most sophisticated commercial branch predictor units, the Pentium M branch

predictor unit. We have found that the Pentium M's branch predictor unit encompasses

the following resources. For speculative prediction of target addresses, we have a branch

target buffer (BTB) and an indirect branch target buffer (iBTB). For speculative

167

prediction of branch outcome, a cascaded predictor is used that encompasses (a) a

bimodal predictor, (b) a loop branch predictor buffer, and (c) a tagged global predictor.

For each resource, we have found its size and organization, as well as update and

allocation policies.

The presented framework can benefit not only future architecture-aware

compilers, but also can be a valuable tool to branch predictor designers in their

verification efforts. Last, but not least, unveiling a sophisticated commercial predictor

unit can help future research efforts and contribute to a better understanding of modern

branch predictors.

In the future the proposed framework can be tested and possibly extended to other

modern processors. Eventually, software tools for architectural exploration can be

implemented that will automatically generate microbenchmarks and process the results.

168

APPENDICES

169

Appendix A

BTB-set Flow Example

Assumed BTB architecture: 4-way, Index = IP[10:4], Tag = IP[16:11],

Offset = IP[3:0].

Step 1: B=2:

 D=10h: different set => No MPR → Increase D:

 D=20h: different set => No MPR → Increase D:

 D=40h: different set => No MPR → Increase D:

 D=80h: different set => No MPR → Increase D:

 D=100h: different set => No MPR → Increase D:

 D=200h: different set => No MPR → Increase D:

 D=400h: different set => No MPR → Increase D:

D=800h: same set, diff. tag => No MPR → Increase D:

D=1000h: same set, diff. tag => No MPR → Increase D:

D=2000h: same set, diff. tag => No MPR → Increase D:

D=4000h: same set, diff. tag => No MPR → Increase D:

D=8000h: same set, diff. tag => No MPR → Increase D:

D=10000h: same set, diff. tag => No MPR → Increase D:

D=20000h: same set, same tag => MPR high! → Stop

Remember (Di, Bi) pair (20000h, B=2)

Step 2: B=3:

 D=10h: all three diff. sets => No MPR → Increase D:

 D=20h: all three diff. sets => No MPR → Increase D;

170

D=40h: all three diff. sets => No MPR → Increase D;

 D=80h: all three diff. sets => No MPR → Increase D;

 D=100h: all three diff. sets => No MPR → Increase D;

 D=200h: all three diff. sets => No MPR → Increase D;

D=400h: 1st & 3rd same set, 2nd other set => No MPR → Increase D;

D=800h: all three same sets, diff. tags => No MPR → Increase D;

D=1000h: all three same sets, diff. tags => No MPR → Increase D;

D=2000h: all three same sets, diff. tags => No MPR → Increase D;

D=4000h: all three same sets, diff. tags => No MPR → Increase D;

D=8000h: all three same sets, diff. tags => No MPR → Increase D;

D=10000h: two with same tags same set => MPR high → Stop

Remember (Di, Bi) pair (10000h, B=3)

Step 3: B=4:

 D=10h: all four diff. sets => No MPR → Increase D;

 D=20h: all four diff. sets => No MPR → Increase D;

D=40h: all four diff. sets => No MPR → Increase D;

 D=80h: all four diff. sets => No MPR → Increase D;

 D=100h: all four diff. sets => No MPR → Increase D;

 D=200h: all four diff. sets => No MPR → Increase D;

D=400h: 1st, 3rd same set, 2nd, 4th same set => No MPR → Increase D;

D=800h: all four same set, diff. tags => No MPR → Increase D;

D=1000h: all four same set, diff. tags => No MPR → Increase D;

D=2000h: all four same set, diff. tags => No MPR → Increase D;

D=4000h: all four same set, diff. tags => No MPR → Increase D;

D=8000h: two with same tags same set => No MPR → Increase D;

Remember (Di, Bi) pair = (8000h, B=4)

Step 4: B=5:

 D=10h; all five diff. sets => No MPR → Increase D;

 D=20h: all five diff. sets => No MPR → Increase D;

D=40h: all five diff. sets => No MPR → Increase D;

171

 D=80h: all five diff. sets => No MPR → Increase D;

 D=100h: all five diff. sets => No MPR → Increase D;

 D=200h: 1st, 5th same set, diff. tags => No MPR → Increase D;

 D=400h: 1st, 3rd, 5th same set, 2nd, 4th same set => No MPR → Increase D;

D=800h: 5x same set, diff. tag => MPR high → Stop.

Remember (Di, Bi) pair (800h, B=5)

For Bi=2, Di =20000h, Di-1 =10000h => Tag MSB = IP [16]

Smallest D is Di =800h, Di-1 =400h => Index MSB = IP [10]

For smallest Di =3, Bi = 5, Bi-1 = 4 => Number of ways is 4

Step 5: Index LSB detection; pick (Di, Bi) = (1000h, 5)

D (4th, 5th) = 1000h: all five same set => MPR high → Increase D (4th, 5th);

D (4th, 5th) = 1001h: all five same set=> MPR high → Increase D (4th, 5th);

D (4th, 5th) = 1002h: all five same set=> MPR high → Increase D (4th, 5th);

D (4th, 5th) = 1004h: all five same set=> MPR high → Increase D (4th, 5th);

D (4th, 5th) = 1008h: all five same set=> MPR high → Increase D (4th, 5th);

D (4th, 5th) = 1010h: four to same set=> No MPR → Stop.

Index LSB bit = log2 [D (4th, 5th) – D] = IP [4].

172

Appendix B

Setup Code for Cache-hit BTB-set Test

void main(void) {
int long unsigned liter = 100000000;
int long unsigned offset1; // setup indirect branch offset
int long unsigned i,a;
int long unsigned temp_i1,temp_i2;

int Dist = 128; // Dist = D
int Branches = 4096; // Dist = B

_asm{sub esp, 4014H} // free stack space
for (i=0; i<Branches; ++i){ // allocate all ind. br targets in stack
 temp_i1 = 4*i; // pointer to the current indirect target stack
 // position, target is 4 bytes long
 temp_i2 = Dist*i; // indirect target position in the code
 _asm {
 mov eax, l0
 add eax, temp_i2 // prepare current target
 mov ecx, temp_i1
 add ecx, esp
 mov dword ptr [ecx], eax // allocate current target on the stack
 }
}

for (i=0; i<liter; ++i){
 offset1 = (i%(2*Branches))>>1; // prepare offset, jump to each target twice
 offset1 = offset1*4; // target is 4 bytes long
 _asm {
 mov edx, _Exit
 mov ebx, offset1
 add ebx, esp // add offset to the value of the stack pointer
 jmp dword ptr [ebx] // jump to the target
 // final part of code already presented

Figure B.1 Indirect branch pattern for the Cache-hit BTB-capacity test in Section 5.7.

173

REFERENCES

[1] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach, IV
ed, 2007.

[2] S. Gochman, et al., "The Intel Pentium M Processor: Microarchitecture and
Performance," Intel Technology Journal, vol. 07, 2003, pp. 21-36.

[3] M. Milenkovic, et al., "Microbenchmarks for Determining Branch Predictor
Organization," in Software Practice and Experience, vol. 34, April 2004, pp. 465-487.

[4] C. Coleman and J. Davidson, "Automatic Memory Hierarchy Characterization," in
IEEE International Symposium on Performance Analysis of Systems and Software,
Tucson, AZ, 2001, pp. 103-110.

[5] S. T. Gurumani and A. Milenkovic, "Execution Characteristics of Spec Cpu2000
Benchmarks: Intel C++ Vs. Microsoft Vc++," in ACM Southeast Regional Conference,
2004, pp. 261-266.

[6] D. Jimenez, "Code Placement for Improving Dynamic Branch Prediction Accuracy,"
in Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, June 2005.

[7] S. McFarling, "Branch Predictor with Serially Connected Predictor Stages for
Improving Branch Prediction Accuracy," U.S. Patent 6374349, 2002.

[8] T.-Y. Yeh and Y. N. Patt, "Two Level Adaptive Training Branch Prediction," in
Proceedings of the 24th Annual International Symposium on Microarchitecture,
November 1991, pp. 51 - 61.

[9] T.-Y. Yeh and Y. N. Patt, "Alternative Implementations of Two-Level Adaptive
Branch Predictions," in 19th Annual International Symposium of Computer Architecture,
May 1992, pp. 124 - 134.

[10] T.-Y. Yeh and Y. N. Patt, "A Comparison of Dynamic Branch Prediction
Techniques That Use Two Levels of Branch History," in Proceedings of the 20th Annual
International Symposium of Computer Architecture, May 1993, pp. 257-266.

[11] S. McFarling, "Combining Branch Predictors," in DEC WRL TN-36, June 1993.

174

[12] E. Sprangle, et al., "The Agree Predictor: A Mechanism for Reducing Negative
Branch History Interference," in 24th Annual International Symposium on
Microarchitecture, May 1997, pp. 284-291.

[13] C.-C. Lee, et al., "The Bi-Mode Branch Predictor," in 30th Annual International
Symposium on Microarchitecture, December 1997, pp. 4-13.

[14] P. Michaud, et al., "Trading Conflict and Capacity Aliasing in Conditional Branch
Predictors," in Proceedings of the 24th Annual International Symposium on Computer
Architecture, 1997, pp. 292-303.

[15] P. Y. Chang, et al., "Improving Branch Prediction Accuracy by Reducing Pattern
History Table Interference," in Proceedings of the 1996 International Conference on
Parallel Architectures and Compilation Techniques, October 1996.

[16] A. Eden and T. Mudge, "The Yags Branch Prediction Scheme," in 31th
International Symposium on Microarchitecture, November 1998, pp. 69-77.

[17] L. N. Vintan and M. Iridon, "Towards a High Performance Neural Branch
Predictor," in Proceedings of the 9th International Joint Conference on Neural Networks,
1999, pp. 868-873.

[18] D. Jimenez and C. Lin, "Dynamic Branch Prediction with Perceptrons," in
Proceedings of the 7th International Symposium on High Performance Computer
Architecture, 2001, pp. 197-206.

[19] D. Jimenez, "Fast Path-Based Neural Branch Prediction," in Proceedings of the 36th
Annual International Symposium on Microarchitecture, December 2003.

[20] E. Jacobsen, et al., "Assigning Confidence to Conditional Branch Predictions," in
29th Annual International Symposium on Microarchitecture, Paris, France, December
1996, pp. 142-152.

[21] www.intel.com, "Intel® Architecture Software Optimization Reference Manual."

[22] J. P. Shen and M. H. Lipasti, Modern Processor Design: Fundamentals of
Superscalar Processors, 2004.

[23] B. D. Hoyt, et al., "Method and Apparatus for Implementing a Set-Associative
Branch Target Buffer," U.S. Patent 5574871, Intel Corporation, 1996.

[24] G. Hinton, et al., "The Microarchitecture of the Pentium 4 Processor," Intel
Technology Journal, 2001.

[25] D. Genossar and N. Shamir, "Intel® Pentium® M Processor Power Estimation,
Budgeting, Optimization, and Validation," Intel Technology Journal, vol. 07, 2003, pp.
44-49.

175

[26] K. Diefendorff, "K7 Challenges Intel " Microprocessor Report, vol. 12, October
1998.

[27] R. E. Kessler, et al., "The Alpha 21264 Microprocessor," Micro, IEEE, vol. 19,
1999, pp. 24-36.

[28] "Intel Vtune™ Performance Analyzer," www.intel.com/software/products/vtune/.

[29] K. Driesen and U. Hölze, "Accurate Indirect Branch Prediction " in Proceedings of
the 25th Annual International Symposium on Computer Architecture, 1998, pp. 167-168.

[30] P. Chang, et al., "Target Prediction for Indirect Jumps," in Proceedings of the 24th
Annual International Symposium on Computer Architecture, June 1997, pp. 274-283.

[31] L. Rappoport, et al., "Method and System for Branch Target Prediction Using Path
Information," U.S. Patent 6601161, Intel Corporation, 2003.

[32] D. Jimenez, et al., "The Impact of Delay on the Design of Branch Predictors," in
Proceedings of the 33th Annual International Symposium on Microarchitecture,
December 2000, pp. 67-76.

