How to Recover a Crashed RAID 5EE After Controller Failure or Multiple Disk Failure
- Tutorial
The mathematical model of signed sequences with repetitions (texts) is a multiset. The multiset was defined by D. Knuth in 1969 and later studied in detail by A. B. Petrovsky [1]. The universal property of a multiset is the existence of identical elements. The limiting case of a multiset with unit multiplicities of elements is a set. A set with unit multiplicities corresponding to a multiset is called its generating set or domain. A set with zero multiplicity is an empty set.
How many of you have used third-party libraries when writing code? It's a catchy question. Without third-party libraries the development of some products would be delayed for a very, very long time. One would have to reinvent the wheel to solve each problem. When you use third-party libraries you still stumble upon some pitfalls in addition to obvious advantages. Recently PVS-Studio for C# has also faced one of the deficiencies. The analyzer could not finish analyzing a large project for a long time. It was due to the use of the SymbolFinder.FindReferencesAsync method from the Roslyn API in the V3083 diagnostic.
On November 10th, 2020, Microsoft released a new version of .NET Core - .NET 5. The updated platform presents many new enhancements. For example, it allows C# developers to use features the new C# 9 offers: records, relational pattern matching, etc. Unfortunately, there was a disadvantage: PVS-Studio could not analyze these projects. However (and here's the good news)... That used to be the case :) Our next release, PVS-Studio 7.13, will support projects that target .NET 5.
Types of smart traffic lights: adaptive and neural networks
Adaptive works at relatively simple intersections, where the rules and possibilities for switching phases are quite obvious. Adaptive management is only applicable where there is no constant loading in all directions, otherwise it simply has nothing to adapt to – there are no free time windows. The first adaptive control intersections appeared in the United States in the early 70s of the last century. Unfortunately, they have reached Russia only now, their number according to some estimates does not exceed 3,000 in the country.
Neural networks – a higher level of traffic regulation. They take into account a lot of factors at once, which are not even always obvious. Their result is based on self-learning: the computer receives live data on the bandwidth and selects the maximum value by all possible algorithms, so that in total, as many vehicles as possible pass from all sides in a comfortable mode per unit of time. How this is done, usually programmers answer – we do not know, the neural network is a black box, but we will reveal the basic principles to you…
Adaptive traffic lights use, at least, leading companies in Russia, rather outdated technology for counting vehicles at intersections: physical sensors or video background detector. A capacitive sensor or an induction loop only sees the vehicle at the installation site-for a few meters, unless of course you spend millions on laying them along the entire length of the roadway. The video background detector shows only the filling of the roadway with vehicles relative to this roadway. The camera should clearly see this area, which is quite difficult at a long distance due to the perspective and is highly susceptible to atmospheric interference: even a light snowstorm will be diagnosed as the presence of traffic – the background video detector does not distinguish the type of detection.
Hi All,
I’m pleased to invite you all to enroll in the Lviv Data Science Summer School, to delve into advanced methods and tools of Data Science and Machine Learning, including such domains as CV, NLP, Healthcare, Social Network Analysis, and Urban Data Science. The courses are practice-oriented and are geared towards undergraduates, Ph.D. students, and young professionals (intermediate level). The studies begin July 19–30 and will be hosted online. Make sure to apply — Spots are running fast!
If you’re more used to getting updates every day, follow us on social media:
Telegram
Twitter
LinkedIn
Facebook
Regards,
Dmitry Spodarets.
So we have already played with different neural networks. Cursed image generation using GANs, deep texts from GPT-2 — we have seen it all.
This time I wanted to create a neural entity that would act like a beauty blogger. This meant it would have to post pictures like Instagram influencers do and generate the same kind of narcissistic texts. \
Initially I planned to post the neural content on Instagram but using the Facebook Graph API which is needed to go beyond read-only was too painful for me. So I reverted to Telegram which is one of my favorite social products overall.
The name of the entity/channel (Aida Enelpi) is a bad neural-oriented pun mostly generated by the bot itself.
Hi All,
I have some good news for you…
Data Science Digest is back! We’ve been “offline” for a while, but no worries — You’ll receive regular digest updates with top news and resources on AI/ML/DS every Wednesday, starting today.
If you’re more used to getting updates every day, follow us on social media:
Telegram - https://t.me/DataScienceDigest
Twitter - https://twitter.com/Data_Digest
LinkedIn - https://www.linkedin.com/company/data-science-digest/
Facebook - https://www.facebook.com/DataScienceDigest/
And finally, your feedback is very much appreciated. Feel free to share any ideas with me and the team, and we’ll do our best to make Data Science Digest a better place for all.
Regards,
Dmitry Spodarets.
Why is it valuable to get into the Qrator Labs partnership program?
In Qrator Labs, we firmly believe that working together brings a better result. Which is the reason why, for years, we were trying to find meaningful partnerships with all kinds of companies. They either seek to provide their existing customers with the top-notch DDoS mitigation technology developed at Qrator Labs with many additional ecosystem solutions or want to succeed the other way around. By getting their product available for Qrator Labs' customers by integrating into the Qrator anycast filtering network.
The previous work from ref [1] describes the method of transforming a sign sequence into algebra through an example of a linguistic text. Two other examples of algebraic structuring of texts of a different nature are given to illustrate the method.
In this article, I’d like to talk about the problems I faced while integrating an API for the HTTP protocol and share my experience in solving them.
- REST vs Non REST architecture
- Ignoring Header Accept: application/json
- Mixing JSON keys case types
- Different response to the same request
This article is a part of Algorithms in Go series where we discuss common algorithmic problems and their solution patterns.
In this edition, we take a closer look at bit manipulations. Bit operations can be extremely powerful and useful in an entire class of algorithmic problems, including problems that at first glance does not have to do anything with bits.
Let's consider the following problem: six friends meet in the bar and decide who pays for the next round. They would like to select a random person among them for that. How can they do a random selection using only a single coin?
The solution to this problem is not particularly obvious (for me:), so let's simplify a problem for a moment to develop our understanding. How would we do the selection if there were only three friends? In other words, how would we "mimic" a three-sided coin with a two-sided coin?