
4    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

SECURITYThe Bugs We Have to Kill
S E R G E Y B R A T U S , M E R E D I T H L . P A T T E R S O N , A N D A N N A S H U B I N A

Sergey Bratus is a Research
Associate Professor of com­
puter science at Dartmouth
College. He sees state-of-
the-art hacking as a distinct

research and engineering discipline that,
although not yet recognized as such, harbors
deep insights into the nature of computing. He
has a PhD in mathematics from Northeastern
University and worked at BBN Technologies on
natural language processing research before
coming to Dartmouth.
sergey@cs.dartmouth.edu

Meredith L. Patterson is
the founder of Upstanding
Hackers. She developed the
first language-theoretic defense
against SQL injection in 2005

as a PhD student at the University of Iowa and
has continued expanding the technique ever
since. She lives in Brussels, Belgium.
mlp@upstandinghackers.com

Anna Shubina is a Research
Associate at the Dartmouth
Institute for Security,
Technology, and Society and
maintains the CRAWDAD.org

repository of traces and data for all kinds of
wireless and sensor network research. She was
the operator of Dartmouth’s Tor node when
the Tor network had about 30 nodes total.
ashubina@cs.dartmouth.edu

The code that parses inputs is the first and often the only protection
for the rest of a program from malicious inputs. No programmer can
afford to verify every implied condition on every line of code—even

if this were possible to implement without slowing execution to a crawl. The
parser is the part that is supposed to create a world for the rest of the pro-
gram where all these implied conditions are true and need not be explicitly
checked at every turn. Sadly, this is exactly where most parsers fail, and the
rest of the program fails with them. In this article, we explain why parsers
continue to be such a problem, as well as point to potential solutions that can
kill large classes of bugs.

To do so, we are going to look at the problem from the computer science theory angle. Parsers,
being input-consuming machines, are quite close to the theory’s classic computing models,
each one an input-consuming machine: finite automata, pushdown automata, and Turing
machines. The latter is our principal model of general-purpose programming, the comput-
ing model with the ultimate power and flexibility. Yet this high-end power and flexibility
come with a high price, which Alan Turing demonstrated (and to whose proof we owe our
very model of general-purpose programming): our inability to predict, by any general static
analysis algorithm, how programs for it will execute.

Yet most of our parsers are just a layer on top of this totally flexible computing model. It is
not surprising, then, that without carefully limiting our parsers’ design and code to much
simpler models, we are left unable to prove these input-consuming machines secure. This is
a powerful argument for making parsers and their input formats and protocols simpler, so
that securing them does not require having to solve undecidable problems!

Parsers, Parsers Everywhere
To quote Koprowski and Binsztok [1]:

Parsing is of major interest in computer science. Classically discovered by students
as the first step in compilation, parsing is present in almost every program
which performs data-manipulation. For instance, the Web is built on parsers.
The HyperText Transfer Protocol (HTTP) is a parsed dialog between the client,
or browser, and the server. This protocol transfers pages in HyperText Markup
Language (HTML), which is also parsed by the browser. When running web-
applications, browsers interpret JavaScript programs which, again, begins with
parsing. Data exchange between browser(s) and server(s) uses languages or formats
like XML and JSON. Even inside the server, several components (for instance
the trio made of the HTTP server Apache, the PHP interpreter and the MySQL
database) often manipulate programs and data dynamically; all require parsers.

So do the lower layers of the network stack down to the IP and the link layer protocols, and
also other OS parts such as the USB drivers [2] (and even the hardware: turning PHY layer
symbol streams into frames is parsing, too!). For all of these core protocols, we add, their
parsers have had a long history of failures, resulting in an Internet where any site, program,
or system that receives untrusted input can be presumed compromised.

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  5

SECURITY
The Bugs We Have to Kill

While we may believe in special programmers who write so-
called critical software with the care and precision the rest of
our tribe lacks, where are these secret coding schools train-
ing such ninjas? And if these programmers are so few and far
between, can we really expect them to scale? Neither collective
insanity nor collective negligence are comfortable to contem-
plate, but so we must as our reliance on software grows.

Perhaps we don’t care nearly enough. After all, every C pro-
grammer experiences thousands of segfaults while learning
the language and sees that the world doesn’t collapse, nor does
the computer suddenly become hostile. It certainly is annoying
when programs crash, but it’s easy enough to restart them—with
an automatic watchdog, if need be. Indeed, few of us suspect how
often embedded software in our devices gets restarted.

This habituation to crashes doesn’t serve us well. It forms a false
perception that “bugs are just bugs,” and systems that engineer
around them rather than fix them can be trustworthy, except
in rare and exotic cases. But, in fact, this is where the common
programming intuition lets us down badly.

A segfault is a would-be corruption of memory or state, an
unexpected, out-of-type memory reference that got caught. It is
eminently observable and doesn’t result in much computation
beyond the error. Therefore, it’s easy to assume the same thing
about any memory corruption—unless one is familiar with just
how complete a programming environment a simple memory
corruption can create for an attacker, and how far and wide
beyond its expected execution paths a program can run after a
memory corruption.

It’s natural for programmers to view the executable binary
generated from their programs through the prism of their source
code. In that view, functions do not get jumped into sideways,
nor are they called from locations other than their explicit call
sites; variables retain their values unless assigned to by name or
by reference; assembly instructions cannot spring into existence
unless somehow implied by the code’s semantics; and so on.

As attackers know, all of these expectations are false. In the
gap between these expectations and the actual reality of binary
execution at runtime, entire modes of programming sprang
up. Around 2000, hacker researchers demonstrated that if one
manages to overflow the program stack with what looks like
a sequence of stack frames, one can construct arbitrary pro-
grams that will successfully execute in the corrupted process [3].
In 2007, an academic paper by Hovav Shacham [4] made this
understanding precise by proving that a typical process is in fact
a Turing-complete environment for such programming.

However, this kind of bare-boned exploit programming likely
still feels too exotic for most programmers. Its power can only
be experienced through practicing it, and most of us have our

hands too full with the programming we need to do to pick up
another, weirder kind of programming. So we’ll need to approach
it with a different set of intuitions, which are closer to the classic
computer science than hacking (although, as we will see, here
hacking comes very close to the very foundations of computer
science).

When Programs Crash, Where Do Their Proofs of
Correctness Go?
C. A. R. Hoare developed the beginnings of the axiomatic proofs-
of-correctness theory for programs in 1968. Owing to this
theory, we see programs and their modules, functions, and con-
structs such as loops in terms of preconditions and postcondi-
tions, and chain these for proofs. Whenever such a chain can be
constructed for the entire program, starting with its individual
operations and statements, and the initial precondition is the
atomic “True” (i.e., there are no additional preconditions), we say
that we have proven the program’s correctness (no matter what
the inputs or the state of the rest of the world). Although few
programmers actually end up proving their programs, genera-
tions of programmers have been taught to think of their loops
and branches in terms of preconditions and postconditions. We
intuitively understand the P {Q} R notation even if we don’t use it
explicitly, That is, given preconditions P and code Q, postcondi-
tions R are assured.

But do we stop to think what happens when instead of P our
code Q gets some P'≠ P? What will code Q be able to compute in
that case? How far would possible conditions R in P {Q} R vary?
Our intuition, based on axiomatic programming, does not tell us
that—while an exploiter’s intuition is all about it.

Some of our best theoretic means for achieving predictable code
behavior, such as Proof-Carrying Code (PCC) and programming
language safety guarantees, are of little help against the diver-
gence in preconditions. For PCC, we can only be sure of what the
code does if it’s run within its specification [5]; otherwise, the
proofs it carries do not preclude it from entering an unexpected
“weird” state. The language-based guarantees rigorously proven
on the source code can be broken either by the language’s run-
time implementation [6] or by compiler optimizations [7].

For parsers and the code that receives parsed input data, this
question is even simpler: What happens when the inputs that
hit the parser are invalid and unexpected? What will the parser
itself compute then? If allowed through to the rest of the code,
what effects will the inputs transformed by the parser have on it?
Clearly, if the parser was supposed to reject the data and didn’t,
assumed preconditions to subsequent code on its path will not
hold. The runtime world then belongs to whoever can predict the
computational effects of violated preconditions, even when the
code is proven correct.

6    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

SECURITY
The Bugs We Have to Kill

It gets worse. Suppose we have a program that implements a
simple finite state machine that responds to an input language.
What happens when this code is fed inputs not in this language?
Will the program still behave like a finite state machine, or will
it present a much richer programming model to the attacker able
to feed it custom-crafted inputs?

Accidentally Turing-Complete
The answer is most certainly “yes.” Software and even firmware
intended as automata with limited, specialized purposes have
been shown to actually play the role of a universally program-
mable Turing machine to attacker’s inputs, which, for all their
syntactic peculiarity, acted as programs for these machines.
These inputs didn’t even need to be malformed; either buffer or
integer overflow bugs were similarly not a necessity.

For example, the standard ELF relocation code provided by the
Linux dynamic linker and present in any dynamically linked
process is driven by the relocation metadata present in every
ELF executable. This code is meant to patch up the addresses
in code that is loaded into a different address range than it was
linked for—as a means of ASLR protection, for example, or
simply because a previously loaded library already occupies part
of the original address range—but it is capable of much more.
In fact, craftily prepared well-formed metadata entries can
make it carry out any computation at all, as if that code were a
virtual machine and the relocation entries its bytecode [8]! This
code was never meant nor written for such generality, but it can
achieve it nevertheless [9].

What we think of as hardware is not far behind. For example,
we trust the isolation of our processes to the x86 MMU, and we
imagine it as a fairly simple mechanism that sets up our page
tables on exec(), manages them on context switch, and trans-
lates every memory reference. Clearly, in this translation a finite
automaton is involved, but in fact the MMU features are so rich
that the configuration tables it interprets can be used to program
anything—any Turing-complete computation [10]! Again, the
MMU’s logic was designed for a specific purpose, and great effort
is spent on validating its correctness—but it turns out that it can
do so much more than intended, with no bugs involved. Due to its
feature-richness, merely well-formed crafted inputs suffice.

In short, computer security appears to have its very own parallel
to Arthur Clarke’s observation that “Any sufficiently advanced
technology is indistinguishable from magic,” namely, “Any
sufficiently complex input format is indistinguishable from
bytecode; the code receiving it is indistinguishable from a vir-
tual machine.”

The latter observation, of course, accords very well with the
exploiters’ everyday experiences. So long as the inputs are
complex enough, and the software is correspondingly complex,

there will be crashes, and some of these crashes will lead to full
control of the receiving software.

The trick is putting these observations together and realizing
what goes wrong. In full accordance with Clarke’s laws, exploit
developers lead in this exploration, because “The only way of dis-
covering the limits of the possible is to venture a little way past
them into the impossible.” Indeed, in the programmers’ mental
models of their environments, exploits are supposed to be the
impossible—and yet they exist.

The irony of these models is that the computational model of the
general purpose computing, the Turing machine, was a proof of
insolvability, the impossibility of programming certain tasks
due to the richness of the platform itself. The simplest of these
is a particular kind of static analysis, a general algorithm for
deciding statically whether a program would halt. The diffi-
culty of this problem is by no means a fluke: according to Rice’s
Theorem, general algorithms for deciding other “non-trivial”
properties of programs are in the same boat. This is not to say
that static analysis of programs is hopeless but, rather, that it is
hard, and this hardness is a matter of natural law that would not
just yield to cleverness or extravagantly massive investment. As
Geoffrey Pullum put it in his “Scooping the Loop Snooper” [11]:

No general procedure for bug checks will do.
Now, I won’t just assert that, I’ll prove it to you.
I will prove that although you might work till you drop,
you cannot tell if computation will stop.

...

You can never find general mechanical means
for predicting the acts of computing machines;
it’s something that cannot be done. So we users
must find our own bugs. Our computers are losers!

This puts paid to the hope of exhaustively automating static
security analysis for the kind of code that we most often write
and use. Yet it is Turing’s insights and his model of computing—
an answer to Hilbert’s tenth problem—that form the basis for
most computers we know. Our software is just a layer on top of
this totally flexible computer, and unless this software presents
very simple parsers, that software is also likely to be totally flex-
ible and cannot be proven to be secure—unless we programmers
take great care to not use the full extent of this power and flex-
ibility, and purposefully keep ourselves to simpler models that
can be proven and verified.

Can We Verify Our Way Out of This Mess?
Maybe. First, we need to define the problem in a way that
program verification tools can help. Then we need to pick a
simple enough model of what parsing is and stick to it in our
implementation.

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  7

SECURITY
The Bugs We Have to Kill

Thus the long answer is, verification of parsers will help only
if we co-design data formats and code that parses them. Pars-
ers must create the preconditions for the rest of the proof; thus
they should be the simplest machines possible to ease effective
verification. If you think this is a solved problem, it isn’t. Quoting
again from Koprowski and Binsztok,

In the recent article about CompCert, an impressive
project formally verifying a compiler for a large subset
of C, the introduction starts with a question “Can
you trust your compiler?” Nevertheless, the formal
verification starts on the level of the [Abstract Syntax
Tree] and does not concern the parser. Can you trust
your parser?

So how simple is “simple”?

Be Simple and Definite about What You Receive!
When software gets exploited by inputs—its execution takes a
path it was never meant to take because of consuming the input
data—it is obvious that the data is driving it to do so. But, in fact,
although it may be less obvious, the data is driving the software
even when it executes as expected. “The illusion that your pro-
gram is manipulating its data is powerful. But it is an illusion:
The data is controlling your program.” [12]

This means that we should look at the data itself as a program—
and model the parser code consuming it as an automaton driven
by it. Then, so long as we keep this automaton simple, we can
prove and verify its behavior on all possible inputs. We have the
mathematics for it and a hierarchy of such automata by simplic-
ity and power.

For example, consider a regular expression. We think of them as
implemented by finite automata we can draw with circles and
arrows, and emulate their execution by moving a coin from one
circle to another along the arrow marked with the character we
consume from the input string [13]. But then the string is what
drives this automaton from state to state; it’s the program for
the automaton. The same is true for pushdown automata. It is
obvious for a Turing machine: whatever goes on the tape is the
program and is the input at the same time.

Regular expressions seem to be everyone’s favorite way of
validating inputs in scripting languages. This can be just right
or can go horribly wrong, depending on the language of inputs
one is trying to validate. Matching a regular language of inputs,
one that consists of all strings matched by a regex anchored
at the start and at the end of the string, would be just right. Of
course, such languages work best for the data structures with
no or limited nesting; for those like HTML or JSON that allow
arbitrary nesting of their elements, it can go horribly wrong [14].
Validating arbitrarily nested HTML with regexes is a classic
mistake, made by both novice Web developers and the designers

of anti-XSS protections in IE 8 [15]. The mathematical reason for
this world of XSS fail is simple: such languages are context-free
or context-sensitive, and require at least a pushdown automaton
to match them.

The purpose of the parser as a protector of the rest of the code is
to match the correct inputs and drop the incorrect ones (without
getting exploited itself, obviously). So we need to start by defin-
ing the language of the valid inputs, and then write the parser as
the consuming automaton of the type we can validate. Usually
this means keeping the input language regular or context-free,
and using a regex (a finite state machine) or a pushdown automa-
ton, respectively. We’ve seen how to safely approach what the
parser consumes—but what about its outputs?

Types to the Rescue
To verify parsers, we need to first write their specifications.
It’s easy to say that parsers must consume strings, any strings,
and reject those that are invalid or unexpected. But how can we
describe what parsers must produce? What kinds of assump-
tions on input that passes the parser would be helpful for both
ordinary programmers and the proof engineers seeking to verify
their code?

This question goes back to the foundations of type theory. For
example, the plight of the programmer who must rely on assump-
tions assured by the previous code was the subject of James
Morris, Jr.’s “Types Are Not Sets” in 1973: “[The programmer]
could begin each operation with a well-formedness check, but in
many cases the cost would exceed that of the useful processing.”
Just as relevant to the programmers today as it was then!

The job of the parser then becomes clear once we see it from the
type-theory angle. The parser eliminates strings; it introduces
other objects of types that have to do with the program’s seman-
tics. The rest of the program assumes that these objects are
well-typed; the parser is their constructor that builds them from
the strings it consumes.

Parser bugs, then, generally come in two flavors: the parser code,
instead of rejecting an invalid input, provides an attacker with a
virtual execution engine for exploits, or the objects it constructs
are not the type expected by the rest of the code. The former
often occurs whenever the parser allocates and copies memory
based on a value in user input it has neither fully parsed nor
checked for consistency. Various integer overflows in X.509 and
other ASN.1-based formats are examples of the latter: instead of
the syntactically correctly encoded Bignum unbounded integer,
the parser creates a bounded platform-default Fixnum [16]. So
it is with Apache and Nginx chunked-encoding vulnerabilities,
discussed later.

8    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

SECURITY
The Bugs We Have to Kill

Format Foibles, Protocol Peeves
Exploiter intuition has long singled out certain syntactic fea-
tures as the breeding grounds for parser vulnerabilities. Given
the choice between constant-length and variable-length fields,
the exploiter’s money would be on the latter; several-length fields
that must agree for the message to be valid up the ante. A typical
memory corruption scenario with such protocols involves copy-
ing some elements of input into buffers sized and dynamically
allocated based on values supplied in the same input—and lying,
to cause a buffer overflow. Although it’s easy to blame such bugs
on the implementers’ negligence, it’s undeniably the syntactic
complexity of the underlying protocols that makes an imple-
menter’s mistake both more likely to happen and harder to catch.

Generally speaking, the more context a parser must keep to
correctly parse the next element of the message, the more likely
it is to get it wrong; the more complex the relationship between
already parsed syntax elements and the remaining ones, the
more likely an unchecked, unwarranted assumption is to slip
through. Looking at the problem through the program proof lens,
we can see the rapid accumulation of preconditions in context-
sensitive protocols; however, the Internet—with its scale such
that if a coding error can be made, it will be made—has a much
more direct way of steering us towards regular and context-free
formats.

In the Internet Protocol’s early days, the variable-length IP
options tacked on behind the constant-width IP header fields
were considered essential. These days, their mere presence in
a packet is enough for many firewall configurations to regard
it as suspicious or to drop it outright. This happened for a good
reason: IP option parsing bugs have plagued 1990s stacks
(including firewalls like Raptor CVE-1999-0905 and Gauntlet
CVE-1999-0683, which they caused to freeze or crash), made
a few impressive appearances such as CVE-2005-0048 in the
2000s, and recently resurfaced as the “Darwin Nuke” kernel
panic CVE-2015-1102 in Mac OS 10.10.2. Accordingly, the Inter-
net de facto converged on the simpler constant-width IP header,
a regular language—not by standard, but by a “rough consensus
of firewalls.”

Of course, any gains from this subsetting of IPv4 have been offset
by the advent of IPv6 with its chains of variable-length Extension
Headers, including nestable fragmentation headers. While con-
cerned ASes filter and drop up to 40%(!) of certain kinds of IPv6
packets, newer RFCs call for limiting the allowed variations in
header order and combinations [17]. This subsetting-by-firewall
of IPv6 to a simpler grammar will likely continue.

The situation with the core trust infrastructure of the Internet,
the X.509 PKI standard, is hardly more encouraging than that of
IPv6. The wide variety of ways to represent basic data types such
as integers and strings allowed under the ASN.1 Basic Encoding

Rules (BER) makes parsing X.509 certificates and related data
something of a guessing game as to what other implementa-
tions might mean; the “PKI Layer Cake” effort revealed over 20
ways that different SSL/TLS implementations could interpret
the same data in the certificate—including the Common Name!
Thus a CA granting a certificate signing request for what looks
like an innocuous domain could in fact create a certificate seen
by the browsers as that of a different, high-value domain name.
This abundance of differences is not surprising, since estab-
lishing equivalence of parsers is in fact a problem that becomes
undecidable beyond a certain syntactic complexity, which X.509
significantly exceeds. Given the choice between ASN.1-based
formats, the simpler DER and other encoding rules that fix
respective canonical ways to represent each data type should be
definitely preferred over BER, but complexity is the dark energy
of the Internet: once created, it never goes away.

Speaking of SSL/TLS, the past year has been rich in famous
SSL/TLS parser bugs. It wasn’t just the infamous Heartbleed
CVE-2014-0160; the GnuTLS Hello bug CVE-2014-3466 and
Microsoft’s Secure Channel bugs under CVE-2014-6321 dem-
onstrate that the misery of complex input syntax really loves
company.

While XML-based document formats are a definite improve-
ment over the older binary ones, allowing a simple context-free
subset to represent tree-like documents with recursively nested
objects, the full XML specification still strays far enough from
syntactic simplicity. Not surprisingly, the same elements, such
as entities that introduce context-sensitivity to XML serve as
a major source of its over 600 associated CVEs. By contrast, a
simpler JSON, whose syntax would be context-free except for the
requirement that its dictionary keys be unique, scores only about
60 CVEs; anecdotally, JSON parsers seem to be ahead of the game.

However, the Web has offset the simplicity that it promised
in formats by an enormous explosion of computational power
exposed to attacker inputs. Ubiquitous JavaScript ensures that
the document one’s client renders may have absolutely nothing
to do with what one receives, precluding any kind of mean-
ingful static analysis before rendering; instead of separating
benign sheep from the malicious goats, the client has to put its
trust into its sandbox being inescapable. And if this weren’t bad
enough, the combination of HTML5 and CSS in modern brows-
ers already gives rise to programming models strong enough to
exfiltrate one’s passwords [18]. One may hope that such compu-
tations are accidental, but the demonstration that HTML and
CSS3 are actually Turing-complete [19] leaves little hope that
they will remain exotic or can be easily contained.

Chances are that we may need to rethink both the data formats
and the computation models of the Internet before the mass of
unwanted computation forces us into walled gardens of servers
and peers somehow “trusted” not to poison our software.

www.usenix.org	   AU G U S T 20 1 5  VO L . 4 0, N O. 4  9

SECURITY
The Bugs We Have to Kill

Where Are We Now?
Decades of frustration have taught us to not roll our own crypto
libraries. Although legacy crypto libraries are still complex and
hard to use, new and simpler ones are just now emerging, like
NaCl [20]. The Iron Age of crypto may be finally dawning on us.

With parsing, it’s arguably worse. We are still in the Stone Age
of parsing, despite a promising glint of Bronze and Iron here and
there, or even an occasional laser beam. All across production
programming, “rolling your own parser for speed” still reigns
rather than raising skeptical eyebrows. Parser generators exist,
but aren’t seen as a vital necessity for input-handling code in
either office document applications, messaging protocols, net-
work stacks, or elsewhere; in short, their use cases are deemed
limited rather than universal. Verified parsers are extremely
rare; a majority of parsers are pwned-by-design, not least those
we use in our cryptography.

One can continue blaming developers who don’t “program
securely” or fail to “validate inputs” (and some still do). However,
a closer look at the nature of parser exploitation suggests this may
be blaming the victim. Syntactically complex, context-sensitive
protocols may in fact require the programmer to solve undecid-
able problems to create secure programs, an impossible feat.

As with all other kinds of engineering, the way forward lies in
understanding which problems are impossible and which are
merely hard, and not confusing the two. After all, every kind of
engineering in the physical world works around its own impossi-
bilities: conservation of energy and momentum, laws of thermo-
dynamics, quantum-scale indeterminacy effects, and so on. Yet
how sure can we be that random software engineers would so
readily name the hard natural-law limits of their trade as physi-
cal engineers would?

It would be naive to expect that software engineering has no
such limitations. Indeed, computability theory and complexity
theory bring them to light. Nowhere do these limitations mani-
fest themselves so cruelly as in our inability to predict computa-
tion. This inability is what we colloquially know as insecurity:
we cannot trust our computers to stick to the computations we
expect in the presence of inputs we don’t control.

Building a Secure(r) Parser
We know the execution models for consuming inputs in which
we can predict computation and protect it: these tend to be
regular or context-free. We also know that context-sensitive and
richer input languages harbor undecidable problems. As usual,
the cure for an impossibility revealed by science is more science.
In the case of parsers, we are lucky: we already have the math-
ematical models and the rough split of tasks into the possible and
the impossible.

Our programming must follow these models and stay within
the safe protocol designs that do not pose undecidable prob-
lems as requirements for “securing” them—that is, being able to
automate testing of their implementations and reasoning about
the possible courses their computations can take. For all the
seeming flexibility and extensibility benefits of more complex
protocols—and, respectively, more powerful computation mod-
els—building on them is like building on quicksand.

There is an important caveat for parsers explicitly hand-coded
as finite automata, however: it should be clear from the code
what kind of valid input any given part of it expects, and what
syntactic construct it is responsible for parsing. For example,
Nginx implements its parser of HTTP headers as a large hand-
coded automaton (2300+ lines of C code, 57 switch statements,
272 single-character case statements). In 2013, it was found
to incorrectly parse the chunk lengths in the HTTP chunked
encoding (CVE-2013-2028), producing negative (signed) inte-
gers for large hexadecimal chunk lengths—exactly the same
issue that was discovered for Apache in 2002 (CVE-2002-3092).
It took over 11 years to find that bug in Nginx—and if you try
looking through Nginx’s ngx_http_parse.c to find where the
chunk length is actually parsed, you will see why.

If the expected valid input is not intelligible from the code, find-
ing bugs in it can take forever. In our experience, parsers whose
code resembles the grammar of their expected inputs tend to do
best. The Parser Combinator style of programming makes writ-
ing such code easy—and, although it was developed in functional
languages such as Scala and Haskell, it’s quite possible to use
it in C/C++ and other languages as well. The Hammer parser
construction kit is meant to demonstrate this; it requires no
background in functional languages to use [21].

Help Me, Verifiable Parser, You Are My Only Hope!
When we look to the future of computers, what can we expect?
Almost all kinds of programs will need to handle remote, un-
trusted inputs. The trend to connect everything and anything
seems unstoppable; the “Internet of Things” and “cloud comput-
ing” (i.e., running trusted components of programs on remote
systems) may only be its first wave.

Visions of self-driving cars, smart homes, and computerized
medicine project from the current state of computing power, but
not its trustworthiness. The only sustainable way to achieve
these visions without an exploding attack surface is to make
sure that all these programs exposed to hostile inputs can’t be
trivially exploited or disrupted by them. And if encrypted tun-
nels seem to be an answer, consider just how vulnerable the code
base of our cryptographic infrastructure is to non-cryptographic
attacks related to mere parsing of padding, PKCS message for-
mats, and X.509 certificates.

10    AU G U S T 20 1 5  VO L . 4 0, N O. 4 	 www.usenix.org

SECURITY
The Bugs We Have to Kill

The only hope for a secure connected future is software that
can hold its own against the maliciously crafted inputs, without
crutches such as firewalls, application proxies, antiviruses, and
so on. This software will need to apply solid computation theory
principles to what it accepts, and will accept only what it can
validate. Once accepted, input can be turned into data types that

will provide the rest of the software code with unambiguous
preconditions. And although eliminating all bugs is provably
impossible, it will at least be free of the parser bugs on both input
and output—the bugs we need to kill to build computers we can
finally trust.

References
[1] Adam Koprowski and Henri Binsztok, “TRX: A Formally
Verified Parser Interpreter,” LMCS 2011.

[2] Travis Goodspeed, “Phantom Boundaries and Cross-Layer
Illusions in 802.15.4 Digital Radio,” First LangSec IEEE
S&P Workshop, 2014: http://spw14.langsec.org/papers/
8th-of-a-nybble.pdf.

[3] Gerardo Richarte, “Re: Future of Buffer Overflows,” October
2000, Bugtraq: http://seclists.org/bugtraq/2000/Nov/32;
Nergal, “Advanced Return-into-lib(c) Exploits: The PaX Case
Study,” Phrack 58:4, 2001; see also Sergey Bratus et al., “Exploit
Programming: From Buffer Overflows to ‘Weird Machines’ and
Theory of Computation,” USENIX ;login:, December 2011, for
further history.

[4] Hovav Shacham, “The Geometry of Innocent Flesh on the
Bone: Return-into-libc without Function Calls (on the x86),”
ACM CCS 2007.

[5] Julien Vanegue, “The Weird Machines in Proof-Carrying
Code,” First LangSec IEEE S&P Workshop, 2014: http://
spw14.langsec.org/papers/jvanegue-pcc-wms.pdf.

[6] Eric Jaeger, Olivier Levillain, and Pierre Chifflier, “Mind
Your Language(s): A Discussion about Languages and Security,”
First LangSec IEEE S&P Workshop, 2014: http://spw14
.langsec.org/papers/MindYourLanguages.pdf.

[7] Vijay D’Silva, Mathias Payer, Dawn Song, “The Correctness-
Security Gap in Compiler Optimization,” Second LangSec
IEEE S&P Workshop, 2015: http://spw15.langsec.org/papers/
dsilva-gap.pdf.

[8] Shapiro et al., “‘Weird Machines’ in ELF: A Spotlight on the
Underappreciated Metadata,” USENIX WOOT 2013: http://
www.cs.dartmouth.edu/~sergey/wm/woot13-shapiro.pdf.

[9] Mach-O and PE formats have comparable properties.

[10] Bangert et al., “The Page-Fault Weird Machine: Lessons in
Instruction-less Computation,” USENIX WOOT 2013: http://
www.cs.dartmouth.edu/~sergey/wm/woot13-bangert.pdf.

[11] http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html.

[12] Taylor Hornby, quoted in Dan Geer, “Dark Matter: Driven
by Data,” Second LangSec IEEE S&P Workshop, 2015: http://
spw15.langsec.org/geer.langsec.21v15.txt.

[13] This page’s links explain how regex works in general, and
particularly in Perl: http://perl.plover.com/Regex/.

[14] “Parsing HTML the Cthulhu Way”: http://blog.codinghorror
.com/parsing-html-the-cthulhu-way/, http://blog.codinghorror
.com/content/images/2014/Apr/stack-overflow-regex-zalgo.png.

[15] http://p42.us/ie8xss/; see also Eduardo Vela Nava, David
Lindsay, “Abusing Internet Explorer 8’s XSS Filters”: http://
p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf.

[16] Dan Kaminsky, Meredith L. Patterson, and Len Sassaman,
“PKI Layer Cake: New Collision Attacks against the Global
X.509 Infrastructure”: https://www.cosic.esat.kuleuven.be/
publications/article-1432.pdf.

[17] See, e.g., F. Gont et al., “Observations on IPv6 EH Filtering
in the Real World,” 2015: https://tools.ietf.org/html/draft
-gont-v6ops-ipv6-ehs-in-real-world-02.

[18] M. Heiderich et al., “Scriptless Attacks: Stealing the Pie
without Touching the Sill,” CCS 2012: https://www.hgi
.rub.de/media/emma/veroeffentlichungen/2012/08/16/
scriptlessAttacks-ccs2012.pdf.

[19] Eli Fox-Epstein, “Stupid Machines”: https://github.com/
elitheeli/stupid-machines.

[20] NaCl: http://nacl.cr.yp.to/.

[21] Hammer parser: https://github.com/UpstandingHackers/
hammer. Also check out the Hammer Primer, https://github.
com/sergeybratus/ HammerPrimer for a gentle introduction.

