
Precise Flattening of Cubic Bézier Segments

Thomas F. Hain∗ Athar L. Ahmad† David D. Langan‡

Abstract

A method for flattening (generating polyline approxi-
mation for) cubic Bézier curve segments is given. It is
shown to be more efficient than recursive subdivision by
generating an average of only 2/3 as many linear seg-
ments, while maintaining the flatness criterion within
4%. The algorithm execution is 37% faster than recur-
sive subdivision.

1 Introduction

A Bézier curve segment is generally rendered by sub-
dividing it into a series of disjoint curve subsegments,
and then approximating each subsegment by joining its
endpoints by a line segment (chord). The maximum
transverse deviation of each curve subsegment from the
corresponding chord (the achieved flatness) should be
no greater than a minimum error value, f , called the
flatness. The standard technique for doing this is by
a process called recursive subdivision [2], wherein the
curve is recursively divided by two until the flatness cri-
terion is met. The advantage of recursive subdivision
is that the number of segments generated is variable—
depending on the nature of the curve—rather than be-
ing fixed, as in the case of forward differencing [1]. The
problem with recursive subdivision is that, if the flat-
ness criterion is exceeded by even a small amount, the
division is performed one more time, with each of the re-
sulting segments having an achieved flatness of as little
as 25% of f . As a consequence, the number of segments
in the resulting polyline is greater than necessary by as
much as a factor of two. The described algorithm re-
peatedly reduces the front end of a curve by a segment
whose flatness criterion is closely met, thus minimizing
the number of generated segments in the approximating
polyline.

2 Flattening by parabolic approximation

Figure 1 shows a Bézier curve defined on control points
P1(x1, y1), · · · ,P4(x4, y4). We wish to find the para-

∗School of Computer & Information Sciences, University of
South Alabama, thain@usouthal.edu
†Konica Minolta Systems Lab, Boulder, CO,

athar.ahmad@bil.konicaminolta.us
‡School of Computer & Information Sciences, University of

South Alabama, dlangan@usouthal.edu

metric value t of a point P(x, y) on the curve such that
the maximum transverse deviation of the curve from
the line segment P1P is equal to the flatness f . The
curve is now subdivided1 into two (generally unequal)
curve segments. The first curve segment with paramet-
ric range [0, t] can be replaced with sufficient accuracy
by the line segment P1P. The remaining segment is the
basis of a new calculation. This is continued until the
solution for t (with respect to the remaining curve) is
greater than 1. At this point, the remaining curve can
be replaced with a line segment P′1P

′
4 , where P′1 and

P′4 are the curve endpoints.
While t in the previous paragraph represents an opti-

mal point, the analytical solution is computationally ex-
pensive, so we resort to an approximation. The method
for estimating the value of t where the curve should be
subdivided relies on the fact that the beginning of the
curve (for sufficiently small values of t) can be fitted to
a parabola. This approximation works well for curves
that have no inflection points, or for ranges of t suffi-
ciently removed from inflection points. We will examine
this case first.

The parametric equation of the curve
Q(t) = (x(t), y(t)) is
{
x(t) = (1− t)3x1 + 3t(1− t)2x2 + 3t2(1− t)x3 + t3x4

y(t) = (1− t)3y1 + 3t(1− t)2y2 + 3t2(1− t)y3 + t3y4

We now express the equations in terms of coordinates
r and s, with the origin being at P1, the start of the
curve at t = 0, the r-axis being oriented along the ve-
locity vector of the curve at t = 0 (i.e., toward P2), and
the s-axis being right-handed orthogonal to the r-axis.
That is,

r̂ =
P2 −P1

|P2 −P1|
=
(

x2−x1√
(x2−x1)2+(y2−y1)2

, y2−y1√
(x2−x1)2+(y2−y1)2

)

ŝ =
(

y2−y1√
(x2−x1)2+(y2−y1)2

, −(x2−x1)√
(x2−x1)2+(y2−y1)2

)

1To subdivide a cubic Bézier curve defined by control points
P1, · · · ,P4 at t define

P′1=P1+t×(P2−P1), P′2=P2+t×(P3−P2), P′3=P3+t×(P4−P3)

P′′1 =P′1+t×(P′2−P′1), P′′2 =P′2+t×(P′3−P′2), P′′′1 =P′′1 +t×(P′′2−P′′1)

The control points of the first segment are P1,P
′
1,P
′′
1 ,P

′′′
1 , and

of the second segment are P′′′1 ,P
′′
2 ,P

′
3,P4.

1

P1

P3

P2

P4

x

y

r

s

f

t=0

t

t=1

 Parabolic
approximation

Figure 1: Approximating the start of a Bézier curve.

Thus, a point P(x, y) has coordinates

r = (P−P1) · r̂
= (x−x1)(x2−x1)+(y−y1)(y2−y1)√

(x2−x1)2+(y2−y1)2

s = (x−x1)(y2−y1)−(y−y1)(x2−x1)√
(x2−x1)2+(y2−y1)2

In this coordinate system, the control points are
P1(r1, s1), · · · ,P4(r4, s4), and considering only the
movement of the curve in the s-direction

s(t) = (1− t)3s1 + 3t(1− t)2s2 + 3t2(1− t)s3 + t3s4

Since r1 = s1 = s2 = 0, we have,

s(t) = 3t2(1− t)s3 + t3s4

= 3s3t
2 + (s4 − 3s3)t3 (1)

For small values of t, and assuming that s3 is not close
to zero (which would occur if the beginning of the curve
were near an inflection point) the first term dominates.
If we further assume the acceleration along the curve
is reasonably small, i.e., the value of the r-coordinate
varies reasonably linearly with t (this assumption is met
in all places except near a cusp point, which will be
handled as a separate case,) the form of the curve can
be approximated as parabolic as shown in Figure 2.

Thus, the form of the curve is s = ar2, and

ds

dr
= 2ar

Let P(r, s) be a point on the curve, and let P′(r′, s′)
be the point on the curve, which has the maximum de-
viation from the line P1P. The slope of the curve at P′

is equal to the slope of the line P1P. Thus,

2ar′ =
s

r
=
ar2

r

I.e., r′ = 1
2s, and s′ = a(1

2r)
2 = 1

4s

r ≈ vr t

s

f

t
P(r,s)

P”(r’,s”)

P’(r’,s’)

P1

Figure 2: Parabolic approximation.

Let P′′(r′, s′′) be the point on P1P at r′. By similar
triangles,

s′′

r′
=
s′′
1
2r

=
s

r

I.e., s′′ = 1
2s

For small values of r, where the slope of P0P is small,
we get

max deviation ≈ |P′P′′ |
= s′′ − s′
= 1

2s− 1
4s

= 1
4s

Note that this is independent of the constant a. We
can now substitute this into equation (1), with the as-
sumption of small t together with |s3| > 0, yielding

f ≈
∣∣ 1

4s
∣∣ ≈

∣∣ 1
4 × 3s3t

2
∣∣

or, t ≈ 2×
√

f

3 |s3|

where t is the parametric value of the curve such that
the maximum deviation of the point P(t) from the line
P1P is approximately the flatness f .

3 Inflection points

We can write coordinates of the curve as parametric
functions

{
x(t) = axt

3 + bxt
2 + cxt+ dx

y(t) = ayt
3 + byt

2 + cyt+ dy

where, using the Bézier basis matrix, the coefficients in
terms of the control points are

ax = −x1 + 3x2 − 3x3 + x4 ay = −y1 + 3y2 − 3y3 + y4

bx = 3x1 − 6x2 + 3x3 by = 3y1 − 6y2 + 3y3

cx = −3x1 + 3x2 cy = −3y1 + 3y2

dx = x1 dy = y1

2

At inflection points the component of the accelera-
tion (second derivative of position) perpendicular to the
velocity (first derivative of position) is zero; the cross
product of the two vectors is zero. Thus,

dx

dt
· d

2x

dt2
− d2x

dt2
· dy
dt

= 0

= (3axt2 + 2bxt+ cx)(6ayt+ 2by)
−(6axt+ 2bx)(3ayt2 + 2byt+ cy)

= 6(aybx − axby)t2 + 6(aycx − axcy)t+ 2(bycx − bxcy)

Solving this quadratic equation for t yields

tcusp = −1
2

(
aycx − axcy
aybx − axby

)

t1 = tcusp −
√
t2cusp −

1
3

(
bycx − bxcy
aybx − axby

)

t2 = tcusp +

√
t2cusp −

1
3

(
bycx − bxcy
aybx − axby

)

the parametric positions t1 and t2 of the inflection
points, if they exist (i.e., have real solutions).

4 Processing inflection points

At inflection points only the derivative of the accelera-
tion has a component perpendicular to the velocity vec-
tor. Thus, if we subdivide the curve at an inflection
point, say t1, and consider the second segment, again
using an r-s coordinate system with the r-axis aligned
with the velocity at the inflection point, and the origin
at the inflection point, we have r1 = s1 = s2 = s3 = 0 ,
and equation (1) becomes

s(t′) = (t′)3
s4

where t′ is the parametric value relative to this segment
(in which t′ ∈ [0, 1]).

If we set s(t′) = f and solve for t′, we have

tf = 3

√
f

s4

The achieved flatness of the curve segments [−tf , 0]
and [0, tf] will be less than the transverse displacement
s(tf).2 Since the maximum transverse displacement
for these two segments are of opposite signs, we can
merge these segments into a single segment having the
parametric range [−tf ,+tf] and flatten it. Transform-
ing this parametric range into the corresponding para-
metric range in the original curve yields [t−1 , t

+
1] where

t−1 = t1 − tf (1 − t1) and t+1 = t1 + tf (1 − t1). A sim-
ilar parametric range [t−2 , t

+
2] is found surrounding the

second (existing) inflection point t2.
2In the parabolic approximation used above, it was smaller by

a factor of 4, but here we make no such assertion, and use the
conservative value

5 Handling segments around inflection points

The curve segment to be rendered (0 ≤ t ≤ 1) may be
partitioned into up to five sequential subsegments, de-
pending on the values of t−1 , t

+
1 , t
−
2 , t

+
2 , each of which can

be approximated by either a straight line, or by a poly-
line for a segment having a consistent curvature either
to the left or to the right. The cases are summarized in
Table 1.

Case Treatment

[t−1 , t
+
1] ⊆ [0, 1]

∧ [t−2 , t
+
2]∩ [0, 1] = ∅

Use parabolic approximation
to flatten segment [0, t−1]. Re-
place curve segment [t−1 , t

+
1]

by line segment. Use para-
metric approx. to flatten seg-
ment [t+1 , 1].

0 ∈ [t−1 , t
+
1]

∧ [t−2 , t
+
2]∩ [0, 1] = ∅

Replace curve segment
[0, t+1] by line segment. Use
parabolic approx. to flatten
segment [t+1 , 1].

[t−1 , t
+
1]∩ [t−2 , t

+
2] 6= ∅

∧ [t−1 , t
+
2] ⊆ [0, 1]

Use parabolic approximation
to flatten segment [0, t−1].
Replace curve segments
[t−1 , tcusp] and [tcusp, t+1] by
line segments. Use parabolic
approximation to flatten
segment [t+2 , 1].

Other cases Handled similarly.

Table 1: Case analysis for inflection points

6 Segment reduction performance

The goal is to efficiently flatten a Bézier segment. We
will compare the number of linear segments generated
by our parabolic approximation algorithm (PA) with
the number generated for the same curve by recur-
sive subdivision (RS). The recursive subdivision algo-
rithm we used uses the maximum deviation calculation
method of Hain [3], which is more precise and no slower
than conventional techniques for determining this value.

To generate a representative collection of 10,000 test
curves, which attempts to cover a reasonable distribu-
tion of practical Bézier curves, we used a canonical rep-
resentation [4], in which the first three control points
are at (1,0), (0,0), and (0,1), and the fourth control
point varies over a grid from −3 to +3 in both x and
y. The flatness criterion was fixed at 0.0005 (a typical
relative resolution—however, the results were relatively
insensitive to this value.)

The ratio of number of segments generated by the RS
to PA algorithms is given in Figure 3. The ratios fall in
the range from 1 to 2, with the mean being 1.496. As

3

can be seen in Figure 4, the distribution of the relative
achieved flatness values in the PA algorithm (over all
segments of all curves), are very tight about the value
1. In fact, 95% of all segments fall within 3% of the
specified value of f . This can be compared to the distri-
bution of relative achieved flatness values for RS given
in Figure 5, which shows a large number of segments
with values considerably below the optimal value of 1.

0

0.05

0.1

0.15

0.2

0.25

0.3

1.025 1.125 1.225 1.325 1.425 1.525 1.625 1.725 1.825 1.925 2.025

#Points(RS)/#Points(PA)

F
re

qu
en

cy

Figure 3: Distribution of ratio of number of segments
generated by RS to that of PA.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.895 0.915 0.935 0.955 0.975 0.995 1.015 1.035 1.055 1.075 1.095

Relative achieved flatness

F
re

qu
en

cy

Figure 4: Distr. of relative achieved flatness for PA.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.005 0.105 0.205 0.305 0.405 0.505 0.605 0.705 0.805 0.905

Relative achieved flatness

F
re

qu
en

cy

Figure 5: Distr. of relative achieved flatness for RS.

7 Run-time performance

The distribution of the ratio of RS over PA run-time,
collected over 10,000 curves described above, is shown in
Figure 6. Codes were written in C++, and run on a 1.8
GHz Intel machine under MS-XP. The mean speedup is
1.37. The reason for the PA speedup is attributed to
the facts that (1) fewer segments are generated, (2) no
calculation of maximum deviation is required, and (3)
the code is iterative rather than recursive.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1.05 1.15 1.25 1.35 1.45 1.55 1.65 1.75 1.85

RS Time/PA Time
F

re
qu

en
cy

Figure 6: Distribution of ratios of recursive subdivision
(RS) to parabolic approximation (PA) run-times.

8 Conclusion

An algorithm for the flattening of cubic Bézier curve
segments has been described. It is shown to be more
efficient than recursive subdivision by generating only
2/3 as many segments, while 97% of all segments fall
within 4% of the flatness criterion. The code3 runs 37%
faster than recursive subdivision.

References

[1] J. D. Foley, A. van Dam, S. K. Feiner, J. F. Hughes.
Computer Graphics: Principles and Practice in C, Ad-
dison Wesley (1996).

[2] E. Catmul. “A Subdivision Algorithm for Computer
Display of Curved Surfaces,” Ph. D. Thesis in Com-
puter Science, University of Utah (July 1974).

[3] T. F. Hain. “Rapid Termination Evaluation for Recur-
sive Subdivision of Bézier Curves,” Proc. of the Intern.
Conf. on Imaging Science, Systems, and Technology,
Las Vegas, Nevada, June 24–27, 2002, pp. 323–328.

[4] M. C. Stone and A. D. DeRose. “A Geometric Charac-
terization of Parametric Cubic Curves,” ACM Transac-
tions on Graphics, Vol.9, No.3, July 1989, pp. 147–163.

3A testing platform and code may be obtained from
thain@usouthal.edu

4

