login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002863 Number of prime knots with n crossings.
(Formerly M0851 N0323)
40
0, 0, 1, 1, 2, 3, 7, 21, 49, 165, 552, 2176, 9988, 46972, 253293, 1388705 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

Prime knot: a nontrivial knot which cannot (as a composite knot can) be written as the knot sum of two nontrivial knots. - Jonathan Vos Post, Apr 30 2011

REFERENCES

For convenience, many references and links related to the enumeration of knots are collected here, even if they do not explicitly refer to this sequence.

C. C. Adams, The Knot Book, Freeman, NY, 2001; see p. 33.

C. Cerf, Atlas of oriented knots and links, Topology Atlas 3 no. 2 (1998).

Peter R. Cromwell, Knots and Links, Cambridge University Press, 2004, pp. 209-211.

Martin Gardner, The Last Recreations, Copernicus, 1997, 67-84.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

P. G. Tait, Scientific Papers, Cambridge Univ. Press, Vol. 1, 1898, Vol. 2, 1900, see Vol. 1, p. 345.

M. B. Thistlethwaite, personal communication.

LINKS

Table of n, a(n) for n=1..16.

For convenience, many references and links related to the enumeration of knots are collected here, even if they do not explicitly refer to this sequence.

D. Bar-Natan, The Hoste-Thistlethwaite Table of 11 Crossing Knots

D. J. Broadhurst and D. Kreimer, Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Phys. Lett. B 393, No.3-4, 403-412 (1997).

Alain Caudron, Classification des noeuds et des enlacements (Thèse et additifs), Univ. Paris-Sud, 1989 [Scanned copy, included with permission]

J. H. Conway, An enumeration of knots and links and some of their algebraic properties, 1970. Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) pp. 329-358 Pergamon, Oxford.

S. R. Finch, Knots, links and tangles, Aug 08 2003. [Cached copy, with permission of the author]

Ortho Flint, Bruce Fontaine and Stuart Rankin, Enumerating the prime alternating links, preprint, 2007.

Ortho Flint and Stuart Rankin, Enumerating the prime alternating links, Journal of Knot theory and its Ramifications, 13 (2004), 151-173.

C. Giller, A family of links and the Conway calculus, Trans. American Msth Soc., 270 (1982) 75-109.

Jeremy Green, A Table of Virtual Knots, 2004.

Hermann Gruber, Atlas of Rational Knots.

J. Hoste, M. B. Thistlethwaite and J. Weeks, The First 1,701,936 Knots, Math. Intell., 20, 33-48, Fall 1998.

Jim Hoste, The Enumeration and Classification of Knots and Links, in Handbook of Knot Theory, William W. Menasco and Morwen B. Thistlethwaite, Editors, Elsevier, 2015.

S. Jablan, L. H. Kauffman, and P. Lopes, The delunification process and minimal diagrams, Topology Appl., 193 (2015), 270-289, #5531; see also, arXiv:1406.2378 [math.GT], 2014.

Knot Atlas, The Knot Atlas. Includes: The Rolfsen Table of knots with up to 10 crossings, The Hoste-Thistlethwaite Table of 11 Crossing Knots, The Thistlethwaite Link Table, The 36 Torus Knots with up to 36 Crossings, and The Mathematica Package KnotTheory.

Knotilus web site, Knotilus

W. B. R. Lickorish and K. C. Millett, The new polynomial invariants of knots and links, Math. Mag. 61 (1988), no. 1, 3-23.

C. Livingston and J. C. Cha, Table of knot invariants.

Andrei Malyutin, On the question of genericity of hyperbolic knots, arXiv preprint arXiv:1612.03368, 2016

K. A. Perko, Jr., Abstract for Talk, 1973

K. A. Perko, Jr., On covering spaces of knots, Glasnik Mathematicki,  Tom 9 (29) No. 1 (1974), 141-145. (Annotated scanned copy)

K. A. Perko, Jr., On the classification of knots, Proc. Amer. Math. Soc., 45 (1974), 262-266. (Annotated scanned copy)

K. A. Perko, Jr., Letters to N. J. A. Sloane 1974-1977

K. A. Perko, Jr., Primality of certain knots, In Topology Proceedings, vol. 7, no. 1, pp. 109-118. Auburn University Mathematics Department and the Institute for Medicine and Mathematics at Ohio University, 1982.

K. A. Perko, Jr., On ninth order knottiness, Preprint (N. D.)

K. A. Perko, Jr., Caudron's 1979 Knot Table, 2015 [Included with permission]

K. A. Perko, Jr., Review of Jablan-Kauffman-Lopes (2015)

Stuart Rankin, Knot Theory Preprints of Ortho Smith and Stuart Rankin

S. Rankin and O. Flint Knot theory web page.

Stuart Rankin and Ortho Smith, Enumerating the Prime Alternating Links, arXiv:math/0211451 [math.GT], 2002

Stuart Rankin, Ortho Smith and John Schermann, Enumerating the Prime Alternating Knots, Part I, arXiv:math/0211346 [math.GT], 2002.

Stuart Rankin, Ortho Smith and John Schermann, Enumerating the Prime Alternating Knots, Part II, arXiv:math/0211348 [math.GT], 2002.

Stuart Rankin, Ortho Smith and John Schermann, Enumerating the Prime Alternating Knots, Part I, Journal of Knot Theory and its Ramifications, 13 (2004), 57-100.

Stuart Rankin, Ortho Smith and John Schermann, Enumerating the Prime Alternating Knots, Part II, Journal of Knot Theory and its Ramifications, 13 (2004), 101-149.

R. G. Scharein, Number of Prime Links

N. J. A. Sloane, Illustration of initial terms

P. G. Tait, The first seven orders of knottiness [Annotated scan of Plate VI]

M. B. Thistlethwaite, Home Page

M. B. Thistlethwaite, Numbers of knots and links with up to 19 crossings

M. B. Thistlethwaite, Knot tabulations and related topics, Aspects of topology, 1-76, London Math. Soc. Lecture Note Ser., 93, Cambridge Univ. Press, Cambridge-New York, 1985.

S. D. Tyurina, Diagram invariants of knots and the Kontsevich integral, J. Math. Sci. 134 (2) (2006) 2017

University of Western Ontario Student Beowulf Initiative, Project: Prime Knots

Eric Weisstein's World of Mathematics, Knot.

Eric Weisstein's World of Mathematics, Prime Knot.

Eric Weisstein's World of Mathematics, Alternating Knot.

Eric Weisstein's World of Mathematics, Prime Link

R. G. Wilson, V, Letter to N. J. A. Sloane, Oct. 1993

Index entries for sequences related to knots

FORMULA

a(n) = A051766(n) + A051769(n) + A051767(n) + A051768(n) + A052400(n). - Andrew Howroyd, Oct 15 2020

CROSSREFS

Cf. A002864, A086825.

Cf. A051766, A051767, A051768, A051769, A052400.

Sequence in context: A306666 A032313 A032223 * A047693 A212265 A107108

Adjacent sequences:  A002860 A002861 A002862 * A002864 A002865 A002866

KEYWORD

nonn,hard,more,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

This is stated incorrectly in CRC Standard Mathematical Tables and Formulae, 30th ed., first printing, 1996, p. 320.

Terms from Hoste et al. added by Eric W. Weisstein

Consolidated references and links on enumeration of knots into this entry, also created entry for knots in Index to OEIS. - N. J. A. Sloane, Aug 25 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 23:03 EDT 2021. Contains 343071 sequences. (Running on oeis4.)