Project Servo

Technology from the past
come to save the future
from itself

Mozilla Annual Summit, July 2010
<graydon@mozilla.com>



Hi

* | have been writing a compiled, concurrent,
safe, systems programming language for the
past four and a half years.

» Spare-time kinda thing. Yeah, | got problems.

* A small group of people in Mozilla got
interested in it this past year, once | told them

what | was up to.

* \We've been trying to finish it for the past few
months, to see what we can make of it.



OMGWTFBBQ?!

* Relax.
 There is no master plan, nefarious plot, etc.
* You are not going to be forced to use it.

 We are not “rewriting the browser”. That's
impossible. Put down the gun.

* We do not know what exactly will come of it.

* |t was a coincidence of a maturing side project
and a desire for some slightly less-annoying
language technology, nothing crazy.



Why Oh Why? (#1)

 C++ is well past expiration date:

- Wildly unsafe in almost every way

 Memory unsafe, no ownership policies, no concurrency
control at all, can't even keep const values constant.

- Heavily burdened with legacy issues

» Absurd compilation model, weak linkage and module
system, nigh-impossible to write tools for.

- Spend more time fighting its weaknesses than
seems reasonable.

 Maybe you've noticed?



Why Oh Why (#2)

 Most “new” languages are unsuitable. One or
more of:

- JVM/CLR or similar tie-in, VM/FFI burden.
- Complex GC + pointer-neavy = poor memory use.

- “Different paradigm” (hard to find talent for,
comprehension barrier, unpredictable).

- “Script language” (few types or static checks).
- Mostly ignore isolation, interference, concurrency.

* Everyone is dodging the niche I'm interested in.



Introducing: Rust

* Rust is a language that mostly cribs from past
languages. Nothing new.

* Unapologetic interest in the static, structured,
concurrent, large-systems language niche.

- Not for scripting, prototyping or casual hacking.
- Not for research or exploring a new type system.

* Concentrate on known ways of achieving
- more safety,

— more concurrency,
- less mess.



Nothing new?

« Hardly anything. Maybe a keyword or two.

 Many older languages betfter than newer ones:
- eg. Mesa (1977), BETA (1975), CLU (1974) ...

* We keep forgetting already-learned lessons.
* Rust picks from 80s / early 90s languages:

- Nil (1981), Hermes (1990),

- Erlang (1987),

- Sather (1990),

- Newsqueak (1988), Alef (1995), Limbo (1996),
- Napier (1985, 1988).



A quick taste (#1)

* It looks like a C-lineage family:

fn main() {
log “hello, world”;

}

e |t has most of the usual statements:

fn max(int x, int y) -> int {
if (x > y) {
ret x;
} else {
ret y;
}



A quick taste (#2)

e Stack iterators:

iter range(int lo, int hi) -> int {
while (lo < hi) {
put lo;
lo += 1;

}

fn main() {
for each (int i in range(1l, 10)) {
log i;
}



A quick taste (#3)

* Lightweight tasks:

fn worker (int lo, int hi) {
while (lo < hi) {
log lo;
lo += 1;

}

fn main() {
let task tO
let task tl
join tO;
join tl1;

spawn worker (1, 100);
spawn worker (100, 200);



A quick taste (#4)

« Structural objects and local type inference:

obj counter (int i) {
fn incr() {
i+4+=1;
}
fn get() -> int ({
ret 1i;
}
}

fn main() {
auto ¢ = counter(10) ;
c.incr();
log c.get();



A quick taste (#5)

* Type-parametric code and structural types

obj swap[T] (tup(T,T) pair) -> tup(T,T) {
ret tup(pair. 1, pair. 0);
}

fn main() {
auto str pair = tup(“hi”, “there”);
auto int pair = tup(10, 12);
str pair = swap[str] (str pair);
int pair = swap[int] (int pair);



Ok, that could go on all day

There is a lot I'm not showing there.

ne semantics is the interesting part.

ne syntax is, really, about the last concern.

nat was just a “taste” so you don't get all
frustrated wondering what it looks like and/or
assume that at the last minute it's going to read
like Lisp or Haskell

- (Hush, | know and love these languages, but there
IS a time and place).



Details! (#1)

» Static safety:

- Memory safety, no wild pointers.

- Typestate system, no null pointers.

- Mutability control, immutable by default.
- Side-effect control, pure by default.



Details! (#2)

 Dynamic safety:
- Bounds-checked indexing, trapped signals, etc.
- Dynamic assertions drive typestates.
— All errors cause failure, unwinding.
« “Expected errors”? Use a disjoint union return.

— Failure of a task is non-recoverable.

» “Crash-only” tasks with isolation, trapping.
* Pervasive logging, annotations for unwinding.
e Supervision / restart task ownership tree.



Details (#3)

 Pragmatic safety:

— You can break the static rules.
- You have to authorize where and how.

- In a standard way, that's integrated into the
language and easy to audit.
- And globally visible, in a single place per-project.
 Device for applying (or ignoring) social pressure.
* Mechanism not policy.
» Decide for yourself how strong your stomach is.



Details! (#4)

» Structural type bestiary:

- Records, tuples, vectors.
- Tagged disjoint unions.
- First class functions (with bindings).

- Structural objects.
 Lightweight.
 Immutable by default also.

* No classes, no class hierarchy.
- Just object types and objects that conform to them.



Details! (#5)

* Actor language bestiary:

- Lightweight tasks (spawn 100k tasks = ~1s)

- Async, half-duplex, weak, transmittable channels.
 “buffered capabilities”.
- No shared mutable state.

- Can only pass immutable messages.
- Ildempotent task failure, failure-signal linkage.



Details! (#6)

« Systems language bestiary:

- Fast calling of C (~8 insns, switch stacks).
- Fast and safe stack-iterators (no cursor objects).
- No global GC to fight (only per-task, mutable bits).

- Real data structures (incl. nested structures).
» Stack allocation, destructors, RAII.
- Multi-file compilation / optimization.

e ELF/MachO/PE + DWAREF.
« works with GDB, valgrind, shark, etc.



Details (#7)

* Multi-paradigm (hopefully clear by now).

- Not “everything is an object”.
* The object system is “pay as you go”, feature-wise.

- Equal(-ish) support given to FP, procedural, actor
and OO styles.

 Different abstractions for different problems, trade-offs
between control and expression, clarity and brevity.

 Different strengths and weaknesses in each style.
« Hopefully they combine tastefully.



Details! (#8)

* Other useful bits (trying to be thorough).

- Type-parametric code.
- Bignums.

- Nested modules with import/export control.
- UTF8 strings (not UCS2).

- Marked syntax-extension system.

- Reflection, dynamic type, type-switch.

* None of this stuff is particularly novel.



Implementation status

* Young, immature, hobby project until lately.

- Mostly-done design by now, heads down.
- ~90% language features “working” in rough form.
— ~70% runtime working.

» 38kloc bootstrap compiler (Ocaml).
- Built-in x86 backend for Linux, Win32, OSX.
- LLVM backend in progress.

 Minimal standard library, mostly tests.



Inevitable question: is this like “Go"™?

* No.

- I've been working on Rust for years. Coincidence.
There are dozens of actor languages in the
pipeline. Go to a PL conference and ask around.

 Go seems to be barking up a different tree?

— Has coroutines, but kept shared mutable state.
- Has memory safety, but kept null pointers.
- Has unwinding, but no destructors or RAII.
- Has message passing, but no immutability.

- Has some built-in generics, but not in user code.



Immediate plans

 Keep hacking on compiler, library, runtime.

- Eventually transition to self-hosted frontend, LLVM
backend.

- Build out libraries and bindings.
* Need help:

- Experienced language implementors!
- Anyone who feels like bug fixing or library-writing.

- Please: no research or novelty! There's plenty of
known-good technology in the literature.

— Also please: skip syntax or bikeshed arguments.



Released?

Kinda. Not in any “supported” or stable sense.

It's not ready for general use, but we felt bad
enough keeping this quiet as long as we did.

- Mostly my request, because I'm shy, and also
because it was in flux for a while and needed
focused attention and work, not debate.

Hosting in public now.

BSD-licensed, Github-hosted, we require
committer agreement from you for us to pull.



Fini

github.com/graydon/rust

Demos and
Q and A time!



